WO2012029375A1 - Magnetic flux detection sensor - Google Patents

Magnetic flux detection sensor Download PDF

Info

Publication number
WO2012029375A1
WO2012029375A1 PCT/JP2011/063838 JP2011063838W WO2012029375A1 WO 2012029375 A1 WO2012029375 A1 WO 2012029375A1 JP 2011063838 W JP2011063838 W JP 2011063838W WO 2012029375 A1 WO2012029375 A1 WO 2012029375A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable body
magnetic flux
flux density
container
curved surface
Prior art date
Application number
PCT/JP2011/063838
Other languages
French (fr)
Japanese (ja)
Inventor
昌弥 田村
雅也 植田
信二 天池
富雄 柴野
雅彦 鷲平
俊樹 西脇
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012029375A1 publication Critical patent/WO2012029375A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/10Measuring inclination, e.g. by clinometers, by levels by using rolling bodies, e.g. spheres, cylinders, mercury droplets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • G01C2009/064Electric or photoelectric indication or reading means inductive

Definitions

  • the present invention relates to a magnetic flux detection sensor suitable for use in, for example, detection of posture inclination.
  • Patent Document 1 As a conventional magnetic flux detection sensor, an inclination sensor that detects an inclination of an attitude is known (for example, refer to Patent Documents 1 and 2).
  • a configuration including a spherical movable body made of a magnetic material provided on a tilted surface of a magnet so as to be able to roll is disclosed.
  • the tilt sensor of Patent Document 1 the movable body rolls and displaces on the tilted surface according to the tilt of the magnet, and the change in the magnetic flux density accompanying the displacement of the movable body is detected by the magnetic detection element.
  • Patent Document 2 discloses a case having a concave spherical surface, a thick disk-shaped magnet slidably provided on the concave spherical surface of the case, and three or more at the side edge of the concave spherical surface.
  • a configuration including a magnetic detection element is disclosed.
  • the magnet slides and displaces on the concave spherical surface according to the tilt of the case, and a change in magnetic flux density due to the displacement of the magnet is detected using a plurality of magnetic detection elements.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a magnetic flux detection sensor that can be reduced in size and can maintain the slidability of a movable body.
  • the present invention provides a movable body including a sliding surface formed of a downward convex curved surface formed on the bottom side and an upper surface formed of a horizontal surface formed on the upper side of the sliding surface.
  • a nonmagnetic container having a movable body accommodating space having an upward concave curved surface that slidably supports the sliding surface of the movable body, and a change in magnetic flux density provided by the sliding of the movable body provided in the nonmagnetic container
  • a magnetic flux density detection sensor comprising: an antistatic means for preventing charging caused by contact between the movable body and the nonmagnetic container; and a sliding surface of the movable body, the magnetic flux density detection means, Are arranged opposite to each other, and a magnetic flux is applied to the magnetic flux density detection means via the sliding surface, and a magnetic flux at the upper surface periphery is provided at an upper surface periphery of the movable body where the sliding surface intersects the upper surface.
  • the movable body When the nonmagnetic container is inclined from a horizontal state, the movable body is displaced from a steady position along the concave curved surface of the nonmagnetic container, and the nonmagnetic container is in a horizontal state.
  • the movable body is configured to return to a steady position along the concave curved surface of the non-magnetic container when returning to step S2.
  • the movable body is configured to include a sliding surface made of a downward convex curved surface formed on the bottom side and an upper surface made of a horizontal surface formed on the upper side of the sliding surface. For this reason, the thickness of the movable body gradually decreases from the apex portion of the convex curved surface along the periphery of the upper surface.
  • a movable body is formed using a magnetic material, magnetic flux tends to concentrate on a thick portion of the movable body. For this reason, the magnetic flux density is high around the apex portion of the movable body, and the magnetic flux density is reduced in a portion near the upper surface periphery of the movable body.
  • the movable body is provided in the movable body accommodation space of the non-magnetic container.
  • the magnetic flux density detection means is provided in the non-magnetic container and is disposed opposite to the sliding surface of the movable body.
  • the sliding surface of the movable body slides on the concave curved surface, and the vertex portion of the movable body moves toward the lowest position of the concave curved surface.
  • the relative position of the apex portion of the movable body and the magnetic flux density detection means changes according to the inclination angle of the nonmagnetic container. For this reason, the magnetic flux density applied to the magnetic flux density detecting means can be changed according to the inclination angle of the non-magnetic container.
  • the movable body accommodation space of the nonmagnetic container only needs to have a volume that allows the movable body to be rotationally displaced. For this reason, the volume of the movable body accommodation space can be brought close to the volume of the movable body, and the entire sensor can be reduced in size.
  • the antistatic means for preventing the movable body and the nonmagnetic container from being charged is provided, when the movable body is slid on the concave curved surface, the contact between the sliding surface of the movable body and the concave curved surface of the nonmagnetic container No charge is accumulated due to friction. For this reason, even when a small movable body is slid on the concave curved surface, the movable body can be kept slidable without being affected by the accumulated electric charge, and a decrease in detection accuracy and detection sensitivity can be prevented. Can do.
  • the magnetic flux density detecting means is arranged around the deepest part of the concave curved surface when the nonmagnetic container is in a horizontal state, for example, as the facing positional relationship between the sliding surface of the movable body and the magnetic flux density detecting means.
  • the tilt angle of the magnetic container is small, the displacement between the apex portion of the movable body and the magnetic flux density detecting means is small, and the magnetic flux density applied to the magnetic flux density detecting means is high.
  • the inclination angle of the non-magnetic container is large, the displacement between the apex portion of the movable body and the magnetic flux density detection means is large, and the magnetic flux density applied to the magnetic flux density detection means is low.
  • the magnetic flux density applied to the magnetic flux density detecting means changes according to the thickness of the movable body portion facing the magnetic flux density detecting means. For this reason, the linearity of the detection signal of the magnetic flux density detection means with respect to the inclination angle of the non-magnetic container can be improved compared to the case where the movable body is made of, for example, a thick disk shape or a small-diameter spherical shape, and can be detected.
  • the angle range of various inclinations can be expanded.
  • the magnetic flux tends to concentrate on the periphery of the upper surface of the movable portion where the surfaces intersect at an acute angle.
  • the concentration of magnetic flux at the periphery of the upper surface of the movable body can be reduced by the chamfered portion.
  • the magnetic flux density can be gradually decreased from the apex portion of the movable body toward the upper surface periphery, and the linearity of the change in the magnetic flux density caused by the displacement of the movable body can be enhanced.
  • the present invention includes a hemispherical movable body having a sliding surface composed of a downward hemispherical surface on the bottom side, and a movable body accommodating space having an upward concave curved surface that slidably supports the sliding surface of the movable body.
  • a magnetic flux detection sensor comprising: a nonmagnetic container; and a magnetic flux density detecting means provided on the nonmagnetic container and detecting a change in magnetic flux density caused by sliding of the movable body, wherein the movable body and the nonmagnetic container touch each other.
  • the movable body is formed in a hemispherical shape, and a sliding surface composed of a downward hemispherical surface is formed on the bottom side thereof. Gradually smaller.
  • an antistatic means for preventing electrification that occurs when the movable body and the nonmagnetic container come into contact with each other is provided. For this reason, even when a small movable body is slid on the concave curved surface, the slidability of the movable body can be maintained without being affected by the accumulated electric charge.
  • the present invention includes a movable body having a sliding surface formed of a downward convex curved surface formed on the bottom side and an upper surface formed of a horizontal surface formed on the upper side of the sliding surface, and sliding the sliding surface of the movable body Magnetic flux having a non-magnetic container having a movable body accommodating space having an upward concave curved surface that is freely supported, and a magnetic flux density detecting means that is provided in the non-magnetic container and detects a change in magnetic flux density caused by sliding of the movable body.
  • a detection sensor comprising antistatic means for preventing electrification caused by contact between the movable body and the nonmagnetic container, wherein the sliding surface of the movable body and the magnetic flux density detection means are arranged to face each other, and the nonmagnetic container
  • the movable body When the movable body is tilted from the horizontal state, the movable body is displaced from a steady position along the concave curved surface of the nonmagnetic container, and when the nonmagnetic container returns to the horizontal state, the movable body is recessed from the nonmagnetic container. It is configured to return to the normal position along the curved surface.
  • the movable body is configured to include a sliding surface made of a downward convex curved surface formed on the bottom side and an upper surface made of a horizontal surface formed on the upper side of the sliding surface.
  • the thickness of a movable body becomes small gradually along the upper surface periphery from the vertex part of a convex-shaped curved surface.
  • the magnetic flux density detection means is provided in the non-magnetic container, and the sliding surface of the movable body and the magnetic flux density detection means are arranged to face each other, so that the apex portion of the movable body and the magnetic flux density detection according to the inclination angle of the non-magnetic container. The relative position with the means changes. For this reason, the magnetic flux density applied to the magnetic flux density detecting means can be changed according to the inclination angle of the non-magnetic container.
  • the structure is provided with antistatic means for preventing the movable body and the nonmagnetic container from being charged. For this reason, even when a small movable body is slid on the concave curved surface, the slidability of the movable body can be maintained without being affected by the accumulated electric charge.
  • the present invention includes a hemispherical movable body having a sliding surface composed of a downward hemispherical surface on the bottom side, and a movable body accommodating space having an upward concave curved surface that slidably supports the sliding surface of the movable body.
  • a magnetic flux detection sensor comprising: a nonmagnetic container; and a magnetic flux density detecting means provided on the nonmagnetic container and detecting a change in magnetic flux density caused by sliding of the movable body, wherein the movable body and the nonmagnetic container touch each other.
  • Anti-static means for preventing charging caused by the above-mentioned structure, the sliding surface of the movable body and the magnetic flux density detecting means are arranged to face each other, and when the non-magnetic container is tilted from a horizontal state, the movable body is the non-magnetic container.
  • the movable body When the non-magnetic container is displaced from the steady position along the concave curved surface and returns to the horizontal state, the movable body returns to the steady position along the concave curved surface of the non-magnetic container.
  • the movable body is formed in a hemispherical shape, and a sliding surface composed of a downward hemispherical surface is formed on the bottom side of the movable body. It can be formed in a hemispherical shape in which the thickness dimension gradually decreases.
  • an antistatic means for preventing electrification that occurs when the movable body and the nonmagnetic container come into contact with each other is provided. For this reason, even when a small movable body is slid on the concave curved surface, the slidability of the movable body can be maintained without being affected by the accumulated electric charge.
  • the present invention relates to a nonmagnetic container including a movable body having a sliding surface formed on the bottom side, a movable body containing space having an upward concave curved surface that slidably supports the sliding surface of the movable body, and the nonmagnetic container And a magnetic flux detection sensor having a magnetic flux density detection means for detecting a change in magnetic flux density caused by the sliding of the movable body, wherein the electrostatic charge prevention means prevents the charging that occurs when the movable body and the non-magnetic container come into contact with each other.
  • the movable body When the non-magnetic container is tilted from the horizontal state, the movable body is displaced from a steady position along the concave curved surface of the non-magnetic container, and when the non-magnetic container returns to the horizontal state, the movable body Is configured to return to a steady position along the concave curved surface of the non-magnetic container.
  • the movable body is provided in the movable body accommodation space of the non-magnetic container.
  • the sliding surface of the movable body slides on the concave curved surface, and the movable body moves toward the lowest position of the concave curved surface.
  • the relative position of the movable body and the magnetic flux density detection means can be changed according to the inclination angle of the nonmagnetic container.
  • the magnetic flux density applied to the magnetic flux density detecting means can be changed according to the inclination angle of the non-magnetic container.
  • an antistatic means for preventing electrification that occurs when the movable body and the nonmagnetic container touch each other is provided. For this reason, even when a small movable body is slid on the concave curved surface, the slidability of the movable body can be maintained without being affected by the accumulated electric charge.
  • the antistatic means is that an antistatic coating film made of a surfactant or a conductive material is formed on the sliding surface of the movable body and the concave curved surface of the nonmagnetic container.
  • the antistatic means is configured to form the antistatic coating film on the sliding surface of the movable body and the concave curved surface of the nonmagnetic container, for example, when the antistatic coating film is composed of a surfactant, Due to the hydrophilicity of the agent, moisture in the air can be taken into the antistatic coating film. As a result, the surface of the antistatic coating film can be brought into a low resistance state, so that static electricity generated by touching the movable body and the non-magnetic container can be quickly released into the air, and the movable body and the non-magnetic container. Can be prevented.
  • the antistatic coating film is made of a conductive material, not only the same effect as the surfactant is obtained but also the effect is exhibited when the humidity is low. Furthermore, since the movable body and the non-magnetic container come into contact with each other, both have the same potential, so that the electrostatic force due to static electricity does not work.
  • the portion including the concave curved surface of the nonmagnetic container and the movable body are formed of a low resistance material.
  • charging can be prevented by the low resistance material, and even if it is temporarily charged, it can be immediately discharged.
  • the magnetic flux density detection means includes a ground terminal, a drive voltage terminal, and a signal output terminal, and is formed of an insulating material except for a portion including a concave curved surface formed of a low resistance material of the nonmagnetic container.
  • the ground terminal is embedded in the insulating material and the low-resistance material to electrically connect the ground terminal and the low-resistance material, and the magnetic flux density detecting means and the drive are included in the insulating material.
  • a voltage terminal and the signal output terminal are embedded, and the drive voltage terminal, the signal output terminal, and the ground terminal are electrically insulated.
  • the ground terminal of the magnetic flux density detecting means is embedded in the low resistance material of the nonmagnetic container and the ground terminal and the low resistance material are electrically connected, the low resistance of the nonmagnetic container is passed through the ground terminal.
  • the material part can be connected to an external ground. For this reason, the movable body and the nonmagnetic container can be held at the ground potential, and the effect of charging and discharging can be enhanced.
  • the antistatic means is that the movable body and the non-magnetic container are formed of materials having substantially the same charge train.
  • Frictional charge occurs between materials with different charge trains.
  • the movable body and the non-magnetic container are formed of materials having substantially the same charge train, frictional charging is almost eliminated.
  • the movable body is formed using a magnetic material and magnetized in a state where the sliding surface and the upper surface have opposite polarities.
  • magnetic flux can be generated in the normal direction of the sliding surface.
  • the magnetic flux density detection means is arranged to face the sliding surface of the movable body. For this reason, when the non-magnetic container is tilted from the horizontal state, the magnetic flux density detecting means also tilts substantially in line with the normal direction of the sliding surface portion of the sliding movable body facing the magnetic flux density detecting means.
  • the hemispherical movable body has a high magnetic flux density at the apex portion and a low magnetic flux density near the upper surface periphery. For this reason, according to the inclination angle of the non-magnetic container, the portion of the sliding surface of the movable body facing the magnetic flux density detection means can be displaced to change the magnetic flux density applied from the movable body to the magnetic flux density detection means.
  • the magnetic flux density detector can reliably detect the magnetic flux density according to the tilt angle. As a result, the magnetic flux density detection means can output a detection signal corresponding to the tilt angle.
  • the sliding surface of the movable body when used in the northern hemisphere, is magnetized to the north pole and the upper surface is magnetized to the south pole, and when used in the southern hemisphere, the sliding surface of the movable body is magnetized to the south pole. In addition, the upper surface is magnetized to the north pole.
  • the magnetic force that tries to turn over the movable body by geomagnetism does not act on the movable body.
  • the tilted magnetic flux detection sensor is returned to the horizontal state, it is possible to prevent the movable body from being caught in the movable body housing space and not returning to the horizontal state.
  • the magnetic flux density detecting means inclines the magnetic flux in the Y-axis direction in the X-axis direction and the Y-axis direction perpendicular to each other in comparison with the detection signal when the magnetic flux is inclined in the X-axis direction.
  • the concave curved surface of the movable body accommodating space has a Y-axis direction compared to the X-axis direction in order to compensate for the anisotropy of the magnetic flux density detecting means. It is formed by the anisotropic curved surface which displaces the said movable body large toward.
  • the magnetic flux density detection means and the movable body It is possible to increase the positional change with the apex portion.
  • the magnetic flux density is detected when the non-magnetic container is tilted in the Y-axis direction compared to when the non-magnetic container is tilted in the X-axis direction. The change in the magnetic flux density applied to the means increases.
  • the magnetic flux density applied from the movable body to the magnetic flux density detecting means is lower when tilted in the Y-axis direction than when tilted in the X-axis direction at the same tilt angle, and the output level of the detection signal is reduced.
  • the detection signal of the magnetic flux density detection means when the nonmagnetic container is tilted in the X-axis direction and the detection signal of the magnetic flux density detection means when the nonmagnetic container is tilted in the Y-axis direction are output with respect to the tilt angle. Levels can be made approximately equal.
  • FIG. 4 is a cross-sectional view of the tilt sensor as seen from the direction of arrows II-II in FIG. 3. It is a top view which shows the inclination sensor in FIG. 1 in the state which excluded the cover body. It is explanatory drawing which shows the positional relationship of a movable body and a magnetoelectric conversion element when the inclination sensor by 1st Embodiment is made into a horizontal state. It is explanatory drawing which shows the positional relationship of a movable body and a magnetoelectric conversion element when the inclination sensor by 1st Embodiment is made into an inclination state.
  • FIG. 4 shows the inclination sensor by a comparative example.
  • 1st Embodiment and a comparative example it is a characteristic diagram which shows the relationship between an inclination angle and the magnetic flux density corresponding to a detection signal. It is sectional drawing of the same position as FIG. 2 which shows the inclination sensor by 2nd Embodiment. It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by 3rd Embodiment. It is a disassembled perspective view which shows the inclination sensor by 4th Embodiment. It is sectional drawing which looked at the inclination sensor from the arrow XI-XI direction in FIG.
  • FIG. 10 It is a top view which shows the inclination sensor in FIG. 10 in the state which excluded the cover body.
  • 1st, 4th embodiment it is a characteristic diagram which shows the relationship between an inclination angle and the magnetic flux density corresponding to a detection signal. It is sectional drawing of the same position as FIG. 2 which shows the inclination sensor by 5th Embodiment.
  • the 4th and 5th embodiment it is a characteristic line figure showing the relation between a tilt angle and magnetic flux density corresponding to a detection signal.
  • FIG. 20 is a cross-sectional view of the tilt sensor as seen from the direction of arrows XVII-XVII in FIG. 19.
  • FIG. 24 is a cross-sectional view of the tilt sensor as seen from the direction of arrows XXIV-XXIV in FIG.
  • FIG. 24 is a cross-sectional view of the tilt sensor as seen from the direction of arrows XXIV-XXIV in FIG.
  • FIG. 24 is a cross-sectional view of the tilt sensor as seen from the direction of arrows XXIV-XXIV in FIG.
  • FIG. 24 is a plan view showing the tilt sensor in FIG. 23 in a state where a lid is omitted. It is sectional drawing of the same position as FIG. 11 which shows the inclination sensor by 8th Embodiment. It is explanatory drawing which shows a geomagnetic vector, Comprising: (a) shows the geomagnetic vector of the whole earth, (b) shows the geomagnetic vector near the earth surface of the northern hemisphere side. It is explanatory drawing which shows the rotational torque by the geomagnetism which acts on a movable body in the inclination sensor by 8th Embodiment.
  • the tilt sensor 1 is composed of a casing 2, a magnetoelectric conversion element 8, and a movable body 12, which will be described later.
  • the casing 2 is a nonmagnetic container formed using a nonmagnetic material such as an insulating resin material.
  • the casing 2 includes a casing main body 3 formed in a substantially cylindrical shape with a bottom, and a lid body 4 that covers an upper side that serves as an opening of the casing main body 3.
  • the height of the casing body 3 in the vertical direction is several mm (for example, about 9 mm), and the cross-sectional shape in the horizontal plane is a substantially circular shape with an outer diameter of several mm (for example, about 9 mm).
  • a concave portion 3A that is recessed in a substantially hemispherical shape (bowl shape) is formed on the upper side of the casing body 3, and a cylindrical male fitting portion 3B is integrated upward at the opening edge of the concave portion 3A. Is formed.
  • the surface (exposed surface) of the recess 3A is a concave curved surface 5 that opens upward.
  • the concave curved surface 5 is formed of, for example, a hemispherical surface, and the radius of curvature r1 is larger than the radius of curvature r2 of the sliding surface 13 of the movable body 12 described later.
  • the lid body 4 is formed in a substantially disc shape, and a cylindrical female fitting portion 4A is integrally formed on the outer peripheral edge thereof downward.
  • a cylindrical female fitting portion 4A is integrally formed on the outer peripheral edge thereof downward.
  • a substantially cylindrical rod portion 7 extending downward toward the deepest portion 5A of the concave curved surface 5 is provided at the center portion of the lid body 4.
  • the lower end part of the rod part 7 is formed in the substantially hemispherical shape.
  • the magnetoelectric conversion element 8 composed of a magnetoresistive element, a Hall element, etc. constitutes a magnetic flux density detection means, and outputs a detection signal Vout corresponding to the magnetic flux density (magnetic field) in the height direction of the casing 2, for example.
  • the magnetoelectric conversion element 8 is provided inside the casing body 3 positioned below the deepest part 5A of the concave curved surface 5 by a minute dimension ⁇ .
  • the magnetoelectric conversion element 8 is disposed at a position facing the sliding surface 13 of the movable body 12 accommodated in the movable body accommodating space 6.
  • a magnetic flux ⁇ from the movable body 12 is applied to the magnetoelectric conversion element 8 via the sliding surface 13 of the movable body 12. Thereby, the magnetoelectric conversion element 8 detects a change in magnetic flux density caused by the sliding of the movable body 12.
  • the magnetoelectric transducer 8 is electrically connected to a ground terminal 9 for connection to an external ground, and is electrically connected to a drive voltage terminal 10 for supplying a drive voltage Vdd. Furthermore, a signal output terminal 11 for outputting a detection signal Vout such as a voltage is electrically connected to the magnetoelectric conversion element 8.
  • the ground terminal 9, the drive voltage terminal 10, and the signal output terminal 11 are formed of, for example, a conductive metal material, embedded in the casing body 3, and part of the ground terminal 9, projecting downward from the lower surface side of the casing body 3. Yes.
  • the movable body 12 is formed using a magnetic material such as ferrite, for example, and is formed into a substantially hemispherical magnet (permanent magnet).
  • a sliding surface 13 made of a downward convex curved surface is formed on the bottom side of the movable body 12, and a flat upper surface 14 is formed on the upper side of the movable body 12.
  • the movable body 12 has a maximum thickness at the apex portion 12A of the sliding surface 13 that is substantially hemispherical, and approaches the upper surface peripheral portion 12B of the upper surface 14 from the apex portion 12A along the sliding surface 13. The thickness gradually decreases.
  • the movable body 12 is magnetized so that the sliding surface 13 and the upper surface 14 have opposite polarities, for example, the sliding surface 13 is an N pole and the upper surface 14 is an S pole.
  • a magnetic flux ⁇ is generated in the normal direction of the sliding surface 13 of the movable body 12.
  • the magnetic flux density around the apex portion 12A where the thickness of the movable body 12 is maximum increases, and the magnetic flux density gradually decreases as it approaches the upper peripheral portion 12B where the thickness becomes thinner.
  • the movable body 12 is accommodated in the movable body accommodation space 6 of the casing 2 with the sliding surface 13 facing downward so that the concave curved surface 5 of the casing 2 and the sliding surface 13 of the movable body 12 come into contact with each other and can slide. For this reason, when the casing 2 is tilted from the horizontal state, the movable body 12 slides and displaces inside the movable body accommodating space 6 along the concave curved surface 5.
  • the movable body 12 since the movable body 12 has a hemispherical shape protruding downward, the upper surface 14 is stationary in a horizontal state based on its weight balance. Therefore, the positional relationship between the apex portion 12A of the movable body 12 and the magnetoelectric conversion element 8 changes according to the inclination angle ⁇ of the casing 2, and the magnetic flux ⁇ applied from the movable body 12 to the magnetoelectric conversion element 8 The direction of is also changing.
  • the antistatic means 15 prevents the charging that occurs when the casing 2 and the movable body 12 come into contact with each other.
  • the antistatic means 15 is formed by an antistatic coating film 15A formed on the concave curved surface 5 of the casing 2, and an antistatic coating film 15B formed on the entire surface of the movable body 12 including the sliding surface 13 and the upper surface 14. ing.
  • These antistatic coating films 15A and 15B are formed of a thin film made of a surfactant.
  • the surfactant include an anionic (anionic surfactant), a cationic (cationic surfactant), a zwitterionic (anionic and cationic amphoteric type), and a nonionic (nonionic surfactant). ) Etc. are used.
  • the antistatic coating films 15A and 15B can take in moisture in the air due to the hydrophilicity of the surfactant. As a result, the surfaces of the antistatic coating films 15A and 15B can be brought into a low resistance state, so that static electricity generated by contact can be quickly released into the air, and charging of the casing 2 and the movable body 12 is prevented. be able to.
  • the antistatic coating films 15 ⁇ / b> A and 15 ⁇ / b> B are formed on a smooth surface subjected to a smoothing process. preferable.
  • the tilt sensor 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
  • the movable body 12 is disposed on the deepest part 5A side of the concave curved surface 5 as a steady position. Specifically, the movable body 12 is supported by the concave curved surface 5 in a state where the apex portion 12A of the movable body 12 is in contact with the deepest portion 5A of the concave curved surface 5. At this time, the apex portion 12 ⁇ / b> A having a high magnetic flux density in the movable body 12 is disposed at a position directly above the magnetoelectric conversion element 8. Therefore, a magnetic flux ⁇ is applied to the magnetoelectric conversion element 8 by the movable body 12 along the vertical direction that is the height direction of the casing 2. For this reason, the magnetoelectric transducer 8 outputs the largest detection signal Vout according to the magnetic flux density in the Z-axis direction.
  • the movable body 12 is displaced from the steady position along the concave curved surface 5 and moves toward the lowest position of the movable body accommodating space 6. . Therefore, the apex portion 12A having a high magnetic flux density in the movable body 12 is separated from the deepest portion 5A of the concave curved surface 5 in accordance with the inclination angle ⁇ of the casing 2, and the uppermost peripheral portion having a low magnetic flux density is included in the deepest portion 5A. 12B approaches. Therefore, the magnetic flux density applied from the movable body 12 to the magnetoelectric conversion element 8 decreases according to the inclination angle ⁇ .
  • the magnetoelectric conversion element 8 detects the magnetic flux density in the direction inclined by the inclination angle ⁇ with respect to the vertical direction, and outputs a detection signal Vout corresponding to the magnetic flux density. As a result, the magnetoelectric transducer 8 outputs the detection signal Vout corresponding to the inclination angle ⁇ , and the detection signal Vout gradually decreases as the inclination angle ⁇ increases.
  • the movable body 12 is displaced toward the deepest part 5A along the concave curved surface 5, and the apex part 12A returns to the steady position where it contacts the deepest part 5A. To do. Thereby, the magnetic flux density applied to the magnetoelectric conversion element 8 increases again, and the magnetoelectric conversion element 8 outputs the largest detection signal Vout corresponding to the magnetic flux density in the vertical direction.
  • the movable body 12 is formed in a hemispherical shape having a hemispherical sliding surface 13, and the sliding surface 13 is slidably supported by the concave curved surface 5 having a hemispherical surface. For this reason, the magnetic flux density applied to the magnetoelectric conversion element 8 can be changed according to the inclination angle ⁇ of the casing 2, and the linearity of the detection signal Vout with respect to the inclination angle ⁇ can be enhanced.
  • the inclination sensor 1 according to the present embodiment was compared with the inclination sensor 21 as a comparative example shown in FIG.
  • the relationship between the tilt angle ⁇ and the magnetic flux density in the tilt angle ⁇ direction was measured, and the comparison result is shown in FIG.
  • a casing 22 of a tilt sensor 21 as a comparative example shown in FIG. 6 includes a casing body 23 and a lid body 24 as in the tilt sensor 1 of the first embodiment, and the casing body 23 has a concave curved surface 25. It was set as the structure provided with the movable body accommodation space 26 which has.
  • the movable body 27 is formed of a thick disk-shaped (columnar) magnet as in Patent Document 2, and the circular lower surface 27A and upper surface 27B are magnetized in opposite polarities. .
  • the magnetic flux density changes greatly when the tilt angle ⁇ is between 20 ° and 30 °, and the magnetic flux density has a non-linear characteristic with respect to the tilt angle ⁇ .
  • the movable body 27 is formed in a thick disk shape, so that the magnetoelectric conversion element 8 is in the case where the magnetoelectric conversion element 8 is located near the center portion of the lower surface 27A and in the case where it is located away from the center portion. This is because the magnetic flux density applied to is greatly changed.
  • the magnetic flux density decreases uniformly as the tilt angle ⁇ increases.
  • the magnetic flux density has a characteristic close to linear with respect to the tilt angle ⁇ . This is because the movable body 12 is formed in a hemispherical shape, so that the magnetic flux density is high around the apex portion 12A where the thickness of the movable body 12 is maximum, and the magnetic flux density becomes closer to the upper peripheral portion 12B where the thickness is thin. This is because is gradually reduced.
  • the magnetic flux density can be changed according to the inclination angle ⁇ within the angle range where the sliding surface 13 of the movable body 12 and the magnetoelectric conversion element 8 face each other, and the linearity of the detection signal Vout corresponding to the magnetic flux density is increased. Can be increased.
  • the apex portion 12A of the movable body 12 only needs to be displaced with respect to the magnetoelectric conversion element 8. Therefore, the movable body accommodating space 6 of the casing 2 has a volume that allows the movable body 12 to be rotationally displaced. If there is enough. For this reason, the volume of the movable body accommodation space 6 can be brought close to the volume of the movable body 12, and the inclination sensor 1 can be reduced in size.
  • the antistatic means 15 for preventing charging of the casing 2 and the movable body 12 is provided, when the movable body 12 is slid on the concave curved surface 5, the concave curved surface 5 of the casing 2 and the sliding surface 13 of the movable body 12 are provided. Charges are not accumulated by contact or friction. For this reason, even when the small movable body 12 is slid on the concave curved surface 5, the slidability of the movable body 12 can be maintained without being affected by the accumulated electric charge, and the detection accuracy and sensitivity can be reduced. Can be prevented.
  • the antistatic coating films 15A and 15B are formed using a surfactant.
  • the present invention is not limited to this, and the antistatic coating film may be formed using, for example, a conductive material.
  • a conductive material a resin material such as sicoxane or polymer may be used, or a conductive paint type or conductive metal may be used.
  • a metal thin film may be formed by vapor deposition, plating, or the like, and the metal thin film may be used as an antistatic coating film.
  • an antistatic coating film When an antistatic coating film is formed using a conductive material, charging can be prevented by this conductive material, and even if it is charged, it can be immediately discharged by the antistatic coating film. While the surfactant does not function when the humidity is low, the antistatic coating film made of a conductive material can exhibit an antistatic effect even in such a situation. Furthermore, since the movable body and the non-magnetic container come into contact with each other, both have the same potential, so that the electrostatic force due to static electricity does not work.
  • FIG. 8 shows a second embodiment of the present invention.
  • the feature of this embodiment is that the casing and the movable body are formed of a low resistance material as an antistatic means.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the inclination sensor 31 includes a casing 32, a magnetoelectric conversion element 8, and a movable body 40 in substantially the same manner as the inclination sensor 1 according to the first embodiment.
  • the casing 32 is formed in substantially the same manner as the casing 2 according to the first embodiment, and includes a casing main body 33 and a lid body 34.
  • a concave portion 33A recessed in a hemispherical shape is formed on the upper side of the casing body 33, and a concave curved surface 35 formed of a hemispherical surface opened upward is formed on the surface of the concave portion 33A.
  • a cylindrical male fitting portion 33B is formed at the opening edge of the concave curved surface 35, and the male fitting portion 33B is fitted and inserted into the female fitting portion 34A of the lid 34.
  • a movable body accommodating space 36 is formed between the casing body 33 and the lid body 34.
  • a rod portion 37 that is substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 34.
  • the casing body 33 is provided with a magnetoelectric conversion element 8 positioned below the deepest portion 35A of the concave curved surface 35, and a ground terminal 9 and a drive voltage terminal electrically connected to the magnetoelectric conversion element 8 are provided. 10 and a signal output terminal 11 are attached.
  • the casing body 33 includes a low resistance portion 38 including a concave curved surface 35 and an insulating portion 39 that covers the periphery of the magnetoelectric conversion element 8, the drive voltage terminal 10, and the signal output terminal 11 as a portion other than the low resistance portion 38.
  • the low resistance portion 38 is formed using, as a low resistance material, for example, a conductive resin material made of polyphenylene sulfide resin (PPS), polyamide resin, or tetrafluoroethylene resin containing a conductive carbon filler or the like.
  • PPS polyphenylene sulfide resin
  • this conductive resin material for example, a material having a resistivity of 10 12 ⁇ cm or less, preferably 10 10 ⁇ cm or less is used.
  • a ground terminal 9 is implanted in the low resistance portion 38, and both are electrically connected.
  • the insulating portion 39 is formed of an insulating resin material such as polyphenylene sulfide resin in which, for example, a carbon filler is omitted as an insulating material.
  • a magnetoelectric conversion element 8, a drive voltage terminal 10, and a signal output terminal 11 are embedded in the insulating portion 39.
  • the insulating portion 39 electrically insulates the drive voltage terminal 10 and the signal output terminal 11 from the ground terminal 9.
  • the movable body 40 is formed using a magnetic material, and is formed into a substantially hemispherical magnet (permanent magnet).
  • the movable body 40 is formed using a low resistance material having a resistivity of 10 12 ⁇ cm or less, preferably 10 10 ⁇ cm or less.
  • the movable body 40 is formed in substantially the same manner as the movable body 12 according to the first embodiment. For this reason, a sliding surface 41 formed of a downward convex curved surface is formed on the bottom side of the movable body 40, and a flat upper surface 42 is formed on the upper side.
  • the sliding surface 41 and the upper surface 42 are magnetized in opposite polarities.
  • the magnetic flux density around the apex portion 40A where the thickness of the movable body 40 is thicker increases, and the magnetic flux density gradually decreases as it approaches the thin upper surface peripheral portion 40B.
  • the antistatic means 43 prevents charging that occurs when the casing 32 and the movable body 40 come into contact with each other.
  • the low resistance portion 38 and the movable body 40 of the casing body 33 are formed using a low resistance material.
  • the antistatic means 43 can prevent the casing 32 and the movable body 40 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
  • the antistatic means 43 is configured by forming the low resistance portion 38 and the movable body 40 of the casing body 33 using a low resistance material. For this reason, compared with 1st Embodiment, the formation process of a coating film can be skipped and productivity can be improved.
  • the ground terminal 9 of the magnetoelectric transducer 8 is embedded in the low resistance portion 38 of the casing 32 and the ground terminal 9 and the low resistance portion 38 are electrically connected, the low resistance portion 38 of the casing 32 is connected through the ground terminal 9. Can be connected to an external ground. For this reason, the casing 32 and the movable body 40 can be held at the ground potential, and the effects of charging and discharging can be enhanced.
  • FIG. 9 shows a third embodiment of the present invention.
  • the feature of this embodiment is that the casing and the movable body are made of substantially the same material in the charge train as the antistatic means.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the tilt sensor 51 is configured by a casing 52, a magnetoelectric conversion element 8, and a movable body 58 in substantially the same manner as the tilt sensor 1 according to the first embodiment.
  • the casing 52 is formed in substantially the same manner as the casing 2 according to the first embodiment, and includes a casing body 53 and a lid body 54.
  • the casing 52 is formed using an insulating resin material such as polyphenylene sulfide resin (PPS), polyamide resin, or tetrafluoroethylene resin as a nonmagnetic material.
  • PPS polyphenylene sulfide resin
  • polyamide resin polyamide resin
  • tetrafluoroethylene resin tetrafluoroethylene resin
  • a concave portion 53A recessed in a hemispherical shape is formed, and a concave curved surface 55 made of a hemispherical surface opened upward is formed on the surface of the concave portion 53A.
  • a cylindrical male fitting portion 53B is formed at the opening edge of the concave curved surface 55, and the male fitting portion 53B is fitted and inserted into the female fitting portion 54A of the lid 54.
  • a movable body accommodating space 56 is formed between the casing main body 53 and the lid body 54.
  • a rod portion 57 that is substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 54.
  • the casing main body 53 is provided with a magnetoelectric conversion element 8 positioned below the deepest portion 55A of the concave curved surface 55, and a ground terminal 9 and a drive voltage terminal electrically connected to the magnetoelectric conversion element 8. 10 and a signal output terminal 11 are attached.
  • the movable body 58 is formed using a material in which the casing 52 and the charge train are substantially the same. Specifically, the movable body 58 is formed of a bond magnet (plastic magnet) in which a magnetic material powder such as ferrite is mixed with the same resin material as the casing 52 (for example, polyphenylene sulfide resin).
  • a bond magnet plastic magnet
  • a magnetic material powder such as ferrite is mixed with the same resin material as the casing 52 (for example, polyphenylene sulfide resin).
  • the content of the magnetic powder is determined according to the magnetization strength of the movable body 58.
  • the magnetic powder is not deposited on the surface of the movable body 58 as much as possible. For this reason, the content of the magnetic powder is set to a value as small as possible within a range where the strength of magnetization is acceptable.
  • the movable body 58 is formed in substantially the same manner as the movable body 12 according to the first embodiment. For this reason, a sliding surface 59 made of a downward convex curved surface is formed on the bottom side of the movable body 58, and a flat upper surface 60 is formed on the upper side.
  • the sliding surface 59 and the upper surface 60 are magnetized in opposite polarities.
  • the magnetic flux density around the apex portion 58A where the thickness of the movable body 58 is thick increases, and the magnetic flux density gradually decreases as the thickness approaches the thin upper surface peripheral portion 58B.
  • the antistatic means 61 prevents charging that occurs when the casing 52 and the movable body 58 come into contact with each other.
  • the casing 52 and the movable body 58 are formed using materials having substantially the same charge train. As a result, the antistatic means 61 can prevent the casing 52 and the movable body 58 from being charged, and can immediately remove the charge even if it is temporarily charged.
  • the same operation and effect as in the first embodiment can be obtained.
  • the antistatic means 61, the casing 52 and the movable body 58 are formed of substantially the same material in the charge train, so that frictional charging can be almost eliminated.
  • FIGS. 10 to 12 show a fourth embodiment of the present invention.
  • the feature of the present embodiment is that a chamfered portion is provided at the peripheral portion of the upper surface of the movable body.
  • the inclination sensor 71 is configured by a casing 72, a magnetoelectric conversion element 78, and a movable body 84 in substantially the same manner as the inclination sensor 1 according to the first embodiment.
  • the casing 72 is a nonmagnetic container formed using a nonmagnetic material such as a resin material.
  • the casing 72 includes a casing main body 73 formed in a substantially cylindrical shape with a bottom, and a lid body 74 that covers the upper side serving as an opening of the casing main body 73.
  • the casing main body 73 and the lid 74 are formed in substantially the same manner as the casing main body 3 and the lid 4 according to the first embodiment.
  • the height of the casing body 73 in the vertical direction is about several mm, and the cross-sectional shape in the horizontal plane is a substantially circular shape with an outer diameter of several mm.
  • a concave portion 73A that is recessed in a substantially hemispherical shape is formed on the upper side of the casing body 73, and a cylindrical male fitting portion 73B is integrally formed at the opening edge of the concave portion 73A.
  • the surface (exposed surface) of the recess 73A is a concave curved surface 75 that opens upward.
  • a bottom surface portion 75A that is a small circular flat surface parallel to the horizontal surface is formed.
  • the substantially hemispherical surface of the recess 73A and the outer periphery of the bottom surface portion 75A are connected by a bottom surface connection portion 75B having a truncated conical shape whose diameter is reduced in the downward direction.
  • the concave curved surface 75 is formed in a substantially hemispherical shape as a whole.
  • bottom surface portion 75A and bottom surface connection portion 75B support a sliding surface 85 of a movable body 84, which will be described later, in a state close to point contact. For this reason, even when the inclination angle ⁇ is small, the frictional resistance between the concave curved surface 75 and the movable body 84 can be reduced and the movable body 84 can be easily slid. Further, since the bottom surface portion 75A that is a flat surface is provided on the deepest side of the concave curved surface 75, when the casing 72 is returned to the horizontal state, the movable body 84 is reliably returned to the bottom surface portion 75A that is in the steady position. Can do.
  • the lid body 74 is formed in a substantially disc shape, and a cylindrical female fitting portion 74A is integrally formed on the outer peripheral edge thereof downward.
  • a cylindrical female fitting portion 74A is integrally formed on the outer peripheral edge thereof downward.
  • the magnetoelectric conversion element 78 constitutes a magnetic flux density detector, and outputs a detection signal Vout corresponding to the magnetic flux density in the height direction of the casing 72, for example.
  • the magnetoelectric conversion element 78 is provided in the casing body 73 so as to be several hundred ⁇ m to several mm below the bottom surface portion 75 A of the concave curved surface 75, and the sliding of the movable body 84 in the movable body accommodating space 76. It is disposed at a position facing the surface 85. Then, the magnetic flux ⁇ from the movable body 84 is applied to the magnetoelectric conversion element 78 through the sliding surface 85.
  • the magnetoelectric conversion element 78 detects a change in magnetic flux density caused by the sliding of the movable body 84.
  • the magnetoelectric conversion element 78 is electrically connected to a ground terminal 79, a drive voltage terminal 80, and a signal output terminal 81 attached to the casing main body 73, as in the first embodiment.
  • the casing main body 73 includes a low resistance portion 82 including a concave curved surface 75, a magnetoelectric conversion element 78, and a drive voltage terminal 80 as portions other than the low resistance portion 82, similarly to the casing main body 33 according to the second embodiment. And an insulating portion 83 that covers the periphery of the signal output terminal 81.
  • the low resistance portion 82 is formed using, for example, a conductive resin material as a low resistance material.
  • a ground terminal 79 is implanted in the low resistance portion 82 and both are electrically connected.
  • the insulating part 83 is formed of an insulating resin material as an insulating material.
  • a magnetoelectric conversion element 8, a drive voltage terminal 10, and a signal output terminal 11 are embedded in the insulating portion 83.
  • the insulating portion 83 electrically insulates the drive voltage terminal 80 and the signal output terminal 81 from the ground terminal 79.
  • the movable body 84 is formed using a low-resistance magnetic material, like the movable body 40 according to the second embodiment, and is formed into a substantially hemispherical magnet (permanent magnet).
  • a sliding surface 85 made of a downward convex curved surface is formed on the bottom side, and the upper surface 86 is a flat surface on the upper side, almost like the movable body 12 according to the first embodiment. Is formed.
  • the movable body 84 has a maximum thickness at the apex portion 84A of the sliding surface 85 that is substantially hemispherical, and gradually decreases in thickness as it approaches the upper surface peripheral portion 84B of the upper surface 86 from the apex portion 84A. ing.
  • the movable body 84 is magnetized so that the sliding surface 85 and the upper surface 86 have opposite polarities. Thereby, the movable body 84 generates the magnetic flux ⁇ in the normal direction of the sliding surface 85, for example.
  • the magnetic flux density increases around the apex portion 84A where the thickness of the movable body 84 is maximum, and the magnetic flux density gradually decreases as it approaches the upper peripheral portion 84B where the thickness is reduced.
  • the movable body 84 is accommodated in the movable body accommodating space 76 of the casing 72 with the sliding surface 85 facing downward so that the concave curved surface 75 of the casing 72 and the sliding surface 85 of the movable body 84 can contact and slide. . For this reason, when the casing 72 is tilted from the horizontal state, the movable body 84 slides and displaces inside the movable body accommodation space 76 along the concave curved surface 75.
  • the movable body 84 since the movable body 84 has a hemispherical shape protruding downward, the upper surface 86 is stationary in a horizontal state based on its weight balance. Therefore, the distance between the apex portion 84A of the movable body 84 and the magnetoelectric conversion element 78 changes according to the inclination angle ⁇ of the casing 72, and the magnetic flux ⁇ applied from the movable body 84 to the magnetoelectric conversion element 78 is changed. The direction also changes.
  • the upper surface peripheral edge portion 84B of the movable body 84 is rounded in an arc shape to form a chamfered portion 87.
  • the concentration of the magnetic flux ⁇ at the upper peripheral edge portion 84B around the chamfered portion 87 is alleviated.
  • the movable body 84 is formed with a recessed portion 88 that is located in the center of the upper surface 86 and is recessed in a substantially circular shape. By providing the recess 88, the center of gravity of the movable body 84 moves to the apex portion 84A side, and the stability of the movable body 84 is enhanced.
  • Antistatic means 89 prevents charging that occurs when casing 72 and movable body 84 touch each other.
  • the low resistance portion 82 and the movable body 84 of the casing body 73 are formed using a low resistance material. Thereby, the antistatic means 89 can prevent the casing 72 and the movable body 84 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
  • the fourth embodiment it is possible to obtain the same effects as those in the first and second embodiments.
  • the chamfered portion 87 is provided on the upper surface peripheral portion 84B of the movable body 84, the chamfered portion 87 alleviates the concentration of the magnetic flux ⁇ at the upper surface peripheral portion 84B of the movable body 84, and the magnetoelectric conversion with respect to the tilt angle ⁇
  • the range of linearity of the detection signal of the element 78 can be increased.
  • the magnetic flux density decreases as the tilt angle ⁇ increases in the range where the tilt angle ⁇ is smaller than 50 °, for example.
  • the magnetic flux density does not decrease even if the tilt angle ⁇ increases, and the magnetic flux density increases.
  • the magnetic flux ⁇ is concentrated at the upper peripheral portion 12B where the sliding surface 13 and the upper surface 14 intersect at an acute angle. Therefore, in the first embodiment, when the inclination angle ⁇ increases, the upper surface peripheral portion 12B having a high magnetic flux density approaches the magnetoelectric conversion element 8, and therefore the magnetic flux density detected by the magnetoelectric conversion element 8 increases, and the inclination angle ⁇ However, the non-linear range becomes narrower.
  • the chamfered portion 87 is provided on the upper surface peripheral portion 84B of the movable body 84. Can be relaxed. For this reason, the magnetic flux density can be gradually reduced as the apex portion 84A approaches the upper surface peripheral portion 84B. As a result, in the case of the fourth embodiment, as indicated by a solid line in FIG. 13, even when the tilt angle ⁇ exceeds 50 °, the magnetic flux density continues to decrease uniformly as the tilt angle ⁇ increases, The range of the detectable tilt angle ⁇ can be further expanded.
  • FIG. 14 shows a fifth embodiment of the present invention.
  • the feature of this embodiment is that the outer diameter of the movable body is set to a value close to the inner diameter of the concave curved surface.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the tilt sensor 91 is configured by a casing 92, a magnetoelectric conversion element 8, and a movable body 100, almost the same as the tilt sensor 1 according to the first embodiment.
  • the casing 92 is composed of a casing main body 93 and a lid body 94 in substantially the same manner as the casing 2 according to the first embodiment.
  • a concave portion 93A that is recessed in a hemispherical shape is formed on the upper side of the casing main body 93, and a concave curved surface 95 that is a hemispherical surface having an inner diameter dimension D1 is formed on the surface of the concave portion 93A.
  • a cylindrical male fitting portion 93B is formed at the opening edge of the concave curved surface 95, and this male fitting portion 93B is fitted and inserted into the female fitting portion 94A of the lid 94.
  • a movable body accommodating space 96 is formed between the casing main body 93 and the lid 94. Further, a rod portion 97 that is substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 94.
  • the casing main body 93 is provided with a magnetoelectric conversion element 8 positioned below the deepest portion 95A of the concave curved surface 95, and a ground terminal 9 and a drive voltage terminal electrically connected to the magnetoelectric conversion element 8. 10 and a signal output terminal 11 are attached.
  • the casing body 93 includes a low resistance portion 98 including a concave curved surface 95, and the magnetoelectric conversion element 8 and the drive voltage terminal 10 as portions other than the low resistance portion 98, similarly to the casing body 33 according to the second embodiment. And an insulating portion 99 that covers the periphery of the signal output terminal 11.
  • the low resistance portion 98 is formed using, for example, a conductive resin material as a low resistance material.
  • a ground terminal 9 is implanted in the low resistance portion 98 and both are electrically connected.
  • the insulating part 99 is formed of an insulating resin material as an insulating material.
  • a magnetoelectric conversion element 8, a drive voltage terminal 10 and a signal output terminal 11 are embedded in the insulating portion 99.
  • the insulating portion 99 electrically insulates the drive voltage terminal 10 and the signal output terminal 11 from the ground terminal 9.
  • the movable body 100 is formed using a low-resistance magnetic material, and is formed into a substantially hemispherical magnet (permanent magnet).
  • the movable body 100 is formed in substantially the same manner as the movable body 84 according to the fourth embodiment. For this reason, a sliding surface 101 made of a downward convex curved surface is formed on the bottom side of the movable body 100, and a flat upper surface 102 is formed on the upper side.
  • the sliding surface 101 and the upper surface 102 are magnetized in opposite polarities.
  • the magnetic flux density around the apex portion 100A where the thickness of the movable body 100 is thicker increases, and the magnetic flux density gradually decreases as it approaches the thin upper surface peripheral portion 100B.
  • the upper surface peripheral portion 100B of the movable body 100 is rounded in an arc shape to form a chamfered portion 103.
  • a recessed portion 104 that is recessed in a substantially circular shape is formed on the center side of the upper surface 102 of the movable body 100.
  • the outer diameter D2 of the movable body 100 is set to a value close to the inner diameter D1 of the concave curved surface 95, for example, about 70 to 95% of the inner diameter D1.
  • the movable body 100 is accommodated in the movable body accommodating space 96 of the casing 92 with the sliding surface 101 facing downward.
  • Antistatic means 105 prevents charging that occurs when casing 92 and movable body 100 come into contact with each other.
  • the low resistance portion 98 of the casing body 93 and the movable body 100 are formed using a low resistance material. Thereby, the antistatic means 105 can prevent the casing 92 and the movable body 100 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
  • the fifth embodiment can provide the same effects as those of the first, second, and fourth embodiments.
  • the outer diameter D2 of the movable body 100 is changed to the inner diameter D1 of the concave curved surface 95. Therefore, as shown in FIG. 15, the change amount of the magnetic flux density applied to the magnetoelectric transducer 8 with respect to the tilt angle ⁇ can be increased. For this reason, the output range of the detection signal Vout of the magnetoelectric conversion element 8 can be expanded, and the detection sensitivity of the inclination angle ⁇ can be increased.
  • the entire inclination sensor 91 can be downsized by reducing the outer diameter D2 of the movable body 100. it can.
  • a movable body 100 similar to the movable body 84 according to the fourth embodiment is used.
  • a movable body similar to the movable body 40 according to the second embodiment is used. It is good also as a structure.
  • the concave curved surface 95 having the same shape as the concave curved surface 5 according to the first embodiment is used.
  • the concave curved surface 75 according to the fourth embodiment has the same shape. A configuration using a concave curved surface may be adopted.
  • FIG. 16 to FIG. 22 show a sixth embodiment of the present invention.
  • the feature of this embodiment is anisotropy in which the detection output in the horizontal Y-axis direction is larger than the horizontal X-axis direction among the X-axis, Y-axis, and Z-axis that are orthogonal to each other.
  • the concave curved surface of the movable body housing space is directed toward the Y axis direction compared to the X axis direction. It is formed by an anisotropic curved surface that is largely displaced.
  • the inclination sensor 111 is configured by a casing 112, a magnetoelectric conversion element 118, and a movable body 124 in substantially the same manner as the inclination sensor 71 according to the fourth embodiment.
  • the casing 112 is a nonmagnetic container formed using a nonmagnetic material such as a resin material.
  • the casing 112 includes a casing main body 113 formed in a substantially cylindrical shape with a bottom, and a lid body 114 that covers the upper side serving as an opening of the casing main body 113.
  • the height of the casing body 113 in the vertical direction is about several mm, and the cross-sectional shape in a horizontal plane is a substantially circular shape with an outer diameter of several mm.
  • a concave portion 113A that is recessed in a substantially semi-ellipsoidal shape is formed on the upper side of the casing main body 113, and a cylindrical male fitting portion 113B is integrally formed downward on the opening side of the concave portion 113A.
  • the surface (exposed surface) of the recess 113A is a concave curved surface 115 opened upward.
  • the concave curved surface 115 is formed by an anisotropic curved surface having different cross-sectional shapes in the horizontal X-axis direction and the Y-axis direction among the X-axis, Y-axis, and Z-axis orthogonal to each other.
  • the concave curved surface 115 is formed by a half-shaped ellipsoidal surface in which the X-axis direction is a short axis and the Y-axis direction is a long axis.
  • the casing 112 is formed in a shape in which the detection signal Vout having the same output level can be obtained from the magnetoelectric conversion element 118 when the casing 112 is inclined in any direction of the horizontal plane (XY plane). Has been.
  • the lid body 114 is formed in a substantially disc shape, and a cylindrical female fitting portion 114A is integrally formed on the outer peripheral edge thereof downward.
  • a substantially semi-elliptical shape is provided between the casing main body 113 and the lid body 114.
  • a body-like movable body accommodating space 116 is formed.
  • a rod portion 117 that is substantially the same as the rod portion 7 according to the first embodiment extending downward toward the deepest portion 115 ⁇ / b> A of the concave curved surface 115 is provided at the center portion of the lid body 114.
  • the casing main body 113 is provided with a magnetoelectric conversion element 118 positioned below the deepest portion 115A of the concave curved surface 115, and a ground terminal 119, a drive voltage terminal 120, and the like electrically connected to the magnetoelectric conversion element 118, and A signal output terminal 121 is attached.
  • the casing body 113 includes a low resistance portion 122 including a concave curved surface 115, a magnetoelectric conversion element 118, and a driving voltage terminal 120 as portions other than the low resistance portion 122, as in the casing body 33 according to the second embodiment. And an insulating part 123 that covers the periphery of the signal output terminal 121.
  • the low resistance portion 122 is formed using, for example, a conductive resin material as a low resistance material.
  • a ground terminal 119 is implanted in the low resistance portion 122, and both are electrically connected.
  • the insulating part 123 is formed of an insulating resin material as an insulating material.
  • a magnetoelectric conversion element 118, a drive voltage terminal 120, and a signal output terminal 121 are embedded in the insulating portion 123.
  • the insulating portion 123 electrically insulates the drive voltage terminal 120 and the signal output terminal 121 from the ground terminal 119.
  • the magnetoelectric conversion element 118 is composed of an AMR-IC (Anisotropic Magneto Resistance Integrated Circuit) in which a magnetoresistive sensor 118A composed of a magnetic thin film magnetoresistive element and a differential amplifier 118B are integrated. ing.
  • the magnetoresistive sensor 118A is composed of four magnetoresistive elements R1 to R4.
  • the magnetoresistive elements R1 to R4 are formed using means such as vapor deposition of a magnetoresistive material such as indium antimony (InSb) on the sensor substrate S.
  • the magnetoresistive elements R1 to R4 are formed by connecting and arranging a plurality of elongated patterns in a meander shape.
  • the magnetoresistive element R1 is arranged on the upper left side of the sensor substrate S and the magnetoresistive element R4 is arranged on the lower right side of the sensor substrate S.
  • the magnetoresistive element R2 is arranged at the lower left side of the sensor substrate S and the magnetoresistive element R3 is arranged at the upper right side of the sensor substrate S.
  • the magnetoresistive elements R1 to R4 are bridge-connected, and the input terminal of the differential amplifier 118B is connected to a connection point between the magnetoresistive elements R1 and R2 and a connection point between the magnetoresistive elements R3 and R4.
  • a connection point between the magnetoresistive elements R2 and R4 is electrically connected to a ground terminal 119 for connection to an external ground GND.
  • a driving voltage terminal 120 for supplying a driving voltage Vdd is electrically connected to a connection point between the magnetoresistive elements R1 and R3.
  • the output terminal of the differential amplifier 118B is electrically connected to a signal output terminal 121 that outputs a detection signal Vout such as a voltage.
  • the differential amplifier 118B differentially amplifies the potential difference generated between the two input terminals and outputs the detection signal Vout.
  • the direction connecting the magnetoresistive elements R1 and R2 coincides with the vertical direction (Z-axis direction), and the magnetoresistive elements R1 and R3 (R2 and R4) are connected.
  • the direction is arranged so as to coincide with the horizontal direction (X-axis direction).
  • the resistance values of the magnetoresistive elements R1 and R4 change according to the change in the magnetic flux density in the horizontal direction (X-axis direction).
  • the resistance values of the magnetoresistive elements R2 and R3 change according to the change in the magnetic flux density in the vertical direction (Z-axis direction).
  • the detection signal Vout changes, for example, in a positive / negative range of the drive voltage Vdd ( ⁇ Vdd ⁇ Vout ⁇ Vdd).
  • the magnetoresistive sensor 118A has anisotropy in which the detection signal Vout when the magnetic flux is tilted in the Y-axis direction has a higher output level than the detection signal Vout when the magnetic flux ⁇ is tilted in the X-axis direction. Output characteristics.
  • the magnetoelectric conversion element 118 is provided inside the casing main body 113 located several hundred ⁇ m to several mm below the deepest part 115A of the concave curved surface 115. That is, the magnetoelectric conversion element 118 is disposed at a position facing the sliding surface 125 of the movable body 124 accommodated in the movable body accommodating space 116.
  • the movable body 124 is formed using a low-resistance magnetic material, and is formed into a substantially hemispherical magnet (permanent magnet).
  • a sliding surface 125 having a downward convex curved surface is formed on the bottom side of the movable body 124, and an upper surface 126 having a flat surface on the upper side. Is formed.
  • the movable body 124 has a maximum thickness at the apex portion 124A of the sliding surface 125 that is substantially hemispherical, and gradually decreases in thickness as it approaches the upper surface peripheral portion 124B of the upper surface 126 from the apex portion 124A. ing.
  • the movable body 124 is magnetized so that the sliding surface 125 and the upper surface 126 have opposite polarities. As a result, the magnetic flux ⁇ is generated in the normal direction of the sliding surface 125 of the movable body 124. Note that the magnetic flux density increases around the apex portion 124A where the thickness of the movable body 124 is the maximum, and the magnetic flux density gradually decreases as it approaches the upper peripheral portion 124B where the thickness becomes thinner.
  • the movable body 124 is accommodated in the movable body accommodation space 116 of the casing 112 with the sliding surface 125 facing downward so that the concave curved surface 115 of the casing 112 and the sliding surface 125 of the movable body 124 can contact and slide. Yes. For this reason, when the casing 112 is tilted from the horizontal state, the movable body 124 slides and displaces inside the movable body accommodation space 116 along the concave curved surface 115.
  • the upper peripheral edge portion 124B of the movable body 124 is rounded in an arc shape to form a chamfered portion 127.
  • the movable body 124 is formed with a recessed portion 128 that is located in the center of the upper surface 126 and is recessed in a substantially circular shape.
  • Antistatic means 129 prevents charging that occurs when casing 112 and movable body 124 come into contact with each other.
  • the low resistance portion 122 and the movable body 124 of the casing body 113 are formed using a low resistance material.
  • the antistatic means 129 can prevent the casing 112 and the movable body 124 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
  • the magnetoelectric transducer has anisotropy in which the detection signal Vout when the tilt sensor is tilted in the Y-axis direction has a higher output level than the detection signal Vout when tilted in the X-axis direction. 118 was used.
  • the concave curved surface 115 of the movable body accommodating space 116 is formed by an ellipsoidal surface that largely displaces the movable body 124 in the Y-axis direction compared to the X-axis direction.
  • the displacement amount of the movable body 124 with respect to the tilt angle ⁇ is increased when the casing 112 is tilted in the Y-axis direction, and the magnetoelectric conversion element 118 and the movable body.
  • the positional change with the apex portion 124A of 124 can be increased.
  • the change in the magnetic flux density applied to the magnetoelectric conversion element 118 is greater when the casing 112 is tilted in the Y-axis direction than when the casing 112 is tilted in the X-axis direction. That is, the magnetic flux density applied to the magnetoelectric transducer 118 from the movable body 124 is lowered when tilted in the Y-axis direction compared to when tilted in the X-axis direction at the same tilt angle ⁇ , and the detection signal Vout The output level can be suppressed.
  • the detection signal Vout of the magnetoelectric conversion element 118 when the casing 112 is inclined in the X-axis direction and the detection signal Vout of the magnetoelectric conversion element 118 when the casing 112 is inclined in the Y-axis direction are relative to the inclination angle ⁇ .
  • the output level can be made substantially equal.
  • the same effects as those of the first, second, and fourth embodiments can be obtained.
  • FIG. 23 to FIG. 25 show a seventh embodiment of the present invention.
  • the concave curved surface of the movable body accommodating space is a combination of a half-shaped ellipsoidal surface in which the X-axis direction is the short axis and the Y-axis direction is the long axis, and a hemispherical surface. This is because it is formed by an isotropic curved surface. Note that the half-shaped ellipsoidal surface and the hemispherical surface are combined while being in contact with each other at the center of the ellipsoidal surface.
  • the same components as those in the sixth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the inclination sensor 131 is configured by a casing 132, a magnetoelectric conversion element 118, and a movable body 124 in substantially the same manner as the inclination sensor 111 according to the sixth embodiment.
  • the casing 132 is a nonmagnetic container formed using a nonmagnetic material such as a resin material.
  • the casing 132 includes a casing main body 133 that is formed in a substantially cylindrical shape with a bottom, and a lid body 134 that covers an upper portion that is an opening of the casing main body 133.
  • the height of the casing body 133 in the vertical direction is about several mm, and the cross-sectional shape in a horizontal plane is a substantially circular shape with an outer diameter of several mm.
  • a concave portion 133A that is recessed in a substantially semi-ellipsoidal shape is formed on the upper side of the casing body 133, and a cylindrical male fitting portion 133B is integrally formed at the opening edge of the concave portion 133A.
  • the surface (exposed surface) of the recess 133A is a concave curved surface 135 that opens upward, and is formed by an anisotropic curved surface having different cross-sectional shapes in the X-axis direction and the Y-axis direction.
  • the concave curved surface 135 is shorter than the length in the longitudinal direction of the halved ellipsoidal surface 135A in which the X-axis direction is the minor axis and the Y-axis direction is the major axis, and the ellipsoidal surface 135A. It is formed by an anisotropic curved surface combined with a hemispherical surface 135B having a diameter dimension D2b larger than the length dimension in the hand direction.
  • the deepest part of the ellipsoidal surface 135A and the deepest part of the hemispherical surface 135B are arranged and formed so as to coincide with the deepest part 135C of the concave curved surface 135 to be formed.
  • the ellipsoidal surface 135A and the hemispherical surface 135B are in contact with each other at the deepest portion 135C of the concave curved surface 135 to be formed, and the concave portion 133A is formed symmetrically with respect to the XZ plane and the YZ plane.
  • the major axis dimension D2a of the ellipsoidal surface 135A and the diameter dimension D2b of the hemispherical surface 135B are such that the magnetoelectric conversion is located below the deepest portion 135C of the concave curved surface 135 when the casing 132 is inclined in any direction of the XY plane.
  • the elements 118 are selected so as to obtain a detection signal Vout having the same output level.
  • the lid 134 is formed in a substantially disc shape, and a cylindrical female fitting portion 134A is integrally formed on the outer peripheral edge thereof downward.
  • a movable body accommodating space 136 is formed by combining the ellipsoid and the substantially hemisphere.
  • a rod portion 137 that is substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 134.
  • the casing main body 133 is provided with a magnetoelectric conversion element 118 positioned below the deepest part 135C of the concave curved surface 135, and a ground terminal 119, a drive voltage terminal 120, and A signal output terminal 121 is attached.
  • the casing main body 133 includes a low resistance portion 138 including a concave curved surface 135, a magnetoelectric conversion element 118, and a drive voltage terminal 120 as portions other than the low resistance portion 138, as in the casing main body 33 according to the second embodiment. And an insulating portion 139 that covers the periphery of the signal output terminal 121.
  • the low resistance portion 138 is formed using, for example, a conductive resin material as a low resistance material.
  • a ground terminal 119 is implanted in the low resistance portion 138, and both are electrically connected.
  • the insulating part 139 is formed of an insulating resin material as an insulating material.
  • a magnetoelectric conversion element 118, a drive voltage terminal 120, and a signal output terminal 121 are embedded in the insulating portion 139.
  • the insulating portion 139 electrically insulates the drive voltage terminal 120 and the signal output terminal 121 from the ground terminal 119.
  • Antistatic means 140 prevents charging that occurs when casing 132 and movable body 124 come into contact with each other.
  • the low resistance portion 138 and the movable body 124 of the casing body 133 are formed using a low resistance material. Thereby, the antistatic means 140 can prevent the casing 132 and the movable body 124 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
  • the concave curved surface 135 is formed by an anisotropic curved surface combining the ellipsoidal surface 135A and the hemispherical surface 135B. And the concave curved surface 135 can be reduced to reduce the frictional resistance. For this reason, the responsiveness of the movable body 124 with respect to the inclination angle ⁇ can be improved, and the detection accuracy of the inclination angle ⁇ can be improved.
  • the same operational effects as those of the first, second, fourth, and sixth embodiments can be obtained.
  • the movable body 124 having the chamfered portion 127 is used.
  • the movable body without the chamfered portion is used. It is good also as a structure using a body.
  • a bottom surface portion that is a flat surface may be formed at the deepest portion of the concave curved surface.
  • FIG. 26 shows an eighth embodiment of the present invention.
  • the feature of the present embodiment is that when the movable body is in a steady position, when used in the northern hemisphere, the sliding surface of the movable body is magnetized to the N pole and the upper surface is magnetized to the S pole. In use, the sliding surface of the movable body is magnetized to the south pole and the upper surface is magnetized to the north pole.
  • the same components as those in the fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the inclination sensor 151 is configured by a casing 72, a magnetoelectric conversion element 78, and a movable body 152 in substantially the same manner as the inclination sensor 71 according to the fourth embodiment.
  • the movable body 152 is formed using a low-resistance magnetic material, and is formed into a substantially hemispherical magnet (permanent magnet).
  • the movable body 152 has a sliding surface 153 formed of a downward convex curved surface on the bottom side and an upper surface 154 that is a flat surface on the upper side.
  • the upper surface peripheral portion 152B of the movable body 152 is rounded in an arc shape to form a chamfered portion 155. Further, the movable body 152 is formed with a recessed portion 156 that is located on the center side of the upper surface 154 and is recessed in a substantially circular shape.
  • the movable body 152 is accommodated in the movable body accommodating space 76 of the casing 72 with the sliding surface 153 facing downward. At this time, since the movable body 152 has a hemispherical shape protruding downward, the upper surface 154 is stationary in a horizontal state based on the weight balance.
  • the geomagnetic vector is a direction that pierces the ground surface on the northern hemisphere side, and a direction that exits from the ground surface on the southern hemisphere side (not shown).
  • the angle between the ground surface and the geomagnetic vector is called the dip angle.
  • the dip angle ⁇ is defined as positive when the geomagnetic vector is pierced toward the ground surface and negative when it is the direction leaving the ground surface. Therefore, the dip angle ⁇ is positive on the northern hemisphere side, and approaches + 90 ° as it approaches the north magnetic pole. It is negative on the southern hemisphere side and approaches -90 ° as it approaches the south magnetic pole.
  • the movable body 152 is configured such that the sliding surface 153 is the north pole and the upper surface 154 is the south pole, and in the magnetic flux detection sensor used on the southern hemisphere side, the sliding surface 153 is.
  • the sliding surface 153 and the upper surface 154 have opposite polarities so that the upper surface 154 becomes the N pole.
  • the magnetic flux density around the apex portion 152A where the thickness of the movable body 152 is thicker increases, and the magnetic flux density gradually decreases as the thickness approaches the thin upper surface peripheral portion 152B.
  • the antistatic means 157 prevents electrification that occurs when the casing 72 and the movable body 152 come into contact with each other.
  • the low resistance portion 82 and the movable body 152 of the casing body 73 are formed using a low resistance material.
  • the antistatic means 157 can prevent the casing 72 and the movable body 152 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
  • FIG. 29 shows a tilt sensor 161 in the fourth embodiment, in which the magnetization of the movable body 162 is opposite in polarity to that of the eighth embodiment. That is, the inclination sensor 151 and the inclination sensor 161 are exactly the same except for the polarity of magnetization in the movable body. For this reason, in FIG. 29, “a” is given to the reference numerals of the constituent elements corresponding to the eighth embodiment, and the description thereof is omitted.
  • the polarity of magnetization in the movable body 152 is the same as the vertical component of the geomagnetic vector, but the polarity of magnetization in the movable body 162 is opposite to the vertical component of the geomagnetic vector.
  • the movable body accommodating spaces 76 and 76a of the movable bodies 152 and 162 are reduced accordingly.
  • the acting magnetic force F2 may be inclined inside the movable body accommodating space 76a and caught by the movable body accommodating space 76a, and a state may not occur that does not return to the steady state.
  • the eighth embodiment has been described by taking the case where it is applied to the fourth embodiment as an example, it may be applied to the first to third embodiments, and the fifth to seventh embodiments. It may be applied to the embodiment.
  • the antistatic means 89, 105, 129, 140, and 157 substantially the same as the antistatic means 43 according to the second embodiment are provided.
  • the antistatic means 15 and 61 according to the third embodiment may be provided.
  • chamfered portions 87, 103, 127, and 155 having arcuate cross sections are provided on the upper surface peripheral portions 84B, 100B, 124B, and 152B of the movable bodies 84, 100, 124, and 152, respectively.
  • the present invention is not limited to this.
  • the upper peripheral portion 172B of the movable body 172 is chamfered to provide a chamfered portion 175 having a linear cross section. It is good also as a structure which provides.
  • the movable body 172 includes a sliding surface 173 having a vertex portion 172A protruding downward and a flat upper surface 174.
  • the chamfered portion 175 of the movable body 172 is configured to form a conical side surface that is inclined inward from the radially outer side of the movable body 172 toward the upper side of the movable body 172.
  • a circumferential surface parallel to the vertical direction may be formed.
  • the movable bodies 12, 40, 58, 84, 100, 124, 152 have a thickness close to the radius of curvature of the sliding surfaces 13, 41, 59, 85, 101, 125, 153 made of a hemispherical surface. It was set as the structure which has a size.
  • the present invention is not limited to this, and the movable body 182 is made of a hemispherical surface within a range in which a desired magnetic flux density distribution can be obtained, such as the tilt sensor 181 according to the second modification shown in FIG.
  • the surface 183 may have a thickness dimension smaller than the radius of curvature (for example, about half of the radius of curvature).
  • the movable body 182 includes a sliding surface 183 having a vertex portion 182A protruding downward and a flat upper surface 184, and the thickness dimension thereof gradually decreases as the vertex portion 182A approaches the upper surface peripheral portion 182B. It is. Further, the movable body may have a thickness dimension larger than the radius of curvature of the sliding surface within a range in which rolling can be prevented.
  • the movable bodies 84, 100, 124, 152 are located in the central part of the upper surfaces 86, 102, 126, 154 and are recessed in the form of cylinders 88, 104. 128, 156 are provided.
  • the present invention is not limited to this.
  • the movable body 192 is located at the center of the upper surface 194 and is recessed in a bowl shape. It is good also as a structure which provides. Even in this case, it is preferable that the movable body 192 includes the sliding surface 193 formed of a hemispherical surface, and the thickness dimension gradually decreases as the apex portion 192A approaches the upper surface peripheral portion 192B.
  • the movable bodies 12, 40, 58, 84, 100, and 124 are configured by magnets.
  • the present invention is not limited to this, and a configuration in which a magnet 205 serving as a generation source of the magnetic flux ⁇ is provided in the casing 32 ′ separately from the movable body 202, as in the tilt sensor 201 according to the fourth modification shown in FIG. 33. It is good.
  • the movable body 202 is formed of a magnetic material, but does not need to be magnetized.
  • the movable body 202 includes a sliding surface 203 formed of a hemispherical surface and a flat upper surface 204, and the thickness dimension gradually decreases as the apex portion 202A approaches the upper surface peripheral edge portion 202B.
  • the magnet 205 is provided on the lid 34 ′ of the casing 32 ′, and in order to apply a magnetic flux density to the magnetoelectric conversion element 8 via the sliding surface 203 of the movable body 202, for example, the magnetoelectric conversion is sandwiched between the movable body 202. It is arranged at a position opposite to the element 8.
  • the movable bodies 12, 40, 58, 84, 100, 124, and 152 are all formed using a magnetic material.
  • the present invention is not limited to this, and the movable body may be configured such that, for example, a hemispherical outer shape is formed using a non-magnetic resin material with a magnetic material inserted.
  • the magnetic flux detection sensors are tilt sensors 1, 31, 51, 71, 91, 111, 131, which detect the tilt angle ⁇ of the casings 2, 32, 52, 72, 92, 112, 132.
  • the present invention may be applied to a tilt switch that switches on / off of the switch when the casing is tilted by a desired tilt angle, for example.

Abstract

An inclination sensor (1) is configured by a casing (2), a magnetoelectric conversion element (8), and a movable object (12). The casing (2) forms a movable object housing space (6) having an upward-facing concave curved surface (5). The magnetoelectric conversion element (8) is provided in the casing (2) so as to be located beneath the deepest point (5A) of the concave curved surface (5). The movable object (12) is formed by a hemispherical magnet, and a sliding surface (13) formed from a downward-facing hemispherical surface and a flat top surface (14) have reverse polarities to each other. The movable object (12) is housed in the movable object housing space (6) of the casing (2) with the sliding surface (13) being slidable on the concave curved surface (5). Antistatic coating films (15A, 15B) are respectively formed on the surfaces of the concave curved surface (5) and the movable object (12), and an antistatic means (15) is configured by the antistatic coating films (15A, 15B).

Description

磁束検知センサMagnetic flux detection sensor
 本発明は、例えば姿勢の傾きの検出に用いて好適な磁束検知センサに関する。 The present invention relates to a magnetic flux detection sensor suitable for use in, for example, detection of posture inclination.
 従来技術による磁束検知センサとして、姿勢の傾きを検出する傾斜センサが知られている(例えば、特許文献1,2参照)。特許文献1には、中央部分が窪んだ傾斜面を有するマグネットと、該マグネットの傾斜面と対向して配置されたホールIC等の磁気検出素子と、マグネットと磁気検出素子との間に位置してマグネットの傾斜面に転動可能に設けられた磁性材料からなる球形の可動体とを備えた構成が開示されている。特許文献1の傾斜センサでは、マグネットの傾斜に応じて可動体が傾斜面上を転動変位し、可動体の変位に伴う磁束密度の変化を磁気検出素子によって検出している。 As a conventional magnetic flux detection sensor, an inclination sensor that detects an inclination of an attitude is known (for example, refer to Patent Documents 1 and 2). In Patent Document 1, a magnet having an inclined surface with a depressed central portion, a magnetic detection element such as a Hall IC disposed to face the inclined surface of the magnet, and the magnet and the magnetic detection element are located. A configuration including a spherical movable body made of a magnetic material provided on a tilted surface of a magnet so as to be able to roll is disclosed. In the tilt sensor of Patent Document 1, the movable body rolls and displaces on the tilted surface according to the tilt of the magnet, and the change in the magnetic flux density accompanying the displacement of the movable body is detected by the magnetic detection element.
 また、特許文献2には、凹状球面をもったケースと、該ケースの凹状球面上に滑動可能に設けられた厚肉な円板状のマグネットと、凹状球面の側縁部に3個以上設けられた磁気検出素子とを備えた構成が開示されている。特許文献2の傾斜センサでは、ケースの傾斜に応じてマグネットが凹状球面上を滑動変位し、マグネットの変位に伴う磁束密度の変化を複数個の磁気検出素子を用いて検出している。 Patent Document 2 discloses a case having a concave spherical surface, a thick disk-shaped magnet slidably provided on the concave spherical surface of the case, and three or more at the side edge of the concave spherical surface. A configuration including a magnetic detection element is disclosed. In the tilt sensor of Patent Document 2, the magnet slides and displaces on the concave spherical surface according to the tilt of the case, and a change in magnetic flux density due to the displacement of the magnet is detected using a plurality of magnetic detection elements.
特開2003-185430号公報JP 2003-185430 A 特開平8-261758号公報JP-A-8-261758
 ところで、従来技術による傾斜センサでは、傾斜に伴う可動体やマグネットの変位を確実に検出するために、可動体等の可動範囲を可動体等の外形に比べて十分に大きく確保する必要がある。このため、センサ全体が大型化し易く、小型のセンサを形成し難いという問題がある。また、特許文献2の傾斜センサのように、マグネットをケース内で滑動可能に設けた場合には、マグネットの滑動に伴って、これらの間に摩擦帯電が生じることがある。この摩擦帯電によってマグネットの動きが鈍くなり、検出精度や検出感度が低下する傾向がある。特に、センサ全体を小型化すると、マグネットの質量が小さくなるため、マグネットの滑動性が低下し易い傾向があり、帯電による問題が顕著になる。 By the way, in the tilt sensor according to the prior art, it is necessary to secure a sufficiently large movable range of the movable body or the like compared to the outer shape of the movable body or the like in order to reliably detect the displacement of the movable body or the magnet accompanying the tilt. For this reason, there exists a problem that the whole sensor is easy to enlarge and it is difficult to form a small sensor. Further, when the magnet is provided so as to be slidable within the case as in the tilt sensor of Patent Document 2, frictional charging may occur between the magnets as the magnets slide. Due to this frictional charging, the movement of the magnet becomes dull and the detection accuracy and detection sensitivity tend to be lowered. Particularly, when the entire sensor is downsized, the mass of the magnet is reduced, so that the slidability of the magnet tends to be lowered, and the problem due to charging becomes significant.
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、小型化が可能で、可動体の滑動性を維持することができる磁束検知センサを提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a magnetic flux detection sensor that can be reduced in size and can maintain the slidability of a movable body.
 (1).上述した課題を解決するために、本発明は、底部側に形成された下向きの凸状曲面からなる滑動面と該滑動面の上部側に形成された水平面からなる上面とを備えた可動体と、該可動体の滑動面を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、前記可動体および前記非磁性容器が触れ合って生じる帯電を防止する帯電防止手段を備え、前記可動体の滑動面と前記磁束密度検知手段とを対向配置し、前記滑動面を介して前記磁束密度検知手段に磁束を印加すると共に、前記可動体における前記滑動面と前記上面とが交差する上面周縁には、当該上面周縁における磁束密度の集中を緩和する面取り部を設け、前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としている。 (1). In order to solve the above-described problems, the present invention provides a movable body including a sliding surface formed of a downward convex curved surface formed on the bottom side and an upper surface formed of a horizontal surface formed on the upper side of the sliding surface. A nonmagnetic container having a movable body accommodating space having an upward concave curved surface that slidably supports the sliding surface of the movable body, and a change in magnetic flux density provided by the sliding of the movable body provided in the nonmagnetic container A magnetic flux density detection sensor comprising: an antistatic means for preventing charging caused by contact between the movable body and the nonmagnetic container; and a sliding surface of the movable body, the magnetic flux density detection means, Are arranged opposite to each other, and a magnetic flux is applied to the magnetic flux density detection means via the sliding surface, and a magnetic flux at the upper surface periphery is provided at an upper surface periphery of the movable body where the sliding surface intersects the upper surface. When the nonmagnetic container is inclined from a horizontal state, the movable body is displaced from a steady position along the concave curved surface of the nonmagnetic container, and the nonmagnetic container is in a horizontal state. The movable body is configured to return to a steady position along the concave curved surface of the non-magnetic container when returning to step S2.
 本発明によれば、可動体は、底部側に形成された下向きの凸状曲面からなる滑動面と、該滑動面の上部側に形成された水平面からなる上面とを備える構成とした。このため、凸状曲面の頂点部分から上面周縁に沿って可動体の厚さが漸次小さくなる。なお、磁性体材料を用いて可動体を形成したときには、可動体の厚い部分に磁束が集中する傾向がある。このため、可動体の頂点部分の周囲では磁束密度が高く、可動体の上面周縁に近い部分では磁束密度が低下する。 According to the present invention, the movable body is configured to include a sliding surface made of a downward convex curved surface formed on the bottom side and an upper surface made of a horizontal surface formed on the upper side of the sliding surface. For this reason, the thickness of the movable body gradually decreases from the apex portion of the convex curved surface along the periphery of the upper surface. When a movable body is formed using a magnetic material, magnetic flux tends to concentrate on a thick portion of the movable body. For this reason, the magnetic flux density is high around the apex portion of the movable body, and the magnetic flux density is reduced in a portion near the upper surface periphery of the movable body.
 また、可動体は、非磁性容器の可動体収容空間内に設けられる。磁束密度検知手段は、非磁性容器に設けられると共に、可動体の滑動面と対向配置される。非磁性容器が水平状態から傾くと、可動体の滑動面が凹状曲面上を滑動して、凹状曲面の最も低い位置に向けて可動体の頂点部分が移動する。このとき、非磁性容器の傾斜角度に応じて可動体の頂点部分と磁束密度検知手段との相対位置が変化する。このため、非磁性容器の傾斜角度に応じて、磁束密度検知手段に印加する磁束密度を変化させることができる。 Further, the movable body is provided in the movable body accommodation space of the non-magnetic container. The magnetic flux density detection means is provided in the non-magnetic container and is disposed opposite to the sliding surface of the movable body. When the nonmagnetic container is tilted from the horizontal state, the sliding surface of the movable body slides on the concave curved surface, and the vertex portion of the movable body moves toward the lowest position of the concave curved surface. At this time, the relative position of the apex portion of the movable body and the magnetic flux density detection means changes according to the inclination angle of the nonmagnetic container. For this reason, the magnetic flux density applied to the magnetic flux density detecting means can be changed according to the inclination angle of the non-magnetic container.
 また、可動体の頂点部分が磁束密度検知手段に対して変位すればよいから、非磁性容器の可動体収容空間は、可動体が回転変位できる程度の容積があれば足りる。このため、可動体収容空間の容積を可動体の体積に近付けることができ、センサ全体を小型化することができる。 Further, since the vertex portion of the movable body only needs to be displaced with respect to the magnetic flux density detection means, the movable body accommodation space of the nonmagnetic container only needs to have a volume that allows the movable body to be rotationally displaced. For this reason, the volume of the movable body accommodation space can be brought close to the volume of the movable body, and the entire sensor can be reduced in size.
 さらに、可動体および非磁性容器の帯電を防止する帯電防止手段を備えるから、可動体を凹状曲面上に滑動させる際に、可動体の滑動面や非磁性容器の凹状曲面との間の接触や、摩擦によって電荷が蓄積されることがない。このため、小型の可動体を凹状曲面上に滑動させたときでも、蓄積した電荷の影響を受けることなく可動体の滑動性を維持することができ、検出精度や検出感度の低下を防止することができる。 Furthermore, since the antistatic means for preventing the movable body and the nonmagnetic container from being charged is provided, when the movable body is slid on the concave curved surface, the contact between the sliding surface of the movable body and the concave curved surface of the nonmagnetic container No charge is accumulated due to friction. For this reason, even when a small movable body is slid on the concave curved surface, the movable body can be kept slidable without being affected by the accumulated electric charge, and a decrease in detection accuracy and detection sensitivity can be prevented. Can do.
 これに加えて、可動体の滑動面と磁束密度検知手段との対向位置関係として、例えば非磁性容器を水平状態にしたときの凹状曲面の最深部の周囲に磁束密度検知手段を配置すると、非磁性容器の傾斜角度が小さい場合には可動体の頂点部分と磁束密度検知手段との変位が小さく、磁束密度検知手段に印加される磁束密度が高くなる。一方、非磁性容器の傾斜角度が大きい場合には、可動体の頂点部分と磁束密度検知手段との変位が大きく、磁束密度検知手段に印加される磁束密度が低くなる。なお、磁束密度検知手段に印加される磁束密度は、磁束密度検知手段と対向する可動体部分の厚さに応じて変化する。このため、可動体を例えば厚肉な円板形状や小径の球形状とした場合に比べて、非磁性容器の傾斜角度に対する磁束密度検知手段の検出信号の線形性を高めることができ、検出可能な傾斜の角度範囲を広げることができる。 In addition to this, when the magnetic flux density detecting means is arranged around the deepest part of the concave curved surface when the nonmagnetic container is in a horizontal state, for example, as the facing positional relationship between the sliding surface of the movable body and the magnetic flux density detecting means, When the tilt angle of the magnetic container is small, the displacement between the apex portion of the movable body and the magnetic flux density detecting means is small, and the magnetic flux density applied to the magnetic flux density detecting means is high. On the other hand, when the inclination angle of the non-magnetic container is large, the displacement between the apex portion of the movable body and the magnetic flux density detection means is large, and the magnetic flux density applied to the magnetic flux density detection means is low. Note that the magnetic flux density applied to the magnetic flux density detecting means changes according to the thickness of the movable body portion facing the magnetic flux density detecting means. For this reason, the linearity of the detection signal of the magnetic flux density detection means with respect to the inclination angle of the non-magnetic container can be improved compared to the case where the movable body is made of, for example, a thick disk shape or a small-diameter spherical shape, and can be detected. The angle range of various inclinations can be expanded.
 また、例えば可動体の滑動面と上面とを逆極性に磁化したときには、面が鋭角に交わる可動部の上面周縁に磁束が集中する傾向がある。これに対し、本発明では、可動体の上面周縁には面取り部を設けたから、該面取り部によって、可動体の上面周縁での磁束の集中を緩和することができる。この結果、可動体の頂点部分から上面周縁に近付くに従って、磁束密度を漸次低下させることができ、可動体の変位によって生じる磁束密度の変化の直線性を高めることができる。 Also, for example, when the sliding surface and the upper surface of the movable body are magnetized in opposite polarities, the magnetic flux tends to concentrate on the periphery of the upper surface of the movable portion where the surfaces intersect at an acute angle. On the other hand, in the present invention, since the chamfered portion is provided on the periphery of the upper surface of the movable body, the concentration of magnetic flux at the periphery of the upper surface of the movable body can be reduced by the chamfered portion. As a result, the magnetic flux density can be gradually decreased from the apex portion of the movable body toward the upper surface periphery, and the linearity of the change in the magnetic flux density caused by the displacement of the movable body can be enhanced.
 (2).本発明は、底部側に下向きの半球面からなる滑動面が形成された半球状の可動体と、該可動体の滑動面を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、前記可動体および前記非磁性容器が触れ合って生じる帯電を防止する帯電防止手段を備え、前記可動体の滑動面と前記磁束密度検知手段とを対向配置し、前記滑動面を介して前記磁束密度検知手段に磁束を印加すると共に、前記可動体の上面周縁には、当該上面周縁における磁束密度の集中を緩和する面取り部を設け、前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としている。 (2). The present invention includes a hemispherical movable body having a sliding surface composed of a downward hemispherical surface on the bottom side, and a movable body accommodating space having an upward concave curved surface that slidably supports the sliding surface of the movable body. A magnetic flux detection sensor comprising: a nonmagnetic container; and a magnetic flux density detecting means provided on the nonmagnetic container and detecting a change in magnetic flux density caused by sliding of the movable body, wherein the movable body and the nonmagnetic container touch each other. An anti-static means for preventing charging caused by the above-described structure, the sliding surface of the movable body and the magnetic flux density detecting means are arranged to face each other, and a magnetic flux is applied to the magnetic flux density detecting means through the sliding surface, and the movable A chamfered portion that relaxes the concentration of magnetic flux density at the upper surface periphery is provided at the upper surface periphery of the body, and when the nonmagnetic container is tilted from a horizontal state, the movable body becomes a concave curved surface of the nonmagnetic container. Displaced from the normal position I, the when the nonmagnetic container is returned to the horizontal state, the movable body is configured so as to return to the normal position along the concave curved surface of the nonmagnetic container.
 本発明によれば、可動体を半球状に形成し、その底部側には下向きの半球面からなる滑動面を形成したから、半球面の頂点部分から上面周縁に沿って可動体の厚さが漸次小さくなる。また、可動体および非磁性容器が触れ合って発生する帯電を防止する帯電防止手段を備える構成とした。このため、小型の可動体を凹状曲面上に滑動させたときでも、蓄積した電荷の影響を受けることなく可動体の滑動性を維持することができる。 According to the present invention, the movable body is formed in a hemispherical shape, and a sliding surface composed of a downward hemispherical surface is formed on the bottom side thereof. Gradually smaller. In addition, an antistatic means for preventing electrification that occurs when the movable body and the nonmagnetic container come into contact with each other is provided. For this reason, even when a small movable body is slid on the concave curved surface, the slidability of the movable body can be maintained without being affected by the accumulated electric charge.
 (3).本発明は、底部側に形成された下向きの凸状曲面からなる滑動面と該滑動面の上部側に形成された水平面からなる上面とを備えた可動体と、該可動体の滑動面を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、前記可動体および前記非磁性容器が触れ合って生じる帯電を防止する帯電防止手段を備え、前記可動体の滑動面と前記磁束密度検知手段とを対向配置し、前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としている。 (3). The present invention includes a movable body having a sliding surface formed of a downward convex curved surface formed on the bottom side and an upper surface formed of a horizontal surface formed on the upper side of the sliding surface, and sliding the sliding surface of the movable body Magnetic flux having a non-magnetic container having a movable body accommodating space having an upward concave curved surface that is freely supported, and a magnetic flux density detecting means that is provided in the non-magnetic container and detects a change in magnetic flux density caused by sliding of the movable body. A detection sensor comprising antistatic means for preventing electrification caused by contact between the movable body and the nonmagnetic container, wherein the sliding surface of the movable body and the magnetic flux density detection means are arranged to face each other, and the nonmagnetic container When the movable body is tilted from the horizontal state, the movable body is displaced from a steady position along the concave curved surface of the nonmagnetic container, and when the nonmagnetic container returns to the horizontal state, the movable body is recessed from the nonmagnetic container. It is configured to return to the normal position along the curved surface.
 本発明によれば、可動体は、底部側に形成された下向きの凸状曲面からなる滑動面と、該滑動面の上部側に形成された水平面からなる上面とを備える構成とした。このため、可動体は、凸状曲面の頂点部分から上面周縁に沿って可動体の厚さが漸次小さくなる。また、磁束密度検知手段は非磁性容器に設けられると共に、可動体の滑動面と磁束密度検知手段とを対向配置したから、非磁性容器の傾斜角度に応じて可動体の頂点部分と磁束密度検知手段との相対位置が変化する。このため、非磁性容器の傾斜角度に応じて、磁束密度検知手段に印加する磁束密度を変化させることができる。 According to the present invention, the movable body is configured to include a sliding surface made of a downward convex curved surface formed on the bottom side and an upper surface made of a horizontal surface formed on the upper side of the sliding surface. For this reason, as for a movable body, the thickness of a movable body becomes small gradually along the upper surface periphery from the vertex part of a convex-shaped curved surface. In addition, the magnetic flux density detection means is provided in the non-magnetic container, and the sliding surface of the movable body and the magnetic flux density detection means are arranged to face each other, so that the apex portion of the movable body and the magnetic flux density detection according to the inclination angle of the non-magnetic container. The relative position with the means changes. For this reason, the magnetic flux density applied to the magnetic flux density detecting means can be changed according to the inclination angle of the non-magnetic container.
 これに加え、可動体および非磁性容器の帯電を防止する帯電防止手段を備える構成とした。このため、小型の可動体を凹状曲面上に滑動させたときでも、蓄積した電荷の影響を受けることなく可動体の滑動性を維持することができる。 In addition to this, the structure is provided with antistatic means for preventing the movable body and the nonmagnetic container from being charged. For this reason, even when a small movable body is slid on the concave curved surface, the slidability of the movable body can be maintained without being affected by the accumulated electric charge.
 (4).本発明は、底部側に下向きの半球面からなる滑動面が形成された半球状の可動体と、該可動体の滑動面を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、前記可動体および前記非磁性容器が触れ合って生じる帯電を防止する帯電防止手段を備え、前記可動体の滑動面と前記磁束密度検知手段とを対向配置し、前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としている。 (4). The present invention includes a hemispherical movable body having a sliding surface composed of a downward hemispherical surface on the bottom side, and a movable body accommodating space having an upward concave curved surface that slidably supports the sliding surface of the movable body. A magnetic flux detection sensor comprising: a nonmagnetic container; and a magnetic flux density detecting means provided on the nonmagnetic container and detecting a change in magnetic flux density caused by sliding of the movable body, wherein the movable body and the nonmagnetic container touch each other. Anti-static means for preventing charging caused by the above-mentioned structure, the sliding surface of the movable body and the magnetic flux density detecting means are arranged to face each other, and when the non-magnetic container is tilted from a horizontal state, the movable body is the non-magnetic container. When the non-magnetic container is displaced from the steady position along the concave curved surface and returns to the horizontal state, the movable body returns to the steady position along the concave curved surface of the non-magnetic container.
 本発明によれば、可動体を半球状に形成し、その底部側には下向きの半球面からなる滑動面を形成したから、可動体は、半球面の頂点部分を中心として上面周縁に向かうに従って厚さ寸法が漸次小さくなる半球状に形成することができる。また、可動体および非磁性容器が触れ合って発生する帯電を防止する帯電防止手段を備える構成とした。このため、小型の可動体を凹状曲面上に滑動させたときでも、蓄積した電荷の影響を受けることなく可動体の滑動性を維持することができる。 According to the present invention, the movable body is formed in a hemispherical shape, and a sliding surface composed of a downward hemispherical surface is formed on the bottom side of the movable body. It can be formed in a hemispherical shape in which the thickness dimension gradually decreases. In addition, an antistatic means for preventing electrification that occurs when the movable body and the nonmagnetic container come into contact with each other is provided. For this reason, even when a small movable body is slid on the concave curved surface, the slidability of the movable body can be maintained without being affected by the accumulated electric charge.
 (5).本発明は、底部側に滑動面が形成された可動体と、該可動体の滑動面を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、前記可動体および前記非磁性容器が触れ合って生じる帯電を防止する帯電防止手段を備え、前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としている。 (5). The present invention relates to a nonmagnetic container including a movable body having a sliding surface formed on the bottom side, a movable body containing space having an upward concave curved surface that slidably supports the sliding surface of the movable body, and the nonmagnetic container And a magnetic flux detection sensor having a magnetic flux density detection means for detecting a change in magnetic flux density caused by the sliding of the movable body, wherein the electrostatic charge prevention means prevents the charging that occurs when the movable body and the non-magnetic container come into contact with each other. When the non-magnetic container is tilted from the horizontal state, the movable body is displaced from a steady position along the concave curved surface of the non-magnetic container, and when the non-magnetic container returns to the horizontal state, the movable body Is configured to return to a steady position along the concave curved surface of the non-magnetic container.
 本発明によれば、可動体は非磁性容器の可動体収容空間内に設けられる。非磁性容器が水平状態から傾くと、可動体の滑動面が凹状曲面上を滑動して、凹状曲面の最も低い位置に向けて可動体が移動する。このとき、非磁性容器の傾斜角度に応じて可動体と磁束密度検知手段との相対位置を変化させることができる。このため、非磁性容器の傾斜角度に応じて、磁束密度検知手段に印加する磁束密度を変化させることができる。 According to the present invention, the movable body is provided in the movable body accommodation space of the non-magnetic container. When the non-magnetic container is tilted from the horizontal state, the sliding surface of the movable body slides on the concave curved surface, and the movable body moves toward the lowest position of the concave curved surface. At this time, the relative position of the movable body and the magnetic flux density detection means can be changed according to the inclination angle of the nonmagnetic container. For this reason, the magnetic flux density applied to the magnetic flux density detecting means can be changed according to the inclination angle of the non-magnetic container.
 また、可動体および非磁性容器が触れ合って発生する帯電を防止する帯電防止手段を備える構成とした。このため、小型の可動体を凹状曲面上に滑動させたときでも、蓄積した電荷の影響を受けることなく可動体の滑動性を維持することができる。 In addition, an antistatic means for preventing electrification that occurs when the movable body and the nonmagnetic container touch each other is provided. For this reason, even when a small movable body is slid on the concave curved surface, the slidability of the movable body can be maintained without being affected by the accumulated electric charge.
 (6).本発明では、前記帯電防止手段は、前記可動体の滑動面および前記非磁性容器の凹状曲面に界面活性剤または導電性材料からなる帯電防止コーティング膜を形成したことにある。 (6). In the present invention, the antistatic means is that an antistatic coating film made of a surfactant or a conductive material is formed on the sliding surface of the movable body and the concave curved surface of the nonmagnetic container.
 本発明によれば、帯電防止手段は可動体の滑動面および非磁性容器の凹状曲面に帯電防止コーティング膜を形成する構成としたから、例えば帯電防止コーティング膜が界面活性剤からなるときには、界面活性剤の親水性によって、帯電防止コーティング膜に空気中の水分を取り込むことができる。これによって、帯電防止コーティング膜の表面を低抵抗な状態にすることができるから、可動体および非磁性容器が触れ合って発生する静電気を速やかに空気中に逃がすことができ、可動体および非磁性容器の帯電を防止することができる。 According to the present invention, since the antistatic means is configured to form the antistatic coating film on the sliding surface of the movable body and the concave curved surface of the nonmagnetic container, for example, when the antistatic coating film is composed of a surfactant, Due to the hydrophilicity of the agent, moisture in the air can be taken into the antistatic coating film. As a result, the surface of the antistatic coating film can be brought into a low resistance state, so that static electricity generated by touching the movable body and the non-magnetic container can be quickly released into the air, and the movable body and the non-magnetic container. Can be prevented.
 また、例えば帯電防止コーティング膜が導電性材料からなるときには、界面活性剤と同様な効果が得られるだけでなく、湿度が低いときにも効果を発揮する。さらに、可動体と非磁性容器が接触することにより、両者が同電位になるため、実質的に静電気による静電力は働かなくなる。 Also, for example, when the antistatic coating film is made of a conductive material, not only the same effect as the surfactant is obtained but also the effect is exhibited when the humidity is low. Furthermore, since the movable body and the non-magnetic container come into contact with each other, both have the same potential, so that the electrostatic force due to static electricity does not work.
 (7).本発明では、前記非磁性容器の凹状曲面を含む部分と前記可動体とを低抵抗材料によって形成したことにある。 (7). In the present invention, the portion including the concave curved surface of the nonmagnetic container and the movable body are formed of a low resistance material.
 本発明によれば、低抵抗材料によって帯電を防止することができ、仮に帯電したときでも直ぐに除電することができる。 According to the present invention, charging can be prevented by the low resistance material, and even if it is temporarily charged, it can be immediately discharged.
 (8).本発明では、前記磁束密度検知手段は、グランド端子、駆動電圧端子および信号出力端子を有し、前記非磁性容器の低抵抗材料で形成された凹状曲面を含む部分以外は絶縁材料で形成してなり、該絶縁材料および前記低抵抗材料中に前記グランド端子を埋設して前記グランド端子と前記低抵抗材料とを電気的に接続し、前記絶縁材料中に、前記磁束密度検知手段と、前記駆動電圧端子および前記信号出力端子とを埋設して前記駆動電圧端子および前記信号出力端子と前記グランド端子とを電気的に絶縁する構成としている。 (8). In the present invention, the magnetic flux density detection means includes a ground terminal, a drive voltage terminal, and a signal output terminal, and is formed of an insulating material except for a portion including a concave curved surface formed of a low resistance material of the nonmagnetic container. The ground terminal is embedded in the insulating material and the low-resistance material to electrically connect the ground terminal and the low-resistance material, and the magnetic flux density detecting means and the drive are included in the insulating material. A voltage terminal and the signal output terminal are embedded, and the drive voltage terminal, the signal output terminal, and the ground terminal are electrically insulated.
 本発明によれば、非磁性容器の低抵抗材料中に磁束密度検知手段のグランド端子を埋設してグランド端子と低抵抗材料とを電気的に接続したから、グランド端子を通じて非磁性容器の低抵抗材料部分を外部のグランドに接続することができる。このため、可動体および非磁性容器をグランド電位に保持することができ、これらの帯電および除電の効果を高めることができる。 According to the present invention, since the ground terminal of the magnetic flux density detecting means is embedded in the low resistance material of the nonmagnetic container and the ground terminal and the low resistance material are electrically connected, the low resistance of the nonmagnetic container is passed through the ground terminal. The material part can be connected to an external ground. For this reason, the movable body and the nonmagnetic container can be held at the ground potential, and the effect of charging and discharging can be enhanced.
 (9).本発明では、前記帯電防止手段は、前記可動体および前記非磁性容器を帯電列が略同じ材料によって形成したことにある。 (9). In the present invention, the antistatic means is that the movable body and the non-magnetic container are formed of materials having substantially the same charge train.
 摩擦帯電は帯電列が異なる物質間で発生する。これに対し、本発明によれば、可動体および非磁性容器を帯電列が略同じ材料によって形成したから、摩擦帯電が殆どなくなる。 摩擦 Frictional charge occurs between materials with different charge trains. On the other hand, according to the present invention, since the movable body and the non-magnetic container are formed of materials having substantially the same charge train, frictional charging is almost eliminated.
 (10).本発明では、前記可動体は、磁性材料を用いて形成され、前記滑動面と上面とが互いに逆極性となった状態で磁化した構成としている。 (10). In the present invention, the movable body is formed using a magnetic material and magnetized in a state where the sliding surface and the upper surface have opposite polarities.
 本発明によれば、滑動面の法線方向に向けて磁束を発生させることができる。また、磁束密度検知手段は可動体の滑動面と対向して配置されている。このため、非磁性容器を水平状態から傾けると、磁束密度検知手段と対向する滑動した可動体の滑動面部分の法線方向に略一致して、磁束密度検知手段も傾く。 According to the present invention, magnetic flux can be generated in the normal direction of the sliding surface. Further, the magnetic flux density detection means is arranged to face the sliding surface of the movable body. For this reason, when the non-magnetic container is tilted from the horizontal state, the magnetic flux density detecting means also tilts substantially in line with the normal direction of the sliding surface portion of the sliding movable body facing the magnetic flux density detecting means.
 また、半球状をなす可動体は、その頂点部分での磁束密度が高く、上面周縁に近い部分では磁束密度が低くなる。このため、非磁性容器の傾斜角度に応じて、可動体の滑動面のうち磁束密度検知手段と対向する部分を変位させて、可動体から磁束密度検知手段に印加する磁束密度を変化させることができると共に、磁束密度検知手段は傾斜角度に応じた磁束密度を確実に検出することができる。この結果、磁束密度検知手段は、傾斜角度に応じた検出信号を出力することができる。 Also, the hemispherical movable body has a high magnetic flux density at the apex portion and a low magnetic flux density near the upper surface periphery. For this reason, according to the inclination angle of the non-magnetic container, the portion of the sliding surface of the movable body facing the magnetic flux density detection means can be displaced to change the magnetic flux density applied from the movable body to the magnetic flux density detection means. In addition, the magnetic flux density detector can reliably detect the magnetic flux density according to the tilt angle. As a result, the magnetic flux density detection means can output a detection signal corresponding to the tilt angle.
 (11).本発明では、北半球で使用する場合には前記可動体の滑動面をN極に磁化すると共に上面をS極に磁化し、南半球で使用する場合には前記可動体の滑動面をS極に磁化すると共に上面をN極に磁化している。 (11). In the present invention, when used in the northern hemisphere, the sliding surface of the movable body is magnetized to the north pole and the upper surface is magnetized to the south pole, and when used in the southern hemisphere, the sliding surface of the movable body is magnetized to the south pole. In addition, the upper surface is magnetized to the north pole.
 本発明によれば、地磁気による可動体を引っくり返そうとする磁力が、可動体に作用しなくなる。この結果、一旦傾けた磁束検知センサを水平状態に戻した際に、可動体が可動体収容空間に引っ掛かって水平状態に戻らない状態を防ぐことができる。 According to the present invention, the magnetic force that tries to turn over the movable body by geomagnetism does not act on the movable body. As a result, when the tilted magnetic flux detection sensor is returned to the horizontal state, it is possible to prevent the movable body from being caught in the movable body housing space and not returning to the horizontal state.
 (12).本発明では、前記磁束密度検知手段は、水平面の互いに直交するX軸方向およびY軸方向において、X軸方向に磁束を傾斜させたときの検出信号に比べてY軸方向に磁束を傾斜させたときの検出信号が大きな出力レベルとなる異方性を有し、前記可動体収容空間の凹状曲面は、前記磁束密度検知手段の異方性を補うために、X軸方向に比べてY軸方向に向けて前記可動体を大きく変位させる異方性曲面によって形成している。 (12). In the present invention, the magnetic flux density detecting means inclines the magnetic flux in the Y-axis direction in the X-axis direction and the Y-axis direction perpendicular to each other in comparison with the detection signal when the magnetic flux is inclined in the X-axis direction. And the concave curved surface of the movable body accommodating space has a Y-axis direction compared to the X-axis direction in order to compensate for the anisotropy of the magnetic flux density detecting means. It is formed by the anisotropic curved surface which displaces the said movable body large toward.
 本発明によれば、非磁性容器をX軸方向に傾けたときと同じ傾斜角度だけY軸方向に傾けると、Y軸方向における可動体の変位量が大きくなり、磁束密度検知手段と可動体の頂点部分との位置変化を大きくすることができる。ここで、可動体の滑動面の法線方向に向けて磁束が発生するから、非磁性容器をX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、磁束密度検知手段に印加される磁束密度の変化が大きくなる。即ち、同じ傾斜角度でX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が可動体から磁束密度検知手段に印加される磁束密度が低下し、検出信号の出力レベルを小さくすることができる。この結果、非磁性容器がX軸方向に傾斜したときの磁束密度検知手段の検出信号と、非磁性容器がY軸方向に傾斜したときの磁束密度検知手段の検出信号とは、傾斜角度に対する出力レベルをほぼ等しくすることができる。 According to the present invention, when the nonmagnetic container is tilted in the Y-axis direction by the same tilt angle as when tilted in the X-axis direction, the amount of displacement of the movable body in the Y-axis direction increases, and the magnetic flux density detection means and the movable body It is possible to increase the positional change with the apex portion. Here, since the magnetic flux is generated in the normal direction of the sliding surface of the movable body, the magnetic flux density is detected when the non-magnetic container is tilted in the Y-axis direction compared to when the non-magnetic container is tilted in the X-axis direction. The change in the magnetic flux density applied to the means increases. That is, the magnetic flux density applied from the movable body to the magnetic flux density detecting means is lower when tilted in the Y-axis direction than when tilted in the X-axis direction at the same tilt angle, and the output level of the detection signal is reduced. Can be small. As a result, the detection signal of the magnetic flux density detection means when the nonmagnetic container is tilted in the X-axis direction and the detection signal of the magnetic flux density detection means when the nonmagnetic container is tilted in the Y-axis direction are output with respect to the tilt angle. Levels can be made approximately equal.
本発明の第1の実施の形態による傾斜センサを示す分解斜視図である。It is a disassembled perspective view which shows the inclination sensor by the 1st Embodiment of this invention. 傾斜センサを図3中の矢示II-II方向からみた断面図である。FIG. 4 is a cross-sectional view of the tilt sensor as seen from the direction of arrows II-II in FIG. 3. 図1中の傾斜センサを蓋体を省いた状態で示す平面図である。It is a top view which shows the inclination sensor in FIG. 1 in the state which excluded the cover body. 第1の実施の形態による傾斜センサを水平状態としたときの可動体と磁電変換素子との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of a movable body and a magnetoelectric conversion element when the inclination sensor by 1st Embodiment is made into a horizontal state. 第1の実施の形態による傾斜センサを傾斜状態としたときの可動体と磁電変換素子との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of a movable body and a magnetoelectric conversion element when the inclination sensor by 1st Embodiment is made into an inclination state. 比較例による傾斜センサを示す図4と同様な説明図である。It is explanatory drawing similar to FIG. 4 which shows the inclination sensor by a comparative example. 第1の実施の形態および比較例において、傾斜角度と検出信号に対応する磁束密度との関係を示す特性線図である。In 1st Embodiment and a comparative example, it is a characteristic diagram which shows the relationship between an inclination angle and the magnetic flux density corresponding to a detection signal. 第2の実施の形態による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the same position as FIG. 2 which shows the inclination sensor by 2nd Embodiment. 第3の実施の形態による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by 3rd Embodiment. 第4の実施の形態による傾斜センサを示す分解斜視図である。It is a disassembled perspective view which shows the inclination sensor by 4th Embodiment. 傾斜センサを図12中の矢示XI-XI方向からみた断面図である。It is sectional drawing which looked at the inclination sensor from the arrow XI-XI direction in FIG. 図10中の傾斜センサを蓋体を省いた状態で示す平面図である。It is a top view which shows the inclination sensor in FIG. 10 in the state which excluded the cover body. 第1,第4の実施の形態において、傾斜角度と検出信号に対応する磁束密度との関係を示す特性線図である。In 1st, 4th embodiment, it is a characteristic diagram which shows the relationship between an inclination angle and the magnetic flux density corresponding to a detection signal. 第5の実施の形態による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the same position as FIG. 2 which shows the inclination sensor by 5th Embodiment. 第4,第5の実施の形態において、傾斜角度と検出信号に対応する磁束密度との関係を示す特性線図である。In the 4th and 5th embodiment, it is a characteristic line figure showing the relation between a tilt angle and magnetic flux density corresponding to a detection signal. 第6の実施の形態による傾斜センサを示す分解斜視図である。It is a disassembled perspective view which shows the inclination sensor by 6th Embodiment. 傾斜センサを図19中の矢示XVII-XVII方向からみた断面図である。FIG. 20 is a cross-sectional view of the tilt sensor as seen from the direction of arrows XVII-XVII in FIG. 19. 傾斜センサを図17中の矢示XVIII-XVIII方向からみた断面図である。It is sectional drawing which looked at the inclination sensor from the arrow XVIII-XVIII direction in FIG. 図16中の傾斜センサを蓋体を省いた状態で示す平面図である。It is a top view which shows the inclination sensor in FIG. 16 in the state which excluded the cover body. 図16中の可動体と磁電変換素子との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the movable body in FIG. 16, and a magnetoelectric conversion element. 磁電変換素子の磁気抵抗センサを示す正面図である。It is a front view which shows the magnetoresistive sensor of a magnetoelectric conversion element. 磁電変換素子を示す等価回路図である。It is an equivalent circuit diagram which shows a magnetoelectric conversion element. 第7の実施の形態による傾斜センサを示す図17と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 17 which shows the inclination sensor by 7th Embodiment. 傾斜センサを図23中の矢示XXIV-XXIV方向からみた断面図である。FIG. 24 is a cross-sectional view of the tilt sensor as seen from the direction of arrows XXIV-XXIV in FIG. 図23中の傾斜センサを蓋体を省いた状態で示す平面図である。FIG. 24 is a plan view showing the tilt sensor in FIG. 23 in a state where a lid is omitted. 第8の実施の形態による傾斜センサを示す図11と同様な位置の断面図である。It is sectional drawing of the same position as FIG. 11 which shows the inclination sensor by 8th Embodiment. 地磁気ベクトルを示す説明図であって、(a)は地球全体の地磁気ベクトルを示し、(b)は北半球側の地表面付近の地磁気ベクトルを示すものである。It is explanatory drawing which shows a geomagnetic vector, Comprising: (a) shows the geomagnetic vector of the whole earth, (b) shows the geomagnetic vector near the earth surface of the northern hemisphere side. 第8の実施の形態による傾斜センサにおいて、可動体に作用する地磁気による回転トルクを示す説明図である。It is explanatory drawing which shows the rotational torque by the geomagnetism which acts on a movable body in the inclination sensor by 8th Embodiment. 第4の実施の形態による傾斜センサにおいて、第8の実施の形態とは可動体における磁化を逆極性にした場合に、可動体に作用する地磁気による回転トルクを示す説明図である。In the tilt sensor according to the fourth embodiment, when the magnetization in the movable body is reversed in polarity from the eighth embodiment, it is an explanatory diagram showing the rotational torque due to geomagnetism acting on the movable body. 第1の変形例による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 1st modification. 第2の変形例による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 2nd modification. 第3の変形例による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the inclination sensor by a 3rd modification. 第4の変形例による傾斜センサを示す図2と同様な位置の断面図である。It is sectional drawing of the same position as FIG. 2 which shows the inclination sensor by a 4th modification.
 以下、本発明の実施の形態による磁束検知センサを傾斜センサに適用した場合を例に挙げて、添付図面を参照しつつ詳細に説明する。 Hereinafter, an example in which the magnetic flux detection sensor according to the embodiment of the present invention is applied to a tilt sensor will be described in detail with reference to the accompanying drawings.
 図1ないし図5は第1の実施の形態による傾斜センサ1を示している。この傾斜センサ1は、後述するケーシング2、磁電変換素子8、可動体12によって構成されている。 1 to 5 show a tilt sensor 1 according to the first embodiment. The tilt sensor 1 is composed of a casing 2, a magnetoelectric conversion element 8, and a movable body 12, which will be described later.
 ケーシング2は、例えば絶縁樹脂材料等の非磁性材料を用いて形成された非磁性容器である。このケーシング2は、有底な略円筒状に形成されたケーシング本体3と、該ケーシング本体3の開口部となる上部側を施蓋する蓋体4によって構成されている。 The casing 2 is a nonmagnetic container formed using a nonmagnetic material such as an insulating resin material. The casing 2 includes a casing main body 3 formed in a substantially cylindrical shape with a bottom, and a lid body 4 that covers an upper side that serves as an opening of the casing main body 3.
 ケーシング本体3の鉛直方向の高さは数mm(例えば9mm程度)であり、水平面での断面形状は、数mm(例えば9mm程度)の外径寸法の略円形になっている。また、ケーシング本体3の上部側には略半球状(鉢状)に窪んだ凹部3Aが形成されると共に、該凹部3Aの開口縁には円筒状の雄嵌合部3Bが上方に向けて一体に形成されている。 The height of the casing body 3 in the vertical direction is several mm (for example, about 9 mm), and the cross-sectional shape in the horizontal plane is a substantially circular shape with an outer diameter of several mm (for example, about 9 mm). In addition, a concave portion 3A that is recessed in a substantially hemispherical shape (bowl shape) is formed on the upper side of the casing body 3, and a cylindrical male fitting portion 3B is integrated upward at the opening edge of the concave portion 3A. Is formed.
 凹部3Aの表面(露出面)は、上向きに開口した凹状曲面5となっている。この凹状曲面5は、例えば半球面によって形成され、その曲率半径r1は後述する可動体12の滑動面13の曲率半径r2よりも大きな値となっている。 The surface (exposed surface) of the recess 3A is a concave curved surface 5 that opens upward. The concave curved surface 5 is formed of, for example, a hemispherical surface, and the radius of curvature r1 is larger than the radius of curvature r2 of the sliding surface 13 of the movable body 12 described later.
 蓋体4は、略円板状に形成されると共に、その外周縁には円筒状の雌嵌合部4Aが下方に向けて一体に形成されている。この雌嵌合部4A内にケーシング本体3の雄嵌合部3Bを嵌合挿入することによって、蓋体4はケーシング本体3に取り付けられ、ケーシング本体3と蓋体4との間に略半球状の可動体収容空間6が形成される。 The lid body 4 is formed in a substantially disc shape, and a cylindrical female fitting portion 4A is integrally formed on the outer peripheral edge thereof downward. By fitting and inserting the male fitting portion 3B of the casing body 3 into the female fitting portion 4A, the lid body 4 is attached to the casing body 3, and the substantially hemispherical shape is provided between the casing body 3 and the lid body 4. The movable body accommodating space 6 is formed.
 また、蓋体4の中央部分には、凹状曲面5の最深部5Aに向けて下方に延びる略円柱状のロッド部7が設けられている。なお、ロッド部7の下端部分は略半球状に形成されている。ロッド部7を設けたことにより、後述の可動体12が凹状曲面5から離れるのが抑制され、また、可動体12が可動体収容空間6内で天地逆転して転倒するのが防止される。 Further, a substantially cylindrical rod portion 7 extending downward toward the deepest portion 5A of the concave curved surface 5 is provided at the center portion of the lid body 4. In addition, the lower end part of the rod part 7 is formed in the substantially hemispherical shape. By providing the rod portion 7, it is possible to prevent a movable body 12, which will be described later, from being separated from the concave curved surface 5, and to prevent the movable body 12 from being reversed upside down in the movable body accommodating space 6.
 磁気抵抗素子、ホール素子等からなる磁電変換素子8は、磁束密度検知手段を構成し、例えばケーシング2の高さ方向の磁束密度(磁界)に対応した検出信号Voutを出力する。この磁電変換素子8は、凹状曲面5の最深部5Aよりも、微小寸法δだけ下側に位置したケーシング本体3の内部に設けられる。なお、微小寸法δは数百μm~数mmの範囲で、例えばδ=1mm程度に設定される。また、磁電変換素子8は、可動体収容空間6に収容される可動体12の滑動面13に対向する位置に配置される。そして、磁電変換素子8には、可動体12の滑動面13を介して可動体12からの磁束φが印加される。これにより、磁電変換素子8は、可動体12の滑動によって生じる磁束密度の変化を検知する。 The magnetoelectric conversion element 8 composed of a magnetoresistive element, a Hall element, etc. constitutes a magnetic flux density detection means, and outputs a detection signal Vout corresponding to the magnetic flux density (magnetic field) in the height direction of the casing 2, for example. The magnetoelectric conversion element 8 is provided inside the casing body 3 positioned below the deepest part 5A of the concave curved surface 5 by a minute dimension δ. The minute dimension δ is set in the range of several hundred μm to several mm, for example, about δ = 1 mm. In addition, the magnetoelectric conversion element 8 is disposed at a position facing the sliding surface 13 of the movable body 12 accommodated in the movable body accommodating space 6. A magnetic flux φ from the movable body 12 is applied to the magnetoelectric conversion element 8 via the sliding surface 13 of the movable body 12. Thereby, the magnetoelectric conversion element 8 detects a change in magnetic flux density caused by the sliding of the movable body 12.
 また、磁電変換素子8には、外部のグランドに接続するためのグランド端子9が電気的に接続されると共に、駆動電圧Vddを供給するための駆動電圧端子10が電気的に接続されている。さらに、磁電変換素子8には、例えば電圧等の検出信号Voutを出力する信号出力端子11が電気的に接続されている。そして、グランド端子9、駆動電圧端子10および信号出力端子11は、例えば導電性金属材料によって形成され、ケーシング本体3に埋設されると共に、その一部がケーシング本体3の下面側から下向きに突出している。 The magnetoelectric transducer 8 is electrically connected to a ground terminal 9 for connection to an external ground, and is electrically connected to a drive voltage terminal 10 for supplying a drive voltage Vdd. Furthermore, a signal output terminal 11 for outputting a detection signal Vout such as a voltage is electrically connected to the magnetoelectric conversion element 8. The ground terminal 9, the drive voltage terminal 10, and the signal output terminal 11 are formed of, for example, a conductive metal material, embedded in the casing body 3, and part of the ground terminal 9, projecting downward from the lower surface side of the casing body 3. Yes.
 可動体12は、例えばフェライト等の磁性材料を用いて形成され、略半球状のマグネット(永久磁石)に形成されている。この可動体12の底部側は下向きの凸状曲面からなる滑動面13が形成されると共に、可動体12の上部側は平坦面となった上面14が形成されている。これにより、可動体12は、略半球面となった滑動面13の頂点部分12Aで厚さが最大になると共に、滑動面13に沿って頂点部分12Aから上面14の上面周縁部分12Bに近付くに従って漸次厚さが薄くなっている。 The movable body 12 is formed using a magnetic material such as ferrite, for example, and is formed into a substantially hemispherical magnet (permanent magnet). A sliding surface 13 made of a downward convex curved surface is formed on the bottom side of the movable body 12, and a flat upper surface 14 is formed on the upper side of the movable body 12. As a result, the movable body 12 has a maximum thickness at the apex portion 12A of the sliding surface 13 that is substantially hemispherical, and approaches the upper surface peripheral portion 12B of the upper surface 14 from the apex portion 12A along the sliding surface 13. The thickness gradually decreases.
 また、可動体12は、例えば滑動面13がN極、上面14がS極のように、滑動面13と上面14とが互いに逆極性となるように磁化されている。これにより、可動体12の滑動面13の法線方向に向けて、磁束φが発生する。なお、可動体12の厚さが最大の頂点部分12Aの周囲での磁束密度が高くなると共に、厚さが薄くなる上面周縁部分12Bに近付くに従って漸次磁束密度が低くなる。 The movable body 12 is magnetized so that the sliding surface 13 and the upper surface 14 have opposite polarities, for example, the sliding surface 13 is an N pole and the upper surface 14 is an S pole. As a result, a magnetic flux φ is generated in the normal direction of the sliding surface 13 of the movable body 12. The magnetic flux density around the apex portion 12A where the thickness of the movable body 12 is maximum increases, and the magnetic flux density gradually decreases as it approaches the upper peripheral portion 12B where the thickness becomes thinner.
 可動体12は、ケーシング2の凹状曲面5と可動体12の滑動面13とが接触して滑り移動できるように、滑動面13を下向きにしてケーシング2の可動体収容空間6に収容される。このため、ケーシング2を水平状態から傾けると、可動体12は凹状曲面5に沿って可動体収容空間6の内部を滑動変位する。 The movable body 12 is accommodated in the movable body accommodation space 6 of the casing 2 with the sliding surface 13 facing downward so that the concave curved surface 5 of the casing 2 and the sliding surface 13 of the movable body 12 come into contact with each other and can slide. For this reason, when the casing 2 is tilted from the horizontal state, the movable body 12 slides and displaces inside the movable body accommodating space 6 along the concave curved surface 5.
 また、可動体12は下向きに突出した半球形状をなしているから、その重量バランスに基づいて上面14が水平な状態で静止する。このため、ケーシング2の傾斜角度θに応じて、可動体12の頂点部分12Aと磁電変換素子8との間の位置関係が変化すると共に、可動体12から磁電変換素子8に印加される磁束φの向きも変化するものである。 Further, since the movable body 12 has a hemispherical shape protruding downward, the upper surface 14 is stationary in a horizontal state based on its weight balance. Therefore, the positional relationship between the apex portion 12A of the movable body 12 and the magnetoelectric conversion element 8 changes according to the inclination angle θ of the casing 2, and the magnetic flux φ applied from the movable body 12 to the magnetoelectric conversion element 8 The direction of is also changing.
 帯電防止手段15は、ケーシング2および可動体12が触れ合って生じる帯電を防止している。この帯電防止手段15は、ケーシング2の凹状曲面5に形成した帯電防止コーティング膜15Aと、滑動面13および上面14を含めた可動体12の表面全体に形成した帯電防止コーティング膜15Bとによって形成されている。これらの帯電防止コーティング膜15A,15Bは、界面活性剤からなる薄膜によって形成されている。この界面活性剤には、例えば陰イオン系(アニオン性界面活性剤)、陽イオン系(カチオン性界面活性剤)、両性イオン系(アニオン、カチオン両性タイプ)、非イオン系(ノキオン性界面活性剤)等のものが使用される。 The antistatic means 15 prevents the charging that occurs when the casing 2 and the movable body 12 come into contact with each other. The antistatic means 15 is formed by an antistatic coating film 15A formed on the concave curved surface 5 of the casing 2, and an antistatic coating film 15B formed on the entire surface of the movable body 12 including the sliding surface 13 and the upper surface 14. ing. These antistatic coating films 15A and 15B are formed of a thin film made of a surfactant. Examples of the surfactant include an anionic (anionic surfactant), a cationic (cationic surfactant), a zwitterionic (anionic and cationic amphoteric type), and a nonionic (nonionic surfactant). ) Etc. are used.
 帯電防止コーティング膜15A,15Bは、界面活性剤の親水性によって、空気中の水分を取り込むことができる。これによって帯電防止コーティング膜15A,15Bの表面を低抵抗な状態にすることができるから、触れ合いで発生した静電気を速やかに空気中に逃がすことができ、ケーシング2および可動体12の帯電を防止することができる。なお、帯電防止コーティング膜15A,15Bは、ケーシング2の凹状曲面5と可動体12の滑動面13との間の接触抵抗を低減するために、平滑処理を施した滑らかな表面に形成するのが好ましい。 The antistatic coating films 15A and 15B can take in moisture in the air due to the hydrophilicity of the surfactant. As a result, the surfaces of the antistatic coating films 15A and 15B can be brought into a low resistance state, so that static electricity generated by contact can be quickly released into the air, and charging of the casing 2 and the movable body 12 is prevented. be able to. In addition, in order to reduce the contact resistance between the concave curved surface 5 of the casing 2 and the sliding surface 13 of the movable body 12, the antistatic coating films 15 </ b> A and 15 </ b> B are formed on a smooth surface subjected to a smoothing process. preferable.
 本実施の形態による傾斜センサ1は上述の如き構成を有するもので、次にその作動について説明する。 The tilt sensor 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
 まず、ケーシング2が水平状態の場合には、可動体12は、定常位置として、凹状曲面5の最深部5A側に配置される。具体的には、可動体12の頂点部分12Aが凹状曲面5の最深部5Aに接触した状態で、可動体12は凹状曲面5によって支持される。このとき、可動体12のうち磁束密度が高い頂点部分12Aは、磁電変換素子8に最も近付いた真上位置に配置される。従って、磁電変換素子8には、ケーシング2の高さ方向となる鉛直方向に沿った可動体12による磁束φが印加される。このため、磁電変換素子8は、Z軸方向の磁束密度に応じた最も大きな検出信号Voutを出力する。 First, when the casing 2 is in a horizontal state, the movable body 12 is disposed on the deepest part 5A side of the concave curved surface 5 as a steady position. Specifically, the movable body 12 is supported by the concave curved surface 5 in a state where the apex portion 12A of the movable body 12 is in contact with the deepest portion 5A of the concave curved surface 5. At this time, the apex portion 12 </ b> A having a high magnetic flux density in the movable body 12 is disposed at a position directly above the magnetoelectric conversion element 8. Therefore, a magnetic flux φ is applied to the magnetoelectric conversion element 8 by the movable body 12 along the vertical direction that is the height direction of the casing 2. For this reason, the magnetoelectric transducer 8 outputs the largest detection signal Vout according to the magnetic flux density in the Z-axis direction.
 次に、ケーシング2を傾斜状態にして水平状態から傾けた場合には、可動体12は、凹状曲面5に沿って定常位置から変位し、可動体収容空間6の最も低い位置に向けて移動する。このため、可動体12のうち磁束密度の高い頂点部分12Aは、ケーシング2の傾斜角度θに応じて、凹状曲面5の最深部5Aから離れると共に、最深部5Aには磁束密度の低い上面周縁部分12Bが近付く。従って、可動体12から磁電変換素子8に印加される磁束密度は、傾斜角度θに応じて減少する。 Next, when the casing 2 is tilted and tilted from the horizontal state, the movable body 12 is displaced from the steady position along the concave curved surface 5 and moves toward the lowest position of the movable body accommodating space 6. . Therefore, the apex portion 12A having a high magnetic flux density in the movable body 12 is separated from the deepest portion 5A of the concave curved surface 5 in accordance with the inclination angle θ of the casing 2, and the uppermost peripheral portion having a low magnetic flux density is included in the deepest portion 5A. 12B approaches. Therefore, the magnetic flux density applied from the movable body 12 to the magnetoelectric conversion element 8 decreases according to the inclination angle θ.
 磁電変換素子8は、鉛直方向に対して傾斜角度θだけ傾いた方向の磁束密度を検出し、この磁束密度に応じた検出信号Voutを出力する。この結果、磁電変換素子8は傾斜角度θに応じた検出信号Voutを出力すると共に、この検出信号Voutは傾斜角度θが大きくなるに従って漸次小さくなる。 The magnetoelectric conversion element 8 detects the magnetic flux density in the direction inclined by the inclination angle θ with respect to the vertical direction, and outputs a detection signal Vout corresponding to the magnetic flux density. As a result, the magnetoelectric transducer 8 outputs the detection signal Vout corresponding to the inclination angle θ, and the detection signal Vout gradually decreases as the inclination angle θ increases.
 次に、ケーシング2を水平状態に戻した場合には、可動体12は、凹状曲面5に沿って最深部5A側に向けて変位し、頂点部分12Aが最深部5Aに接触した定常位置に復帰する。これにより、磁電変換素子8に印加される磁束密度が再び増加し、磁電変換素子8は、鉛直方向の磁束密度に応じた最も大きな検出信号Voutを出力する。 Next, when the casing 2 is returned to the horizontal state, the movable body 12 is displaced toward the deepest part 5A along the concave curved surface 5, and the apex part 12A returns to the steady position where it contacts the deepest part 5A. To do. Thereby, the magnetic flux density applied to the magnetoelectric conversion element 8 increases again, and the magnetoelectric conversion element 8 outputs the largest detection signal Vout corresponding to the magnetic flux density in the vertical direction.
 本実施の形態では、可動体12を半球面の滑動面13を有する半球形状に形成すると共に、滑動面13を半球面となった凹状曲面5で滑動自在に支持する構成とした。このため、磁電変換素子8に印加する磁束密度をケーシング2の傾斜角度θに応じて変化させることができ、傾斜角度θに対する検出信号Voutの線形性を高めることができる。 In the present embodiment, the movable body 12 is formed in a hemispherical shape having a hemispherical sliding surface 13, and the sliding surface 13 is slidably supported by the concave curved surface 5 having a hemispherical surface. For this reason, the magnetic flux density applied to the magnetoelectric conversion element 8 can be changed according to the inclination angle θ of the casing 2, and the linearity of the detection signal Vout with respect to the inclination angle θ can be enhanced.
 なお、線形性向上の効果を確認するために、本実施の形態による傾斜センサ1と、図6に示す比較例としての傾斜センサ21との比較を行った。傾斜センサ1、21について、傾斜角度θと、傾斜角度θ方向の磁束密度との関係を測定し、その比較結果を図7に示す。 In order to confirm the effect of improving linearity, the inclination sensor 1 according to the present embodiment was compared with the inclination sensor 21 as a comparative example shown in FIG. For the tilt sensors 1 and 21, the relationship between the tilt angle θ and the magnetic flux density in the tilt angle θ direction was measured, and the comparison result is shown in FIG.
 図6に示す比較例としての傾斜センサ21のケーシング22は、第1の実施の形態の傾斜センサ1と同様に、ケーシング本体23と蓋体24とからなり、ケーシング本体23には凹状曲面25を有する可動体収容空間26を備える構成とした。また、可動体27は、特許文献2と同様に厚肉な円板状(円柱状)のマグネットによって形成すると共に、円形状をなす下面27Aと上面27Bは互いに逆極性に磁化したものを用いた。 A casing 22 of a tilt sensor 21 as a comparative example shown in FIG. 6 includes a casing body 23 and a lid body 24 as in the tilt sensor 1 of the first embodiment, and the casing body 23 has a concave curved surface 25. It was set as the structure provided with the movable body accommodation space 26 which has. The movable body 27 is formed of a thick disk-shaped (columnar) magnet as in Patent Document 2, and the circular lower surface 27A and upper surface 27B are magnetized in opposite polarities. .
 傾斜センサ21の場合は図7中に破線で示すように、傾斜角度θが20°から30°の間で磁束密度が大きく変化し、磁束密度は傾斜角度θに対して非線形な特性になる。この理由は、可動体27を厚肉な円板状に形成したため、磁電変換素子8が下面27Aの中央部の近くに位置する場合と、中央部から離れて位置する場合とでは磁電変換素子8に印加される磁束密度が大きく変化するためである。 In the case of the tilt sensor 21, as indicated by a broken line in FIG. 7, the magnetic flux density changes greatly when the tilt angle θ is between 20 ° and 30 °, and the magnetic flux density has a non-linear characteristic with respect to the tilt angle θ. This is because the movable body 27 is formed in a thick disk shape, so that the magnetoelectric conversion element 8 is in the case where the magnetoelectric conversion element 8 is located near the center portion of the lower surface 27A and in the case where it is located away from the center portion. This is because the magnetic flux density applied to is greatly changed.
 これに対し、傾斜センサ1の場合は図7中に実線で示すように、傾斜角度θが0°から50°程度までの範囲では、傾斜角度θの増加に従って磁束密度が一様に減少し、磁束密度は、傾斜角度θに対して線形に近い特性になる。この理由は、可動体12を半球状に形成したことにより、可動体12の厚さが最大となる頂点部分12Aの周囲で磁束密度が高く、厚さが薄い上面周縁部分12Bに近付くに従って磁束密度が漸次低下するためである。そして、本実施の形態では、ケーシング2の傾斜角度θが大きくなるに従って、滑動面13のうち磁電変換素子8と対向する位置が、頂点部分12Aから上面周縁部分12Bに向けて変位する。このため、可動体12の滑動面13と磁電変換素子8とが対向する角度範囲で、磁束密度を傾斜角度θに応じて変化させることができ、磁束密度に対応した検出信号Voutの線形性を高めることができる。 On the other hand, in the case of the tilt sensor 1, as shown by the solid line in FIG. 7, when the tilt angle θ is in the range from 0 ° to about 50 °, the magnetic flux density decreases uniformly as the tilt angle θ increases. The magnetic flux density has a characteristic close to linear with respect to the tilt angle θ. This is because the movable body 12 is formed in a hemispherical shape, so that the magnetic flux density is high around the apex portion 12A where the thickness of the movable body 12 is maximum, and the magnetic flux density becomes closer to the upper peripheral portion 12B where the thickness is thin. This is because is gradually reduced. In the present embodiment, as the inclination angle θ of the casing 2 increases, the position of the sliding surface 13 facing the magnetoelectric conversion element 8 is displaced from the apex portion 12A toward the upper peripheral portion 12B. For this reason, the magnetic flux density can be changed according to the inclination angle θ within the angle range where the sliding surface 13 of the movable body 12 and the magnetoelectric conversion element 8 face each other, and the linearity of the detection signal Vout corresponding to the magnetic flux density is increased. Can be increased.
 また、本実施の形態では、可動体12の頂点部分12Aが磁電変換素子8に対して変位すればよいから、ケーシング2の可動体収容空間6は、可動体12が回転変位できる程度の容積があれば足りる。このため、可動体収容空間6の容積を可動体12の体積に近付けることができ、傾斜センサ1を小型化することができる。 In the present embodiment, the apex portion 12A of the movable body 12 only needs to be displaced with respect to the magnetoelectric conversion element 8. Therefore, the movable body accommodating space 6 of the casing 2 has a volume that allows the movable body 12 to be rotationally displaced. If there is enough. For this reason, the volume of the movable body accommodation space 6 can be brought close to the volume of the movable body 12, and the inclination sensor 1 can be reduced in size.
 さらに、ケーシング2および可動体12の帯電を防止する帯電防止手段15を備えるから、可動体12を凹状曲面5上で滑動させる際に、ケーシング2の凹状曲面5や可動体12の滑動面13との接触や、摩擦によって電荷が蓄積されることがない。このため、小型の可動体12を凹状曲面5上に滑動させたときでも、蓄積した電荷の影響を受けることなく可動体12の滑動性を維持することができ、検出精度や検出感度の低下を防止することができる。 Furthermore, since the antistatic means 15 for preventing charging of the casing 2 and the movable body 12 is provided, when the movable body 12 is slid on the concave curved surface 5, the concave curved surface 5 of the casing 2 and the sliding surface 13 of the movable body 12 are provided. Charges are not accumulated by contact or friction. For this reason, even when the small movable body 12 is slid on the concave curved surface 5, the slidability of the movable body 12 can be maintained without being affected by the accumulated electric charge, and the detection accuracy and sensitivity can be reduced. Can be prevented.
 なお、前記第1の実施の形態では、帯電防止コーティング膜15A,15Bは界面活性剤を用いて形成するものとした。しかし、本発明はこれに限らず、例えば導電性材料を用いて帯電防止コーティング膜を形成してもよい。導電性材料には、シコキサン系、ポリマー系等の樹脂材料を用いてもよく、導電性塗料タイプ、導電性金属を用いてもよい。導電性金属を用いる場合には、蒸着、メッキ等によって金属薄膜を形成し、該金属薄膜を帯電防止コーティング膜として利用してもよい。 In the first embodiment, the antistatic coating films 15A and 15B are formed using a surfactant. However, the present invention is not limited to this, and the antistatic coating film may be formed using, for example, a conductive material. As the conductive material, a resin material such as sicoxane or polymer may be used, or a conductive paint type or conductive metal may be used. When using a conductive metal, a metal thin film may be formed by vapor deposition, plating, or the like, and the metal thin film may be used as an antistatic coating film.
 導電性材料を用いて帯電防止コーティング膜を形成した場合には、この導電性材料によって帯電を防止することができ、仮に帯電したときでも直ぐに帯電防止コーティング膜によって除電することができる。界面活性剤は湿度が低いと機能しなくなるのに対して、このような状況でも導電性材料からなる帯電防止コーティング膜は帯電防止効果を発揮することができる。さらに、可動体と非磁性容器が接触することにより、両者が同電位になるため、実質的に静電気による静電力は働かなくなる。 When an antistatic coating film is formed using a conductive material, charging can be prevented by this conductive material, and even if it is charged, it can be immediately discharged by the antistatic coating film. While the surfactant does not function when the humidity is low, the antistatic coating film made of a conductive material can exhibit an antistatic effect even in such a situation. Furthermore, since the movable body and the non-magnetic container come into contact with each other, both have the same potential, so that the electrostatic force due to static electricity does not work.
 次に、図8は本発明の第2の実施の形態を示している。そして、本実施の形態の特徴は、帯電防止手段として、ケーシングおよび可動体を低抵抗材料によって形成したことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 8 shows a second embodiment of the present invention. The feature of this embodiment is that the casing and the movable body are formed of a low resistance material as an antistatic means. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 傾斜センサ31は、第1の実施の形態による傾斜センサ1とほぼ同様に、ケーシング32、磁電変換素子8、可動体40によって構成されている。 The inclination sensor 31 includes a casing 32, a magnetoelectric conversion element 8, and a movable body 40 in substantially the same manner as the inclination sensor 1 according to the first embodiment.
 ケーシング32は、第1の実施の形態によるケーシング2とほぼ同様に形成され、ケーシング本体33および蓋体34によって構成されている。ケーシング本体33の上部側には、半球状に窪んだ凹部33Aが形成されると共に、凹部33Aの表面には、上向きに開口した半球面からなる凹状曲面35が形成されている。また、凹状曲面35の開口縁には円筒状の雄嵌合部33Bが形成され、この雄嵌合部33Bは、蓋体34の雌嵌合部34A内に嵌合挿入されている。これにより、ケーシング本体33と蓋体34との間に可動体収容空間36が形成される。また、蓋体34の中央部分には、第1の実施の形態によるロッド部7とほぼ同様なロッド部37が設けられている。 The casing 32 is formed in substantially the same manner as the casing 2 according to the first embodiment, and includes a casing main body 33 and a lid body 34. A concave portion 33A recessed in a hemispherical shape is formed on the upper side of the casing body 33, and a concave curved surface 35 formed of a hemispherical surface opened upward is formed on the surface of the concave portion 33A. A cylindrical male fitting portion 33B is formed at the opening edge of the concave curved surface 35, and the male fitting portion 33B is fitted and inserted into the female fitting portion 34A of the lid 34. Thereby, a movable body accommodating space 36 is formed between the casing body 33 and the lid body 34. Further, a rod portion 37 that is substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 34.
 さらに、ケーシング本体33には、凹状曲面35の最深部35Aの下側に位置して磁電変換素子8が設けられると共に、該磁電変換素子8に電気的に接続されたグランド端子9、駆動電圧端子10および信号出力端子11が取り付けられている。 Further, the casing body 33 is provided with a magnetoelectric conversion element 8 positioned below the deepest portion 35A of the concave curved surface 35, and a ground terminal 9 and a drive voltage terminal electrically connected to the magnetoelectric conversion element 8 are provided. 10 and a signal output terminal 11 are attached.
 ケーシング本体33は、凹状曲面35を含む低抵抗部38と、該低抵抗部38以外の部分として磁電変換素子8、駆動電圧端子10および信号出力端子11の周囲を覆う絶縁部39とによって構成されている。低抵抗部38は、低抵抗材料として、例えば導電性のカーボンフィラー等を含有したポリフェニレンサルファイド樹脂(PPS)、ポリアミド樹脂、4フッ化エチレン樹脂からなる導電性の樹脂材料を用いて形成されている。この導電性の樹脂材料には、例えば1012Ωcm以下、好ましくは1010Ωcm以下の抵抗率をもったものが使用される。また、低抵抗部38にはグランド端子9が植設され、両者は電気的に接続されている。 The casing body 33 includes a low resistance portion 38 including a concave curved surface 35 and an insulating portion 39 that covers the periphery of the magnetoelectric conversion element 8, the drive voltage terminal 10, and the signal output terminal 11 as a portion other than the low resistance portion 38. ing. The low resistance portion 38 is formed using, as a low resistance material, for example, a conductive resin material made of polyphenylene sulfide resin (PPS), polyamide resin, or tetrafluoroethylene resin containing a conductive carbon filler or the like. . As this conductive resin material, for example, a material having a resistivity of 10 12 Ωcm or less, preferably 10 10 Ωcm or less is used. In addition, a ground terminal 9 is implanted in the low resistance portion 38, and both are electrically connected.
 一方、絶縁部39は、絶縁材料として、例えばカーボンフィラー等を省いたポリフェニレンサルファイド樹脂等の絶縁性の樹脂材料によって形成されている。絶縁部39中には、磁電変換素子8、駆動電圧端子10および信号出力端子11が埋設されている。この絶縁部39は、駆動電圧端子10および信号出力端子11とグランド端子9との間を電気的に絶縁している。 On the other hand, the insulating portion 39 is formed of an insulating resin material such as polyphenylene sulfide resin in which, for example, a carbon filler is omitted as an insulating material. A magnetoelectric conversion element 8, a drive voltage terminal 10, and a signal output terminal 11 are embedded in the insulating portion 39. The insulating portion 39 electrically insulates the drive voltage terminal 10 and the signal output terminal 11 from the ground terminal 9.
 可動体40は、磁性材料を用いて形成され、略半球状のマグネット(永久磁石)に形成されている。また、可動体40は、1012Ωcm以下、好ましくは1010Ωcm以下の抵抗率をもった低抵抗材料を用いて形成されている。 The movable body 40 is formed using a magnetic material, and is formed into a substantially hemispherical magnet (permanent magnet). The movable body 40 is formed using a low resistance material having a resistivity of 10 12 Ωcm or less, preferably 10 10 Ωcm or less.
 この可動体40は、第1の実施の形態による可動体12とほぼ同様に形成されている。このため、可動体40の底部側に下向きの凸状曲面からなる滑動面41が形成されると共に、上部側に平坦面となった上面42が形成されている。 The movable body 40 is formed in substantially the same manner as the movable body 12 according to the first embodiment. For this reason, a sliding surface 41 formed of a downward convex curved surface is formed on the bottom side of the movable body 40, and a flat upper surface 42 is formed on the upper side.
 また、可動体40は、滑動面41と上面42とが互いに逆極性に磁化されている。この可動体40の厚さが厚い頂点部分40Aの周囲での磁束密度が高くなると共に、厚さが薄い上面周縁部分40Bに近付くに従って漸次磁束密度が低くなっている。 Further, in the movable body 40, the sliding surface 41 and the upper surface 42 are magnetized in opposite polarities. The magnetic flux density around the apex portion 40A where the thickness of the movable body 40 is thicker increases, and the magnetic flux density gradually decreases as it approaches the thin upper surface peripheral portion 40B.
 帯電防止手段43は、ケーシング32および可動体40が触れ合って生じる帯電を防止している。この帯電防止手段43では、ケーシング本体33の低抵抗部38と可動体40とを低抵抗材料を用いて形成している。これにより、帯電防止手段43は、低抵抗材料によってケーシング32および可動体40の帯電を防止することができ、仮に帯電したときでも直ぐに除電することができる。 The antistatic means 43 prevents charging that occurs when the casing 32 and the movable body 40 come into contact with each other. In the antistatic means 43, the low resistance portion 38 and the movable body 40 of the casing body 33 are formed using a low resistance material. As a result, the antistatic means 43 can prevent the casing 32 and the movable body 40 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
 かくして、第2の実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。特に、第2の実施の形態では、ケーシング本体33の低抵抗部38と可動体40とを低抵抗材料を用いて形成することによって、帯電防止手段43を構成している。このため、第1の実施の形態に比べて、コーティング膜の形成工程を省くことでき、生産性を高めることができる。 Thus, in the second embodiment, the same operational effects as those in the first embodiment can be obtained. In particular, in the second embodiment, the antistatic means 43 is configured by forming the low resistance portion 38 and the movable body 40 of the casing body 33 using a low resistance material. For this reason, compared with 1st Embodiment, the formation process of a coating film can be skipped and productivity can be improved.
 また、ケーシング32の低抵抗部38に磁電変換素子8のグランド端子9を埋設してグランド端子9と低抵抗部38とを電気的に接続したから、グランド端子9を通じてケーシング32の低抵抗部38を外部のグランドに接続することができる。このため、ケーシング32および可動体40をグランド電位に保持することができ、これらの帯電および除電の効果を高めることができる。 Further, since the ground terminal 9 of the magnetoelectric transducer 8 is embedded in the low resistance portion 38 of the casing 32 and the ground terminal 9 and the low resistance portion 38 are electrically connected, the low resistance portion 38 of the casing 32 is connected through the ground terminal 9. Can be connected to an external ground. For this reason, the casing 32 and the movable body 40 can be held at the ground potential, and the effects of charging and discharging can be enhanced.
 次に、図9は本発明の第3の実施の形態を示している。そして、本実施の形態の特徴は、帯電防止手段として、ケーシングおよび可動体を帯電列が略同じ材料によって形成したことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 9 shows a third embodiment of the present invention. The feature of this embodiment is that the casing and the movable body are made of substantially the same material in the charge train as the antistatic means. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 傾斜センサ51は、第1の実施の形態による傾斜センサ1とほぼ同様に、ケーシング52、磁電変換素子8、可動体58によって構成されている。 The tilt sensor 51 is configured by a casing 52, a magnetoelectric conversion element 8, and a movable body 58 in substantially the same manner as the tilt sensor 1 according to the first embodiment.
 ケーシング52は、第1の実施の形態によるケーシング2とほぼ同様に形成され、ケーシング本体53および蓋体54によって構成されている。このケーシング52は、非磁性材料として、例えばポリフェニレンサルファイド樹脂(PPS)、ポリアミド樹脂、4フッ化エチレン樹脂等の絶縁性の樹脂材料を用いて形成されている。 The casing 52 is formed in substantially the same manner as the casing 2 according to the first embodiment, and includes a casing body 53 and a lid body 54. The casing 52 is formed using an insulating resin material such as polyphenylene sulfide resin (PPS), polyamide resin, or tetrafluoroethylene resin as a nonmagnetic material.
 ケーシング本体53の上部側には、半球状に窪んだ凹部53Aが形成されると共に、凹部53Aの表面には、上向きに開口した半球面からなる凹状曲面55が形成されている。また、凹状曲面55の開口縁には円筒状の雄嵌合部53Bが形成され、この雄嵌合部53Bは、蓋体54の雌嵌合部54A内に嵌合挿入されている。これにより、ケーシング本体53と蓋体54との間に可動体収容空間56が形成される。また、蓋体54の中央部分には、第1の実施の形態によるロッド部7とほぼ同様なロッド部57が設けられている。 On the upper side of the casing body 53, a concave portion 53A recessed in a hemispherical shape is formed, and a concave curved surface 55 made of a hemispherical surface opened upward is formed on the surface of the concave portion 53A. A cylindrical male fitting portion 53B is formed at the opening edge of the concave curved surface 55, and the male fitting portion 53B is fitted and inserted into the female fitting portion 54A of the lid 54. Thereby, a movable body accommodating space 56 is formed between the casing main body 53 and the lid body 54. Further, a rod portion 57 that is substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 54.
 さらに、ケーシング本体53には、凹状曲面55の最深部55Aの下側に位置して磁電変換素子8が設けられると共に、該磁電変換素子8に電気的に接続されたグランド端子9、駆動電圧端子10および信号出力端子11が取り付けられている。 Further, the casing main body 53 is provided with a magnetoelectric conversion element 8 positioned below the deepest portion 55A of the concave curved surface 55, and a ground terminal 9 and a drive voltage terminal electrically connected to the magnetoelectric conversion element 8. 10 and a signal output terminal 11 are attached.
 可動体58は、ケーシング52と帯電列が略同じ材料を用いて形成されている。具体的には、可動体58は、ケーシング52と同じ樹脂材料(例えばポリフェニレンサルファイド樹脂等)にフェライト等の磁性体粉末を混合したボンドマグネット(プラスチックマグネット)によって形成されている。 The movable body 58 is formed using a material in which the casing 52 and the charge train are substantially the same. Specifically, the movable body 58 is formed of a bond magnet (plastic magnet) in which a magnetic material powder such as ferrite is mixed with the same resin material as the casing 52 (for example, polyphenylene sulfide resin).
 このとき、磁性体粉末の含有量は、可動体58の磁化の強さに応じて決まる。一方、帯電防止の観点からは、磁性体粉末は可動体58の表面にできるだけ析出しないのが好ましい。このため、磁性体粉末の含有量は、磁化の強さが許容可能な範囲でできるだけ少ない値に設定されている。 At this time, the content of the magnetic powder is determined according to the magnetization strength of the movable body 58. On the other hand, from the viewpoint of antistatic, it is preferable that the magnetic powder is not deposited on the surface of the movable body 58 as much as possible. For this reason, the content of the magnetic powder is set to a value as small as possible within a range where the strength of magnetization is acceptable.
 そして、可動体58は、第1の実施の形態による可動体12とほぼ同様に形成されている。このため、可動体58の底部側に下向きの凸状曲面からなる滑動面59が形成されると共に、上部側に平坦面となった上面60が形成されている。 The movable body 58 is formed in substantially the same manner as the movable body 12 according to the first embodiment. For this reason, a sliding surface 59 made of a downward convex curved surface is formed on the bottom side of the movable body 58, and a flat upper surface 60 is formed on the upper side.
 また、可動体58は、滑動面59と上面60とが互いに逆極性に磁化されている。この可動体58の厚さが厚い頂点部分58Aの周囲での磁束密度が高くなると共に、厚さが薄い上面周縁部分58Bに近付くに従って漸次磁束密度が低くなっている。 In the movable body 58, the sliding surface 59 and the upper surface 60 are magnetized in opposite polarities. The magnetic flux density around the apex portion 58A where the thickness of the movable body 58 is thick increases, and the magnetic flux density gradually decreases as the thickness approaches the thin upper surface peripheral portion 58B.
 帯電防止手段61は、ケーシング52および可動体58が触れ合って生じる帯電を防止している。この帯電防止手段61では、ケーシング52と可動体58とを帯電列が略同じ材料を用いて形成している。これにより、帯電防止手段61は、ケーシング52および可動体58の帯電を防止することができ、仮に帯電したときでも直ぐに除電することができる。 The antistatic means 61 prevents charging that occurs when the casing 52 and the movable body 58 come into contact with each other. In the antistatic means 61, the casing 52 and the movable body 58 are formed using materials having substantially the same charge train. As a result, the antistatic means 61 can prevent the casing 52 and the movable body 58 from being charged, and can immediately remove the charge even if it is temporarily charged.
 かくして、第3の実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。特に、第3の実施の形態では、帯電防止手段61として、ケーシング52および可動体58を帯電列が略同じ材料によって形成したから、摩擦帯電を殆どなくすことができる。 Thus, in the third embodiment, the same operation and effect as in the first embodiment can be obtained. In particular, in the third embodiment, as the antistatic means 61, the casing 52 and the movable body 58 are formed of substantially the same material in the charge train, so that frictional charging can be almost eliminated.
 次に、図10ないし図12は本発明の第4の実施の形態を示している。そして、本実施の形態の特徴は、可動体の上面周縁部分に面取り部を設ける構成としたことにある。 Next, FIGS. 10 to 12 show a fourth embodiment of the present invention. The feature of the present embodiment is that a chamfered portion is provided at the peripheral portion of the upper surface of the movable body.
 傾斜センサ71は、第1の実施の形態による傾斜センサ1とほぼ同様に、ケーシング72、磁電変換素子78、可動体84によって構成されている。 The inclination sensor 71 is configured by a casing 72, a magnetoelectric conversion element 78, and a movable body 84 in substantially the same manner as the inclination sensor 1 according to the first embodiment.
 ケーシング72は、例えば樹脂材料等の非磁性材料を用いて形成された非磁性容器である。このケーシング72は、有底な略円筒状に形成されたケーシング本体73と、該ケーシング本体73の開口部となる上部側を施蓋する蓋体74によって構成されている。このケーシング本体73および蓋体74は、第1の実施の形態によるケーシング本体3および蓋体4とほぼ同様に形成されている。 The casing 72 is a nonmagnetic container formed using a nonmagnetic material such as a resin material. The casing 72 includes a casing main body 73 formed in a substantially cylindrical shape with a bottom, and a lid body 74 that covers the upper side serving as an opening of the casing main body 73. The casing main body 73 and the lid 74 are formed in substantially the same manner as the casing main body 3 and the lid 4 according to the first embodiment.
 ケーシング本体73の鉛直方向の高さは数mm程度であり、水平面での断面形状は数mmの外径寸法の略円形になっている。また、ケーシング本体73の上部側には略半球状に窪んだ凹部73Aが形成されると共に、該凹部73Aの開口縁には円筒状の雄嵌合部73Bが一体に形成されている。 The height of the casing body 73 in the vertical direction is about several mm, and the cross-sectional shape in the horizontal plane is a substantially circular shape with an outer diameter of several mm. A concave portion 73A that is recessed in a substantially hemispherical shape is formed on the upper side of the casing body 73, and a cylindrical male fitting portion 73B is integrally formed at the opening edge of the concave portion 73A.
 凹部73Aの表面(露出面)は、上向きに開口した凹状曲面75となっている。この凹状曲面75の最深部側には、水平面に平行な小径な円形平坦面となった底面部75Aが形成されている。また、凹部73Aの略半球状の表面と底面部75Aの外周との間は、下方方向に縮径する円錐台の側面形状の底面連結部75Bで連結されている。この結果、凹状曲面75は、全体として略半球面形状に形成されている。 The surface (exposed surface) of the recess 73A is a concave curved surface 75 that opens upward. On the deepest side of the concave curved surface 75, a bottom surface portion 75A that is a small circular flat surface parallel to the horizontal surface is formed. Further, the substantially hemispherical surface of the recess 73A and the outer periphery of the bottom surface portion 75A are connected by a bottom surface connection portion 75B having a truncated conical shape whose diameter is reduced in the downward direction. As a result, the concave curved surface 75 is formed in a substantially hemispherical shape as a whole.
 これらの底面部75Aおよび底面連結部75Bは、後述する可動体84の滑動面85を点接触に近い状態で支持する。このため、傾斜角度θが小さいときでも、凹状曲面75と可動体84との間の摩擦抵抗を低減して、可動体84を容易に滑動させることができる。また、凹状曲面75の最深部側には平坦面となった底面部75Aを設けたから、ケーシング72を水平状態に復帰させたときには、可動体84を定常位置となる底面部75Aに確実に戻すことができる。 These bottom surface portion 75A and bottom surface connection portion 75B support a sliding surface 85 of a movable body 84, which will be described later, in a state close to point contact. For this reason, even when the inclination angle θ is small, the frictional resistance between the concave curved surface 75 and the movable body 84 can be reduced and the movable body 84 can be easily slid. Further, since the bottom surface portion 75A that is a flat surface is provided on the deepest side of the concave curved surface 75, when the casing 72 is returned to the horizontal state, the movable body 84 is reliably returned to the bottom surface portion 75A that is in the steady position. Can do.
 蓋体74は、略円板状に形成されると共に、その外周縁には円筒状の雌嵌合部74Aが下向に向けて一体に形成されている。この雌嵌合部74A内にケーシング本体73の雄嵌合部73Bを嵌合挿入することによって、蓋体74はケーシング本体73に取り付けられ、ケーシング本体73と蓋体74との間に略半球状の可動体収容空間76が形成される。また、蓋体74の中央部分には、第1の実施の形態によるロッド部7とほぼ同様なロッド部77が設けられている。 The lid body 74 is formed in a substantially disc shape, and a cylindrical female fitting portion 74A is integrally formed on the outer peripheral edge thereof downward. By fitting and inserting the male fitting portion 73B of the casing body 73 into the female fitting portion 74A, the lid body 74 is attached to the casing body 73, and the substantially hemispherical shape is formed between the casing body 73 and the lid body 74. The movable body accommodating space 76 is formed. In addition, a rod portion 77 substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 74.
 磁電変換素子78は、磁束密度検知手段を構成し、例えばケーシング72の高さ方向の磁束密度に対応した検出信号Voutを出力する。この磁電変換素子78は、凹状曲面75の底面部75Aよりも数百μm~数mm下側に位置してケーシング本体73の内部に設けられ、また、可動体収容空間76の可動体84の滑動面85に対向する位置に配置されている。そして、磁電変換素子78には、滑動面85を介して可動体84からの磁束φが印加される。これにより、磁電変換素子78は、可動体84の滑動によって生じる磁束密度の変化を検知する。なお、磁電変換素子78には、第1の実施の形態と同様に、ケーシング本体73に取り付けられたグランド端子79、駆動電圧端子80および信号出力端子81が電気的に接続されている。 The magnetoelectric conversion element 78 constitutes a magnetic flux density detector, and outputs a detection signal Vout corresponding to the magnetic flux density in the height direction of the casing 72, for example. The magnetoelectric conversion element 78 is provided in the casing body 73 so as to be several hundred μm to several mm below the bottom surface portion 75 A of the concave curved surface 75, and the sliding of the movable body 84 in the movable body accommodating space 76. It is disposed at a position facing the surface 85. Then, the magnetic flux φ from the movable body 84 is applied to the magnetoelectric conversion element 78 through the sliding surface 85. Thereby, the magnetoelectric conversion element 78 detects a change in magnetic flux density caused by the sliding of the movable body 84. The magnetoelectric conversion element 78 is electrically connected to a ground terminal 79, a drive voltage terminal 80, and a signal output terminal 81 attached to the casing main body 73, as in the first embodiment.
 また、ケーシング本体73は、第2の実施の形態によるケーシング本体33と同様に、凹状曲面75を含む低抵抗部82と、該低抵抗部82以外の部分として磁電変換素子78、駆動電圧端子80および信号出力端子81の周囲を覆う絶縁部83とによって構成されている。低抵抗部82は、低抵抗材料として、例えば導電性の樹脂材料を用いて形成されている。この低抵抗部82にはグランド端子79が植設され、両者は電気的に接続されている。一方、絶縁部83は、絶縁材料として、絶縁性の樹脂材料によって形成されている。この絶縁部83中には磁電変換素子8、駆動電圧端子10および信号出力端子11が埋設されている。この絶縁部83は、駆動電圧端子80および信号出力端子81とグランド端子79との間を電気的に絶縁している。 The casing main body 73 includes a low resistance portion 82 including a concave curved surface 75, a magnetoelectric conversion element 78, and a drive voltage terminal 80 as portions other than the low resistance portion 82, similarly to the casing main body 33 according to the second embodiment. And an insulating portion 83 that covers the periphery of the signal output terminal 81. The low resistance portion 82 is formed using, for example, a conductive resin material as a low resistance material. A ground terminal 79 is implanted in the low resistance portion 82 and both are electrically connected. On the other hand, the insulating part 83 is formed of an insulating resin material as an insulating material. A magnetoelectric conversion element 8, a drive voltage terminal 10, and a signal output terminal 11 are embedded in the insulating portion 83. The insulating portion 83 electrically insulates the drive voltage terminal 80 and the signal output terminal 81 from the ground terminal 79.
 可動体84は、第2の実施の形態による可動体40と同様に、低抵抗な磁性材料を用いて形成され、略半球状のマグネット(永久磁石)に形成されている。この可動体84は、第1の実施の形態による可動体12とほぼ同様に、底部側に下向きの凸状曲面からなる滑動面85が形成されると共に、上部側に平坦面となった上面86が形成されている。これにより、可動体84は、略半球面となった滑動面85の頂点部分84Aで厚さが最大になると共に、頂点部分84Aから上面86の上面周縁部分84Bに近付くに従って漸次厚さが薄くなっている。 The movable body 84 is formed using a low-resistance magnetic material, like the movable body 40 according to the second embodiment, and is formed into a substantially hemispherical magnet (permanent magnet). In the movable body 84, a sliding surface 85 made of a downward convex curved surface is formed on the bottom side, and the upper surface 86 is a flat surface on the upper side, almost like the movable body 12 according to the first embodiment. Is formed. As a result, the movable body 84 has a maximum thickness at the apex portion 84A of the sliding surface 85 that is substantially hemispherical, and gradually decreases in thickness as it approaches the upper surface peripheral portion 84B of the upper surface 86 from the apex portion 84A. ing.
 また、可動体84は、滑動面85と上面86とが互いに逆極性となるように磁化されている。これにより、可動体84は、例えば滑動面85の法線方向に向けて磁束φを発生する。なお、可動体84の厚さが最大の頂点部分84Aの周囲では磁束密度が高くなると共に、厚さが薄くなる上面周縁部分84Bに近付くに従って漸次磁束密度が低くなる。 The movable body 84 is magnetized so that the sliding surface 85 and the upper surface 86 have opposite polarities. Thereby, the movable body 84 generates the magnetic flux φ in the normal direction of the sliding surface 85, for example. In addition, the magnetic flux density increases around the apex portion 84A where the thickness of the movable body 84 is maximum, and the magnetic flux density gradually decreases as it approaches the upper peripheral portion 84B where the thickness is reduced.
 可動体84は、ケーシング72の凹状曲面75と可動体84の滑動面85とが接触して滑り移動できるように、滑動面85を下向きにしてケーシング72の可動体収容空間76に収容されている。このため、ケーシング72を水平状態から傾けると、可動体84は凹状曲面75に沿って可動体収容空間76の内部を滑動変位する。 The movable body 84 is accommodated in the movable body accommodating space 76 of the casing 72 with the sliding surface 85 facing downward so that the concave curved surface 75 of the casing 72 and the sliding surface 85 of the movable body 84 can contact and slide. . For this reason, when the casing 72 is tilted from the horizontal state, the movable body 84 slides and displaces inside the movable body accommodation space 76 along the concave curved surface 75.
 また、可動体84は、下向きに突出した半球形状をなしているから、その重量バランスに基づいて上面86が水平な状態で静止する。このため、ケーシング72の傾斜角度θに応じて、可動体84の頂点部分84Aと磁電変換素子78との間の距離が変化すると共に、可動体84から磁電変換素子78に印加される磁束φの向きも変化する。 Further, since the movable body 84 has a hemispherical shape protruding downward, the upper surface 86 is stationary in a horizontal state based on its weight balance. Therefore, the distance between the apex portion 84A of the movable body 84 and the magnetoelectric conversion element 78 changes according to the inclination angle θ of the casing 72, and the magnetic flux φ applied from the movable body 84 to the magnetoelectric conversion element 78 is changed. The direction also changes.
 また、可動体84の上面周縁部分84Bは円弧状にR面取りが施され、面取り部87が形成されている。これにより、面取り部87の周辺における、上面周縁部分84Bでの磁束φの集中が緩和される。 Also, the upper surface peripheral edge portion 84B of the movable body 84 is rounded in an arc shape to form a chamfered portion 87. As a result, the concentration of the magnetic flux φ at the upper peripheral edge portion 84B around the chamfered portion 87 is alleviated.
 さらに、可動体84には、上面86の中央側に位置して略円形に窪んだ凹陥部88が形成されている。この凹陥部88を設けたことにより、可動体84の重心位置が頂点部分84A側に移動して、可動体84の安定性を高めている。 Furthermore, the movable body 84 is formed with a recessed portion 88 that is located in the center of the upper surface 86 and is recessed in a substantially circular shape. By providing the recess 88, the center of gravity of the movable body 84 moves to the apex portion 84A side, and the stability of the movable body 84 is enhanced.
 帯電防止手段89は、ケーシング72および可動体84が触れ合って生じる帯電を防止している。この帯電防止手段89では、ケーシング本体73の低抵抗部82と可動体84とを低抵抗材料を用いて形成している。これにより、帯電防止手段89は、低抵抗材料によってケーシング72および可動体84の帯電を防止することができ、仮に帯電したときでも直ぐに除電することができる。 Antistatic means 89 prevents charging that occurs when casing 72 and movable body 84 touch each other. In the antistatic means 89, the low resistance portion 82 and the movable body 84 of the casing body 73 are formed using a low resistance material. Thereby, the antistatic means 89 can prevent the casing 72 and the movable body 84 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
 かくして、第4の実施の形態でも第1,第2の実施の形態と同様の作用効果を得ることができる。特に、可動体84の上面周縁部分84Bには面取り部87を設けたから、該面取り部87によって、可動体84の上面周縁部分84Bでの磁束φの集中を緩和して、傾斜角度θに対する磁電変換素子78の検出信号の線形性の範囲を高めることができる。 Thus, in the fourth embodiment, it is possible to obtain the same effects as those in the first and second embodiments. In particular, since the chamfered portion 87 is provided on the upper surface peripheral portion 84B of the movable body 84, the chamfered portion 87 alleviates the concentration of the magnetic flux φ at the upper surface peripheral portion 84B of the movable body 84, and the magnetoelectric conversion with respect to the tilt angle θ The range of linearity of the detection signal of the element 78 can be increased.
 なお、線形性向上の効果を確認するために、第1,第4の実施の形態による傾斜センサ1,71との比較を行った。傾斜センサ1,71について、傾斜角度θと、傾斜角度θ方向の磁束密度との関係を測定し、その比較結果を図13に示す。 In addition, in order to confirm the effect of improving linearity, a comparison was made with the tilt sensors 1 and 71 according to the first and fourth embodiments. For the tilt sensors 1 and 71, the relationship between the tilt angle θ and the magnetic flux density in the tilt angle θ direction was measured, and the comparison result is shown in FIG.
 第1の実施の形態の傾斜センサ1の場合は図13中に破線で示すように、傾斜角度θが例えば50°よりも小さい範囲では、傾斜角度θが増加するに従って磁束密度が低下する。一方、傾斜角度θが例えば50°よりも大きい範囲では、傾斜角度θが増加しても磁束密度がさらに低下せず、磁束密度が増加する。 In the case of the tilt sensor 1 of the first embodiment, as indicated by a broken line in FIG. 13, the magnetic flux density decreases as the tilt angle θ increases in the range where the tilt angle θ is smaller than 50 °, for example. On the other hand, in the range where the tilt angle θ is larger than 50 °, for example, the magnetic flux density does not decrease even if the tilt angle θ increases, and the magnetic flux density increases.
 第1の実施の形態による可動体12では、滑動面13と上面14とが鋭角的に交わる上面周縁部分12Bで磁束φの集中が生じる。従って、第1の実施の形態では、傾斜角度θが大きくなると、磁束密度の高い上面周縁部分12Bが磁電変換素子8に近付くため、磁電変換素子8によって検出する磁束密度が増加し、傾斜角度θに対して非線形の範囲が狭くなる。 In the movable body 12 according to the first embodiment, the magnetic flux φ is concentrated at the upper peripheral portion 12B where the sliding surface 13 and the upper surface 14 intersect at an acute angle. Therefore, in the first embodiment, when the inclination angle θ increases, the upper surface peripheral portion 12B having a high magnetic flux density approaches the magnetoelectric conversion element 8, and therefore the magnetic flux density detected by the magnetoelectric conversion element 8 increases, and the inclination angle θ However, the non-linear range becomes narrower.
 これに対し、第4の実施の形態の傾斜センサ71では、可動体84の上面周縁部分84Bに面取り部87を設けたから、該面取り部87によって、可動体84の上面周縁部分84Bでの磁束φの集中を緩和することができる。このため、頂点部分84Aから上面周縁部分84Bに近付くに従って、磁束密度を漸次低下させることができる。この結果、第4の実施の形態の場合は図13中に実線で示すように、傾斜角度θが50°を超えた範囲でも、傾斜角度θの増加に従って磁束密度が一様に減少し続け、検出可能な傾斜角度θの範囲をさらに広げることができる。 On the other hand, in the tilt sensor 71 of the fourth embodiment, the chamfered portion 87 is provided on the upper surface peripheral portion 84B of the movable body 84. Can be relaxed. For this reason, the magnetic flux density can be gradually reduced as the apex portion 84A approaches the upper surface peripheral portion 84B. As a result, in the case of the fourth embodiment, as indicated by a solid line in FIG. 13, even when the tilt angle θ exceeds 50 °, the magnetic flux density continues to decrease uniformly as the tilt angle θ increases, The range of the detectable tilt angle θ can be further expanded.
 次に、図14は本発明の第5の実施の形態を示している。そして、本実施の形態の特徴は、可動体の外径寸法を凹状曲面の内径寸法に近い値に設定したことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 14 shows a fifth embodiment of the present invention. The feature of this embodiment is that the outer diameter of the movable body is set to a value close to the inner diameter of the concave curved surface. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 傾斜センサ91は、第1の実施の形態による傾斜センサ1とほぼ同様に、ケーシング92、磁電変換素子8、可動体100によって構成されている。 The tilt sensor 91 is configured by a casing 92, a magnetoelectric conversion element 8, and a movable body 100, almost the same as the tilt sensor 1 according to the first embodiment.
 ケーシング92は、第1の実施の形態によるケーシング2とほぼ同様に、ケーシング本体93および蓋体94によって構成されている。ケーシング本体93の上部側には、半球状に窪んだ凹部93Aが形成されると共に、凹部93Aの表面には、内径寸法D1をもって開口した半球面からなる凹状曲面95が形成されている。また、凹状曲面95の開口縁には円筒状の雄嵌合部93Bが形成され、この雄嵌合部93Bは、蓋体94の雌嵌合部94A内に嵌合挿入されている。これにより、ケーシング本体93と蓋体94との間に可動体収容空間96が形成される。また、蓋体94の中央部分には、第1の実施の形態によるロッド部7とほぼ同様なロッド部97が設けられている。 The casing 92 is composed of a casing main body 93 and a lid body 94 in substantially the same manner as the casing 2 according to the first embodiment. A concave portion 93A that is recessed in a hemispherical shape is formed on the upper side of the casing main body 93, and a concave curved surface 95 that is a hemispherical surface having an inner diameter dimension D1 is formed on the surface of the concave portion 93A. A cylindrical male fitting portion 93B is formed at the opening edge of the concave curved surface 95, and this male fitting portion 93B is fitted and inserted into the female fitting portion 94A of the lid 94. Thereby, a movable body accommodating space 96 is formed between the casing main body 93 and the lid 94. Further, a rod portion 97 that is substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 94.
 さらに、ケーシング本体93には、凹状曲面95の最深部95Aの下側に位置して磁電変換素子8が設けられると共に、該磁電変換素子8に電気的に接続されたグランド端子9、駆動電圧端子10および信号出力端子11が取り付けられている。 Further, the casing main body 93 is provided with a magnetoelectric conversion element 8 positioned below the deepest portion 95A of the concave curved surface 95, and a ground terminal 9 and a drive voltage terminal electrically connected to the magnetoelectric conversion element 8. 10 and a signal output terminal 11 are attached.
 また、ケーシング本体93は、第2の実施の形態によるケーシング本体33と同様に、凹状曲面95を含む低抵抗部98と、該低抵抗部98以外の部分として磁電変換素子8、駆動電圧端子10および信号出力端子11の周囲を覆う絶縁部99とによって構成されている。低抵抗部98は、低抵抗材料として、例えば導電性の樹脂材料を用いて形成されている。この低抵抗部98にはグランド端子9が植設され、両者は電気的に接続されている。一方、絶縁部99は、絶縁材料として、絶縁性の樹脂材料によって形成されている。この絶縁部99中には磁電変換素子8、駆動電圧端子10および信号出力端子11が埋設されている。この絶縁部99は、駆動電圧端子10および信号出力端子11とグランド端子9との間を電気的に絶縁している。 The casing body 93 includes a low resistance portion 98 including a concave curved surface 95, and the magnetoelectric conversion element 8 and the drive voltage terminal 10 as portions other than the low resistance portion 98, similarly to the casing body 33 according to the second embodiment. And an insulating portion 99 that covers the periphery of the signal output terminal 11. The low resistance portion 98 is formed using, for example, a conductive resin material as a low resistance material. A ground terminal 9 is implanted in the low resistance portion 98 and both are electrically connected. On the other hand, the insulating part 99 is formed of an insulating resin material as an insulating material. A magnetoelectric conversion element 8, a drive voltage terminal 10 and a signal output terminal 11 are embedded in the insulating portion 99. The insulating portion 99 electrically insulates the drive voltage terminal 10 and the signal output terminal 11 from the ground terminal 9.
 可動体100は、低抵抗な磁性材料を用いて形成され、略半球状のマグネット(永久磁石)に形成されている。この可動体100は、第4の実施の形態による可動体84とほぼ同様に形成されている。このため、可動体100の底部側に下向きの凸状曲面からなる滑動面101が形成されると共に、上部側に平坦面となった上面102が形成されている。 The movable body 100 is formed using a low-resistance magnetic material, and is formed into a substantially hemispherical magnet (permanent magnet). The movable body 100 is formed in substantially the same manner as the movable body 84 according to the fourth embodiment. For this reason, a sliding surface 101 made of a downward convex curved surface is formed on the bottom side of the movable body 100, and a flat upper surface 102 is formed on the upper side.
 また、可動体100は、滑動面101と上面102とが互いに逆極性に磁化されている。この可動体100の厚さが厚い頂点部分100Aの周囲での磁束密度が高くなると共に、厚さが薄い上面周縁部分100Bに近付くに従って漸次磁束密度が低くなっている。 Further, in the movable body 100, the sliding surface 101 and the upper surface 102 are magnetized in opposite polarities. The magnetic flux density around the apex portion 100A where the thickness of the movable body 100 is thicker increases, and the magnetic flux density gradually decreases as it approaches the thin upper surface peripheral portion 100B.
 可動体100の上面周縁部分100Bは、円弧状にR面取りが施され、面取り部103が形成されている。また、可動体100の上面102の中央側に、略円形に窪んだ凹陥部104が形成されている。さらに、可動体100の外径寸法D2は、凹状曲面95の内径寸法D1に近い値として、例えば内径寸法D1の70~95%程度の値に設定されている。そして、可動体100は、滑動面101が下向きとなった状態でケーシング92の可動体収容空間96に収容されている。 The upper surface peripheral portion 100B of the movable body 100 is rounded in an arc shape to form a chamfered portion 103. In addition, a recessed portion 104 that is recessed in a substantially circular shape is formed on the center side of the upper surface 102 of the movable body 100. Further, the outer diameter D2 of the movable body 100 is set to a value close to the inner diameter D1 of the concave curved surface 95, for example, about 70 to 95% of the inner diameter D1. The movable body 100 is accommodated in the movable body accommodating space 96 of the casing 92 with the sliding surface 101 facing downward.
 帯電防止手段105は、ケーシング92および可動体100が触れ合って生じる帯電を防止している。この帯電防止手段105では、ケーシング本体93の低抵抗部98と可動体100とを低抵抗材料を用いて形成している。これにより、帯電防止手段105は、低抵抗材料によってケーシング92および可動体100の帯電を防止することができ、仮に帯電したときでも直ぐに除電することができる。 Antistatic means 105 prevents charging that occurs when casing 92 and movable body 100 come into contact with each other. In the antistatic means 105, the low resistance portion 98 of the casing body 93 and the movable body 100 are formed using a low resistance material. Thereby, the antistatic means 105 can prevent the casing 92 and the movable body 100 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
 かくして、第5の実施の形態でも第1,第2,第4の実施の形態と同様の作用効果を得ることができ、特に、可動体100の外径寸法D2を凹状曲面95の内径寸法D1に近い値に設定したから、図15に示すように、傾斜角度θに対する磁電変換素子8に印加する磁束密度の変化量を大きくすることができる。このため、磁電変換素子8の検出信号Voutの出力レンジを広げて、傾斜角度θの検出感度を高めることができる。 Thus, the fifth embodiment can provide the same effects as those of the first, second, and fourth embodiments. In particular, the outer diameter D2 of the movable body 100 is changed to the inner diameter D1 of the concave curved surface 95. Therefore, as shown in FIG. 15, the change amount of the magnetic flux density applied to the magnetoelectric transducer 8 with respect to the tilt angle θ can be increased. For this reason, the output range of the detection signal Vout of the magnetoelectric conversion element 8 can be expanded, and the detection sensitivity of the inclination angle θ can be increased.
 また、可動体100の外径寸法D2を凹状曲面95の内径寸法D1に近い値に設定したから、可動体100の外径寸法D2を小さくすることによって、傾斜センサ91全体を小型化することができる。 In addition, since the outer diameter D2 of the movable body 100 is set to a value close to the inner diameter D1 of the concave curved surface 95, the entire inclination sensor 91 can be downsized by reducing the outer diameter D2 of the movable body 100. it can.
 なお、第5の実施の形態では、第4の実施の形態による可動体84と同様な可動体100を用いる構成としたが、第2の実施の形態による可動体40と同様な可動体を用いる構成としてもよい。また、第5の実施の形態では、第1の実施の形態による凹状曲面5と同様な形状の凹状曲面95を用いる構成としたが、第4の実施の形態による凹状曲面75を同様な形状の凹状曲面を用いる構成としてもよい。 In the fifth embodiment, a movable body 100 similar to the movable body 84 according to the fourth embodiment is used. However, a movable body similar to the movable body 40 according to the second embodiment is used. It is good also as a structure. In the fifth embodiment, the concave curved surface 95 having the same shape as the concave curved surface 5 according to the first embodiment is used. However, the concave curved surface 75 according to the fourth embodiment has the same shape. A configuration using a concave curved surface may be adopted.
 次に、図16ないし図22は本発明の第6の実施の形態を示している。そして、本実施の形態の特徴は、互いに直交するX軸、Y軸およびZ軸のうち、水平方向のX軸方向に比べて水平方向のY軸方向の検出出力が大きくなる異方性を有する磁電変換素子を用いた場合、どの方向に傾けても略同じ検出出力が得られるようにするため、可動体収容空間の凹状曲面を、X軸方向に比べてY軸方向に向けて可動体を大きく変位させる異方性曲面によって形成したことにある。 Next, FIG. 16 to FIG. 22 show a sixth embodiment of the present invention. The feature of this embodiment is anisotropy in which the detection output in the horizontal Y-axis direction is larger than the horizontal X-axis direction among the X-axis, Y-axis, and Z-axis that are orthogonal to each other. When using a magnetoelectric transducer, in order to obtain substantially the same detection output regardless of the direction, the concave curved surface of the movable body housing space is directed toward the Y axis direction compared to the X axis direction. It is formed by an anisotropic curved surface that is largely displaced.
 傾斜センサ111は、第4の実施の形態による傾斜センサ71とほぼ同様に、ケーシング112、磁電変換素子118、可動体124によって構成されている。 The inclination sensor 111 is configured by a casing 112, a magnetoelectric conversion element 118, and a movable body 124 in substantially the same manner as the inclination sensor 71 according to the fourth embodiment.
 ケーシング112は、例えば樹脂材料等の非磁性材料を用いて形成された非磁性容器である。このケーシング112は、有底な略円筒状に形成されたケーシング本体113と、該ケーシング本体113の開口部となる上部側を施蓋する蓋体114によって構成されている。 The casing 112 is a nonmagnetic container formed using a nonmagnetic material such as a resin material. The casing 112 includes a casing main body 113 formed in a substantially cylindrical shape with a bottom, and a lid body 114 that covers the upper side serving as an opening of the casing main body 113.
 ケーシング本体113の、鉛直方向の高さは数mm程度であり、水平面での断面形状は数mmの外径寸法の略円形になっている。また、ケーシング本体113の上部側には略半楕円体状に窪んだ凹部113Aが形成されると共に、該凹部113Aの開口側には円筒状の雄嵌合部113Bが下方に向けて一体に形成されている。 The height of the casing body 113 in the vertical direction is about several mm, and the cross-sectional shape in a horizontal plane is a substantially circular shape with an outer diameter of several mm. In addition, a concave portion 113A that is recessed in a substantially semi-ellipsoidal shape is formed on the upper side of the casing main body 113, and a cylindrical male fitting portion 113B is integrally formed downward on the opening side of the concave portion 113A. Has been.
 凹部113Aの表面(露出面)は、上向きに開口した凹状曲面115となっている。この凹状曲面115は、互いに直交するX軸、Y軸およびZ軸のうち、水平方向のX軸方向とY軸方向とで断面形状が異なる異方性曲面によって形成されている。具体的には、凹状曲面115は、X軸方向が短軸となり、Y軸方向が長軸となった半割り形状の楕円体面によって形成されている。 The surface (exposed surface) of the recess 113A is a concave curved surface 115 opened upward. The concave curved surface 115 is formed by an anisotropic curved surface having different cross-sectional shapes in the horizontal X-axis direction and the Y-axis direction among the X-axis, Y-axis, and Z-axis orthogonal to each other. Specifically, the concave curved surface 115 is formed by a half-shaped ellipsoidal surface in which the X-axis direction is a short axis and the Y-axis direction is a long axis.
 凹状曲面115を異方性曲面によって形成することで、ケーシング112が水平面(XY面)のいずれの方向に傾斜したときでも、磁電変換素子118から同じ出力レベルの検出信号Voutが得られる形状に形成されている。 By forming the concave curved surface 115 by an anisotropic curved surface, the casing 112 is formed in a shape in which the detection signal Vout having the same output level can be obtained from the magnetoelectric conversion element 118 when the casing 112 is inclined in any direction of the horizontal plane (XY plane). Has been.
 蓋体114は、略円板状に形成されると共に、その外周縁には円筒状の雌嵌合部114Aが下方に向けて一体に形成されている。この雌嵌合部114A内にケーシング本体113の雄嵌合部113Bを嵌合挿入することによって、蓋体114はケーシング本体113に取り付けられ、ケーシング本体113と蓋体114との間に略半楕円体状の可動体収容空間116が形成される。また、蓋体114の中央部分には、凹状曲面115の最深部115Aに向けて下方に延びる第1の実施の形態によるロッド部7とほぼ同様なロッド部117が設けられている。 The lid body 114 is formed in a substantially disc shape, and a cylindrical female fitting portion 114A is integrally formed on the outer peripheral edge thereof downward. By fitting and inserting the male fitting portion 113B of the casing main body 113 into the female fitting portion 114A, the lid body 114 is attached to the casing main body 113, and a substantially semi-elliptical shape is provided between the casing main body 113 and the lid body 114. A body-like movable body accommodating space 116 is formed. In addition, a rod portion 117 that is substantially the same as the rod portion 7 according to the first embodiment extending downward toward the deepest portion 115 </ b> A of the concave curved surface 115 is provided at the center portion of the lid body 114.
 ケーシング本体113には、凹状曲面115の最深部115Aの下側に位置して磁電変換素子118が設けられると共に、該磁電変換素子118に電気的に接続されたグランド端子119、駆動電圧端子120および信号出力端子121が取り付けられている。 The casing main body 113 is provided with a magnetoelectric conversion element 118 positioned below the deepest portion 115A of the concave curved surface 115, and a ground terminal 119, a drive voltage terminal 120, and the like electrically connected to the magnetoelectric conversion element 118, and A signal output terminal 121 is attached.
 また、ケーシング本体113は、第2の実施の形態によるケーシング本体33と同様に、凹状曲面115を含む低抵抗部122と、該低抵抗部122以外の部分として磁電変換素子118、駆動電圧端子120および信号出力端子121の周囲を覆う絶縁部123とによって構成されている。低抵抗部122は、低抵抗材料として、例えば導電性の樹脂材料を用いて形成されている。この低抵抗部122にはグランド端子119が植設され、両者は電気的に接続されている。一方、絶縁部123は、絶縁材料として、絶縁性の樹脂材料によって形成されている。この絶縁部123中には磁電変換素子118、駆動電圧端子120および信号出力端子121が埋設されている。この絶縁部123は、駆動電圧端子120および信号出力端子121とグランド端子119との間を電気的に絶縁している。 The casing body 113 includes a low resistance portion 122 including a concave curved surface 115, a magnetoelectric conversion element 118, and a driving voltage terminal 120 as portions other than the low resistance portion 122, as in the casing body 33 according to the second embodiment. And an insulating part 123 that covers the periphery of the signal output terminal 121. The low resistance portion 122 is formed using, for example, a conductive resin material as a low resistance material. A ground terminal 119 is implanted in the low resistance portion 122, and both are electrically connected. On the other hand, the insulating part 123 is formed of an insulating resin material as an insulating material. A magnetoelectric conversion element 118, a drive voltage terminal 120, and a signal output terminal 121 are embedded in the insulating portion 123. The insulating portion 123 electrically insulates the drive voltage terminal 120 and the signal output terminal 121 from the ground terminal 119.
 次に、磁束密度検知手段となる磁電変換素子118として、磁性薄膜の磁気抵抗素子を用いた場合について説明する。なお、磁電変換素子118は、小型化するために、磁性薄膜磁気抵抗素子からなる磁気抵抗センサ118Aと、差動増幅器118Bとを集積化したAMR-IC(Anisotropic Magneto Resistance Integrated Circuit)とによって構成されている。磁気抵抗センサ118Aは、4個の磁気抵抗素子R1~R4から構成される。磁気抵抗素子R1~R4は、インジウムアンチモン(InSb)等の磁気抵抗材料をセンサ基板S上に蒸着する等の手段を用いて形成される。磁気抵抗素子R1~R4は、複数の伸長パターンをミアンダ状に接続配置して形成される。伸長パターンをセンサ基板Sの上下方向に一致させた、磁気抵抗素子R1をセンサ基板Sの左上に、磁気抵抗素子R4をセンサ基板Sの右下に配置形成する。伸長パターンをセンサ基板Sの左右方向に一致させた、磁気抵抗素子R2をセンサ基板Sの左下に、磁気抵抗素子R3をセンサ基板Sの右上に配置形成する。 Next, a case where a magnetic thin film magnetoresistive element is used as the magnetoelectric conversion element 118 serving as a magnetic flux density detection means will be described. In order to reduce the size, the magnetoelectric conversion element 118 is composed of an AMR-IC (Anisotropic Magneto Resistance Integrated Circuit) in which a magnetoresistive sensor 118A composed of a magnetic thin film magnetoresistive element and a differential amplifier 118B are integrated. ing. The magnetoresistive sensor 118A is composed of four magnetoresistive elements R1 to R4. The magnetoresistive elements R1 to R4 are formed using means such as vapor deposition of a magnetoresistive material such as indium antimony (InSb) on the sensor substrate S. The magnetoresistive elements R1 to R4 are formed by connecting and arranging a plurality of elongated patterns in a meander shape. The magnetoresistive element R1 is arranged on the upper left side of the sensor substrate S and the magnetoresistive element R4 is arranged on the lower right side of the sensor substrate S. The magnetoresistive element R2 is arranged at the lower left side of the sensor substrate S and the magnetoresistive element R3 is arranged at the upper right side of the sensor substrate S.
 磁気抵抗素子R1~R4はブリッジ接続され、差動増幅器118Bの入力端子は、磁気抵抗素子R1,R2間の接続点と、磁気抵抗素子R3,R4間の接続点とにそれぞれ接続される。磁気抵抗素子R2,R4間の接続点は、外部のグランドGNDに接続するためのグランド端子119が電気的に接続される。また、磁気抵抗素子R1,R3間の接続点は、駆動電圧Vddを供給するための駆動電圧端子120が電気的に接続される。さらに、差動増幅器118Bの出力端子は、例えば電圧等の検出信号Voutを出力する信号出力端子121が電気的に接続される。差動増幅器118Bは、2つの入力端子の間に生じる電位差を差動増幅し、検出信号Voutを出力する。 The magnetoresistive elements R1 to R4 are bridge-connected, and the input terminal of the differential amplifier 118B is connected to a connection point between the magnetoresistive elements R1 and R2 and a connection point between the magnetoresistive elements R3 and R4. A connection point between the magnetoresistive elements R2 and R4 is electrically connected to a ground terminal 119 for connection to an external ground GND. A driving voltage terminal 120 for supplying a driving voltage Vdd is electrically connected to a connection point between the magnetoresistive elements R1 and R3. Further, the output terminal of the differential amplifier 118B is electrically connected to a signal output terminal 121 that outputs a detection signal Vout such as a voltage. The differential amplifier 118B differentially amplifies the potential difference generated between the two input terminals and outputs the detection signal Vout.
 なお、センサ基板Sは、磁気抵抗素子R1とR2(R3とR4)とを結ぶ方向が鉛直方向(Z軸方向)と一致し、また、磁気抵抗素子R1とR3(R2とR4)とを結ぶ方向が水平方向(X軸方向)と一致するように配置される。磁気抵抗素子R1とR4は、水平方向(X軸方向)の磁束密度の変化に応じてその抵抗値が変化する。磁気抵抗素子R2とR3は、鉛直方向(Z軸方向)の磁束密度の変化に応じてその抵抗値が変化する。 In the sensor substrate S, the direction connecting the magnetoresistive elements R1 and R2 (R3 and R4) coincides with the vertical direction (Z-axis direction), and the magnetoresistive elements R1 and R3 (R2 and R4) are connected. The direction is arranged so as to coincide with the horizontal direction (X-axis direction). The resistance values of the magnetoresistive elements R1 and R4 change according to the change in the magnetic flux density in the horizontal direction (X-axis direction). The resistance values of the magnetoresistive elements R2 and R3 change according to the change in the magnetic flux density in the vertical direction (Z-axis direction).
 XZ面に平行な磁束密度がセンサ基板Sに印加されたときには、4個の磁気抵抗素子R1~R4の抵抗値が全て変化する。このため、ケーシング112をX軸方向に傾けたときには、検出信号Voutは、例えば駆動電圧Vddの正負の範囲で変化する(-Vdd≦Vout≦Vdd)。 When the magnetic flux density parallel to the XZ plane is applied to the sensor substrate S, the resistance values of the four magnetoresistive elements R1 to R4 all change. For this reason, when the casing 112 is tilted in the X-axis direction, the detection signal Vout changes, for example, in a positive / negative range of the drive voltage Vdd (−Vdd ≦ Vout ≦ Vdd).
 一方、XY面に平行な磁束密度がセンサ基板Sに印加されたときには、2個の磁気抵抗素子R2,R3の抵抗値は変化するものの、残余の2個の磁気抵抗素子R1,R4の抵抗値は殆ど変化しない。このため、ケーシング112をY軸方向に傾けたときには、検出信号Voutは、グランド電位から駆動電圧Vddの範囲で変化する(0≦Vout≦Vdd)。 On the other hand, when a magnetic flux density parallel to the XY plane is applied to the sensor substrate S, the resistance values of the remaining two magnetoresistive elements R1, R4 change, although the resistance values of the two magnetoresistive elements R2, R3 change. Hardly changes. For this reason, when the casing 112 is tilted in the Y-axis direction, the detection signal Vout changes within the range from the ground potential to the drive voltage Vdd (0 ≦ Vout ≦ Vdd).
 この結果、磁気抵抗センサ118Aは、X軸方向に磁束φを傾斜させたときの検出信号Voutに比べてY軸方向に磁束を傾斜させたときの検出信号Voutが大きな出力レベルとなる異方性の出力特性を有している。 As a result, the magnetoresistive sensor 118A has anisotropy in which the detection signal Vout when the magnetic flux is tilted in the Y-axis direction has a higher output level than the detection signal Vout when the magnetic flux φ is tilted in the X-axis direction. Output characteristics.
 磁電変換素子118は、凹状曲面115の最深部115Aよりも数百μm~数mm下側に位置したケーシング本体113の内部に設けられる。即ち、磁電変換素子118は、可動体収容空間116に収容される可動体124の滑動面125に対向する位置に配置される。 The magnetoelectric conversion element 118 is provided inside the casing main body 113 located several hundred μm to several mm below the deepest part 115A of the concave curved surface 115. That is, the magnetoelectric conversion element 118 is disposed at a position facing the sliding surface 125 of the movable body 124 accommodated in the movable body accommodating space 116.
 可動体124は、低抵抗な磁性材料を用いて形成され、略半球状のマグネット(永久磁石)に形成されている。第4の実施の形態による可動体84とほぼ同様に、この可動体124の底部側は下向きの凸状曲面からなる滑動面125が形成されると共に、上部側は平坦面となった上面126が形成されている。これにより、可動体124は、略半球面となった滑動面125の頂点部分124Aで厚さが最大になると共に、頂点部分124Aから上面126の上面周縁部分124Bに近付くに従って漸次厚さが薄くなっている。 The movable body 124 is formed using a low-resistance magnetic material, and is formed into a substantially hemispherical magnet (permanent magnet). In substantially the same manner as the movable body 84 according to the fourth embodiment, a sliding surface 125 having a downward convex curved surface is formed on the bottom side of the movable body 124, and an upper surface 126 having a flat surface on the upper side. Is formed. As a result, the movable body 124 has a maximum thickness at the apex portion 124A of the sliding surface 125 that is substantially hemispherical, and gradually decreases in thickness as it approaches the upper surface peripheral portion 124B of the upper surface 126 from the apex portion 124A. ing.
 また、可動体124は、滑動面125と上面126とが互いに逆極性となるように磁化されている。これにより、可動体124の滑動面125の法線方向に向けて磁束φを発生する。なお、可動体124の厚さが最大の頂点部分124Aの周囲では磁束密度が高くなると共に、厚さが薄くなる上面周縁部分124Bに近付くに従って漸次磁束密度が低くなる。 The movable body 124 is magnetized so that the sliding surface 125 and the upper surface 126 have opposite polarities. As a result, the magnetic flux φ is generated in the normal direction of the sliding surface 125 of the movable body 124. Note that the magnetic flux density increases around the apex portion 124A where the thickness of the movable body 124 is the maximum, and the magnetic flux density gradually decreases as it approaches the upper peripheral portion 124B where the thickness becomes thinner.
 可動体124は、ケーシング112の凹状曲面115と、可動体124の滑動面125とが接触して滑り移動できるように、滑動面125を下向きにしてケーシング112の可動体収容空間116に収容されている。このため、ケーシング112を水平状態から傾けると、可動体124は凹状曲面115に沿って可動体収容空間116の内部を滑動変位する。 The movable body 124 is accommodated in the movable body accommodation space 116 of the casing 112 with the sliding surface 125 facing downward so that the concave curved surface 115 of the casing 112 and the sliding surface 125 of the movable body 124 can contact and slide. Yes. For this reason, when the casing 112 is tilted from the horizontal state, the movable body 124 slides and displaces inside the movable body accommodation space 116 along the concave curved surface 115.
 可動体124の上面周縁部分124Bは円弧状にR面取りが施され、面取り部127が形成されている。また、可動体124には、上面126の中央側に位置して略円形に窪んだ凹陥部128が形成されている。 The upper peripheral edge portion 124B of the movable body 124 is rounded in an arc shape to form a chamfered portion 127. In addition, the movable body 124 is formed with a recessed portion 128 that is located in the center of the upper surface 126 and is recessed in a substantially circular shape.
 帯電防止手段129は、ケーシング112および可動体124が触れ合って生じる帯電を防止している。この帯電防止手段129では、ケーシング本体113の低抵抗部122と可動体124とを低抵抗材料を用いて形成している。これにより、帯電防止手段129は、低抵抗材料によってケーシング112および可動体124の帯電を防止することができ、仮に帯電したときでも直ぐに除電することができる。 Antistatic means 129 prevents charging that occurs when casing 112 and movable body 124 come into contact with each other. In the antistatic means 129, the low resistance portion 122 and the movable body 124 of the casing body 113 are formed using a low resistance material. As a result, the antistatic means 129 can prevent the casing 112 and the movable body 124 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
 第6の実施の形態では、傾斜センサをX軸方向に傾けたときの検出信号Voutに比べてY軸方向に傾けたときの検出信号Voutが大きな出力レベルとなる異方性を有する磁電変換素子118を用いる構成とした。一方、可動体収容空間116の凹状曲面115は、X軸方向に比べてY軸方向に向けて可動体124を大きく変位させる楕円体面によって形成した。このため、ケーシング112をX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、傾斜角度θに対する可動体124の変位量を大きくして、磁電変換素子118と可動体124の頂点部分124Aとの位置変化を大きくすることができる。 In the sixth embodiment, the magnetoelectric transducer has anisotropy in which the detection signal Vout when the tilt sensor is tilted in the Y-axis direction has a higher output level than the detection signal Vout when tilted in the X-axis direction. 118 was used. On the other hand, the concave curved surface 115 of the movable body accommodating space 116 is formed by an ellipsoidal surface that largely displaces the movable body 124 in the Y-axis direction compared to the X-axis direction. Therefore, when the casing 112 is tilted in the X-axis direction, the displacement amount of the movable body 124 with respect to the tilt angle θ is increased when the casing 112 is tilted in the Y-axis direction, and the magnetoelectric conversion element 118 and the movable body. The positional change with the apex portion 124A of 124 can be increased.
 このため、ケーシング112をX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が、磁電変換素子118に印加される磁束密度の変化が大きくなる。即ち、同じ傾斜角度θでX軸方向に傾けたときに比べて、Y軸方向に傾けたときの方が可動体124から磁電変換素子118に印加される磁束密度を低下させて、検出信号Voutの出力レベルを抑制することができる。この結果、ケーシング112がX軸方向に傾斜したときの磁電変換素子118の検出信号Voutと、ケーシング112がY軸方向に傾斜したときの磁電変換素子118の検出信号Voutとは、傾斜角度θに対する出力レベルをほぼ等しくすることができる。なお、第6の実施の形態でも第1,第2,第4の実施の形態と同様の作用効果を得ることができる。 For this reason, the change in the magnetic flux density applied to the magnetoelectric conversion element 118 is greater when the casing 112 is tilted in the Y-axis direction than when the casing 112 is tilted in the X-axis direction. That is, the magnetic flux density applied to the magnetoelectric transducer 118 from the movable body 124 is lowered when tilted in the Y-axis direction compared to when tilted in the X-axis direction at the same tilt angle θ, and the detection signal Vout The output level can be suppressed. As a result, the detection signal Vout of the magnetoelectric conversion element 118 when the casing 112 is inclined in the X-axis direction and the detection signal Vout of the magnetoelectric conversion element 118 when the casing 112 is inclined in the Y-axis direction are relative to the inclination angle θ. The output level can be made substantially equal. In the sixth embodiment, the same effects as those of the first, second, and fourth embodiments can be obtained.
 次に、図23ないし図25は本発明の第7の実施の形態を示している。そして、本実施の形態の特徴は、可動体収容空間の凹状曲面を、X軸方向が短軸となりY軸方向が長軸となった半割り形状の楕円体面と、半球面とを組み合わせた異方性曲面によって形成したことにある。なお、半割り形状の楕円体面と半球面とは、楕円体面の中央部分で接した状態で組み合わされる。なお、本実施の形態では、前記第6の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 23 to FIG. 25 show a seventh embodiment of the present invention. The feature of this embodiment is that the concave curved surface of the movable body accommodating space is a combination of a half-shaped ellipsoidal surface in which the X-axis direction is the short axis and the Y-axis direction is the long axis, and a hemispherical surface. This is because it is formed by an isotropic curved surface. Note that the half-shaped ellipsoidal surface and the hemispherical surface are combined while being in contact with each other at the center of the ellipsoidal surface. In the present embodiment, the same components as those in the sixth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 傾斜センサ131は、第6の実施の形態による傾斜センサ111とほぼ同様に、ケーシング132、磁電変換素子118、可動体124によって構成されている。 The inclination sensor 131 is configured by a casing 132, a magnetoelectric conversion element 118, and a movable body 124 in substantially the same manner as the inclination sensor 111 according to the sixth embodiment.
 ケーシング132は、例えば樹脂材料等の非磁性材料を用いて形成された非磁性容器である。このケーシング132は、有底な略円筒状に形成されたケーシング本体133と、該ケーシング本体133の開口部となる上部を施蓋する蓋体134によって構成されている。 The casing 132 is a nonmagnetic container formed using a nonmagnetic material such as a resin material. The casing 132 includes a casing main body 133 that is formed in a substantially cylindrical shape with a bottom, and a lid body 134 that covers an upper portion that is an opening of the casing main body 133.
 ケーシング本体133の鉛直方向の高さは数mm程度であり、水平面での断面形状は数mmの外径寸法の略円形になっている。また、ケーシング本体133の上部側には略半楕円体状に窪んだ凹部133Aが形成されると共に、該凹部133Aの開口縁には円筒状の雄嵌合部133Bが一体に形成されている。 The height of the casing body 133 in the vertical direction is about several mm, and the cross-sectional shape in a horizontal plane is a substantially circular shape with an outer diameter of several mm. In addition, a concave portion 133A that is recessed in a substantially semi-ellipsoidal shape is formed on the upper side of the casing body 133, and a cylindrical male fitting portion 133B is integrally formed at the opening edge of the concave portion 133A.
 凹部133Aの表面(露出面)は、上向きに開口した凹状曲面135となっており、X軸方向とY軸方向とで断面形状が異なる異方性曲面によって形成されている。具体的には、凹状曲面135は、X軸方向が短軸となり、Y軸方向が長軸となった半割り形状の楕円体面135Aと、楕円体面135Aの長手方向の長さ寸法よりも小さく短手方向の長さ寸法よりも大きな直径寸法D2bをもった半球面135Bとを組み合わせた異方性曲面によって形成されている。このとき、楕円体面135Aの最深部と半球面135Bの最深部とが、形成される凹状曲面135の最深部135Cと一致するように配置形成される。この結果、楕円体面135Aと半球面135Bとが、形成される凹状曲面135の最深部135Cで接し、凹部133AはXZ面およびYZ面に対して面対称に形成される。 The surface (exposed surface) of the recess 133A is a concave curved surface 135 that opens upward, and is formed by an anisotropic curved surface having different cross-sectional shapes in the X-axis direction and the Y-axis direction. Specifically, the concave curved surface 135 is shorter than the length in the longitudinal direction of the halved ellipsoidal surface 135A in which the X-axis direction is the minor axis and the Y-axis direction is the major axis, and the ellipsoidal surface 135A. It is formed by an anisotropic curved surface combined with a hemispherical surface 135B having a diameter dimension D2b larger than the length dimension in the hand direction. At this time, the deepest part of the ellipsoidal surface 135A and the deepest part of the hemispherical surface 135B are arranged and formed so as to coincide with the deepest part 135C of the concave curved surface 135 to be formed. As a result, the ellipsoidal surface 135A and the hemispherical surface 135B are in contact with each other at the deepest portion 135C of the concave curved surface 135 to be formed, and the concave portion 133A is formed symmetrically with respect to the XZ plane and the YZ plane.
 なお、楕円体面135Aの長軸寸法D2aと半球面135Bの直径寸法D2bは、ケーシング132がXY面のいずれの方向に傾斜したときでも、凹状曲面135の最深部135Cの下側に位置する磁電変換素子118から同じ出力レベルの検出信号Voutが得られる形状となるように選択される。 The major axis dimension D2a of the ellipsoidal surface 135A and the diameter dimension D2b of the hemispherical surface 135B are such that the magnetoelectric conversion is located below the deepest portion 135C of the concave curved surface 135 when the casing 132 is inclined in any direction of the XY plane. The elements 118 are selected so as to obtain a detection signal Vout having the same output level.
 蓋体134は、略円板状に形成されると共に、その外周縁には円筒状の雌嵌合部134Aが下方に向けて一体に形成されている。この雌嵌合部134A内にケーシング本体133の雄嵌合部133Bを嵌合挿入することによって、蓋体134はケーシング本体133に取り付けられ、ケーシング本体133と蓋体134との間に半割り形状の楕円体と略半球を組み合わせた可動体収容空間136が形成される。また、蓋体134の中央部分には、第1の実施の形態によるロッド部7とほぼ同様なロッド部137が設けられている。 The lid 134 is formed in a substantially disc shape, and a cylindrical female fitting portion 134A is integrally formed on the outer peripheral edge thereof downward. By fitting and inserting the male fitting portion 133B of the casing main body 133 into the female fitting portion 134A, the lid body 134 is attached to the casing main body 133, and the half shape is formed between the casing main body 133 and the lid body 134. A movable body accommodating space 136 is formed by combining the ellipsoid and the substantially hemisphere. In addition, a rod portion 137 that is substantially the same as the rod portion 7 according to the first embodiment is provided at the central portion of the lid 134.
 ケーシング本体133には、凹状曲面135の最深部135Cの下側に位置して磁電変換素子118が設けられると共に、該磁電変換素子118に電気的に接続されたグランド端子119、駆動電圧端子120および信号出力端子121が取り付けられている。 The casing main body 133 is provided with a magnetoelectric conversion element 118 positioned below the deepest part 135C of the concave curved surface 135, and a ground terminal 119, a drive voltage terminal 120, and A signal output terminal 121 is attached.
 また、ケーシング本体133は、第2の実施の形態によるケーシング本体33と同様に、凹状曲面135を含む低抵抗部138と、該低抵抗部138以外の部分として磁電変換素子118、駆動電圧端子120および信号出力端子121の周囲を覆う絶縁部139とによって構成されている。低抵抗部138は、低抵抗材料として、例えば導電性の樹脂材料を用いて形成されている。この低抵抗部138にはグランド端子119が植設され、両者は電気的に接続されている。一方、絶縁部139は、絶縁材料として、絶縁性の樹脂材料によって形成されている。この絶縁部139中には磁電変換素子118、駆動電圧端子120および信号出力端子121が埋設されている。この絶縁部139は、駆動電圧端子120および信号出力端子121とグランド端子119との間を電気的に絶縁している。 The casing main body 133 includes a low resistance portion 138 including a concave curved surface 135, a magnetoelectric conversion element 118, and a drive voltage terminal 120 as portions other than the low resistance portion 138, as in the casing main body 33 according to the second embodiment. And an insulating portion 139 that covers the periphery of the signal output terminal 121. The low resistance portion 138 is formed using, for example, a conductive resin material as a low resistance material. A ground terminal 119 is implanted in the low resistance portion 138, and both are electrically connected. On the other hand, the insulating part 139 is formed of an insulating resin material as an insulating material. A magnetoelectric conversion element 118, a drive voltage terminal 120, and a signal output terminal 121 are embedded in the insulating portion 139. The insulating portion 139 electrically insulates the drive voltage terminal 120 and the signal output terminal 121 from the ground terminal 119.
 帯電防止手段140は、ケーシング132および可動体124が触れ合って生じる帯電を防止している。この帯電防止手段140では、ケーシング本体133の低抵抗部138と可動体124とを低抵抗材料を用いて形成している。これにより、帯電防止手段140は、低抵抗材料によってケーシング132および可動体124の帯電を防止することができ、仮に帯電したときでも直ぐに除電することができる。 Antistatic means 140 prevents charging that occurs when casing 132 and movable body 124 come into contact with each other. In the antistatic means 140, the low resistance portion 138 and the movable body 124 of the casing body 133 are formed using a low resistance material. Thereby, the antistatic means 140 can prevent the casing 132 and the movable body 124 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
 第7の実施の形態では、凹状曲面135は楕円体面135Aと半球面135Bとを組み合わせた異方性曲面によって形成したから、半割り形状の楕円体面のみによって形成した場合に比べて、可動体124と凹状曲面135との接触面積を少なくして、これらの摩擦抵抗を小さくすることができる。このため、傾斜角度θに対する可動体124の応答性を高め、傾斜角度θの検出精度を向上することができる。なお、第7の実施の形態でも第1,第2,第4,第6の実施の形態と同様の作用効果を得ることができる。 In the seventh embodiment, the concave curved surface 135 is formed by an anisotropic curved surface combining the ellipsoidal surface 135A and the hemispherical surface 135B. And the concave curved surface 135 can be reduced to reduce the frictional resistance. For this reason, the responsiveness of the movable body 124 with respect to the inclination angle θ can be improved, and the detection accuracy of the inclination angle θ can be improved. In the seventh embodiment, the same operational effects as those of the first, second, fourth, and sixth embodiments can be obtained.
 なお、前記第6,第7の実施の形態では、面取り部127を備えた可動体124を用いる構成としたが、第2の実施の形態による可動体40と同様に、面取り部を省いた可動体を用いる構成としてもよい。また、前記第6,第7の実施の形態でも、第4の実施の形態による凹状曲面と同様に、凹状曲面の最深部には平坦面となった底面部を形成する構成としてもよい。 In the sixth and seventh embodiments, the movable body 124 having the chamfered portion 127 is used. However, like the movable body 40 according to the second embodiment, the movable body without the chamfered portion is used. It is good also as a structure using a body. Also, in the sixth and seventh embodiments, similarly to the concave curved surface according to the fourth embodiment, a bottom surface portion that is a flat surface may be formed at the deepest portion of the concave curved surface.
 次に、図26は本発明の第8の実施の形態を示している。そして、本実施の形態の特徴は、可動体が定常位置にあるときに、北半球で使用する場合には前記可動体の滑動面をN極に磁化すると共に上面をS極に磁化し、南半球で使用する場合には前記可動体の滑動面をS極に磁化すると共に上面をN極に磁化したことにある。なお、本実施の形態では、前記第4の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 26 shows an eighth embodiment of the present invention. The feature of the present embodiment is that when the movable body is in a steady position, when used in the northern hemisphere, the sliding surface of the movable body is magnetized to the N pole and the upper surface is magnetized to the S pole. In use, the sliding surface of the movable body is magnetized to the south pole and the upper surface is magnetized to the north pole. In the present embodiment, the same components as those in the fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 傾斜センサ151は、第4の実施の形態による傾斜センサ71とほぼ同様に、ケーシング72、磁電変換素子78、可動体152によって構成されている。 The inclination sensor 151 is configured by a casing 72, a magnetoelectric conversion element 78, and a movable body 152 in substantially the same manner as the inclination sensor 71 according to the fourth embodiment.
 可動体152は、低抵抗な磁性材料を用いて形成され、略半球状のマグネット(永久磁石)に形成されている。この可動体152は、底部側に下向きの凸状曲面からなる滑動面153が形成されると共に、上部側に平坦面となった上面154が形成されている。 The movable body 152 is formed using a low-resistance magnetic material, and is formed into a substantially hemispherical magnet (permanent magnet). The movable body 152 has a sliding surface 153 formed of a downward convex curved surface on the bottom side and an upper surface 154 that is a flat surface on the upper side.
 また、可動体152の上面周縁部分152Bは円弧状にR面取りが施され、面取り部155が形成されている。さらに、可動体152には、上面154の中央側に位置して略円形に窪んだ凹陥部156が形成されている。 Also, the upper surface peripheral portion 152B of the movable body 152 is rounded in an arc shape to form a chamfered portion 155. Further, the movable body 152 is formed with a recessed portion 156 that is located on the center side of the upper surface 154 and is recessed in a substantially circular shape.
 可動体152は、滑動面153を下向きにしてケーシング72の可動体収容空間76に収容されている。このとき、可動体152は、下向きに突出した半球形状をなしているから、その重量バランスに基づいて上面154が水平な状態で静止する。 The movable body 152 is accommodated in the movable body accommodating space 76 of the casing 72 with the sliding surface 153 facing downward. At this time, since the movable body 152 has a hemispherical shape protruding downward, the upper surface 154 is stationary in a horizontal state based on the weight balance.
 なお、地球には、南側から北側に向かう地磁気ベクトルが、図27(a)に示すように生じている。赤道付近を除いて、地磁気ベクトルは地表面(水平面)に対して平行ではなく、地表面に対して斜めに交わっている。具体的には、地磁気ベクトルは、図27(b)に示すように北半球側では地表面に向かって突き刺さる方向であり、南半球側では地表面から出て行く方向である(図示せず)。地表面と地磁気ベクトルとがなす角度を、伏角という。伏角αは、地磁気ベクトルが地表面に向かって突き刺さる方向の場合がプラスに、地表面から出ていく方向の場合がマイナスに定義される。このため、伏角αは、北半球側ではプラスで、北の磁極に近付くに従って+90°に近付く。また、南半球側ではマイナスで、南の磁極に近付くに従って-90°に近付く。 Note that a geomagnetic vector from the south side to the north side is generated on the earth as shown in FIG. Except for the vicinity of the equator, the geomagnetic vectors are not parallel to the ground surface (horizontal plane), but are oblique to the ground surface. Specifically, as shown in FIG. 27B, the geomagnetic vector is a direction that pierces the ground surface on the northern hemisphere side, and a direction that exits from the ground surface on the southern hemisphere side (not shown). The angle between the ground surface and the geomagnetic vector is called the dip angle. The dip angle α is defined as positive when the geomagnetic vector is pierced toward the ground surface and negative when it is the direction leaving the ground surface. Therefore, the dip angle α is positive on the northern hemisphere side, and approaches + 90 ° as it approaches the north magnetic pole. It is negative on the southern hemisphere side and approaches -90 ° as it approaches the south magnetic pole.
 可動体152は、北半球側で使用する磁束検知センサにおいては、滑動面153がN極に、上面154がS極となるように、また、南半球側で使用する磁束検知センサにおいては、滑動面153がS極に、上面154がN極となるように、滑動面153と上面154とが互いに逆極性になるように磁化されている。 In the magnetic flux detection sensor used on the northern hemisphere side, the movable body 152 is configured such that the sliding surface 153 is the north pole and the upper surface 154 is the south pole, and in the magnetic flux detection sensor used on the southern hemisphere side, the sliding surface 153 is. Are magnetized so that the sliding surface 153 and the upper surface 154 have opposite polarities so that the upper surface 154 becomes the N pole.
 また、可動体152の厚さが厚い頂点部分152Aの周囲での磁束密度が高くなると共に、厚さが薄い上面周縁部分152Bに近付くに従って漸次磁束密度が低くなっている。 Also, the magnetic flux density around the apex portion 152A where the thickness of the movable body 152 is thicker increases, and the magnetic flux density gradually decreases as the thickness approaches the thin upper surface peripheral portion 152B.
 帯電防止手段157は、図26に示すように、ケーシング72および可動体152が触れ合って生じる帯電を防止している。この帯電防止手段157では、ケーシング本体73の低抵抗部82と可動体152とを低抵抗材料を用いて形成している。これにより、帯電防止手段157は、低抵抗材料によってケーシング72および可動体152の帯電を防止することができ、仮に帯電したときでも直ぐに除電することができる。 As shown in FIG. 26, the antistatic means 157 prevents electrification that occurs when the casing 72 and the movable body 152 come into contact with each other. In the antistatic means 157, the low resistance portion 82 and the movable body 152 of the casing body 73 are formed using a low resistance material. As a result, the antistatic means 157 can prevent the casing 72 and the movable body 152 from being charged by the low resistance material, and can immediately remove the charge even if it is temporarily charged.
 次に、北半球側で使用することを前提として、滑動面153をN極、上面154をS極に磁化した可動体152を用いた傾斜センサ151と、図29に示す、滑動面163をS極、上面164をN極に磁化した可動体162を用いた傾斜センサ161とを比較する。なお、図29は、第4の実施の形態において、第8の実施の形態とは可動体162における磁化を逆極性にした傾斜センサ161を示している。即ち、傾斜センサ151と傾斜センサ161とは、可動体における磁化の極性以外は、全く同じである。このため、図29中で、第8の実施の形態と対応する構成要素の符号には「a」を付し、その説明を省略する。 Next, on the assumption that it is used on the northern hemisphere side, an inclination sensor 151 using a movable body 152 in which the sliding surface 153 is magnetized to the N pole and the upper surface 154 is magnetized to the S pole, and the sliding surface 163 shown in FIG. The inclination sensor 161 using the movable body 162 having the upper surface 164 magnetized to the N pole will be compared. FIG. 29 shows a tilt sensor 161 in the fourth embodiment, in which the magnetization of the movable body 162 is opposite in polarity to that of the eighth embodiment. That is, the inclination sensor 151 and the inclination sensor 161 are exactly the same except for the polarity of magnetization in the movable body. For this reason, in FIG. 29, “a” is given to the reference numerals of the constituent elements corresponding to the eighth embodiment, and the description thereof is omitted.
 可動体152における磁化の極性は地磁気ベクトルの鉛直成分と同じであるが、可動体162における磁化の極性は地磁気ベクトルの鉛直成分と逆方向になる。 The polarity of magnetization in the movable body 152 is the same as the vertical component of the geomagnetic vector, but the polarity of magnetization in the movable body 162 is opposite to the vertical component of the geomagnetic vector.
 方位磁針が自由に回転して、方位磁針のN極が磁北を、またS極が磁南を向くように、一般に、磁場のなかに磁石を置くと、磁場と磁石の極性を一致させるような磁力が発生する。従って、図29に示すように、地磁気ベクトルの鉛直成分と逆向きに磁化されている可動体162には、可動体162の向きを引っくり返そうとする磁力F2が作用する。一方、地磁気ベクトルの鉛直成分と同方向に磁化されている可動体152にも、地磁気ベクトルによる磁力F1が作用する。しかし、図28に示すように、この磁力F1は可動体152を引っくり返そうとする方向には作用しない。 In general, when a magnet is placed in a magnetic field such that the azimuth needle rotates freely and the north pole of the azimuth needle points to magnetic north and the south pole faces southward, the magnetic field and the polarity of the magnet are matched. Magnetic force is generated. Therefore, as shown in FIG. 29, a magnetic force F2 that tries to turn over the movable body 162 acts on the movable body 162 that is magnetized in the direction opposite to the vertical component of the geomagnetic vector. On the other hand, the magnetic force F1 due to the geomagnetic vector also acts on the movable body 152 that is magnetized in the same direction as the vertical component of the geomagnetic vector. However, as shown in FIG. 28, the magnetic force F1 does not act in a direction in which the movable body 152 is turned over.
 傾斜センサ151,161を小型化しようとすると、これに伴って可動体152,162の可動体収容空間76,76aが狭くなる。この結果、一旦傾けた傾斜センサ151,161を水平状態(定常状態)に戻して、可動体152,162を定常位置に復帰させようとしたときに、可動体162の場合は、可動体162に作用する磁力F2によって可動体収容空間76aの内部で傾いて、可動体収容空間76aに引っ掛かってしまい、定常状態に戻らない状態が生じることがある。一方、可動体152の場合は、可動体152には引っくり返そうとする磁力F2が作用しないため、可動体収容空間76を狭く形成しても可動体収容空間76に引っ掛かってしまい、定常状態に戻らないという状態が生じにくい。 When the inclination sensors 151 and 161 are to be reduced in size, the movable body accommodating spaces 76 and 76a of the movable bodies 152 and 162 are reduced accordingly. As a result, when the tilt sensors 151 and 161 once tilted are returned to the horizontal state (steady state) and the movable bodies 152 and 162 are returned to their steady positions, the movable body 162 is moved to the movable body 162. The acting magnetic force F2 may be inclined inside the movable body accommodating space 76a and caught by the movable body accommodating space 76a, and a state may not occur that does not return to the steady state. On the other hand, in the case of the movable body 152, since the magnetic force F2 to be turned over does not act on the movable body 152, even if the movable body accommodating space 76 is formed narrow, it is caught in the movable body accommodating space 76, and is in a steady state. It is unlikely that the situation will not return.
 なお、第8の実施の形態は、第4の実施の形態に適用した場合を例に挙げて説明したが、第1~第3の実施の形態に適用してもよく、第5~第7の実施の形態に適用してもよい。 Although the eighth embodiment has been described by taking the case where it is applied to the fourth embodiment as an example, it may be applied to the first to third embodiments, and the fifth to seventh embodiments. It may be applied to the embodiment.
 また、前記第4~第8の実施の形態では、第2の実施の形態による帯電防止手段43とほぼ同様な帯電防止手段89,105,129,140,157を備える構成としたが、第1,第3の実施の形態による帯電防止手段15,61を備える構成としてもよい。 In the fourth to eighth embodiments, the antistatic means 89, 105, 129, 140, and 157 substantially the same as the antistatic means 43 according to the second embodiment are provided. The antistatic means 15 and 61 according to the third embodiment may be provided.
 また、前記第4~第8の実施の形態では、可動体84,100,124,152の上面周縁部分84B,100B,124B,152Bに断面円弧状の面取り部87,103,127,155を設ける構成とした。しかし、本発明はこれに限らず、例えば図30に示す第1の変形例による傾斜センサ171のように、可動体172の上面周縁部分172BにはC面取りを施して断面直線状の面取り部175を設ける構成としてもよい。この場合、可動体172は、頂点部分172Aが下側に突出した滑動面173と平坦な上面174とを備えるものである。 In the fourth to eighth embodiments, chamfered portions 87, 103, 127, and 155 having arcuate cross sections are provided on the upper surface peripheral portions 84B, 100B, 124B, and 152B of the movable bodies 84, 100, 124, and 152, respectively. The configuration. However, the present invention is not limited to this. For example, like the inclination sensor 171 according to the first modification shown in FIG. 30, the upper peripheral portion 172B of the movable body 172 is chamfered to provide a chamfered portion 175 having a linear cross section. It is good also as a structure which provides. In this case, the movable body 172 includes a sliding surface 173 having a vertex portion 172A protruding downward and a flat upper surface 174.
 また、可動体172の面取り部175は、可動体172の上側に向かうに従って、可動体172の径方向外側から内側に向けて傾斜した円錐側面を形成する構成としたが、例えば可動体172の高さ方向と平行な円周面を形成してもよい。 Further, the chamfered portion 175 of the movable body 172 is configured to form a conical side surface that is inclined inward from the radially outer side of the movable body 172 toward the upper side of the movable body 172. A circumferential surface parallel to the vertical direction may be formed.
 また、前記各実施の形態では、可動体12,40,58,84,100,124,152は半球面からなる滑動面13,41,59,85,101,125,153の曲率半径に近い厚さ寸法を有する構成とした。しかし、本発明はこれに限らず、例えば図31に示す第2の変形例による傾斜センサ181のように、所望な磁束密度の分布が得られる範囲内で、可動体182は半球面からなる滑動面183の曲率半径よりも小さい厚さ寸法(例えば曲率半径の半分程度)を有する構成としてもよい。この場合、可動体182は、頂点部分182Aが下側に突出した滑動面183と平坦な上面184とを備え、頂点部分182Aから上面周縁部分182Bに近付くに従って、その厚さ寸法が漸次小さくなるものである。また、転動が防止できる範囲内で、可動体は、滑動面の曲率半径よりも大きな厚さ寸法を有する構成としてもよい。 Further, in each of the above embodiments, the movable bodies 12, 40, 58, 84, 100, 124, 152 have a thickness close to the radius of curvature of the sliding surfaces 13, 41, 59, 85, 101, 125, 153 made of a hemispherical surface. It was set as the structure which has a size. However, the present invention is not limited to this, and the movable body 182 is made of a hemispherical surface within a range in which a desired magnetic flux density distribution can be obtained, such as the tilt sensor 181 according to the second modification shown in FIG. The surface 183 may have a thickness dimension smaller than the radius of curvature (for example, about half of the radius of curvature). In this case, the movable body 182 includes a sliding surface 183 having a vertex portion 182A protruding downward and a flat upper surface 184, and the thickness dimension thereof gradually decreases as the vertex portion 182A approaches the upper surface peripheral portion 182B. It is. Further, the movable body may have a thickness dimension larger than the radius of curvature of the sliding surface within a range in which rolling can be prevented.
 また、前記第4~第8の実施の形態では、可動体84,100,124,152には上面86,102,126,154の中央部分に位置して円柱状に窪んだ凹陥部88,104,128,156を設ける構成とした。しかし、本発明はこれに限らず、例えば図32に示す第3の変形例による傾斜センサ191のように、可動体192には上面194の中央部分に位置してボウル状に窪んだ凹陥部195を設ける構成としてもよい。この場合でも、可動体192は、半球面からなる滑動面193を備えると共に、頂点部分192Aから上面周縁部分192Bに近付くに従って、その厚さ寸法が漸次小さくなるのが好ましい。 In the fourth to eighth embodiments, the movable bodies 84, 100, 124, 152 are located in the central part of the upper surfaces 86, 102, 126, 154 and are recessed in the form of cylinders 88, 104. 128, 156 are provided. However, the present invention is not limited to this. For example, like the tilt sensor 191 according to the third modification shown in FIG. 32, the movable body 192 is located at the center of the upper surface 194 and is recessed in a bowl shape. It is good also as a structure which provides. Even in this case, it is preferable that the movable body 192 includes the sliding surface 193 formed of a hemispherical surface, and the thickness dimension gradually decreases as the apex portion 192A approaches the upper surface peripheral portion 192B.
 また、前記第1~第7の実施の形態では、可動体12,40,58,84,100,124はマグネットによって構成した。しかし、本発明はこれに限らず、図33に示す第4の変形例による傾斜センサ201のように、可動体202とは別個に磁束φの発生源となるマグネット205をケーシング32′に設ける構成としてもよい。この場合、可動体202は、磁性材料によって形成されるものの、着磁されている必要はない。また、可動体202は、半球面からなる滑動面203と平坦な上面204とを備え、頂点部分202Aから上面周縁部分202Bに近付くに従って、その厚さ寸法が漸次小さくなる。さらに、マグネット205は、ケーシング32′の蓋体34′に設けると共に、可動体202の滑動面203を介して磁電変換素子8に磁束密度を印加するために、例えば可動体202を挟んで磁電変換素子8とは反対側となる位置に配置するものである。 In the first to seventh embodiments, the movable bodies 12, 40, 58, 84, 100, and 124 are configured by magnets. However, the present invention is not limited to this, and a configuration in which a magnet 205 serving as a generation source of the magnetic flux φ is provided in the casing 32 ′ separately from the movable body 202, as in the tilt sensor 201 according to the fourth modification shown in FIG. 33. It is good. In this case, the movable body 202 is formed of a magnetic material, but does not need to be magnetized. The movable body 202 includes a sliding surface 203 formed of a hemispherical surface and a flat upper surface 204, and the thickness dimension gradually decreases as the apex portion 202A approaches the upper surface peripheral edge portion 202B. Further, the magnet 205 is provided on the lid 34 ′ of the casing 32 ′, and in order to apply a magnetic flux density to the magnetoelectric conversion element 8 via the sliding surface 203 of the movable body 202, for example, the magnetoelectric conversion is sandwiched between the movable body 202. It is arranged at a position opposite to the element 8.
 また、前記各実施の形態では、可動体12,40,58,84,100,124,152はその全体を磁性体材料を用いて形成するものとした。しかし、本発明はこれに限らず、可動体は、例えば磁性体材料をインサートした状態で半球状をなす外形部分を非磁性の樹脂材料を用いて形成する構成としてもよい。 Further, in each of the above embodiments, the movable bodies 12, 40, 58, 84, 100, 124, and 152 are all formed using a magnetic material. However, the present invention is not limited to this, and the movable body may be configured such that, for example, a hemispherical outer shape is formed using a non-magnetic resin material with a magnetic material inserted.
 さらに、前記各実施の形態では、磁束検知センサをケーシング2,32,52,72,92,112,132の傾斜角度θを検出する傾斜センサ1,31,51,71,91,111,131,151に適用した場合を例に挙げて説明したが、例えばケーシングが所望の傾斜角度だけ傾いたときに、スイッチのオン、オフを切り換える傾斜スイッチに適用してもよい。 Further, in each of the above embodiments, the magnetic flux detection sensors are tilt sensors 1, 31, 51, 71, 91, 111, 131, which detect the tilt angle θ of the casings 2, 32, 52, 72, 92, 112, 132. However, the present invention may be applied to a tilt switch that switches on / off of the switch when the casing is tilted by a desired tilt angle, for example.
 1,31,51,71,91,111,131,151,161,171,181,191,201 傾斜センサ(磁束検知センサ)
 2,32,52,72,92,112,132,32′ ケーシング(非磁性容器)
 5,35,55,75,95,115,135 凹状曲面
 6,36,56,76,76a,96,116,136 可動体収容空間
 8,78,118 磁電変換素子(磁束密度検知手段)
 12,40,58,84,100,124,152,162,172,182,192,202 可動体
 12A,40A,58A,84A,100A,124A,152A,172A,182A,192A,202A 頂点部分
 12B,40B,58B,84B,100B,124B,152B,172B,182B,192B,202B 上面周縁部分
 13,41,59,85,101,125,153,163,173,183,193,203 滑動面
 14,42,60,86,102,126,154,164,174,184,194,204 上面
 15,43,61,89,105,129,140,157 帯電防止手段
 15A,15B 帯電防止コーティング膜
 38,82,98,122,138 低抵抗部
 87,103,127,155,175 面取り部
1, 31, 51, 71, 91, 111, 131, 151, 161, 171, 181, 191, 201 Tilt sensor (magnetic flux detection sensor)
2,32,52,72,92,112,132,32 'casing (non-magnetic container)
5, 35, 55, 75, 95, 115, 135 Concave curved surface 6, 36, 56, 76, 76a, 96, 116, 136 Movable body accommodating space 8, 78, 118 Magnetoelectric conversion element (magnetic flux density detecting means)
12, 40, 58, 84, 100, 124, 152, 162, 172, 182, 192, 202 Movable body 12A, 40A, 58A, 84A, 100A, 124A, 152A, 172A, 182A, 192A, 202A Vertex portion 12B, 40B, 58B, 84B, 100B, 124B, 152B, 172B, 182B, 192B, 202B Upper surface peripheral portion 13, 41, 59, 85, 101, 125, 153, 163, 173, 183, 193, 203 Sliding surface 14, 42 , 60, 86, 102, 126, 154, 164, 174, 184, 194, 204 Upper surface 15, 43, 61, 89, 105, 129, 140, 157 Antistatic means 15A, 15B Antistatic coating film 38, 82, 98, 122, 138 Low resistance part 87, 103, 127 , 155,175 Chamfer

Claims (12)

  1.  底部側に形成された下向きの凸状曲面からなる滑動面と該滑動面の上部側に形成された水平面からなる上面とを備えた可動体と、該可動体の滑動面を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、
     前記可動体および前記非磁性容器が触れ合って生じる帯電を防止する帯電防止手段を備え、
     前記可動体の滑動面と前記磁束密度検知手段とを対向配置し、前記滑動面を介して前記磁束密度検知手段に磁束を印加すると共に、
     前記可動体における前記滑動面と前記上面とが交差する上面周縁には、当該上面周縁における磁束密度の集中を緩和する面取り部を設け、
     前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、
     前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としてなる磁束検知センサ。
    A movable body having a sliding surface formed of a downward convex curved surface formed on the bottom side and a top surface formed of a horizontal surface formed on the upper side of the sliding surface, and slidably supports the sliding surface of the movable body A magnetic flux detection sensor comprising a non-magnetic container having a movable body accommodating space having an upward concave curved surface, and a magnetic flux density detection means provided in the non-magnetic container for detecting a change in magnetic flux density caused by sliding of the movable body. And
    Comprising an antistatic means for preventing electrification caused by contact between the movable body and the non-magnetic container,
    The sliding surface of the movable body and the magnetic flux density detection means are arranged to face each other, and a magnetic flux is applied to the magnetic flux density detection means through the sliding surface,
    A chamfered portion that relaxes the concentration of magnetic flux density at the periphery of the upper surface is provided on the periphery of the upper surface where the sliding surface and the upper surface intersect in the movable body,
    When the nonmagnetic container is tilted from a horizontal state, the movable body is displaced from a steady position along the concave curved surface of the nonmagnetic container,
    When the nonmagnetic container returns to a horizontal state, the movable body is configured to return to a steady position along the concave curved surface of the nonmagnetic container.
  2.  底部側に下向きの半球面からなる滑動面が形成された半球状の可動体と、該可動体の滑動面を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、
     前記可動体および前記非磁性容器が触れ合って生じる帯電を防止する帯電防止手段を備え、
     前記可動体の滑動面と前記磁束密度検知手段とを対向配置し、前記滑動面を介して前記磁束密度検知手段に磁束を印加すると共に、
     前記可動体の上面周縁には、当該上面周縁における磁束密度の集中を緩和する面取り部を設け、
     前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、
     前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としてなる磁束検知センサ。
    A non-magnetic container comprising a hemispherical movable body having a sliding surface composed of a downward-facing hemispherical surface on the bottom side, and a movable body accommodating space having an upward concave curved surface that slidably supports the sliding surface of the movable body And a magnetic flux detection sensor provided in the nonmagnetic container and detecting a change in magnetic flux density caused by sliding of the movable body,
    Comprising an antistatic means for preventing electrification caused by contact between the movable body and the non-magnetic container,
    The sliding surface of the movable body and the magnetic flux density detection means are arranged to face each other, and a magnetic flux is applied to the magnetic flux density detection means through the sliding surface,
    A chamfered portion for relaxing the concentration of magnetic flux density at the upper surface periphery is provided on the upper surface periphery of the movable body,
    When the nonmagnetic container is tilted from a horizontal state, the movable body is displaced from a steady position along the concave curved surface of the nonmagnetic container,
    When the nonmagnetic container returns to a horizontal state, the movable body is configured to return to a steady position along the concave curved surface of the nonmagnetic container.
  3.  底部側に形成された下向きの凸状曲面からなる滑動面と該滑動面の上部側に形成された水平面からなる上面とを備えた可動体と、該可動体の滑動面を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、
     前記可動体および前記非磁性容器が触れ合って生じる帯電を防止する帯電防止手段を備え、
     前記可動体の滑動面と前記磁束密度検知手段とを対向配置し、
     前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、
     前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としてなる磁束検知センサ。
    A movable body having a sliding surface formed of a downward convex curved surface formed on the bottom side and a top surface formed of a horizontal surface formed on the upper side of the sliding surface, and slidably supports the sliding surface of the movable body A magnetic flux detection sensor comprising a non-magnetic container having a movable body accommodating space having an upward concave curved surface, and a magnetic flux density detection means provided in the non-magnetic container for detecting a change in magnetic flux density caused by sliding of the movable body. And
    Comprising an antistatic means for preventing charging that occurs when the movable body and the non-magnetic container touch each other;
    The sliding surface of the movable body and the magnetic flux density detecting means are arranged to face each other.
    When the nonmagnetic container is tilted from a horizontal state, the movable body is displaced from a steady position along the concave curved surface of the nonmagnetic container,
    When the nonmagnetic container returns to a horizontal state, the movable body is configured to return to a steady position along the concave curved surface of the nonmagnetic container.
  4.  底部側に下向きの半球面からなる滑動面が形成された半球状の可動体と、該可動体の滑動面を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、
     前記可動体および前記非磁性容器が触れ合って生じる帯電を防止する帯電防止手段を備え、
     前記可動体の滑動面と前記磁束密度検知手段とを対向配置し、
     前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、
     前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としてなる磁束検知センサ。
    A non-magnetic container comprising a hemispherical movable body having a sliding surface composed of a downward-facing hemispherical surface on the bottom side, and a movable body accommodating space having an upward concave curved surface that slidably supports the sliding surface of the movable body And a magnetic flux detection sensor provided in the nonmagnetic container and detecting a change in magnetic flux density caused by sliding of the movable body,
    Comprising an antistatic means for preventing charging that occurs when the movable body and the non-magnetic container touch each other;
    The sliding surface of the movable body and the magnetic flux density detecting means are arranged to face each other.
    When the nonmagnetic container is tilted from a horizontal state, the movable body is displaced from a steady position along the concave curved surface of the nonmagnetic container,
    When the nonmagnetic container returns to a horizontal state, the movable body is configured to return to a steady position along the concave curved surface of the nonmagnetic container.
  5.  底部側に滑動面が形成された可動体と、該可動体の滑動面を滑動自在に支持する上向きの凹状曲面を有する可動体収容空間を備えた非磁性容器と、該非磁性容器に設けられ前記可動体の滑動によって生じる磁束密度の変化を検知する磁束密度検知手段とを有する磁束検知センサであって、
     前記可動体および前記非磁性容器が触れ合って生じる帯電を防止する帯電防止手段を備え、
     前記非磁性容器が水平状態から傾いたときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置から変位し、
     前記非磁性容器が水平状態に戻ったときには、前記可動体は前記非磁性容器の凹状曲面に沿って定常位置に復帰する構成としてなる磁束検知センサ。
    A movable body having a sliding surface formed on the bottom side; a nonmagnetic container having a movable body containing space having an upward concave curved surface that slidably supports the sliding surface of the movable body; A magnetic flux detection sensor having magnetic flux density detection means for detecting a change in magnetic flux density caused by sliding of the movable body,
    Comprising an antistatic means for preventing charging that occurs when the movable body and the non-magnetic container touch each other;
    When the nonmagnetic container is tilted from a horizontal state, the movable body is displaced from a steady position along the concave curved surface of the nonmagnetic container,
    When the nonmagnetic container returns to a horizontal state, the movable body is configured to return to a steady position along the concave curved surface of the nonmagnetic container.
  6.  前記帯電防止手段は、前記可動体の滑動面および前記非磁性容器の凹状曲面に界面活性剤または導電性材料からなる帯電防止コーティング膜を形成してなる請求項1ないし5のいずれかに記載の磁束検知センサ。 6. The antistatic means according to claim 1, wherein an antistatic coating film made of a surfactant or a conductive material is formed on the sliding surface of the movable body and the concave curved surface of the nonmagnetic container. Magnetic flux detection sensor.
  7.  前記帯電防止手段は、前記非磁性容器の凹状曲面を含む部分と前記可動体とを低抵抗材料によって形成してなる請求項1ないし5のいずれかに記載の磁束検知センサ。 6. The magnetic flux detection sensor according to claim 1, wherein the antistatic means is formed by forming a portion including the concave curved surface of the non-magnetic container and the movable body from a low resistance material.
  8.  前記磁束密度検知手段は、グランド端子、駆動電圧端子および信号出力端子を有し、
     前記非磁性容器の低抵抗材料で形成された凹状曲面を含む部分以外は絶縁材料で形成してなり、
     該絶縁材料および前記低抵抗材料中に前記グランド端子を埋設して前記グランド端子と前記低抵抗材料とを電気的に接続し、
     前記絶縁材料中に、前記磁束密度検知手段と、前記駆動電圧端子および前記信号出力端子とを埋設して前記駆動電圧端子および前記信号出力端子と前記グランド端子とを電気的に絶縁した請求項7に記載の磁束検知センサ。
    The magnetic flux density detection means has a ground terminal, a drive voltage terminal and a signal output terminal,
    The nonmagnetic container is formed of an insulating material except for a portion including a concave curved surface formed of a low resistance material,
    The ground terminal is embedded in the insulating material and the low-resistance material to electrically connect the ground terminal and the low-resistance material,
    8. The magnetic flux density detection means, the drive voltage terminal, and the signal output terminal are embedded in the insulating material to electrically insulate the drive voltage terminal, the signal output terminal, and the ground terminal. The magnetic flux detection sensor described in 1.
  9.  前記帯電防止手段は、前記可動体および前記非磁性容器を帯電列が略同じ材料によって形成してなる請求項1ないし5のいずれかに記載の磁束検知センサ。 The magnetic flux detection sensor according to any one of claims 1 to 5, wherein the antistatic means comprises the movable body and the nonmagnetic container made of a material having substantially the same charge train.
  10.  前記可動体は、磁性材料を用いて形成され、前記滑動面と上面とが互いに逆極性となった状態で磁化した構成としてなる請求項1ないし5のいずれかに記載の磁束検知センサ。 6. The magnetic flux detection sensor according to claim 1, wherein the movable body is formed using a magnetic material and is magnetized in a state in which the sliding surface and the upper surface have opposite polarities.
  11.  北半球で使用する場合には前記可動体の滑動面をN極に磁化すると共に上面をS極に磁化し、南半球で使用する場合には前記可動体の滑動面をS極に磁化すると共に上面をN極に磁化してなる請求項10に記載の磁束検知センサ。 When used in the Northern Hemisphere, the sliding surface of the movable body is magnetized to the N pole and the upper surface is magnetized to the S pole. When used in the Southern Hemisphere, the sliding surface of the movable body is magnetized to the S pole and the upper surface is magnetized. The magnetic flux detection sensor according to claim 10, which is magnetized to the N pole.
  12.  前記磁束密度検知手段は、水平面の互いに直交するX軸方向およびY軸方向において、X軸方向に磁束を傾斜させたときの検出信号に比べてY軸方向に磁束を傾斜させたときの検出信号が大きな出力レベルとなる異方性を有し、
     前記可動体収容空間の凹状曲面は、前記磁束密度検知手段の異方性を補うために、X軸方向に比べてY軸方向に向けて前記可動体を大きく変位させる異方性曲面によって形成してなる請求項1ないし5のいずれに記載の磁束検知センサ。
    The magnetic flux density detecting means is a detection signal when the magnetic flux is tilted in the Y-axis direction compared to a detection signal when the magnetic flux is tilted in the X-axis direction in the X-axis direction and the Y-axis direction orthogonal to each other on the horizontal plane. Has anisotropy that results in a large output level,
    The concave curved surface of the movable body accommodating space is formed by an anisotropic curved surface that greatly displaces the movable body in the Y-axis direction compared to the X-axis direction in order to compensate for the anisotropy of the magnetic flux density detecting means. The magnetic flux detection sensor according to any one of claims 1 to 5.
PCT/JP2011/063838 2010-08-30 2011-06-16 Magnetic flux detection sensor WO2012029375A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-192117 2010-08-30
JP2010192117 2010-08-30
JP2011084469 2011-04-06
JP2011-084469 2011-04-06

Publications (1)

Publication Number Publication Date
WO2012029375A1 true WO2012029375A1 (en) 2012-03-08

Family

ID=45772487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063838 WO2012029375A1 (en) 2010-08-30 2011-06-16 Magnetic flux detection sensor

Country Status (1)

Country Link
WO (1) WO2012029375A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112942189A (en) * 2021-01-30 2021-06-11 成都华鼎市政工程有限公司 Anti-collision device for highway engineering safety management

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326520A (en) * 1986-07-21 1988-02-04 Tdk Corp Inclination sensor
JPH08261758A (en) * 1995-03-24 1996-10-11 Mitsuba Electric Mfg Co Ltd Inclination sensor
JPH11351863A (en) * 1998-06-05 1999-12-24 Citizen Electronics Co Ltd Tilt sensor and its manufacture
JP2004179312A (en) * 2002-11-26 2004-06-24 Shin Etsu Handotai Co Ltd Method for handling airtight container, and clean gloves
WO2007113939A1 (en) * 2006-04-06 2007-10-11 Panasonic Corporation Magnetism detecting circuit, magnetic sensor using the same, magnetic sphere position determining apparatus using them, and length/breadth determining sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326520A (en) * 1986-07-21 1988-02-04 Tdk Corp Inclination sensor
JPH08261758A (en) * 1995-03-24 1996-10-11 Mitsuba Electric Mfg Co Ltd Inclination sensor
JPH11351863A (en) * 1998-06-05 1999-12-24 Citizen Electronics Co Ltd Tilt sensor and its manufacture
JP2004179312A (en) * 2002-11-26 2004-06-24 Shin Etsu Handotai Co Ltd Method for handling airtight container, and clean gloves
WO2007113939A1 (en) * 2006-04-06 2007-10-11 Panasonic Corporation Magnetism detecting circuit, magnetic sensor using the same, magnetic sphere position determining apparatus using them, and length/breadth determining sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112942189A (en) * 2021-01-30 2021-06-11 成都华鼎市政工程有限公司 Anti-collision device for highway engineering safety management
CN112942189B (en) * 2021-01-30 2022-06-07 成都华川公路建设集团有限公司 Anti-collision device for highway engineering safety management

Similar Documents

Publication Publication Date Title
US9644994B2 (en) Magnetic sensor
US7958782B2 (en) Device with a magnetic sensor arrangement for detecting acceleration
US8829894B2 (en) Control device
EP1875251A1 (en) A device with a sensor arrangement
JP2000353051A (en) Method for pointing information and pointing device
WO2006106454A1 (en) A device with a sensor arrangement
JPH05505240A (en) Analog displacement sensor
JP4636211B1 (en) Magnetic flux detection sensor
WO2012029375A1 (en) Magnetic flux detection sensor
US7444872B2 (en) Acceleration sensor and magnetic disk drive apparatus
TW201043928A (en) Tilt detection sensor
WO2011125609A1 (en) Magnetic flux detection sensor
JP5024286B2 (en) Position detection device and vertical / horizontal detection sensor
JP4618424B2 (en) Tilt sensor
JP7258348B2 (en) fall detection sensor
US11085797B2 (en) Rotation detecting device, encoder, and motor
WO2006106458A1 (en) Multi-axis accelerometer with magnetic field detectors
JP2006214985A (en) Potentiometer
JP4526182B2 (en) Magnetic sensor unit
JP4327570B2 (en) Magnetic sensor unit
JP4252868B2 (en) Non-contact position sensor
JP2005069963A (en) Acceleration sensor
JP2001133286A (en) Revolution detection sensor
JP2005091013A (en) Magnetic type rotary position sensor
JP2000346611A (en) Rotation detecting sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP