WO2012025880A1 - Sensor for detecting linear deformations in a solid structure, and installation method - Google Patents

Sensor for detecting linear deformations in a solid structure, and installation method Download PDF

Info

Publication number
WO2012025880A1
WO2012025880A1 PCT/IB2011/053699 IB2011053699W WO2012025880A1 WO 2012025880 A1 WO2012025880 A1 WO 2012025880A1 IB 2011053699 W IB2011053699 W IB 2011053699W WO 2012025880 A1 WO2012025880 A1 WO 2012025880A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
sensor device
tube
optical fiber
decoupling means
Prior art date
Application number
PCT/IB2011/053699
Other languages
Spanish (es)
French (fr)
Inventor
Alejandra Alvarez Vallejos
Juan Pablo Gonzalez Van De Perre
Ricardo Moffat
Original Assignee
Micomo S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micomo S.A. filed Critical Micomo S.A.
Publication of WO2012025880A1 publication Critical patent/WO2012025880A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements

Definitions

  • the present invention relates to the monitoring of solid structures such as rock massifs or excavations in the geological, mining, mining exploration, construction and geotechnical industries.
  • the present invention consists of a linear deformation sensor of a solid or solid rock structure and method of using said linear deformation sensor of rock mass to obtain a profile of linear deformations.
  • an instrument called an extensometer is used for the deformation monitoring inside a rock mass, which corresponds to a steel cable that is anchored at the bottom of a well and is pressed into the exit. Since this instrument is anchored at two points distanced from a few centimeters and measures the relative deformation between these points. Then the implementation of network measurements, requires the installation of a data acquisition device for the extensometer (datalogger), however, often the delicate electronics associated with the datalogger are damaged by excessive humidity present depending on the environmental conditions. Therefore, the use of strain gauges with datalogger for in-line deformation monitoring has limited use according to environmental conditions, which is not appropriate for monitoring deformations inside a rock mass. On the other hand, extensometers do not allow a measurement of deformations at along a very long section, as in a rocky massif, since they only allow measuring between separate points of only a few centimeters.
  • the tube must be made for each particular application, or make grooves to an existing one along its entire length.
  • this extension could be 10-15 m long or even much longer, which makes the manufacture of this type of tube for detectors impracticable;
  • the detector needs to be completely assembled before installation, which also presents a problem at the time of installation in very large lengths; Y iii) the detector has no means to ensure its fixation to the structure and ensure the transmission of the deformation of said structure to the detector and to the optical fiber.
  • the present invention proposes a device and a method to obtain a profile of linear deformations to monitor inside a solid structure such as a rock massif, which has a long range and the ability to be assembled on the ground by means of a modular assembly thanks to a combination of tubular parts with coupling and uncoupling means; and to ensure the transmission of the deformations of said structure to the sensor itself by means of an anchoring mechanism of said device and by the application of said method.
  • the sensor does not include electronic components so it is not affected by moisture, or electromagnetic noise.
  • the measurement can be line and continuous (minimum sampling time: 10 minutes).
  • the well to be monitored can be found at any distance, for example, kilometers from the data acquisition site.
  • the present invention is mainly applied to the monitoring of critical structures or rocky massifs in mining excavations and the construction industry to secure the tasks within the excavations and predict structural failures and prevent collapse of these structures.
  • Figure 1 illustrates the sensor device according to the present invention installed in a rock massif with the method according to the present invention.
  • Figure 2 is a front view of the sensor device of the present invention anchored to a rock mass.
  • Figure 3 is a side sectional view of the sensor device of the present invention.
  • Figure 4 illustrates a side view of a cylindrical compartment (200) of the sensor device of the present invention.
  • Figure 5 illustrates a side view of a support part (300) of the sensor device of the present invention.
  • Figure 6 illustrates a front view of a support part (300) of the sensor device of the present invention.
  • Figure 7 illustrates a side view of a positioning tube (400) of the sensor device of the present invention.
  • Figure 8 illustrates a side view of a modular tube (600) of the sensor device of the present invention.
  • the present invention consists of a sensor device (10) for obtaining a profile of linear deformations in a solid structure (20) comprising:
  • said cylindrical compartment (200) of diameter D comprising fixing means (201) at its opposite end and in its inner mantle;
  • said modular tube (600) comprises second front coupling and decoupling means (601) at its front end and third coupling means and decoupling (602) at its rear end, wherein said second front coupling and decoupling means (601) are complementary to the second coupling and decoupling means (402) of said positioning tube (400) and said third coupling and decoupling means (602) of said modular tube (600).
  • the anchoring means (100) comprises a conical tube (1 10) that expands towards the front end (1 1 1) and integral at its rear end (1 12) to the cylindrical compartment ( 200); around said conical tube (1 10), an anchor ring (120) externally comprising a plurality of wedges (121) for adhesion to the solid structure, with longitudinal groove (122) to allow its expansion and contraction according to its position in the conical tube (1 10) and with an internal diameter profile (123) of conical slope complementary to the conical tube (1 10); and a spring (130) disposed between the cylindrical compartment (200) and the anchor ring (120).
  • an installation method of the sensor device (10) is provided to obtain a profile of linear deformations in a solid structure (20) by comprising the following steps:
  • the optical fiber (500) comprises a textured wrapper for better adhesion with the solid medium (30) when the sensor device (10) is installed.
  • the optical fiber (500) is composed of two optical fibers (501) fused at one end with an ultra flexible optical fiber (502), wherein said ultra flexible optical fiber (501) is arranged bent inside the cylindrical compartment (200).
  • a thread with a clockwise rotation is understood to a conventional thread with a clockwise direction of advance, and a thread with an anti-clockwise rotation to an unconventional thread with an anti-clockwise direction of advance.
  • the first coupling and decoupling means (303) consist of an anti-clockwise male thread, and the front coupling and decoupling means (401) in a female anti-rotation wire schedule; and the Second and third coupling and decoupling means (402, 602) consist of a male thread of hourly rotation, and the second front coupling and decoupling means (601) of a female thread of hourly rotation.
  • the first coupling and decoupling means (303) consist of a male time-spinning thread, and the front coupling and decoupling means (401) in a female time-rotating thread; and the second and third coupling and decoupling means (402, 602) consist of a male anti-clockwise turning thread, and the second front coupling and decoupling means (601) in a female anti-clockwise rotating thread.
  • the two diametrically opposed longitudinal perforations (302) are located between 5 and 20 mm of the mantle of the support piece (300) and have a diameter between 1 and 5 mm,
  • the solid medium (20) consists of cement or a mixture of cement and clay.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention relates to a sensor device for detecting linear deformations in a solid structure, and the installation method. The sensor device comprises: anchoring means solidly connected to a cylindrical compartment which in turn includes securing means at the opposite end and in the internal layer thereof; a cylindrical supporting part including front securing means complementary to the securing means of the cylindrical compartment, two diametrically opposed longitudinal perforations and first coupling/uncouping means at the rear end thereof which are closer to the axial shaft of the supporting part than the aforementioned perforations; a first positioning tube; a fiber optic extending through the two longitudinal perforations; and at least one modular tube.

Description

Sensor de deformaciones lineales en una estructura sólida y método de instalación  Linear deformation sensor in a solid structure and installation method
CAMPO DE APLICACIÓN SCOPE
La presente invención se relaciona con el monitoreo de estructuras sólidas como por ejemplo macizos rocoso o excavaciones en las industrias geológicas, mineras, de exploración minera, de la construcción y geotécnica. En particular, la presente invención consiste en un sensor de deformaciones lineales de una estructura sólida o macizo rocoso y método de uso de dicho sensor de deformaciones lineales de macizo rocoso para obtener un perfil de deformaciones lineales.  The present invention relates to the monitoring of solid structures such as rock massifs or excavations in the geological, mining, mining exploration, construction and geotechnical industries. In particular, the present invention consists of a linear deformation sensor of a solid or solid rock structure and method of using said linear deformation sensor of rock mass to obtain a profile of linear deformations.
ANTECEDENTES BACKGROUND
Usual mente según el actual estado del arte, para el monitoreo de deformaciones al interior de un macizo rocoso se utiliza un instrumento llamado extensómetro, que corresponde a un cable de acero que se ancla en el fondo de un pozo y se pretensa en la salida. Puesto que este instrumento se ancla en dos puntos distanciado de algunos centímetros y mide la deformación relativa entre éstos puntos. Luego la implementación de mediciones en red, requiere de la instalación de un dispositivo de adquisición de datos para el extensómetro (datalogger), sin embargo, a menudo la delicada electrónica asociada al datalogger se daña por la excesiva humedad presente según las condiciones ambientales. Por lo cual, el uso de los extensómetros con datalogger para monitoreo en línea de deformaciones tiene un uso limitado según las condiciones ambientales, lo cual no resulta apropiado para el monitoreo de deformaciones al interior de un macizo rocoso. Por otra parte, los extensómetros no permiten una medición de las deformaciones a lo largo de un tramo muy extenso, como en un macizo rocoso, puesto que solo permiten medir entre puntos separados de solo algunos centímetros. Usually according to the current state of the art, an instrument called an extensometer is used for the deformation monitoring inside a rock mass, which corresponds to a steel cable that is anchored at the bottom of a well and is pressed into the exit. Since this instrument is anchored at two points distanced from a few centimeters and measures the relative deformation between these points. Then the implementation of network measurements, requires the installation of a data acquisition device for the extensometer (datalogger), however, often the delicate electronics associated with the datalogger are damaged by excessive humidity present depending on the environmental conditions. Therefore, the use of strain gauges with datalogger for in-line deformation monitoring has limited use according to environmental conditions, which is not appropriate for monitoring deformations inside a rock mass. On the other hand, extensometers do not allow a measurement of deformations at along a very long section, as in a rocky massif, since they only allow measuring between separate points of only a few centimeters.
Por otra parte, en el estado del arte existen otras soluciones para medir distorsiones estructurales que utilizan sensores a base de fibra óptica en conjunto con el método de Reflecto metría de Dominio Temporal Óptica de Brillouin (BOTDR - Brouillion Optical Time Domain Reflecto metry). Como por ejemplo, la solicitud de patente Japonesa JP2006/242.743, intitulada "Dispositivo de Detección y Método de Realización" que se relaciona con un detector, método de construcción y uso del detector para medir distorsión en estructuras tales como túneles y puentes por el comportamiento de la tierra. El detector tiene un tubo formado de una resina tipo poliolefina y fibra óptica. El tubo tiene una canaleta para insertar la fibra óptica. El tubo y la superficie externa de la fibra óptica están fusionados. El contorno del detector dentro del tubo es llenado con relleno de cemento. Sin embargo, la invención descrita en este documento del arte previo presenta las siguientes desventajas:  On the other hand, in the state of the art there are other solutions for measuring structural distortions that use fiber optic-based sensors in conjunction with the Brillouin Optical Temporary Domain Metric (BOTDR - Brouillion Optical Time Domain Reflecto metry) method. As for example, Japanese patent application JP2006 / 242,743, entitled "Detection Device and Method of Execution" that relates to a detector, method of construction and use of the detector to measure distortion in structures such as tunnels and bridges by behavior from the earth. The detector has a tube formed of a polyolefin and fiber optic resin. The tube has a channel to insert the optical fiber. The tube and the outer surface of the optical fiber are fused. The contour of the detector inside the tube is filled with cement filler. However, the invention described in this prior art document has the following disadvantages:
i) el tubo debe ser confeccionado para cada aplicación en particular, o bien hacer ranuras a alguno ya existente a lo largo de toda su extensión. Para algunas aplicaciones en minería, esta extensión podría ser de 10-15 m de longitud o incluso mucho mayor, lo que hace impracticable la fabricación de este tipo de tubos para los detectores;  i) the tube must be made for each particular application, or make grooves to an existing one along its entire length. For some mining applications, this extension could be 10-15 m long or even much longer, which makes the manufacture of this type of tube for detectors impracticable;
ii) el detector requiere ser ensamblado completamente antes de su instalación, lo que también presenta problema al momento de la instalación en longitudes muy grandes; y iii) el detector no presenta medios para asegurar su fijación a la estructura y asegurar la transmisión de la deformación de dicha estructura al detector y a la fibra óptica. ii) the detector needs to be completely assembled before installation, which also presents a problem at the time of installation in very large lengths; Y iii) the detector has no means to ensure its fixation to the structure and ensure the transmission of the deformation of said structure to the detector and to the optical fiber.
En el estado del arte también se encuentra la invención descrita en la Solicitud de Patente estadounidense US2009/0.034.903, intitulada "Dispositivo Sensor de Deformación y Método para Medir Deformación", en donde se describe un dispositivo sensor de deformación que tiene un sub-ensamble con al menos una fibra óptica en él y un recubrimiento metálico envolviendo el sub-ensamble. El recubrimiento metálico está solidariamente acoplado al sub-ensamble. El documento menciona varios métodos de fabricación, que incluyen proveer un tubo de acero inoxidable en donde se fabrica el dispositivo sensor antes de su ubicación, o en caso de querer ensamblarse a medida que se introduzca en un lugar de interés, debe generar según la solución propuesta en el documento de patente europea EP 0299123, que involucra una maquinaria importante a transportarse in situ. Por lo cual, para longitudes muy grandes, el ensamble de este dispositivo genera un importante problema de logística. Por otra parte, no se menciona un procedimiento para fijar adecuadamente el dispositivo sensor a la estructura que será observada, por lo que no puede asegurarse la transmisión efectiva de la deformación de dicha estructura al propio dispositivo sensor y por lo tanto no puede asegurarse la correcta medición de la deformación de la estructura.  In the state of the art there is also the invention described in US Patent Application US2009 / 0.034,903, entitled "Deformation Sensor Device and Method for Measuring Deformation", where a deformation sensor device having a sub- assembly with at least one fiber optic in it and a metal coating wrapping the sub-assembly. The metal coating is jointly coupled to the sub-assembly. The document mentions several manufacturing methods, which include providing a stainless steel tube where the sensor device is manufactured before its location, or if it wants to be assembled as it is introduced in a place of interest, it must be generated according to the solution proposed in European patent document EP 0299123, which involves an important machinery to be transported on site. Therefore, for very large lengths, the assembly of this device generates an important logistics problem. On the other hand, there is no mention of a procedure for properly fixing the sensor device to the structure that will be observed, so that the effective transmission of the deformation of said structure to the sensor device itself cannot be ensured and therefore the correct one cannot be ensured. Measurement of the deformation of the structure.
Si bien existen sistemas de monitoreo de deformaciones, su instalación práctica en faenas mineras u otras estructuras rocosas resulta muy difícil debido a las grandes longitudes que son monitorizadas y la dificultad de fijar solidariamente estos sistemas de monitoreo para obtener un perfil de deformaciones fidedigno puestos que estos están orientados principalmente a incorporarse durante la edificaciones de construcciones civiles y no para utilizarse a lo largo de grandes longitudes de estructuras como macizos rocosos. Se observa en el estado del arte la dificultad de instalar un sensor de largo alcance para obtener un perfil de deformaciones hasta grandes profundidades de dichas estructuras. Although there are deformation monitoring systems, their practical installation in mining operations or other rock structures is very difficult due to the large lengths that are monitored and the difficulty of fixing in solidarity. These monitoring systems to obtain a reliable deformation profile since these are mainly oriented to be incorporated during civil construction constructions and not to be used along large lengths of structures such as rock massifs. The difficulty of installing a long-range sensor to obtain a deformation profile to great depths of said structures is observed in the state of the art.
La presente invención propone un dispositivo y un método para obtener un perfil de deformaciones lineales para monitorizar en el interior de una estructura sólida como por ejemplo un macizo rocoso, que tenga un largo alcance y la capacidad de ser ensamblado en terreno mediante un armado modular gracias a una combinación de piezas tubulares con medios de acoples y desacoples; y que asegure la transmisión de las deformaciones de dicha estructura al propio sensor mediante un mecanismo de anclaje de dicho dispositivo y mediante la aplicación de dicho método. The present invention proposes a device and a method to obtain a profile of linear deformations to monitor inside a solid structure such as a rock massif, which has a long range and the ability to be assembled on the ground by means of a modular assembly thanks to a combination of tubular parts with coupling and uncoupling means; and to ensure the transmission of the deformations of said structure to the sensor itself by means of an anchoring mechanism of said device and by the application of said method.
A continuación se mencionan los efectos ventajosos de la presente invención:The advantageous effects of the present invention are mentioned below:
1 . Facilidad de armado e instalación comparada a las soluciones del arte previo mediante un ensamblado modular. El ensamblado final se realiza in-situ, lo que facilita el transporte y permite instalar el sensor en grandes extensiones.one . Ease of assembly and installation compared to prior art solutions through modular assembly. The final assembly is carried out on-site, which facilitates transport and allows the sensor to be installed in large areas.
2. El ensamblado modular de pocas piezas que pueden variar su tamaño según la perforación a realizar (tanto en su largo como su diámetro) en el macizo rocoso u la estructura a monitorizar. 3. Permite obtener un perfil en profundidad de deformaciones de una roca y no solo en un punto como en el caso de los extensómetros (strain-gage). 2. The modular assembly of few pieces that can vary in size according to the drilling to be performed (both in length and diameter) in the rock mass or structure to be monitored. 3. It allows to obtain an in-depth profile of deformations of a rock and not only at a point such as strain gage.
4. El sensor no comprende componentes electrónicos por lo que no le afecta la humedad, o el ruido electromagnético.  4. The sensor does not include electronic components so it is not affected by moisture, or electromagnetic noise.
5. La medición puede ser línea y continua (tiempo mínimo de muestreo: 10 minutos).  5. The measurement can be line and continuous (minimum sampling time: 10 minutes).
6. El pozo a monitorear se puede encontrar a cualquier distancia, por ejemplo a kilómetros del lugar de adquisición de los datos.  6. The well to be monitored can be found at any distance, for example, kilometers from the data acquisition site.
La presente invención se aplica principalmente al monitoreo de estructuras críticas o macizos rocoso en excavaciones de la minería y la industria de la construcción para asegurar las faenas dentro de las excavaciones y predecir fallas estructurales y evitar derrumbes de estas estructuras. The present invention is mainly applied to the monitoring of critical structures or rocky massifs in mining excavations and the construction industry to secure the tasks within the excavations and predict structural failures and prevent collapse of these structures.
BREVE DESCRI PCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 ilustra el dispositivo sensor de acuerdo a la presente invención instalado en un macizo rocoso con el método de acuerdo a la presente invención.  Figure 1 illustrates the sensor device according to the present invention installed in a rock massif with the method according to the present invention.
La figura 2 es una vista frontal del dispositivo sensor de la presente invención anclado a un macizo rocoso.  Figure 2 is a front view of the sensor device of the present invention anchored to a rock mass.
La figura 3 es una vista en corte lateral del dispositivo sensor de la presente invención.  Figure 3 is a side sectional view of the sensor device of the present invention.
La figura 4 ilustra una vista lateral de un compartimiento cilindrico (200) del dispositivo sensor de la presente invención.  Figure 4 illustrates a side view of a cylindrical compartment (200) of the sensor device of the present invention.
La figura 5 ilustra una vista lateral de una pieza soporte (300) del dispositivo sensor de la presente invención. La figura 6 ilustra una vista frontal de una pieza soporte (300) del dispositivo sensor de la presente invención. Figure 5 illustrates a side view of a support part (300) of the sensor device of the present invention. Figure 6 illustrates a front view of a support part (300) of the sensor device of the present invention.
La figura 7 ilustra una vista lateral de un tubo posicionador (400) del dispositivo sensor de la presente invención.  Figure 7 illustrates a side view of a positioning tube (400) of the sensor device of the present invention.
La figura 8 ilustra una vista lateral de un tubo modular (600) del dispositivo sensor de la presente invención.  Figure 8 illustrates a side view of a modular tube (600) of the sensor device of the present invention.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Como puede apreciar en las figuras 1 a 8, la presente invención consiste en un dispositivo sensor (10) para obtener un perfil de deformaciones lineales en una estructura sólida (20) que comprende:  As can be seen in Figures 1 to 8, the present invention consists of a sensor device (10) for obtaining a profile of linear deformations in a solid structure (20) comprising:
medios de anclaje (100) solidarios a un compartimiento cilindrico (200) para fijarse dentro de una perforación en dicha estructura sólida;  anchoring means (100) integral to a cylindrical compartment (200) for fixing within a perforation in said solid structure;
dicho compartimiento cilindrico (200) de diámetro D que comprende medios de fijación (201 ) en su extremo opuesto y en su manto interno;  said cylindrical compartment (200) of diameter D comprising fixing means (201) at its opposite end and in its inner mantle;
una pieza de soporte (300) cilindrica con medios de fijación delanteros (301 ) complementarios a dichos medios de fijación (201 ) del compartimiento cilindrico (200), con dos perforaciones longitudinales (302) diametral mente opuestas y primeros medios de acople y desacople (303) en su extremo posterior más próximas al eje axial de la pieza de soporte (300) que dichas perforaciones (302);  a cylindrical support piece (300) with front fixing means (301) complementary to said fixing means (201) of the cylindrical compartment (200), with two diametrically opposed longitudinal perforations (302) and first coupling and decoupling means ( 303) at its rear end closer to the axial axis of the support piece (300) than said perforations (302);
un tubo posicionador (400) con medios de acople y desacople delanteros (401 ) complementarios a los primeros medios de acople y desacople (303) de la pieza soporte (300) en su extremo anterior, con un diámetro menor al diámetro donde se ubican las perforaciones longitudinales (302) en la pieza soporte (300) y con segundos medios de acople y desacople (402) en su extremo posterior; una fibra óptica (500) dispuesta a través de dichas dos perforaciones longitudinales (302) y doblada con un radio de curvatura de al menos 5 mm dentro de dicho compartimiento cilindrico (200) y que sobresale por la parte posterior de la pieza soporte (300) y longitudinalmente al manto externo del tubo posicionador (400); y a positioning tube (400) with front coupling and decoupling means (401) complementary to the first coupling and decoupling means (303) of the support piece (300) at its front end, with a diameter smaller than the diameter where the longitudinal perforations (302) in the support piece (300) and with second coupling and uncoupling means (402) at its rear end; an optical fiber (500) disposed through said two longitudinal perforations (302) and bent with a radius of curvature of at least 5 mm within said cylindrical compartment (200) and protruding from the back of the support piece (300 ) and longitudinally to the outer mantle of the positioning tube (400); Y
al menos un tubo modular (600) con un diámetro sustancial mente similar al diámetro del tubo posicionador (400), dicho tubo modular (600) comprende segundos medios de acople y desacople delanteros (601 ) en su extremo anterior y terceros medios de acople y desacople (602) en su extremo posterior, en donde dichos segundos medios de acople y desacople delanteros (601 ) son complementarios a los segundos medios de acople y desacople (402) de dicho tubo posicionador (400) y a dichos terceros medios de acople y desacople (602) de dicho tubo modular (600).  at least one modular tube (600) with a diameter substantially similar to the diameter of the positioning tube (400), said modular tube (600) comprises second front coupling and decoupling means (601) at its front end and third coupling means and decoupling (602) at its rear end, wherein said second front coupling and decoupling means (601) are complementary to the second coupling and decoupling means (402) of said positioning tube (400) and said third coupling and decoupling means (602) of said modular tube (600).
Según se aprecia en la figura 3, el medio de anclaje (100) comprende un un tubo cónico (1 10) que se expande hacia el extremo anterior (1 1 1 ) y solidario en su extremo posterior (1 12) al compartimiento cilindrico (200); alrededor de dicho tubo cónico (1 10), un anillo de anclaje (120) que comprende exteriormente una pluralidad de cuñas (121 ) para su adhesión a la estructura sólida, con ranura longitudinal (122) para permitir su expansión y contracción según su posición en el tubo cónico (1 10) y con un perfil de diámetro interno (123) de pendiente cónica complementario al tubo cónico (1 10); y un resorte (130) dispuesto entre el compartimiento cilindrico (200) y el anillo de anclaje (120). En otro objeto de la presente invención, se provee un método de instalación del dispositivo sensor (10) para obtener un perfil de deformaciones lineales en una estructura sólida (20) mediante que comprende las siguientes etapas: As can be seen in Figure 3, the anchoring means (100) comprises a conical tube (1 10) that expands towards the front end (1 1 1) and integral at its rear end (1 12) to the cylindrical compartment ( 200); around said conical tube (1 10), an anchor ring (120) externally comprising a plurality of wedges (121) for adhesion to the solid structure, with longitudinal groove (122) to allow its expansion and contraction according to its position in the conical tube (1 10) and with an internal diameter profile (123) of conical slope complementary to the conical tube (1 10); and a spring (130) disposed between the cylindrical compartment (200) and the anchor ring (120). In another object of the present invention, an installation method of the sensor device (10) is provided to obtain a profile of linear deformations in a solid structure (20) by comprising the following steps:
a) Acoplar mediante primeros medios de acople y desacople (303), un tubo posicionador (400) a un pieza soporte (300) de un dispositivo sensor (10) que comprende medios de anclaje (100) y una fibra óptica (500) doblada con un radio de curvatura de al menos 5 mm dentro de dicho dispositivo sensor (10) y que sobresale por la parte posterior de la pieza soporte (300), y en donde dicho tubo posicionador (400) comprende segundos medios de acople y desacople (402) en su extremo posterior;  a) Attach by means of first coupling and decoupling means (303), a positioning tube (400) to a support piece (300) of a sensor device (10) comprising anchoring means (100) and a folded optical fiber (500) with a radius of curvature of at least 5 mm inside said sensor device (10) and protruding from the back of the support piece (300), and wherein said positioning tube (400) comprises second coupling and disengaging means ( 402) at its rear end;
b) Introducir en una perforación de la estructura sólida (20), el dispositivo sensor (10) acoplado con el tubo posicionador (400) hasta el largo de dicho tubo posicionador (400), manteniendo la fibra óptica (500) fuera de dicha perforación;  b) Insert into a perforation of the solid structure (20), the sensor device (10) coupled with the positioning tube (400) up to the length of said positioning tube (400), keeping the optical fiber (500) out of said perforation ;
c) Acoplar un tubo modular (600) con el tubo posicionador (400), en donde dicho tubo modular (600) comprende terceros medios de acople y desacople (602) en su extremo posterior;  c) Couple a modular tube (600) with the positioning tube (400), wherein said modular tube (600) comprises third coupling and disengaging means (602) at its rear end;
d) Empujar el dispositivo sensor (10) por la perforación hasta el largo del tubo modular (600), manteniendo la fibra óptica (500) fuera de dicha perforación;  d) Push the sensor device (10) through the perforation to the length of the modular tube (600), keeping the optical fiber (500) out of said perforation;
e) Repetir los pasos c) y d) hasta ubicar el dispositivo sensor (10) en la profundidad deseada; f) Desacoplar el tubo posicionador (400) de la pieza soporte (10) mediante medios de acople y desacople delanteros (401 ) de dicho tubo posicionador (400); e) Repeat steps c) and d) until the sensor device (10) is located at the desired depth; f) Disconnect the positioning tube (400) from the support piece (10) by means of front coupling and disengaging means (401) of said positioning tube (400);
g) Retirar el tubo posicionador (400), manteniendo la fibra óptica (500) fuera de la perforación;  g) Remove the positioning tube (400), keeping the optical fiber (500) out of the hole;
h) Tensar dicha fibra óptica (500); y  h) Tensing said optical fiber (500); Y
i) Rellenar la perforación con un medio sólido (30) de características mecánicas similares a la estructura sólida (20).  i) Fill the perforation with a solid medium (30) of mechanical characteristics similar to the solid structure (20).
Modos alternativos de la Invención Alternative modes of the invention
De acuerdo a un ensamble preferido de la presente invención, la fibra óptica (500) comprende un envoltorio texturizado para una mejor adherencia con el medio sólido (30) al instalarse el dispositivo sensor (10).  According to a preferred assembly of the present invention, the optical fiber (500) comprises a textured wrapper for better adhesion with the solid medium (30) when the sensor device (10) is installed.
Según se aprecia en la figura 3 y de acuerdo a un ensamble preferido de la presente invención, la fibra óptica (500) es compuesta por dos fibras ópticas (501 ) fusionadas en un extremo con una fibra óptica ultra flexible (502), en donde dicha fibra óptica ultra flexible (501 ) se dispone doblada dentro del compartimiento cilindrico (200).  As seen in Figure 3 and according to a preferred assembly of the present invention, the optical fiber (500) is composed of two optical fibers (501) fused at one end with an ultra flexible optical fiber (502), wherein said ultra flexible optical fiber (501) is arranged bent inside the cylindrical compartment (200).
A continuación, se entiende por un hilo con giro horario a un hilo convencional con sentido horario de avance, y hilo con giro anti-horario a un hilo no-convencional con sentido anti-horario de avance.  Next, a thread with a clockwise rotation is understood to a conventional thread with a clockwise direction of advance, and a thread with an anti-clockwise rotation to an unconventional thread with an anti-clockwise direction of advance.
Según se aprecia en las figuras 4 a 8, los primeros medios de acople y desacople (303) consisten en un hilo macho de giro anti-horario, y los medios de acople y desacople delanteros (401 ) en un hilo hembra de giro anti-horario; y los segundos y terceros medios de acople y desacople (402, 602) consisten en un hilo macho de giro horario, y los segundos medios de acople y desacople delanteros (601 ) en un hilo hembra de giro horario. As can be seen in Figures 4 to 8, the first coupling and decoupling means (303) consist of an anti-clockwise male thread, and the front coupling and decoupling means (401) in a female anti-rotation wire schedule; and the Second and third coupling and decoupling means (402, 602) consist of a male thread of hourly rotation, and the second front coupling and decoupling means (601) of a female thread of hourly rotation.
De acuerdo a otro ensamble de la presente invención, los primeros medios de acople y desacople (303) consisten en un hilo macho de giro horario, y los medios de acople y desacople delanteros (401 ) en un hilo hembra de giro horario; y los segundos y terceros medios de acople y desacople (402, 602) consisten en un hilo macho de giro anti-horario, y los segundos medios de acople y desacople delanteros (601 ) en un hilo hembra de giro anti-horario.  According to another assembly of the present invention, the first coupling and decoupling means (303) consist of a male time-spinning thread, and the front coupling and decoupling means (401) in a female time-rotating thread; and the second and third coupling and decoupling means (402, 602) consist of a male anti-clockwise turning thread, and the second front coupling and decoupling means (601) in a female anti-clockwise rotating thread.
Según se aprecia en la figura 6 y de acuerdo a un ensamble preferido de la invención, las dos perforaciones longitudinales (302) diametral mente opuestas, se ubican entre 5 a 20 mm del manto de la pieza soporte (300) y tienen un diámetro entre 1 y 5 mm, As can be seen in Figure 6 and according to a preferred assembly of the invention, the two diametrically opposed longitudinal perforations (302) are located between 5 and 20 mm of the mantle of the support piece (300) and have a diameter between 1 and 5 mm,
De acuerdo a un ensamble preferido de la invención, en la etapa e) del método de instalación del dispositivo sensor (10), el medio sólido (20) consiste en cemento o una mezcla de cemento y arcilla. According to a preferred assembly of the invention, in step e) of the sensor device installation method (10), the solid medium (20) consists of cement or a mixture of cement and clay.

Claims

REIVINDICACIONES
1 .- Dispositivo sensor (10) de largo alcance para obtener un perfil de deformaciones lineales en una estructura sólida (20), CARACTERIZADO porque comprende:  1 .- Long range sensor device (10) to obtain a profile of linear deformations in a solid structure (20), CHARACTERIZED because it comprises:
medios de anclaje (100) solidarios a un compartimiento cilindrico (200) para fijarse dentro de una perforación en dicha estructura sólida (20);  anchoring means (100) integral to a cylindrical compartment (200) for fixing within a perforation in said solid structure (20);
dicho compartimiento cilindrico (200) de diámetro D que comprende medios de fijación (201 ) en su extremo opuesto y en su manto interno;  said cylindrical compartment (200) of diameter D comprising fixing means (201) at its opposite end and in its inner mantle;
una pieza de soporte (300) cilindrica con medios de fijación delanteros (301 ) complementario a dichos medios de fijación (201 ) del compartimiento cilindrico (200), con dos perforaciones longitudinales (302) diametral mente opuestas y primeros medios de acople y desacople (303) en su extremo posterior más próximas al eje axial de la pieza de soporte (300) que dichas perforaciones (302);  a cylindrical support part (300) with front fixing means (301) complementary to said fixing means (201) of the cylindrical compartment (200), with two diametrically longitudinal longitudinal perforations (302) and first coupling and decoupling means ( 303) at its rear end closer to the axial axis of the support piece (300) than said perforations (302);
un primer tubo posicionador (400) con medios de acople y desacople delanteros (401 ) complementarios a los primeros medios de acople y desacople (303) de la pieza soporte (300) en su extremo anterior, con un diámetro menor al diámetro donde se ubican las perforaciones longitudinales (302) en la pieza soporte (300) y con segundos medios de acople y desacople (402) en su extremo posterior; una fibra óptica (500) dispuesta a través de las dos perforaciones longitudinales (302) y doblada con un radio de curvatura de al menos 5 mm dentro del compartimiento cilindrico (200) y que sobresale por la parte posterior de la pieza soporte (300) y longitudinalmente al manto externo del tubo posicionador (400); y al menos un tubo modular (600) con un diámetro sustancial mente similar al diámetro del primer tubo posicionador (400) y, dicho tubo modular (600) comprende segundos medios de acople y desacople delanteros (601 ) en su extremo anterior y terceros medios de acople y desacople (602) en su extremo posterior, en donde dichos segundos medios de acople y desacople delanteros (601 ) son complementarios a dichos segundos medios de acople y desacople (402) de dicho tubo posicionador (400) y a dichos terceros medios de acople y desacople (602) de dicho tubo modular (600). a first positioning tube (400) with front coupling and decoupling means (401) complementary to the first coupling and decoupling means (303) of the support piece (300) at its front end, with a diameter smaller than the diameter where they are located the longitudinal perforations (302) in the support piece (300) and with second coupling and uncoupling means (402) at its rear end; an optical fiber (500) arranged through the two longitudinal perforations (302) and folded with a radius of curvature of at least 5 mm inside the cylindrical compartment (200) and protruding from the back of the support piece (300) and longitudinally to the outer mantle of the positioning tube (400); and at least one modular tube (600) with a diameter substantially similar to the diameter of the first positioning tube (400) and, said modular tube (600) comprises second front coupling and decoupling means (601) at its front end and third coupling and uncoupling means (602) at its rear end, wherein said second front coupling and uncoupling means (601) are complementary to said second coupling means and decoupling (402) of said positioning tube (400) and said third coupling and decoupling means (602) of said modular tube (600).
2. - El dispositivo sensor de acuerdo a la reivindicación 1 , CARACTERIZADO porque el medio de anclaje (100) comprende un tubo cónico (1 10) que se expande hacia el extremo anterior (1 1 1 ) y solidario en su extremo posterior (1 12) al compartimiento cilindrico (200); alrededor de dicho tubo cónico (1 10), un anillo de anclaje (120) que comprende exteriormente una pluralidad de cuñas (121 ) para su adhesión a la estructura sólida, con ranura longitudinal (122) para permitir su expansión y contracción según su posición en el tubo cónico (1 10) y con un perfil de diámetro interno (123) de pendiente cónica complementario al tubo cónico (1 10); y un resorte (130) dispuesto entre el compartimiento cilindrico (200) y el anillo de anclaje (120). 2. - The sensor device according to claim 1, CHARACTERIZED in that the anchoring means (100) comprises a conical tube (1 10) that expands towards the front end (1 1 1) and integral at its rear end (1 12) to the cylindrical compartment (200); around said conical tube (1 10), an anchor ring (120) externally comprising a plurality of wedges (121) for adhesion to the solid structure, with longitudinal groove (122) to allow its expansion and contraction according to its position in the conical tube (1 10) and with an internal diameter profile (123) of conical slope complementary to the conical tube (1 10); and a spring (130) disposed between the cylindrical compartment (200) and the anchor ring (120).
3. - El dispositivo sensor de acuerdo a la reivindicación 1 , CARACTERIZADO porque la fibra óptica (500) comprende un envoltorio texturizado para una mejor adherencia con el medio sólido al instalarse el dispositivo sensor. 3. - The sensor device according to claim 1, CHARACTERIZED in that the optical fiber (500) comprises a textured wrapper for a better adhesion with the solid medium when the sensor device is installed.
4. - El dispositivo sensor de acuerdo a la reivindicación 1 , CARACTERIZADO porque la fibra óptica (500) es compuesta por dos fibras ópticas (501 ) fusionadas en un extremo con una fibra óptica ultra flexible (502), en donde dicha fibra óptica ultra flexible (501 ) se dispone doblada dentro del compartimiento cilindrico (200). 4. - The sensor device according to claim 1, CHARACTERIZED in that the optical fiber (500) is composed of two optical fibers (501) fused in one end with an ultra flexible optical fiber (502), wherein said ultra flexible optical fiber (501) is disposed bent within the cylindrical compartment (200).
5. - El dispositivo sensor de acuerdo a la reivindicación 1 , CARACTERIZADO porque los primeros medios de acople y desacople (303) consisten en un hilo macho de giro anti-horario, y los primeros medios de acople y desacople delanteros (401 ) consisten en un hilo hembra de giro anti-horario; y los segundos y terceros medios de acople y desacople (402, 602) consisten en un hilo macho de giro horario, y los segundos medios de acople y desacople delanteros (601 ) en un hilo hembra de giro horario. 5. - The sensor device according to claim 1, CHARACTERIZED in that the first coupling and decoupling means (303) consist of an anti-clockwise male thread, and the first front coupling and decoupling means (401) consist of a female thread of anti-clockwise rotation; and the second and third coupling and decoupling means (402, 602) consist of a male thread of hourly rotation, and the second front coupling and decoupling means (601) of a female thread of hourly rotation.
6. - El dispositivo sensor de acuerdo a la reivindicación 1 , CARACTERIZADO porque los primeros medios de acople y desacople (303) consisten en un hilo macho de giro horario, y los primeros medios de acople y desacople delanteros (401 ) en un hilo hembra de giro horario; y los segundos y terceros medios de acople y desacople (402, 602) consisten en un hilo macho de giro anti-horario, y los segundos medios de acople y desacople delanteros (601 ) en un hilo hembra de giro anti-horario. 6. - The sensor device according to claim 1, CHARACTERIZED in that the first coupling and decoupling means (303) consist of a male thread of hourly rotation, and the first front coupling and decoupling means (401) in a female thread turn schedule; and the second and third coupling and decoupling means (402, 602) consist of a male anti-clockwise turning thread, and the second front coupling and decoupling means (601) in a female anti-clockwise rotating thread.
7. - El dispositivo sensor de acuerdo a la reivindicación 1 , CARACTERIZADO porque las dos perforaciones longitudinales (302) diametral mente opuestas se ubican entre 5 a 20 mm del manto de la pieza soporte (300) y tienen un diámetro entre 1 y 5 mm. 7. - The sensor device according to claim 1, CHARACTERIZED in that the two diametrically opposed longitudinal perforations (302) are located between 5 to 20 mm of the mantle of the support piece (300) and have a diameter between 1 and 5 mm .
8.- Método de instalación de un dispositivo sensor (10) de largo alcance para obtener un perfil de deformaciones lineales en una estructura sólida (20), CARACTERIZADO porque comprende las siguientes etapas: 8.- Installation method of a long-range sensor device (10) to obtain a profile of linear deformations in a solid structure (20), CHARACTERIZED because it comprises the following stages:
a) acoplar mediante primeros medios de acople y desacople (303), un primer tubo posicionador (400) a un pieza soporte (300) de un dispositivo sensor (10) que comprende medios de anclaje (100) y una fibra óptica (500) doblada con un radio de curvatura de al menos 5 mm dentro de dicho dispositivo (10) y que sobresale por la parte posterior de la pieza soporte (300), y en donde dicho primer tubo posicionador (400) comprende segundos medios de acople y desacople (402) en su extremo posterior;  a) coupling by first coupling and decoupling means (303), a first positioning tube (400) to a support piece (300) of a sensor device (10) comprising anchoring means (100) and an optical fiber (500) bent with a radius of curvature of at least 5 mm inside said device (10) and protruding from the back of the support piece (300), and wherein said first positioning tube (400) comprises second coupling and decoupling means (402) at its rear end;
b) introducir en una perforación de la estructura sólida (20), el dispositivo sensor (10) acoplado con el primer tubo posicionador (400) hasta el largo de dicho primer tubo posicionador (400), manteniendo dicha fibra óptica (500) fuera de dicha perforación;  b) inserting into a perforation of the solid structure (20), the sensor device (10) coupled with the first positioning tube (400) up to the length of said first positioning tube (400), keeping said optical fiber (500) out of said perforation;
c) acoplar un tubo modular (600) con el tubo posicionador (400), en donde dicho tubo modular (600) comprende terceros medios de acople y desacople (602) en su extremo posterior;  c) coupling a modular tube (600) with the positioning tube (400), wherein said modular tube (600) comprises third coupling and decoupling means (602) at its rear end;
d) empujar el dispositivo sensor (10) por la perforación hasta el largo del tubo modular (600), manteniendo dicha fibra óptica fuera de dicha perforación;  d) pushing the sensor device (10) through the perforation to the length of the modular tube (600), keeping said optical fiber out of said perforation;
e) repetir los pasos c) y d) hasta ubicar el dispositivo sensor (10) en la profundidad deseada;  e) repeat steps c) and d) until the sensor device (10) is located at the desired depth;
f) desacoplar el primer tubo posicionador (400) de la pieza soporte (300); g) retirar dicho primer tubo posicionador (400), manteniendo dicha fibra óptica (500) fuera de dicha perforación; f) decouple the first positioning tube (400) from the support piece (300); g) removing said first positioning tube (400), keeping said optical fiber (500) out of said perforation;
h) tensar dicha fibra óptica (500); y  h) tensioning said optical fiber (500); Y
i) rellenar la perforación con un medio sólido (30) de características mecánicas similares a la estructura sólida (20).  i) fill the perforation with a solid medium (30) of mechanical characteristics similar to the solid structure (20).
9.- El método de instalación según la reivindicación 8, CARACTERIZADO porque en la etapa e) el medio sólido (30) consiste en cemento o una mezcla de cemento y arcilla. 9. The installation method according to claim 8, CHARACTERIZED because in step e) the solid medium (30) consists of cement or a mixture of cement and clay.
PCT/IB2011/053699 2010-08-23 2011-08-23 Sensor for detecting linear deformations in a solid structure, and installation method WO2012025880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2010000896A CL2010000896A1 (en) 2010-08-23 2010-08-23 Long-range sensor device to obtain a profile of linear deformations in a solid structure, comprises anchoring means integral to a cylindrical compartment to be fixed within a perforation, cylindrical support piece, a first positioning tube, an optical fiber, a modular tube ; and method.
CL896-2010 2010-08-23

Publications (1)

Publication Number Publication Date
WO2012025880A1 true WO2012025880A1 (en) 2012-03-01

Family

ID=45722972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/053699 WO2012025880A1 (en) 2010-08-23 2011-08-23 Sensor for detecting linear deformations in a solid structure, and installation method

Country Status (2)

Country Link
CL (1) CL2010000896A1 (en)
WO (1) WO2012025880A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696974B1 (en) * 2000-07-28 2004-02-24 James I. Mathis Cable device for detecting and monitoring rock and soil displacement
US20090034903A1 (en) * 2006-02-01 2009-02-05 Afl Telecommunications, Llc Strain sensing device and method of measuring strain
CN101625230A (en) * 2009-06-01 2010-01-13 南京大学 Distributed optical fiber large-deformation measuring sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696974B1 (en) * 2000-07-28 2004-02-24 James I. Mathis Cable device for detecting and monitoring rock and soil displacement
US20090034903A1 (en) * 2006-02-01 2009-02-05 Afl Telecommunications, Llc Strain sensing device and method of measuring strain
CN101625230A (en) * 2009-06-01 2010-01-13 南京大学 Distributed optical fiber large-deformation measuring sensor

Also Published As

Publication number Publication date
CL2010000896A1 (en) 2010-12-24

Similar Documents

Publication Publication Date Title
US7388190B2 (en) Fiber Bragg grating sensored segmented deflectometer for ground displacement monitoring
KR101162918B1 (en) Method of measuring underground displacement using inclinometer
US7751657B2 (en) Inclinometer system
JP2007114176A (en) Displacement measurement device and system
KR100734390B1 (en) Instrument for measuring two dimensional deformation in tunnels
KR100908417B1 (en) Apparatus for measuring position change of underground
KR101219468B1 (en) A measuring instrument used both as a inclinometer and a water level meter
CN110319862B (en) A helical structure device for distributed optical fiber sensing among civil engineering
CN103821507A (en) Method for detecting deformation of shaft wall of vertical shaft through distributed optical fibers
KR20150025853A (en) assembly for displacement meter
JP2011169705A (en) Clinometer device
KR20140131125A (en) method for measuring of tunnel displacement using embedded displacement meter
JP2007113991A (en) Crack detector and installation method therefor
KR102043702B1 (en) Apparatus for measuring tunnel convergence displacements
WO2012025880A1 (en) Sensor for detecting linear deformations in a solid structure, and installation method
KR101042076B1 (en) Pre-displacement measuring system of tunnel face using fiber optic sensor and installing method thereof
JPH10197298A (en) Method for measuring variable state of baserock, slope soil structure and civil engineering structure
JP2000303481A (en) Sloping ground monitoring device
KR20050055207A (en) A vibrating wire type extensometer
JP4105123B2 (en) Structure displacement / deformation detection system using optical fiber sensor
JP5385516B2 (en) Deformation amount sensor, deformation amount measuring device, deformation amount measuring method
Inaudi et al. Geostructural monitoring with long-gage interferometric sensors
WO2012025886A1 (en) Reinforcing bolts comprising fibre optic for the detection of deformations by means of brillouin optical time-domain reflectometry
RU2272134C1 (en) Rock massif movement registration mark
KR200419890Y1 (en) Telescopic Coupling Structure for Soft Ground Measurement Management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819498

Country of ref document: EP

Kind code of ref document: A1