WO2012029540A1 - Heat-masking coating film, process for production thereof, and heat-resistant alloy members using the same - Google Patents

Heat-masking coating film, process for production thereof, and heat-resistant alloy members using the same Download PDF

Info

Publication number
WO2012029540A1
WO2012029540A1 PCT/JP2011/068592 JP2011068592W WO2012029540A1 WO 2012029540 A1 WO2012029540 A1 WO 2012029540A1 JP 2011068592 W JP2011068592 W JP 2011068592W WO 2012029540 A1 WO2012029540 A1 WO 2012029540A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
oxide
coating film
heat
bond coat
Prior art date
Application number
PCT/JP2011/068592
Other languages
French (fr)
Japanese (ja)
Inventor
岳志 泉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012029540A1 publication Critical patent/WO2012029540A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining

Definitions

  • the present invention relates to a heat shielding coating film, a method for producing the same, and a heat-resistant alloy member using the same.
  • the temperature of combustion gas (for example, the temperature of gas generated by burning fuel or the like) is increasing with the aim of increasing its efficiency.
  • the temperature of the combustion gas that is normally used has already exceeded the melting point of the base material of heat-resistant alloy members such as turbine blades and stationary blades, and various cooling techniques are employed.
  • a thermal barrier coating (TBC) film which is usually composed of a top coat and a bond coat, on members constituting the gas turbine. This is because by providing the TBC film, the effect of suppressing the heat flow from the combustion gas to the member and reducing the member temperature is obtained.
  • the top coat contains an oxide having low thermal conductivity.
  • an oxide having low thermal conductivity As a specific example of such an oxide, yttria partially stabilized zirconia (Ytria: YSZ) whose crystal structure is stabilized by addition of yttria can be given.
  • the bond coat from the viewpoint of ensuring oxidation resistance and corrosion resistance, for example, MCrAlY alloy (M represents one or more atoms selected from the group consisting of iron, nickel and cobalt), Ni—. Aluminides such as Al and Ni—Al—Pt are contained.
  • TGO thermally grown oxide
  • the top coat and the bond coat can be brought into close contact with each other with the effect of protecting the substrate from oxidizing and corrosive environments.
  • TGO aluminum oxide having a low growth rate and excellent environmental blocking ability is suitable. Therefore, in order to easily form aluminum oxide in the bond coat, the bond coat has a higher aluminum concentration than the base material. There are many cases.
  • Recent TBC films are known to have a heat shielding effect of about 150 ° C.
  • the TBC film is exposed to a high temperature during gas turbine operation, but drops to room temperature when stopped. Therefore, there is a problem that the thermal stress change due to heating and cooling in the bond coat is large and the top coat may peel off. It was. Such peeling is considered to be due to TGO formed at the interface between the bond coat and the top coat and cracks in the top coat caused by the difference in thermal expansion coefficient between the bond coat and the top coat. .
  • Patent Document 1 describes a thermal barrier coating layer having a multilayer structure in which a plurality of intermediate layers are stacked in addition to a bond coat and a top coat.
  • a technique is described in which the intermediate layer is formed by mixing MCrAlY and columnar aluminum oxide having a controlled aspect ratio, and the amount of the mixture is changed in an inclined manner.
  • Patent Document 2 discloses a metal in which a thermal barrier coating layer provided on a metal substrate has an intermediate layer, and the intermediate layer is provided as a diaphragm and continuous between the particulate ceramic phase and the ceramic phase. Techniques that consist of phases are described.
  • Patent Document 2 Although there is a certain effect on durability, a step of coating the metal phase on the particulate ceramic phase is necessary, and the metal phase is platinum (Pt) having corrosion resistance.
  • the metal phase is platinum (Pt) having corrosion resistance.
  • Noble metals such as iridium (Ir) are preferable, and there is a problem that costs increase.
  • the present invention has been made to solve the above-mentioned problems, and its object is to provide a heat-shielding coating film that can be easily manufactured and has superior durability compared to the prior art, a method for manufacturing the same, and heat resistance using the same.
  • An object is to provide an alloy member.
  • the present invention it is possible to provide a heat-shielding coating film that can be easily manufactured and is more durable than the conventional one, a manufacturing method thereof, and a heat-resistant alloy member using the same.
  • the present embodiment is not limited to the following contents and does not depart from the gist thereof. Any change can be made within the range.
  • the heat-shielding coating film 10 is a heat-shielding coating film formed on a substrate, and includes a plurality of metal particles made of metal, and the metal oxide is continuous between the plurality of metal particles.
  • the bond coat 1 having an oxide skeleton structure included in the heat-shielding coating film 10 according to the present embodiment includes a plurality of metal particles made of metal.
  • the oxide of the metal is continuously joined between the plurality of metal particles.
  • FIG. 1 is an enlarged view schematically showing a part of a cross section of the bond coat 1 having an oxide skeleton structure in the heat shielding coating film 10 according to the present embodiment.
  • metal particles 11 are deposited to form a bond coat 1 having an oxide skeleton structure, and the metal particles 11 in the bond coat 1 having an oxide skeleton structure are represented by bold lines.
  • a metal oxide 11a is formed.
  • the alloy and superalloy etc. which two or more types of metal atoms consist of arbitrary ratios and combinations shall be included.
  • the bond coat 1 according to the present embodiment has a function of protecting the base material (usually including metal) on which the heat shielding coating film 10 is formed from being corroded and oxidized. Furthermore, the bond coat 1 according to this embodiment also functions as a base for ensuring the adhesion of the top coat 4 that is normally provided on the bond coat 1.
  • any metal can be used as the metal constituting the metal particles 11 deposited on the bond coat 1 having an oxide skeleton structure as long as the effects of the present invention are not significantly impaired. Those exhibiting corrosion resistance and oxidation resistance are preferably used.
  • a metal (alloy) containing aluminum (Al) and further containing at least one atom selected from the group consisting of nickel (Ni), chromium (Cr), and cobalt (Co) is preferable.
  • a metal represented by the following formula (1) is preferable.
  • MCrAlY (1) (However, M represents one or more atoms selected from the group consisting of iron (Fe), nickel, and cobalt.)
  • the metal represented by the above formula (1) examples include CoNiCrAlY (specific composition by weight fraction such as Co-32Ni-21Cr-8Al-0.5Y), NiCoCrAlY (specific As a composition formula by weight fraction, Ni-17Cr-23Co-12.5Al-0.5Y etc.) can be mentioned.
  • a metal may be used individually by 1 type and may use 2 or more types by arbitrary ratios and combinations.
  • the shape of the metal particles 11 continuously deposited on the bond coat 1 according to the present embodiment is arbitrary as long as the effects of the present invention are not significantly impaired. By spraying, the shape is usually flat, elliptical or the like.
  • “the metal oxide is formed by continuously joining” means that all metal oxides (that is, a network-like shape as shown in FIG. The metal oxides 11a) are connected to each other at at least one point to form an integral network (that is, continuously joined).
  • it is preferable that the metal particles 11 are bonded to other adjacent metal particles 11 by at least one metal bond. With such a configuration, the heat shielding coating layer according to the present embodiment can be made stronger.
  • the metal particles 11 are deposited as described above, and further, the metal oxide 11a is continuously joined.
  • most of the metal oxides 11a are formed by continuously joining only in the direction parallel to the interface of the bond coat 1 having an oxide skeleton structure (that is, in the horizontal direction in FIG. 1). In this case, that is, when it is not so continuous in the vertical direction (that is, the vertical direction in FIG. 1), the metal oxide 11a formed between the metal particles 11 is cracked and has an oxide skeleton structure.
  • the bond coat 1 may be peeled off.
  • the metal oxide 11a is uniformly joined not only in the direction parallel to the interface of the bond coat 1 having the oxide skeleton structure but also in the direction perpendicular to the interface.
  • the total cross sectional area of the metal oxide 11a is usually 1% with respect to the total cross sectional area of the bond coat 1 having an oxide skeleton structure.
  • the upper limit is usually 40% or less, preferably 15% or less, and more preferably 10% or less.
  • each area can be performed based on the following method. First, for example, using a scanning electron micrograph (hereinafter, referred to as “SEM” as appropriate), the oxide skeleton structure at an arbitrary magnification that can identify the structure of the bond coat 1 having the oxide skeleton structure. A cross section of the bond coat 1 having In the bond coat 1 having a photographed oxide skeleton structure, the metal particles 11 and the metal oxide 11a are photographed with different shades due to the difference in their components. 11a can be distinguished. Then, for example, the amount (area) of the metal oxide 11a contained in the bond coat 1 having an oxide skeleton structure is calculated using image analysis software or the like using the difference in density, and the oxide skeleton structure is obtained. The ratio (area ratio) of the metal oxide 11a contained in the bond coat 1 can be calculated.
  • SEM scanning electron micrograph
  • the thickness W and the shortest distance D of a metal oxide described later are determined based on a photograph taken by SEM.
  • the reason is that the metal particles 11 are deposited in a complex manner in the bond coat 1 having an oxide skeleton structure, and the metal oxide 11a is formed when the metal particles 11 are adjacent to each other. This is because the region of oxide 11a, the formation range, the thickness of the layer made of metal oxide 11a, the shape thereof, and the like cannot be clearly defined. Therefore, in the present embodiment, the metal oxide 11a to be formed is defined in two dimensions instead of three dimensions, and the definition of the present embodiment is performed using a representative SEM as an observation means in the definition. is there.
  • the metal oxide 11a is formed between the metal particles 11 included in the bond coat 1 having an oxide skeleton structure. Therefore, in the cross section of the bond coat 1 having an oxide skeleton structure, at least two metal oxides 11a are present on the outer periphery of the metal particles 11, and the two metal oxides 11a
  • the shortest distance is usually 5 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and the upper limit is usually 100 ⁇ m or less, preferably 75 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the shortest distance can usually be controlled by the thermal spraying conditions of the metal particles 11 when the bond coat 1 having an oxide skeleton structure is formed.
  • the shortest distance can be measured using an SEM and corresponds to “D” in FIGS. 1, 3 and 4 (FIGS. 3 and 4 will be described later).
  • a plurality of metal particles 11 are deposited, and a metal oxide 11 a is formed along the plurality of deposited metal particles 11.
  • the metal oxide 11 a formed along the metal particles 11 is usually an oxide of a metal that is particularly easily oxidized (that is, particularly highly reactive) among all the metals contained in the metal.
  • the metal oxide 11a formed between the plurality of metal particles 11 is usually aluminum oxide.
  • the metal oxide 11a formed between the metal particles 11 is not necessarily all aluminum oxide, but 90% by weight or more of the metal oxide 11a formed between the metal particles 11 is aluminum oxide. It is preferable. When 90% by weight or more is aluminum oxide, the oxidation resistance and corrosion resistance of the base material 3 (shown in FIG. 1) on which the heat shielding coating film 10 according to this embodiment is formed are more reliable. It will be a thing.
  • the amount of aluminum oxide contained in the metal oxide 11a formed between the metal particles 11 can be measured by, for example, a wavelength dispersive X-ray spectrometer.
  • the metal in the bond coat 1 includes at least aluminum and at least one metal selected from the group consisting of nickel, chromium, and cobalt, and aluminum oxide included in the oxide of the metal.
  • the amount of is preferably 90% by weight or more based on the total amount of the metal oxide.
  • the thickness (width) of the metal oxide 11a is usually 0.1 ⁇ m or more, preferably 0 after exposure at an arbitrary temperature and time after film formation. 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and the upper limit is usually 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the metal oxide 11a is too thin, the strength of the bond coat 1 having an oxide skeleton structure may be insufficient.
  • the metal oxide 11a is too thick, cracks are generated inside the formed metal oxide 11a, There is a possibility that the bond coat 1 having an oxide skeleton structure peels from the crack.
  • the thickness of the metal oxide can be measured using, for example, the SEM, and corresponds to “W” in FIGS. 1, 3, and 4.
  • the thicknesses of the metal oxides 11a included in the bond coat 1 having the oxide skeleton structure according to the present embodiment may not all be the same. It is preferable to be included in the range.
  • the thickness of the bond coat 1 according to this embodiment is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 50 ⁇ m or more, preferably 100 ⁇ m or more, more preferably 125 ⁇ m or more, and its upper limit is usually 400 ⁇ m. Hereinafter, it is preferably 350 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the thickness of the bond coat 1 having an oxide skeleton structure can be measured using, for example, the SEM.
  • the thickness of the bond coat 1 according to the present embodiment may not all be the same, but even in that case, it is preferable that the thickness of all the portions is included in the above range.
  • the bond coat 1 according to the present embodiment may contain any component other than the metal and the metal oxide as long as the effects of the present invention are not significantly impaired.
  • Optional components that may be included include, for example, alkaline earth elements such as magnesium, nonmetallic elements such as silicon and germanium, active elements such as hafnium, rare earth elements such as lanthanum and cerium, platinum, iridium, palladium and the like Examples include platinum group elements.
  • Arbitrary components may be contained individually by 1 type, and 2 or more types may be contained by arbitrary ratios and combinations.
  • the bond coat 1 according to the present embodiment includes an arbitrary component
  • the content thereof is preferably 0.1 wt% or more and 5 wt% for an alkaline earth element such as magnesium and a nonmetallic element such as silicon.
  • the active element such as hafnium and the rare earth element such as lanthanum are preferably 0.01% by weight to 3% by weight
  • the platinum group element such as platinum is preferably 0.1% by weight to 15% by weight. is there. If the amount of any component is too large, the melting point and mechanical properties of the metal particles 11 change, and the bond coat 1 having an oxide skeleton structure may be insufficient in strength.
  • thermally grown oxide layer 2 When the heat shielding coating film 10 according to the present embodiment is exposed to high temperature in an oxidizing atmosphere at an arbitrary temperature, time, a thermally grown oxide layer 2 (forms on the bond coat 1 having the oxide skeleton structure. To do.
  • the thermally grown oxide layer 2 is formed according to [1-1. Since the metal oxide (that is, the metal oxide 11a) described in the bond coat 1 having an oxide skeleton structure is included, the description thereof is omitted.
  • the base material 3 is formed with the heat shielding coating film 10 according to the present embodiment on the surface thereof.
  • the type, material, and the like of the base material 3 are arbitrary as long as the effects of the present invention are not significantly impaired, but are usually metals.
  • the material constituting the base material 3 is preferably one in which the base material 3 itself has a certain degree of heat resistance. It is preferable to use a material excellent in creep strength and fatigue strength at high temperature.
  • Ni-based superalloys such as IN738 (Ni-16Cr-8.5Co-1.7Mo-2.6W-0.9Nb-3.4Ti-3.4Al wt%)
  • a Co-base superalloy such as FSX414 (Co-10Ni-28Cr-7W-1Fe) can be preferably used.
  • the “superalloy” is a technical term representing an alloy having excellent strength at high temperature, oxidation resistance, corrosion resistance, ductility, and the like.
  • a Ni-base superalloy is particularly excellent in creep strength and fatigue strength
  • a Co-base superalloy is particularly excellent in corrosion resistance and ductility.
  • the base material when a heat-resistant alloy member manufactured by forming the heat shielding coating film 10 according to the present embodiment on the base material 3 is used as, for example, a moving blade of a gas turbine, the base material is further excellent in strength. Unidirectionally solidified or single crystal Ni-base superalloy is preferably used. Since these materials have a stable microstructure of ⁇ -Ni and ⁇ '-Ni3Al, high strength can be expressed.
  • the heat shielding coating film 10 according to the present embodiment is formed on the substrate 3 and has the bond coat 1 according to the present embodiment, other layer configurations, materials, and the like remarkably exert the effects of the present invention. It is optional as long as it is not impaired. However, it is preferable that the heat shielding coating film 10 according to the present embodiment is formed on the base material 3 made of, for example, an alloy or a superalloy, and the top coat 4 is provided.
  • the heat-resistant alloy member 100 made of the base material 3 on which the heat shielding coating film 10 according to the present embodiment is formed is converted into, for example, a high-temperature gas.
  • a temperature gradient is generated between the gas and the base material 3, and the temperature rise of the base material can be efficiently suppressed.
  • the material constituting the top coat 4 is arbitrary as long as the effects of the present invention are not significantly impaired, but those having low thermal conductivity are preferable.
  • Specific examples of such a material include yttria stabilized zirconia (YSZ; composition formula: ZrO 2 -6Y 2 O 3 , ZrO 2 -7Y 2 O 3 or ZrO 2 -8Y 2 O 3 ).
  • the structure of the top coat 4 is arbitrary as long as the effects of the present invention are not significantly impaired, and examples thereof include a structure including porous, columnar, and vertical cracks.
  • the thickness of the top coat 4 is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 100 ⁇ m or more, preferably 150 ⁇ m or more, more preferably 200 ⁇ m or more, and the upper limit is usually 1000 ⁇ m or less, preferably 750 ⁇ m. Hereinafter, it is more preferably 500 ⁇ m or less. If the top coat 4 is too thin, the heat shielding effect may be insufficient, and if it is too thick, peeling may be likely to occur.
  • the thickness of the top coat 4 can be measured using, for example, the SEM.
  • the thickness of the topcoat 4 which concerns on this embodiment may not become the same thickness in all the parts, even in that case, it is preferable that the thickness in all the parts is contained in the said range.
  • top coat 4 may contain an arbitrary component as long as the effects of the present invention are not significantly impaired.
  • optional components include rare earth element oxides such as ceria and gadolinia.
  • Arbitrary components may be contained individually by 1 type, and 2 or more types may be contained by arbitrary ratios and combinations.
  • the top coat 4 when the top coat 4 includes an optional component, the content thereof is arbitrary as long as the effects of the present invention are not significantly impaired. However, when the amount of the optional component is too small, or conversely, the top coat 4 The crystal structure of the coat 4 becomes unstable. Moreover, there is a possibility that the crystal structure easily changes due to a temperature change, and peeling easily occurs due to a volume change associated therewith.
  • the heat-shielding coating film 10 may have, in addition to the top coat 4, another surface layer may be provided unless the effects of the present invention are significantly impaired. May be.
  • the heat shielding coating film 10 according to the present embodiment can be manufactured by any method. However, from the viewpoint of the ease of the manufacturing method, the manufacturing method of the heat shielding coating film 10 according to the present embodiment preferably includes a step of depositing the metal particles 11 by a thermal spraying method.
  • the manufacturing method of the heat-resistant alloy member 100 (hereinafter, appropriately referred to as “heat-resistant alloy member 100 according to the present embodiment”) on which the heat-shielding coating film 10 according to the present embodiment is formed as shown in FIG.
  • the method for manufacturing the heat-shielding coating film 10 according to the present embodiment will be specifically described below, but what is described below is merely an example of the method for manufacturing the heat-shielding coating film 10 according to the present embodiment, The method is not limited to the contents described below.
  • FIG. 1 schematically shows a part of a cross section of a heat-resistant alloy member in which a heat shielding coating film 10 according to the present embodiment is formed on a base material.
  • a heat-resistant alloy member 100 formed with a heat shielding coating film 10 according to the present embodiment shown in FIG. 1 includes a bond coat 1 having an oxide skeleton structure in which metal particles 11 are deposited on a substrate 3, and a top.
  • the coat 4 is laminated in this order.
  • the heat-resistant alloy member 100 according to this embodiment can be manufactured mainly through the following steps. (1) A pretreatment is performed on the surface of the substrate 3 (pretreatment step). (2) The metal particles 11 are deposited on the pretreated substrate 3 (bond coat deposition step). (3) A top coat 4 is formed on the bond coat 1 having a deposited oxide skeleton structure (top coat forming step).
  • pretreatment step is performed on the surface of the substrate 3
  • bond coat deposition step is performed on the pretreated substrate 3
  • a top coat 4 is formed on the bond coat 1 having a deposited oxide skeleton structure.
  • Pretreatment process In the manufacturing method of the heat-resistant alloy member 100 according to the present embodiment, it is preferable to first perform a pretreatment step in which processing for roughening the surface is performed on the portion of the base material 3 that is in close contact with the bond coat 1. .
  • a pretreatment step in which processing for roughening the surface is performed on the portion of the base material 3 that is in close contact with the bond coat 1.
  • any method can be applied as long as the effects of the present invention are not significantly impaired, but the viewpoint of ensuring good adhesion between the substrate 3 and the bond coat 1 having an oxide skeleton structure. Therefore, it is preferable to perform blasting on the surface of the base material 3. In the blasting process, for example, non-metallic or metallic particles are sprayed on the surface of the substrate 3 at a high speed.
  • the surface of the base material 3 is roughened, and impurities such as oil can be removed from the surface of the base material 3 to clean the surface. Thereby, better adhesion of the bond coat 1 having an oxide skeleton structure to the substrate 3 can be ensured.
  • the type of metal or non-metallic particles used for the blast treatment is arbitrary as long as the effects of the present invention are not significantly impaired, but examples thereof include non-metallic particles such as silica sand, alumina and silica, aluminum, zinc, copper, steel shot and the like. Metal particles can be used. In addition, these particles may be used individually by 1 type, and may use 2 or more types by arbitrary ratios and combinations.
  • the size of the particles is arbitrary as long as the effects of the present invention are not significantly impaired. However, when the particles are too small, roughening may be insufficient and the adhesion may be insufficient. 3 The unevenness of the surface becomes too large, and the thickness of the metal particles 11 to be deposited may be uneven.
  • a projection device using compressor air can be used as a device for performing blasting.
  • this apparatus can be used to perform blasting on the surface of the substrate 3.
  • the conditions for performing the blast treatment are arbitrary as long as the effects of the present invention are not significantly impaired.
  • the particle projection pressure can be 0.1 MPa or more and 0.8 MPa or less.
  • a step of depositing the metal particles 11 is performed on the surface of the base material 3 subjected to the blast treatment.
  • a specific deposition method for example, a low pressure plasma spraying (LPPS), a high velocity flame spraying (High Velocity Oxy-fuel Frame-spraying: HVOF), or the like is used. Can be deposited on top.
  • LPPS low pressure plasma spraying
  • HVOF High Velocity Oxy-fuel Frame-spraying
  • FIG. 1 it includes a plurality of metal particles 11 made of metal, and has a network-like shape in which the metal oxide (metal oxide 11 a) is continuously joined between the metal particles 11.
  • the thermal spraying conditions for forming the bond coat 1 having an oxide skeleton structure are arbitrary as long as the effects of the present invention are not significantly impaired. However, the temperature and the particle velocity of the metal particles 11 during thermal spraying may satisfy the following conditions. Of particular importance.
  • the metal particles 11 are deposited on the substrate 3 while being covered with an extremely thin metal oxide 11a film during the flight to the substrate 3. It is particularly important. When the temperature of the metal particle 11 is high and the metal particle 11 flies while melting, the film of the metal oxide 11a gathers at a specific portion of the molten metal particle 11, and the metal oxide 11a continuously joins after deposition. It is not a structure. Conversely, when the temperature of the metal particles 11 is low, the metal particles 11 do not accumulate, and the bond coat 1 having an oxide skeleton structure cannot be formed.
  • the metal oxide 11a has a preferable shape such as a flat shape and an ellipse after being deposited.
  • the metal particles 11 after deposition are excessively flat, and most of the metal oxides 11a are only in a direction parallel to the interface of the bond coat 1 having an oxide skeleton structure.
  • a preferred oxide skeleton cannot be formed.
  • the speed of the metal particles 11 is low, the metal particles 11 do not accumulate.
  • the conditions of the temperature and particle velocity of these metal particles 11 vary depending on the composition of the powder, the particle size, and the thermal spraying apparatus used.
  • the particle size distribution of the metal particles 11 is usually 20 ⁇ m or less, preferably 15% or less, more preferably 10% or less, and 90 ⁇ m or more is usually 10% or less, preferably 45 ⁇ m or less. Is 5% or less, more preferably 3% or less.
  • the above-mentioned spraying conditions can be implemented by those skilled in the art by modifying the control conditions of the spraying apparatus owned.
  • topcoat formation process A top coat 4 is formed on the bond coat 1 having the skeleton structure of the formed oxide.
  • the formation method of the topcoat 4 is arbitrary as long as the effect of this invention is not impaired remarkably, for example, an atmospheric pressure plasma spraying (APS) can be used under atmospheric pressure.
  • APS atmospheric pressure plasma spraying
  • the heat shielding coating film 10 according to this embodiment can be manufactured.
  • the top coat 4 usually has voids (that is, pores) through which oxygen can permeate. Then, oxygen existing around the member passes through the pores and permeates the top coat 4 to reach the bond coat 1 having an oxide skeleton structure. Then, the reached oxygen reacts with a particularly easily oxidized metal (for example, aluminum) contained in the metal particles 11 at the interface between the bond coat 1 and the top coat 4 having an oxide skeleton structure, and the metal oxide. A layer consisting of is formed. The layer made of the metal oxide thus formed is the thermally grown oxide layer 2.
  • a normally desired dense bond coat in which the metal particles 11 are bonded to each other by metal bonds does not form a form in which the metal oxides 11a are continuously joined.
  • the reason is that a thermally grown oxide layer 2 that hardly permeates oxygen grows along the uppermost surface of the metal particle 11 existing at the uppermost part of the metal particles 11, and the metal particles 11 are dense and oxygen bonds. This is because it does not enter the inside of the coat.
  • the reached oxygen is not only the thermally grown oxide layer 2 but also the metal oxide 11a existing between the metal particles 11 in which oxygen easily penetrates or continuously joined.
  • the metal oxide 11a further grows due to the invading oxygen, and forms a strong heat shielding coating film 10.
  • the use temperature is normal high temperature, as long as it uses in the environment where oxygen exists, the said metal oxide 11a and thermal growth oxide Layer 2 continues to grow.
  • the amount of oxygen that permeates through the top coat 4 and the thermally grown oxide layer 2 is extremely small, and the reaction of oxygen and metal reacting to form the metal oxide 11a and the thermally grown oxide layer 2 is very slow. For this reason, such a response is sufficiently negligible in the short term.
  • the heat shielding coating film 10 according to the present embodiment can be used for any application.
  • the heat-resistant alloy member 100 can be manufactured by forming the heat shielding coating 10 according to the present embodiment on the base material 3 containing a metal.
  • heat resistance and durability are usually required, and for example, a moving blade, a stationary blade, a combustor, etc. of a gas turbine are preferable.
  • the heat-resistant alloy member 100 shown in FIG. 1 was manufactured.
  • a specific manufacturing method is as follows.
  • a Ni-based alloy IN738 Ni-16Cr-8.5Co-1.7Mo-2.6W-0.9Nb-3.4Ti-3.4Al
  • a coin-shaped alloy member having a diameter of 2.5 cm and a thickness of 3 mm was produced.
  • the aluminum oxide particles having a particle size of 24 were subjected to a blasting process on the surface of the alloy member at a projection pressure of 0.5 MPa. And what was blasted was used as the base material 3 in Example 1 and Comparative Example 1 below.
  • Example 1 CoNiCrAlY (composition formula by weight fraction: Co-32Ni-21Cr-8Al-0.5Y, nominal particle size range: 45 to 75 ⁇ m) was used as the metal particles 11 and HVOF (Woka star 600 manufactured by Sulzer Metco Co., Ltd.) Metal particles 11 were deposited on the surface of the substrate 3 to form a bond coat 1 having a thickness of about 160 ⁇ m at the thickest part and about 100 ⁇ m at the thinnest part.
  • HVOF Wood star 600 manufactured by Sulzer Metco Co., Ltd.
  • the distance between the thermal spraying apparatus and the base material 3 at the time of thermal spraying is 300 mm
  • the spraying powder supply rate is 60 g / min
  • the oxygen supply rate is 900 l / min
  • the kerosene supply rate is 3.9 l / min. .
  • Yttria-stabilized zirconia composition formula by weight fraction: ZrO 2 -8Y 2 O 3 , nominal particle size range: 11 to 125 ⁇ m
  • a topcoat 4 with an APS (9 MB manufactured by Sulzer Metco) so that the thickest part was 380 ⁇ m and the thinnest part was 320 ⁇ m.
  • the APS conditions the distance between the thermal spraying apparatus and the substrate 3 during thermal spraying was 90 mm, the amount of sprayed powder supplied was 30 g / min, and the current value was 900 A.
  • the metal particles 11 are deposited using a vacuum spraying apparatus in which the environmental pressure during decompression is 6.6 kPa, and the metal particles 11 are CoNiCrAlY (composition formula by weight fraction: Co-32Ni-21Cr-8Al-0.5Y). Nominal particle size range: 5 to 37 ⁇ m) and the thickest part was 140 ⁇ m and the thinnest part was 100 ⁇ m.
  • the top was the same as in Example 1 except that the distance between the thermal spraying apparatus and the substrate 3 during thermal spraying was 300 mm, the supply amount of thermal spray powder was 30 g / min, and the current value was 800 A.
  • the base material 3 that is, the heat-resistant alloy member 100) on which the coat 4 and the heat shielding coating film 10 were formed was manufactured.
  • Thermal cycle test The durability of the heat-resistant alloy member 100 manufactured in Example 1 and Comparative Example 1 was evaluated according to the following thermal cycle test method. That is, the number of cycles until the top coat 4 was peeled was measured with one cycle consisting of heating at 1093 ° C. for 10 hours and then naturally cooling. In addition, peeling of the topcoat 4 was confirmed visually. The result is shown in FIG.
  • the heat-resistant alloy member 100 manufactured in Comparative Example 1 also has a certain degree of durability, but the heat-resistant alloy member 100 manufactured in Example 1 is the heat-resistant alloy member manufactured in Comparative Example 1. It had durability superior to 100. That is, it was found that the heat shielding coating film 10 according to the present embodiment is superior in durability than the conventional one.
  • FIG. 3 is a scanning electron micrograph of a partial cross section of the thermal barrier coating film produced in Example 1 after a thermal cycle test. Note that FIG. 3 and FIG. 4 to be described later are shown with the contrast of the photograph changed so that the boundary is clear.
  • metal particles 11 were deposited in the bond coat 1 having an oxide skeleton structure in the thermal cycle test, and the metal oxide 11 a was further interposed between the metal particles 11. Is formed. Further, by using image analysis software for the photograph shown in FIG. 3, the thickness W of the metal oxide 11a included in the bond coat 1 having an oxide skeleton structure, and the shortest distance D between the metal oxides 11a.
  • the total area of the bond coat 1 having an oxide skeleton structure and the total area of the metal oxide 11a were measured.
  • the thickness W of the metal oxide 11a is 0.3 ⁇ m to 7 ⁇ m
  • the shortest distance D is 6 ⁇ m
  • the total area of the metal oxide 11a is the total area of the bond coat 1 having an oxide skeleton structure. With respect to 2.5%.
  • the element distribution of the metal oxide 11a was measured and evaluated with a wavelength dispersive X-ray spectrometer, it was found that 99% by weight of the total metal oxide 11a was aluminum oxide. It was also found that Ni, Cr, and Co were included as components of the metal oxide 11a other than aluminum oxide.
  • FIG. 4 is a drawing-substituting photograph obtained by photographing a partial cross section of the heat shielding coating film produced in Comparative Example 1 after a thermal cycle test with a scanning electron microscope.
  • the metal oxide 11a is not formed (indicated by reference numeral 1 ′ in FIG. 4). Part), it is homogeneous.
  • the layer on which the metal particles 11 are deposited (that is, the bond coat 1 ′) has a large elongation at a high temperature. That is, such characteristics indicate that deformation resistance is small and plastic deformation is easy. Therefore, the plastic deformation accumulates in the bond coat 1 ′ as the number of thermal cycles that repeat high and normal temperatures increases, and the top coat 4 that is in close contact with the bond coat 1 ′ tends to peel off.
  • the metal oxide 11a is formed between the metal particles 11 after the metal particles 11 are deposited by HVOF.
  • the bond coat 1 having an oxide skeleton structure containing 11a can be strengthened.
  • the heat-shielding coating film 10 according to the present embodiment has less accumulation in the bond coat 1 having a plastically deformed oxide skeleton structure, or has sufficient strength even if it accumulates temporarily. Therefore, it is considered that the durability is superior to the conventional one.

Abstract

A heat-masking coating film which is easier to produce than in the prior art and has superior durability to the prior art, a process for production thereof, and heat-resistant alloy members using the same are offered. A heat-masking coating film (10) formed on a base material (3) can be offered wherein the heat-masking coating film can be produced more easily than in the prior art and has superior durability to the prior art by having a bonding coat (1) which includes a plurality of metal particles from a metal (11), formed such that the plurality of metal particles (11) are joined in a continuum via an oxide of the metal (metal oxide) (11a), and an oxide layer (2) which includes an oxide of the metal; a process for production thereof, and heat-resistant alloy members using the same can also be offered. Figure 1

Description

熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材Heat shielding coating film, manufacturing method thereof, and heat-resistant alloy member using the same
 本発明は、熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材に関する。 The present invention relates to a heat shielding coating film, a method for producing the same, and a heat-resistant alloy member using the same.
 ガスタービンにおいては、その高効率化を目指し、燃焼ガス温度(例えば燃料等を燃焼させて発生したガスの温度)の高温化が進んでいる。現在、通常使用される燃焼ガスの温度は、既にタービン動翼、静翼等の耐熱合金部材の基材の融点を超えており、各種の冷却技術が採用されている。さらに最近では、ガスタービンを構成する部材に対して通常トップコートとボンドコートとからなる熱遮蔽コーティング(Thermal Barrier Coating:TBC)膜を形成することが広く行われている。これは、TBC膜を設けることで、燃焼ガスから部材への熱流を抑制し、部材温度を低減する効果が得られるためである。 In gas turbines, the temperature of combustion gas (for example, the temperature of gas generated by burning fuel or the like) is increasing with the aim of increasing its efficiency. At present, the temperature of the combustion gas that is normally used has already exceeded the melting point of the base material of heat-resistant alloy members such as turbine blades and stationary blades, and various cooling techniques are employed. Furthermore, recently, it has been widely practiced to form a thermal barrier coating (TBC) film, which is usually composed of a top coat and a bond coat, on members constituting the gas turbine. This is because by providing the TBC film, the effect of suppressing the heat flow from the combustion gas to the member and reducing the member temperature is obtained.
 TBC膜の形成技術においては、トップコートに熱伝導率が低い酸化物が含有されている。このような酸化物の具体例としては、イットリアの添加により結晶構造を安定化した、イットリア部分安定化ジルコニア(Yttria Stabilized Zirconia:YSZ)等が挙げられる。 In the TBC film formation technology, the top coat contains an oxide having low thermal conductivity. As a specific example of such an oxide, yttria partially stabilized zirconia (Ytria: YSZ) whose crystal structure is stabilized by addition of yttria can be given.
 また、ボンドコートには、耐酸化性及び耐腐食性を確保する観点から、例えばMCrAlY合金(Mは、鉄,ニッケル及びコバルトからなる群より選ばれる1種以上の原子を表す。)、Ni-Al、Ni-Al-Pt等のアルミナイド等が含有されている。そして、ボンドコートにおける、ボンドコートとトップコートとの境界面近傍には、通常は熱成長酸化物(Thermal Grown Oxide:TGO)が形成されている。TGOが形成されることにより、酸化性及び腐食性の環境から基材を保護する効果を奏し、トップコートとボンドコートとを密着させることができる。TGOとしては、成長速度が遅く環境の遮断能力に優れた酸化アルミニウムが好適であるため、ボンドコートにおいて酸化アルミニウムを容易に形成させる為、ボンドコートは、基材と比較して、アルミニウム濃度が高いことが多い。 For the bond coat, from the viewpoint of ensuring oxidation resistance and corrosion resistance, for example, MCrAlY alloy (M represents one or more atoms selected from the group consisting of iron, nickel and cobalt), Ni—. Aluminides such as Al and Ni—Al—Pt are contained. In the bond coat, in the vicinity of the interface between the bond coat and the top coat, a thermally grown oxide (TGO) is usually formed. By forming TGO, the top coat and the bond coat can be brought into close contact with each other with the effect of protecting the substrate from oxidizing and corrosive environments. As TGO, aluminum oxide having a low growth rate and excellent environmental blocking ability is suitable. Therefore, in order to easily form aluminum oxide in the bond coat, the bond coat has a higher aluminum concentration than the base material. There are many cases.
 最近のTBC膜は、約150℃の遮熱効果を有することが知られている。しかしながら、TBC膜は、ガスタービン運転時に高温に暴露されるが停止時には常温に低下するので、ボンドコートにおける加熱冷却に伴う熱応力の変化が大きく、トップコートが剥離することがあるという課題があった。このような剥離は、ボンドコートとトップコートとの界面に形成されるTGO、及び、ボンドコートとトップコートとの熱膨張率の相違により発生するトップコート内の亀裂に拠るものであると考えられる。 Recent TBC films are known to have a heat shielding effect of about 150 ° C. However, the TBC film is exposed to a high temperature during gas turbine operation, but drops to room temperature when stopped. Therefore, there is a problem that the thermal stress change due to heating and cooling in the bond coat is large and the top coat may peel off. It was. Such peeling is considered to be due to TGO formed at the interface between the bond coat and the top coat and cracks in the top coat caused by the difference in thermal expansion coefficient between the bond coat and the top coat. .
 このような課題を解決するために、特許文献1には、ボンドコート、トップコートに加え、複数の中間層を積み重ねた多層構造の遮熱コーティング層が記載されている。中間層はMCrAlYとアスペクト比を制御した柱状酸化アルミニウムを混合して形成させ、さらにその混合量を傾斜的に変化させる技術が記載されている。また、特許文献2には、金属基材上に設けられた遮熱コーティング層が中間層を有し、当該中間層が粒子状のセラミックス相と当該セラミックス相間に隔膜状かつ連続状に備えられる金属相とからなるものとする技術が記載されている。 In order to solve such problems, Patent Document 1 describes a thermal barrier coating layer having a multilayer structure in which a plurality of intermediate layers are stacked in addition to a bond coat and a top coat. A technique is described in which the intermediate layer is formed by mixing MCrAlY and columnar aluminum oxide having a controlled aspect ratio, and the amount of the mixture is changed in an inclined manner. Patent Document 2 discloses a metal in which a thermal barrier coating layer provided on a metal substrate has an intermediate layer, and the intermediate layer is provided as a diaphragm and continuous between the particulate ceramic phase and the ceramic phase. Techniques that consist of phases are described.
特開2001-279418号公報JP 2001-279418 A 特開2003-266588号公報JP 2003-266588 A
 産業用ガスタービン部材におけるTBCの成膜には、生産性、施工性が望まれ、溶射法が用いられるのが一般的であるが、特許文献1に記載の技術においては、多層構造、傾斜組成を得る為に、溶射工程が煩雑になるという課題がある。 For film formation of TBC in an industrial gas turbine member, productivity and workability are desired, and a spraying method is generally used. However, in the technique described in Patent Document 1, a multilayer structure and a gradient composition are used. Therefore, there is a problem that the thermal spraying process becomes complicated.
 さらに、特許文献2に記載の技術においては、耐久性に一定の効果があるものの、粒子状のセラミックス相に金属相を被覆する工程が必要であり、さらに金属相は耐食性のある白金(Pt),イリジウム(Ir)等の貴金属が好ましく、コストが上昇するという課題がある。 Furthermore, in the technique described in Patent Document 2, although there is a certain effect on durability, a step of coating the metal phase on the particulate ceramic phase is necessary, and the metal phase is platinum (Pt) having corrosion resistance. Noble metals such as iridium (Ir) are preferable, and there is a problem that costs increase.
 本発明は上記の課題を解決するべくなされたものであり、その目的は、容易に製造でき、かつ、従来よりも耐久性に優れた熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and its object is to provide a heat-shielding coating film that can be easily manufactured and has superior durability compared to the prior art, a method for manufacturing the same, and heat resistance using the same. An object is to provide an alloy member.
 本発明者は上記課題を解決するべく鋭意検討した結果、TBC膜のボンドコートとして、酸化物の骨格構造を有するボンドコートを採用することにより、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by adopting a bond coat having an oxide skeleton structure as the bond coat of the TBC film, and completed the present invention. It was.
 本発明によれば、容易に製造でき、かつ、従来よりも耐久性に優れた熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材を提供することができる。 According to the present invention, it is possible to provide a heat-shielding coating film that can be easily manufactured and is more durable than the conventional one, a manufacturing method thereof, and a heat-resistant alloy member using the same.
基材上に本実施形態の一(第一実施形態)に係る熱遮蔽コーティング膜が形成された構成の断面の一部を模式的に示した図である。It is the figure which showed typically a part of cross section of the structure by which the heat shielding coating film which concerns on one (1st embodiment) of this embodiment was formed on the base material. 実施例1及び比較例1の剥離サイクル試験結果を示すグラフである。It is a graph which shows the peeling cycle test result of Example 1 and Comparative Example 1. 実施例1において製造した熱遮蔽コーティング膜の熱サイクル試験後の一部断面を、走査型電子顕微鏡にて撮影した図面代用写真である。It is a drawing substitute photograph which image | photographed the partial cross section after the heat cycle test of the heat shielding coating film manufactured in Example 1 with the scanning electron microscope. 比較例1において製造した熱遮蔽コーティング膜の熱サイクル試験後の一部断面を、走査型電子顕微鏡にて撮影した図面代用写真である。It is a drawing substitute photograph which image | photographed the partial cross section after the heat cycle test of the heat shielding coating film manufactured in the comparative example 1 with the scanning electron microscope.
 以下、本発明を実施するための形態(以下、適宜「本実施形態」と言う。)を詳細に説明するが、本実施形態は以下の内容に限定されるものではなく、その要旨を逸脱しない範囲内で任意に変更して実施することができる。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment” as appropriate) will be described in detail, but the present embodiment is not limited to the following contents and does not depart from the gist thereof. Any change can be made within the range.
[1.熱遮蔽コーティング膜10]
 本実施形態に係る熱遮蔽コーティング膜10は、基材上に形成される熱遮蔽コーティング膜であって、金属からなる金属粒子を複数含み、当該複数の金属粒子間に当該金属の酸化物が連続的に接合して形成されている酸化物(即ち金属酸化物)の骨格構造を有するボンドコート1と、金属酸化物を含むトップコート4を有するものである。
[1. Thermal shielding coating film 10]
The heat-shielding coating film 10 according to the present embodiment is a heat-shielding coating film formed on a substrate, and includes a plurality of metal particles made of metal, and the metal oxide is continuous between the plurality of metal particles. A bond coat 1 having an oxide (that is, metal oxide) skeleton structure formed by bonding and a top coat 4 containing a metal oxide.
[1-1.酸化物の骨格構造を有するボンドコート1]
 本実施形態に係る熱遮蔽コーティング膜10が有する酸化物の骨格構造を有するボンドコート1(以下、適宜「本実施形態に係るボンドコート1」と言う。)は、金属からなる金属粒子を複数含み、当該複数の金属粒子間に当該金属の酸化物が連続的に接合して形成されているものである。図1は、本実施形態に係る熱遮蔽コーティング膜10における酸化物の骨格構造を有するボンドコート1断面の一部を、拡大して模式的に示した図である。図1において、金属粒子11が堆積して酸化物の骨格構造を有するボンドコート1を形成しており、酸化物の骨格構造を有するボンドコート1中の金属粒子11間には、太線で表される金属酸化物11aが形成されている。
 なお、本実施形態における「金属」には、1種のみの金属原子からなるもののほか、2種以上の金属原子が任意の比率及び組み合わせでなる合金及び超合金等も包含されるものとする。
[1-1. Bond coat 1 having oxide skeleton structure]
The bond coat 1 having an oxide skeleton structure included in the heat-shielding coating film 10 according to the present embodiment (hereinafter, referred to as “bond bond 1 according to the present embodiment” as appropriate) includes a plurality of metal particles made of metal. The oxide of the metal is continuously joined between the plurality of metal particles. FIG. 1 is an enlarged view schematically showing a part of a cross section of the bond coat 1 having an oxide skeleton structure in the heat shielding coating film 10 according to the present embodiment. In FIG. 1, metal particles 11 are deposited to form a bond coat 1 having an oxide skeleton structure, and the metal particles 11 in the bond coat 1 having an oxide skeleton structure are represented by bold lines. A metal oxide 11a is formed.
In addition, in addition to what consists of only one type of metal atom in this embodiment, the alloy and superalloy etc. which two or more types of metal atoms consist of arbitrary ratios and combinations shall be included.
 本実施形態に係るボンドコート1は、熱遮蔽コーティング膜10が形成される基材(通常は金属を含む)が腐食及び酸化しないように保護する機能を有する。さらに、本実施形態に係るボンドコート1は、当該ボンドコート1上にさらに通常設けられるトップコート4の密着性を確保するための下地としても機能するものである。 The bond coat 1 according to the present embodiment has a function of protecting the base material (usually including metal) on which the heat shielding coating film 10 is formed from being corroded and oxidized. Furthermore, the bond coat 1 according to this embodiment also functions as a base for ensuring the adhesion of the top coat 4 that is normally provided on the bond coat 1.
 酸化物の骨格構造を有するボンドコート1にて堆積している金属粒子11を構成している金属としては、本発明の効果を著しく損なわない限り任意のものを用いることができるが、良好な耐腐食性及び耐酸化性を示すものが好適に用いられる。具体的には、例えば、アルミニウム(Al)を含み、さらに、ニッケル(Ni),クロム(Cr),コバルト(Co)からなる群より選ばれる1種以上の原子を少なくとも含む金属(合金)が好適であり、中でも、下記式(1)で表される金属が好適である。
 MCrAlY   (1)
(ただし、Mは、鉄(Fe),ニッケル,コバルトからなる群より選ばれる1種以上の原子を表す。)
Any metal can be used as the metal constituting the metal particles 11 deposited on the bond coat 1 having an oxide skeleton structure as long as the effects of the present invention are not significantly impaired. Those exhibiting corrosion resistance and oxidation resistance are preferably used. Specifically, for example, a metal (alloy) containing aluminum (Al) and further containing at least one atom selected from the group consisting of nickel (Ni), chromium (Cr), and cobalt (Co) is preferable. Among them, a metal represented by the following formula (1) is preferable.
MCrAlY (1)
(However, M represents one or more atoms selected from the group consisting of iron (Fe), nickel, and cobalt.)
 上記式(1)で表される金属の具体例としては、CoNiCrAlY(具体的な重量分率による組成式としては、例えばCo-32Ni-21Cr-8Al-0.5Y等)、NiCoCrAlY(具体的な重量分率による組成式としてはNi-17Cr-23Co-12.5Al-0.5Y等)が挙げられる。なお、金属は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。 Specific examples of the metal represented by the above formula (1) include CoNiCrAlY (specific composition by weight fraction such as Co-32Ni-21Cr-8Al-0.5Y), NiCoCrAlY (specific As a composition formula by weight fraction, Ni-17Cr-23Co-12.5Al-0.5Y etc.) can be mentioned. In addition, a metal may be used individually by 1 type and may use 2 or more types by arbitrary ratios and combinations.
 本実施形態に係るボンドコート1に連続的に堆積している金属粒子11の形状は、本発明の効果を著しく損なわない限り任意であるが、酸化物の骨格構造を有するボンドコート1形成時に行われる溶射によって、通常は扁平、楕円等の形状となっている。
 ここで、本実施形態において「金属の酸化物が連続的に接合して形成されている」とは、例えば図1に示すような網目様の形状のように、全ての金属の酸化物(即ち金属酸化物11a)同士が、少なくとも1箇所で繋がって一体的なネットワークを形成している(即ち連続的に接合している)状態を表す。ただし、本実施形態においては、金属粒子11が、近接する他の金属粒子11と少なくとも一つの金属結合により結合していることが好ましい。このような構成となることにより、本実施形態に係る熱遮蔽コーティング層をより強固なものとすることができる。
The shape of the metal particles 11 continuously deposited on the bond coat 1 according to the present embodiment is arbitrary as long as the effects of the present invention are not significantly impaired. By spraying, the shape is usually flat, elliptical or the like.
Here, in this embodiment, “the metal oxide is formed by continuously joining” means that all metal oxides (that is, a network-like shape as shown in FIG. The metal oxides 11a) are connected to each other at at least one point to form an integral network (that is, continuously joined). However, in the present embodiment, it is preferable that the metal particles 11 are bonded to other adjacent metal particles 11 by at least one metal bond. With such a configuration, the heat shielding coating layer according to the present embodiment can be made stronger.
 本実施形態に係るボンドコート1においては、上記のように金属粒子11が堆積されるとともに、さらに金属酸化物11aが連続的に接合して形成されている。ただし、大部分の金属酸化物11aが酸化物の骨格構造を有するボンドコート1の界面に対して平行な方向(即ち、図1において紙面左右方向)にのみ連続的に接合して形成されている場合、即ち、垂直な方向(即ち図1において紙面上下方向)においてあまり連続的ではない場合、金属粒子11間に形成されている金属酸化物11a内部に亀裂が生じ、酸化物の骨格構造を有するボンドコート1が剥離する可能性がある。従って、金属酸化物11aは、酸化物の骨格構造を有するボンドコート1の界面に対して平行な方向だけではなく、垂直な方向に対しても満遍なく連続的に接合していることが好ましい。具体的には、酸化物の骨格構造を有するボンドコート1の断面において、金属酸化物11aの総断面積が、酸化物の骨格構造を有するボンドコート1の総断面積に対して、通常1%以上、また、その上限は、通常40%以下、好ましくは15%以下、より好ましくは10%以下であることが望ましい。金属酸化物11aの面積比が上記範囲内にあることにより、上記平行な方向のみならず垂直な方向に対してもより適切な形態で、金属酸化物11aが連続的に接合して形成することができる。 In the bond coat 1 according to the present embodiment, the metal particles 11 are deposited as described above, and further, the metal oxide 11a is continuously joined. However, most of the metal oxides 11a are formed by continuously joining only in the direction parallel to the interface of the bond coat 1 having an oxide skeleton structure (that is, in the horizontal direction in FIG. 1). In this case, that is, when it is not so continuous in the vertical direction (that is, the vertical direction in FIG. 1), the metal oxide 11a formed between the metal particles 11 is cracked and has an oxide skeleton structure. The bond coat 1 may be peeled off. Therefore, it is preferable that the metal oxide 11a is uniformly joined not only in the direction parallel to the interface of the bond coat 1 having the oxide skeleton structure but also in the direction perpendicular to the interface. Specifically, in the cross section of the bond coat 1 having an oxide skeleton structure, the total cross sectional area of the metal oxide 11a is usually 1% with respect to the total cross sectional area of the bond coat 1 having an oxide skeleton structure. In addition, the upper limit is usually 40% or less, preferably 15% or less, and more preferably 10% or less. When the area ratio of the metal oxide 11a is within the above range, the metal oxide 11a is continuously joined in a more appropriate form not only in the parallel direction but also in the vertical direction. Can do.
 上記各面積の算出は下記方法に基づいて行うことができる。まず、例えば走査型電子顕微鏡写真(以下、適宜「SEM」と言う。)を用いて、酸化物の骨格構造を有するボンドコート1の構造を識別できる程度の任意の倍率にて酸化物の骨格構造を有するボンドコート1の断面を撮影する。撮影された酸化物の骨格構造を有するボンドコート1において金属粒子11と金属酸化物11aとはその成分の相違から濃淡が異なって撮影されるため、その濃淡の差異によって金属粒子11と金属酸化物11aとを区別することができる。そして、例えば画像解析ソフト等を用いて酸化物の骨格構造を有するボンドコート1に含まれる金属酸化物11aの量(面積)をその濃淡差を利用して算出し、酸化物の骨格構造を有するボンドコート1に含まれる金属酸化物11aの割合(面積比)を算出することができる。 The calculation of each area can be performed based on the following method. First, for example, using a scanning electron micrograph (hereinafter, referred to as “SEM” as appropriate), the oxide skeleton structure at an arbitrary magnification that can identify the structure of the bond coat 1 having the oxide skeleton structure. A cross section of the bond coat 1 having In the bond coat 1 having a photographed oxide skeleton structure, the metal particles 11 and the metal oxide 11a are photographed with different shades due to the difference in their components. 11a can be distinguished. Then, for example, the amount (area) of the metal oxide 11a contained in the bond coat 1 having an oxide skeleton structure is calculated using image analysis software or the like using the difference in density, and the oxide skeleton structure is obtained. The ratio (area ratio) of the metal oxide 11a contained in the bond coat 1 can be calculated.
 また、本実施形態においては、後述する金属酸化物の厚さW及びその最短距離Dを、SEMにより撮影された写真に基づいて決定している。その理由は、酸化物の骨格構造を有するボンドコート1において金属粒子11は複雑に堆積しており、金属粒子11同士が近接する箇所で金属酸化物11aが形成される場合に、形成される金属酸化物11aの部位、形成範囲、金属酸化物11aからなる層の厚さ、その形状等を明確に定義できないためである。従って、本実施形態において、形成される金属酸化物11aを三次元ではなく二次元で定義し、当該定義に際して観察手段として代表的であるSEMを用いて、本実施形態の規定を行ったものである。 In this embodiment, the thickness W and the shortest distance D of a metal oxide described later are determined based on a photograph taken by SEM. The reason is that the metal particles 11 are deposited in a complex manner in the bond coat 1 having an oxide skeleton structure, and the metal oxide 11a is formed when the metal particles 11 are adjacent to each other. This is because the region of oxide 11a, the formation range, the thickness of the layer made of metal oxide 11a, the shape thereof, and the like cannot be clearly defined. Therefore, in the present embodiment, the metal oxide 11a to be formed is defined in two dimensions instead of three dimensions, and the definition of the present embodiment is performed using a representative SEM as an observation means in the definition. is there.
 上記のように、金属酸化物11aは酸化物の骨格構造を有するボンドコート1に含まれる金属粒子11の間に沿って形成されている。従って、酸化物の骨格構造を有するボンドコート1の断面において、金属粒子11の外周に少なくとも2本の金属酸化物11aが存在しており、当該2本の金属酸化物11a同士の金属粒子11における最短距離が、通常5μm以上、好ましくは15μm以上、より好ましくは20μm以上、また、その上限は、通常100μm以下、好ましくは75μm以下、より好ましくは60μm以下とすることが望ましい。最短距離が上記範囲よりも短すぎる場合、熱遮蔽コーティング膜10を製造することが困難になる可能性があり、最短距離が上記範囲よりも長すぎる場合、酸化物の骨格構造を有するボンドコート1の強度が保てなくなる可能性がある。なお、当該最短距離は、通常、酸化物の骨格構造を有するボンドコート1を形成する際の金属粒子11の溶射条件によって制御することが可能である。また、上記最短距離は、SEMを用いて測定することができ、図1、図3及び図4(図3及び図4については後述する。)における「D」に相当するものである。 As described above, the metal oxide 11a is formed between the metal particles 11 included in the bond coat 1 having an oxide skeleton structure. Therefore, in the cross section of the bond coat 1 having an oxide skeleton structure, at least two metal oxides 11a are present on the outer periphery of the metal particles 11, and the two metal oxides 11a The shortest distance is usually 5 μm or more, preferably 15 μm or more, more preferably 20 μm or more, and the upper limit is usually 100 μm or less, preferably 75 μm or less, more preferably 60 μm or less. When the shortest distance is too shorter than the above range, it may be difficult to manufacture the heat shielding coating film 10, and when the shortest distance is too long than the above range, the bond coat 1 having an oxide skeleton structure. There is a possibility that the strength of can not be maintained. Note that the shortest distance can usually be controlled by the thermal spraying conditions of the metal particles 11 when the bond coat 1 having an oxide skeleton structure is formed. The shortest distance can be measured using an SEM and corresponds to “D” in FIGS. 1, 3 and 4 (FIGS. 3 and 4 will be described later).
 本実施形態に係る酸化物の骨格構造を有するボンドコート1においては、複数の金属粒子11が堆積しており、堆積した複数の金属粒子11間に沿って金属酸化物11aが形成されている。金属粒子11間に沿って形成される金属酸化物11aは、通常は、当該金属に含まれる全ての金属のうち、特に酸化されやすい(即ち特に反応性に富む)金属の酸化物である。例えば金属粒子11を構成する金属が上記式(1)で表されるものである場合、複数の金属粒子11間に形成される金属酸化物11aとして、通常は酸化アルミニウムとなる。  In the bond coat 1 having an oxide skeleton structure according to the present embodiment, a plurality of metal particles 11 are deposited, and a metal oxide 11 a is formed along the plurality of deposited metal particles 11. The metal oxide 11 a formed along the metal particles 11 is usually an oxide of a metal that is particularly easily oxidized (that is, particularly highly reactive) among all the metals contained in the metal. For example, when the metal constituting the metal particle 11 is represented by the above formula (1), the metal oxide 11a formed between the plurality of metal particles 11 is usually aluminum oxide. *
 ただし、金属粒子11間に形成される金属酸化物11aは必ずしも全て酸化アルミニウムである必要は無いが、金属粒子11間に形成される金属酸化物11aのうち、90重量%以上が酸化アルミニウムであることが好ましい。90重量%以上が酸化アルミニウムであることにより、本実施形態に係る熱遮蔽コーティング膜10が形成された基材3(図1に示している。)の耐酸化性及び耐腐食性がより確実なものとなる。なお、金属粒子11間に形成される金属酸化物11aに含まれる酸化アルミニウムの量は、例えば波長分散型X線分光器により、測定することでできる。 However, the metal oxide 11a formed between the metal particles 11 is not necessarily all aluminum oxide, but 90% by weight or more of the metal oxide 11a formed between the metal particles 11 is aluminum oxide. It is preferable. When 90% by weight or more is aluminum oxide, the oxidation resistance and corrosion resistance of the base material 3 (shown in FIG. 1) on which the heat shielding coating film 10 according to this embodiment is formed are more reliable. It will be a thing. The amount of aluminum oxide contained in the metal oxide 11a formed between the metal particles 11 can be measured by, for example, a wavelength dispersive X-ray spectrometer.
 従って、本実施形態に係るボンドコート1における金属は、アルミニウムと、ニッケル,クロム,コバルトからなる群より選ばれる1種以上の金属とを少なくとも含むものであるとともに、当該金属の酸化物に含まれる酸化アルミニウムの量が、該金属の酸化物の全量に対して、90重量%以上であることが好ましい。 Therefore, the metal in the bond coat 1 according to the present embodiment includes at least aluminum and at least one metal selected from the group consisting of nickel, chromium, and cobalt, and aluminum oxide included in the oxide of the metal. The amount of is preferably 90% by weight or more based on the total amount of the metal oxide.
 また、本実施形態に係るボンドコート1の断面において、金属酸化物11aの厚さ(幅)は、成膜後の任意の温度、時間での暴露後において、通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、また、その上限は、通常20μm以下、好ましくは15μm以下、より好ましくは10μm以下の範囲であることが望ましい。金属酸化物11aが薄すぎる場合、酸化物の骨格構造を有するボンドコート1の強度が不足する可能性があり、厚すぎる場合、形成される金属酸化物11a内部で亀裂が発生し、発生した当該亀裂を起点として酸化物の骨格構造を有するボンドコート1が剥離する可能性がある。なお、金属酸化物の厚さは、例えば上記SEMを用いて測定することができ、図1、図3及び図4における「W」に相当するものである。また、本実施形態に係る酸化物の骨格構造を有するボンドコート1に含まれる金属酸化物11aの厚さは全てが同じにならないことがあるが、その場合でも、全ての部分における厚さが上記範囲に含まれることが好ましい。 In the cross section of the bond coat 1 according to the present embodiment, the thickness (width) of the metal oxide 11a is usually 0.1 μm or more, preferably 0 after exposure at an arbitrary temperature and time after film formation. 0.5 μm or more, more preferably 1 μm or more, and the upper limit is usually 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less. When the metal oxide 11a is too thin, the strength of the bond coat 1 having an oxide skeleton structure may be insufficient. When the metal oxide 11a is too thick, cracks are generated inside the formed metal oxide 11a, There is a possibility that the bond coat 1 having an oxide skeleton structure peels from the crack. Note that the thickness of the metal oxide can be measured using, for example, the SEM, and corresponds to “W” in FIGS. 1, 3, and 4. In addition, the thicknesses of the metal oxides 11a included in the bond coat 1 having the oxide skeleton structure according to the present embodiment may not all be the same. It is preferable to be included in the range.
 本実施形態に係るボンドコート1の厚さは、本発明の効果を著しく損なわない限り任意であるが、通常50μm以上、好ましくは100μm以上、より好ましくは125μm以上、また、その上限は、通常400μm以下、好ましくは350μm以下、より好ましくは300μm以下である。酸化物の骨格構造を有するボンドコート1が薄すぎる場合、腐食及び酸化に対する保護性が不足する可能性があり、厚すぎる場合、剥離を生じる可能性がある。なお、酸化物の骨格構造を有するボンドコート1の厚さは、例えば上記SEMを用いて測定することができる。また、本実施形態に係るボンドコート1の厚さは全てが同じ厚さとならないことがあるが、その場合でも、全ての部分における厚さが上記範囲に含まれることが好ましい。 The thickness of the bond coat 1 according to this embodiment is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 50 μm or more, preferably 100 μm or more, more preferably 125 μm or more, and its upper limit is usually 400 μm. Hereinafter, it is preferably 350 μm or less, more preferably 300 μm or less. When the bond coat 1 having an oxide skeleton structure is too thin, protection against corrosion and oxidation may be insufficient, and when it is too thick, peeling may occur. The thickness of the bond coat 1 having an oxide skeleton structure can be measured using, for example, the SEM. In addition, the thickness of the bond coat 1 according to the present embodiment may not all be the same, but even in that case, it is preferable that the thickness of all the portions is included in the above range.
 また、本実施形態に係るボンドコート1は、本発明の効果を著しく損なわない限り、上記金属及び金属酸化物以外の任意の成分を含んでいてもよい。含んでいてもよい任意の成分としては、例えばマグネシウム等のアルカリ土類元素、シリコン、ゲルマニウム等の非金属元素、ハフニウム等の活性元素、ランタン、セリウム等の希土類元素、プラチナ、イリジウム、パラジウム等の白金族元素等が挙げられる。任意の成分は1種が単独で含まれていてもよく、2種以上が任意の比率及び組み合わせで含まれていてもよい。 Further, the bond coat 1 according to the present embodiment may contain any component other than the metal and the metal oxide as long as the effects of the present invention are not significantly impaired. Optional components that may be included include, for example, alkaline earth elements such as magnesium, nonmetallic elements such as silicon and germanium, active elements such as hafnium, rare earth elements such as lanthanum and cerium, platinum, iridium, palladium and the like Examples include platinum group elements. Arbitrary components may be contained individually by 1 type, and 2 or more types may be contained by arbitrary ratios and combinations.
 また、本実施形態に係るボンドコート1が任意の成分を含む場合、その含有量は、マグネシウム等のアルカリ土類元素とシリコン等の非金属元素では好ましくは0.1重量%以上、5重量%以下、ハフニウム等の活性元素とランタン等の希土類元素では好ましくは0.01重量%以上、3重量%以下、プラチナ等白金族元素においては、好ましくは0.1重量%以上、15重量%以下である。任意の成分の量が多すぎる場合、金属粒子11の融点、機械的特性が変化し、酸化物の骨格構造を有するボンドコート1の強度が不足する可能性がある。 Further, when the bond coat 1 according to the present embodiment includes an arbitrary component, the content thereof is preferably 0.1 wt% or more and 5 wt% for an alkaline earth element such as magnesium and a nonmetallic element such as silicon. Hereinafter, the active element such as hafnium and the rare earth element such as lanthanum are preferably 0.01% by weight to 3% by weight, and the platinum group element such as platinum is preferably 0.1% by weight to 15% by weight. is there. If the amount of any component is too large, the melting point and mechanical properties of the metal particles 11 change, and the bond coat 1 having an oxide skeleton structure may be insufficient in strength.
[1-2.熱成長酸化物層2]
 本実施形態に係る熱遮蔽コーティング膜10を、任意の温度、時間、酸化雰囲気中で高温暴露を行うと、上記酸化物の骨格構造を有するボンドコート1上に熱成長酸化物層2(が形成する。
[1-2. Thermally grown oxide layer 2]
When the heat shielding coating film 10 according to the present embodiment is exposed to high temperature in an oxidizing atmosphere at an arbitrary temperature, time, a thermally grown oxide layer 2 (forms on the bond coat 1 having the oxide skeleton structure. To do.
 また、熱成長酸化物層2は、[1-1.酸化物の骨格構造を有するボンドコート1]において説明した金属の酸化物(即ち金属酸化物11a)と同じものを含んでなるためその説明を省略する。 Further, the thermally grown oxide layer 2 is formed according to [1-1. Since the metal oxide (that is, the metal oxide 11a) described in the bond coat 1 having an oxide skeleton structure is included, the description thereof is omitted.
[1-3.基材3]
 基材3は、その表面に本実施形態に係る熱遮蔽コーティング膜10が形成されるものである。基材3の種類、材質等は、本発明の効果を著しく損なわない限り任意であるが、通常は金属である。ただし、熱遮蔽コーティング膜10により基材3の耐熱性を向上させるという観点から、基材3を構成する材料としては、基材3自身がある程度の耐熱性を有するものが好ましく、具体的には高温でのクリープ強度及び疲労強度に優れた材料を用いることが好ましい。このような材料の具体例としては、IN738(Ni-16Cr-8.5Co-1.7Mo-2.6W-0.9Nb-3.4Ti-3.4Al重量%),等のNi基超合金、FSX414(Co-10Ni-28Cr-7W-1Fe),等のCo基超合金が好適に用いることができる。なお、「超合金」とは、高温での優れた強度、耐酸化性、耐腐食性及び延性等を兼ね備えた合金を表す技術用語である。例えばNi基超合金は、クリープ強度及び疲労強度に特に優れるし、Co基超合金は耐腐食性及び延性に特に優れている。
[1-3. Base material 3]
The base material 3 is formed with the heat shielding coating film 10 according to the present embodiment on the surface thereof. The type, material, and the like of the base material 3 are arbitrary as long as the effects of the present invention are not significantly impaired, but are usually metals. However, from the viewpoint of improving the heat resistance of the base material 3 by the heat shielding coating film 10, the material constituting the base material 3 is preferably one in which the base material 3 itself has a certain degree of heat resistance. It is preferable to use a material excellent in creep strength and fatigue strength at high temperature. Specific examples of such materials include Ni-based superalloys such as IN738 (Ni-16Cr-8.5Co-1.7Mo-2.6W-0.9Nb-3.4Ti-3.4Al wt%), A Co-base superalloy such as FSX414 (Co-10Ni-28Cr-7W-1Fe) can be preferably used. The “superalloy” is a technical term representing an alloy having excellent strength at high temperature, oxidation resistance, corrosion resistance, ductility, and the like. For example, a Ni-base superalloy is particularly excellent in creep strength and fatigue strength, and a Co-base superalloy is particularly excellent in corrosion resistance and ductility.
 これらの中でも、本実施形態に係る熱遮蔽コーティング膜10を基材3上に形成して製造された耐熱合金部材を例えばガスタービンの動翼として用いる場合、基材としては、さらに強度に優れた一方向凝固、または単結晶のNi基超合金が好適に用いられる。これらの材料は、γ-Niとγ’-Ni3Alとの安定的なミクロな組織を備えていることにより、高強度を発現させることができる。 Among these, when a heat-resistant alloy member manufactured by forming the heat shielding coating film 10 according to the present embodiment on the base material 3 is used as, for example, a moving blade of a gas turbine, the base material is further excellent in strength. Unidirectionally solidified or single crystal Ni-base superalloy is preferably used. Since these materials have a stable microstructure of γ-Ni and γ'-Ni3Al, high strength can be expressed.
[1-4.その他の層]
 本実施形態に係る熱遮蔽コーティング膜10は、上記基材3上に形成されるとともに、本実施形態に係るボンドコート1を有する限り、その他の層構成、材料等は、本発明の効果を著しく損なわない限り任意である。ただし、本実施形態に係る熱遮蔽コーティング膜10は、例えば合金、超合金等からなる基材3上に形成され、また、トップコート4が設けられることが好ましい。
[1-4. Other layers]
As long as the heat shielding coating film 10 according to the present embodiment is formed on the substrate 3 and has the bond coat 1 according to the present embodiment, other layer configurations, materials, and the like remarkably exert the effects of the present invention. It is optional as long as it is not impaired. However, it is preferable that the heat shielding coating film 10 according to the present embodiment is formed on the base material 3 made of, for example, an alloy or a superalloy, and the top coat 4 is provided.
 酸化物の骨格構造を有するボンドコート1上にトップコート4が設けられることにより、本実施形態に係る熱遮蔽コーティング膜10が形成された基材3からなる耐熱合金部材100が例えば高温のガスに晒された場合に、当該ガスと基材3との間で温度勾配を生じさせ、基材の温度上昇を効率良く抑制することができる。 By providing the top coat 4 on the bond coat 1 having the oxide skeleton structure, the heat-resistant alloy member 100 made of the base material 3 on which the heat shielding coating film 10 according to the present embodiment is formed is converted into, for example, a high-temperature gas. When exposed, a temperature gradient is generated between the gas and the base material 3, and the temperature rise of the base material can be efficiently suppressed.
 トップコート4を構成する材料としては、本発明の効果を著しく損なわない限り任意であるが、熱伝導率が低いものが好適である。このような材料の具体例としては、イットリア安定化ジルコニア(YSZ;組成式:ZrO-6Y,ZrO-7Y若しくはZrO-8Y)等が挙げられる。 The material constituting the top coat 4 is arbitrary as long as the effects of the present invention are not significantly impaired, but those having low thermal conductivity are preferable. Specific examples of such a material include yttria stabilized zirconia (YSZ; composition formula: ZrO 2 -6Y 2 O 3 , ZrO 2 -7Y 2 O 3 or ZrO 2 -8Y 2 O 3 ).
 トップコート4の構造は、本発明の効果を著しく損なわない限り任意であり、例えば、多孔質、柱状、縦割れを含む構造が挙げられる。 The structure of the top coat 4 is arbitrary as long as the effects of the present invention are not significantly impaired, and examples thereof include a structure including porous, columnar, and vertical cracks.
 トップコート4の厚さは、本発明の効果を著しく損なわない限り任意であるが、通常100μm以上、好ましくは150μm以上、より好ましくは200μm以上、また、その上限は、通常1000μm以下、好ましくは750μm以下、より好ましくは500μm以下である。トップコート4が薄すぎる場合、遮熱効果が不足となる可能性があり、厚すぎる場合、剥離を生じやすくなる可能性がある。なお、トップコート4の厚さは、例えば上記SEMを用いて測定することができる。また、本実施形態に係るトップコート4の厚さは全ての部分で同じ厚さとならないことがあるが、その場合でも、全ての部分における厚さが上記範囲に含まれることが好ましい。 The thickness of the top coat 4 is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 100 μm or more, preferably 150 μm or more, more preferably 200 μm or more, and the upper limit is usually 1000 μm or less, preferably 750 μm. Hereinafter, it is more preferably 500 μm or less. If the top coat 4 is too thin, the heat shielding effect may be insufficient, and if it is too thick, peeling may be likely to occur. The thickness of the top coat 4 can be measured using, for example, the SEM. Moreover, although the thickness of the topcoat 4 which concerns on this embodiment may not become the same thickness in all the parts, even in that case, it is preferable that the thickness in all the parts is contained in the said range.
 また、トップコート4は、本発明の効果を著しく損なわない限り、任意の成分を含んでいてもよい。含んでいてもよい任意の成分としては、例えばセリア、ガドリニア等の希土類元素酸化物等が挙げられる。任意の成分は1種が単独で含まれていてもよく、2種以上が任意の比率及び組み合わせで含まれていてもよい。 Further, the top coat 4 may contain an arbitrary component as long as the effects of the present invention are not significantly impaired. Examples of optional components that may be included include rare earth element oxides such as ceria and gadolinia. Arbitrary components may be contained individually by 1 type, and 2 or more types may be contained by arbitrary ratios and combinations.
 また、トップコート4が任意の成分を含む場合、その含有量は、本発明の効果を著しく損なわない限り任意であるが、任意の成分の量が少なすぎる場合、また逆に多すぎる場合、トップコート4の結晶構造が不安定となる。また、温度変化により結晶構造が容易に変化し、それに伴う体積変化等により剥離を生じやすくなる可能性がある。 Further, when the top coat 4 includes an optional component, the content thereof is arbitrary as long as the effects of the present invention are not significantly impaired. However, when the amount of the optional component is too small, or conversely, the top coat 4 The crystal structure of the coat 4 becomes unstable. Moreover, there is a possibility that the crystal structure easily changes due to a temperature change, and peeling easily occurs due to a volume change associated therewith.
 また、本実施形態に係る熱遮蔽コーティング膜10が有しうる任意の層としては、上記トップコート4のほかにも、本発明の効果を著しく損なわない限り、さらに別の表面層を設けたりしてもよい。 Further, as an optional layer that the heat-shielding coating film 10 according to this embodiment may have, in addition to the top coat 4, another surface layer may be provided unless the effects of the present invention are significantly impaired. May be.
[2.熱遮蔽コーティング膜10の製造方法]
 本実施形態に係る熱遮蔽コーティング膜10は任意の方法で製造することができる。ただし、製造方法の容易さの観点から、本実施形態に係る熱遮蔽コーティング膜10の製造方法は、上記金属粒子11の堆積を溶射法により行う工程を含むことが好ましい。以下、図1に示す、本実施形態に係る熱遮蔽コーティング膜10が形成された耐熱合金部材100(以下、適宜、「本実施形態に係る耐熱合金部材100」と言う。)の製造方法を挙げて、本実施形態に係る熱遮蔽コーティング膜10の製造方法を具体的に説明するが、以下に記載するものは本実施形態に係る熱遮蔽コーティング膜10の製造方法のあくまでも一例であり、その製造方法は以下に記載する内容に限定されるものではない。
[2. Manufacturing method of heat shielding coating film 10]
The heat shielding coating film 10 according to the present embodiment can be manufactured by any method. However, from the viewpoint of the ease of the manufacturing method, the manufacturing method of the heat shielding coating film 10 according to the present embodiment preferably includes a step of depositing the metal particles 11 by a thermal spraying method. Hereinafter, the manufacturing method of the heat-resistant alloy member 100 (hereinafter, appropriately referred to as “heat-resistant alloy member 100 according to the present embodiment”) on which the heat-shielding coating film 10 according to the present embodiment is formed as shown in FIG. The method for manufacturing the heat-shielding coating film 10 according to the present embodiment will be specifically described below, but what is described below is merely an example of the method for manufacturing the heat-shielding coating film 10 according to the present embodiment, The method is not limited to the contents described below.
 図1は、基材上に本実施形態に係る熱遮蔽コーティング膜10が形成された耐熱合金部材の断面の一部を模式的に示したものである。図1に示す本実施形態に係る熱遮蔽コーティング膜10が形成された耐熱合金部材100は、基材3上に、金属粒子11が堆積された酸化物の骨格構造を有するボンドコート1と、トップコート4とが、この順で積層されてなる。 FIG. 1 schematically shows a part of a cross section of a heat-resistant alloy member in which a heat shielding coating film 10 according to the present embodiment is formed on a base material. A heat-resistant alloy member 100 formed with a heat shielding coating film 10 according to the present embodiment shown in FIG. 1 includes a bond coat 1 having an oxide skeleton structure in which metal particles 11 are deposited on a substrate 3, and a top. The coat 4 is laminated in this order.
 本実施形態に係る耐熱合金部材100は、主に下記工程を経て製造することができる。(1)基材3表面に対して前処理を行う(前処理工程)。
(2)前処理を行った基材3上に金属粒子11を堆積させる(ボンドコート堆積工程)。(3)堆積した酸化物の骨格構造を有するボンドコート1上にトップコート4を形成する(トップコート形成工程)。
 以下、それぞれの工程について説明する。
The heat-resistant alloy member 100 according to this embodiment can be manufactured mainly through the following steps. (1) A pretreatment is performed on the surface of the substrate 3 (pretreatment step).
(2) The metal particles 11 are deposited on the pretreated substrate 3 (bond coat deposition step). (3) A top coat 4 is formed on the bond coat 1 having a deposited oxide skeleton structure (top coat forming step).
Hereinafter, each process will be described.
〔前処理工程〕
 本実施形態に係る耐熱合金部材100の製造方法においては、はじめに基材3のボンドコート1と密着する部分に対して表面を粗面化するための加工を行う、前処理工程を行うことが好ましい。表面加工の具体的な方法としては本発明の効果を著しく損なわない限り任意の方法を適用できるが、基材3と酸化物の骨格構造を有するボンドコート1との良好な密着性を確保する観点から、基材3表面に対してブラスト処理を行うことが好ましい。ブラスト処理は、基材3の表面に例えば非金属又は金属の粒子を高速度で吹き付けるものである。この処理により、基材3の表面が粗面化されるとともに、基材3の表面から油分等の不純物を除去し、表面を清浄化することができる。そして、これにより、基材3に対する酸化物の骨格構造を有するボンドコート1のより良好な密着性を確保することができる。
[Pretreatment process]
In the manufacturing method of the heat-resistant alloy member 100 according to the present embodiment, it is preferable to first perform a pretreatment step in which processing for roughening the surface is performed on the portion of the base material 3 that is in close contact with the bond coat 1. . As a specific method of surface processing, any method can be applied as long as the effects of the present invention are not significantly impaired, but the viewpoint of ensuring good adhesion between the substrate 3 and the bond coat 1 having an oxide skeleton structure. Therefore, it is preferable to perform blasting on the surface of the base material 3. In the blasting process, for example, non-metallic or metallic particles are sprayed on the surface of the substrate 3 at a high speed. By this treatment, the surface of the base material 3 is roughened, and impurities such as oil can be removed from the surface of the base material 3 to clean the surface. Thereby, better adhesion of the bond coat 1 having an oxide skeleton structure to the substrate 3 can be ensured.
 ブラスト処理に用いる金属又は非金属粒子の種類としては、本発明の効果を著しく損なわない限り任意であるが、例えば珪砂、アルミナ、シリカ等の非金属粒子、アルミ、亜鉛、銅、スチールショット等の金属の粒子を用いることができる。なお、これらの粒子は1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。 The type of metal or non-metallic particles used for the blast treatment is arbitrary as long as the effects of the present invention are not significantly impaired, but examples thereof include non-metallic particles such as silica sand, alumina and silica, aluminum, zinc, copper, steel shot and the like. Metal particles can be used. In addition, these particles may be used individually by 1 type, and may use 2 or more types by arbitrary ratios and combinations.
 上記粒子の大きさも、本発明の効果を著しく損なわない限り任意であるが、粒子が小さすぎる場合、粗面化が不十分で密着力が不足となる可能性があり、大きすぎる場合、基材3表面の凹凸が大きくなりすぎ、堆積させる金属粒子11の厚さが不均一となる可能性がある。 The size of the particles is arbitrary as long as the effects of the present invention are not significantly impaired. However, when the particles are too small, roughening may be insufficient and the adhesion may be insufficient. 3 The unevenness of the surface becomes too large, and the thickness of the metal particles 11 to be deposited may be uneven.
 ブラスト処理を行うための装置としては、例えばコンプレッサーエアーを使用した投射装置を用いることができる。そして、例えばこの装置を用いて、基材3の表面に対してブラスト処理を行うことができる。ブラスト処理を行う際の条件としても本発明の効果を著しく損なわない限り任意であるが、例えば、粒子の投射圧力は0.1MPa以上0.8MPa以下とすることができる。 As a device for performing blasting, for example, a projection device using compressor air can be used. For example, this apparatus can be used to perform blasting on the surface of the substrate 3. The conditions for performing the blast treatment are arbitrary as long as the effects of the present invention are not significantly impaired. For example, the particle projection pressure can be 0.1 MPa or more and 0.8 MPa or less.
〔ボンドコート堆積工程〕
 次に、上記ブラスト処理を行った基材3表面に対して、金属粒子11を堆積させる工程を行う。具体的な堆積方法としては、例えば減圧プラズマ溶射法(Low Pressure Plasma Spray:LPPS)、高速フレーム溶射法(High Velocity Oxy-fuel Frame-spraying:HVOF)等を用いて、金属粒子11を基材3上に堆積させることができる。
[Bond coat deposition process]
Next, a step of depositing the metal particles 11 is performed on the surface of the base material 3 subjected to the blast treatment. As a specific deposition method, for example, a low pressure plasma spraying (LPPS), a high velocity flame spraying (High Velocity Oxy-fuel Frame-spraying: HVOF), or the like is used. Can be deposited on top.
 図1に示すような、金属からなる金属粒子11を複数含み、当該複数の金属粒子11の間に当該金属の酸化物(金属酸化物11a)が連続的に接合する網目様の形状をした、酸化物の骨格構造を有するボンドコート1を成膜させる溶射条件は本発明の効果を著しく損なわない限り任意であるが、溶射中の金属粒子11の温度、粒子速度が以下の条件を満たす事が特に重要である。 As shown in FIG. 1, it includes a plurality of metal particles 11 made of metal, and has a network-like shape in which the metal oxide (metal oxide 11 a) is continuously joined between the metal particles 11. The thermal spraying conditions for forming the bond coat 1 having an oxide skeleton structure are arbitrary as long as the effects of the present invention are not significantly impaired. However, the temperature and the particle velocity of the metal particles 11 during thermal spraying may satisfy the following conditions. Of particular importance.
 金属酸化物11aが連続的に接合する形態で存在するためには、金属粒子11が基材3への飛行中に極薄い金属酸化物11aの膜に覆われたまま、基材3へ堆積することが特に重要である。金属粒子11の温度が高く金属粒子11が溶融しながら飛行した場合は、金属酸化物11aの膜は溶融した金属粒子11の特定部分に集合し、堆積後に金属酸化物11aが連続して接合した構造とはならない。逆に金属粒子11の温度が低い場合は、金属粒子11の堆積が起こらず、酸化物の骨格構造を有するボンドコート1を成膜させる事ができない。 In order for the metal oxide 11a to be present in a continuously bonded form, the metal particles 11 are deposited on the substrate 3 while being covered with an extremely thin metal oxide 11a film during the flight to the substrate 3. It is particularly important. When the temperature of the metal particle 11 is high and the metal particle 11 flies while melting, the film of the metal oxide 11a gathers at a specific portion of the molten metal particle 11, and the metal oxide 11a continuously joins after deposition. It is not a structure. Conversely, when the temperature of the metal particles 11 is low, the metal particles 11 do not accumulate, and the bond coat 1 having an oxide skeleton structure cannot be formed.
 金属酸化物11aは堆積後、好ましい扁平、楕円等の形状となることが特に重要である。金属粒子11の速度が速い場合、堆積後の金属粒子11が過度に扁平になり、大部分の金属酸化物11aが酸化物の骨格構造を有するボンドコート1の界面に対して平行な方向にのみ連続的に形成し、垂直な方向においてあまり連続的ではない場合、好ましい酸化物の骨格構造を形成する事ができない。金属粒子11の速度が遅い場合は、金属粒子11の堆積が起こらない。 It is particularly important that the metal oxide 11a has a preferable shape such as a flat shape and an ellipse after being deposited. When the speed of the metal particles 11 is high, the metal particles 11 after deposition are excessively flat, and most of the metal oxides 11a are only in a direction parallel to the interface of the bond coat 1 having an oxide skeleton structure. When formed continuously and not so continuously in the vertical direction, a preferred oxide skeleton cannot be formed. When the speed of the metal particles 11 is low, the metal particles 11 do not accumulate.
 これらの金属粒子11の温度、粒子速度の条件は粉末の組成、粒径、さらには使用する溶射装置により変化する。例えばHVOFを用いる場合では、金属粒子11の粒径分布は通常45μm以下のものが20%以下、好ましくは15%以下、より好ましくは10%以下で、90μm以上のものが通常10%以下、好ましくは5%以下、より好ましくは3%以下であるが、以上の溶射条件は当業者により、所有する溶射装置の制御条件を改変する事で実施可能である。 The conditions of the temperature and particle velocity of these metal particles 11 vary depending on the composition of the powder, the particle size, and the thermal spraying apparatus used. For example, in the case of using HVOF, the particle size distribution of the metal particles 11 is usually 20 μm or less, preferably 15% or less, more preferably 10% or less, and 90 μm or more is usually 10% or less, preferably 45 μm or less. Is 5% or less, more preferably 3% or less. However, the above-mentioned spraying conditions can be implemented by those skilled in the art by modifying the control conditions of the spraying apparatus owned.
〔トップコート形成工程〕
 形成した上記酸化物の骨格構造を有するボンドコート1上に、トップコート4を形成する。トップコート4の形成方法は、本発明の効果を著しく損なわない限り任意であるが、例えば大気圧下にて大気圧プラズマ溶射法(Air Plasma Spray:APS)を用いることができる。
[Topcoat formation process]
A top coat 4 is formed on the bond coat 1 having the skeleton structure of the formed oxide. Although the formation method of the topcoat 4 is arbitrary as long as the effect of this invention is not impaired remarkably, for example, an atmospheric pressure plasma spraying (APS) can be used under atmospheric pressure.
 以上のようにして、本実施形態に係る熱遮蔽コーティング膜10を製造することができる。 As described above, the heat shielding coating film 10 according to this embodiment can be manufactured.
 以上の工程を経て製造された、熱遮蔽コーティング膜10に対して、任意の温度、時間、酸化雰囲気中で高温暴露を行うと、酸化物の骨格構造を有するボンドコート1で金属酸化物11aが成長し、表面に熱成長酸化物層2を形成する。 When the heat shielding coating film 10 manufactured through the above steps is exposed to a high temperature in an oxidizing atmosphere at an arbitrary temperature, time, and the metal oxide 11a is bonded to the bond coat 1 having an oxide skeleton structure. Growing to form a thermally grown oxide layer 2 on the surface.
 上記の高温暴露過程において酸化物の骨格構造を有するボンドコート1に酸化物の骨格構造と熱成長酸化物層2が成長する機構について説明する。トップコート4には、通常は酸素を透過させることができる空隙(即ち気孔)が存在している。そして、部材周辺に存在する酸素が、このような気孔を通ることによりトップコート4を透過して、酸化物の骨格構造を有するボンドコート1に到達する。そして、到達した酸素は、酸化物の骨格構造を有するボンドコート1とトップコート4との界面において、金属粒子11に含まれる特に酸化されやすい金属(例えばアルミニウム等)と反応し、金属の酸化物からなる層を形成する。そして、この形成された金属の酸化物からなる層が熱成長酸化物層2である。 The mechanism by which the oxide skeleton structure and the thermally grown oxide layer 2 grow on the bond coat 1 having the oxide skeleton structure in the above high temperature exposure process will be described. The top coat 4 usually has voids (that is, pores) through which oxygen can permeate. Then, oxygen existing around the member passes through the pores and permeates the top coat 4 to reach the bond coat 1 having an oxide skeleton structure. Then, the reached oxygen reacts with a particularly easily oxidized metal (for example, aluminum) contained in the metal particles 11 at the interface between the bond coat 1 and the top coat 4 having an oxide skeleton structure, and the metal oxide. A layer consisting of is formed. The layer made of the metal oxide thus formed is the thermally grown oxide layer 2.
 通常望まれる、金属粒子11が互いに金属結合で結ばれる緻密なボンドコートでは、金属酸化物11aが連続的に接合する形態は形成されない。その理由は、金属粒子11のうちの最上部に存在する金属粒子11の最上部表面に沿って酸素を透過しにくい熱成長酸化物層2が成長し、さらに金属粒子11は緻密で酸素がボンドコート内部に入り込まないためである。 A normally desired dense bond coat in which the metal particles 11 are bonded to each other by metal bonds does not form a form in which the metal oxides 11a are continuously joined. The reason is that a thermally grown oxide layer 2 that hardly permeates oxygen grows along the uppermost surface of the metal particle 11 existing at the uppermost part of the metal particles 11, and the metal particles 11 are dense and oxygen bonds. This is because it does not enter the inside of the coat.
 一方、本実施形態に係るボンドコート1では、到達した酸素は、熱成長酸化物層2に加え、酸素が侵入しやすい金属粒子11間や、連続的に接合する形態で存在する金属酸化物11aが存在し、侵入した酸素により金属酸化物11aがさらに成長し、強固な熱遮蔽コーティング膜10を形成する。 On the other hand, in the bond coat 1 according to the present embodiment, the reached oxygen is not only the thermally grown oxide layer 2 but also the metal oxide 11a existing between the metal particles 11 in which oxygen easily penetrates or continuously joined. The metal oxide 11a further grows due to the invading oxygen, and forms a strong heat shielding coating film 10.
 なお、本実施形態に係る熱遮蔽コーティング膜10を有する部材を使用する際に、その使用温度は通常高温であるため、酸素が存在する環境で使用する限り上記金属酸化物11a及び熱成長酸化物層2は成長し続ける。しかしながら、トップコート4及び熱成長酸化物層2を透過する酸素の量は極めて少なく、また、酸素と金属とが反応して金属酸化物11a及び熱成長酸化物層2を形成する反応も極めて遅いことから、このような反応は短期的には十分無視できる程度のものである。 In addition, when using the member which has the heat shielding coating film 10 which concerns on this embodiment, since the use temperature is normal high temperature, as long as it uses in the environment where oxygen exists, the said metal oxide 11a and thermal growth oxide Layer 2 continues to grow. However, the amount of oxygen that permeates through the top coat 4 and the thermally grown oxide layer 2 is extremely small, and the reaction of oxygen and metal reacting to form the metal oxide 11a and the thermally grown oxide layer 2 is very slow. For this reason, such a response is sufficiently negligible in the short term.
[3.本実施形態に係る熱遮蔽コーティング膜10の用途]
 本実施形態に係る熱遮蔽コーティング膜10は、任意の用途に用いることができる。例えば、本実施形態に係る熱遮蔽コーティング10を、金属を含む基材3上に形成して、耐熱合金部材100を製造することができる。このような耐熱合金部材100としては、通常は耐熱性及び耐久性が要求されるものであるが、例えばガスタービンの動翼、静翼、燃焼機等が好適に挙げられる。
[3. Application of heat shielding coating film 10 according to this embodiment]
The heat shielding coating film 10 according to the present embodiment can be used for any application. For example, the heat-resistant alloy member 100 can be manufactured by forming the heat shielding coating 10 according to the present embodiment on the base material 3 containing a metal. As such a heat-resistant alloy member 100, heat resistance and durability are usually required, and for example, a moving blade, a stationary blade, a combustor, etc. of a gas turbine are preferable.
 以下、実施例を挙げて本実施形態をより詳細に説明するが、本実施形態は以下の実施例に限定されるものではなく、その要旨を逸脱しない範囲内で任意に変更して実施することができる。 Hereinafter, the present embodiment will be described in more detail with reference to examples. However, the present embodiment is not limited to the following examples, and may be arbitrarily modified without departing from the scope of the present invention. Can do.
 以下の実施例において、図1に示す耐熱合金部材100を製造した。具体的な製造方法は以下の通りである。
 ガスタービンの動翼として好適に用いられるNi基合金IN738(Ni-16Cr-8.5Co-1.7Mo-2.6W-0.9Nb-3.4Ti-3.4Al)を棒状に鋳造して軸方向に垂直な方向に切断することにより、直径2.5cm、厚さ3mmのコイン状合金部材を作製した。そして、エアブラストマシンを用いて、粒度24の酸化アルミニウム粒子を、投射圧力0.5MPaとして、合金部材表面に対してブラスト処理を行った。そしてブラスト処理を行ったものを基材3として、下記実施例1及び比較例1で用いた。
In the following examples, the heat-resistant alloy member 100 shown in FIG. 1 was manufactured. A specific manufacturing method is as follows.
A Ni-based alloy IN738 (Ni-16Cr-8.5Co-1.7Mo-2.6W-0.9Nb-3.4Ti-3.4Al), which is preferably used as a moving blade of a gas turbine, is cast into a rod shape to form a shaft. By cutting in a direction perpendicular to the direction, a coin-shaped alloy member having a diameter of 2.5 cm and a thickness of 3 mm was produced. Then, using an air blast machine, the aluminum oxide particles having a particle size of 24 were subjected to a blasting process on the surface of the alloy member at a projection pressure of 0.5 MPa. And what was blasted was used as the base material 3 in Example 1 and Comparative Example 1 below.
(実施例1)
 金属粒子11としてCoNiCrAlY(重量分率による組成式:Co-32Ni-21Cr-8Al-0.5Y、公称粒径範囲:45~75μm)を用いて、HVOF(溶射装置スルザーメテコ社製Woka star600)により、上記基材3表面に金属粒子11を堆積させてボンドコート1を最厚部約160μm、最薄部約100μmの厚さとなるように形成した。なお、HVOFの条件として、溶射時の溶射装置と基材3間の距離は300mm、溶射粉末の供給量は60g/min、酸素供給量 900リットル/min ケロシン供給量 3.9リットル/minとした。
Example 1
CoNiCrAlY (composition formula by weight fraction: Co-32Ni-21Cr-8Al-0.5Y, nominal particle size range: 45 to 75 μm) was used as the metal particles 11 and HVOF (Woka star 600 manufactured by Sulzer Metco Co., Ltd.) Metal particles 11 were deposited on the surface of the substrate 3 to form a bond coat 1 having a thickness of about 160 μm at the thickest part and about 100 μm at the thinnest part. As the HVOF conditions, the distance between the thermal spraying apparatus and the base material 3 at the time of thermal spraying is 300 mm, the spraying powder supply rate is 60 g / min, the oxygen supply rate is 900 l / min, and the kerosene supply rate is 3.9 l / min. .
 上記酸化物の骨格構造を有するボンドコート1を成膜した基材3に対して、イットリア安定化ジルコニア(重量分率による組成式:ZrO-8Y、公称粒径範囲:11~125μm)を用いて、APS(スルザーメテコ社製9MB)にてトップコート4を最厚部380μm、最薄部320μmとなるように形成した。なお、APSの条件として、溶射時の溶射装置と基材3間の距離は90mm、溶射粉末の供給量は30g/min、電流値は900Aとした。 Yttria-stabilized zirconia (composition formula by weight fraction: ZrO 2 -8Y 2 O 3 , nominal particle size range: 11 to 125 μm) with respect to the base material 3 on which the bond coat 1 having the oxide skeleton structure is formed. ) Was used to form a topcoat 4 with an APS (9 MB manufactured by Sulzer Metco) so that the thickest part was 380 μm and the thinnest part was 320 μm. As the APS conditions, the distance between the thermal spraying apparatus and the substrate 3 during thermal spraying was 90 mm, the amount of sprayed powder supplied was 30 g / min, and the current value was 900 A.
(比較例1)
 金属粒子11の堆積を、減圧時の環境圧力を6.6kPaとした減圧溶射装置を用いて行い、金属粒子11としてCoNiCrAlY(重量分率による組成式:Co-32Ni-21Cr-8Al-0.5Y、公称粒径範囲:5~37μm)を用い、最厚部140μm、最薄部100μmとなるように形成した。なお、溶射の条件として、溶射時の溶射装置と基材3間の距離は300mm、溶射粉末の供給量は30g/min、電流値は800Aとしたこと以外は実施例1と同様にして、トップコート4及び熱遮蔽コーティング膜10が形成された基材3(即ち耐熱合金部材100)を製造した。
(Comparative Example 1)
The metal particles 11 are deposited using a vacuum spraying apparatus in which the environmental pressure during decompression is 6.6 kPa, and the metal particles 11 are CoNiCrAlY (composition formula by weight fraction: Co-32Ni-21Cr-8Al-0.5Y). Nominal particle size range: 5 to 37 μm) and the thickest part was 140 μm and the thinnest part was 100 μm. As the conditions for thermal spraying, the top was the same as in Example 1 except that the distance between the thermal spraying apparatus and the substrate 3 during thermal spraying was 300 mm, the supply amount of thermal spray powder was 30 g / min, and the current value was 800 A. The base material 3 (that is, the heat-resistant alloy member 100) on which the coat 4 and the heat shielding coating film 10 were formed was manufactured.
(熱サイクル試験)
 実施例1及び比較例1で製造した耐熱合金部材100の耐久性を、下記熱サイクル試験の試験方法に従って評価した。即ち、1093℃で10時間加熱した後に自然冷却することを1サイクルとして、トップコート4が剥離するまでのサイクル数を測定した。なお、トップコート4の剥離は、目視により確認した。その結果を図2に示す。
(Thermal cycle test)
The durability of the heat-resistant alloy member 100 manufactured in Example 1 and Comparative Example 1 was evaluated according to the following thermal cycle test method. That is, the number of cycles until the top coat 4 was peeled was measured with one cycle consisting of heating at 1093 ° C. for 10 hours and then naturally cooling. In addition, peeling of the topcoat 4 was confirmed visually. The result is shown in FIG.
 図2に示すように、比較例1で製造した耐熱合金部材100もある程度の耐久性を有しているが、実施例1で製造した耐熱合金部材100は、比較例1で製造した耐熱合金部材100よりもより優れた耐久性を有していた。即ち、本実施形態に係る熱遮蔽コーティング膜10は、従来よりも耐久性に優れていることがわかった。 As shown in FIG. 2, the heat-resistant alloy member 100 manufactured in Comparative Example 1 also has a certain degree of durability, but the heat-resistant alloy member 100 manufactured in Example 1 is the heat-resistant alloy member manufactured in Comparative Example 1. It had durability superior to 100. That is, it was found that the heat shielding coating film 10 according to the present embodiment is superior in durability than the conventional one.
 図3は、実施例1において製造した熱遮蔽コーティング膜の熱サイクル試験後の一部断面を、走査型電子顕微鏡写真である。なお、図3及び後記する図4については、境界が明瞭なものとなるように、前記写真のコントラストを変更して示している。
 図3に示すように、実施例1で製造した部材においては、熱サイクル試験に酸化物の骨格構造を有するボンドコート1において金属粒子11が堆積し、さらに、金属粒子11間に金属酸化物11aが形成されている。また、図3に示す写真に対して、画像解析ソフトを用いることにより、酸化物の骨格構造を有するボンドコート1に含まれる金属酸化物11aの厚さW、金属酸化物11a同士の最短距離D、並びに、酸化物の骨格構造を有するボンドコート1の全面積及び金属酸化物11aの全面積を測定した。これらの結果、金属酸化物11aの厚さWは、0.3μm~7μm、最短距離Dは6μmであり、金属酸化物11aの総面積が、酸化物の骨格構造を有するボンドコート1の総面積に対して、2.5%であった。
FIG. 3 is a scanning electron micrograph of a partial cross section of the thermal barrier coating film produced in Example 1 after a thermal cycle test. Note that FIG. 3 and FIG. 4 to be described later are shown with the contrast of the photograph changed so that the boundary is clear.
As shown in FIG. 3, in the member manufactured in Example 1, metal particles 11 were deposited in the bond coat 1 having an oxide skeleton structure in the thermal cycle test, and the metal oxide 11 a was further interposed between the metal particles 11. Is formed. Further, by using image analysis software for the photograph shown in FIG. 3, the thickness W of the metal oxide 11a included in the bond coat 1 having an oxide skeleton structure, and the shortest distance D between the metal oxides 11a. In addition, the total area of the bond coat 1 having an oxide skeleton structure and the total area of the metal oxide 11a were measured. As a result, the thickness W of the metal oxide 11a is 0.3 μm to 7 μm, the shortest distance D is 6 μm, and the total area of the metal oxide 11a is the total area of the bond coat 1 having an oxide skeleton structure. With respect to 2.5%.
 また、金属酸化物11aについて、波長分散型X線分光器により、元素分布を測定し評価したところ、全金属酸化物11aのうちの99重量%が酸化アルミニウムであることがわかった。また、酸化アルミニウム以外の金属酸化物11aの成分としては、Ni、Cr、Coが含まれていることも分かった。 Further, when the element distribution of the metal oxide 11a was measured and evaluated with a wavelength dispersive X-ray spectrometer, it was found that 99% by weight of the total metal oxide 11a was aluminum oxide. It was also found that Ni, Cr, and Co were included as components of the metal oxide 11a other than aluminum oxide.
 図4は、比較例1において製造した熱遮蔽コーティング膜の熱サイクル試験後の一部断面を、走査型電子顕微鏡にて撮影した図面代用写真である。
 図4に示すように、比較例1で製造した耐熱合金部材100においては、図3に示す実施例1の場合と異なり、金属酸化物11aが形成されず(図4中、符号1’で示す部分)、均質なものとなっている。
FIG. 4 is a drawing-substituting photograph obtained by photographing a partial cross section of the heat shielding coating film produced in Comparative Example 1 after a thermal cycle test with a scanning electron microscope.
As shown in FIG. 4, in the heat resistant alloy member 100 manufactured in Comparative Example 1, unlike the case of Example 1 shown in FIG. 3, the metal oxide 11a is not formed (indicated by reference numeral 1 ′ in FIG. 4). Part), it is homogeneous.
(まとめ)
 通常、LPPSにより金属粒子11を堆積させた場合、金属粒子11を堆積させた層(即ちボンドコート1’)は、高温における伸びが大きい。即ち、このような特性は変形抵抗が小さく、塑性変形しやすいことを表している。従って、高温と常温とを繰り返す熱サイクル数の増加に伴ってボンドコート1’内に塑性変形が蓄積されることにより、ボンドコート1’に密着しているトップコート4の剥離を生じる傾向になる。
 しかしながら、本発明者の検討によると、本実施形態においては、HVOFにより金属粒子11を堆積させた後に金属粒子11間に金属酸化物11aを形成させることにより、金属酸化物11aによって、金属酸化物11aを含む酸化物の骨格構造を有するボンドコート1を強化させることができる。従って、本実施形態に係る熱遮蔽コーティング膜10は、塑性変形の酸化物の骨格構造を有するボンドコート1への蓄積が少ないか、若しくは仮に蓄積したとしても従来よりも十分な強度を有しているため、耐久性が従来よりも優れていると考えられる。
(Summary)
Usually, when the metal particles 11 are deposited by LPPS, the layer on which the metal particles 11 are deposited (that is, the bond coat 1 ′) has a large elongation at a high temperature. That is, such characteristics indicate that deformation resistance is small and plastic deformation is easy. Therefore, the plastic deformation accumulates in the bond coat 1 ′ as the number of thermal cycles that repeat high and normal temperatures increases, and the top coat 4 that is in close contact with the bond coat 1 ′ tends to peel off. .
However, according to the study of the present inventor, in the present embodiment, the metal oxide 11a is formed between the metal particles 11 after the metal particles 11 are deposited by HVOF. The bond coat 1 having an oxide skeleton structure containing 11a can be strengthened. Therefore, the heat-shielding coating film 10 according to the present embodiment has less accumulation in the bond coat 1 having a plastically deformed oxide skeleton structure, or has sufficient strength even if it accumulates temporarily. Therefore, it is considered that the durability is superior to the conventional one.
1   酸化物の骨格構造を有するボンドコート
1’  ボンドコート
10  熱遮蔽コーティング膜
11  金属粒子
100 耐熱合金部材
2   熱成長酸化物層
3   基材
4   トップコート
DESCRIPTION OF SYMBOLS 1 Bond coat which has skeleton structure of oxide 1 'Bond coat 10 Heat shielding coating film 11 Metal particle 100 Heat-resistant alloy member 2 Thermal growth oxide layer 3 Base material 4 Top coat

Claims (8)

  1.  基材上に形成される熱遮蔽コーティング膜であって、
     金属からなる金属粒子を複数含み、該複数の金属粒子間に該金属の酸化物が連続的に接合して形成されている酸化物の骨格構造を有するボンドコートを有する
    ことを特徴とする、熱遮蔽コーティング膜。
    A heat shielding coating film formed on a substrate,
    A plurality of metal particles comprising a metal, and a bond coat having an oxide skeleton structure formed by continuously bonding the metal oxide between the metal particles. Shielding coating film.
  2.  該ボンドコートの断面において、
     該金属の酸化物の厚さが0.5μm以上20μm以下である
    ことを特徴とする、請求の範囲第1項に記載の熱遮蔽コーティング膜。
    In the cross section of the bond coat,
    2. The heat shielding coating film according to claim 1, wherein the thickness of the metal oxide is 0.5 μm or more and 20 μm or less.
  3.  該ボンドコートの断面において、
     該金属粒子の外周に少なくとも2本の該金属の酸化物が存在しており、
     該2本の金属の酸化物同士の該金属粒子における最短距離が5μm以上100μm以下である
    ことを特徴とする、請求の範囲第1項又は第2項に記載の熱遮蔽コーティング膜。
    In the cross section of the bond coat,
    There are at least two oxides of the metal on the periphery of the metal particles;
    The heat shielding coating film according to claim 1 or 2, wherein the shortest distance between the two metal oxides in the metal particles is 5 µm or more and 100 µm or less.
  4.  該ボンドコートの断面において、
     該金属の酸化物の総断面積が、該酸化物の骨格構造を有するボンドコートの総断面積に対して、40%以下である
    ことを特徴とする、請求の範囲第1項又は第2項に記載の熱遮蔽コーティング膜。
    In the cross section of the bond coat,
    The total cross-sectional area of the oxide of the metal is 40% or less with respect to the total cross-sectional area of the bond coat having the skeleton structure of the oxide. The heat shielding coating film as described in 1.
  5.  該金属粒子が、近接する他の金属粒子と、少なくとも一つの金属結合により結合している
    ことを特徴とする、請求の範囲第1項又は第2項に記載の熱遮蔽コーティング膜。
    The heat shielding coating film according to claim 1 or 2, wherein the metal particles are bonded to other adjacent metal particles by at least one metal bond.
  6.  該金属が、アルミニウムを含み、さらに、ニッケル,クロム,コバルトからなる群より選ばれる1種以上を少なくとも含むとともに、
     該金属の酸化物に含まれる酸化アルミニウムの量が、該金属の酸化物の全量に対して、90重量%以上である
    ことを特徴とする、請求の範囲第1項又は第2項に記載の熱遮蔽コーティング膜。
    The metal contains aluminum, and further contains at least one selected from the group consisting of nickel, chromium and cobalt,
    The amount of aluminum oxide contained in the metal oxide is 90% by weight or more with respect to the total amount of the metal oxide, according to claim 1 or 2, Heat shielding coating film.
  7.  請求の範囲第1項又は第2項に記載の熱遮蔽コーティング膜を製造する方法であって、
     該複数の金属粒子の堆積を、高速フレーム溶射法によって行う工程を含む
    ことを特徴とする、熱遮蔽コーティング膜の製造方法。
    A method for producing the heat-shielding coating film according to claim 1 or 2,
    A method for producing a heat shielding coating film, comprising the step of depositing the plurality of metal particles by a high-speed flame spraying method.
  8.  金属を含む基材と、請求の範囲第1項又は第2項に記載の熱遮蔽コーティング膜とを少なくとも有することを特徴とする、耐熱合金部材。 A heat-resistant alloy member comprising at least a base material containing a metal and the heat shielding coating film according to claim 1 or 2.
PCT/JP2011/068592 2010-09-03 2011-08-17 Heat-masking coating film, process for production thereof, and heat-resistant alloy members using the same WO2012029540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010197336A JP2012052206A (en) 2010-09-03 2010-09-03 Heat-masking coating film, process for production thereof, and heat-resistant alloy member using the same
JP2010-197336 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012029540A1 true WO2012029540A1 (en) 2012-03-08

Family

ID=45772644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068592 WO2012029540A1 (en) 2010-09-03 2011-08-17 Heat-masking coating film, process for production thereof, and heat-resistant alloy members using the same

Country Status (2)

Country Link
JP (1) JP2012052206A (en)
WO (1) WO2012029540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500756A (en) * 2012-08-31 2016-01-14 ゼネラル・エレクトリック・カンパニイ Articles formed by plasma spray

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105189819A (en) * 2013-03-13 2015-12-23 通用电气公司 Coatings for metallic substrates
JP6547209B2 (en) * 2015-07-01 2019-07-24 国立大学法人東北大学 Method of producing thermal barrier coating and powder for bond coat
WO2018087945A1 (en) * 2016-11-09 2018-05-17 株式会社Ihi Sliding member with abrasion-resistant coating film, and method for forming abrasion-resistant coating film
JP7006904B2 (en) * 2017-07-25 2022-02-10 学校法人日本大学 Method for manufacturing heat-resistant corrosion-resistant film, heat-resistant corrosion-resistant member and heat-resistant corrosion-resistant film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885883A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Ceramic coated heat resistant member with multiple oxides bonding layer
JP2001505620A (en) * 1996-12-10 2001-04-24 シーメンス アクチエンゲゼルシヤフト Product with thermal insulation layer exposed to high-temperature gas and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885883A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Ceramic coated heat resistant member with multiple oxides bonding layer
JP2001505620A (en) * 1996-12-10 2001-04-24 シーメンス アクチエンゲゼルシヤフト Product with thermal insulation layer exposed to high-temperature gas and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500756A (en) * 2012-08-31 2016-01-14 ゼネラル・エレクトリック・カンパニイ Articles formed by plasma spray

Also Published As

Publication number Publication date
JP2012052206A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
EP1829984B1 (en) Process for making a high density thermal barrier coating
US20160333455A1 (en) Thermal Barrier Coating with Lower Thermal Conductivity
JP5554488B2 (en) Alumina-based protective coating for thermal barrier coating
US6306515B1 (en) Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers
CN103160711B (en) Nickel-cobalt-based alloy and bond coat and bond coated articles incorporating the same
US7727318B2 (en) Metal alloy compositions and articles comprising the same
EP2108715A2 (en) Thermal barrier coating system and coating methods for gas turbine engine shroud
JP5645093B2 (en) Ni-base superalloy member provided with heat-resistant bond coat layer
EP1939317A2 (en) Thermal barrier coating
JP5437573B2 (en) Alloy compositions and articles containing the same
US7740948B1 (en) Thermal barrier coatings
US6720088B2 (en) Materials for protection of substrates at high temperature, articles made therefrom, and method for protecting substrates
EP1840239A1 (en) Machine components and methods of fabricating
JP7174811B2 (en) high temperature parts
US8722202B2 (en) Method and system for enhancing heat transfer of turbine engine components
EP2690197B1 (en) Turbine blade for industrial gas turbine and industrial gas turbine
JP5905354B2 (en) Thermal barrier coating on power generation gas turbine blades and power generation gas turbine using the same
Zhu et al. A study of the diffusion and pre-oxidation treatment on the formation of Al2O3 ceramic scale on NiCrAlY bond-coat during initial oxidation process
WO2012029540A1 (en) Heat-masking coating film, process for production thereof, and heat-resistant alloy members using the same
EP3438325A1 (en) Improved adhesion of thermal spray coatings over a smooth surface
JP2009013452A (en) Machine component and manufacturing method
JP7244667B2 (en) Advanced bond coat material for TBCs with excellent thermal cycling fatigue and sulfidation resistance
EP1457579B1 (en) Materials for protection of superalloy substrates at high temperature, articles made therefrom, and method for protecting substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821557

Country of ref document: EP

Kind code of ref document: A1