WO2012028726A1 - Dispositif et procede pour caracteriser un faisceau laser - Google Patents

Dispositif et procede pour caracteriser un faisceau laser Download PDF

Info

Publication number
WO2012028726A1
WO2012028726A1 PCT/EP2011/065227 EP2011065227W WO2012028726A1 WO 2012028726 A1 WO2012028726 A1 WO 2012028726A1 EP 2011065227 W EP2011065227 W EP 2011065227W WO 2012028726 A1 WO2012028726 A1 WO 2012028726A1
Authority
WO
WIPO (PCT)
Prior art keywords
active medium
electromagnetic wave
laser beam
magnetic field
signal
Prior art date
Application number
PCT/EP2011/065227
Other languages
English (en)
Inventor
Geert Rikken
Rémi BATTESTI
Andrei Ben-Amar Baranga
Mathilde Fouche
Carlo Rizzo
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to US13/820,515 priority Critical patent/US20140145715A1/en
Priority to EP11749458.3A priority patent/EP2612158A1/fr
Publication of WO2012028726A1 publication Critical patent/WO2012028726A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1215Measuring magnetisation; Particular magnetometers therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for

Definitions

  • the invention relates to a device and a method that makes it possible in particular to characterize a pulsed laser beam of high energy or a continuous laser beam.
  • the present invention is used to measure the instantaneous power of a laser beam, or the total energy of a laser pulse and / or the polarization of the beam.
  • the power of high power lasers is measured by total or partial absorption of the laser beam. This leads to consuming the laser energy at the target used to perform the measurement. This results in a loss of energy of the beam and has the disadvantage of not being able to use the laser beam, simultaneously with the measurement of its energy or its power.
  • FIG. 1 shows the inverse Cotton-Sheep or ICME effect produced in a medium 1 by a laser beam propagating in the medium in the presence of a magnetic field transverse to the direction of a light beam.
  • active medium designates a material, a crystal, a glass, a gas, a liquid which, when subjected to a magnetic field, will have a reverse Cotton-Sheep effect. .
  • a laser beam will be used to mention an instantaneous power measurement of the beam, a power measurement or the determination of the polarization of the beam.
  • the invention relates to a device for measuring a magnetization generated within an active medium or to characterize a linearly polarized electromagnetic wave when said active medium exhibits an inverse Cotton-Sheep effect, characterized in that it comprises in combination at least the following elements:
  • means for producing a transverse magnetic field B t with respect to the direction of propagation of said electromagnetic wave
  • the measuring device makes it possible to characterize the electromagnetic wave by at least one of the following parameters: the instantaneous power of the electromagnetic wave, the integral power or the polarization of the electromagnetic wave. wave.
  • the electromagnetic wave is a pulsed laser beam and the measuring device characterizes the laser beam pulsed by at least one of the following parameters: the instantaneous power of a pulse of said laser beam, the integral power of a pulse of said laser beam, the polarization of said laser beam.
  • the electromagnetic wave is a continuous laser beam and the measuring device characterizes the laser beam by at least one of the following parameters: the instantaneous power of said laser beam, the integral power of said laser beam, the polarization of said laser beam; laser beam, the magnetic field being variable in time.
  • Said active medium is, for example, subjected to a static external magnetic field B ex t variable or constant over time.
  • the signal measuring device comprises, for example, at least one pickup type coil.
  • the signal measuring device may comprise at least two pickup type coils placed on either side of the active medium, the normal to their surface being oriented substantially parallel to the magnetic field B ex t.
  • the electronic signal measuring device translating the instantaneous energy value of the electromagnetic wave, or the value of the power of said electromagnetic wave comprises the following elements:
  • a summing and low noise amplifier operable to remove extraneous noise not corresponding to the signal associated with the inverse Cotton-Sheep effect, the summed and amplified signal being transmitted to
  • a high pass filter, then to an integrator before being transmitted to a display device and / or a storage memory.
  • the device comprises, for example, a rotating mount in which are disposed the active medium, the means for producing the magnetic field.
  • the device may include an optical matching system.
  • Said active medium is a TGG or Terbium Gallium crystal
  • the invention also relates to a method for measuring a magnetization generated within an active medium, when said active medium exhibits a Cotton-Sheep Inverse effect, the method being implemented within a device having one of the characteristics above, the method comprising at least the following steps:
  • measure the electrical signal translating the magnetization generated within said active medium by said electromagnetic wave.
  • the device according to the invention makes it possible to measure a magnetization generated within an active medium when the active medium has an inverse Cotton-Sheep effect.
  • the examples illustrated in the figures relate to an application to the characterization of a pulsed or continuous laser beam, but without departing from the scope of the invention can be applied in the case of a linearly polarized electromagnetic wave.
  • FIG. 2A schematizes an example of a given device in order to illustrate the elements of the device 1 according to the invention in the case of an application to the characterization of a pulsed laser beam.
  • an active medium 10 is disposed between two permanent magnets 1 1, 12 which provide a transverse static magnetic field B t oriented perpendicularly to the direction of propagation D
  • the pickup coils 14, 15 are, for example, placed on either side of the active medium 10.
  • the normal to their surface Au, Ai 5 is oriented parallel to the magnetic field B t .
  • the electrical signals Su, Sis generated at each of the coils are transmitted to an electronic measuring circuit, an exemplary embodiment of which is given in FIG. 2B.
  • the magnetic field B t is intrinsic to the material.
  • the device can also be used to characterize a continuous laser beam.
  • the transverse magnetic field intrinsic to the material B t or the magnetic field B ex t used, is a time-varying magnetic field whose temporal variation law is known. In this case, it is possible to measure the value of a constant or substantially constant power of the continuous laser beam.
  • the measuring device makes it possible to characterize the electromagnetic wave by at least one of the following parameters: the instantaneous power of the electromagnetic wave, the integral power or the polarization of the wave.
  • the shape and the number of turns of the coils are chosen as a function, for example, of the magnetic flux variation. It is possible to use planar-type pickup coils. It would also be possible to use coils having a curved surface which best follows the field lines of the external magnetic field.
  • the characterization of the laser beam or of an electromagnetic wave could be carried out using a single pickup coil or a number of coils greater than 2 depending on the application. .
  • the pickup coils can be connected to compensation coils making it possible to limit or even cancel parasitic effects.
  • the active medium 10 is a medium which exhibits an inverse Cotton-Sheep effect when it is subjected to an external magnetic field B ex t or to the intrinsic magnetic field B t in the case of a ferromagnetic medium or other media which do not need external solicitation. It is thus possible to use crystal or glass. Active liquid or gaseous media can also be envisaged.
  • the dimensions and the nature of the active medium will be chosen according to the desired application. For example, for use in the context of very intense lasers, it It is possible to choose an active medium coupled to an optical adaptation system of dimensions such that the energy density of the beam remains below the damage threshold of the active medium. The nature of the active medium may also be chosen according to the wavelength of the laser.
  • FIG. 2A shows an optical matching system 20, represented by an input lens 201 and an exit lens 202.
  • This system advantageously makes it possible to adapt the size of the pulsed or continuous laser beam to be characterized to the dimensions of the apparatus .
  • this adaptation system notably makes it possible to adapt the size of the laser beam to be characterized to the optical systems existing in the system.
  • the assembly comprising the active medium 1 0, the magnets 1 1, 1 2 and the coils 1 4, 1 5 can be positioned inside a rotating mount 30 which allows rotation relative to an axis AR parallel to the direction of propagation of the laser beam so as to adjust the angle ⁇ between the direction of the transverse magnetic field B T and the polarization of the laser, the value of the inverse Cotton-Sheep effect depends.
  • the ICME signal By measuring the ICME signal as a function of the angle ⁇ , it is possible to determine the laser polarization state, and in particular its ellipticity.
  • FIG. 2B represents an example of an electronic circuit 2 associated with the device for characterizing the pulsed laser beam.
  • the two pickup coils 1 4, 1 5 of FIG. 2A are connected to an adder and amplifier 40 of low noise whose function is to eliminate the parasitic noise that does not correspond to the signal associated with the Cotton-Sheep effect. reverse.
  • the summed and amplified signal S t is transmitted to a high-pass filter 41, then to an integrator 42 before being transmitted to a display device 43 and / or a storage memory 44.
  • This electronic circuit can without departing from the scope of the invention be implemented for application to a magnetization measurement generated within an active medium or to characterize a continuous laser beam.
  • the operating principle of the device according to the invention is, for example, the following: the device for characterizing a laser beam or an electromagnetic wave according to the invention is positioned on the optical path of the laser beam or the electromagnetic wave to be characterized (measurement of instantaneous power, total power and / or polarization).
  • the optical adaptation system when it is present is optimized so that the laser beam or the wave to be characterized keeps the characteristics at its desired first use after passing through the device in the active medium.
  • the optical adaptation system will be defined taking into account the characteristics of this electromagnetic wave.
  • One way of proceeding when one wishes to know the direction of the polarization of a linearly polarized pulsed or continuous laser beam is to use the rotating mount and maximize the value displayed on the device.
  • the mount is rotated until a maximum signal is displayed at the display.
  • the mount being graduated, its position gives the direction of the polarization of the beam. It is also possible to use this method to know the polarization of a linearly polarized electromagnetic wave.
  • the following example was obtained in the case of a pulsed laser, using as active medium a TGG crystal or terbium gallium garnet.
  • the example is illustrated in Figures 3A and 3B.
  • FIG. 3A represents a part of the measurement device constituting the measurement zone.
  • the signal coil 51 is brought into contact with the crystal 10 to be characterized, whereas the coil compensation 50 is arranged at a distance.
  • the characteristics and the shape of this double coil (signal and compensation) are chosen in such a way that any signal which does not result from the crystal is canceled.
  • the distance between the centers of each of the coils is, for example, 5 mm.
  • Each pickup coil is calibrated by measuring the signal obtained in a known modulated magnetic field.
  • the output signal of the coils is amplified by a fast low noise amplifier and filtered through a high pass filter. Two identical montages are used, on both sides of the crystal.
  • the laser beam passes through 2 polarizers 60, 61.
  • the second polarizer 61 fixes the polarization of the beam while the first polarizer 60 is used to change the power of the laser delivered to the TGG crystal by rotating its axis of rotation relative to the direction of polarization given by the first polarizer.
  • a waveguide 62 is placed after the polarizers to rotate the laser polarization as necessary.
  • follow-up mirrors 63 and a lens make it possible to deliver and focus the laser beam a few centimeters behind the TGG crystal.
  • the size of the crystal is 2 * 2 * 2 mm.
  • the shape of the crystal is a cube immersed in a magnetic field parallel to the direction [0, 0, 1].
  • the field value was in the range [0-2.5 T].
  • the vector k of light in this application is parallel to the direction [0, 0, 1] and perpendicular to the external magnetic field, that is to say parallel to the direction [0, 1, 0].
  • indicates a measured quantity for a polarization of the light parallel to the magnetic field and a siglel a quantity measured with a polarization of light perpendicular to the external field.
  • a typical laser pulse is represented with the corresponding signal detected by one of the two coil signals. Both signals are recorded on an oscilloscope with 1 GS / s.
  • the pulsed laser beam is controlled by extracting a small portion of the beam injected into the crystal with a beam splitter.
  • a diode fast is used to control the laser pulse.
  • the photodiode has been calibrated with respect to a device measuring the pulsed energy reaching the crystal.
  • the magnetism ICME in a TGG crystal can be defined as follows:
  • CICM denotes the constant of the Cotton Sheep Inverse effect specific to the active medium, Pd the power density of the light beam and B ex t the external magnetic field. The relation remains valid for a magnetic field intrinsic to the material.
  • This magnetization can be measured using a pick up coil if it varies over time. Indeed, the variation of the magnetization M (t) induces a potential difference V (t) at the terminals of the measuring coil according to the reference
  • g is the gain of the amplifier of the measuring coil.
  • P d is the density of the laser beam
  • B ex t is the transverse static magnetic field
  • b is a proportionality factor characterizing the ICME value. This factor depends on the properties of the medium which is illuminated by the laser beam and thus magnetized.
  • the ICME signal is proportional to the time derivative of the pulsed laser intensity as shown in FIG. 4A showing in a time axis diagram the value of the ICME signal and the value of the laser intensity.
  • FIG. 4B shows the magnetic flux density for a 2.5 T magnetic field value modifying the value of the pulsing energy of 0 to 0.250 J.
  • the data were obtained in two configurations of the laser polarization: one parallel to the magnetic field corresponding to the measured magnetic flux density Bp
  • the diameter of the laser spot in the crystal was 1.2 mm, corresponding to a laser energy density Pd in the range 0 - 2.2 x 10 13 W / m 2 .
  • Figure 4B shows that the magnetic flux density linearly depends on the laser power density.
  • V (t) -gxA xbx P. x- ⁇ * 1
  • the device according to the invention can combine three functionalities which, in the apparatus of the prior art known to the Applicant, are generally separated.
  • Another advantage provided by the device and the method according to the invention is to perform the measurements described above, without the need to extract or attenuate a portion of the beam.
  • the presented device can be inserted into an existing optical circuit without modifying it. It thus makes it possible to visualize the laser pulse and to measure its characteristics during the very use of the beam.
  • the set magnetic field and pickup coil can be arranged around a laser crystal, in order to measure temporal evolution of the power in the crystal.
  • Another possibility is to integrate the system into a Faraday isolator that becomes both a standard insulator and a power meter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

L'invention concerne un dispositif (1) et un procédé permettant de mesurer une aimantation générée au sein d'un milieu actif (10) ou caractériser une onde électromagnétique polarisée linéairement lorsque ledit milieu actif présente un effet Cotton-Mouton Inverse, caractérisé en ce qu'il comporte en combinaison au moins les éléments suivants : - un milieu actif (10) dans lequel se propage une onde électromagnétique polarisée linéairement, - un moyen de production (11, 12) d'un champ magnétique transverse Bt par rapport à la direction de propagation Dl de ladite onde électromagnétique, - un dispositif de mesure (2) du signal électrique adapté à traduire l'aimantation générée au sein dudit milieu actif (10) par ladite onde électromagnétique.

Description

DISPOSITIF ET PROCEDE POUR CARACTERISER UN FAISCEAU
LASER
L'invention concerne un dispositif et un procédé permettant notamment de caractériser un faisceau laser puisé de haute énergie ou encore un faisceau laser continu. Ainsi, la présente invention est utilisée pour mesurer la puissance instantanée d'un faisceau laser, ou l'énergie totale d'une impulsion laser et/ou la polarisation du faisceau.
Elle s'applique aussi lorsque l'on souhaite mesurer l'aimantation générée au sein d'un milieu actif présentant un effet Cotton-Mouton Inverse.
En général, la puissance des lasers de haute puissance est mesurée par absorption totale ou partielle du faisceau laser. Ceci conduit à consommer l'énergie du laser au niveau de la cible utilisée pour exécuter la mesure. Ceci se traduit par une perte d'énergie du faisceau et présente comme inconvénient de ne pas pouvoir utiliser le faisceau laser, simultanément à la mesure de son énergie ou de sa puissance.
Pour connaître la forme temporelle, il est connu d'extraire une partie du faisceau et de l'envoyer sur un autre appareil basé sur des photodiodes rapides. Pour déterminer la polarisation du faisceau laser il est nécessaire de posséder des polariseurs spécialement conçus pour les hautes puissances et d'effectuer la mesure de l'énergie de l'impulsion en fonction de la polarisation.
La figure 1 présente l'effet Cotton-Mouton inverse ou ICME produit dans un milieu 1 par un faisceau laser se propageant dans le milieu en présence d'un champ magnétique transverse à la direction d'un faisceau lumineux.
La publication de Zon.B.A intitulée « observation of inverse Cotton-Mouton effect in the magnetically ordered crystal (Lu, Bi)3(FE, Ga)5Oi2, publié au JEPT Let. 45(1987)5, pages 272-275 décrit l'effet de Cotton-Mouton inverse. Cette publication décrit la mesure de l'aimantation induite par un faisceau laser puisé dans un film magnétique qui se trouve dans un champ magnétique extérieur statique orienté parallèlement à la direction de propagation du faisceau laser puisé.
La publication de Marmo S.l intitulée « Electric field induced magnetization and inverse Cotton-Mouton effect in atomic gases », publiée dans Physics letters A, 202 (1995), pages 201 -205 divulgue la prédiction de l'effet Cotton-Mouton inverse dans les systèmes atomiques et moléculaires. Définitions des termes utilisés
Dans la suite de la description, l'expression « milieu actif >> désigne un matériau, un cristal, un verre, un gaz, un liquide qui, lorsqu'il est soumis à un champ magnétique, va présenter un effet Cotton-Mouton inverse.
Le terme « caractériser ou caractérisât! on >> d'un faisceau laser sera utilisé pour mentionner une mesure de puissance instantanée du faisceau, une mesure de puissance ou encore la détermination de la polarisation du faisceau.
L'invention concerne un dispositif permettant de mesurer une aimantation générée au sein d'un milieu actif ou caractériser une onde électromagnétique polarisée linéairement lorsque ledit milieu actif présente un effet Cotton-Mouton Inverse, caractérisé en ce qu'il comporte en combinaison au moins les éléments suivants :
un milieu actif dans lequel se propage une onde électromagnétique polarisée linéairement,
un moyen de production d'un champ magnétique transverse Bt, par rapport à la direction de propagation de ladite onde électromagnétique,
un dispositif de mesure du signal électrique traduisant l'aimantation générée au sein dudit milieu actif traversé par ladite onde électromagnétique. Dans le cas d'une onde électromagnétique, traversant un milieu actif, le dispositif de mesure permet de caractériser l'onde électromagnétique par au moins un des paramètres suivants : la puissance instantanée de l'onde électromagnétique, la puissance intégrale ou encore la polarisation de l'onde.
Selon un mode de réalisation, l'onde électromagnétique est un faisceau laser puisé et le dispositif de mesure caractérise le faisceau laser puisé par au moins un des paramètres suivants : la puissance instantanée d'une impulsion dudit faisceau laser, la puissance intégrale d'une impulsion dudit faisceau laser, la polarisation dudit faisceau laser.
Selon un autre mode de réalisation, l'onde électromagnétique est un faisceau laser continu et le dispositif de mesure caractérise le faisceau laser par au moins un des paramètres suivants : la puissance instantanée dudit faisceau laser, la puissance intégrale dudit faisceau laser, la polarisation dudit faisceau laser, le champ magnétique étant variable dans le temps.
Ledit milieu actif est, par exemple, soumis à un champ magnétique extérieur statique Bext variable ou constant dans le temps.
Le dispositif de mesure du signal comporte, par exemple, au moins une bobine de type pickup.
Le dispositif de mesures du signal peut comporter au moins deux bobines de type pickup placées de part et d'autre du milieu actif, la normale à leur surface, étant orientée sensiblement parallèlement au champ magnétique Bext.
Le dispositif de mesure électronique du signal traduisant la valeur d'énergie instantanée de l'onde électromagnétique, ou la valeur de la puissance de ladite onde électromagnétique comporte les éléments suivants :
un sommateur et amplificateur de bas bruit ayant pour fonction d'éliminer le bruit parasite ne correspondant pas au signal associé à l'effet Cotton-Mouton inverse, le signal sommé et amplifié étant transmis à
un filtre passe haut, puis à un intégrateur avant d'être transmis à un dispositif d'affichage et/ou à une mémoire de stockage.
Le dispositif comporte, par exemple, une monture tournante dans lequel sont disposés le milieu actif, les moyens de production du champ magnétique.
Le dispositif peut comporter un système d'adaptation optique. Ledit milieu actif est un cristal de TGG ou Terbium Gallium
Garnet.
L'invention concerne aussi un procédé pour mesurer une aimantation générée au sein d'un milieu actif, lorsque ledit milieu actif présente un effet Cotton-Mouton Inverse, le procédé étant mis en œuvre au sein d'un dispositif présentant l'une des caractéristiques précitées, le procédé comportant au moins les étapes suivantes :
transmettre dans un milieu actif une onde électromagnétique polarisée linéairement,
générer un champ magnétique transverse Bt par rapport à la direction de propagation D| de ladite onde électromagnétique,
mesurer le signal électrique traduisant l'aimantation générée au sein dudit milieu actif par ladite onde électromagnétique.
D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description d'un ou de plusieurs modes de réalisation donnés à titre illustratif et nullement limitatif annexés des figures qui représentent :
la figure 1 , une représentation de l'effet inverse de Cotton-Mouton,
la figure 2A, un exemple de dispositif de mesure selon l'invention, et la figure 2B, un exemple de circuit électronique associé,
les figures 3A et 3B, une variante de réalisation du dispositif de la figure 2A, et les figures 4A, 4B les résultats obtenus en utilisant un cristal de terbium gallium garnet.
De manière générale, le dispositif selon l'invention permet de mesurer une aimantation générée au sein d'un milieu actif lorsque le milieu actif présente un effet Cotton-Mouton Inverse. Les exemples illustrés sur les figures concernent une application à la caractérisation d'un faisceau laser puisé ou continu, mais peuvent sans sortir du cadre de l'invention s'appliquer dans le cas d'une onde électromagnétique polarisée linéairement.
La figure 2A schématise un exemple de dispositif donné afin d'illustrer les éléments du dispositif 1 selon l'invention dans le cas d'une application à la caractérisation d'un faisceau laser puisé.
Sur cette figure 2A un milieu actif 10, est disposé entre deux aimants permanents 1 1 , 12 qui fournissent un champ magnétique statique transverse Bt orienté perpendiculairement à la direction de propagation D| du faisceau laser 13 à caractériser, sous l'effet d'un champ magnétique extérieur. Deux bobines pickup 14, 15, par exemple, détectent le signal d'aimantation dû à la propagation du faisceau laser dans le milieu actif et à la présence du champ magnétique Bt. Ce signal d'aimantation est variable en fonction du temps. Les bobines pickup 14, 15 sont, par exemple, placées de part et d'autre du milieu actif 10. La normale à leur surface Au, Ai5, est orientée parallèlement au champ magnétique Bt. Les signaux électriques Su, Sis générés au niveau de chacune des bobines sont transmis à un circuit électronique de mesure dont un exemple de réalisation est donné à la figure 2B.
Dans le cas d'un milieu actif de type ferromagnétique, il n'est pas nécessaire d'utiliser un champ magnétique extérieur Bext pour obtenir l'effet inverse de Cotton-Mouton, le champ magnétique Bt est intrinsèque au matériau. Le dispositif peut aussi être utilisé pour caractériser un faisceau laser continu. Dans ce cas, le champ magnétique transverse intrinsèque au matériau Bt, ou le champ magnétique Bext utilisé, est un champ magnétique variable dans le temps, dont la loi de variation temporelle est connue. Dans ce cas, il est possible de mesurer la valeur d'une puissance constante ou sensiblement constante du faisceau laser continu.
Dans le cas d'une onde électromagnétique, traversant un milieu actif, le même dispositif s'applique. Le dispositif de mesure permet de caractériser l'onde électromagnétique par au moins un des paramètres suivants : la puissance instantanée de l'onde électromagnétique, la puissance intégrale ou encore la polarisation de l'onde.
La forme et le nombre de spires des bobines sont choisis en fonction par exemple de la variation de flux magnétique. Il est possible d'utiliser des bobines pickup de type planaire. Il serait aussi envisageable d'utiliser des bobines ayant une surface courbe qui suit au mieux les lignes de champ du champ magnétique extérieur.
L'exemple donné mentionne deux bobines, mais sans sortir du cadre de l'invention, on pourrait effectuer la caractérisation du faisceau laser ou d'une onde électromagnétique en utilisant une seule bobine pickup ou un nombre de bobines supérieur à 2 selon l'application. De même, comme il sera présenté en figure 3A, les bobines pickup peuvent être reliées à des bobines de compensation permettant de limiter, voire annuler des effets parasites.
Le milieu actif 10 est un milieu qui présente un effet Cotton- Mouton inverse lorsqu'il est soumis à un champ magnétique extérieur Bext ou bien au champ magnétique intrinsèque Bt dans le cas de milieu ferromagnétique ou d'autres milieux qui n'ont pas besoin de sollicitation extérieure. Il est ainsi possible d'utiliser du cristal ou du verre. Des milieux actifs liquides ou gazeux peuvent aussi être envisagés. Les dimensions et la nature du milieu actif seront choisies en fonction de l'application souhaitée. Par exemple, pour une utilisation dans le cadre des lasers très intenses, il est possible de choisir un milieu actif couplé à système d'adaptation optique de dimensions telles que la densité d'énergie du faisceau reste en dessous du seuil d'endommagement du milieu actif. La nature du milieu actif pourra aussi être choisie en fonction de la longueur d'onde du laser.
La figure 2A montre un système optique d'adaptation 20, représenté par une lentille d'entrée 201 et une lentille de sortie 202. Ce système permet avantageusement d'adapter la taille du faisceau laser puisé ou continu à caractériser aux dimensions de l'appareil. Lorsque le dispositif de caractérisation selon l'invention est positionné dans un système existant, ce système d'adaptation permet notamment d'adapter la taille du faisceau laser à caractériser aux systèmes optiques existants dans le système.
L'ensemble comprenant le milieu actif 1 0, les aimants 1 1 , 1 2 et les bobines 1 4, 1 5 peuvent être positionnés à l'intérieur d'une monture 30 tournante qui permet de tourner par rapport à un axe AR parallèle à la direction de propagation du faisceau laser de façon à régler l'angle δ entre la direction du champ magnétique transverse BT et la polarisation du laser dont la valeur de l'effet Cotton-Mouton inverse dépend. En mesurant le signal ICME en fonction de l'angle δ, on peut déterminer l'état de polarisation de laser, et en particulier son ellipticité.
La figure 2B représente un exemple de circuit électronique 2 associé au dispositif de caractérisation du faisceau laser puisé.
Dans cet exemple, les deux bobines pickup 1 4, 1 5 de la figure 2A sont reliées à un sommateur et amplificateur 40 de bas bruit ayant pour fonction d'éliminer le bruit parasite ne correspondant pas au signal associé à l'effet Cotton-Mouton inverse. Le signal sommé et amplifié St est transmis à un filtre passe haut 41 , puis à un intégrateur 42 avant d'être transmis à un dispositif d'affichage 43 et/ou à une mémoire 44 de stockage.
Ce circuit électronique peut sans sortir du cadre de l'invention être mis en œuvre pour l'application à une mesure d'aimantation générée au sein d'un milieu actif ou encore pour caractériser un faisceau laser continu. Le principe de fonctionnement du dispositif selon l'invention est, par exemple, le suivant : le dispositif de caractérisation d'un faisceau laser ou d'une onde électromagnétique selon l'invention est positionné sur le trajet optique du faisceau laser ou de l'onde électromagnétique à caractériser (mesure de la puissance instantanée, de la puissance totale et/ou de la polarisation). Le système optique d'adaptation lorsqu'il est présent est optimisé de façon telle que le faisceau laser ou l'onde à caractériser conserve les caractéristiques à son utilisation première souhaitée après passage dans le dispositif, dans le milieu actif. Dans le cas de la mesure d'une aimantation (onde électromagnétique), le système optique d'adaptation sera défini en tenant compte des caractéristiques de cette onde électromagnétique.
Une manière de procéder lorsque l'on souhaite connaître la direction de la polarisation d'un faisceau laser puisé ou continu polarisé linéairement est d'utiliser la monture tournante et de maximiser la valeur affichée sur le dispositif. Dans ce cas, on tourne la monture jusqu'à faire apparaître un signal maximum relevé au niveau du dispositif d'affichage. La monture étant graduée, sa position donne la direction de la polarisation du faisceau. Il est aussi possible d'utiliser cette méthode pour connaître la polarisation d'une onde électromagnétique polarisée linéairement.
L'exemple qui suit a été obtenu dans le cas d'un laser puisé, en utilisant comme milieu actif un cristal de TGG ou terbium gallium garnet. La source laser utilisée est un laser Nd :YAG (lambda = 1064 nm) générant des puises de lumière d'une durée de 10ns et une énergie d'environ 0.5 J/pulse. L'exemple est illustré aux figures 3A et 3B.
Des changements dans la magnétisation du cristal ont été mesurés en utilisant un dispositif comprenant une bobine double pickup telle que celle décrite à la figure 2A, mais cette fois-ci constituée d'une bobine de compensation 50 et d'une bobine de mesure 51 . La figure 3A représente une partie du dispositif de mesure constituant la zone de mesure. La bobine signal 51 est mise au contact du cristal 10 à caractériser, alors que la bobine de compensation 50 est disposée à une certaine distance. Les caractéristiques et la forme de cette bobine double (signal et compensation) sont choisies de façon telle que tout signal qui ne résulte pas du cristal soit annulé. La distance entre les centres de chacune des bobines est, par exemple, de 5 mm. Chaque bobine pickup est calibrée en mesurant le signal obtenu dans un champ magnétique modulé connu. Le signal de sortie des bobines est amplifié par un amplificateur rapide faible bruit et filtré au travers d'un filtre passe haut. Deux montages identiques sont utilisés, de part et d'autre du cristal.
Sur la figure 3B, le faisceau laser passe à travers 2 polariseurs 60, 61 . Le second polariseur 61 fixe la polarisation du faisceau alors que le premier polariseur 60 est utilisé pour changer la puissance du laser délivrée au cristal TGG en faisant tourner son axe de rotation par rapport à la direction de polarisation donnée par le premier polariseur. Une lame demi- onde 62 est placée après les polariseurs pour faire tourner la polarisation laser si nécessaire. Des miroirs suiveurs 63 et une lentille permettent de délivrer et de focaliser le faisceau laser quelques centimètres derrière le cristal TGG. La taille du cristal est de 2*2*2 mm. Dans cet exemple, la forme du cristal est un cube immergé dans un champ magnétique parallèle à la direction [0, 0, 1 ]. La valeur du champ était comprise dans l'intervalle [0-2,5 T]. Le vecteur k de la lumière dans cette application est parallèle à la direction [0, 0, 1 ] et perpendiculaire au champ magnétique externe, c'est-à- dire parallèle à la direction [0, 1 , 0]. Dans la suite le sigle || indique une quantité mesurée pour une polarisation de la lumière parallèle au champ magnétique et un siglel une quantité mesurée avec une polarisation de lumière perpendiculaire au champ externe.
Dans la figure 4A, sont représentés une impulsion laser typique avec le signal correspondant détecté par un des deux signaux bobine. Les deux signaux sont enregistrés sur un oscilloscope avec 1 GS/s.
Le faisceau laser puisé est contrôlé en extrayant une faible partie du faisceau injecté dans le cristal avec un séparateur de faisceau. Une diode rapide est utilisée pour contrôler l'impulsion laser. La photodiode a été calibrée par rapport à un dispositif mesurant l'énergie puisée atteignant le cristal.
La magnétisation ICME dans un cristal TGG peut être définie comme suit :
où CICM désigne la constante de l'effet Cotton Mouton Inverse propre au milieu actif, Pd la densité de puissance du faisceau lumineux et Bext le champ magnétique externe. La relation reste valable pour un champ magnétique intrinsèque au matériau.
Cette magnétisation peut être mesurée à l'aide d'une bobine pick up si elle varie dans le temps. En effet, la variation de la magnétisation M(t) induit une différence de potentiel V(t) aux bornes de la bobine de mesure suivant la r lation
Figure imgf000012_0001
où g est le gain de l'amplificateur de la bobine de mesure. Ae= 1 0 mm2 est la zone effectivement calibrée de la bobine signal et Bp est la densité du flux magnétique au travers de la surface de la bobine de mesure produite par l'aimantation M du cristal.
On remarque alors que la variation temporelle de Bp(t) peut être réalisée de deux manières (voir relation (1 )) :
- a) en faisant varier la densité de puissance Pd du faisceau (laser puisé ou modulé),
- b) en faisant varier le champ magnétique externe.
Dans le cas a), la variation de Bp(t) s'écrit :
Figure imgf000012_0002
dBp (t)/dt = bBext (3)
dt et le signal ICME V(t) s'écrit alors :
Figure imgf000013_0001
où Pd est la densité du faisceau laser, Bext est le champ magnétique statique transverse et b est un facteur de proportionnalité caractérisant la valeur ICME. Ce facteur dépend des propriétés du milieu qui est illuminé par le faisceau laser et ainsi magnétisé.
Ainsi, le signal ICME est proportionnel à la dérivée temporelle de l'intensité du laser puisé comme il est représenté à la figure 4A montrant dans un diagramme d'axe temporel la valeur du signal ICME et la valeur de l'intensité laser.
La figure 4B représente la densité de flux magnétique pour une valeur de champ magnétique 2.5 T modifiant la valeur de l'énergie de puise de 0 à 0.250 J. les données ont été obtenues dans deux configurations de la polarisation laser : l'une parallèle au champ magnétique correspondant à la densité de flux magnétique mesuré Bp||, l'autre perpendiculaire au champ magnétique correspondant à Bpl. Le diamètre du spot laser dans le cristal était de 1 .2 mm, correspondant à une densité d'énergie laser Pd comprise dans la gamme 0 - 2.2 x 1013 W/m2. La figure 4B montre que la densité de flux magnétique dépend linéairement de la densité de puissance laser.
Pour une magnétisation M de 1 A/m, il a été trouvé une densité de champ magnétique d'environ 4x10"8 T. En utilisant un facteur de conversion f entre la valeur de la densité du flux Bp et la magnétisation M du cristal d'environ 2.5 x 107 (A/m)T1.
Dans le cas b), en faisant varier le champ magnétique externe la variation de Bp(t) s'écrit :
dB .
dB (t)/dt = bxP . x— ^
Pw cl dt
Le signal ICME V(t) s'écrit alors : dB .
V(t) = -gxA xbx P . x— ^*1
w a e d dt
Cette fois le faisceau est continu et c'est le champ magnétique qui est puisé.
L'invention offre notamment les avantages suivants :
• mesurer à la fois la puissance instantanée d'un faisceau laser puisé de haute puissance avec une réponse temporelle inférieure à la nanoseconde, l'énergie totale de l'impulsion laser et la polarisation du faisceau ;
• mesurer la puissance d'un laser continu si on applique un champ magnétique variable ;
• réaliser une mesure d'aimantation au sein d'un matériau qui présente un effet Cotton-Mouton Inverse.
Le dispositif selon l'invention peut combiner trois fonctionnalités qui, dans les appareils de l'art antérieur connus du Demandeur sont en général séparées.
Un autre avantage procuré par le dispositif et le procédé selon l'invention est de pouvoir effectuer les mesures décrites précédemment, sans avoir besoin d'extraire ou d'atténuer une partie du faisceau. Le dispositif présenté peut être inséré dans un circuit optique existant sans le modifier. Il permet donc de visualiser l'impulsion laser et de mesurer ses caractéristiques pendant l'utilisation même du faisceau.
Selon un exemple d'utilisation, l'ensemble champ magnétique et bobine pickup peut être disposé autour d'un cristal laser, afin de mesurer évolution temporelle de la puissance dans le cristal. Une autre possibilité est d'intégrer le système dans un isolateur Faraday devenant à la fois un isolateur standard et un appareil de mesures de puissance.

Claims

REVENDICATIONS
1 - Dispositif (1 ) permettant de mesurer une aimantation générée au sein d'un milieu actif (10) ou caractériser une onde électromagnétique polarisée linéairement lorsque ledit milieu actif présente un effet Cotton-Mouton Inverse, caractérisé en ce qu'il comporte en combinaison au moins les éléments suivants :
un milieu actif (10) dans lequel se propage une onde électromagnétique polarisée linéairement,
un moyen de production (1 1 , 12) d'un champ magnétique transverse Bt par rapport à la direction de propagation D| de ladite onde électromagnétique,
un dispositif de mesure (2) du signal électrique adapté à traduire l'aimantation générée au sein dudit milieu actif (1 0) par ladite onde électromagnétique.
2 - Dispositif selon la revendication 1 caractérisé en ce que l'onde électromagnétique est un faisceau laser puisé, ledit dispositif de mesure étant adapté à caractériser ledit faisceau laser puisé par au moins un des paramètres suivants : la puissance instantanée d'une impulsion dudit faisceau laser, la puissance intégrale d'une impulsion dudit faisceau laser, la polarisation dudit faisceau laser.
3 - Dispositif selon la revendication 1 caractérisé en ce que l'onde électromagnétique est un faisceau laser continu, le champ magnétique transverse étant variable dans le temps et en ce que ledit dispositif de mesure étant adapté à caractériser ledit faisceau laser continu par au moins un des paramètres suivants : la puissance instantanée dudit faisceau laser, la puissance intégrale, la polarisation dudit faisceau laser. 4 - Dispositif selon la revendication 1 caractérisé en ce que ledit milieu actif (10) est soumis à un champ magnétique extérieur statique Bext ayant une valeur constante ou variable dans le temps
5 - Dispositif selon la revendication 1 caractérisé en ce que le dispositif de mesure du signal (2) comporte au moins une bobine de type pickup (14, 15).
6 - Dispositif selon la revendication 5 caractérisé en ce que le dispositif de mesure du signal (2) comporte au moins deux bobines de type pickup (14, 15) placées de part et d'autre du milieu actif (10), la normale à leur surface (A 4, A 5), étant orientée sensiblement parallèlement au champ magnétique
Bext-
7 - Dispositif selon la revendication 1 caractérisé en ce que ledit dispositif de mesure électronique (2) du signal adapté à traduire la valeur d'énergie instantanée de l'onde électromagnétique, ou la valeur de la puissance de l'onde électromagnétique comporte les éléments suivants :
un sommateur et amplificateur (40) de bas bruit ayant pour fonction d'éliminer le bruit parasite ne correspondant pas au signal associé à l'effet Cotton-Mouton inverse, le signal sommé et amplifié étant transmis à,
un filtre passe haut (41 ), puis à un intégrateur (42) avant d'être transmis à un dispositif d'affichage (43) et/ou à une mémoire (44) de stockage.
8 - Dispositif selon la revendication 1 caractérisé en ce qu'il comporte une monture tournante dans lequel sont disposés le milieu actif (10), les moyens de production du champ magnétique.
9- Dispositif selon l'une des revendications 2 ou 3 caractérisé en ce qu'il comporte un système d'adaptation optique (201 , 202). 10 - Dispositif selon la revendication 1 caractérisé en ce que ledit milieu actif (10) est un cristal de TGG ou Terbium Gallium Garnet.
1 1 - Procédé pour mesurer une aimantation générée au sein d'un milieu actif (10) lorsque ledit milieu actif présente un effet Cotton-Mouton Inverse, en utilisant le dispositif selon l'une des revendications 1 à 10 caractérisé en ce qu'il comporte en combinaison au moins les étapes suivantes :
transmettre dans un milieu actif (10) une onde électromagnétique polarisée linéairement,
générer un champ magnétique transverse Bt par rapport à la direction de propagation D| de ladite onde électromagnétique,
mesurer (2) le signal électrique traduisant l'aimantation générée au sein dudit milieu actif (10) par ladite onde électromagnétique.
PCT/EP2011/065227 2010-09-03 2011-09-02 Dispositif et procede pour caracteriser un faisceau laser WO2012028726A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/820,515 US20140145715A1 (en) 2010-09-03 2011-09-02 Device and method for characterizing a laser beam
EP11749458.3A EP2612158A1 (fr) 2010-09-03 2011-09-02 Dispositif et procede pour caracteriser un faisceau laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057007A FR2964504B1 (fr) 2010-09-03 2010-09-03 Dispositif et procede pour caracteriser un faisceau pulse
FR1057007 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012028726A1 true WO2012028726A1 (fr) 2012-03-08

Family

ID=43618670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065227 WO2012028726A1 (fr) 2010-09-03 2011-09-02 Dispositif et procede pour caracteriser un faisceau laser

Country Status (4)

Country Link
US (1) US20140145715A1 (fr)
EP (1) EP2612158A1 (fr)
FR (1) FR2964504B1 (fr)
WO (1) WO2012028726A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2566995B (en) 2017-09-29 2023-01-18 Cotton Mouton Diagnostics Ltd A method of detection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902896A4 (fr) * 1996-05-31 1999-12-08 Rensselaer Polytech Inst Dispositif electro-optique et magneto-optique et procede pour deceler le rayonnement electromagnetique dans l'espace libre
US20040041082A1 (en) * 2001-11-27 2004-03-04 Harmon Gary R. Molecular sensing array
US8000767B2 (en) * 2004-01-20 2011-08-16 Board Of Trustees Of The University Of Illinois Magneto-optical apparatus and method for the spatially-resolved detection of weak magnetic fields
DE102005045537B3 (de) * 2005-09-23 2006-12-28 Deutsches Elektronen-Synchrotron Desy Einrichtung zur Bestimmung der Stärke des Magnetfeldes eines Elektromagneten

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BARANGA A B-A ET AL: "Observation of the Inverse Cotton-Mouton effect", EUROPHYSICS LETTERS: A LETTERS JOURNAL EXPLORING THE FRONTIERS OF PHYSICS, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, FR, vol. 94, no. 4, 1 May 2011 (2011-05-01), pages 44005-P1 - 44005-P5, XP009152848, ISSN: 0295-5075 *
BATTESTI R ET AL: "The BMV experiment: a novel apparatus to study the propagation of light in a transverse magnetic field", THE EUROPEAN PHYSICAL JOURNAL D ; ATOMIC, MOLECULAR AND OPTICAL PHYSICS, SOCIETÀ ITALIANA DI FISICA, BO, vol. 46, no. 2, 14 November 2007 (2007-11-14), pages 323 - 333, XP019566459, ISSN: 1434-6079 *
MARMO S I ET AL.: "Electric field induced magnetization and inverse Cotton-Mouton effect in atomic gases", PHYSICS LETTERS A NETHERLANDS, vol. 202, no. 2-3, 19 June 1995 (1995-06-19), pages 201 - 205, XP002626363, ISSN: 0375-9601, DOI: DOI:10.1016/0375-9601(95)00312-Q *
MARMO S.: "Electric field induced magnetization and inverse Cotton-Mouton effect in atomic gases", PHYSICS LETTERS A, vol. 202, 1995, pages 201 - 205, XP002626363, DOI: doi:10.1016/0375-9601(95)00312-Q
RIZZO C ET AL.: "Inverse Cotton-Mouton effect of the vacuum and of atomic systems", EUROPHYSICS LETTERS PUBLISHED FOR EUROPEAN PHYSICAL SOCIETY BY EDP SCIENCE AND SOCIETA ITALIANA DI FISICA FRANCE, vol. 90, no. 6, 13 July 2010 (2010-07-13), XP002626364, ISSN: 0295-5075, DOI: DOI:10.1209/0295-5075/90/64003 *
ZON B.A. ET AL.: "Observation of inverse Cotton-Mouton effect in the magnetically ordered crystal (Lu, Bi)3(Fe, Ga)5O12", JETP LETTERS USA, vol. 45, no. 5, 10 March 1987 (1987-03-10), pages 272 - 275, XP002626362, ISSN: 0021-3640 *
ZON.B.A: "observation of inverse Cotton-Mouton effect in the magnetically ordered crystal (Lu, Bi)3(FE, Ga)5012", JEPT LET., vol. 45, no. 5, 1987, pages 272 - 275, XP002626362

Also Published As

Publication number Publication date
US20140145715A1 (en) 2014-05-29
FR2964504B1 (fr) 2012-09-28
FR2964504A1 (fr) 2012-03-09
EP2612158A1 (fr) 2013-07-10

Similar Documents

Publication Publication Date Title
EP0108671B1 (fr) Dispositif de mesure de température et/ou d'intensité électrique à effet Faraday
EP0081412B1 (fr) Tête de mesure pour magnétomètre
EP0246146B1 (fr) Magnétomètre à hélium pompé par laser
EP0091351B1 (fr) Magnétomètre optique
EP3907513B1 (fr) Capteur de courant basé sur l'effet faraday dans un gaz atomique
FR3059776A1 (fr) Systeme de surveillance a capteur reparti a fibre optique
EP2156201A2 (fr) Système d'émission d'impulsion électrique et dispositif de découplage capacitif pour un tel système
CA2881524C (fr) Dispositif d'amplification analogique destine notamment a un anemometre laser
WO2012028726A1 (fr) Dispositif et procede pour caracteriser un faisceau laser
EP0136955B1 (fr) Dispositif pour mesurer le gradient d'un champ magnétique par effet magnéto-optique
EP3671248B1 (fr) Magnétomètre à pompage optique d'un élément sensible avec une lumière polarisée linéairement et multi-passage dans l'élément sensible
EP1674878A1 (fr) Sonde électro-optique de mesure de champs électriques ou électromagnétiques à asservissement de la longueur d'onde du point de fonctionnement
FR3105825A1 (fr) Dispositif de mesure optique d’un paramètre physique
FR2717331A1 (fr) Système de communication optique à brouilleur de polarisation.
EP3650877A1 (fr) Magnétomètre à effet hanle compact
EP3702797B1 (fr) Magnétomètre scalaire isotrope et tout optique
FR2902575A1 (fr) Appareil de caracterisation optique du dopage d'un substrat
FR2667158A1 (fr) Dispositif de traitement d'un signal provenant d'un capteur ayant une reponse du type derivatif.
FR2558963A1 (fr) Procede de mesure magneto-optique de champs magnetiques, systeme de mesure et tete de mesure utilisant un tel procede
FR2982370A1 (fr) Procede et dispositif de mesure d'une tension
FR3088729A1 (fr) Magnetometre en alignement a decalage angulaire entre polarisations des faisceaux de pompe et de sonde
FR2716591A1 (fr) Système de communication optique à brouillage de polarisation.
FR3004848A1 (fr) Procede de modification de la valeur d'une resistance electrique comportant un materiau ferromagnetique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11749458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 225026

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011749458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011749458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13820515

Country of ref document: US