WO2012026170A1 - Direct current regenerative electric motor and rotation direction switching apparatus - Google Patents

Direct current regenerative electric motor and rotation direction switching apparatus Download PDF

Info

Publication number
WO2012026170A1
WO2012026170A1 PCT/JP2011/061856 JP2011061856W WO2012026170A1 WO 2012026170 A1 WO2012026170 A1 WO 2012026170A1 JP 2011061856 W JP2011061856 W JP 2011061856W WO 2012026170 A1 WO2012026170 A1 WO 2012026170A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
regenerative
field winding
field
rotation direction
Prior art date
Application number
PCT/JP2011/061856
Other languages
French (fr)
Japanese (ja)
Inventor
岩井武雄
Original Assignee
Iwai Takeo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwai Takeo filed Critical Iwai Takeo
Publication of WO2012026170A1 publication Critical patent/WO2012026170A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a DC regenerative motor that is driven by direct current, converts surplus kinetic energy after driving into electric energy, and stores it in a capacitor or the like, and a rotation direction switch that switches the rotation direction of the DC regenerative motor. .
  • a brushless DC motor that performs torque control by changing the duty ratio of the PWM signal is equipped with means for switching the carrier frequency of the PWM signal in a plurality of stages, and by controlling the switching and change of the duty ratio, a low load A motor has been proposed that does not vibrate even at a low rotational speed (see Patent Document 1).
  • the brushless DC motor detects the magnetic pole position of the rotor by using a magnetic sensor such as a Hall element or an optical sensor, and applies an excitation current corresponding to the detected magnetic pole position to the field winding to generate a rotating magnetic field. Since the rotor is generated and rotated, when it is used as a drive source for an electric vehicle, when the forward / reverse is selected, the rotational direction is mechanically switched by a transmission or the like, or the rotating magnetic field It is necessary to switch the rotation direction.
  • a magnetic sensor such as a Hall element or an optical sensor
  • Patent Document 7 A method of switching the rotation direction by switching the phase order of each field winding of a motor that obtains a rotating magnetic field by flowing alternating currents having different phases to each field winding.
  • the brushless DC motor detects the magnetic pole position of the rotor, forms a rotating magnetic field based on the detected magnetic pole position signal, and the drive circuit based on the chopper signal also consumes power. Therefore, the output efficiency is higher than that of a brushed motor. Decreases. Therefore, it is possible to increase the output efficiency by utilizing AC power induced in the field winding at the non-energization timing during intermittent energization for the formation of the rotating magnetic field, and to utilize the regenerative braking to improve the energy efficiency and fuel consumption of the vehicle. There is a need to improve. In that case, consideration from an ergonomic standpoint is necessary for the driver who is used to the engine car.
  • the method of mechanically changing the forward and backward movements by changing the gear of the transmission increases the size of the device and increases the weight.
  • the method of switching the phase order is a simple method for an electric motor excited by a three-phase alternating current, but there is a torque ripple and it is difficult to obtain a high output.
  • the method for controlling the supply timing of the excitation current becomes complicated as the number of phases increases. Both methods are unsuitable for motors that detect the position of the magnetic pole of the rotor and that are driven by intermittently energizing each field winding in accordance with the duty ratio of the chopper signal or PWM signal.
  • the present invention can increase the output efficiency of a conventional brushless DC motor, perform regenerative braking immediately after stopping power feeding only by operating the power feeding operation unit, and further obtain electric power obtained by regenerative braking. It is a first object to provide a DC regenerative motor that can store the energy and increase the energy efficiency. It is a second object of the present invention to provide a rotation direction switch that switches the rotation direction of the DC regenerative motor.
  • the DC regenerative motor of the present invention is a field magnet that is wound around each of a plurality of field poles facing the rotor and a rotor in which N poles and S poles are arranged at regular intervals and excited by DC.
  • a brushless DC regenerative motor having a stator provided with a plurality of field winding sets in which windings are connected in series or in parallel, and receives and receives a command based on the magnitude of force for commanding the operation. If the force exceeds a predetermined value, a first command signal is generated in which the characteristic value of the linear element changes in proportion to the magnitude of the force exceeding the predetermined value, and the received force is less than the predetermined value.
  • a command signal generator for generating a second command signal in which the characteristic value of the linear element changes in proportion to the magnitude of the force below the predetermined value, and a duty ratio according to the first command signal
  • a regenerative signal generator that outputs a regenerative signal with a duty ratio, and a field pole in the vicinity of a field pole around which one field winding forming one of the field winding sets is wound (slot).
  • a detection unit that detects the magnetic poles of the rotor at the center and gives either positive or negative polarity to the power supply signal, and the polarity of the power supply signal output from the detection unit
  • a switching unit that switches the direction of the load current supplied from the DC power source to the field winding set according to the power supply, and intermittently energizes the load current according to the duty ratio of the power supply signal, and the field winding
  • a load current detection unit for detecting the magnitude of the load current flowing through the
  • the command signal generation unit generates two command signals whose characteristic values of the linear elements change, energizes the field winding by one command signal, and regenerates by another one command signal. Acceleration and braking at the time of driving the electric motor can be performed by one operation unit.
  • a field winding set and a detection unit are arranged, and a field winding set at a position where the torque is increased as much as possible from the position where the magnetic pole of the rotor is detected by each detection unit according to the first command signal. While generating the magnetic flux by the power supply signal with the duty ratio to increase the torque as much as possible, the AC power induced in the field winding set at the non-energization timing during power feeding to the field winding set also passes through the switching unit.
  • the output efficiency can be further improved and a larger torque can be obtained as compared with the conventional brushless DC motor.
  • AC power induced in the field winding set after power supply is stopped is rectified into a double voltage and stored in a capacitor such as a large-capacity capacitor, so that the induced power during low-speed rotation can be used and charging Appropriate voltage is ensured and energy efficiency can be increased.
  • the regenerative signal generation unit generates two regenerative signals having the same duty ratio but only different voltages
  • the regenerative power control unit is a pair of power supplies intermittently energized by the voltages of the regenerative signals.
  • the command signal generation unit includes, for example, a sliding resistance in which a resistor is formed on a belt-shaped sliding surface provided side by side, and the resistance value is changed by a sliding member that slides both sliding surfaces in the length direction. And a control member that slides the slide member according to the received force when the command is received according to the magnitude of the force for commanding the operation, and the received force is the predetermined value.
  • the first command signal is generated by the first resistor whose resistance value decreases in proportion to the magnitude of the force exceeding the predetermined value, and the received force is less than the predetermined value.
  • the second command signal is generated by the second resistor whose resistance value decreases in proportion to the magnitude of the force below the predetermined value, for example, an accelerator pedal of an electric vehicle, etc. Apply and loosen the accelerator pedal Since acts regenerative braking when released, it is possible to get a sense similar to the engine brake.
  • the magnitude of the received force is converted into a change in the resistance value of the resistor formed on the sliding surface, but it goes without saying that it is converted into a change in capacitance, a change in inductance, a change in voltage, etc. May be.
  • the detection unit of one of the segments gives a positive or negative polarity to the power supply signal according to the detected magnetic pole, and the output of the power supply signal is the other If it is configured so as to be input to the switching section of one of the segments, a rotating magnetic field is formed by the standardized segment, and it is convenient for manufacturing and assembling parts by segmentation.
  • the load current detection unit includes an overload current limiting unit that outputs an overload signal, and the power supply signal generation unit receives the overload signal when the overload signal is input.
  • the duty ratio of the reduced power feeding signal when ⁇ load signal is eliminated, the duty ratio of the reduced power feeding signal, if the increase to the duty ratio corresponding to the first command signal, abnormal during feeding when the load current flows also, the load current is suppressed immediately decreases the duty ratio of the feed signal, even when the abnormal regeneration current after power supply stop flows, the regenerative current immediately decreases the duty ratio of the regenerative signal It is possible to suppress and prevent burning of the field winding set.
  • a regenerative current detecting unit for detecting an AC regenerative current flowing through each of the field winding sets as the rotor rotates, and the regenerative current detecting unit
  • An overcurrent limiting unit that outputs an overcurrent signal when the regenerative current detected by the controller exceeds a threshold, and the regenerative signal generation unit decreases the duty ratio of the regenerative signal when the overcurrent signal is input.
  • the overcurrent signal disappears, the reduced duty ratio of the regenerative signal is increased to the duty ratio corresponding to the second command signal, so that the load current flowing through the field winding set or the regenerative signal is regenerated.
  • the detection unit includes a Hall element having an input terminal for inputting the power supply signal and an output terminal for outputting the power supply signal input from the input means with a polarity corresponding to the detected magnetic pole.
  • the switching unit includes a first switching element energized in the first direction when the polarity of the power supply signal output from the Hall element is positive, and a second direction when the polarity of the power supply signal is negative.
  • the direction of the load current flowing in each field winding set is changed in accordance with the rotation of the rotor, while the magnetic pole detection of the rotor by each Hall element
  • the load current supplied to the first switching unit and the second field winding set for switching the direction of the load current supplied to the first field winding set among the plurality of field winding sets.
  • a selector having a plurality of selectors for selecting one of the second switching units for switching the direction of the motor, and a command relating to the rotation direction of the rotor.
  • a selector switch unit for selecting one of the switching unit when configured with a, it is possible to easily switch the direction of rotation of the DC regenerative motor, when applied to an electric vehicle, the motor forward of the vehicle, the backward This can be realized by switching the rotation direction.
  • each of the selectors includes a first contact connected to the first field winding set via the first switching unit, and the second field winding set via the second switching unit.
  • the selector switching unit closes the first contact and opens the second contact when receiving a command relating to the forward rotation direction, and in the reverse rotation direction. If the first contact is opened and the second contact is closed when such a command is received, the rotation direction can be switched.
  • the one detection unit is installed near or in the center of the field pole around which one field winding forming one of the field winding sets is wound.
  • the first field winding set is wound around the field pole that is one or two ahead in the positive rotation direction with respect to the field pole in which the one detection unit is installed in the vicinity or the center.
  • the second field winding set includes a field winding wound around one or two field poles in the reverse rotation direction with respect to the field pole. If so, the rotation of the electric motor after the rotation direction is switched is smooth.
  • the rotation direction switching device of the present invention connects a plurality of field windings arranged at equal intervals in series or in parallel to face a rotor in which N poles and S poles are alternately arranged at regular intervals.
  • the load current supplied to each of the plurality of field winding sets formed as described above is controlled by the respective output signals output from the plurality of Hall elements that detect the magnetic pole positions of the rotor, thereby generating a rotating magnetic field.
  • a rotation direction switch configured to switch a rotation direction of an electric motor to obtain a predetermined rotation speed, wherein a load current is controlled by an output signal output from one of the plurality of Hall elements.
  • a selector provided with a plurality of selectors for selecting one of the field winding group and the second field winding group, and operates in response to a command related to the rotation direction.
  • Selector for selecting one of the above field winding sets A replacement unit, characterized by comprising a.
  • the magnetic poles of the rotor are detected by detecting means such as each Hall element, and the field winding pair at a position where the torque is maximized is intermittently energized from the DC power supply via the switching element.
  • the induced electric power during non-energization is also supplied to the field winding pair via the switching element, etc., so that the output efficiency is improved and the torque is increased compared to the conventional brushless DC motor. Can be obtained.
  • burning is prevented without stopping power feeding, and if it returns to normal in a short time, the power feeding is restored to normal. The influence on the entire system to be used can be stopped lightly.
  • regenerative braking immediately after stopping power feeding can be easily performed by the same operation means as the power feeding operation means, for example, when applied to an accelerator pedal of an electric vehicle, the same feeling as engine braking can be obtained. Furthermore, the electric power obtained by regenerative braking can be double-rectified and stored in a large-capacity capacitor, and the secondary battery can be charged with an appropriate voltage, so that energy efficiency can be improved. Furthermore, if the rotation direction switching device of the present invention is provided, the rotation direction of the DC regenerative motor can be easily switched. Therefore, when applied to an electric vehicle, the forward and backward movement of the vehicle can be performed only by switching the rotation direction of the motor. Can be realized.
  • FIG. 1 is a functional block diagram showing a first embodiment of a DC regenerative motor of the present invention.
  • FIG. 2 is a cross-sectional view and a side view showing the rotor of the DC regenerative motor according to the first embodiment.
  • FIG. 3 is a cross-sectional view and a side view showing the field core of the stator of the DC regenerative motor according to the first embodiment.
  • FIG. 4 is a side view of the control pedal showing an example of the command signal generator of the first embodiment.
  • FIG. 5 is a developed view of the sliding resistor coupled to the control pedal.
  • FIG. 6 is a chopper signal oscillator showing an example of the chopper signal generation unit of the first embodiment.
  • FIG. 7 is a power controller illustrating an example of the power supply signal generation unit of the first embodiment.
  • FIG. 8 is a regenerative brake controller showing an example of the regenerative signal generation unit of the present embodiment.
  • FIG. 9 is a diagram illustrating an example of an overload limiter of the overload current limiting unit according to the first embodiment.
  • FIG. 10 is a diagram illustrating an example of a segment according to the first embodiment.
  • FIG. 11 is a regenerative power controller showing an example of the regenerative power control unit of the first embodiment.
  • FIG. 12 is a battery charge voltage controller showing an example of the charging unit of the first embodiment.
  • FIG. 13 is a diagram illustrating a main part of a DC regenerative motor according to a second embodiment to which the rotation direction switch according to the embodiment of the present invention is applied.
  • FIG. 14 is a connection state diagram relating to the contact of the relay shown as one embodiment of the rotation direction switching device of the present invention.
  • FIG. 15 is an operation circuit diagram of a relay shown as one embodiment of the rotation direction switching device of the present invention.
  • FIG. 16 is a plan view of a fixed portion of a rotary switch shown as another embodiment of the rotation direction switch of the present invention.
  • FIG. 17 is a bottom view of a rotary part of a rotary switch shown as another embodiment of the rotation direction switch of the present invention.
  • FIG. 1 is a functional block diagram illustrating a DC regenerative motor according to the first embodiment.
  • a DC regenerative motor of this embodiment shown in FIG. 1 includes a rotor 1 and a stator 2, a segment 3 to which a load current is supplied from a DC power supply 10, a chopper signal generation unit 5, a power supply signal generation unit 6, A regenerative signal generation unit 7, a command signal generation unit 8, a regenerative power control unit 9, a regenerative current detection unit 12, an overload current limiting unit 13, an overcurrent limiting unit 14, and a charging unit 15 are provided.
  • Each electronic circuit is supplied with power from the DC-DC converter 4.
  • the DC regenerative motor of this embodiment is an inner rotor type in which a rotor 1 is disposed inside a stator 2.
  • a rotor 1 In the rotor 1, permanent magnets of N and S poles are fixedly arranged around the rotation axis.
  • stator 2 In the stator 2, field windings are wound around each of eight field magnetic poles (four field magnetic pole sets) formed at symmetrical positions with the rotor 1 interposed therebetween. Of these eight field windings, two field windings arranged opposite to each other are connected in parallel to form a field winding set 20.
  • Each of the four field winding sets 20 is supplied with a DC load current (hereinafter referred to as “load current”) from the DC power supply 10 via the corresponding segment 3 to form a rotating magnetic field.
  • load current DC load current
  • the DC power supply 10 has a secondary battery, and supplies DC power to each of the field winding sets 20 based on a power supply signal.
  • the DC-DC converter 4 steps down the voltage of the DC power supply 10 and supplies DC power of a predetermined voltage to each electronic circuit.
  • the number of magnetic poles is set to 2 for the rotor 1 of the present embodiment, and the number of field poles is set to 8 for the stator 2, but the rotor 1 and the stator 2 are not necessarily limited to this configuration.
  • the number of magnetic poles of the rotor 1 is preferably a multiple of 2
  • the number of field poles of the stator 2 is preferably a multiple of 2 that is larger than the number of magnetic poles of the rotor 1.
  • the field winding set 20 has two field windings arranged opposite to each other connected in parallel, but may be connected in series.
  • the field winding set 20 may be formed by a plurality of field windings arranged at symmetrical positions.
  • the segment 3 includes one field winding set 20 that obtains a rotating magnetic field and a system that supplies a load current to the field winding set 20.
  • the system that supplies the load current includes a detection unit 16 that detects the magnetic pole of the rotor 1 that passes through the vicinity of or the center of any one of the field magnetic pole pairs of the stator 2, and the direction of the load current.
  • a switching unit 17 for switching and a load current detecting unit 11 for detecting an abnormal load current are included.
  • the detection unit 16 includes a Hall element 18 that is disposed in the vicinity (including the slot) of the field pole of the stator 2 or in the center of the field pole and detects the magnetic pole of the magnet of the rotor 1.
  • the Hall element 18 includes an input terminal for a power feeding signal and an output terminal for outputting a power feeding signal having either positive or negative polarity according to the detected magnetic pole of the magnet when the power feeding signal is input from the input terminal. .
  • the switching unit 17 changes the energization time according to the duty ratio of the power supply signal, and when the polarity of the power supply signal is negative
  • a switching element that changes the energization time according to the duty ratio of the power supply signal, and switches the direction of the load current supplied to the field winding set 20 according to the magnetic pole of the magnet, while energizing intermittently.
  • the energizing time of the load current to be changed is changed according to the duty ratio.
  • the load current detector 11 detects a load current flowing in both directions through the field winding set 20.
  • the chopper signal generation unit 5 generates a rectangular wave having a predetermined period, and generates a chopper signal by full-wave rectifying the generated rectangular wave.
  • the command signal generation unit 8 receives a command based on the magnitude of the force for commanding the operation, and when the magnitude of the received force exceeds a predetermined value (neutral), the magnitude of the force exceeding the predetermined value. Generating a first command signal in which the characteristic value of the linear element changes in proportion to the length, and if the received force is less than or equal to a predetermined value, the characteristic of the linear element is proportional to the magnitude of the force below the predetermined value A second command signal whose value changes is generated.
  • the power supply signal generation unit 6 outputs a power supply signal having a duty ratio corresponding to the first command signal output from the command signal generation unit 8.
  • the regenerative signal generator 7 outputs a regenerative signal having a duty ratio corresponding to the second command signal output from the command signal generator 8.
  • the regenerative power control unit 9 rectifies the AC power induced in the field winding set 20 by double voltage rectification based on the regenerative signal after the power supply from the DC power supply 10 to the field winding set 20 stops.
  • a regenerative current detector 12 for detecting the regenerative current so that the regenerative current flowing through the field winding set 20 does not become excessive.
  • the large-capacity capacitor of the present embodiment includes, for example, an electric double layer capacitor having a pair of electrodes impregnated with an electrolyte, a separator separating the pair of electrodes, a collecting electrode, and a gasket. Can be used.
  • the overload current limiting unit 13 decreases the duty ratio of the power supply signal in the power supply signal generation unit 6 when the load current detected by the load current detection unit 11 exceeds the threshold value.
  • the overcurrent limiting unit 14 regenerates in the regenerative signal generation unit 7. Decrease the duty ratio of the signal.
  • the charging unit 15 charges the secondary battery of the DC power supply 10 with the electric charge stored in the large capacity capacitor of the regenerative power control unit 9.
  • the detection unit of the present embodiment detects the magnetic pole of the rotor magnet by the Hall element 18, but the Hall element 18 is not necessarily required.
  • the command signal generation unit 8 receives a command based on the magnitude of the force for commanding the operation, generates two command signals whose resistance values change according to the magnitude of the received force, and generates the command signal as a power supply signal To the unit 6 and the regenerative signal generator 7.
  • the chopper signal generating unit 5 generates a square wave is sent to the power supply signal generator 6 and a regeneration signal generator 7, the power feeding signal generator 6, the duty ratio of the rectangular wave output from the chopper signal generating unit 5 Is changed according to the resistance value of the command signal to generate a power supply signal, and the regenerative signal generation unit 7 changes the duty ratio of the rectangular wave output from the chopper signal generation unit 5 according to the resistance value of the command signal.
  • Generate a regenerative signal In that case, when the power supply signal is generated, no regeneration signal is generated. Similarly, when the regeneration signal is generated, no power supply signal is generated.
  • the generated feed signal is input to the hall element 18 of each segment 3.
  • the hall element 18 outputs a feeding signal having either positive or negative polarity according to the magnetic pole of the magnet of the rotor 1.
  • the output power supply signal of either positive or negative polarity is sent to the switching unit 17 of the segment 3 different from the segment 3 to which the Hall element 18 that outputs the power supply signal belongs.
  • the switching unit 17 when the power supply signal is positive, the switching element that conducts with the positive power supply signal is energized for a time corresponding to the duty ratio of the power supply signal, and during that time, the corresponding field winding set 20 is loaded. Current is supplied.
  • the switching element that conducts with the negative power supply signal is energized for a time corresponding to the duty ratio of the power supply signal, and during that time, the load current is supplied to the corresponding field winding set 20.
  • the power supply signal does not stop, and the AC power induced in the field winding set 20 during the non-energization time due to the duty ratio of the switching element is opposite to each switching element in the conduction direction. Is used to feed other field winding sets 20 via diodes connected in parallel. Thereby, the output efficiency and torque of the DC regenerative motor of the present embodiment can be increased.
  • the relationship between the segment 3 to which the hall element 18 belongs and the segment 3 to which the switching unit 17 that inputs the power feeding signal output from the hall element 18 belongs will be described.
  • the Hall element 18 of a certain segment 3 is arranged at the field pole of the stator 2 facing the north pole of the rotor 1, the field at a position rotated by a predetermined angle in the rotation direction of the motor from the field pole.
  • the Hall element is connected to the switching section 17 of another segment 3 to which the field winding set 20 constituted by the field winding wound around the magnetic pole and the field winding at a position rotated by 180 degrees belongs. From 18, a positive or negative power supply signal is sent.
  • the feed signal output from the hall element 18 of a certain segment 3 is a field winding that is one or more ahead in the direction of rotation of the rotor 1 than the field winding set 20 belonging to that segment 3. It is sent to the switching unit 17 of the segment 3 to which the set 20 belongs. Further, the regenerative signal generated when the power feeding signal is stopped is sent to the regenerative power control unit 9.
  • the regenerative power control unit 9 has a pair of switching elements, and each switching element conducts according to the voltage of the regenerative signal, while changing the conduction time according to the duty ratio of the regenerative signal.
  • the regenerative power control unit 9 rectifies the AC power induced in the field winding group after the power supply is stopped into a double voltage and stores it in the large-capacity capacitor 98, so the rotor 1 rotates at a low speed. In addition to being able to effectively store and utilize the induced electric power at the time, an appropriate voltage is ensured when the charging unit 15 charges the secondary battery, so that energy efficiency can be improved.
  • the load current detection unit 11 detects the load current and the detected load current exceeds a threshold value, the overload current limiting unit 13
  • the regenerative current detection unit 12 is configured so that the regenerative current flowing through the field winding set 20 is not excessive due to the AC power induced in the field winding set 20 after the power supply to the field winding set is stopped.
  • the overcurrent limiting unit 14 reduces the duty ratio of the regenerative signal output from the regenerative signal generating unit 7, so that it is stored in the large-capacity capacitor. In doing so, the regenerative current flowing through the field winding set 20 is suppressed.
  • the power feed signal generator 6 uses the duty ratio of the power feed signal reduced by the overload current limiter 13 as the first command signal. Increase the duty ratio accordingly.
  • the regenerative signal generator 7 sets the duty ratio of the regenerative signal reduced by the overcurrent limiter 14 according to the second command signal. Increase to duty ratio.
  • FIG. 2 is a cross-sectional view and a side view showing the rotor of the DC regenerative motor of this embodiment
  • FIG. 3 is a cross-sectional view and a side view showing the field core of the stator of the DC regenerative motor of this embodiment. is there.
  • the rotor 1 shown in FIG. 2 has a rotating shaft 1b inserted in the center of a cylindrical magnet 1a having an N pole and an S pole, and is bonded and integrated together. To prevent slipping.
  • a longitudinal groove 1d is formed at a symmetrical position on the outer periphery of the cylindrical magnet 1a.
  • the Hall element When detecting the magnetic pole of the magnet 1a by the Hall element, the Hall element detects a change in the magnetic pole at the passage of the groove 1d that is in a detection pause.
  • the entire magnetic body can be formed into a magnet and formed as a magnet.
  • it can be formed by laminating electromagnetic steel sheets and forming them into a cylindrical shape and attaching a permanent magnet to the outer periphery thereof.
  • the magnet 1a of the rotor of the present embodiment is composed of N poles and S poles, but the number of magnets 1a is not necessarily two, and any number may be used as long as the number of poles is an even number. However, as the number of poles increases, the torque ripple decreases, but the manufacturing cost increases.
  • the field iron core 2a of the stator 2 shown in FIG. 3 is formed by laminating non-oriented electrical steel sheets.
  • Four lock grooves 2b for fixing the field core to the case and preventing rotation are provided on the outer periphery.
  • a cylindrical space 2c in which the rotor rotates is located at the center of the cross section of the field core surrounded by the field core 2a.
  • Eight slots 2d for embedding field windings, 8 There are eight field poles 2e partitioned by one slot, and two sets of four field poles 2e are provided at symmetrical positions across the cylindrical space 2c.
  • a winding is wound around each of the four sets of field poles 2e, and the field windings formed on each set of field poles are connected in parallel to form a field winding set 20.
  • the stator 2 of this embodiment is provided with four sets of field poles (eight field poles) 2e at symmetrical positions with the cylindrical space 2c interposed therebetween, but the number of poles is not necessarily limited to eight. No, it should be an even number.
  • the field winding, wound around the single field pole 2e need not be so-called 1-pole and multi-pole winding across the 2-pole or multiple field pole 2e across two field pole 2e May be. If 2-pole winding is used, torque ripple can be reduced as compared with single-pole winding.
  • the Hall element 18 is prepared in correspondence with each segment so that the magnetic poles of the magnets can be sequentially detected when the rotor rotates (four in this case), and the cylindrical space 2c. It is installed at the center of each of the field poles (here, four) 2e arranged continuously. Alternatively, each can be installed in a slot 2d sandwiched between two poles.
  • the output of the Hall element 18 belonging to a certain segment 3 is the field winding wound around one or more field poles ahead of the field pole where the Hall element 18 is installed in the rotation direction of the rotor 1.
  • a field winding set 20 composed of a line and a field winding wound around a field pole at a position further rotated 180 degrees therefrom is sent to another segment 3 to which it belongs.
  • the Hall element 18 of the present embodiment is installed in the vicinity or center of the field pole 2e, but may be installed in a slot.
  • FIG. 4 is a side view of a control pedal showing an example of the command signal generation unit of the present embodiment
  • FIG. 5 is a developed view of a sliding resistor coupled to the control pedal. 4 is a side view of the control pedal 80.
  • a sliding resistor 82 provided on both peripheral edges of the outer periphery of the drum across the neutral zone, a freely rotating drum rotating shaft 83, and the rotating shaft 83 rotate.
  • a slide lead 84 that rotates in accordance with the slide resistor 82 and one end is coupled to a rod-shaped body 85, the middle is supported by a flexible tube 86, and is wound around a drum winding guide 81.
  • the end includes a wire 87 connected to the slide lead 84.
  • the rotating shaft 83 is urged counterclockwise by a spring that does not appear in the figure, and the rod-like body 85 is supported by a fulcrum 88 in the middle, and a pedal 89 that receives external force is provided at the other end.
  • the drum is fixed and the rotation shaft 83 is configured to rotate together with the slide lead 84, but the drum itself may be configured to rotate. Further, the sliding resistor 82 is not necessarily provided on the outer periphery of the drum.
  • the sliding resistor 82 shown in a developed view in FIG. 5 is provided with a belt-like sliding surface 82d having a resistor on each of one side of both sides of the neutral zone 82c, and the slide lead 84 is a sliding surface.
  • the upper sliding surface 82d in the drawing generates a first command signal
  • the lower sliding surface 82d in the drawing generates a second command signal.
  • no resistor is formed up to the neutral zone 82c, and a resistor is formed on the right side of the neutral zone 82c.
  • a resistor is formed on the lower sliding surface 82d up to the neutral zone 82c, and no resistor is formed on the right side of the neutral zone 82c.
  • the resistance value remains unchanged up to the neutral zone 82c on the upper sliding surface 82d, and further to the right from the neutral zone 82c.
  • the resistance value gradually decreases from the maximum value and becomes zero.
  • the resistance value gradually increases from 0 until the neutral zone 82c, and becomes the maximum value after the neutral zone 82c.
  • the resistance value of the upper sliding surface 82d gradually increases from zero, reaches a maximum value near the neutral zone 82c, and resists even when the neutral zone 82c is exceeded. The value remains at the maximum value.
  • the resistance value of the lower sliding surface 82d remains at the maximum value until the neutral zone 82c, and the resistance value gradually decreases to zero when moving further leftward from the neutral zone 82c.
  • the change in the resistance value of the upper sliding surface 82d is reflected in the power supply signal generation unit 6, and the duty ratio of the output power supply signal changes.
  • the change in the resistance value of the lower sliding surface 82d is reflected in the regenerative signal generation unit 7, and the duty ratio of the regenerative signal to be output changes.
  • the magnitude of the received force is converted into a change in the resistance value of the sliding resistor 82, but it is not always necessary to convert it into a change in the resistance value.
  • FIG. 6 is a chopper signal oscillator showing an example of the chopper signal generator of this embodiment.
  • the chopper signal oscillator 50 shown in FIG. 6 includes an input terminal IN, an output terminal OUT, a multivibrator 51, a pulse transformer 52, and a full-wave rectifier 53.
  • Direct current power obtained by stepping down the voltage of the direct current power source 10 using a known DC-DC converter 4 is supplied to the input terminal IN.
  • Square wave produced by the multivibrator 51, a pulse transformer 52 are combined into a rectangular wave having both positive and negative areas, the synthesized square wave is rectified by the full wave rectifier 53, the chopper signal to output terminal OUT Is output.
  • FIG. 8 is a regenerative brake controller showing an example of the regenerative signal generation unit of the present embodiment.
  • Regenerative brake controller 70 shown in FIG. 8 when the chopper signal is inputted from the input terminal IN, a high pressure chopper signal having a duty ratio corresponding to the second command signal (high regeneration signal) to the first output terminal HOUT, low chopper
  • This is a circuit similar to the power controller 60 that outputs a signal (low-pressure regeneration signal) to the second output terminal LOUT.
  • the pulse transformer 79 is connected instead of the forward / reverse switch 69 connected to the dummy resistor 66, and the overload signal input terminal C1IN informs that the regenerative current is excessive.
  • the overcurrent signal input terminal C2IN is different from the power controller 60, but the other points are common. Therefore, for the common circuit components, the 60th series is replaced with the 70th series, the single-digit numbers are given the common numbers, and the explanation is omitted, and only the differences will be explained.
  • the pulse transformer 79 receives a chopper signal (regeneration signal) having a predetermined duty ratio on the primary side, and separately outputs a high-pressure regeneration signal and a low-pressure regeneration signal to the secondary side. A diode 79a that prevents backflow is connected to the secondary side.
  • the operation of the regenerative brake controller 70 when the overcurrent signal voltage is input from the overcurrent signal input terminal C2IN is the same as the operation when the overload signal voltage is input to the power controller 60, and the description thereof is omitted.
  • FIG. 9 is a diagram illustrating an example of an overload limiter of the overload current limiting unit according to the present embodiment.
  • the overcurrent limiter as an example of the overcurrent limiter according to the present embodiment is different in setting voltage from the overload limiter shown here, but the configuration is the same.
  • the overload limiter 130 (or overcurrent limiter) shown in FIG. 9 has an overload signal voltage (or overcurrent signal voltage) detected by the load current detection unit 11 (or regenerative current detection unit 12) of the segment 3.
  • the input terminal IN, the full wave rectifier 131, the voltage dividing resistor 132, the Zener diode 133, the backflow prevention diode 134, and the output terminal OUT are provided.
  • the full-wave rectifier 131 When an overload signal voltage (or overcurrent signal voltage) is input to the input terminal, the full-wave rectifier 131 performs full-wave rectification and the voltage-dividing resistor 132 divides the voltage. When the divided voltage exceeds the operating voltage of the Zener diode 133 (corresponding to the threshold value of the present invention), the Zener diode 133 is energized. Then, an overload signal (or an overcurrent signal) is output to the output terminal OUT via the backflow prevention diode 134. When an overload signal (or overcurrent signal) is input to the input terminal C1IN (or input terminal C2IN) of the power controller 60 (or regenerative brake controller 70), the PUT 64 (or regenerative brake controller 70) of the power controller 60 (or regenerative brake controller 70).
  • the rising voltage of the PUT 64 (or PUT 74) set by the first command signal (or the second command signal) increases and the duty ratio decreases.
  • a power supply signal (or regenerative signal) with a reduced duty ratio is output from the output terminal OUT (or first output terminal HOUT, second output terminal LOUT) of the power controller 60 (or regenerative brake controller 70).
  • the load current (or regenerative current) of the field winding set is suppressed.
  • the overload or overcurrent is eliminated and a normal load signal voltage (or current signal voltage) is input to the input terminal, the divided voltage of the voltage dividing resistor 132 becomes equal to or lower than the operating voltage of the Zener diode 133, and the output terminal OUT Does not output an overload signal (or overcurrent signal). Therefore, the operating voltage of the PUT 64 (or PUT 74) of the input terminal C1IN (or input terminal C2IN) of the power controller 60 (or regenerative brake controller 70) is PUT64 (or second command signal) set by the first command signal (or second command signal). Alternatively, the power supply signal (or regenerative signal) having a duty ratio corresponding to the first command signal (or the second command signal) is output.
  • FIG. 10 is a diagram illustrating an example of a segment according to the present embodiment.
  • a segment 3 shown in FIG. 10 is formed by a power supply terminal PIN for obtaining power from the DC power supply 10 and two field windings facing each other with the rotor 1 interposed therebetween.
  • PIN power supply terminal
  • two field windings facing each other with the rotor 1 interposed therebetween.
  • a load current flows, one is an N pole and the other is A field winding set 20 that is magnetized to the S pole, a switching unit 17 including four switching elements 31a, 31b, 31c, and 31d, and a Hall element 18 that detects a magnetic pole of the magnet and has an input terminal IN and an output terminal OUT.
  • a pulse transformer 32 that is connected to the output terminal OUT of the Hall element 18, cuts an unbalanced current included in the power feeding signal, and outputs a power feeding signal having a voltage necessary for driving the switching element 31, and a field winding set.
  • a load current detection transformer 33 for detecting a load current flowing through the output 20
  • an output terminal C 1 OUT for outputting the detected load current
  • an output terminal R for the AC power induced in the field winding set 20.
  • the respective switching elements 31a of the switching unit 17, 31b, 31c, the 31d, freewheeling diodes 35 for bypassing a surge voltage or the like are connected in parallel.
  • the load current detection transformer 33 detects a load current flowing in both directions through the field winding set 20 as the switching element 31 is intermittently conducted, and sends the detected load current to the overload limiter 130.
  • the switching unit 17 of a certain segment 3 has one or more field windings arranged in a direction opposite to the direction of rotation of the rotor 1 before the field winding group 20 belonging to the segment 3.
  • a power supply signal corresponding to the magnetic pole detected by the Hall element 18 installed near or in the center of the field magnetic pole around which the set 20 is wound is sent.
  • the field winding set 20 arranged one or more ahead of the field winding set 20 included in the segment 3 is sent to the switching unit 17 of another segment 3 to which the field winding set 20 belongs.
  • the switching elements 31a and 31c are operated, the rotor 1 rotates, the magnetic pole of the magnet is reversed, and the negative power is supplied from the Hall element 18.
  • the switching elements 31b and 31d are activated.
  • FIG. 11 is a regenerative power controller showing an example of the regenerative power control unit of the present embodiment.
  • the regenerative power controller 90 shown in FIG. 11 performs voltage doubler rectification on the regenerative power input from each segment 3 and outputs the regenerative power.
  • the regenerative power output from the output terminal ROUT of the segment 3 is input to the input terminal RIN.
  • an output terminal HOUT of the regenerative brake controller 70 an input terminal for inputting a high regeneration signal and a low pressure regeneration signal output from the LOUT HIN, and LIN, and detection transformer 92 for detecting a regenerative current, outputs the detected regenerative current
  • Four diodes 96 for full-wave rectification of the regenerative current of the positive and negative regenerative power A primary capacitor 97 that charges each negative current individually, a large-capacity capacitor 98 that obtains a double voltage charge by the charge charged in the primary capacitor 97, and a double voltage output terminal VOUT are provided.
  • the pair of switching elements 93 and 94 When a high voltage regeneration signal and a low voltage regeneration signal are input to the pair of switching elements 93 and 94, the pair of switching elements 93 and 94 are intermittently conducted according to the duty ratio of the regeneration signal, and the AC power is charged to the primary capacitor 97 only when the pair is turned on. .
  • the electric charge charged in the primary capacitor 97 is stored in the large-capacitance capacitor 98 via the diodes 99a and 99b.
  • the output voltage is doubled when charging the secondary battery of the DC power supply 10 with the charge of the large-capacity capacitor 98 so that the charge voltage is higher than the voltage of the secondary battery. is there.
  • a second command signal is issued and the regenerative brake is activated. Since the strength of the regenerative brake changes according to the amount of regenerative power consumed, it acts weakly and intermittently conducts when the switching elements 93 and 94 are intermittently conducted for a short time (when the duty ratio is small). When the operation time is long (when the duty ratio is large), it acts strongly. Therefore, when applied to an accelerator pedal of an electric vehicle, the same feeling as engine braking can be obtained.
  • FIG. 12 is a battery charge voltage controller showing an example of the charging unit of the present embodiment.
  • a battery charge voltage controller 150 shown in FIG. 12 includes an input terminal VIN to which a double voltage is input from the output terminal VOUT of the regenerative power controller 90, an output terminal BAT connected to the secondary battery, and two switching elements 151 and 152.
  • Resistors 153 and 154 that maintain the gate voltage of the first switching element 151 at 0, voltage divider resistors 155 and 156 that divide the voltage of the secondary battery and set a charging voltage, a zener diode 157, A resistor 158 that keeps the gate voltage of the second switching element 152 at 0 when the Zener diode 157 is OFF, and a large-capacitance capacitor 159 that stores charges corresponding to load fluctuations are provided.
  • the voltages of the voltage dividing resistors 155 and 156 become the charging completion voltage, and the Zener diode 157 is energized, the second switching element 152 is turned on, and the gate of the first switching element 151 The voltage becomes zero and charging stops.
  • the DC regenerative motor of the second embodiment has a function of switching the rotation direction, and the rotation direction switch of the present invention is applied to realize the function.
  • the power feeding signal output from the Hall element is supplied to a specific switching unit, and the load current in one specific field winding set connected to the switching unit. Used for energization.
  • the power supply signal output from the Hall element is supplied to one of the two specific switching units via the selection unit of the rotation direction switch. After that, it is different in that it is used for energizing a load current in one specific field winding set connected to each switching unit.
  • the other configurations are common, the differences will be described, and duplicate descriptions of common portions will be omitted.
  • FIG. 13 is a diagram illustrating a main part of a DC regenerative motor according to a second embodiment to which an example of the rotation direction switching device of the present invention is applied.
  • the DC regenerative motor of the second embodiment detects the rotor 1 provided with the magnetic pole 1e, the stator 2 provided with the field winding 2f, and the magnetic pole 1e of the rotor 1.
  • the Hall element 18 to be rotated, the rotation direction switch 40, the switching unit 19 for controlling the load current of the field winding 2f by the feeding signal of the Hall element 18, the chopper signal input terminal CIN, the DC power supply connection terminal DIN, And an inner rotor type in which the rotor 1 is disposed inside the stator 2.
  • the field winding 2f wound around each of the 24 field poles is arranged at a position rotated 90 degrees from a pair of field windings 2f arranged at symmetrical positions with the rotor 1 interposed therebetween.
  • Four field windings 2f composed of a pair of field windings 2f (not shown in FIG. 13 for the sake of complexity) are connected in parallel to form six sets of field windings.
  • a set 20 is formed.
  • Each of the pair of field windings 2f in each of the six sets of field windings 20 is magnetized in the same phase, and each of the other pair of field windings 2f is magnetized in the opposite phase.
  • a load current is supplied from the DC power supply connection terminal DIN so that a rotating magnetic field is formed.
  • one pair of field windings 2f forming the field winding set 20 of the present embodiment is simultaneously magnetized to N pole (or S pole), and the other pair of field windings 2f.
  • the Hall element 18 has an input terminal for inputting a chopper signal, and when the magnetic pole 1e of the rotor 1 is detected with the chopper signal being input to the input terminal, the strength (including polarity) of the magnetic pole 1e and the chopper are detected.
  • An output terminal that outputs a feed signal proportional to the product of the signal magnitude, and can detect the position of the magnetic pole of the rotor 1 without being affected by the rotating magnetic field formed in the field winding 2f. Placed in position. Therefore, if the duty ratio of the chopper signal input to the hall element 18 is changed, the torque of the motor changes, so that the rotational speed can be accelerated and decelerated.
  • the Hall element 18 of the present embodiment is disposed near or in the center of the field pole, but a slot is included in the vicinity of the field pole.
  • the switching unit 19 When the polarity of the power feeding signal at the output terminal of the Hall element 18 is positive, the switching unit 19 includes two switching elements 31a and 31c that change the energization time according to the duty ratio of the power feeding signal, and the polarity of the power feeding signal is negative. At this time, it has two switching elements 31b and 31d that change the energization time according to the duty ratio of the power supply signal. Each switching element 31a, 31b, 31c, 31d switches the direction of the load current supplied to the field winding set 20 according to the magnetic pole 1e of the rotor 1, while the load current energizing time is changed according to the duty ratio. Change.
  • a free wheel diode 35 that bypasses a surge voltage or the like is connected in parallel to each switching element 31a, 31b, 31c, 31d.
  • a positive power supply signal is sent from the hall element 18 to the switching unit 19, the switching elements 31a and 31c are operated, the rotor 1 rotates and the magnetic pole 1e is reversed, and a negative power supply signal is transmitted from the hall element 18.
  • the switching elements 31b and 31d are activated.
  • the load current intermittently flows in the field winding set 20 for the energizing time corresponding to the duty ratio of the power supply signal, and the rotor 1 generates a torque corresponding thereto.
  • the distance (M) between the N pole and the S pole of the rotor 1 is the central portion of each of the field poles arranged across the slots of the stator 2. Since it is larger than the distance (L) between each other, the load current is controlled by the feeding signal of the Hall element 18, and a magnetization pause time always occurs at the transition of the magnetic pole magnetized by the field winding set 20. As a result, the same field winding 2f is configured not to receive simultaneously the force attracting the magnetic pole 1e of the rotor 1 and the repulsive force.
  • the rotation direction switch 40 includes six switches (corresponding to the selectors of the present invention) 41a to 41f that switch the field winding group 20 whose load current is controlled by the switching unit 19 in accordance with the power supply signal of the Hall element 18. And a relay (which corresponds to a selector switching unit of the present invention) 42 that switches the selection unit 41 all at once in response to a rotation direction command.
  • a relay which corresponds to a selector switching unit of the present invention
  • the contact of the switch 41a is connected to the switching unit 19 that supplies a load current to the field winding 2f that is one ahead in the forward and reverse rotation directions with respect to the field pole. You may connect to the switching part 19 which supplies load current to the line 2f.
  • the rotation direction switch 40 of this embodiment uses the selection part 41 and the relay 42, you may use a rotary type multi-contact switch, or may use another switching method.
  • the number of magnetic poles P of the rotor is set to 4
  • the number of field poles Q of the stator is set to 24
  • the number of Hall elements H is set to 6, respectively.
  • the number Q of the child field poles and the number H of the Hall elements do not necessarily need to be combinations of 4, 24, and 6, respectively.
  • the number of magnetic poles P of the rotor is not necessarily 4 and may be a multiple of 2.
  • Condition 1 H is equal to or smaller than Q / P.
  • Condition 2 M is equal to or greater than L, where M is the distance between the N and S poles, and L is the distance between the central portions of the field poles arranged across the slot.
  • Condition 3 Q and H are selected so that Q / H is an integer.
  • FIG. 14 is a connection state diagram of a contact point of a relay shown as one embodiment of the rotation direction switch of the present invention
  • FIG. 15 is an operation circuit diagram of the relay shown as one embodiment of the rotation direction switch of the present invention. is there.
  • the selection unit 41 shown in FIG. 14 includes six switches 41a to 41f.
  • the switches 41a to 41f include an input terminal IN for signals output from the hall elements 18a to 18f and two contacts that are switched by the operation of the relay 12.
  • Each of the first contacts (closed contacts in the figure) is one ahead of the field winding (K) in which each Hall element 18a to 18f is installed in the vicinity or the center thereof in the forward rotation direction.
  • Each of the second contacts (open contacts in the figure) connected to switching units 19a to 19f for supplying a load current to the arranged field winding is more than the field winding (K). In the reverse rotation direction, it is connected to switching units 19e to 19d for supplying a load current to the field winding arranged one ahead. Further, the switching units 19a to 19f are connected to a common DC source 10.
  • the input terminals of the Hall elements 18a to 18f are connected to the common chopper signal generator 5, and the output terminals are connected to the switches 41a to 41f of the selector 41.
  • the contacts of the switches 41a to 41f of the present embodiment are connected to the switching units 19a to 19f for supplying a load current to the field winding one forward in the forward and reverse rotation directions with respect to the field pole. Further, it may be connected to switching units 19a to 19f that supply a load current to the field windings that are two forward in the forward and reverse rotation directions with respect to the field pole.
  • the rotation direction switch 40 of this embodiment uses the relay 42 and the selection part 41 which consists of a contact of the relay 42, you may use a rotary multi-contact switch.
  • the DC synchronous motor of this embodiment has 24 field windings, and four field windings are connected in parallel to form six field winding sets 20a to 20f. That is, among the 1st to 24th field windings wound around the 1st to 24th field poles sequentially arranged in the positive rotation direction, the 1st, 7th, and 1st 13th and 19th field windings, 2nd, 8th, 14th and 20th field windings, 3rd, 9th, 15th and 21st fields 4th, 10th, 16th and 22nd field windings, 5th, 11th, 17th and 23rd field windings, 6th and The twelfth, eighteenth and twenty-fourth field windings are connected in parallel.
  • the first field winding set 20a including the second, eighth, fourteenth, and twentieth field windings is supplied with a load current from the first switching unit 19a
  • the third The second field winding set 20b composed of the ninth, fifteenth, fifteenth and twenty-first field windings is supplied with a load current from the second switching portion 19b
  • the third field winding set 20c composed of the 16th, 16th and 22nd field windings is supplied with a load current from the third switching portion 19c.
  • the fourth field winding set 20d composed of the fifth, eleventh, seventeenth and twenty-third field windings is supplied with a load current from the fourth switching section 19d
  • the sixth The fifth field winding set 20e composed of the th, twelfth, eighteenth and twenty-fourth field windings is supplied with the load current from the fifth switching section 19e
  • the first and seventh The sixth field winding set 20f including the th, thirteenth and nineteenth field windings is supplied with a load current from the sixth switching unit 19f.
  • the power supply signal output from the Hall element 18 is supplied to one of the two specific switching units 19 via the selection unit 41 of the rotation direction switch 40, and then the Hall element 18 is in the vicinity.
  • it is used for energizing a load current to the field winding group 20 including the field winding in the rotational direction of the rotor 1 and one field ahead of the field magnetic pole (field winding) installed at the center.
  • the feeding signal of the Hall element 18a arranged near or in the center of the first field pole is connected to the first switching unit 19a or the fifth switching unit 19e by the contact of the switch 41a, and the second The feeding signal of the Hall element 18b arranged near or in the center of the field pole is connected to the second switching unit 19b or the sixth switching unit 19f by the contact of the switch 41b, and near or at the center of the third field pole.
  • the power supply signal of the hall element 18c arranged in is connected to the third switching unit 19c or the first switching unit 19a by the contact of the switch 41c.
  • the feeding signal of the Hall element 18d arranged near or in the center of the fourth field pole is connected to the fourth switching unit 19d or the second switching unit 19b by the contact of the switch 41d, and the fifth The feeding signal of the Hall element 18e arranged in the vicinity or center of the field pole is connected to the fifth switching unit 19b or the third switching unit 19c by the contact of the switch 41e, and in the vicinity or center of the sixth field pole.
  • the power supply signal of the Hall element 18f arranged at is connected to the sixth switching unit 19f or the fourth switching unit 19d through the contact of the switch 41f.
  • the first field winding set 20a receives a first power supply signal from the first Hall element 18a (in the forward rotation direction) or a third power supply signal from the third Hall element 18c (in the reverse rotation direction). A load current is supplied from one switching unit 19a.
  • the second field winding set 20b receives a second feeding signal from the second Hall element 18b (in the forward rotation direction) or a feeding signal from the fourth Hall element 18d (in the reverse rotation direction).
  • a load current is supplied from the switching unit 19b.
  • the third field winding set 20c receives a power supply signal of the third Hall element 18c (in the forward rotation direction) or a power supply signal of the fifth Hall element 18e (in the reverse rotation direction). The load current is supplied from the three switching units 19c.
  • the fourth field winding set 20d receives a fourth feeding element (during the forward rotation direction) of the fourth Hall element 18d or a fourth feeding element (during the reverse rotation direction) of the sixth Hall element.
  • a load current is supplied from the switching unit 19d.
  • the fifth field winding set 20e receives a power supply signal from the fifth Hall element 18e (in the forward rotation direction) or a power supply signal from the third Hall element 18c (in the reverse rotation direction).
  • the load current is supplied from the five switching units 19e.
  • the sixth field winding set 20f receives a power supply signal of the sixth Hall element 18f (in the forward rotation direction) or a power supply signal of the second Hall element 18b (in the reverse rotation direction).
  • the load current is supplied from the six switching units 19f.
  • one pair of field windings among the four field windings of each of the field winding groups 20a to 20f supplied with the load current has the magnetic poles detected by the Hall elements 18a to 18f. Magnetized in the opposite polarity, the other pair of field windings are magnetized in the same polarity as the magnetic poles detected by the Hall elements 18a to 18f.
  • the relay 42 shown in FIG. 15 is connected to the resistor R and the DC power source E via a lever (command signal generation unit) 43 that commands the rotation direction.
  • a lever command signal generation unit
  • the relay 42 has at least twelve switches that have contacts that close all at once when operated and open all at once when returned, and all contacts that close all at once and open all at once when operated.
  • the switches and contacts constitute the switches 41a to 41f and the contacts in the selection unit 41 in FIG.
  • FIG. 16 is a plan view of a fixed portion of a rotary switch shown as another embodiment of the rotation direction switch of the present invention
  • FIG. 17 shows a rotary switch shown as another embodiment of the rotation direction switch of the present invention. It is a bottom view of a rotation part.
  • FIG. 16 is a bottom view of a rotary switch rotating unit as another example of the rotation direction switching device 40 of the present embodiment.
  • the rotary switch fixing portion 45 shown in FIG. 16 has a shaft 46 at the center, and six contact points (represented by white circles in the drawing. These contact points are shown below) on two concentric circles around the shaft 46. and.) referred to as "white circles 45a ', one contact on each sides of the white circles 45a (. expressed in Oguro circle in the drawings below, these contacts is referred to as" small solid circle 45b ".) it is placed.
  • These white circles 45a correspond to the output terminals of the Hall elements 18a to 18f shown in FIG. 14, but one of the contacts of the switches 41a to 41f in FIG.
  • the white circle 45a is a neutral point that is not connected to any of the small black circles 45b.
  • the small black circle 45b corresponds to the twelve contacts of the six switches 41a to 41f connected to the six switching sections 19a to 19f.
  • Open circles 45a also small solid circles 45b also in two concentric circles, are arranged radially, of Oguro round 45b of concentric, small solid circles 45b mutually connected to a first switching unit 19a or the fifth switching unit 19e, small solid circles 45b mutually connected to the second switching unit 19b or the sixth switching unit 19f, small solid circles 45b mutually connected to the third switching unit 19 or the first switching unit 19a, a fourth switching unit 19d or small solid circles 45b mutually connected to the second switching unit 19b, the fifth switching unit 19b or the third small solid circles 45b mutually connected to the switching unit 19c, the sixth switching section 19f or the fourth switching unit
  • the small black circles 45b connected to 19d are connected by lead wires 49, respectively.
  • the rotary part 48 of the rotary switch whose bottom surface is shown in FIG. 17 has a rotary shaft 49 fitted to the rotary switch fixing part 45 at the center, and six radially, two concentric circles around the rotary shaft 49. Connection points (represented by large black circles in the figure. These connection points are hereinafter referred to as “large black circles 47a”) are arranged.
  • a large black circle 47a is a connection point to which the output terminals of the Hall elements 18a to 18f shown in FIG. 14 are connected.
  • the rotating shaft 49 of the rotating portion 48 is fitted to the shaft 46 of the fixed portion 45, and normally, the neutral circle 45a of the fixed portion 45 and the large black circle 47a of the rotating portion 48 are in contact with each other.
  • the DC regenerative motor and the rotation direction switch of the present invention can be widely used not only for electric vehicles but also for OA equipment, AV equipment, PC peripheral equipment, home appliances, industrial equipment, and the like.

Abstract

[Problem] To provide a direct current regenerative electric motor that carries out regenerative braking immediately after an electricity supply is interrupted only upon an operation of an electricity supply operation unit, and is capable of accumulating electricity obtained through said regenerative braking, as well as a rotation direction switching apparatus that switches the direction of rotation of the direct current regenerative electric motor. [Solution] A direct current regenerative electric motor comprises: an electricity supply signal generator unit, which outputs an electricity supply signal in response to a first instruction signal; a regeneration signal generator unit, which outputs a regeneration signal in response to a second instruction signal; a segment, further comprising a detector unit which detects a magnetic pole of a rotor and applies a polarity to the electricity supply signal, and a switching unit that changes the direction of load current, intermittently allowing same to flow; and a regenerated electricity control unit, which multiplies and accumulates induced electricity. The direct current regenerative electric motor either drives rotation or regeneratively brakes, in response to the instruction signals. The direct current further comprises a rotation direction switching apparatus, which switches the direction of rotation by selecting a magnetic coil group and supplying an electricity supply signal, allowing an electric-powered automobile to move forward or in reverse.

Description

直流回生電動機及び回転方向切替器DC regenerative motor and rotation direction switch
 本発明は、直流で駆動し、駆動後の余剰な運動エネルギーを電気エネルギーに変換して蓄電器等に蓄電する直流回生電動機、及びその直流回生電動機の回転方向を切替える回転方向切替器に関するものである。 The present invention relates to a DC regenerative motor that is driven by direct current, converts surplus kinetic energy after driving into electric energy, and stores it in a capacitor or the like, and a rotation direction switch that switches the rotation direction of the DC regenerative motor. .
 近年、地球環境保全、石油依存からの脱却、エネルギー効率に関する意識の高まりを背景に、エンジンとモータを併用するハイブリッド車や、蓄電池や燃料電池に蓄積された電気エネルギーでモータを駆動し走行する電気自動車が脚光を浴びている。特に、小型・高出力のモータ、蓄電池や燃料電池の開発が急速に進展したことも、その実用化に拍車をかけている。
電気自動車駆動用のモータは、エネルギー効率を勘案すると、直流モータが有利である。しかし、トルクと回転数とは逆比例関係にあるため、回転数の可変範囲が狭く、回転速度を広範囲に変えるのが難しいとされている。他方、交流モータ(インダクションモータ、同期モータなど)を直流電源で駆動するには、インバータで直流を交流に変換する必要があり、エネルギー効率は、直流モータよりも劣る。さらに、三相交流で駆動する場合は、トルクリップルが多い上、入力が1/√2に減少するので出力が制約されてしまう。反面、構造が簡単で、寿命が長く、回転数の範囲を0rpmから、例えば15000rpmまで、幅広く制御できるので、変速機を必要としない。
そこで、低速走行の超小型電気自動車は、主に直流モータを使用し、高速走行を要する乗用電気自動車などは、交流モータを駆動制御して使用している。
In recent years, against the backdrop of global environmental protection, a departure from dependence on oil, and heightened awareness regarding energy efficiency, hybrid vehicles that use an engine and a motor together with electricity that drives a motor with electric energy accumulated in a storage battery or a fuel cell Cars are in the spotlight. In particular, the rapid development of small, high-output motors, storage batteries, and fuel cells has spurred their practical application.
In consideration of energy efficiency, a DC motor is advantageous as a motor for driving an electric vehicle. However, since the torque and the rotational speed are in an inversely proportional relationship, the variable range of the rotational speed is narrow and it is difficult to change the rotational speed over a wide range. On the other hand, in order to drive an AC motor (induction motor, synchronous motor, etc.) with a DC power source, it is necessary to convert DC to AC with an inverter, and energy efficiency is inferior to that of a DC motor. Furthermore, when driving with three-phase alternating current, the torque ripple is large and the input is reduced to 1 / √2, so that the output is restricted. On the other hand, the structure is simple, the service life is long, and the rotation speed range can be controlled widely from 0 rpm to, for example, 15000 rpm, so that no transmission is required.
Therefore, a micro electric vehicle that travels at a low speed mainly uses a DC motor, and a passenger electric vehicle that requires a high speed travel uses an AC motor that is driven and controlled.
しかしながら、エネルギー効率の観点などから、直流モータを普通自動車などに使用するのに必要な技術開発も多々行われ、多くの改善提案がなされている。
例えば、PWM信号のデューティ比を変化させてトルク制御を行うブラシレスDCモータの、PWM信号の搬送周波数を複数段階に切換える手段を備え、その切換えやデューティ比の変化をプログラム制御することにより、低負荷・低回転数でも振動を起こさないようにしたモータが提案されている(特許文献1参照)。
また、二つの界磁用磁石を同軸に並置し、低回転時には、異なる極性の磁極を並ばせて磁界を弱め、回転上昇時には、その遠心力でガバナを働かせ、同じ極性の磁極を並ばせて磁束を強め、それによって弱め界磁制御を行わずに従来の3倍近い回転数まで、高トルクで使用可能なブラシレスDCモータが提案されている(特許文献2参照)。
さらに、二つのロータを備え、その位相差を、指令値と推定値との偏差が減少するようにフィードバック制御することにより弱め界磁制御を行い、電動機の回転数を高める方法が提案されている(特許文献3参照)。
一方、エネルギー消費を抑えて走行距離を延ばすことやエネルギー効率を高めるために、走行時の余剰な運動エネルギーを電気変換して二次電池に充電する方法や、減速時の余剰な運動エネルギーを電気変換して回収・消費する、いわゆる回生制動に関する開発も行われている。
例えば、回生制動で生じた電力をバッテリに充電する小型電動車において、長い下り坂でバッテリが過充電にならないように、初期充電の容量制限値を満充電未満に設定するとともに、走行中に過充電になったら、車速の上限値を下方に設定する方法が提案されている(特許文献4参照)。
また、トルクを積算処理することにより、基準値を超える高トルクが出力された後は回生トルクの使用を制限又は禁止してモータの巻線が過熱するのを防止すると共に、十分な動力性能を確保し、一方、降坂時の回生制動で巻線温度が上昇し電流が制限され、その後の登坂時に必要なトルクが得られなくなるという不都合を解消する方法が提案されている(特許文献5参照)。
さらに、燃費をよくするため、ブレーキペダルの操作による要求制動力が回生制動力よりも小さいときは、回生制動のみを使用し、要求制動力が回生制動力よりも大きいときは回生制動と摩擦制動を併用し、急制動が必要なときは、回生制動力の比率を小さくする方法などが提案されている(特許文献6参照)。
However, from the viewpoint of energy efficiency and the like, many technological developments necessary for using a DC motor in a normal automobile have been made, and many improvement proposals have been made.
For example, a brushless DC motor that performs torque control by changing the duty ratio of the PWM signal is equipped with means for switching the carrier frequency of the PWM signal in a plurality of stages, and by controlling the switching and change of the duty ratio, a low load A motor has been proposed that does not vibrate even at a low rotational speed (see Patent Document 1).
Moreover, juxtaposing the two field magnets coaxially, at low rotation causes line up the magnetic poles of different polarities weaken the magnetic field, during rotation increases, exerts a governor in its centrifugal force, thereby lined up the magnetic poles of the same polarity There has been proposed a brushless DC motor that can be used with high torque up to about three times the conventional number of rotations without increasing the magnetic flux and thereby performing field-weakening control (see Patent Document 2).
Furthermore, a method has been proposed in which two rotors are provided, and the phase difference is feedback controlled so that the deviation between the command value and the estimated value is reduced, thereby performing field-weakening control and increasing the rotational speed of the motor (patent) Reference 3).
On the other hand, in order to reduce energy consumption and extend mileage and increase energy efficiency, there is a method of electrically converting surplus kinetic energy during travel and charging the secondary battery, or surplus kinetic energy during deceleration Development related to so-called regenerative braking, which is converted, collected, and consumed, is also underway.
For example, in a small electric vehicle that charges the battery with the electric power generated by regenerative braking, the initial charge capacity limit value is set to less than full charge so that the battery does not overcharge on a long downhill, A method has been proposed in which the upper limit value of the vehicle speed is set downward when charging is performed (see Patent Document 4).
Also, by integrating the torque, after the high torque exceeding the reference value is output, the use of regenerative torque is restricted or prohibited to prevent the motor windings from overheating, and sufficient power performance can be achieved. On the other hand, a method has been proposed that eliminates the inconvenience that the winding temperature rises due to regenerative braking during downhill and the current is limited, and the necessary torque cannot be obtained during the subsequent uphill (see Patent Document 5). ).
Furthermore, in order to improve the fuel efficiency, when the required braking force by the operation of the brake pedal is smaller than the regenerative braking force, using only regenerative braking, when the required braking force is greater than the regenerative braking force of regenerative braking and friction braking And a method of reducing the ratio of the regenerative braking force when sudden braking is required (see Patent Document 6).
他方、ブラシレスDCモータは、ホール素子などの磁気センサや光センサを用いて回転子の磁極位置を検出し、界磁巻線に、検出された磁極位置に応じた励磁電流を流して回転磁界を生成して回転子を回転させているので、それを電気自動車の駆動源とする場合には、前進後退を選択する際に、変速機等で機械的に回転方向を切替えるか、あるいは、回転磁界の回転方向を切替える必要がある。そこで、位相の異なる交番電流を各界磁巻線に流すことにより回転磁界を得ているモータの、各界磁巻線の相順を切替えることにより回転方向を切替える方法(特許文献7)や、各界磁巻線への交番電流供給タイミングを制御することにより回転方向を切替える方法が提案されている(特許文献8)。 On the other hand, the brushless DC motor detects the magnetic pole position of the rotor by using a magnetic sensor such as a Hall element or an optical sensor, and applies an excitation current corresponding to the detected magnetic pole position to the field winding to generate a rotating magnetic field. Since the rotor is generated and rotated, when it is used as a drive source for an electric vehicle, when the forward / reverse is selected, the rotational direction is mechanically switched by a transmission or the like, or the rotating magnetic field It is necessary to switch the rotation direction. Therefore, a method of switching the rotation direction by switching the phase order of each field winding of a motor that obtains a rotating magnetic field by flowing alternating currents having different phases to each field winding (Patent Document 7), A method of switching the rotation direction by controlling the alternating current supply timing to the winding has been proposed (Patent Document 8).
特開平8-98577号公報Japanese Patent Laid-Open No. 8-98577 特開平11-69743号公報JP 11-69743 A 特開2009-254079号公報JP 2009-254079 A 特開2008-54441号公報JP 2008-54441 A 特開2008-167599号公報JP 2008-167599 A 特開2001-8306号公報Japanese Patent Laid-Open No. 2001-8306 特許第3337126号公報Japanese Patent No. 3337126 特許第3906429号公報Japanese Patent No. 3906429
ブラシレスDCモータは、回転子の磁極位置を検出し、検出された磁極位置信号により回転磁界を形成しており、チョッパ信号などによる駆動回路も電力を消費するので、ブラシ付モータに較べて出力効率が低下する。そこで、間欠的通電中の非通電タイミングに界磁巻線に誘起される交流電力を回転磁界の形成に活用することにより出力効率を高めることや、回生制動を活用して自動車のエネルギー効率や燃費向上を図る必要がある。その場合、エンジン自動車に慣れている運転者に対する人間工学的見地からの配慮が必要である。すなわち、エンジンブレーキと同様の感覚を期待してアクセルペダルを緩め、解放したときに、回生制動が機能しないと、不安感から慌ててブレーキペダルを踏み込むことが予想される。そこで、アクセルペダルを緩め、解放したときに、回生制動が働くようにする一方、誘起される電気エネルギーを効率的に回収する必要がある。 The brushless DC motor detects the magnetic pole position of the rotor, forms a rotating magnetic field based on the detected magnetic pole position signal, and the drive circuit based on the chopper signal also consumes power. Therefore, the output efficiency is higher than that of a brushed motor. Decreases. Therefore, it is possible to increase the output efficiency by utilizing AC power induced in the field winding at the non-energization timing during intermittent energization for the formation of the rotating magnetic field, and to utilize the regenerative braking to improve the energy efficiency and fuel consumption of the vehicle. There is a need to improve. In that case, consideration from an ergonomic standpoint is necessary for the driver who is used to the engine car. That is, when the accelerator pedal is loosened and released in the expectation of the same feeling as that of the engine brake, if the regenerative braking does not function, it is expected that the brake pedal will be stepped on from anxiety. Thus, when the accelerator pedal is loosened and released, regenerative braking is required, and the induced electrical energy must be efficiently recovered.
また、内燃機関自動車のように、変速機のギヤチェンジで前進、後退を機械的に変更する方法は、装置が大型化するうえ重量もかさむので、小型で軽量というブラシレスDCモータの利点があまり生かされない。また、相順を切替える方法は、3相交番で励磁される電動機には簡便な方法であるが、トルクリップルがある上、高出力が得にくい。さらに、励磁電流の供給タイミングを制御する方法は、相数が多くなると制御が複雑化する。何れの方法も、回転子の磁極位置を検出し、チョッパ信号やPWM信号のデューティ比に応じて、各界磁巻線に間欠的に通電して駆動するモータには不向きである。 In addition, the method of mechanically changing the forward and backward movements by changing the gear of the transmission, such as an internal combustion engine car, increases the size of the device and increases the weight. Not. The method of switching the phase order is a simple method for an electric motor excited by a three-phase alternating current, but there is a torque ripple and it is difficult to obtain a high output. Furthermore, the method for controlling the supply timing of the excitation current becomes complicated as the number of phases increases. Both methods are unsuitable for motors that detect the position of the magnetic pole of the rotor and that are driven by intermittently energizing each field winding in accordance with the duty ratio of the chopper signal or PWM signal.
本発明は、上記事情に鑑み、従来のブラシレスDCモータにおける出力効率を高め、かつ給電停止直後の回生制動を、給電操作部の操作のみで行うことが可能で、さらに回生制動で得られた電力を蓄電し、エネルギー効率を高めることが可能な直流回生電動機を提供することを第1の目的とする。
また、その直流回生電動機の回転方向を切替える回転方向切替器を提供することを第2の目的とする。
In view of the above circumstances, the present invention can increase the output efficiency of a conventional brushless DC motor, perform regenerative braking immediately after stopping power feeding only by operating the power feeding operation unit, and further obtain electric power obtained by regenerative braking. It is a first object to provide a DC regenerative motor that can store the energy and increase the energy efficiency.
It is a second object of the present invention to provide a rotation direction switch that switches the rotation direction of the DC regenerative motor.
本発明の直流回生電動機は、一定の間隔をあけてN極とS極が配置された回転子と、上記回転子に対向する複数の界磁極それぞれに巻回されて直流で励磁される界磁巻線を直列又は並列に接続した界磁巻線組が複数配備された固定子と、を有するブラシレスの直流回生電動機であって、作動を指令するための力の大きさによる指令を受け、受けたその力が所定値を超える場合は、該所定値を超えるその力の大きさに比例して線形素子の特性値が変化する第1指令信号を生成し、受けたその力が該所定値以下の場合は、該所定値を下回るその力の大きさに比例して線形素子の特性値が変化する第2指令信号を生成する指令信号生成部と、上記第1指令信号に応じたデューティ比の給電信号を出力する給電信号生成部と、上記第2指令信号に応じたデューティ比の回生信号を出力する回生信号生成部と、上記界磁巻線組のうちの1つの界磁巻線組を形成する1つの界磁巻線が巻回された界磁極の近傍(スロットを含む。以下同じ。)又は中央で、上記回転子の磁極を検出し、上記給電信号に正負何れかの極性を付与して出力する検出部、該検出部から出力された該給電信号の極性に応じて直流電源から該界磁巻線組に供給される負荷電流の方向を切換える一方、該負荷電流を該給電信号のデューティ比に応じて間欠的に通電する切換部、及び該界磁巻線組を流れる該負荷電流の大きさを検出する負荷電流検出部を有し、該界磁巻線組それぞれに配備されるセグメントと、上記界磁巻線組それぞれに誘起される交流電力を上記回生信号のデューティ比に応じて倍電圧整流し、蓄電器に蓄電する回生電力制御部と、を備え上記第1指令信号のデューティ比に応じて回転駆動され、上記第2指令信号のデューティ比に応じて回生制動されることを特徴とする。
このように、指令信号生成部は、それぞれ線形素子の特性値が変化する2つの指令信号を生成し、1つの指令信号によって界磁巻線に通電し、他の1つの指令信号によって回生するので、電動機を駆動する際の加速と制動とを1つの操作部で行うことができる。また、界磁巻線組と検出部とを配置し、各検出部で回転子の磁極を検出した位置から、トルクが出来るだけ大きくなる位置の界磁巻線組に、第1指令信号に応じたデューティ比の給電信号による磁束を生じさせてトルクを出来るだけ大きくする一方、界磁巻線組への給電中の非通電タイミングで界磁巻線組に誘起される交流電力も切換部を介して他の界磁巻線組に供給することにより、従来のブラシレスDCモータに比べてより出力効率を高め、より大きなトルクを得ることができる。さらに、給電停止後の界磁巻線組に誘起される交流電力を倍電圧に整流して大容量キャパシタなどの蓄電器に蓄電するので、低速回転時における誘起電力も活用できると共に、充電する際の適正電圧が確保され、エネルギー効率を高めることができる。
The DC regenerative motor of the present invention is a field magnet that is wound around each of a plurality of field poles facing the rotor and a rotor in which N poles and S poles are arranged at regular intervals and excited by DC. A brushless DC regenerative motor having a stator provided with a plurality of field winding sets in which windings are connected in series or in parallel, and receives and receives a command based on the magnitude of force for commanding the operation. If the force exceeds a predetermined value, a first command signal is generated in which the characteristic value of the linear element changes in proportion to the magnitude of the force exceeding the predetermined value, and the received force is less than the predetermined value. In this case, a command signal generator for generating a second command signal in which the characteristic value of the linear element changes in proportion to the magnitude of the force below the predetermined value, and a duty ratio according to the first command signal In response to the power supply signal generator that outputs the power supply signal and the second command signal A regenerative signal generator that outputs a regenerative signal with a duty ratio, and a field pole in the vicinity of a field pole around which one field winding forming one of the field winding sets is wound (slot The same applies hereinafter.) Or a detection unit that detects the magnetic poles of the rotor at the center and gives either positive or negative polarity to the power supply signal, and the polarity of the power supply signal output from the detection unit A switching unit that switches the direction of the load current supplied from the DC power source to the field winding set according to the power supply, and intermittently energizes the load current according to the duty ratio of the power supply signal, and the field winding A load current detection unit for detecting the magnitude of the load current flowing through the wire set, and a segment disposed in each of the field winding sets and an AC power induced in each of the field winding sets Double voltage rectification according to the duty ratio of the regenerative signal to store in the battery That the regenerative power control unit, are rotated in accordance with the duty ratio of the first command signal comprises a, characterized in that it is regenerative braking in accordance with the duty ratio of the second command signal.
As described above, the command signal generation unit generates two command signals whose characteristic values of the linear elements change, energizes the field winding by one command signal, and regenerates by another one command signal. Acceleration and braking at the time of driving the electric motor can be performed by one operation unit. A field winding set and a detection unit are arranged, and a field winding set at a position where the torque is increased as much as possible from the position where the magnetic pole of the rotor is detected by each detection unit according to the first command signal. While generating the magnetic flux by the power supply signal with the duty ratio to increase the torque as much as possible, the AC power induced in the field winding set at the non-energization timing during power feeding to the field winding set also passes through the switching unit. By supplying to other field winding sets, the output efficiency can be further improved and a larger torque can be obtained as compared with the conventional brushless DC motor. In addition, AC power induced in the field winding set after power supply is stopped is rectified into a double voltage and stored in a capacitor such as a large-capacity capacitor, so that the induced power during low-speed rotation can be used and charging Appropriate voltage is ensured and energy efficiency can be increased.
また、上記回生信号生成部は、同じデューティ比で電圧のみが異なる2つの回生信号を生成するものであって、上記回生電力制御部は、上記回生信号それぞれの電圧により間欠的に通電する1対のスイッチング素子と、該スイッチング素子それぞれが通電した電力を蓄電する1対のコンデンサと、該1対のコンデンサに蓄電された電荷により倍電圧の電荷を得る大容量キャパシタとを有する構成にすれば、1対のスイッチング素子それぞれが通電した電力を1対のコンデンサにより倍電圧にした大容量の電荷を大容量キャパシタに蓄電し、2次電池の充電などに活用できる。
また、上記指令信号生成部は、例えば、並設された帯状の摺動面に抵抗体が形成され、該摺動面双方を長さ方向にスライドするスライド部材により抵抗値が変化する摺動抵抗器、及び作動を指令するための力の大きさによる指令を受けたとき、受けたその力に応じて該スライド部材をスライドさせるコントロール部材を有するものであって、受けたその力が上記所定値を超える場合には、該所定値を超えるその力の大きさに比例して抵抗値が減少する第1の抵抗体により上記第1指令信号を生成し、受けたその力が該所定値以下の場合には、該所定値を下回るその力の大きさに比例して抵抗値が減少する第2の抵抗体により上記第2指令信号を生成するように構成すれば、例えば電気自動車のアクセルペダル等に適用し、アクセルペダルを緩め、解放したときに回生制動が働くので、エンジンブレーキと同様の感覚を得ることができる。なお、ここでは、受けた力の大きさを摺動面に形成された抵抗体の抵抗値の変化に変換しているが、言うまでもなく、キャパシタンスの変化、インダクタンスの変化、電圧の変化などに変換してもよい。
さらに、1つの上記セグメントの上記検出部は、検出された上記磁極に応じて、上記給電信号に正負何れかの極性を付与して出力するものであって、出力された該給電信号は、他の1つの上記セグメントの上記切換部に入力されるように構成すれば、規格化されたセグメントで回転磁界が形成される一方、セグメント化により部品の製造、組み立てに便利である。
また、上記負荷電流検出部により検出された上記負荷電流が閾値を超えたとき、過負荷信号を出力する過負荷電流制限部を備え、上記給電信号生成部は、上記過負荷信号が入力すると上記給電信号のデューティ比を減少させ、該過負荷信号が解消すると、減少させた該給電信号のデューティ比を、上記第1指令信号に応じたデューティ比まで増加させるにすれば、給電中に異常な負荷電流が流れたときでも、直ちに給電信号のデューティ比を減少させて負荷電流を抑制し、給電停止後に異常な回生電流が流れたときでも、直ちに回生信号のデューティ比を減少させて回生電流を抑制し、界磁巻線組の焼損を防止することができる。
さらに上記直流電源から上記界磁巻線組への給電停止後に、回転子の回転に伴い上記界磁巻線組それぞれを流れる交流の回生電流を検出する回生電流検出部と、上記回生電流検出部により検出された上記回生電流が閾値を超えたとき、過電流信号を出力する過電流制限部とを備え、上記回生信号生成部は、上記過電流信号が入力すると上記回生信号のデューティ比を減少させ、該過電流信号が解消すると、減少させた該回生信号のデューティ比を、上記第2指令信号に応じたデューティ比まで増加させることにすれば、界磁巻線組に流れる負荷電流あるいは回生電流が再び正常な数値に戻ったときに、再び正常な給電や蓄電器への蓄電を行い、過電流による影響を軽微に止めることができる。
また、上記検出部は、上記給電信号を入力する入力端子、及び該入力手段から入力された該給電信号を、検出された上記磁極に応じた極性で出力する出力端子を備えたホール素子を有し、上記切換部は、上記ホール素子から出力される上記給電信号の極性が正のときには第1の方向に通電する第1スイッチング素子、及び該給電信号の極性が負のときには第2の方向に通電する第2スイッチング素子を有するように構成すれば、回転子の回転に合わせて各界磁巻線組に流れる負荷電流の方向を変える一方、各ホール素子による回転子の磁極検出に応じて、その検出位置から、トルクが極力大きくなる位置の界磁巻線組に、通電による回転磁界を生成させる一方、非通電時の誘起電力を他の界磁巻線組に供給することにより、従来のブラシレスDCモータに比べてより出力効率を高め、より大きなトルクを得ることができる。
The regenerative signal generation unit generates two regenerative signals having the same duty ratio but only different voltages, and the regenerative power control unit is a pair of power supplies intermittently energized by the voltages of the regenerative signals. Switching element, a pair of capacitors that store electric power energized by each of the switching elements, and a large-capacity capacitor that obtains a double voltage charge by the charge stored in the pair of capacitors, A large-capacity electric charge obtained by multiplying the electric power energized by each pair of switching elements by a pair of capacitors is stored in the large-capacity capacitor and can be used for charging a secondary battery.
In addition, the command signal generation unit includes, for example, a sliding resistance in which a resistor is formed on a belt-shaped sliding surface provided side by side, and the resistance value is changed by a sliding member that slides both sliding surfaces in the length direction. And a control member that slides the slide member according to the received force when the command is received according to the magnitude of the force for commanding the operation, and the received force is the predetermined value The first command signal is generated by the first resistor whose resistance value decreases in proportion to the magnitude of the force exceeding the predetermined value, and the received force is less than the predetermined value. In this case, if the second command signal is generated by the second resistor whose resistance value decreases in proportion to the magnitude of the force below the predetermined value, for example, an accelerator pedal of an electric vehicle, etc. Apply and loosen the accelerator pedal Since acts regenerative braking when released, it is possible to get a sense similar to the engine brake. Here, the magnitude of the received force is converted into a change in the resistance value of the resistor formed on the sliding surface, but it goes without saying that it is converted into a change in capacitance, a change in inductance, a change in voltage, etc. May be.
Further, the detection unit of one of the segments gives a positive or negative polarity to the power supply signal according to the detected magnetic pole, and the output of the power supply signal is the other If it is configured so as to be input to the switching section of one of the segments, a rotating magnetic field is formed by the standardized segment, and it is convenient for manufacturing and assembling parts by segmentation.
When the load current detected by the load current detection unit exceeds a threshold value, the load current detection unit includes an overload current limiting unit that outputs an overload signal, and the power supply signal generation unit receives the overload signal when the overload signal is input. reducing the duty ratio of the feed signal, when 該過 load signal is eliminated, the duty ratio of the reduced power feeding signal, if the increase to the duty ratio corresponding to the first command signal, abnormal during feeding when the load current flows also, the load current is suppressed immediately decreases the duty ratio of the feed signal, even when the abnormal regeneration current after power supply stop flows, the regenerative current immediately decreases the duty ratio of the regenerative signal It is possible to suppress and prevent burning of the field winding set.
Furthermore, after stopping the power supply from the DC power source to the field winding set, a regenerative current detecting unit for detecting an AC regenerative current flowing through each of the field winding sets as the rotor rotates, and the regenerative current detecting unit An overcurrent limiting unit that outputs an overcurrent signal when the regenerative current detected by the controller exceeds a threshold, and the regenerative signal generation unit decreases the duty ratio of the regenerative signal when the overcurrent signal is input. When the overcurrent signal disappears, the reduced duty ratio of the regenerative signal is increased to the duty ratio corresponding to the second command signal, so that the load current flowing through the field winding set or the regenerative signal is regenerated. When the current returns to a normal value again, normal power feeding and power storage to the capacitor can be performed again, and the influence of the overcurrent can be lightly stopped.
The detection unit includes a Hall element having an input terminal for inputting the power supply signal and an output terminal for outputting the power supply signal input from the input means with a polarity corresponding to the detected magnetic pole. The switching unit includes a first switching element energized in the first direction when the polarity of the power supply signal output from the Hall element is positive, and a second direction when the polarity of the power supply signal is negative. If it is configured to have the second switching element to be energized, the direction of the load current flowing in each field winding set is changed in accordance with the rotation of the rotor, while the magnetic pole detection of the rotor by each Hall element By generating a rotating magnetic field by energization from the detection position to the field winding set at a position where the torque is maximized as much as possible, while supplying the induced power during non-energization to other field winding sets, Enhanced more output efficiency than C motor, it is possible to obtain a greater torque.
ここで、上記複数の界磁巻線組のうちの、第1界磁巻線組に供給される負荷電流の方向を切換える第1切換部及び第2界磁巻線組に供給される負荷電流の方向を切換える第2切換部のうちの何れかを選択する選択子を複数備えた選択部と、上記回転子の回転方向に係る指令を受けて作動し、上記選択子それぞれに、上記何れか一方の切換部を選択させる選択子切替部と、を備えるように構成すれば、直流回生電動機の回転方向を容易に切替えることができるので、電気自動車に適用したとき、自動車の前進、後退を電動機の回転方向の切替えによって実現することができる。
その場合、上記選択子それぞれは、上記第1切換部を介して上記第1界磁巻線組に接続される第1接点と、上記第2切換部を介して上記第2界磁巻線組に接続される第2接点とを有するものであって、上記選択子切替部は、正回転方向に係る指令を受けたとき上記第1接点を閉じて上記第2接点を開き、逆回転方向に係る指令を受けたとき該第1接点を開き該第2接点を閉じるように構成すれば、回転方向の切替えが可能である。
また、1つの上記検出部は、上記界磁巻線組のうちの1つの界磁巻線組を形成する1つの界磁巻線が巻回された界磁極の近傍又は中央に設置されたものであって、上記第1界磁巻線組は、上記1つの検出部が近傍又は中央に設置された上記界磁極よりも上記正回転方向に1つ先又は2つ先の界磁極に巻回された界磁巻線を含み、上記第2界磁巻線組は、該界磁極よりも上記逆回転方向に1つ先又は2つ先の界磁極に巻回された界磁巻線を含むことにすれば、回転方向の切替後における電動機の回転が円滑である。
Here, the load current supplied to the first switching unit and the second field winding set for switching the direction of the load current supplied to the first field winding set among the plurality of field winding sets. And a selector having a plurality of selectors for selecting one of the second switching units for switching the direction of the motor, and a command relating to the rotation direction of the rotor. a selector switch unit for selecting one of the switching unit, when configured with a, it is possible to easily switch the direction of rotation of the DC regenerative motor, when applied to an electric vehicle, the motor forward of the vehicle, the backward This can be realized by switching the rotation direction.
In this case, each of the selectors includes a first contact connected to the first field winding set via the first switching unit, and the second field winding set via the second switching unit. The selector switching unit closes the first contact and opens the second contact when receiving a command relating to the forward rotation direction, and in the reverse rotation direction. If the first contact is opened and the second contact is closed when such a command is received, the rotation direction can be switched.
In addition, the one detection unit is installed near or in the center of the field pole around which one field winding forming one of the field winding sets is wound. The first field winding set is wound around the field pole that is one or two ahead in the positive rotation direction with respect to the field pole in which the one detection unit is installed in the vicinity or the center. The second field winding set includes a field winding wound around one or two field poles in the reverse rotation direction with respect to the field pole. If so, the rotation of the electric motor after the rotation direction is switched is smooth.
本発明の回転方向切替器は、一定の間隔をあけてN極とS極が交互に配置された回転子に対向させて等間隔に配備された複数の界磁巻線を直列又は並列に接続して形成された複数の界磁巻線組それぞれに供給される負荷電流を、該回転子の磁極位置を検出する複数のホール素子それぞれから出力されるそれぞれの出力信号で制御して回転磁界を形成し、所定の回転速度を得る電動機の回転方向を切替える回転方向切替器であって、上記複数のホール素子のうちの1つのホール素子から出力される出力信号により負荷電流が制御される第1界磁巻線組及び第2界磁巻線組のうちの何れかを選択する選択子が複数具備された選択部と、上記回転方向に係る指令を受けて作動し、上記選択子それぞれに、上記何れかの界磁巻線組を選択させる選択子切替部と、を備えたことを特徴とする。
このように、励磁電流が制御される界磁巻線組を複数の選択子を介して一斉に切替えれば、各界磁巻線に間欠的に直流を通電するブラシレスDCモータの回転方向を円滑に切替えることができる。
The rotation direction switching device of the present invention connects a plurality of field windings arranged at equal intervals in series or in parallel to face a rotor in which N poles and S poles are alternately arranged at regular intervals. The load current supplied to each of the plurality of field winding sets formed as described above is controlled by the respective output signals output from the plurality of Hall elements that detect the magnetic pole positions of the rotor, thereby generating a rotating magnetic field. A rotation direction switch configured to switch a rotation direction of an electric motor to obtain a predetermined rotation speed, wherein a load current is controlled by an output signal output from one of the plurality of Hall elements. A selector provided with a plurality of selectors for selecting one of the field winding group and the second field winding group, and operates in response to a command related to the rotation direction. Selector for selecting one of the above field winding sets A replacement unit, characterized by comprising a.
Thus, if the field winding group in which the excitation current is controlled is switched at once via a plurality of selectors, the rotation direction of the brushless DC motor that intermittently supplies direct current to each field winding is smoothed. Can be switched.
 本発明の直流回生電動機は、各ホール素子などの検出手段で回転子の磁極を検出し、トルクが極力大きくなる位置の界磁巻線対に、スイッチング素子を介して直流電源から間欠的に通電して回転磁界を生成させる一方、非通電時の誘起電力もスイッチング素子等を介して界磁巻線対に供給されるので、従来のブラシレスDCモータに比べてより出力効率を高め、より大きなトルクを得ることができる。
また、駆動中に界磁巻線対に異常な電流が流れても給電を停止することなく焼損が防止され、さらに短時間で正常に戻れば、通常通りの給電に復旧するので、本電動機を用いるシステム全体への影響を軽微に止めることができる。また給電停止直後の回生制動を、給電操作手段と同じ操作手段で、簡易に行うことができるので、例えば電気自動車のアクセルペダルに適用すれば、エンジンブレーキと同様の感覚を得ることができる。さらに、回生制動で得られた電力を倍圧整流して、大容量キャパシタに蓄電し、2次電池を適正電圧で充電することができるので、エネルギー効率を高めることができる。
さらに、本発明の回転方向切替器を備えれば、直流回生電動機の回転方向を容易に切替えることができるので、電気自動車に適用したとき、自動車の前進、後退を電動機の回転方向の切替えだけで実現することができる。
In the DC regenerative motor of the present invention, the magnetic poles of the rotor are detected by detecting means such as each Hall element, and the field winding pair at a position where the torque is maximized is intermittently energized from the DC power supply via the switching element. As the rotating magnetic field is generated, the induced electric power during non-energization is also supplied to the field winding pair via the switching element, etc., so that the output efficiency is improved and the torque is increased compared to the conventional brushless DC motor. Can be obtained.
In addition, even if an abnormal current flows through the field winding pair during driving, burning is prevented without stopping power feeding, and if it returns to normal in a short time, the power feeding is restored to normal. The influence on the entire system to be used can be stopped lightly. Further, since regenerative braking immediately after stopping power feeding can be easily performed by the same operation means as the power feeding operation means, for example, when applied to an accelerator pedal of an electric vehicle, the same feeling as engine braking can be obtained. Furthermore, the electric power obtained by regenerative braking can be double-rectified and stored in a large-capacity capacitor, and the secondary battery can be charged with an appropriate voltage, so that energy efficiency can be improved.
Furthermore, if the rotation direction switching device of the present invention is provided, the rotation direction of the DC regenerative motor can be easily switched. Therefore, when applied to an electric vehicle, the forward and backward movement of the vehicle can be performed only by switching the rotation direction of the motor. Can be realized.
図1は、本発明の直流回生電動機の第1の実施形態を示す機能ブロック図である。FIG. 1 is a functional block diagram showing a first embodiment of a DC regenerative motor of the present invention. 図2は、第1の実施形態の直流回生電動機の回転子を示す断面図及び側面図である。FIG. 2 is a cross-sectional view and a side view showing the rotor of the DC regenerative motor according to the first embodiment. 図3は、第1の実施形態の直流回生電動機の固定子の界磁鉄心を示す断面図及び側面図である。FIG. 3 is a cross-sectional view and a side view showing the field core of the stator of the DC regenerative motor according to the first embodiment. 図4は、第1の本実施形態の指令信号生成部の1例を示すコントロールペダルの側面図である。FIG. 4 is a side view of the control pedal showing an example of the command signal generator of the first embodiment. 図5は、コントロールペダルに結合された摺動抵抗器を展開した図である。FIG. 5 is a developed view of the sliding resistor coupled to the control pedal. 図6は、第1の実施形態のチョッパ信号生成部の1例を示すチョッパ信号発振器である。FIG. 6 is a chopper signal oscillator showing an example of the chopper signal generation unit of the first embodiment. 図7は、第1の実施形態の給電信号生成部の1例を示すパワーコントローラである。FIG. 7 is a power controller illustrating an example of the power supply signal generation unit of the first embodiment. 図8は、本実施形態の回生信号生成部の1例を示す回生ブレーキコントローラである。FIG. 8 is a regenerative brake controller showing an example of the regenerative signal generation unit of the present embodiment. 図9は、第1の実施形態の過負荷電流制限部の1例の過負荷制限器を示す図である。FIG. 9 is a diagram illustrating an example of an overload limiter of the overload current limiting unit according to the first embodiment. 図10は、第1の実施形態のセグメントの1例を示す図である。FIG. 10 is a diagram illustrating an example of a segment according to the first embodiment. 図11は、第1の実施形態の回生電力制御部の1例を示す回生電力制御器である。FIG. 11 is a regenerative power controller showing an example of the regenerative power control unit of the first embodiment. 図12は、第1の実施形態の充電部の1例を示すバッテリチャージ電圧コントローラである。FIG. 12 is a battery charge voltage controller showing an example of the charging unit of the first embodiment. 図13は、本発明の実施形態の回転方向切替器が適用される第2の実施形態の直流回生電動機の要部を示す図である。FIG. 13 is a diagram illustrating a main part of a DC regenerative motor according to a second embodiment to which the rotation direction switch according to the embodiment of the present invention is applied. 図14は、本発明の回転方向切替器の1実施例として示す継電器の接点に係る接続状態図である。FIG. 14 is a connection state diagram relating to the contact of the relay shown as one embodiment of the rotation direction switching device of the present invention. 図15は、本発明の回転方向切替器の1実施例として示す継電器の動作回路図である。FIG. 15 is an operation circuit diagram of a relay shown as one embodiment of the rotation direction switching device of the present invention. 図16は、本発明の回転方向切替器の他の実施例として示すロータリスイッチの固定部の平面図である。FIG. 16 is a plan view of a fixed portion of a rotary switch shown as another embodiment of the rotation direction switch of the present invention. 図17は、本発明の回転方向切替器の他の実施例として示すロータリスイッチの回転部の底面図である。FIG. 17 is a bottom view of a rotary part of a rotary switch shown as another embodiment of the rotation direction switch of the present invention.
[第1の実施形態]
以下に、本発明の直流回生電動機の第1の実施形態について説明する。
図1は、第1の実施形態の直流回生電動機を示す機能ブロック図である。
図1に示す本実施形態の直流回生電動機は、回転子1及び固定子2と、直流電源10から負荷電流が供給されるセグメント3と、チョッパ信号生成部5と、給電信号生成部6と、回生信号生成部7と、指令信号生成部8と、回生電力制御部9と、回生電流検出部12と、過負荷電流制限部13と、過電流制限部14と、充電部15と、を備えており、各電子回路は、DC-DCコンバータ4から電力が供給される。
本実施形態の直流回生電動機は、固定子2の内部に回転子1が配置されたインナーロータ型である。回転子1は、N極とS極それぞれの永久磁石が回転軸のまわりに固定配置されている。固定子2は、回転子1を挟んで対称な位置に形成された8つの界磁極(4組の界磁極組)それぞれに界磁巻線が巻回されている。そしてそれら8つの界磁巻線のうち、対向配置された2つの界磁巻線それぞれが並列に接続され、界磁巻線組20が構成される。4組の界磁巻線組20それぞれは、対応するセグメント3を介して直流電源10から直流の負荷電流(以下「負荷電流」と称する)が供給され、回転磁界が形成される。
直流電源10は、2次電池を有し、給電信号に基づいて界磁巻線組20それぞれに直流電力を供給する。
DC-DCコンバータ4は、直流電源10の電圧を降圧し、各電子回路に所定電圧の直流電力を供給する。
ここで、本実施形態の回転子1は、磁極数が2、固定子2は、界磁極数が8にそれぞれ設定されているが、回転子1及び固定子2は、必ずしもこの構成に限定されない。但し、回転子1の磁極数は、2の倍数であること、固定子2の界磁極数は、回転子1の磁極数よりも多い、2の倍数であることが好ましい。また、界磁巻線組20は、対向配置された2つの界磁巻線が並列に接続されているが、直列に接続してもよい。また、必ずしも対向配置された2つに限定する必要はなく、対称な位置に配置された複数の界磁巻線により、界磁巻線組20を形成してもよい。
[First Embodiment]
Below, 1st Embodiment of the direct-current regeneration motor of this invention is described.
FIG. 1 is a functional block diagram illustrating a DC regenerative motor according to the first embodiment.
A DC regenerative motor of this embodiment shown in FIG. 1 includes a rotor 1 and a stator 2, a segment 3 to which a load current is supplied from a DC power supply 10, a chopper signal generation unit 5, a power supply signal generation unit 6, A regenerative signal generation unit 7, a command signal generation unit 8, a regenerative power control unit 9, a regenerative current detection unit 12, an overload current limiting unit 13, an overcurrent limiting unit 14, and a charging unit 15 are provided. Each electronic circuit is supplied with power from the DC-DC converter 4.
The DC regenerative motor of this embodiment is an inner rotor type in which a rotor 1 is disposed inside a stator 2. In the rotor 1, permanent magnets of N and S poles are fixedly arranged around the rotation axis. In the stator 2, field windings are wound around each of eight field magnetic poles (four field magnetic pole sets) formed at symmetrical positions with the rotor 1 interposed therebetween. Of these eight field windings, two field windings arranged opposite to each other are connected in parallel to form a field winding set 20. Each of the four field winding sets 20 is supplied with a DC load current (hereinafter referred to as “load current”) from the DC power supply 10 via the corresponding segment 3 to form a rotating magnetic field.
The DC power supply 10 has a secondary battery, and supplies DC power to each of the field winding sets 20 based on a power supply signal.
The DC-DC converter 4 steps down the voltage of the DC power supply 10 and supplies DC power of a predetermined voltage to each electronic circuit.
Here, the number of magnetic poles is set to 2 for the rotor 1 of the present embodiment, and the number of field poles is set to 8 for the stator 2, but the rotor 1 and the stator 2 are not necessarily limited to this configuration. . However, the number of magnetic poles of the rotor 1 is preferably a multiple of 2, and the number of field poles of the stator 2 is preferably a multiple of 2 that is larger than the number of magnetic poles of the rotor 1. The field winding set 20 has two field windings arranged opposite to each other connected in parallel, but may be connected in series. The field winding set 20 may be formed by a plurality of field windings arranged at symmetrical positions.
セグメント3は、回転磁界を得る1つの界磁巻線組20と、その界磁巻線組20に負荷電流を供給する系統と、からなる。負荷電流を供給する系統は、固定子2の界磁極組のうちの何れか一方の界磁極の近傍又は中央で、通過する回転子1の磁極を検出する検出部16と、負荷電流の向きを切換える切換部17と、異常な負荷電流を検出する負荷電流検出部11と、からなる。
検出部16は、固定子2の界磁極の近傍(スロットを含む。)または界磁極の中央に配置され、回転子1の磁石の磁極を検出するホール素子18を有する。
ホール素子18は、給電信号の入力端子と、入力端子から給電信号が入力したとき、検出された磁石の磁極に応じて正負何れかの極性の給電信号を出力する出力端子と、を備えている。
切換部17は、ホール素子18の出力端子から出力される給電信号の極性が正のときに、その給電信号のデューティ比に応じて通電時間を変えるスイッチング素子と、給電信号の極性が負のときに、その給電信号のデューティ比に応じて通電時間を変えるスイッチング素子とを有し、界磁巻線組20に供給される負荷電流の向きを磁石の磁極に応じて切換える一方、間欠的に通電する負荷電流の通電時間をデューティ比に応じて変化させる。
負荷電流検出部11は、界磁巻線組20を双方向に流れる負荷電流を検出する。
The segment 3 includes one field winding set 20 that obtains a rotating magnetic field and a system that supplies a load current to the field winding set 20. The system that supplies the load current includes a detection unit 16 that detects the magnetic pole of the rotor 1 that passes through the vicinity of or the center of any one of the field magnetic pole pairs of the stator 2, and the direction of the load current. A switching unit 17 for switching and a load current detecting unit 11 for detecting an abnormal load current are included.
The detection unit 16 includes a Hall element 18 that is disposed in the vicinity (including the slot) of the field pole of the stator 2 or in the center of the field pole and detects the magnetic pole of the magnet of the rotor 1.
The Hall element 18 includes an input terminal for a power feeding signal and an output terminal for outputting a power feeding signal having either positive or negative polarity according to the detected magnetic pole of the magnet when the power feeding signal is input from the input terminal. .
When the polarity of the power supply signal output from the output terminal of the Hall element 18 is positive, the switching unit 17 changes the energization time according to the duty ratio of the power supply signal, and when the polarity of the power supply signal is negative And a switching element that changes the energization time according to the duty ratio of the power supply signal, and switches the direction of the load current supplied to the field winding set 20 according to the magnetic pole of the magnet, while energizing intermittently. The energizing time of the load current to be changed is changed according to the duty ratio.
The load current detector 11 detects a load current flowing in both directions through the field winding set 20.
チョッパ信号生成部5は、所定周期の矩形波を生成し、生成された矩形波を全波整流してチョッパ信号を生成する。
指令信号生成部8は、作動を指令するための力の大きさによる指令を受け、受けたその力の大きさが所定値(ニュートラル)を越えた場合は、その所定値を超えるその力の大きさに比例して線形素子の特性値が変化する第1指令信号を生成し、受けたその力が所定値以下の場合は、所定値を下回るその力の大きさに比例して線形素子の特性値が変化する第2指令信号を生成する。
給電信号生成部6は、指令信号生成部8から出力される第1指令信号に応じたデューティ比の給電信号を出力する。
回生信号生成部7は、指令信号生成部8から出力される第2指令信号に応じたデューティ比の回生信号を出力する。
回生電力制御部9は、直流電源10から界磁巻線組20への給電が停止した後、その界磁巻線組20に誘起される交流電力を回生信号に基づいて倍電圧整流して蓄電する大容量キャパシタと、界磁巻線組20に流れる回生電流が過剰にならないよう、その回生電流を検出する回生電流検出部12とを備えている。
ここで、本実施形態の大容量キャパシタには、例えば電解液を含浸させた1対の電極と、その1対の電極を隔てるセパレータと、集電電極と、ガスケットとを有する電気二重層キャパシタを使用することができる。
過負荷電流制限部13は、負荷電流検出部11で検出された負荷電流が閾値を超えたとき、給電信号生成部6における給電信号のデューティ比を減少させる。
過電流制限部14は、直流電源10から界磁巻線組20への給電が停止した後、回生電流検出部12で検出された回生電流が閾値を超えたとき、回生信号生成部7における回生信号のデューティ比を減少させる。
充電部15は、回生電力制御部9の大容量キャパシタに蓄電された電荷を直流電源10の2次電池に充電する。
ここで、本実施形態の検出部は、回転子の磁石の磁極をホール素子18で検出するが、必ずしもホール素子18である必要はない。
The chopper signal generation unit 5 generates a rectangular wave having a predetermined period, and generates a chopper signal by full-wave rectifying the generated rectangular wave.
The command signal generation unit 8 receives a command based on the magnitude of the force for commanding the operation, and when the magnitude of the received force exceeds a predetermined value (neutral), the magnitude of the force exceeding the predetermined value. Generating a first command signal in which the characteristic value of the linear element changes in proportion to the length, and if the received force is less than or equal to a predetermined value, the characteristic of the linear element is proportional to the magnitude of the force below the predetermined value A second command signal whose value changes is generated.
The power supply signal generation unit 6 outputs a power supply signal having a duty ratio corresponding to the first command signal output from the command signal generation unit 8.
The regenerative signal generator 7 outputs a regenerative signal having a duty ratio corresponding to the second command signal output from the command signal generator 8.
The regenerative power control unit 9 rectifies the AC power induced in the field winding set 20 by double voltage rectification based on the regenerative signal after the power supply from the DC power supply 10 to the field winding set 20 stops. And a regenerative current detector 12 for detecting the regenerative current so that the regenerative current flowing through the field winding set 20 does not become excessive.
Here, the large-capacity capacitor of the present embodiment includes, for example, an electric double layer capacitor having a pair of electrodes impregnated with an electrolyte, a separator separating the pair of electrodes, a collecting electrode, and a gasket. Can be used.
The overload current limiting unit 13 decreases the duty ratio of the power supply signal in the power supply signal generation unit 6 when the load current detected by the load current detection unit 11 exceeds the threshold value.
When the regenerative current detected by the regenerative current detection unit 12 exceeds the threshold after the power supply from the DC power supply 10 to the field winding set 20 is stopped, the overcurrent limiting unit 14 regenerates in the regenerative signal generation unit 7. Decrease the duty ratio of the signal.
The charging unit 15 charges the secondary battery of the DC power supply 10 with the electric charge stored in the large capacity capacitor of the regenerative power control unit 9.
Here, the detection unit of the present embodiment detects the magnetic pole of the rotor magnet by the Hall element 18, but the Hall element 18 is not necessarily required.
ここで、本実施形態の直流回生電動機の作用について説明する。
指令信号生成部8は、作動を指令するための力の大きさによる指令を受け、受けたその力の大きさにより抵抗値が変化する2つの指令信号を生成し、その指令信号を給電信号生成部6及び回生信号生成部7に送る。
一方、チョッパ信号生成部5は、矩形波を生成し、給電信号生成部6及び回生信号生成部7に送り、給電信号生成部6は、チョッパ信号生成部5から出力される矩形波のデューティ比を、指令信号の抵抗値に応じて変え、給電信号を生成し、回生信号生成部7は、チョッパ信号生成部5から出力される矩形波のデューティ比を、指令信号の抵抗値に応じて変え、回生信号を生成する。その場合、給電信号が生成されるときは、回生信号が生成されることはなく、同様に、回生信号が生成されるときは、給電信号が生成されることはない。
生成された給電信号は、各セグメント3のホール素子18に入力される。ホール素子18は、回転子1の磁石の磁極に応じて正負何れかの極性の給電信号を出力する。出力された正負何れかの極性の給電信号は、その給電信号を出力したホール素子18が所属するセグメント3とは異なるセグメント3の切換部17に送られる。
切換部17においては、給電信号が正のときは、正の給電信号で導通するスイッチング素子が、給電信号のデューティ比に応じた時間だけ通電し、その間、対応する界磁巻線組20に負荷電流が供給される。また、給電信号が負のときは、負の給電信号で導通するスイッチング素子が、給電信号のデューティ比に応じた時間だけ通電し、その間、対応する界磁巻線組20に負荷電流が供給される。なお、給電信号は停止せず、スイッチング素子のデューティ比による非通電時間に、界磁巻線組20に誘起される交流電力は、各スイッチング素子とは導通方向が逆向きに、各スイッチング素子とは並列に接続されたダイオードを経由して他の界磁巻線組20の給電に活用される。これにより、本実施形態の直流回生電動機の出力効率やトルクを高めることができる。
Here, the operation of the DC regenerative motor of this embodiment will be described.
The command signal generation unit 8 receives a command based on the magnitude of the force for commanding the operation, generates two command signals whose resistance values change according to the magnitude of the received force, and generates the command signal as a power supply signal To the unit 6 and the regenerative signal generator 7.
On the other hand, the chopper signal generating unit 5 generates a square wave is sent to the power supply signal generator 6 and a regeneration signal generator 7, the power feeding signal generator 6, the duty ratio of the rectangular wave output from the chopper signal generating unit 5 Is changed according to the resistance value of the command signal to generate a power supply signal, and the regenerative signal generation unit 7 changes the duty ratio of the rectangular wave output from the chopper signal generation unit 5 according to the resistance value of the command signal. Generate a regenerative signal. In that case, when the power supply signal is generated, no regeneration signal is generated. Similarly, when the regeneration signal is generated, no power supply signal is generated.
The generated feed signal is input to the hall element 18 of each segment 3. The hall element 18 outputs a feeding signal having either positive or negative polarity according to the magnetic pole of the magnet of the rotor 1. The output power supply signal of either positive or negative polarity is sent to the switching unit 17 of the segment 3 different from the segment 3 to which the Hall element 18 that outputs the power supply signal belongs.
In the switching unit 17, when the power supply signal is positive, the switching element that conducts with the positive power supply signal is energized for a time corresponding to the duty ratio of the power supply signal, and during that time, the corresponding field winding set 20 is loaded. Current is supplied. When the power supply signal is negative, the switching element that conducts with the negative power supply signal is energized for a time corresponding to the duty ratio of the power supply signal, and during that time, the load current is supplied to the corresponding field winding set 20. The The power supply signal does not stop, and the AC power induced in the field winding set 20 during the non-energization time due to the duty ratio of the switching element is opposite to each switching element in the conduction direction. Is used to feed other field winding sets 20 via diodes connected in parallel. Thereby, the output efficiency and torque of the DC regenerative motor of the present embodiment can be increased.
ここで、ホール素子18が所属するセグメント3と、そのホール素子18から出力される給電信号を入力する切換部17が所属するセグメント3との関係について説明する。
いま、回転子1のN極と向き合う固定子2の界磁極に、あるセグメント3のホール素子18が配置されている場合に、その界磁極からモータの回転方向に所定角度だけ回転した位置の界磁極に巻回された界磁巻線と、さらに180度回転した位置の界磁巻線とによって構成される界磁巻線組20が所属する別のセグメント3の切換部17に、そのホール素子18から、正または負の給電信号が送られる。すなわち、あるセグメント3のホール素子18から出力される給電信号は、そのセグメント3に所属する界磁巻線組20よりも、回転子1の回転方向、1つ先又は複数先の界磁巻線組20が所属するセグメント3の切換部17に送られる。
また、給電信号の停止時に生成される回生信号は、回生電力制御部9に送られる。回生電力制御部9は、1対のスイッチング素子を有し、それぞれのスイッチング素子が、回生信号の電圧に応じて導通する一方、回生信号のデューティ比に応じて導通時間を変更するので、給電信号が停止した後、なお回転子1が回転することにより界磁巻線組20に誘起される交流電力を倍電圧整流して大容量キャパシタ98に蓄電し、充電部15が、大容量キャパシタ98に蓄電された電荷を直流電源10の2次電池に充電する。
このように、回生電力制御部9は、給電停止後の界磁巻線組に誘起される交流電力を倍電圧に整流して大容量キャパシタ98に蓄電するので、回転子1が低速で回転する際の誘起電力も有効に蓄電して活用することができると共に、充電部15が2次電池に充電する際の適正電圧が確保されるので、エネルギー効率を高めることができる。
一方、界磁巻線に過電流が流れると焼損する恐れがあるので、負荷電流検出部11で負荷電流を検出し、検出された負荷電流が閾値を超えたときは、過負荷電流制限部13が、給電信号生成部6から出力される給電信号のデューティ比を減少させるので、界磁巻線組20に供給される電力が抑制される。
また、界磁巻線組への給電が停止した後、界磁巻線組20に誘起される交流電力により界磁巻線組20を流れる回生電流が過剰にならないよう、回生電流検出部12がその回生電流を検出し、検出された回生電流が閾値を超えたときは、過電流制限部14が回生信号生成部7から出力される回生信号のデューティ比を減少させるので、大容量キャパシタに蓄電する際に界磁巻線組20を流れる回生電流が抑制される。
なお、負荷電流検出部11により検出される負荷電流が閾値以下に低下したときは、給電信号生成部6は、過負荷電流制限部13により減少させた給電信号のデューティ比を第1指令信号に応じたデューティ比まで増加させる。
また回生電流検出部12により検出される回生電流が閾値以下に低下したときは、回生信号生成部7は、過電流制限部14により減少させた回生信号のデューティ比を第2指令信号に応じたデューティ比まで増加させる。
Here, the relationship between the segment 3 to which the hall element 18 belongs and the segment 3 to which the switching unit 17 that inputs the power feeding signal output from the hall element 18 belongs will be described.
Now, when the Hall element 18 of a certain segment 3 is arranged at the field pole of the stator 2 facing the north pole of the rotor 1, the field at a position rotated by a predetermined angle in the rotation direction of the motor from the field pole. The Hall element is connected to the switching section 17 of another segment 3 to which the field winding set 20 constituted by the field winding wound around the magnetic pole and the field winding at a position rotated by 180 degrees belongs. From 18, a positive or negative power supply signal is sent. That is, the feed signal output from the hall element 18 of a certain segment 3 is a field winding that is one or more ahead in the direction of rotation of the rotor 1 than the field winding set 20 belonging to that segment 3. It is sent to the switching unit 17 of the segment 3 to which the set 20 belongs.
Further, the regenerative signal generated when the power feeding signal is stopped is sent to the regenerative power control unit 9. The regenerative power control unit 9 has a pair of switching elements, and each switching element conducts according to the voltage of the regenerative signal, while changing the conduction time according to the duty ratio of the regenerative signal. Is stopped, and the AC power induced in the field winding set 20 by the rotation of the rotor 1 is double-voltage rectified and stored in the large-capacity capacitor 98, and the charging unit 15 is connected to the large-capacity capacitor 98. The stored charge is charged in the secondary battery of the DC power supply 10.
As described above, the regenerative power control unit 9 rectifies the AC power induced in the field winding group after the power supply is stopped into a double voltage and stores it in the large-capacity capacitor 98, so the rotor 1 rotates at a low speed. In addition to being able to effectively store and utilize the induced electric power at the time, an appropriate voltage is ensured when the charging unit 15 charges the secondary battery, so that energy efficiency can be improved.
On the other hand, if an overcurrent flows through the field winding, it may be burned out. Therefore, when the load current detection unit 11 detects the load current and the detected load current exceeds a threshold value, the overload current limiting unit 13 However, since the duty ratio of the power supply signal output from the power supply signal generation unit 6 is reduced, the power supplied to the field winding set 20 is suppressed.
In addition, the regenerative current detection unit 12 is configured so that the regenerative current flowing through the field winding set 20 is not excessive due to the AC power induced in the field winding set 20 after the power supply to the field winding set is stopped. When the regenerative current is detected and the detected regenerative current exceeds a threshold value, the overcurrent limiting unit 14 reduces the duty ratio of the regenerative signal output from the regenerative signal generating unit 7, so that it is stored in the large-capacity capacitor. In doing so, the regenerative current flowing through the field winding set 20 is suppressed.
When the load current detected by the load current detector 11 falls below a threshold value, the power feed signal generator 6 uses the duty ratio of the power feed signal reduced by the overload current limiter 13 as the first command signal. Increase the duty ratio accordingly.
When the regenerative current detected by the regenerative current detector 12 falls below the threshold value, the regenerative signal generator 7 sets the duty ratio of the regenerative signal reduced by the overcurrent limiter 14 according to the second command signal. Increase to duty ratio.
図2は、本実施形態の直流回生電動機の回転子を示す断面図及び側面図であり、図3は、本実施形態の直流回生電動機の固定子の界磁鉄心を示す断面図及び側面図である。
図2に示す回転子1は、N極とS極とを有する円筒状磁石1aの中央に回転軸1bを挿入し、接着して一体化すると共に、滑り止めのロックピン1cで磁石と回転軸が滑らないようにしている。また、円筒状磁石1aの外周の対称な位置に、長手方向の溝1dが形成されている。ホール素子によって磁石1aの磁極を検出する際に、ホール素子は、検出休止となる溝1dの通過を境に磁極の変化を検出する。
回転子1の直径が小さい、高速回転のモータの場合には、磁性体を円筒状に成形して全体を磁石として形成することができる。また、大型モータの場合には、電磁鋼板を打ち抜いたものを積層して円筒状に成形し、その外周に永久磁石を取り付けて形成することができる。
ここで、本実施形態の回転子の磁石1aは、N極とS極とからなるが、磁石1aは必ずしも二個である必要はなく、極数が偶数であれば何個でもよい。ただし、極数が多いほどトルクリップルが少なくなるが、製造コストが高くなる。
FIG. 2 is a cross-sectional view and a side view showing the rotor of the DC regenerative motor of this embodiment, and FIG. 3 is a cross-sectional view and a side view showing the field core of the stator of the DC regenerative motor of this embodiment. is there.
The rotor 1 shown in FIG. 2 has a rotating shaft 1b inserted in the center of a cylindrical magnet 1a having an N pole and an S pole, and is bonded and integrated together. To prevent slipping. A longitudinal groove 1d is formed at a symmetrical position on the outer periphery of the cylindrical magnet 1a. When detecting the magnetic pole of the magnet 1a by the Hall element, the Hall element detects a change in the magnetic pole at the passage of the groove 1d that is in a detection pause.
In the case of a high-speed rotating motor with a small diameter of the rotor 1, the entire magnetic body can be formed into a magnet and formed as a magnet. Further, in the case of a large motor, it can be formed by laminating electromagnetic steel sheets and forming them into a cylindrical shape and attaching a permanent magnet to the outer periphery thereof.
Here, the magnet 1a of the rotor of the present embodiment is composed of N poles and S poles, but the number of magnets 1a is not necessarily two, and any number may be used as long as the number of poles is an even number. However, as the number of poles increases, the torque ripple decreases, but the manufacturing cost increases.
図3に示す固定子2の界磁鉄心2aは、無方向性電磁鋼板を打ち抜いたものを積層して成形したものである。外周には、界磁鉄心をケースに固定し、回転を防止するためのロック溝2bが4つ設けてある。また、界磁鉄心2aで囲まれた界磁鉄心断面中央には、回転子が回転する円筒空間2cがあり、円筒空間2cの周囲には、界磁巻線を埋め込む8つのスロット2dと、8つのスロットで仕切られた8つの界磁極2eがあり、2つずつ、4組の界磁極2eは、円筒空間2cを挟んで対称な位置に設けられている。4組の界磁極2eそれぞれに、巻線(コイル)が巻回され、各組の界磁極に形成された界磁巻線それぞれを並列に接続して界磁巻線組20を構成する。
ここで、本実施形態の固定子2は、円筒空間2cを挟んで対称な位置に4組の界磁極(8つの界磁極)2eを設けているが、極数は、必ずしも8つである必要はなく、偶数であればよい。また、界磁巻線は、1つの界磁極2eに巻回する、いわゆる1極巻である必要はなく、2つの界磁極2eに跨る2極巻や複数の界磁極2eに跨る多極巻きにしてもよい。2極巻にすれば、1極巻に較べてトルクリップルを小さくすることができる。
また、ホール素子18は、回転子が回転する際、その磁石の磁極が順次検出できるように、各セグメントに対応させて、界磁極の組数分(ここでは4個)用意し、円筒空間2c周囲に連続配置された界磁極(ここでは4個)2eのそれぞれの中央に設置する。あるいは、2極に挟まれたスロット2dにそれぞれ設置することもできる。
あるセグメント3に所属するホール素子18の出力は、回転子1の回転方向における、そのホール素子18が設置されている界磁極の1つ先又は複数先の界磁極に巻回された界磁巻線と、そこからさらに180度回転した位置の界磁極に巻回された界磁巻線とによって構成される界磁巻線組20が所属する別のセグメント3に送られる。
ここで、本実施形態のホール素子18は、界磁極2eの近傍又は中央に設置されているが、スロットに設置してもよい。
The field iron core 2a of the stator 2 shown in FIG. 3 is formed by laminating non-oriented electrical steel sheets. Four lock grooves 2b for fixing the field core to the case and preventing rotation are provided on the outer periphery. A cylindrical space 2c in which the rotor rotates is located at the center of the cross section of the field core surrounded by the field core 2a. Around the cylindrical space 2c, eight slots 2d for embedding field windings, 8 There are eight field poles 2e partitioned by one slot, and two sets of four field poles 2e are provided at symmetrical positions across the cylindrical space 2c. A winding (coil) is wound around each of the four sets of field poles 2e, and the field windings formed on each set of field poles are connected in parallel to form a field winding set 20.
Here, the stator 2 of this embodiment is provided with four sets of field poles (eight field poles) 2e at symmetrical positions with the cylindrical space 2c interposed therebetween, but the number of poles is not necessarily limited to eight. No, it should be an even number. Further, the field winding, wound around the single field pole 2e, need not be so-called 1-pole and multi-pole winding across the 2-pole or multiple field pole 2e across two field pole 2e May be. If 2-pole winding is used, torque ripple can be reduced as compared with single-pole winding.
In addition, the Hall element 18 is prepared in correspondence with each segment so that the magnetic poles of the magnets can be sequentially detected when the rotor rotates (four in this case), and the cylindrical space 2c. It is installed at the center of each of the field poles (here, four) 2e arranged continuously. Alternatively, each can be installed in a slot 2d sandwiched between two poles.
The output of the Hall element 18 belonging to a certain segment 3 is the field winding wound around one or more field poles ahead of the field pole where the Hall element 18 is installed in the rotation direction of the rotor 1. A field winding set 20 composed of a line and a field winding wound around a field pole at a position further rotated 180 degrees therefrom is sent to another segment 3 to which it belongs.
Here, the Hall element 18 of the present embodiment is installed in the vicinity or center of the field pole 2e, but may be installed in a slot.
以下に、図1で説明した本実施形態の直流回生電動機の機能を実現する電子回路の1例について説明する。
図4は、本実施形態の指令信号生成部の1例を示すコントロールペダルの側面図であり、図5は、コントロールペダルに結合された摺動抵抗器を展開した図である。
図4に側面図を示すコントロールペダル80は、ドラム外周の、ニュートラルゾーンを挟んだ両周縁に設けられた摺動抵抗器82と、自在に回転するドラム回転軸83と、回転軸83が回転するのに合わせて回転して摺動抵抗器82をスライドするスライドリード84と、一端は棒状体85に結合され、中間はフレキシブルチューブ86で支持され、ドラムの巻取ガイド81に巻き取られた他端は、スライドリード84に接続されたワイヤ87と、を備えている。そして、回転軸83は、図に現れないスプリングで反時計回りに付勢され、棒状体85は、中間を支点88で支持され、他端には、外力を受けるペダル89が設けてある。
ペダル89が矢印方向に押されて力を受けると、受けた力の大きさに応じてワイヤ87が引き出され、スライドリード84と回転軸83とが時計回りに回転してスライドリード84が摺動抵抗器82をスライドする。そのとき、スライドリード84のリード線84a、84bと摺動抵抗器82のリード線82a、82bとの間の抵抗値が変化する。
ここで、図5におけるリード線82bは、リード線82aと異なり、摺動面82dの左端に接続されている。従って、スライドリード84がニュートラルゾーンを挟んで移動するときのリード線84a、84bとリード線82a、82bとの間の抵抗値は、一方が増加するときは、他方が減少する。
なお、ここではドラムが固定され、回転軸83がスライドリード84とともに回転するように構成されているが、ドラム自体が回転するように構成してもよい。また、摺動抵抗器82は、必ずしもドラム外周に設ける必要はない。
Below, an example of the electronic circuit which implement | achieves the function of the direct-current regenerative motor of this embodiment demonstrated in FIG. 1 is demonstrated.
FIG. 4 is a side view of a control pedal showing an example of the command signal generation unit of the present embodiment, and FIG. 5 is a developed view of a sliding resistor coupled to the control pedal.
4 is a side view of the control pedal 80. A sliding resistor 82 provided on both peripheral edges of the outer periphery of the drum across the neutral zone, a freely rotating drum rotating shaft 83, and the rotating shaft 83 rotate. A slide lead 84 that rotates in accordance with the slide resistor 82 and one end is coupled to a rod-shaped body 85, the middle is supported by a flexible tube 86, and is wound around a drum winding guide 81. The end includes a wire 87 connected to the slide lead 84. The rotating shaft 83 is urged counterclockwise by a spring that does not appear in the figure, and the rod-like body 85 is supported by a fulcrum 88 in the middle, and a pedal 89 that receives external force is provided at the other end.
When the pedal 89 is pushed in the direction of the arrow and receives a force, the wire 87 is pulled out according to the magnitude of the received force, and the slide lead 84 and the rotating shaft 83 rotate clockwise to slide the slide lead 84. Slide resistor 82. At that time, the resistance value between the lead wires 84a and 84b of the slide lead 84 and the lead wires 82a and 82b of the sliding resistor 82 changes.
Here, unlike the lead wire 82a, the lead wire 82b in FIG. 5 is connected to the left end of the sliding surface 82d. Accordingly, when one of the resistance values between the lead wires 84a and 84b and the lead wires 82a and 82b when the slide lead 84 moves across the neutral zone increases, the other decreases.
Here, the drum is fixed and the rotation shaft 83 is configured to rotate together with the slide lead 84, but the drum itself may be configured to rotate. Further, the sliding resistor 82 is not necessarily provided on the outer periphery of the drum.
図5に展開図を示す摺動抵抗器82は、ニュートラルゾーン82cを挟んで両側の一方の辺縁それぞれに、抵抗体を有する帯状の摺動面82dが設けられ、スライドリード84が摺動面82dをスライドすることにより、スライドリード84のリード線84a、84bと摺動抵抗器82のリード線82a、82bとの間の抵抗値が変化するように構成されている。図の上側の摺動面82dは、第1指令信号を生成し、図の下側の摺動面82dは、第2指令信号を生成するためのものである。上側の摺動面82dには、ニュートラルゾーン82cまでは、抵抗体が形成されておらず、ニュートラルゾーン82cから右方には、抵抗体が形成されている。一方、下側の摺動面82dには、ニュートラルゾーン82cまでは、抵抗体が形成され、ニュートラルゾーン82cから右方には、抵抗体が形成されていない。
図において、スライドリード84が右方(矢印方向)に移動すると、上側の摺動面82dにおいては、ニュートラルゾーン82cまでは、抵抗値は最大値のまま変わらず、ニュートラルゾーン82cからさらに右方に移動すると、抵抗値は最大値から次第に小さくなり、0になる。一方、下側の摺動面82dにおいては、ニュートラルゾーン82cまでは、抵抗値は0から次第に大きくなり、ニュートラルゾーン82c以降は最大値になる。次に、スライドリード84が右方から左方に移動すると、上側の摺動面82dは、抵抗値がゼロから次第に大きくなり、ニュートラルゾーン82c付近で最大値となり、ニュートラルゾーン82cを超えても抵抗値は最大値のまま変わらない。一方、下側の摺動面82dは、ニュートラルゾーン82cまでは、抵抗値が最大値のままで、ニュートラルゾーン82cからさらに左方に移動すると、抵抗値が次第に小さくなり、0になる。
上側の摺動面82dの抵抗値の変化は、給電信号生成部6に反映され、出力される給電信号のデューティ比が変化する。また、下側の摺動面82dの抵抗値の変化は、回生信号生成部7に反映され、出力される回生信号のデューティ比が変化する。
ここでは、受けた力の大きさを摺動抵抗器82の抵抗値の変化に変換しているが、必ずしも抵抗値の変化に変換する必要はなく、キャパシタンスの変化、インダクタンスの変化、電圧の変化などに変換して給電信号生成部6や回生信号生成部7に反映させることもできる。
The sliding resistor 82 shown in a developed view in FIG. 5 is provided with a belt-like sliding surface 82d having a resistor on each of one side of both sides of the neutral zone 82c, and the slide lead 84 is a sliding surface. By sliding 82d, the resistance value between the lead wires 84a and 84b of the slide lead 84 and the lead wires 82a and 82b of the sliding resistor 82 is changed. The upper sliding surface 82d in the drawing generates a first command signal, and the lower sliding surface 82d in the drawing generates a second command signal. On the upper sliding surface 82d, no resistor is formed up to the neutral zone 82c, and a resistor is formed on the right side of the neutral zone 82c. On the other hand, a resistor is formed on the lower sliding surface 82d up to the neutral zone 82c, and no resistor is formed on the right side of the neutral zone 82c.
In the figure, when the slide lead 84 moves to the right (in the direction of the arrow), the resistance value remains unchanged up to the neutral zone 82c on the upper sliding surface 82d, and further to the right from the neutral zone 82c. When moved, the resistance value gradually decreases from the maximum value and becomes zero. On the other hand, in the lower sliding surface 82d, the resistance value gradually increases from 0 until the neutral zone 82c, and becomes the maximum value after the neutral zone 82c. Next, when the slide lead 84 moves from the right side to the left side, the resistance value of the upper sliding surface 82d gradually increases from zero, reaches a maximum value near the neutral zone 82c, and resists even when the neutral zone 82c is exceeded. The value remains at the maximum value. On the other hand, the resistance value of the lower sliding surface 82d remains at the maximum value until the neutral zone 82c, and the resistance value gradually decreases to zero when moving further leftward from the neutral zone 82c.
The change in the resistance value of the upper sliding surface 82d is reflected in the power supply signal generation unit 6, and the duty ratio of the output power supply signal changes. Further, the change in the resistance value of the lower sliding surface 82d is reflected in the regenerative signal generation unit 7, and the duty ratio of the regenerative signal to be output changes.
Here, the magnitude of the received force is converted into a change in the resistance value of the sliding resistor 82, but it is not always necessary to convert it into a change in the resistance value. A change in capacitance, a change in inductance, a change in voltage Or the like, and can be reflected in the power supply signal generation unit 6 or the regenerative signal generation unit 7.
図6は、本実施形態のチョッパ信号生成部の1例を示すチョッパ信号発振器である。
図6に示すチョッパ信号発振器50は、入力端子INと、出力端子OUTと、マルチバイブレータ51と、パルストランス52と、全波整流器53とを備えている。直流電源10の電圧を周知のDC-DCコンバータ4で降圧した直流電力が入力端子INに供給される。マルチバイブレータ51で生成された矩形波は、パルストランス52で、正負両方の領域を有する矩形波に合成され、その合成された矩形波が全波整流器53で整流され、出力端子OUTにチョッパ信号が出力される。
図7は、本実施形態の給電信号生成部の1例を示すパワーコントローラである。
図7に示すパワーコントローラ60は、SCR(サイリスタ)61と、サージ電圧をバイパスするフリーホイールダイオード62と、SCR61のゲート電圧を得る抵抗器63と、SCR61によるチョッパ信号のデューティ比をコントロールするPUT(プログラマブルユニジャンクショントランジスタ)64と、分圧抵抗器65と、ダミー負荷抵抗器66と、PUTの立ち上がり時間をコントロールする時定数回路67と、時定数回路67に供給される電圧を調整する可変抵抗器(コントロールペダルの摺動抵抗器)68と、チョッパ信号発振器から出力されたチョッパ信号を入力する入力端子INと、回転子の回転方向を変換するための正逆スイッチ69と、所定のデューティ比のチョッパ信号(給電信号)を出力する出力端子OUTと、界磁巻線を流れる負荷電流が過剰であることを知らせる過負荷信号電圧の入力端子C1INと、により構成されている。
コントロールペダル80のペダル89に一定以上の力が加わると、摺動抵抗器82の抵抗値が変化する第1指令信号が出される。それによって、可変抵抗器68の抵抗値が変化すると、時定数回路67の電圧が変化し、PUT64の立ち上がり時間も変化するので、SCR61によるチョッパ信号のデューティ比が変化する。その結果、出力端子OUTから第1指令信号に応じたデューティ比のチョッパ信号(給電信号)が出力される。
また、入力端子C1INから過負荷信号電圧が入力すると、PUT64の作動電圧が上昇するので、第1指令信号で設定されたPUT64の立ち上がり電圧が上昇し、デューティ比が減少する。その結果、出力端子OUTからはデューティ比が減少した給電信号が出力される。
FIG. 6 is a chopper signal oscillator showing an example of the chopper signal generator of this embodiment.
The chopper signal oscillator 50 shown in FIG. 6 includes an input terminal IN, an output terminal OUT, a multivibrator 51, a pulse transformer 52, and a full-wave rectifier 53. Direct current power obtained by stepping down the voltage of the direct current power source 10 using a known DC-DC converter 4 is supplied to the input terminal IN. Square wave produced by the multivibrator 51, a pulse transformer 52, are combined into a rectangular wave having both positive and negative areas, the synthesized square wave is rectified by the full wave rectifier 53, the chopper signal to output terminal OUT Is output.
FIG. 7 is a power controller showing an example of the power supply signal generation unit of the present embodiment.
Power controller 60 shown in FIG. 7, the SCR (thyristor) 61, a freewheel diode 62 which bypasses the surge voltage, a resistor 63 to obtain a gate voltage of SCR61, controls the duty ratio of the chopper signal by SCR61 PUT ( Programmable Unijunction Transistor) 64, voltage dividing resistor 65, dummy load resistor 66, time constant circuit 67 for controlling the rise time of the PUT, and variable resistor for adjusting the voltage supplied to the time constant circuit 67 (Control pedal sliding resistor) 68, an input terminal IN for inputting a chopper signal output from the chopper signal oscillator, a forward / reverse switch 69 for converting the rotation direction of the rotor, and a predetermined duty ratio Output terminal OUT that outputs chopper signal (power supply signal) , Input and terminal C1IN overload signal voltage indicating that the load current flowing through the field winding is excessive, and is made of.
When a certain force is applied to the pedal 89 of the control pedal 80, a first command signal for changing the resistance value of the sliding resistor 82 is issued. As a result, when the resistance value of the variable resistor 68 changes, the voltage of the time constant circuit 67 changes and the rise time of the PUT 64 also changes, so the duty ratio of the chopper signal by the SCR 61 changes. As a result, a chopper signal (power supply signal) having a duty ratio corresponding to the first command signal is output from the output terminal OUT.
Further, when an overload signal voltage is input from the input terminal C1IN, the operating voltage of the PUT 64 increases, so that the rising voltage of the PUT 64 set by the first command signal increases and the duty ratio decreases. As a result, a power supply signal with a reduced duty ratio is output from the output terminal OUT.
図8は、本実施形態の回生信号生成部の1例を示す回生ブレーキコントローラである。
図8に示す回生ブレーキコントローラ70は、入力端子INからチョッパ信号が入力されると、第2指令信号に応じたデューティ比の高圧チョッパ信号(高圧回生信号)を第1出力端子HOUTに、低圧チョッパ信号(低圧回生信号)を第2出力端子LOUTにそれぞれ出力する、パワーコントローラ60に類似の回路である。パワーコントローラ60と較べると、ダミー抵抗器66に接続されている正逆スイッチ69に換えて、パルストランス79が接続される点、過負荷信号入力端子C1INは、回生電流が過剰であることを知らせる過電流信号入力端子C2INである点はパワーコントローラ60と相違するが、それ以外の点は共通する。したがって、共通する回路部品については、60番台を70番台に代え、一桁の数字は共通の番号を付して説明を省略し、相違点についてのみ説明する。
パルストランス79は、1次側に、所定のデューティ比のチョッパ信号(回生信号)が入力され、2次側に、高圧の回生信号と低圧の回生信号とを別個に出力する。なお、2次側には、逆流を阻止するダイオード79aが接続されている。また、過電流信号入力端子C2INから過電流信号電圧が入力したときの回生ブレーキコントローラ70の作用は、パワーコントローラ60に過負荷信号電圧が入力したときの作用と同じであり、説明を省略する。
FIG. 8 is a regenerative brake controller showing an example of the regenerative signal generation unit of the present embodiment.
Regenerative brake controller 70 shown in FIG. 8, when the chopper signal is inputted from the input terminal IN, a high pressure chopper signal having a duty ratio corresponding to the second command signal (high regeneration signal) to the first output terminal HOUT, low chopper This is a circuit similar to the power controller 60 that outputs a signal (low-pressure regeneration signal) to the second output terminal LOUT. Compared with the power controller 60, the pulse transformer 79 is connected instead of the forward / reverse switch 69 connected to the dummy resistor 66, and the overload signal input terminal C1IN informs that the regenerative current is excessive. The overcurrent signal input terminal C2IN is different from the power controller 60, but the other points are common. Therefore, for the common circuit components, the 60th series is replaced with the 70th series, the single-digit numbers are given the common numbers, and the explanation is omitted, and only the differences will be explained.
The pulse transformer 79 receives a chopper signal (regeneration signal) having a predetermined duty ratio on the primary side, and separately outputs a high-pressure regeneration signal and a low-pressure regeneration signal to the secondary side. A diode 79a that prevents backflow is connected to the secondary side. The operation of the regenerative brake controller 70 when the overcurrent signal voltage is input from the overcurrent signal input terminal C2IN is the same as the operation when the overload signal voltage is input to the power controller 60, and the description thereof is omitted.
図9は、本実施形態の過負荷電流制限部の1例の過負荷制限器を示す図である。
本実施形態の過電流制限部の1例の過電流制限器は、ここに示す過負荷制限器に較べると、設定電圧は異なるが、構成は同じなので、両者を同時に説明する。
図9に示す過負荷制限器130(又は過電流制限器)は、セグメント3の負荷電流検出部11(又は回生電流検出部12)で検出された過負荷信号電圧(又は過電流信号電圧)が入力する入力端子INと、全波整流器131と、分圧抵抗器132と、ツェナーダイオード133と、逆流阻止用ダイオード134と、出力端子OUTとを備えている。
入力端子に過負荷信号電圧(又は過電流信号電圧)が入力すると、全波整流器131で全波整流され、分圧抵抗器132で分圧される。そしてその分圧がツェナーダイオード133の作動電圧(本発明の閾値に相当する。)を超えると、ツェナーダイオード133が通電する。そして、逆流阻止用ダイオード134を経由して、出力端子OUTに過負荷信号(又は過電流信号)が出力される。
なお、パワーコントローラ60(又は回生ブレーキコントローラ70)の入力端子C1IN(又は入力端子C2IN)に過負荷信号(又は過電流信号)が入力すると、パワーコントローラ60(又は回生ブレーキコントローラ70)のPUT64(又はPUT74)の作動電圧が上昇するので、第1指令信号(又は第2指令信号)で設定されたPUT64(又はPUT74)の立ち上がり電圧が上昇し、デューティ比が減少する。その結果、パワーコントローラ60(又は回生ブレーキコントローラ70)の出力端子OUT(又は第1出力端子HOUT、第2出力端子LOUT)からはデューティ比が減少した給電信号(又は回生信号)が出力されるので、界磁巻線組の負荷電流(又は回生電流)が抑制される。
一方、過負荷又は過電流が解消し、入力端子に正常な負荷信号電圧(又は電流信号電圧)が入力すると、分圧抵抗器132の分圧はツェナーダイオード133の作動電圧以下となり、出力端子OUTからは過負荷信号(又は過電流信号)が出力されない。したがって、パワーコントローラ60(又は回生ブレーキコントローラ70)の入力端子C1IN(又は入力端子C2IN)のPUT64(又はPUT74)の作動電圧は、第1指令信号(又は第2指令信号)で設定されたPUT64(又はPUT74)の立ち上がり電圧に復帰し、第1指令信号(又は第2指令信号)に応じたデューティ比の給電信号(又は回生信号)が出力される。
FIG. 9 is a diagram illustrating an example of an overload limiter of the overload current limiting unit according to the present embodiment.
The overcurrent limiter as an example of the overcurrent limiter according to the present embodiment is different in setting voltage from the overload limiter shown here, but the configuration is the same.
The overload limiter 130 (or overcurrent limiter) shown in FIG. 9 has an overload signal voltage (or overcurrent signal voltage) detected by the load current detection unit 11 (or regenerative current detection unit 12) of the segment 3. The input terminal IN, the full wave rectifier 131, the voltage dividing resistor 132, the Zener diode 133, the backflow prevention diode 134, and the output terminal OUT are provided.
When an overload signal voltage (or overcurrent signal voltage) is input to the input terminal, the full-wave rectifier 131 performs full-wave rectification and the voltage-dividing resistor 132 divides the voltage. When the divided voltage exceeds the operating voltage of the Zener diode 133 (corresponding to the threshold value of the present invention), the Zener diode 133 is energized. Then, an overload signal (or an overcurrent signal) is output to the output terminal OUT via the backflow prevention diode 134.
When an overload signal (or overcurrent signal) is input to the input terminal C1IN (or input terminal C2IN) of the power controller 60 (or regenerative brake controller 70), the PUT 64 (or regenerative brake controller 70) of the power controller 60 (or regenerative brake controller 70). As the operating voltage of the PUT 74 increases, the rising voltage of the PUT 64 (or PUT 74) set by the first command signal (or the second command signal) increases and the duty ratio decreases. As a result, a power supply signal (or regenerative signal) with a reduced duty ratio is output from the output terminal OUT (or first output terminal HOUT, second output terminal LOUT) of the power controller 60 (or regenerative brake controller 70). The load current (or regenerative current) of the field winding set is suppressed.
On the other hand, when the overload or overcurrent is eliminated and a normal load signal voltage (or current signal voltage) is input to the input terminal, the divided voltage of the voltage dividing resistor 132 becomes equal to or lower than the operating voltage of the Zener diode 133, and the output terminal OUT Does not output an overload signal (or overcurrent signal). Therefore, the operating voltage of the PUT 64 (or PUT 74) of the input terminal C1IN (or input terminal C2IN) of the power controller 60 (or regenerative brake controller 70) is PUT64 (or second command signal) set by the first command signal (or second command signal). Alternatively, the power supply signal (or regenerative signal) having a duty ratio corresponding to the first command signal (or the second command signal) is output.
図10は、本実施形態のセグメントの1例を示す図である。
図10に示すセグメント3は、直流電源10から電力を得る電源端子PINと、回転子1を挟んで対置する2つの界磁巻線により形成され、負荷電流が流れると一方がN極、他方がS極に磁化する界磁巻線組20と、4つのスイッチング素子31a、31b、31c、31dからなる切換部17と、磁石の磁極を検出し、入力端子IN及び出力端子OUTを有するホール素子18と、ホール素子18の出力端子OUTに接続され、給電信号に含まれる不平衡電流をカットし、スイッチング素子31の駆動に必要な電圧の給電信号を出力するパルストランス32と、界磁巻線組20を流れる負荷電流を検出する負荷電流検出トランス33と、検出した負荷電流を出力する出力端子C1OUTと、界磁巻線組20に誘起される交流電力の出力端子ROUTと、を備え、切換部17の各スイッチング素子31a、31b、31c、31dには、サージ電圧等をバイパスするフリーホイールダイオード35が並列に接続されている。
負荷電流検出トランス33は、スイッチング素子31が間欠的に導通するのに合わせて界磁巻線組20を両方向に流れる負荷電流を検出し、検出された負荷電流を過負荷制限器130に送る。
あるセグメント3の切換部17には、回転子1の回転方向とは反対の方向に、そのセグメント3に所属する界磁巻線組20よりも1つ又は複数先に配置された界磁巻線組20が巻回された界磁極の近傍又は中央に設置されたホール素子18によって検出された磁極に応じた給電信号が送られてくる。一方、あるセグメント3に所属する界磁巻線組20の界磁極の近傍又は中央に設置されたホール素子18で検出された磁極により極性が付与された給電信号は、回転子1の回転方向に、そのセグメント3に含まれる界磁巻線組20よりも1つ又は複数先に配置された界磁巻線組20が所属する、別のセグメント3の切換部17に送られる。
今、このセグメント3の切換部17に正の給電信号が送られてくると、スイッチング素子31a、31cが作動し、回転子1が回転し磁石の磁極が反転してホール素子18から負の給電信号が送られてくると、スイッチング素子31b、31dが作動する。その結果、界磁巻線組20には、給電信号のデューティ比に対応する通電時間だけ、同方向の負荷電流が間欠的に流れ、回転子1にトルクが生じる。また、通電時間と通電時間との間の非通電時間は、界磁巻線組20に交流電力が誘起されるので、並列に接続されたフリーホイールダイオード35を経由して、他の界磁巻線組の負荷電流として活用される。
一方、界磁巻線組20に対する給電が停止した直後に、界磁巻線組20に誘起される交流電力(回生電力)は、出力端子ROUTから出力される。
FIG. 10 is a diagram illustrating an example of a segment according to the present embodiment.
A segment 3 shown in FIG. 10 is formed by a power supply terminal PIN for obtaining power from the DC power supply 10 and two field windings facing each other with the rotor 1 interposed therebetween. When a load current flows, one is an N pole and the other is A field winding set 20 that is magnetized to the S pole, a switching unit 17 including four switching elements 31a, 31b, 31c, and 31d, and a Hall element 18 that detects a magnetic pole of the magnet and has an input terminal IN and an output terminal OUT. A pulse transformer 32 that is connected to the output terminal OUT of the Hall element 18, cuts an unbalanced current included in the power feeding signal, and outputs a power feeding signal having a voltage necessary for driving the switching element 31, and a field winding set. 20, a load current detection transformer 33 for detecting a load current flowing through the output 20, an output terminal C 1 OUT for outputting the detected load current, and an output terminal R for the AC power induced in the field winding set 20. Comprising a UT, the respective switching elements 31a of the switching unit 17, 31b, 31c, the 31d, freewheeling diodes 35 for bypassing a surge voltage or the like are connected in parallel.
The load current detection transformer 33 detects a load current flowing in both directions through the field winding set 20 as the switching element 31 is intermittently conducted, and sends the detected load current to the overload limiter 130.
The switching unit 17 of a certain segment 3 has one or more field windings arranged in a direction opposite to the direction of rotation of the rotor 1 before the field winding group 20 belonging to the segment 3. A power supply signal corresponding to the magnetic pole detected by the Hall element 18 installed near or in the center of the field magnetic pole around which the set 20 is wound is sent. On the other hand, the feed signal to which the polarity is given by the magnetic pole detected by the Hall element 18 installed in the vicinity or the center of the field magnetic pole of the field winding set 20 belonging to a certain segment 3 in the rotation direction of the rotor 1. The field winding set 20 arranged one or more ahead of the field winding set 20 included in the segment 3 is sent to the switching unit 17 of another segment 3 to which the field winding set 20 belongs.
Now, when a positive power supply signal is sent to the switching unit 17 of the segment 3, the switching elements 31a and 31c are operated, the rotor 1 rotates, the magnetic pole of the magnet is reversed, and the negative power is supplied from the Hall element 18. When a signal is sent, the switching elements 31b and 31d are activated. As a result, a load current in the same direction intermittently flows in the field winding set 20 for the energization time corresponding to the duty ratio of the power supply signal, and torque is generated in the rotor 1. Further, during the non-energization time between the energization time and the energization time, since AC power is induced in the field winding set 20, other field windings are connected via the freewheel diode 35 connected in parallel. Used as load current for wire assembly.
On the other hand, AC power (regenerative power) induced in the field winding set 20 is output from the output terminal ROUT immediately after the power supply to the field winding set 20 is stopped.
図11は、本実施形態の回生電力制御部の1例を示す回生電力制御器である。         
図11に示す回生電力制御器90は、各セグメント3から入力する回生電力を倍電圧整流して出力するもので、セグメント3の出力端子ROUTから出力される回生電力が入力される入力端子RINと、回生ブレーキコントローラ70の出力端子HOUT、LOUTから出力される高圧回生信号と低圧回生信号とを入力する入力端子HIN、LINと、回生電流を検出する検出トランス92と、検出された回生電流を出力する出力端子C2OUTと、高圧回生信号及び低圧回生信号それぞれにより導通する1対のスイッチング素子93、94と、1対のスイッチング素子93、94それぞれのゲートとカソードの電流をコントロールする安全抵抗器95と、回生電力の正負それぞれの回生電流を全波整流する4つのダイオード96と、整流された正負それぞれの電流を個別にチャージする1次コンデンサ97と、1次コンデンサ97にチャージされた電荷により倍電圧の電荷を得る大容量キャパシタ98と、倍電圧の出力端子VOUTと、を備えている。
1対のスイッチング素子93、94は、高圧回生信号及び低圧回生信号が入力すると、回生信号のデューティ比に応じて間欠的に導通し、導通したときだけ交流電力が1次コンデンサ97にチャージされる。そして、1次コンデンサ97にチャージされた電荷は、ダイオード99a、99bを経由して大容量キャパシタ98に蓄えられる。
ここで、出力を倍電圧にしているのは、大容量キャパシタ98の電荷を直流電源10の2次電池に充電する際、充電電圧を2次電池の電圧よりも高い、適正電圧とするためである。
本実施形態の指令信号生成部8における押圧部材89を一定以上に踏み込んだ後、押圧部材89に加わる力を弱めると、第2指令信号が出され、回生ブレーキが作用する。回生ブレーキの強弱は、回生電力の消費量に応じて変化するので、スイッチング素子93、94が間欠的に導通する時間が短いとき(デューティ比が小さいとき)は、弱く作用し、間欠的に導通する時間が長いとき(デューティ比が大きいとき)は、強く作用するので、電気自動車のアクセルペダルに適用すれば、エンジンブレーキと同様の感覚が得られる。
FIG. 11 is a regenerative power controller showing an example of the regenerative power control unit of the present embodiment.
The regenerative power controller 90 shown in FIG. 11 performs voltage doubler rectification on the regenerative power input from each segment 3 and outputs the regenerative power. The regenerative power output from the output terminal ROUT of the segment 3 is input to the input terminal RIN. , an output terminal HOUT of the regenerative brake controller 70, an input terminal for inputting a high regeneration signal and a low pressure regeneration signal output from the LOUT HIN, and LIN, and detection transformer 92 for detecting a regenerative current, outputs the detected regenerative current An output terminal C2OUT, a pair of switching elements 93 and 94 that are turned on by a high-voltage regeneration signal and a low-voltage regeneration signal, respectively, and a safety resistor 95 that controls the currents of the gate and cathode of each of the pair of switching elements 93 and 94, , Four diodes 96 for full-wave rectification of the regenerative current of the positive and negative regenerative power, A primary capacitor 97 that charges each negative current individually, a large-capacity capacitor 98 that obtains a double voltage charge by the charge charged in the primary capacitor 97, and a double voltage output terminal VOUT are provided.
When a high voltage regeneration signal and a low voltage regeneration signal are input to the pair of switching elements 93 and 94, the pair of switching elements 93 and 94 are intermittently conducted according to the duty ratio of the regeneration signal, and the AC power is charged to the primary capacitor 97 only when the pair is turned on. . The electric charge charged in the primary capacitor 97 is stored in the large-capacitance capacitor 98 via the diodes 99a and 99b.
Here, the output voltage is doubled when charging the secondary battery of the DC power supply 10 with the charge of the large-capacity capacitor 98 so that the charge voltage is higher than the voltage of the secondary battery. is there.
If the force applied to the pressing member 89 is weakened after the pressing member 89 in the command signal generating unit 8 of the present embodiment is stepped on more than a certain level, a second command signal is issued and the regenerative brake is activated. Since the strength of the regenerative brake changes according to the amount of regenerative power consumed, it acts weakly and intermittently conducts when the switching elements 93 and 94 are intermittently conducted for a short time (when the duty ratio is small). When the operation time is long (when the duty ratio is large), it acts strongly. Therefore, when applied to an accelerator pedal of an electric vehicle, the same feeling as engine braking can be obtained.
図12は、本実施形態の充電部の1例を示すバッテリチャージ電圧コントローラである。
図12に示すバッテリチャージ電圧コントローラ150は、回生電力制御器90の出力端子VOUTから倍電圧が入力される入力端子VINと、2次電池に接続する出力端子BATと、2つのスイッチング素子151、152と、第1のスイッチング素子151のゲート電圧を0に保つ抵抗器153、154と、2次電池の電圧を分圧し、充電電圧を設定する分圧抵抗器155、156と、ツェナーダイオード157と、ツェナーダイオード157がOFFのときに第2のスイッチング素子152のゲート電圧を0に保つ抵抗器158と、負荷変動に対応する電荷を蓄える大容量キャパシタ159と、を備えている。
2次電池の電圧が上昇し、分圧抵抗器155、156の電圧が充電完了電圧になり、ツェナーダイオード157が通電すると、第2のスイッチング素子152が導通し、第1のスイッチング素子151のゲート電圧が0になり、充電が停止する。
FIG. 12 is a battery charge voltage controller showing an example of the charging unit of the present embodiment.
A battery charge voltage controller 150 shown in FIG. 12 includes an input terminal VIN to which a double voltage is input from the output terminal VOUT of the regenerative power controller 90, an output terminal BAT connected to the secondary battery, and two switching elements 151 and 152. Resistors 153 and 154 that maintain the gate voltage of the first switching element 151 at 0, voltage divider resistors 155 and 156 that divide the voltage of the secondary battery and set a charging voltage, a zener diode 157, A resistor 158 that keeps the gate voltage of the second switching element 152 at 0 when the Zener diode 157 is OFF, and a large-capacitance capacitor 159 that stores charges corresponding to load fluctuations are provided.
When the voltage of the secondary battery rises, the voltages of the voltage dividing resistors 155 and 156 become the charging completion voltage, and the Zener diode 157 is energized, the second switching element 152 is turned on, and the gate of the first switching element 151 The voltage becomes zero and charging stops.
[第2の実施形態]
以下に、本発明の直流回生電動機の第2の実施形態について説明する。
第2の実施形態の直流回生電動機は、回転方向を切替える機能を有し、その機能を実現するために本発明の回転方向切替器が適用される。
第1の実施形態の直流回生電動機においては、ホール素子から出力される給電信号は、特定の切換部に供給され、その切換部に接続された特定の1つの界磁巻線組における負荷電流の通電に用いられる。これに対し、第2の実施形態の直流回生電動機においては、ホール素子から出力される給電信号は、回転方向切替器の選択部を介し、特定の2つの切換部のうちの何れか一方に供給されたのち、それぞれの切換部に接続された特定の1つの界磁巻線組における負荷電流の通電に用いられる点が相違する。しかしながら、それ以外の構成は共通するので、相違している点について説明し、共通する部分の重複説明は省略する。
[Second Embodiment]
Below, 2nd Embodiment of the direct-current regeneration motor of this invention is described.
The DC regenerative motor of the second embodiment has a function of switching the rotation direction, and the rotation direction switch of the present invention is applied to realize the function.
In the DC regenerative motor according to the first embodiment, the power feeding signal output from the Hall element is supplied to a specific switching unit, and the load current in one specific field winding set connected to the switching unit. Used for energization. On the other hand, in the DC regenerative motor of the second embodiment, the power supply signal output from the Hall element is supplied to one of the two specific switching units via the selection unit of the rotation direction switch. After that, it is different in that it is used for energizing a load current in one specific field winding set connected to each switching unit. However, since the other configurations are common, the differences will be described, and duplicate descriptions of common portions will be omitted.
図13は、本発明の回転方向切替器の1例を適用した第2の実施形態の直流回生電動機の主要部を示す図である。
図13に主要部を示す第2の実施形態の直流回生電動機は、磁極1e配置された回転子1と、界磁巻線2fが配備された固定子2と、回転子1の磁極1eを検出するホール素子18と、回転方向切替器40と、ホール素子18の給電信号によって界磁巻線2fの負荷電流を制御する切換部19と、チョッパ信号入力端子CINと、直流電源接続端子DINと、を備え、固定子2の内部に回転子1が配置されたインナーロータ型である。
回転子1は、永久磁石のN極とS極が回転軸の周りに、一定の間隙(M)を開けて交互に2個ずつ配置されている。
固定子2は、スロットを隔てて24個の界磁極が回転子1に対向配置され、24個の界磁極それぞれに巻回された界磁巻線2fが6つの界磁巻線組20を形成している。界磁極の中央部(又はスロット中央部)相互間の距離(L)は一定であり、Lは、回転子1に配置されたN極とS極との間隔(M)よりも小さくなっている。24個の界磁極それぞれに巻回された界磁巻線2fは、回転子1を挟んで対称な位置に配置された1対の界磁巻線2fと、それらから90度回転した位置に配置された1対の界磁巻線2f(図13においては図が複雑化するため省略されている。)とからなる4つの界磁巻線2fが並列に接続され、6組の界磁巻線組20が形成されている。そして、6組の界磁巻線組20それぞれにおける一方の1対の界磁巻線2fそれぞれは、同相に磁化され、他方の1対の界磁巻線2fそれぞれは、逆相に磁化されて回転磁界が形成されるように
直流電源接続端子DINから、負荷電流が供給される。
ここで、本実施形態の界磁巻線組20を形成する一方の1対の界磁巻線2fは、同時にN極(又はS極)に磁化され、他方の1対の界磁巻線2fは、同時にS極(又はN極)に磁化されるように構成されているが、必ずしもこの構成に限定されない。
ホール素子18は、チョッパ信号が入力する入力端子と、その入力端子にチョッパ信号が入力している状態で回転子1の磁極1eが検出されると、磁極1eの強さ(含む極性)とチョッパ信号の大きさとの積に比例した給電信号が出力される出力端子と、を備え、界磁巻線2fに形成される回転磁界の影響を受けることなく、回転子1の磁極の位置を検出できる位置に配置される。
したがって、ホール素子18に入力するチョッパ信号のデューティ比を変化させると電動機のトルクが変化するので、回転速度の加速及び減速が可能となる。
ここで、本実施形態のホール素子18は、界磁極の近傍又は中央に配置されているが、界磁極の近傍には、スロットが含まれる。
FIG. 13 is a diagram illustrating a main part of a DC regenerative motor according to a second embodiment to which an example of the rotation direction switching device of the present invention is applied.
The DC regenerative motor of the second embodiment, the main part of which is shown in FIG. 13, detects the rotor 1 provided with the magnetic pole 1e, the stator 2 provided with the field winding 2f, and the magnetic pole 1e of the rotor 1. The Hall element 18 to be rotated, the rotation direction switch 40, the switching unit 19 for controlling the load current of the field winding 2f by the feeding signal of the Hall element 18, the chopper signal input terminal CIN, the DC power supply connection terminal DIN, And an inner rotor type in which the rotor 1 is disposed inside the stator 2.
In the rotor 1, two N poles and two S poles of a permanent magnet are alternately arranged around the rotation axis with a certain gap (M).
In the stator 2, 24 field poles are arranged opposite to the rotor 1 across the slot, and the field windings 2 f wound around the 24 field poles form six field winding sets 20. is doing. The distance (L) between the center portions (or slot center portions) of the field poles is constant, and L is smaller than the interval (M) between the N pole and the S pole arranged in the rotor 1. . The field winding 2f wound around each of the 24 field poles is arranged at a position rotated 90 degrees from a pair of field windings 2f arranged at symmetrical positions with the rotor 1 interposed therebetween. Four field windings 2f composed of a pair of field windings 2f (not shown in FIG. 13 for the sake of complexity) are connected in parallel to form six sets of field windings. A set 20 is formed. Each of the pair of field windings 2f in each of the six sets of field windings 20 is magnetized in the same phase, and each of the other pair of field windings 2f is magnetized in the opposite phase. A load current is supplied from the DC power supply connection terminal DIN so that a rotating magnetic field is formed.
Here, one pair of field windings 2f forming the field winding set 20 of the present embodiment is simultaneously magnetized to N pole (or S pole), and the other pair of field windings 2f. Are configured to be magnetized to the S pole (or N pole) at the same time, but are not necessarily limited to this configuration.
The Hall element 18 has an input terminal for inputting a chopper signal, and when the magnetic pole 1e of the rotor 1 is detected with the chopper signal being input to the input terminal, the strength (including polarity) of the magnetic pole 1e and the chopper are detected. An output terminal that outputs a feed signal proportional to the product of the signal magnitude, and can detect the position of the magnetic pole of the rotor 1 without being affected by the rotating magnetic field formed in the field winding 2f. Placed in position.
Therefore, if the duty ratio of the chopper signal input to the hall element 18 is changed, the torque of the motor changes, so that the rotational speed can be accelerated and decelerated.
Here, the Hall element 18 of the present embodiment is disposed near or in the center of the field pole, but a slot is included in the vicinity of the field pole.
切換部19は、ホール素子18の出力端子における給電信号の極性が正のとき、その給電信号のデューティ比に応じて通電時間を変える2つのスイッチング素子31a、31cと、給電信号の極性が負のとき、その給電信号のデューティ比に応じて通電時間を変える、2つのスイッチング素子31b、31dとを有する。各スイッチング素子31a、31b、31c、31dは、界磁巻線組20に供給される負荷電流の向きを回転子1の磁極1eに応じて切換える一方、負荷電流の通電時間をデューティ比に応じて変化させる。また、各スイッチング素子31a、31b、31c、31dには、サージ電圧等をバイパスするフリーホイールダイオード35が並列に接続されている。
切換部19にホール素子18から正の給電信号が送られてくると、スイッチング素子31a、31cが作動し、回転子1が回転して磁極1eが反転し、ホール素子18から負の給電信号が送られてくると、スイッチング素子31b、31dが作動する。その結果、界磁巻線組20には、給電信号のデューティ比に対応する通電時間だけ、負荷電流が間欠的に流れ、回転子1にはそれに応じたトルクが生じる。また、通電時間と通電時間との間の非通電時間には、界磁巻線組20に交流電力が誘起されるので、その誘起電力は、フリーホイールダイオード35を経由して、他の界磁巻線組20の負荷電流として活用される。
ここで、本実施形態が適用される直流同期電動機は、回転子1のN極とS極との間隔(M)が、固定子2の、スロットを隔てて配備された界磁極それぞれの中央部相互間の距離(L)よりも大きくなっているので、ホール素子18の給電信号により負荷電流が制御され、界磁巻線組20によって磁化される磁極の変わり目で、必ず磁化休止時間が生じる。これにより、同じ界磁巻線2fによって、回転子1の磁極1eを引寄せる力と反発する力とを同時に受けることがないように構成されている。
When the polarity of the power feeding signal at the output terminal of the Hall element 18 is positive, the switching unit 19 includes two switching elements 31a and 31c that change the energization time according to the duty ratio of the power feeding signal, and the polarity of the power feeding signal is negative. At this time, it has two switching elements 31b and 31d that change the energization time according to the duty ratio of the power supply signal. Each switching element 31a, 31b, 31c, 31d switches the direction of the load current supplied to the field winding set 20 according to the magnetic pole 1e of the rotor 1, while the load current energizing time is changed according to the duty ratio. Change. In addition, a free wheel diode 35 that bypasses a surge voltage or the like is connected in parallel to each switching element 31a, 31b, 31c, 31d.
When a positive power supply signal is sent from the hall element 18 to the switching unit 19, the switching elements 31a and 31c are operated, the rotor 1 rotates and the magnetic pole 1e is reversed, and a negative power supply signal is transmitted from the hall element 18. When sent, the switching elements 31b and 31d are activated. As a result, the load current intermittently flows in the field winding set 20 for the energizing time corresponding to the duty ratio of the power supply signal, and the rotor 1 generates a torque corresponding thereto. Further, during the non-energization time between the energization time and the energization time, AC power is induced in the field winding set 20, so that the induced power passes through the free wheel diode 35 to other field magnets. This is utilized as a load current of the winding set 20.
Here, in the DC synchronous motor to which the present embodiment is applied, the distance (M) between the N pole and the S pole of the rotor 1 is the central portion of each of the field poles arranged across the slots of the stator 2. Since it is larger than the distance (L) between each other, the load current is controlled by the feeding signal of the Hall element 18, and a magnetization pause time always occurs at the transition of the magnetic pole magnetized by the field winding set 20. As a result, the same field winding 2f is configured not to receive simultaneously the force attracting the magnetic pole 1e of the rotor 1 and the repulsive force.
回転方向切替器40は、ホール素子18の給電信号により切換部19で負荷電流が制御される界磁巻線組20を切替えるスイッチ(本発明の選択子に相当する。)41a~41fを6個備えた選択部41と、その選択部41を、回転方向の指令によって一斉に切替える継電器(本発明の選択子切替部に相当する。)42とを備えており、詳細は後述する。
ここで、スイッチ41aの接点は、界磁極よりも正逆両回転方向における1つ先の界磁巻線2fに負荷電流を供給する切換部19に接続されるが、2つ先の界磁巻線2fに負荷電流を供給する切換部19に接続してもよい。また、本実施形態の回転方向切替器40は、選択部41と継電器42を用いているが、ロータリ式の多接点スイッチを用いても、他の切替方法を用いてもよい。
本実施形態における直流回生電動機は、回転子の磁極数Pが4、固定子の界磁極数Qが24、ホール素子数Hが6にそれぞれ設定されているが、回転子の磁極数P、固定子の界磁極数Q、ホール素子数Hそれぞれは、必ずしも4、24、6の組合せである必要はない。また回転子の磁極数Pは、必ずしも4である必要はなく、2の倍数であればよい。すなわち、以下の3条件を満たすようにP、Q、H、M、Lを設定し、界磁巻線をQ/Hずつ直列又は並列に接続して界磁巻線組を構成し、それらの界磁巻線組毎に負荷電流を供給することが好ましく、それによって効率的に、大きな回転トルクを得ることが可能になる。
[3条件]
条件1;Hは、Q/Pに等しいか、あるいはQ/Pよりも小さいこと。
条件2;N極とS極の間隔をMとし、スロットを隔てて配備された界磁極それぞれの中央部相互間の距離をLとしたとき、Mは、Lに等しいか、あるいはLよりも大きいこと。
条件3:Q/Hが整数になるようにQとHを選択すること。
The rotation direction switch 40 includes six switches (corresponding to the selectors of the present invention) 41a to 41f that switch the field winding group 20 whose load current is controlled by the switching unit 19 in accordance with the power supply signal of the Hall element 18. And a relay (which corresponds to a selector switching unit of the present invention) 42 that switches the selection unit 41 all at once in response to a rotation direction command. The details will be described later.
Here, the contact of the switch 41a is connected to the switching unit 19 that supplies a load current to the field winding 2f that is one ahead in the forward and reverse rotation directions with respect to the field pole. You may connect to the switching part 19 which supplies load current to the line 2f. Moreover, although the rotation direction switch 40 of this embodiment uses the selection part 41 and the relay 42, you may use a rotary type multi-contact switch, or may use another switching method.
In the DC regenerative motor according to the present embodiment, the number of magnetic poles P of the rotor is set to 4, the number of field poles Q of the stator is set to 24, and the number of Hall elements H is set to 6, respectively. The number Q of the child field poles and the number H of the Hall elements do not necessarily need to be combinations of 4, 24, and 6, respectively. Further, the number of magnetic poles P of the rotor is not necessarily 4 and may be a multiple of 2. That is, P, Q, H, M, and L are set so as to satisfy the following three conditions, and field windings are connected in series or in parallel by Q / H to form a field winding set. It is preferable to supply a load current for each field winding set, thereby making it possible to obtain a large rotational torque efficiently.
[3 conditions]
Condition 1; H is equal to or smaller than Q / P.
Condition 2: M is equal to or greater than L, where M is the distance between the N and S poles, and L is the distance between the central portions of the field poles arranged across the slot. thing.
Condition 3: Q and H are selected so that Q / H is an integer.
図14は、本発明の回転方向切替器の1実施例として示す継電器の接点の接続状態図であり、図15は、本発明の回転方向切替器の1実施例として示す継電器の動作回路図である。
図14において、ホール素子18a~18fの1対の入力端子のうちの一方の端子、及び1対の出力端子のうちの一方の端子、並びにホール素子18a~18fの出力端子に接続される2つのスイッチのうちの一方のスイッチは、説明の都合上、省略されている。
図14に示す選択部41は、6つのスイッチ41a~41fを備えている。スイッチ41a~41fは、ホール素子18a~18fから出力される信号の入力端子INと、継電器12の動作で切り替わる2つの接点を備えている。第1の接点(図中の閉じている接点)それぞれは、各ホール素子18a~18fがその近傍又は中央に設置された界磁巻線(K)よりも、正回転方向に、1つ先に配置された界磁巻線に対して負荷電流を供給する切換部19a~19fに接続され、第2の接点(図中の開いている接点)それぞれは、界磁巻線(K)よりも、逆回転方向に、1つ先に配置された界磁巻線に対して負荷電流を供給する切換部19e~19dに接続されている。また、各切換部19a~19fは、共通の直流源10に接続されている。
さらに、各ホール素子18a~18fの入力端子は、共通のチョッパ信号生成部5に接続され、出力端子は、選択部41の各スイッチ41a~41fに接続されている。
ここで、本実施形態の、スイッチ41a~41fの接点は、界磁極よりも正逆両回転方向に1つ先の界磁巻線に負荷電流を供給する切換部19a~19fに接続されるが、界磁極よりも正逆両回転方向に2つ先の界磁巻線に負荷電流を供給する切換部19a~19fに接続してもよい。また、本実施形態の回転方向切替器40は、継電器42と、継電器42の接点からなる選択部41と、を用いているが、ロータリ式の多接点スイッチを用いてもよい。
FIG. 14 is a connection state diagram of a contact point of a relay shown as one embodiment of the rotation direction switch of the present invention, and FIG. 15 is an operation circuit diagram of the relay shown as one embodiment of the rotation direction switch of the present invention. is there.
In FIG. 14, two terminals connected to one terminal of the pair of input terminals of the Hall elements 18a to 18f, one terminal of the pair of output terminals, and the output terminals of the Hall elements 18a to 18f. One of the switches is omitted for convenience of explanation.
The selection unit 41 shown in FIG. 14 includes six switches 41a to 41f. The switches 41a to 41f include an input terminal IN for signals output from the hall elements 18a to 18f and two contacts that are switched by the operation of the relay 12. Each of the first contacts (closed contacts in the figure) is one ahead of the field winding (K) in which each Hall element 18a to 18f is installed in the vicinity or the center thereof in the forward rotation direction. Each of the second contacts (open contacts in the figure) connected to switching units 19a to 19f for supplying a load current to the arranged field winding is more than the field winding (K). In the reverse rotation direction, it is connected to switching units 19e to 19d for supplying a load current to the field winding arranged one ahead. Further, the switching units 19a to 19f are connected to a common DC source 10.
Further, the input terminals of the Hall elements 18a to 18f are connected to the common chopper signal generator 5, and the output terminals are connected to the switches 41a to 41f of the selector 41.
Here, the contacts of the switches 41a to 41f of the present embodiment are connected to the switching units 19a to 19f for supplying a load current to the field winding one forward in the forward and reverse rotation directions with respect to the field pole. Further, it may be connected to switching units 19a to 19f that supply a load current to the field windings that are two forward in the forward and reverse rotation directions with respect to the field pole. Moreover, although the rotation direction switch 40 of this embodiment uses the relay 42 and the selection part 41 which consists of a contact of the relay 42, you may use a rotary multi-contact switch.
本実施形態の直流同期電動機は、24個の界磁巻線を有し、4個の界磁巻線を並列に接続して6つの界磁巻線組20a~20fが形成されている。すなわち、正回転方向に順次配備された第1番目から第24番目の界磁極それぞれに巻き回された第1番目から第24番目の界磁巻線のうち、第1番目と第7番目と第13番目と第19番目の界磁巻線、第2番目と第8番目と第14番目と第20番目の界磁巻線、第3番目と第9番目と第15番目と第21番目の界磁巻線、第4番目と第10番目と第16番目と第22番目の界磁巻線、第5番目と第11番目と第17番目と第23番目の界磁巻線、第6番目と第12番目と第18目と第24番目の界磁巻線がそれぞれ並列に接続されている。そして、第2番目と第8番目と第14番目と第20番目の界磁巻線からなる第1の界磁巻線組20aは、第1の切換部19aから負荷電流が供給され、第3番目と第9番目と第15番目と第21番目の界磁巻線からなる第2の界磁巻線組20bは、第2の切換部19bから負荷電流が供給され、第4番目と第10番目と第16番目と第22番目の界磁巻線からなる第3の界磁巻線組20cは、第3の切換部19cから負荷電流が供給される。また、第5番目と第11番目と第17番目と第23番目の界磁巻線からなる第4の界磁巻線組20dは、第4の切換部19dから負荷電流が供給され、第6番目と第12番目と第18目と第24番目の界磁巻線からなる第5の界磁巻線組20eは、第5の切換部19eから負荷電流が供給され、第1番目と第7番目と第13番目と第19番目の界磁巻線からなる第6の界磁巻線組20fは、第6の切換部19fから負荷電流が供給される。 The DC synchronous motor of this embodiment has 24 field windings, and four field windings are connected in parallel to form six field winding sets 20a to 20f. That is, among the 1st to 24th field windings wound around the 1st to 24th field poles sequentially arranged in the positive rotation direction, the 1st, 7th, and 1st 13th and 19th field windings, 2nd, 8th, 14th and 20th field windings, 3rd, 9th, 15th and 21st fields 4th, 10th, 16th and 22nd field windings, 5th, 11th, 17th and 23rd field windings, 6th and The twelfth, eighteenth and twenty-fourth field windings are connected in parallel. The first field winding set 20a including the second, eighth, fourteenth, and twentieth field windings is supplied with a load current from the first switching unit 19a, and the third The second field winding set 20b composed of the ninth, fifteenth, fifteenth and twenty-first field windings is supplied with a load current from the second switching portion 19b, and the fourth and tenth The third field winding set 20c composed of the 16th, 16th and 22nd field windings is supplied with a load current from the third switching portion 19c. Further, the fourth field winding set 20d composed of the fifth, eleventh, seventeenth and twenty-third field windings is supplied with a load current from the fourth switching section 19d, and the sixth The fifth field winding set 20e composed of the th, twelfth, eighteenth and twenty-fourth field windings is supplied with the load current from the fifth switching section 19e, and the first and seventh The sixth field winding set 20f including the th, thirteenth and nineteenth field windings is supplied with a load current from the sixth switching unit 19f.
従って、ホール素子18から出力される給電信号は、回転方向切替器40の選択部41を介し、特定の2つの切換部19のうちの何れか一方に供給されたのち、そのホール素子18が近傍又は中央に設置された界磁極(界磁巻線)よりも、回転子1の回転方向、1つ先の界磁巻線を含む界磁巻線組20への負荷電流の通電に用いられる。
すなわち、第1番目の界磁極の近傍又は中央に配置されたホール素子18aの給電信号は、スイッチ41aの接点によって第1の切換部19a又は第5の切換部19eに接続され、第2番目の界磁極の近傍又は中央に配置されたホール素子18bの給電信号は、スイッチ41bの接点によって第2の切換部19b又は第6の切換部19fに接続され、第3番目の界磁極の近傍又は中央に配置されたホール素子18cの給電信号は、スイッチ41cの接点によって第3の切換部19c又は第1の切換部19aに接続される。また、第4番目の界磁極の近傍又は中央に配置されたホール素子18dの給電信号は、スイッチ41dの接点によって第4の切換部19d又は第2の切換部19bに接続され、第5番目の界磁極の近傍又は中央に配置されたホール素子18eの給電信号は、スイッチ41eの接点によって第5の切換部19b又は第3の切換部19cに接続され、第6番目の界磁極の近傍又は中央に配置されたホール素子18fの給電信号は、スイッチ41fの接点によって第6の切換部19f又は第4の切換部19dに接続される。
そして、第1の界磁巻線組20aは、第1のホール素子18aの給電信号(正回転方向のとき)又は第3のホール素子18cの給電信号(逆回転方向のとき)が入力する第1の切換部19aから負荷電流が供給される。第2の界磁巻線組20bは、第2のホール素子18bの給電信号(正回転方向のとき)又は第4のホール素子18dの給電信号(逆回転方向のとき)が入力する第2の切換部19bから負荷電流が供給される。また、第3の界磁巻線組20cは、第3のホール素子18cの給電信号(正回転方向のとき)又は第5のホール素子18eの給電信号(逆回転方向のとき)が入力する第3の切換部19cから負荷電流が供給される。そして、第4の界磁巻線組20dは、第4のホール素子18dの給電信号(正回転方向のとき)又は第6のホール素子の給電信号(逆回転方向のとき)が入力する第4の切換部19dから負荷電流が供給される。また、第5の界磁巻線組20eは、第5のホール素子18eの給電信号(正回転方向のとき)又は第3のホール素子18cの給電信号(逆回転方向のとき)が入力する第5の切換部19eから負荷電流が供給される。さらに、第6の界磁巻線組20fは、第6のホール素子18fの給電信号(正回転方向のとき)又は第2のホール素子18bの給電信号(逆回転方向のとき)が入力する第6の切換部19fから負荷電流が供給される。その結果、負荷電流が供給された各界磁巻線組20a~20fそれぞれの4つの界磁巻線のうち一方の1対の界磁巻線は、各ホール素子18a~18fで検出された磁極と逆極性に磁化され、他方の1対の界磁巻線は、各ホール素子18a~18fで検出された磁極と同極性に磁化される。
Therefore, the power supply signal output from the Hall element 18 is supplied to one of the two specific switching units 19 via the selection unit 41 of the rotation direction switch 40, and then the Hall element 18 is in the vicinity. Alternatively, it is used for energizing a load current to the field winding group 20 including the field winding in the rotational direction of the rotor 1 and one field ahead of the field magnetic pole (field winding) installed at the center.
That is, the feeding signal of the Hall element 18a arranged near or in the center of the first field pole is connected to the first switching unit 19a or the fifth switching unit 19e by the contact of the switch 41a, and the second The feeding signal of the Hall element 18b arranged near or in the center of the field pole is connected to the second switching unit 19b or the sixth switching unit 19f by the contact of the switch 41b, and near or at the center of the third field pole. The power supply signal of the hall element 18c arranged in is connected to the third switching unit 19c or the first switching unit 19a by the contact of the switch 41c. In addition, the feeding signal of the Hall element 18d arranged near or in the center of the fourth field pole is connected to the fourth switching unit 19d or the second switching unit 19b by the contact of the switch 41d, and the fifth The feeding signal of the Hall element 18e arranged in the vicinity or center of the field pole is connected to the fifth switching unit 19b or the third switching unit 19c by the contact of the switch 41e, and in the vicinity or center of the sixth field pole. The power supply signal of the Hall element 18f arranged at is connected to the sixth switching unit 19f or the fourth switching unit 19d through the contact of the switch 41f.
The first field winding set 20a receives a first power supply signal from the first Hall element 18a (in the forward rotation direction) or a third power supply signal from the third Hall element 18c (in the reverse rotation direction). A load current is supplied from one switching unit 19a. The second field winding set 20b receives a second feeding signal from the second Hall element 18b (in the forward rotation direction) or a feeding signal from the fourth Hall element 18d (in the reverse rotation direction). A load current is supplied from the switching unit 19b. Further, the third field winding set 20c receives a power supply signal of the third Hall element 18c (in the forward rotation direction) or a power supply signal of the fifth Hall element 18e (in the reverse rotation direction). The load current is supplied from the three switching units 19c. The fourth field winding set 20d receives a fourth feeding element (during the forward rotation direction) of the fourth Hall element 18d or a fourth feeding element (during the reverse rotation direction) of the sixth Hall element. A load current is supplied from the switching unit 19d. Also, the fifth field winding set 20e receives a power supply signal from the fifth Hall element 18e (in the forward rotation direction) or a power supply signal from the third Hall element 18c (in the reverse rotation direction). The load current is supplied from the five switching units 19e. Further, the sixth field winding set 20f receives a power supply signal of the sixth Hall element 18f (in the forward rotation direction) or a power supply signal of the second Hall element 18b (in the reverse rotation direction). The load current is supplied from the six switching units 19f. As a result, one pair of field windings among the four field windings of each of the field winding groups 20a to 20f supplied with the load current has the magnetic poles detected by the Hall elements 18a to 18f. Magnetized in the opposite polarity, the other pair of field windings are magnetized in the same polarity as the magnetic poles detected by the Hall elements 18a to 18f.
図15に示す継電器42は、回転方向を指令するレバー(指令信号生成部)43を介して抵抗R及び直流電源Eに接続されている。レバー43を倒し、接点が閉じると継電器42が動作し、レバー43を起こし、接点が開くと、継電器42が元に戻るようになっている。継電器42には、動作したときに一斉に閉じ、元に戻ると一斉に開く接点と、元に戻ると一斉に閉じ、動作したとき一斉に開く接点とを有するスイッチが少なくとも12個あり、それらのスイッチ及び接点は、図14の選択部41におけるスイッチ41a~41f及び接点を構成する。
ここで、両側に倒れるレバー43を用いると共に、そのレバー43を一方の側に倒したとき閉じ、レバー43を起こしたとき(又は電源が断になったとき)ニュートラルに戻る接点と、レバー43を他方の側に倒したとき閉じ、レバー43を起こしたとき(又は電源が断になったとき)ニュートラルに戻る接点とを有する継電器42を用いてもよい。
図16は、本発明の回転方向切替器の他の実施例として示すロータリスイッチの固定部の平面図であり、図17は、本発明の回転方向切替器の他の実施例として示すロータリスイッチの回転部の底面図である。
図16は、本実施形態の回転方向切替器40の他の実施例となるロータリスイッチ回転部の底面図である。
図16に示すロータリスイッチの固定部45は、中央に軸46があり、その軸46を中心にした2つの同心円上それぞれに、6つの接点(図中の白丸で表す。以下、これらの接点を「白丸45a」と称する。)と、各白丸45aの両側それぞれに1つの接点(図中の小黒丸で表す。以下、これらの接点を「小黒丸45b」と称する。)が配置されている。それらの白丸45aは、図14に示したホール素子18a~18fの出力端子に対応するが、図14におけるスイッチ41a~41fの何れか一方の接点がホール素子18a~18fの出力端子に接続されているのに対し、白丸45aは、何れの小黒丸45bにも非接続なニュートラル・ポイントになっている。一方、小黒丸45bは、6つの切換部19a~19fに接続された6つのスイッチ41a~41fの12個の接点に対応している。白丸45aも小黒丸45bも、2つの同心円に、放射状に配置され、同心円上の小黒丸45bのうちの、第1の切換部19a又は第5の切換部19eに接続される小黒丸45b相互、第2の切換部19b又は第6の切換部19fに接続される小黒丸45b相互、第3の切換部19又は第1の切換部19aに接続される小黒丸45b相互、第4の切換部19d又は第2の切換部19bに接続される小黒丸45b相互、第5の切換部19b又は第3の切換部19cに接続される小黒丸45b相互、第6の切換部19f又は第4の切換部19dに接続される小黒丸45b相互は、それぞれ、リード線49で結ばれている。
The relay 42 shown in FIG. 15 is connected to the resistor R and the DC power source E via a lever (command signal generation unit) 43 that commands the rotation direction. When the lever 43 is tilted and the contact is closed, the relay 42 is operated. When the lever 43 is raised and the contact is opened, the relay 42 is restored. The relay 42 has at least twelve switches that have contacts that close all at once when operated and open all at once when returned, and all contacts that close all at once and open all at once when operated. The switches and contacts constitute the switches 41a to 41f and the contacts in the selection unit 41 in FIG.
Here, the lever 43 that tilts to both sides is used, and the lever 43 is closed when the lever 43 is tilted to one side and returned to the neutral when the lever 43 is raised (or when the power is cut off), and the lever 43 A relay 42 may be used that has a contact that closes when tilted to the other side and returns to neutral when the lever 43 is raised (or when power is cut off).
FIG. 16 is a plan view of a fixed portion of a rotary switch shown as another embodiment of the rotation direction switch of the present invention, and FIG. 17 shows a rotary switch shown as another embodiment of the rotation direction switch of the present invention. It is a bottom view of a rotation part.
FIG. 16 is a bottom view of a rotary switch rotating unit as another example of the rotation direction switching device 40 of the present embodiment.
The rotary switch fixing portion 45 shown in FIG. 16 has a shaft 46 at the center, and six contact points (represented by white circles in the drawing. These contact points are shown below) on two concentric circles around the shaft 46. and.) referred to as "white circles 45a ', one contact on each sides of the white circles 45a (. expressed in Oguro circle in the drawings below, these contacts is referred to as" small solid circle 45b ".) it is placed. These white circles 45a correspond to the output terminals of the Hall elements 18a to 18f shown in FIG. 14, but one of the contacts of the switches 41a to 41f in FIG. 14 is connected to the output terminals of the Hall elements 18a to 18f. On the other hand, the white circle 45a is a neutral point that is not connected to any of the small black circles 45b. On the other hand, the small black circle 45b corresponds to the twelve contacts of the six switches 41a to 41f connected to the six switching sections 19a to 19f. Open circles 45a also small solid circles 45b also in two concentric circles, are arranged radially, of Oguro round 45b of concentric, small solid circles 45b mutually connected to a first switching unit 19a or the fifth switching unit 19e, small solid circles 45b mutually connected to the second switching unit 19b or the sixth switching unit 19f, small solid circles 45b mutually connected to the third switching unit 19 or the first switching unit 19a, a fourth switching unit 19d or small solid circles 45b mutually connected to the second switching unit 19b, the fifth switching unit 19b or the third small solid circles 45b mutually connected to the switching unit 19c, the sixth switching section 19f or the fourth switching unit The small black circles 45b connected to 19d are connected by lead wires 49, respectively.
図17に底面を示すロータリスイッチの回転部48は、中央に、ロータリスイッチ固定部45に嵌合する回転軸49があり、その回転軸49を中心にした2つの同心円に、放射状に、6つの接続点(図中の大黒丸で表す。以下、これらの接続点を「大黒丸47a」と称する。)が配置されている。大黒丸47aは、図14に示したホール素子18a~18fの出力端子が接続された接続点である。本実施形態のロータリスイッチは、固定部45の軸46に回転部48の回転軸49が嵌合され、通常は、固定部45の白丸45aと回転部48の大黒丸47aとが接触した、ニュートラル状態にある。回転部48を左右に回転させると、回転部48の大黒丸47aは、固定部45の白丸45aの左右に隣接配置された小黒丸45bまで移動し、相互に接触する。したがって、回転部48を左右に回転させることにより、電動機の回転方向の切替指令を行うことができる。 The rotary part 48 of the rotary switch whose bottom surface is shown in FIG. 17 has a rotary shaft 49 fitted to the rotary switch fixing part 45 at the center, and six radially, two concentric circles around the rotary shaft 49. Connection points (represented by large black circles in the figure. These connection points are hereinafter referred to as “large black circles 47a”) are arranged. A large black circle 47a is a connection point to which the output terminals of the Hall elements 18a to 18f shown in FIG. 14 are connected. In the rotary switch of this embodiment, the rotating shaft 49 of the rotating portion 48 is fitted to the shaft 46 of the fixed portion 45, and normally, the neutral circle 45a of the fixed portion 45 and the large black circle 47a of the rotating portion 48 are in contact with each other. Is in a state. When the rotating unit 48 is rotated to the left and right, the large black circles 47a of the rotating unit 48 move to the small black circles 45b disposed adjacent to the left and right of the white circles 45a of the fixed unit 45, and contact each other. Therefore, by rotating the rotating unit 48 to the left and right, it is possible to issue a command for switching the rotation direction of the electric motor.
本発明の直流回生電動機、及び回転方向切替器は、電気自動車のみならず、OA機器、AV機器、PC周辺機器、家電機器、産業用機器などに幅広く利用可能である。 The DC regenerative motor and the rotation direction switch of the present invention can be widely used not only for electric vehicles but also for OA equipment, AV equipment, PC peripheral equipment, home appliances, industrial equipment, and the like.
 1  回転子
 1a 磁石
 1b、83 回転軸
 1c ロックピン
 1d 溝
 1e 磁極
 2  固定子
 2a 界磁鉄心
 2b ロック溝
 2c 円筒空間
 2d スロット
 2e 界磁極
 2f 界磁巻線
 3  セグメント
 4  DC-DCコンバータ
 5  チョッパ信号生成部
 6  給電信号生成部
 7  回生信号生成部
 8  指令信号生成部
 9  回生電力制御部
 10 直流電源
 11 負荷電流検出部
 12 回生電流検出部
 13 過負荷電流制限部
 14 過電流制限部
 15 充電部
 16 検出部
 17、19、19a~19f 切換部
 18、18a~18f ホール素子
 20、20a~20f 界磁巻線組
 31、31a、31b、31c、31d、93、94 スイッチング素子 
 32、52、79 パルストランス
 33 負荷電流検出トランス
 35、62、72 フリーホイールダイオード
 40 回転方向切替器
 41 選択部
 41a~41f スイッチ
 42 継電器
 43 レバー
 45 固定部
 45a 白丸
 45b 小黒丸
 46 軸
 47 回転部
 47a 大黒丸
 48 回転軸 
 49 リード線
 50 チョッパ信号発振器
 51 マルチバイブレータ
 53、131 全波整流器
 60 パワーコントローラ
 61、71 SCR
 63、73、153、154、158 抵抗器
 64、74 PUT
 65、75、132、155、156 分圧抵抗器
 66、76 負荷抵抗器 
 67、77 時定数回路
 68、78 可変抵抗器
 69 正逆スイッチ
 70 回生ブレーキコントローラ
 79a、96、99a、99b ダイオード
 80 コントロールペダル
 81 巻取ガイド
 82 摺動抵抗器
 82a、82b 摺動抵抗器のリード線
 82c ニュートラルゾーン
82d 抵抗面
 84 スライドリード
 84a84b スライドリードのリード線
 85 棒状体
 86 フレキシブルチューブ
 87 ワイヤ
 88 支点
 89 ペダル  
 90 回生電力制限器
 92 検出トランス
 95 安全抵抗器
 97 1次コンデンサ
 98、159 大容量キャパシタ
 130 過負過制限器(又は過電流制限器)
 133、157 ツェナーダイオード
 134 逆流阻止用ダイオード 
 150 バッテリチャージ電圧コントローラ
 151 第1のスイッチング素子
 152 第2のスイッチング素子
1 rotor 1a magnet 1b, 83 rotary shaft 1c lock pin 1d groove 1e pole 2 stator 2a field core 2b locking groove 2c cylindrical space 2d slot 2e field pole 2f field winding 3 segments 4 DC-DC converter 5 chopper signal Generation unit 6 Power supply signal generation unit 7 Regenerative signal generation unit 8 Command signal generation unit 9 Regenerative power control unit 10 DC power source 11 Load current detection unit 12 Regenerative current detection unit 13 Overload current limiting unit 14 Overcurrent limiting unit 15 Charging unit 16 Detection unit 17, 19, 19a to 19f Switching unit 18, 18a to 18f Hall element 20, 20a to 20f Field winding set 31, 31a, 31b, 31c, 31d, 93, 94 Switching element
32, 52, 79 Pulse transformer 33 Load current detection transformer 35, 62, 72 Free wheel diode 40 Rotation direction switch 41 Selection section 41a to 41f Switch 42 Relay 43 Lever 45 Fixed section 45a White circle 45b Small black circle 46 Shaft 47 Rotation section 47a Daikokumaru 48 axis of rotation
49 Lead wire 50 Chopper signal oscillator 51 Multivibrator 53, 131 Full wave rectifier 60 Power controller 61, 71 SCR
63, 73, 153, 154, 158 Resistor 64, 74 PUT
65, 75, 132, 155, 156 Voltage dividing resistor 66, 76 Load resistor
67, 77 Time constant circuit 68, 78 Variable resistor 69 Forward / reverse switch 70 Regenerative brake controller 79a, 96, 99a, 99b Diode 80 Control pedal 81 Winding guide 82 Slide resistor 82a, 82b Slide resistor lead wire 82c Neutral zone 82d Resistance surface 84 Slide lead 84a84b Lead wire of slide lead 85 Rod-shaped body 86 Flexible tube 87 Wire 88 Support point 89 Pedal
90 Regenerative power limiter 92 Detection transformer 95 Safety resistor 97 Primary capacitor 98, 159 Large-capacity capacitor 130 Overload limiter (or overcurrent limiter)
133, 157 Zener diode 134 Backflow prevention diode
150 battery charge voltage controller 151 first switching element 152 second switching element

Claims (13)

  1. 一定の間隔をあけてN極とS極が配置された回転子と、前記回転子に対向する複数の界磁極それぞれに巻回されて直流で励磁される界磁巻線を直列又は並列に接続した界磁巻線組が複数配備された固定子と、を有するブラシレスの直流回生電動機であって、
    力の大きさによる指令を受け、受けた力が所定値を超える場合は、該所定値を超える力の大きさに比例して線形素子の特性値が変化する第1指令信号を生成し、該受けた力が該所定値以下の場合は、該所定値を下回る力の大きさに比例して線形素子の特性値が変化する第2指令信号を生成する指令信号生成部と、
    前記第1指令信号に応じたデューティ比の給電信号を出力する給電信号生成部と、
    前記第2指令信号に応じたデューティ比の回生信号を出力する回生信号生成部と、
    前記界磁巻線組のうちの1の界磁巻線組を形成する1の界磁巻線が巻回された界磁極の近傍又は中央で、前記回転子の磁極を検出し、前記給電信号に正負何れかの極性を付与して出力する検出部、該検出部から出力された該給電信号の極性に応じて直流電源から該界磁巻線組に供給される負荷電流の方向を切換える一方、該負荷電流を該給電信号のデューティ比に応じて間欠的に通電する切換部、及び該界磁巻線組を流れる該負荷電流の大きさを検出する負荷電流検出部を有し、該界磁巻線組それぞれに配備されるセグメントと、
    前記界磁巻線組それぞれに誘起される交流電力を前記回生信号のデューティ比に応じて倍電圧整流し、蓄電器に蓄電する回生電力制御部と、を備え
    前記第1指令信号のデューティ比に応じて回転駆動され、前記第2指令信号のデューティ比に応じて回生制動されることを特徴とする直流回生電動機。
    A rotor in which N poles and S poles are arranged at regular intervals and a field winding wound around each of a plurality of field poles facing the rotor and excited by direct current are connected in series or in parallel. A brushless direct current regenerative motor having a stator in which a plurality of field winding sets are arranged,
    When a command based on the magnitude of the force is received and the received force exceeds a predetermined value, a first command signal in which the characteristic value of the linear element changes in proportion to the magnitude of the force exceeding the predetermined value is generated, A command signal generator that generates a second command signal in which the characteristic value of the linear element changes in proportion to the magnitude of the force below the predetermined value when the received force is less than or equal to the predetermined value;
    A power supply signal generation unit that outputs a power supply signal having a duty ratio according to the first command signal;
    A regenerative signal generator that outputs a regenerative signal having a duty ratio according to the second command signal;
    The magnetic pole of the rotor is detected in the vicinity or the center of the field magnetic pole wound with one field winding forming one field winding set of the field winding sets, and the power supply signal A detection unit that outputs a signal with either positive or negative polarity, and switches the direction of the load current supplied from the DC power source to the field winding set according to the polarity of the power supply signal output from the detection unit. A switching unit that intermittently energizes the load current according to a duty ratio of the power supply signal, and a load current detection unit that detects the magnitude of the load current flowing through the field winding set, Segments deployed in each magnetic winding set;
    A regenerative power control unit that rectifies the AC power induced in each of the field winding groups according to a duty ratio of the regenerative signal and stores the AC power in a capacitor, according to the duty ratio of the first command signal. The DC regenerative motor is driven to rotate and is regeneratively braked according to the duty ratio of the second command signal.
  2. 前記回生信号生成部は、同じデューティ比で電圧のみが異なる2つの回生信号を生成するものであって、
    前記回生電力制御部は、前記回生信号それぞれの電圧により間欠的に通電する1対のスイッチング素子と、該スイッチング素子それぞれが通電した電力を蓄電する1対のコンデンサと、該1対のコンデンサに蓄電された電荷により倍電圧の電荷を得る大容量キャパシタとを有することを特徴とする請求項1記載の直流回生電動機。
    The regenerative signal generator generates two regenerative signals that differ only in voltage at the same duty ratio,
    The regenerative power control unit includes a pair of switching elements that are intermittently energized by the voltages of the regenerative signals, a pair of capacitors that store the power energized by each of the switching elements, and a power storage in the pair of capacitors. The DC regenerative motor according to claim 1, further comprising a large-capacity capacitor that obtains a double voltage charge by the generated charge.
  3. 前記指令信号生成部は、並設された帯状の摺動面に抵抗体が形成され、該摺動面双方を長さ方向にスライドするスライド部材により抵抗値が変化する摺動抵抗器、及び力の大きさによる指令を受けたとき、受けた力に応じて該スライド部材をスライドさせるコントロール部材を有するものであって、該受けた力が前記所定値を超える場合には、該所定値を超える力の大きさに比例して抵抗値が減少する第1の抵抗体により前記第1指令信号を生成し、該受けた力が該所定値以下の場合には、該所定値を下回る力の大きさに比例して抵抗値が減少する第2の抵抗体により前記第2指令信号を生成することを特徴とする請求項1又は2記載の直流回生電動機。 The command signal generator includes a sliding resistor in which a resistor is formed on a parallel strip-shaped sliding surface, and a resistance value is changed by a sliding member that slides both the sliding surfaces in the length direction, and a force A control member that slides the slide member in accordance with the received force when the received force exceeds the predetermined value, the predetermined value is exceeded. The first command signal is generated by the first resistor whose resistance value decreases in proportion to the magnitude of the force, and when the received force is less than or equal to the predetermined value, the magnitude of the force below the predetermined value 3. The DC regenerative motor according to claim 1, wherein the second command signal is generated by a second resistor whose resistance value decreases in proportion to the length.
  4. 一の前記セグメントの前記検出部は、検出された前記磁極に応じて、前記給電信号に正負何れかの極性を付与して出力するものであって、出力された該給電信号は、他の一の前記セグメントの前記切換部に入力されることを特徴とする請求項1又は2記載の直流回生電動機。 The detection unit of one of the segments gives and outputs a positive or negative polarity to the power supply signal according to the detected magnetic pole, and the output of the power supply signal is another one. The DC regenerative motor according to claim 1, wherein the DC regenerative motor is input to the switching unit of the segment.
  5. 前記負荷電流検出部により検出された前記負荷電流が閾値を超えたとき、過負荷信号を出力する過負荷電流制限部を備え、
    前記給電信号生成部は、前記過負荷信号が入力すると前記給電信号のデューティ比を減少させ、該過負荷信号が解消すると、減少させた該給電信号のデューティ比を、前記第1指令信号に応じたデューティ比まで増加させることを特徴とする請求項1又は2記載の直流回生電動機。
    When the load current detected by the load current detection unit exceeds a threshold, an overload current limiting unit that outputs an overload signal,
    The power supply signal generation unit decreases the duty ratio of the power supply signal when the overload signal is input, and reduces the duty ratio of the power supply signal according to the first command signal when the overload signal is canceled. 3. The DC regenerative motor according to claim 1, wherein the DC regenerative motor is increased to a high duty ratio.
  6. 前記直流電源から前記界磁巻線組への給電を停止後、前記界磁巻線組それぞれを流れる交流の回生電流を検出する回生電流検出部と、
    前記回生電流検出部により検出された前記回生電流が閾値を超えたとき、過電流信号を出力する過電流制限部とを備え、
    前記回生信号生成部は、前記過電流信号が入力すると前記回生信号のデューティ比を減少させ、該過電流信号が解消すると、減少させた該回生信号のデューティ比を、前記第2指令信号に応じたデューティ比まで増加させることを特徴とする請求項1又は2項記載の直流回生電動機。
    A regenerative current detector for detecting an AC regenerative current flowing through each of the field winding sets after stopping power feeding from the DC power source to the field winding set;
    An overcurrent limiting unit that outputs an overcurrent signal when the regenerative current detected by the regenerative current detection unit exceeds a threshold; and
    The regenerative signal generation unit decreases the duty ratio of the regenerative signal when the overcurrent signal is input, and reduces the duty ratio of the regenerative signal according to the second command signal when the overcurrent signal is canceled. 3. The DC regenerative motor according to claim 1, wherein the DC regenerative motor is increased to a high duty ratio.
  7. 前記検出部は、前記給電信号を入力する入力端子、及び該入力手段から入力された該給電信号を、検出された前記磁極に応じた極性で出力する出力端子を備えたホール素子を有し、
    前記切換部は、前記ホール素子から出力される前記給電信号の極性が正のときには第1の方向に通電する第1スイッチング素子、及び該給電信号の極性が負のときには第2の方向に通電する第2スイッチング素子を有することを特徴とする請求項1又は2記載の直流回生電動機。
    The detection unit includes a Hall element having an input terminal for inputting the power supply signal, and an output terminal for outputting the power supply signal input from the input unit with a polarity corresponding to the detected magnetic pole,
    The switching unit is energized in the first direction when the polarity of the feeding signal output from the Hall element is positive, and energized in the second direction when the polarity of the feeding signal is negative. The DC regenerative motor according to claim 1, further comprising a second switching element.
  8. 前記複数の界磁巻線組のうちの、第1界磁巻線組に供給される負荷電流の方向を切換える第1切換部及び第2界磁巻線組に供給される負荷電流の方向を切換える第2切換部のうちの何れかを選択する選択子を複数備えた選択部と、
    前記回転子の回転方向に係る指令を受けて作動し、前記選択子それぞれに、前記何れか一方の切換部を選択させる選択子切替部と、を備えたことを特徴とする請求項1又は2記載の直流回生電動機。
    Of the plurality of field winding sets, the first switching unit for switching the direction of the load current supplied to the first field winding set and the direction of the load current supplied to the second field winding set A selection unit including a plurality of selectors for selecting any one of the second switching units to be switched;
    The selector switching part which act | operates in response to the instruction | command which concerns on the rotation direction of the said rotor, and makes each said selector select the said any one switching part was provided. The described DC regenerative motor.
  9. 前記選択子それぞれは、前記第1切換部を介して前記第1界磁巻線組に接続される第1接点と、前記第2切換部を介して前記第2界磁巻線組に接続される第2接点とを有するものであって、
    前記選択子切替部は、正回転方向に係る指令を受けたとき前記第1接点を閉じて前記第2接点を開き、逆回転方向に係る指令を受けたとき該第1接点を開き該第2接点を閉じることを特徴とする請求項8載の直流回生電動機。
    Each of the selectors is connected to the first field winding set via the first switching unit and to the second field winding set via the second switching unit. Having a second contact,
    The selector switching unit closes the first contact and opens the second contact when receiving a command relating to the forward rotation direction, and opens the first contact when receiving a command relating to the reverse rotation direction. 9. The DC regenerative motor according to claim 8, wherein the contact is closed.
  10. 1の前記検出部は、前記界磁巻線組のうちの1の界磁巻線組を形成する1の界磁巻線が巻回された界磁極の近傍又は中央に設置されたものであって、
    前記第1界磁巻線組は、前記1の検出部が近傍又は中央に設置された前記界磁極よりも前記正回転方向に1つ先又は2つ先の界磁極に巻回された界磁巻線を含み、前記第2界磁巻線組は、該界磁極よりも前記逆回転方向に1つ先又は2つ先の界磁極に巻回された界磁巻線を含むことを特徴とする請求項8記載の直流回生電動機。
    The one detection unit is installed near or in the center of a field pole around which one field winding forming one field winding set of the field winding sets is wound. And
    The first field winding set includes a field wound around one or two field poles in the forward rotation direction with respect to the field pole in which the one detection unit is installed in the vicinity or center. The second field winding set includes a field winding wound around one or two field poles in the reverse rotation direction with respect to the field pole. The DC regenerative motor according to claim 8.
  11. 一定の間隔をあけてN極とS極が交互に配置された回転子に対向させて等間隔に配備された複数の界磁巻線を直列又は並列に接続して形成された複数の界磁巻線組それぞれに供給される負荷電流を、該回転子の磁極位置を検出する複数のホール素子それぞれから出力されるそれぞれの出力信号で制御して回転磁界を形成し、
    所定の回転速度を得る電動機の回転方向を切替える回転方向切替器であって、
    前記複数のホール素子のうちの1のホール素子から出力される出力信号により負荷電流が制御される第1界磁巻線組及び第2界磁巻線組のうちの何れかを選択する選択子が複数具備された選択部と、
    前記回転方向に係る指令を受けて作動し、前記選択子それぞれに、前記何れかの界磁巻線組を選択させる選択子切替部と、を備えたことを特徴とする回転方向切替器。
    A plurality of field magnets formed by connecting a plurality of field windings arranged at equal intervals in opposition to a rotor in which N poles and S poles are alternately arranged at a certain interval, connected in series or in parallel. A load current supplied to each winding set is controlled by each output signal output from each of a plurality of Hall elements that detect the magnetic pole position of the rotor to form a rotating magnetic field,
    A rotation direction switch for switching the rotation direction of an electric motor to obtain a predetermined rotation speed,
    A selector for selecting one of the first field winding group and the second field winding group whose load current is controlled by an output signal output from one of the plurality of Hall elements. A plurality of selection units,
    A rotation direction switch, comprising: a selector switching unit that operates in response to a command related to the rotation direction and selects each of the field winding groups for each of the selectors.
  12. 前記選択子それぞれは、前記第1界磁巻線組に接続される第1接点と、前記第2界磁巻線組に接続される第2接点とを有するものであって、
    前記選択子切替部は、正回転方向に係る指令を受けたとき前記第1接点を閉じて前記第2接点を開き、逆回転方向に係る指令を受けたとき該第1接点を開き該第2接点を閉じることを特徴とする請求項11載の回転方向切替器。
    Each of the selectors has a first contact connected to the first field winding set and a second contact connected to the second field winding set,
    The selector switching unit closes the first contact and opens the second contact when receiving a command relating to the forward rotation direction, and opens the first contact when receiving a command relating to the reverse rotation direction. The rotation direction switch according to claim 11, wherein the contact is closed.
  13. 前記1のホール素子は、前記界磁巻線組のうちの1の界磁巻線組を形成する1の界磁巻線が巻回された界磁極の近傍又は中央に設置されたものであって、
    前記第1界磁巻線組は、前記1のホール素子が近傍又は中央に設置された前記界磁極よりも前記正回転方向に1つ先又は2つ先の界磁極に巻回された界磁巻線を含み、前記第2界磁巻線組は、該界磁極よりも前記逆回転方向に1つ先又は2つ先の界磁極に巻回された界磁巻線を含むことを特徴とする請求項11記載の回転方向切替器。
    The one hall element is installed in the vicinity or the center of a field pole around which one field winding forming one field winding set of the field winding sets is wound. And
    The first field winding set includes a field wound around one or two field poles in the forward rotation direction with respect to the field pole in which the one Hall element is installed in the vicinity or center. The second field winding set includes a field winding wound around one or two field poles in the reverse rotation direction with respect to the field pole. The rotation direction switching device according to claim 11.
PCT/JP2011/061856 2010-08-23 2011-05-24 Direct current regenerative electric motor and rotation direction switching apparatus WO2012026170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-185718 2010-08-23
JP2010185718 2010-08-23

Publications (1)

Publication Number Publication Date
WO2012026170A1 true WO2012026170A1 (en) 2012-03-01

Family

ID=44237065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061856 WO2012026170A1 (en) 2010-08-23 2011-05-24 Direct current regenerative electric motor and rotation direction switching apparatus

Country Status (2)

Country Link
JP (1) JP4700138B1 (en)
WO (1) WO2012026170A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105577070A (en) * 2014-11-06 2016-05-11 南京蒙奇智能科技有限公司 Electric device and driving and braking method thereof
CN105634378A (en) * 2014-11-06 2016-06-01 南京蒙奇智能科技有限公司 Timing sequence power supply type electric device and driving and braking method thereof
CN105634377A (en) * 2014-11-06 2016-06-01 南京蒙奇智能科技有限公司 Electric vehicle adopting timing sequence power supply control and driving and braking method
EP3331156A4 (en) * 2014-02-04 2019-05-15 Takeo Iwai Magnetic induction fixed magnetic pole rotor motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5128709B1 (en) * 2012-02-02 2013-01-23 武雄 岩井 Non-sinusoidal drive motor
JP5819021B1 (en) * 2015-07-05 2015-11-18 武雄 岩井 Electric vehicle drive power supply
EP3860870A1 (en) * 2018-10-03 2021-08-11 Carrier Corporation Generator temperature control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000118477A (en) * 1998-10-12 2000-04-25 Sony Corp Bicycle with assistance function
JP2000134711A (en) * 1998-10-28 2000-05-12 Hitachi Ltd Apparatus and method of controlling electric rolling stock
WO2007010934A1 (en) * 2005-07-19 2007-01-25 Denso Corporation Ac motor and its control device
JP2008245502A (en) * 2007-03-01 2008-10-09 Mitsuba Corp Motor controller for electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000118477A (en) * 1998-10-12 2000-04-25 Sony Corp Bicycle with assistance function
JP2000134711A (en) * 1998-10-28 2000-05-12 Hitachi Ltd Apparatus and method of controlling electric rolling stock
WO2007010934A1 (en) * 2005-07-19 2007-01-25 Denso Corporation Ac motor and its control device
JP2008245502A (en) * 2007-03-01 2008-10-09 Mitsuba Corp Motor controller for electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3331156A4 (en) * 2014-02-04 2019-05-15 Takeo Iwai Magnetic induction fixed magnetic pole rotor motor
CN105577070A (en) * 2014-11-06 2016-05-11 南京蒙奇智能科技有限公司 Electric device and driving and braking method thereof
CN105634378A (en) * 2014-11-06 2016-06-01 南京蒙奇智能科技有限公司 Timing sequence power supply type electric device and driving and braking method thereof
CN105634377A (en) * 2014-11-06 2016-06-01 南京蒙奇智能科技有限公司 Electric vehicle adopting timing sequence power supply control and driving and braking method

Also Published As

Publication number Publication date
JP2012070606A (en) 2012-04-05
JP4700138B1 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
WO2012026170A1 (en) Direct current regenerative electric motor and rotation direction switching apparatus
TWI574489B (en) Propulsion system, motor/generator/transmission and method of operating the same
JP5206130B2 (en) Coil field type synchronous motor regeneration system and control method thereof
JP5348334B2 (en) Power supply device for electric vehicle and control method thereof
US8896252B2 (en) Electric motor driving device and vehicle equipped with the same
WO2011046147A1 (en) Power supply system for vehicle
US7902791B2 (en) Controller for variable speed alternating current motor
JP5653534B2 (en) Control device for electric vehicle
US20170232862A1 (en) Electric drive system and method for operating an electric machine for an electric vehicle
US20110148333A1 (en) Regenerative switched reluctance motor driving system
JP5412143B2 (en) Power transmission device and power conversion device
JP2005204482A (en) Vehicular rotary electric machine
CN101662199B (en) Single-phase switch reluctance multifunctional motor with starting winding
JP5128709B1 (en) Non-sinusoidal drive motor
EP3489069B1 (en) Electric drive system of a hybrid or electric vehicle
Pasupuleti et al. Power management of hybrid energy storage system based wireless charging system with regenerative braking capability
JP2013184663A (en) Control device for vehicle
JP5409579B2 (en) Vehicle power supply system
Youssef Multiphase interleaved bidirectional DC/DC converter for fuel cell/battery powered electric vehicles
MAMUR et al. Detailed simulation of regenerative braking of BLDC motor for electric vehicles
TWI269519B (en) Bi-directional AC/DC power converter
JP5406406B1 (en) Magnetic induction constant pole rotor motor
JP2011201441A5 (en)
RU217697U1 (en) Traction drive for front loader
Nayanar et al. Fuzzy & pi controller based energy management strategy of battery/ultracapacitor for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP