WO2012024973A1 - 电控闭式液压转向系统、控制方法和具有该系统的车辆 - Google Patents

电控闭式液压转向系统、控制方法和具有该系统的车辆 Download PDF

Info

Publication number
WO2012024973A1
WO2012024973A1 PCT/CN2011/076222 CN2011076222W WO2012024973A1 WO 2012024973 A1 WO2012024973 A1 WO 2012024973A1 CN 2011076222 W CN2011076222 W CN 2011076222W WO 2012024973 A1 WO2012024973 A1 WO 2012024973A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
vehicle
oil
variable pump
hydraulic
Prior art date
Application number
PCT/CN2011/076222
Other languages
English (en)
French (fr)
Inventor
刘建华
李义
詹纯新
刘权
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Publication of WO2012024973A1 publication Critical patent/WO2012024973A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/065Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by specially adapted means for varying pressurised fluid supply based on need, e.g. on-demand, variable assist
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input

Definitions

  • the application is submitted to the State Intellectual Property Office of China on August 26, 2010, and the application number is 201010265419. 1.
  • the invention is entitled "Electrically Controlled Hydraulic Steering System” , the method of control, and the priority of the invention patent application of the vehicle having the system.
  • BACKGROUND OF THE INVENTION 1.
  • the present invention relates to an electrically controlled closed hydraulic steering system and a steering control method suitable for an engineering vehicle, and to a vehicle having the hydraulic steering system.
  • functions such as multi-bridge bearing, multi-bridge steering and multi-steer mode are particularly necessary.
  • the hydraulic steering of the vehicle is mainly realized by the control mode of the oil pump-control valve group-steering assist cylinder or the hydraulic assisting machine-steering control mode.
  • the gear pump provides the power source
  • the relief valve ensures the system pressure
  • the governor adjusts the system flow.
  • the system maintains sufficient flow and pressure, mainly through the overflow valve.
  • the steering hydraulic system of a conventional vehicle there are not only problems of increased number of failure points and reduced system reliability due to excessive control elements and complicated arrangement, but also throttling and commutation of the hydraulic system due to the use of the valve. Switching causes the system to increase heat and increase power loss.
  • the steering technology of the existing trolley or the initiating vehicle is disclosed in the U.S. Patent No. 7,344,655 B2 and the PCT International Patent Application No. WO2006023469A2, which is mainly driven by a motor to drive a two-way quantitative pump, and the pump supplies an oil source to the steering assist double-acting cylinder, and the energy saving degree is improved.
  • the driving power is small and the steering assist is small, which is not suitable for use in heavy-duty engineering machines or special vehicles.
  • SUMMARY OF THE INVENTION The present invention aims to provide an electronically controlled closed hydraulic steering system suitable for use in an engineering vehicle to save energy and reduce system heat generation.
  • Another object of the present invention is to provide an electronically controlled closed hydraulic steering control method. It is also an object of the present invention to provide a vehicle having an electrically controlled closed hydraulic steering system.
  • an aspect of the present invention provides an electronically controlled closed hydraulic steering system, including: a hydraulic steering device including a steering assisting oil rainbow; a variable pump that supplies hydraulic oil directly to a steering assist cylinder through a main oil passage, wherein The output flow and the oil path of the variable pump are controlled by an electric signal; and the controller is connected with the variable pump signal for calculating the output flow of the variable pump and determining the oil path according to the vehicle operating condition and the wheel steering demand signal. This output is used to control the electrical signal of the variable pump.
  • the controller is further configured to correct an output flow of the variable pump according to a wheel steering angle signal fed back by the axle steering sensor.
  • the variable pump is driven by an engine or a transmission element thereof, and the controller further corrects the displacement of the variable pump according to a change in the rotational speed of the engine or its transmission element.
  • the above-mentioned electronically controlled closed hydraulic steering system further includes a flush valve that is connected in parallel on the main oil passage to realize the function of dissipating and replacing the hydraulic oil.
  • the variable pump is an electrically controlled axial piston variable pump.
  • the vehicle operating conditions include a vehicle speed signal, a steering mode, a speed signal of the engine or its transmission component, an oil pump output signal, and a wheel steering angle signal.
  • the above system further includes an auxiliary control valve group, wherein the auxiliary control valve group includes: a hydraulic lock for respectively performing a locking function on two pipelines of the main oil passage which are mutually supplied and returned to the oil,
  • the control oil passage of the two hydraulic locks is provided with a lock control valve of an external oil source or a selection valve connected to the main oil passage.
  • the auxiliary control valve group further includes a safety control valve disposed between the two lines of the main oil passages for supplying and returning oil to each other to realize an interlocking and unloading function.
  • the auxiliary control valve group further includes: a one-way overflow replenishing valve for realizing an overflow and a replenishing function respectively disposed on two pipelines of the main oil passage which are mutually supplied and refueled.
  • a vehicle having an electrically controlled closed hydraulic steering system of the above configuration includes a plurality of steering axles, each of which is provided with a hydraulic steering system of a hydraulic steering system, and the variable pumps of the hydraulic steering devices are powered by the vehicle engine or its transmission components, and the controller and each hydraulic steering The variable pump of the device is connected to the auxiliary control valve group.
  • the vehicle includes a plurality of steering axles, and the steering axles are divided into a plurality of hydraulic steering devices provided with a hydraulic steering system on each of the steering axles.
  • the invention also provides an electronically controlled closed hydraulic steering control method, comprising the following steps: using a variable pump to directly supply hydraulic oil to a main oil passage of a steering assist oil red of a steering axle to control the extension of the steering assist oil red and Retracting; calculating the output flow of the variable pump and determining the oil path according to the vehicle operating condition and the wheel steering demand signal, thereby controlling the variable pump; and correcting the output flow of the variable pump according to the wheel steering angle signal fed back by the steering axle, Controls the amount of protrusion and retraction of the steering assist oil rainbow.
  • hydraulic locks for realizing the lock function are respectively provided on the two lines of the main oil passages for supplying and returning oil to each other to realize the steering lock of the steering assist cylinder.
  • the electronically controlled axial piston variable pump is selected as the variable pump, and the electronically controlled axial piston variable pump is driven by the engine or its transmission component, and at the same time according to the engine or its transmission component
  • the speed changes ⁇ the displacement of the positive variable pump.
  • the invention realizes the closed hydraulic control of the vehicle steering by the principle of the pump control cylinder, and the system provides the power source by the vehicle engine, and the hydraulic power, that is, the pressure and the flow rate, is provided by the plunger closed variable pump according to the steering demand, and the engine or the engine thereof is fully utilized.
  • the output power of the transmission component greatly saves the energy and power consumption during the running of the vehicle.
  • the interlocking of the valve member realizes the stable operation and safety control of the steering control, effectively reducing various components of the steering system of the vehicle and avoiding the valve.
  • Controlled cylinders cause complex control, system heating and other problems, improve the utilization of vehicle layout space, and become a new vehicle steering control mode, which can be applied to the steering control of various construction machinery vehicles or special vehicles.
  • the invention uses a steering assist cylinder, which increases the axle steering assist and effectively reduces the steering hydraulic pressure requirement of the vehicle, and provides conditions for energy saving and saving layout space.
  • FIG. 1 is a schematic view showing the control principle of an electronically controlled closed hydraulic steering system according to the present invention
  • FIG. 2 is a block diagram showing the hydraulic steering device of the electronically controlled closed hydraulic steering system according to the present invention
  • 2 is a modified structure of the hydraulic steering device shown in FIG. 2
  • FIG. 4 shows another modified structure of the hydraulic steering device shown in FIG. 2
  • FIG. 5 shows the vehicle of the electronically controlled closed hydraulic steering system of the present invention.
  • Fig. 1 is a schematic view showing the principle of an electronically controlled closed hydraulic steering system according to the present invention.
  • the electrically controlled closed hydraulic steering system includes a hydraulic steering device and a controller 60, and the hydraulic steering device includes: a double steering assisting oil red 20 composed of a left steering assisting oil red 21 and a right steering assisting oil red 22 (See Fig.
  • the double steering assist cylinder 20 is disposed between the knuckle arms 41, 42 of the steering axle trapezoidal arm 40 and the axle 50 to provide steering propulsion to the steering axle trapezoidal arm 40; the variable pump 10, by the vehicle engine Or a transmission element such as a gearbox, axle power take-off or transfer case (not shown) to provide hydraulic oil to the dual steering assist oil rainbow 20 through the main oil passage; and a neutral lock on the main oil passage A related auxiliary control valve block 30.
  • the variable pump 10 is externally connected to the control oil source, and performs input and output adjustment according to the electronic control interface signal.
  • the variable pump 10 is preferably an electrically controlled axial piston variable pump whose flow rate is proportional to the drive speed and displacement.
  • the oil pump speed is the rotational speed of the vehicle engine or its transmission components. In the case of a change in engine speed, the pump speed changes, but the output flow can remain the same, which can be achieved by adjusting the pump swing angle (swashplate inclination).
  • the oil path of the electrically controlled axial piston variable pump (associated with the extension or retraction of the dual steering assist cylinder) is also achieved by adjusting the swashplate pitch.
  • the controller 60 is connected to the variable pump 10 and the auxiliary control valve group 30, and the controller 60 can be a programmable logic controller (PLC) or a microcomputer control unit, etc., through the flow output and oil to the variable pump 10.
  • PLC programmable logic controller
  • each steering axle corresponds to a set of hydraulic steering devices and shares a controller 60.
  • the variable displacement pump 10 of the hydraulic steering device on each steering axle is powered by the vehicle engine.
  • the steering axles are divided into thousands of sets, each set of steering axles being provided with a set of hydraulic steering devices.
  • the variable-pump control double-steering assisting oil rainbow realizes closed hydraulic control of vehicle steering.
  • FIG. 2 is a block diagram showing the hydraulic steering device of the electronically controlled closed hydraulic steering system according to the present invention.
  • the auxiliary control valve group 30 mainly includes: a one-way overflow charge valve 31, 32, a safety control valve 33, and hydraulic locks 35, 36 and a lock control valve 34 thereof.
  • the one-way overflow filling valves 31 and 32 are respectively disposed on the two lines of the main oil passage which are mutually supplied and returned to the oil, and the one-way overflow filling valves 31 and 32 are connected with the oil filling ports to realize the overflow and the overflow. Replenishment function.
  • the safety control valve 33 is disposed between the two lines of the main oil passage which are mutually supplied and returned to realize the interlocking and unloading functions.
  • the hydraulic locks 35 and 36 are respectively disposed on the two pipelines of the main oil passage which are mutually supplied and returned to realize the locking function.
  • the lock control valve 34 is disposed on the control oil passage of the hydraulic locks 35, 36, and the control oil passage is connected to an external oil source.
  • the auxiliary control valve group such as the one-way overflow charge valve 31, the safety control valve 33, the lock control valve 34 and the like may be integrally formed with the axial piston variable pump 10, and the hydraulic locks 35, 36 may be integrated with the steering assist oil rainbow 20 Configuration.
  • the variable pump 10 is externally connected to the control oil source, and performs output and output adjustment according to the electronic control interface signal.
  • the whole system can be externally connected to the oil or built-in charge pump, and the lock control valve 34 can be externally connected to the control oil source.
  • the steering neutral position is locked, and the left and right steering of the wheel can also be realized, and the one-way overflow charge valves 31, 32 can realize the safe overflow of the system.
  • FIG. 3 shows a variant of the hydraulic steering device shown in Figure 2.
  • the hydraulic steering device differs from the hydraulic steering device shown in FIG. 2 in that a flush valve is coupled to the main oil passage to achieve replacement and heat dissipation of hydraulic oil in the system.
  • Fig. 4 shows another variation of the hydraulic steering device shown in Fig. 2.
  • the present hydraulic steering device differs from the hydraulic steering device shown in FIG. 2 in that a selector valve 37 is provided which is disposed on the control oil passage of the hydraulic locks 35, 36 and is connected in parallel to the main oil passage, thus omitting the lock control
  • the external control of valve 34 controls the oil source.
  • the vehicle steering control mode will be described below with reference to FIG.
  • FIG. 5 is a block diagram showing the steering logic control of the vehicle of the electronically controlled closed hydraulic steering system of the present invention.
  • the controller 60 calculates the output required for the theoretical theory of the axial piston variable pump 10 based on the vehicle steering demand signal and the vehicle operating conditions such as the steering mode, the vehicle speed signal, the engine speed, the oil pump output, and the wheel steering demand signal.
  • the flow rate and the direction of the oil path are determined, and accordingly, the flow output of the axial piston variable pump and the required action of the auxiliary control valve group are controlled, and the steering angle signal of the wheel is converted to the axial piston variable according to the real-time feedback of the axle steering sensor.
  • the flow output of pump 10 is corrected until stable closed loop control is achieved.
  • the steering mode usually includes normal steering, rear axle locking, and crab steering
  • the vehicle speed signal affects the selection of the steering mode.
  • the vehicle speed information and steering mode may not be considered in the calculation.
  • the oil pump output (information) obtained by the controller 60 includes pressure information and flow rate information.
  • the pressure required by the system is ensured by the structure of the variable pump 10 itself.
  • the controller 60 is also based on an engine or other transmission component capable of meeting the power demand, such as the rotational speed.
  • the change of the oil pump swing angle of the variable pump 10 is adjusted so that the flow output of the variable pump 10 can be prevented from being affected by the change of the engine speed, thereby achieving fine control of the oil pump output of the variable pump.
  • the control of the oil path is realized by the variable pump.
  • the extension, retraction or neutral locking of the vehicle steering assist oil red is realized, and the extension of the steering assist oil red, retraction and The median lock directly corresponds to the left, right and center lock of the axle.
  • the amount of oil required by the steering assisting oil rainbow when the vehicle is turning and the oil path are calculated by the controller according to the vehicle operating conditions and the vehicle steering demand signal, and are realized by the change of the oil pump swing angle of the axial piston variable pump. Output oil quantity and control of oil flow direction.
  • the vehicle steering demand signal is provided by a sensor on the steering wheel.
  • the controller calculates a variable required for each axle steering according to the vehicle steering demand signal and the current wheel steering angle signals.
  • the output flow of the pump when the output flow is determined, the current oil pump swing angle can be adjusted so that the output flow of the variable pump matches the needs of the vehicle steering, and the variable displacement pump is based on the wheel steering angle signal fed back by the axle steering sensor.
  • the output flow is feedback corrected until stable closed loop control is achieved.
  • the pump swing angle in time to avoid the engine speed change affecting the variable pump's flow output. This achieves: Pump output _ cylinder extension _ steering angle closed loop and feedback correction Control and steering demand - a fine control of the PLC-pump output.
  • the invention effectively saves energy and power consumption during vehicle operation, and realizes stable steering and safety control of steering control.
  • the utility model effectively reduces various components required for the steering system of the vehicle, avoids the problems of complicated control and system heating caused by the prior art valve-controlled cylinder, improves the utilization ratio of the vehicle layout space, and becomes a brand-new vehicle steering control mode.
  • the present invention provides a power source from a vehicle engine, and provides hydraulic power from an axial piston variable pump according to steering demand and the speed of an engine or other transmission component capable of meeting power demand, and can satisfy a large axle load of an engineering machine or a heavy-duty vehicle.
  • axle large steering force demand and large steering flow demand can realize multi-bridge steering mode of engineering machinery or heavy-duty vehicle multi-bridge vehicles (greater than or equal to 2 bridges) (especially, for example, turning to the neutral position
  • the locking and the steering are light and the steering intelligent control avoids the disadvantages of the high heat generation of the drive system during the steering process (such as the high heat generated by the motor of the prior art).
  • the invention uses the double-steering assisting oil rainbow to increase the axle steering assist force and effectively reduce the steering hydraulic pressure requirement of the vehicle, and provides conditions for energy saving and saving layout space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

电控闭式液压转向系统、 控制方法和具有该系统的车辆 本申请要求于 2010年 8 月 26 日提交至中国国家知识产权局、 申请号为 201010265419.1、 发明名称为"电控闭式液压转向系统、 控制方法和具有该系统 的车辆 "的发明专利申请的优先权。 技术领域 本发明涉及一种适用于工程车辆的电控闭式液压转向系统和转向控制方 法, 本发明还涉及一种具有该液压转向系统的车辆。 背景技术 随着工程机械车辆或专用车辆等向重载方向的发展, 多桥承载、 多桥转向 和多转向模式等功能显得尤为必要。 对于现有的多桥车辆而言, 主要是通过油泵一控制阀组一转向助力油缸的 控制方式或者液压助力加机戈导向的控制方式来实现车辆液压转向的。 例如由 齿轮泵提供动力油源、 由溢流阀保证系统压力、 由调速阀调节系统流量, 在转 向工作和不工作时, 系统一直保持充足的流量和压力, 主要通过溢流阀进行溢 流。 总体而言, 在传统车辆的转向液压系统中, 不仅存在由于控制元件过多和 布置复杂造成故障点增多、 系统可靠性降低的问题, 还存在由于釆用阀对液压 系统进行节流和换向切换, 使得系统发热量增加和损耗功率增加的问题。 现有的小车或啟型车辆的转向技术在美国专利 US7434655B2和 PCT国际 专利申请 WO2006023469A2 中有披露, 主要通过电机驱动双向定量泵, 由泵 提供油源给转向助力双作用油缸, 其节能程度得到提升。 但由于车辆电源功率 和转向助力双作用油缸等因素的影响, 其驱动功率小和转向助力小, 不适合在 重载的工程机戈或专用车辆上使用。 发明内容 本发明目的在于提供一种适合工程车辆使用的电控闭式液压转向系统, 以 节约能源、 降低系统发热量。 本发明的另一目的在于提供一种电控闭式液压转向控制方法。 本发明的目的还在于提供一种具有电控闭式液压转向系统的车辆。 为此, 本发明一方面提供了一种电控闭式液压转向系统, 包括: 液压转向 装置, 其包括转向助力油虹; 变量泵, 通过主油路直接向转向助力油缸提供液 压油, 其中, 变量泵的输出流量和油路走向由电信号控制; 以及控制器, 与变 量泵信号连接, 用于根据车辆工况和车轮转向需求信号, 计算出变量泵的输出 流量并确定油路走向, 据此输出用于控制所述变量泵的电信号。 进一步地, 上述控制器还用于根据车桥转向传感器反馈的车轮转向角信号 修正变量泵的输出流量。 进一步地, 上述变量泵由发动机或其传动元件驱动, 上述控制器还根据发 动机或其传动元件的转速的变化对变量泵的排量进行修正控制。 进一步地, 上述电控闭式液压转向系统还包括并联在主油路上的实现液压 油散热和更换功能的冲洗阀。 进一步地, 上述变量泵为电控轴向柱塞变量泵。 进一步地, 上述车辆工况包括车速信号、 转向模式、 发动机或其传动元件 的转速信号、 油泵输出信号和车轮转向角信号。 进一步地, 上述系统还包括辅助控制阀组, 其中, 该辅助控制阀组包括: 在主油路的互为供油和回油的两管路上分别设置的用于实现锁止功能的液压 锁, 两液压锁的控制油路上设置有外接油源的锁定控制阀或连接在主油路上的 选择阀。 进一步地, 上述辅助控制阀组还包括在主油路的互为供油和回油的两管路 之间设置的实现互锁和卸荷功能的安全控制阀。 进一步地, 上述辅助控制阀组还包括: 在主油路的互为供油和回油的两管 路上分别设置的用于实现溢流和补油功能的单向溢流补油阀。 才艮据本发明的另一方面, 提供了一种具有上述构造的电控闭式液压转向系 统的车辆。 进一步地, 上述车辆包括多个转向桥, 各转向桥上设有一套液压转向系统 的液压转向装置, 各液压转向装置的变量泵均由车辆发动机或其传动元件提供 动力, 控制器与各液压转向装置的变量泵和辅助控制阀组信号连接。 进一步地, 上述车辆包括多个转向桥, 这些转向桥分为若千组, 每一组转 向桥上设有一套液压转向系统的液压转向装置。 本发明还提供了一种电控闭式液压转向控制方法, 包括以下步骤: 利用变 量泵直接向转向桥的转向助力油紅的主油路提供液压油, 以控制转向助力油紅 的伸出和缩回; 根据车辆工况和车轮转向需求信号, 计算出变量泵的输出流量 和确定油路走向, 据此控制变量泵; 以及根据转向桥反馈的车轮转向角信号修 正变量泵的输出流量, 以控制转向助力油虹的伸出量和缩回量。 进一步地, 在上述控制方法中, 在主油路的互为供油和回油的两管路上分 别设置用于实现锁止功能的液压锁, 以实现转向助力油缸的转向锁定。 进一步地, 在上述控制方法中, 选择电控轴向柱塞变量泵作为变量泵, 并 使电控轴向柱塞变量泵由发动机或其传动元件驱动, 同时才艮据发动机或其传动 元件的转速变化爹正变量泵的排量。 本发明通过泵控缸原理, 实现了车辆转向的闭式液压控制, 系统由车辆发 动机提供动力源, 根据转向需求由柱塞闭式变量泵提供油压功率即压力和流 量, 充分利用发动机或其传动元件的输出功率, 极大地节约了车辆运行过程中 的能源和功率消耗, 通过阀件互锁实现了转向控制的稳定操纵和安全控制, 有 效减少了车辆转向系统需求各种元件, 避免了阀控缸所造成控制复杂、 系统发 热等问题,提高了车辆布置空间的利用率,成为一种全新的车辆转向控制模式, 可适用于各种工程机械车辆或专用车辆的转向控制。 本发明釆用转向助力油缸, 增大了车桥转向助力和有效降低了车辆转向液 压压力需求, 为节能和节约布置空间提供条件。 除了上面所描述的目的、 特征、 和优点之外, 本发明具有的其它目的、 特 征、 和优点, 将结合附图作进一步详细的说明。 附图说明 构成本说明书的一部分、 用于进一步理解本发明的附图示出了本发明的优 选实施例, 并与说明书一起用来说明本发明的原理。 图中: 图 1示出了根据本发明电控闭式液压转向系统的控制原理示意图; 图 2 示出了才艮据本发明电控闭式液压转向系统的液压转向装置的原理框 图; 图 3示出了图 2所示液压转向装置的一种变型结构; 图 4示出了图 2所示液压转向装置的另一种变型结构; 以及 图 5示出了 居本发明电控闭式液压转向系统的车辆转向逻辑控制框图。 具体实施方式 以下结合附图对本发明的实施例进行详细说明, 但是本发明可以由权利要 求限定和覆盖的多种不同方式实施。 图 1示出了才艮据本发明电控闭式液压转向系统的原理示意图。如图 1所示, 电控闭式液压转向系统包括液压转向装置和控制器 60, 该液压转向装置包括: 由左转向助力油紅 21和右转向助力油紅 22构成的双转向助力油紅 20(参见图 2 ), 双转向助力油缸 20设置在转向桥梯形臂 40的转向节臂 41、 42和车桥 50 之间, 向转向桥梯形臂 40提供转向推动力; 变量泵 10, 由车辆发动机或其传 动元件例如变速箱、 车桥取力器或分动箱 (未示出)提供动力, 通过主油路向 双转向助力油虹 20提供液压油; 以及在主油路上设置的与中位锁定相关的辅 助控制阀组 30。 变量泵 10 外接控制油源, 根据电控接口信号进行输入和输出调整。 在本 实施例中, 变量泵 10优选为电控轴向柱塞变量泵, 其流量正比于驱动转速和 排量。 由于轴向柱塞变量泵直接由车辆发动机及其传动元件驱动, 其油泵转速 则为车辆发动机或其传动元件的转速。 在发动机转速改变的情况下, 油泵转速随之改变, 但输出流量仍可以保持 不变, 这可通过调节油泵摆角 (斜盘倾角) 来实现。 另外, 电控轴向柱塞变量 泵的油路走向 (与双转向助力油缸的伸出或缩回相关联)也是通过调节斜盘倾 角来实现的。 控制器 60与变量泵 10和辅助控制阀组 30信号连接, 控制器 60可以为可 编程逻辑控制器(PLC )或微机控制单元等, 通过对变量泵 10的流量输出和油 路走向进行控制, 实现了车辆转向助力油虹的伸出和缩回或者中位锁定, 进而 满足车轮的转向需求。 在多桥车辆的一可选实施例中, 各转向桥上分别对应一套液压转向装置, 并共用一控制器 60。 其中, 各转向桥上的液压转向装置的变量泵 10均由车辆 发动机提供动力。 在多桥车辆的另一可选实施例中, 这些转向桥分为若千组, 每一组转向桥 上设有一套液压转向装置。 通过变量泵控制双转向助力油虹, 实现了车辆转向的闭式液压控制, 系统 根据转向需求提供油压功率, 充分利用了发动机输出功率, 实现了节能需求, 减少了系统元件, 有助于对车辆配置进行优化和减重, 可适用于各种工程机械 车辆或专用车辆的转向控制。 图 2 示出了才艮据本发明电控闭式液压转向系统的液压转向装置的原理框 图。 如图 2所示, 辅助控制阀组 30主要包括: 单向溢流补油阀 31、 32 , 安全 控制阀 33 , 以及液压锁 35、 36及其锁定控制阀 34。 单向溢流补油阀 31、 32分别设置在主油路的互为供油和回油的两管路上, 单向溢流补油阀 31、 32 之间接补油口, 以实现溢流和补油功能。 安全控制阀 33设置在主油路的互为供油和回油的两管路之间, 以实现互锁和卸荷功能。 液 压锁 35、 36 分别设置在主油路的互为供油和回油的两管路上, 以实现锁止功 能。 锁定控制阀 34设置在液压锁 35、 36的控制油路上, 该控制油路与外接油 源相连。 单向溢流补油阀 31、 安全控制阀 33、 锁定控制阀 34等辅助控制阀组可与 轴向柱塞变量泵 10形成整体配置, 液压锁 35、 36可与转向助力油虹 20形成 整体配置。 变量泵 10 外接控制油源, 根据电控接口信号进行输出和输出调整。 整个 系统可以外接补油或内置补油泵, 锁定控制阀 34 可外接控制油源。 通过安全 控制阀 33和锁定控制阀 34以及变量泵 10的联合控制, 实现转向中位的锁定, 也可实现车轮的左右转向, 单向溢流补油阀 31、 32 可以实现系统的安全溢流 和氐压位的^卜油。 图 3示出了图 2所示液压转向装置的一种变型。 本液压转向装置与图 2所 示的液压转向装置不同之处在于, 在主油路上并联接出冲洗阀, 以便实现系统 内液压油的更换和散热。 图 4示出了图 2所示液压转向装置的另一种变型。 本液压转向装置与图 2 所示的液压转向装置不同之处在于, 增加了选择阀 37 , 选择阀 37设置在液压 锁 35、 36的控制油路上并且并联在主油路上, 如此省略了锁定控制阀 34的外 接控制油源。 下面结合图 5对车辆转向控制方式进行说明。 图 5示出了 居本发明电控闭式液压转向系统的车辆转向逻辑控制框图。 如图 5所示, 控制器 60 居车辆转向需求信号和车辆工况例如转向模式、 车 速信号、 发动机转速、 油泵输出以及车轮转向需求信号, 计算出轴向柱塞变量 泵 10 理论所需的输出流量和确定油路走向, 并据此对轴向柱塞变量泵的流量 输出和辅助控制阀组所需动作进行控制, 同时根据车桥转向传感器实时反馈的 车轮转向角信号对轴向柱塞变量泵 10 的流量输出进行修正, 直至实现稳定的 闭环控制。 其中, 转向模式对于多桥车辆而言, 通常包括正常转向、 后桥锁死、 蟹行 转向等, 而车速信号影响着转向模式的选择。 对于单桥转向的车辆而言, 车速 信息和转向模式在计算时可以不加以考虑。 控制器 60 所获得的油泵输出 (信息) 包括压力信息和流量信息, 系统所 需的压力由变量泵 10本身的结构来保证, 控制器 60还根据发动机或其它能够 满足动力需求的传动元件例如转速的变化对变量泵 10 的油泵摆角进行调整, 使得变量泵 10 的流量输出可不受发动机转速改变的影响, 进而实现对变量泵 的油泵输出的精细控制。 油路走向的控制是由变量泵实现的, 在辅助控制阀组的配合下实现了车辆 转向助力油紅的伸出、 缩回或者中位锁定, 而转向助力油紅的伸出、 缩回和中 位锁定则直接对应于车桥的左转向、 右转向和中位锁定。 转向助力油虹在车辆 转向时所需的油量的多少和油路走向由控制器根据车辆工况和车辆转向需求 信号计算出, 并通过轴向柱塞变量泵的油泵摆角的改变来实现输出油量和油料 走向的控制。 具体地, 车辆转向需求信号由方向盘上的传感器提供, 在确定的转向模式 和车速信息下, 控制器根据车辆转向需求信号和当前的各车轮转向角信号, 计 算出各车桥转向所需的变量泵的输出流量, 在输出流量确定时, 可对当前的油 泵摆角进行调整, 以便变量泵的输出流量与车辆转向的需要相符合, 同时根据 车桥转向传感器反馈的车轮转向角信号对变量泵的输出流量进行反馈修正, 直 至实现稳定的闭环控制。 在此过程中, 当发动机转速发生变化时, 及时调整油泵摆角, 以避免发动 机转速变化对变量泵的流量输出造成影响, 如此实现了: 泵输出 _油缸伸出 _ 转向角度的闭环和反馈修正控制以及转向需求一 PLC—泵输出的精细控制。 与现有技术相比, 本发明在转向节能性和安全性方面的优越性表现如下: 一、 本发明有效节约了车辆运行过程中的能源和功率消耗, 实现了转向控 制的稳定操纵和安全控制, 有效减少了车辆转向系统需求各种元件、 避免了现 有技术的阀控缸所造成控制复杂、 系统发热等问题, 提高了车辆布置空间的利 用率, 成为一种全新的车辆转向控制模式。 二、 本发明由车辆发动机提供动力源, 根据转向需求和发动机或其它能够 满足动力需求的传动元件的转速由轴向柱塞变量泵提供油压功率, 能够满足工 程机械或重载车辆大轴荷 (大于 10 屯) 的车桥大转向力需求和大转向流量需 求, 能够实现工程机械或重载车辆多桥车辆 (大于或等于 2桥) 的多桥转向各 种模式 (特例如转向中位的锁止) 和转向轻便、 转向智能化控制, 避免了转向 过程中驱动系统的发热量高 (如已有专利技术的电机发热量高) 等缺点。 本发 明釆用双转向助力油虹, 增大了车桥转向助力和有效降氏了车辆转向液压压力 需求, 为节能和节约布置空间提供条件。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的 技术人员来说 ,本发明可以有各种更改和变化。凡在本发明的 ^"神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种电控闭式液压转向系统, 其特征在于, 包括:
液压转向装置, 其包括: 转向助力油虹; 变量泵, 通过主油路直接 向所述转向助力油缸提供液压油, 其中, 所述变量泵的输出流量和油路 走向由电信号控制; 以及
控制器, 与所述变量泵电信号连接, 用于根据车辆工况和车轮转向 需求信号, 计算出所述变量泵的输出流量和油路走向, 据此输出用于控 制所述变量泵的电信号。
2. 根据权利要求 1所述的电控闭式液压转向系统, 其特征在于, 所述控制 器还用于根据车桥转向传感器反馈的车轮转向角信号修正所述变量泵的 输出流量。
3. 根据权利要求 1所述的电控闭式液压转向系统, 其特征在于, 所述变量 泵由发动机或其传动元件驱动, 所述控制器还用于根据发动机或其传动 元件的转速的变化对所述变量泵的排量进行修正控制。
4. 根据权利要求 1所述的电控闭式液压转向系统, 其特征在于, 还包括并 联在所述主油路上的用于实现液压油散热和更换功能的冲洗阀。
5. 根据权利要求 1至 4中任一项所述的电控闭式液压转向系统, 其特征在 于, 所述变量泵为电控轴向柱塞变量泵。
6. 根据权利要求 1至 4中任一项所述的电控闭式液压转向系统, 其特征在 于, 所述车辆工况包括车速信号、 转向模式、 发动机或其传动元件的转 速信号、 油泵输出信号和车轮转向角信号。
7. 根据权利要求 1所述的电控闭式液压转向系统, 其特征在于, 还包括辅 助控制阀组, 其中, 所述辅助控制阀组包括: 在所述主油路的互为供油 和回油的两管路上分别设置的用于实现锁止功能的液压锁, 所述两液压 锁的控制油路上设置有外接油源的锁定控制阀或连接在所述主油路上的 选择阀。
8. 根据权利要求 7所述的电控闭式液压转向系统, 其特征在于, 所述辅助 控制阀组还包括: 在所述主油路的互为供油和回油的两管路之间设置的 用于实现互锁和卸荷功能的安全控制阀。
9. 根据权利要求 7所述的电控闭式液压转向系统, 其特征在于, 所述辅助 控制阀组还包括: 在所述主油路的互为供油和回油的两管路上分别设置 的用于实现溢流和补油功能的单向溢流补油阀。
10. 一种车辆, 其特征在于, 所述车辆具有 -据权利要求 1至 9中任一项所 述的电控闭式液压转向系统。
11. 根据权利要求 10所述的车辆, 其特征在于, 所述车辆包括多个转向桥, 各所述转向桥上设有一套所述液压转向系统的液压转向装置, 各所述液 压转向装置的变量泵均由车辆发动机或其传动元件提供动力, 所述控制 器与各所述液压转向装置的变量泵和辅助控制阀组信号连接。
12. 根据权利要求 10所述的车辆, 其特征在于, 所述车辆包括多个转向桥, 所述多个转向桥分为若千组, 每一组所述转向桥上设有一套所述液压转 向系统的液压转向装置。
13. —种电控闭式液压转向控制方法, 其特征在于, 包括以下步骤:
利用变量泵直接向转向桥的转向助力油缸的主油路提供液压油, 以 控制所述转向助力油虹的伸出和缩回;
根据车辆工况、 车轮转向需求信号和当前的所述转向桥的车轮转向 角信号, 计算出所述变量泵的输出流量和确定油路走向, 并据此控制所 述变量泵; 以及
根据转向桥反馈的车轮转向角信号修正所述变量泵的输出流量, 以 控制所述转向助力油缸的伸出量和缩回量。
14. 根据权利要求 13所述的电控闭式液压转向控制方法, 其特征在于, 在所 述主油路的互为供油和回油的两管路上分别设置用于实现锁止功能的液 压锁, 以实现所述转向助力油虹的转向锁定。
15. 根据权利要求 13所述的电控闭式液压转向控制方法, 其特征在于, 选择 电控轴向柱塞变量泵作为变量泵, 并使所述电控轴向柱塞变量泵由发动 机或其传动元件驱动, 同时 -据所述发动机或其传动元件的转速变化修_ 正所述变量泵的排量。
PCT/CN2011/076222 2010-08-26 2011-06-23 电控闭式液压转向系统、控制方法和具有该系统的车辆 WO2012024973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010265419 CN102372025B (zh) 2010-08-26 2010-08-26 电控闭式液压转向系统、控制方法和具有该系统的车辆
CN201010265419.1 2010-08-26

Publications (1)

Publication Number Publication Date
WO2012024973A1 true WO2012024973A1 (zh) 2012-03-01

Family

ID=45722869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076222 WO2012024973A1 (zh) 2010-08-26 2011-06-23 电控闭式液压转向系统、控制方法和具有该系统的车辆

Country Status (2)

Country Link
CN (1) CN102372025B (zh)
WO (1) WO2012024973A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106741163A (zh) * 2016-12-27 2017-05-31 潍柴动力股份有限公司 一种车辆转向的控制方法和装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102874305B (zh) * 2012-10-12 2015-02-11 中联重科股份有限公司 车桥转向系统及其控制方法、工程车辆
CN102935861B (zh) * 2012-12-10 2015-04-01 中联重科股份有限公司 多桥车辆及其转向控制系统和转向控制方法
CN103043096B (zh) * 2013-01-09 2015-04-22 安徽江淮银联重型工程机械有限公司 飞机挂弹车转向系统
CN104290808B (zh) * 2014-09-19 2016-07-06 中国嘉陵工业股份有限公司(集团) 机械液压式差速转向控制装置及使用方法
CN111452565A (zh) * 2020-04-17 2020-07-28 三一汽车起重机械有限公司 转向控制系统及起重机
CN114906211B (zh) * 2021-02-08 2023-08-01 湖南中车智行科技有限公司 双冗余液压缸驱动的转向系统及车辆
CN113428223B (zh) * 2021-07-21 2022-03-11 合肥工业大学 一种全液压转向机械系统的转向速度一致性控制方法
CN114261443A (zh) * 2022-01-07 2022-04-01 天津德科智控股份有限公司 一种电液转向系统及控制方法
CN116654083A (zh) * 2023-08-02 2023-08-29 江铃汽车股份有限公司 基于电控泵闭环液压的转向控制系统、控制方法及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446697A (en) * 1978-05-18 1984-05-08 Eaton Corporation Hydraulic fan drive system including variable displacement pump
EP1508494A2 (de) * 2003-08-19 2005-02-23 Bayerische Motoren Werke Aktiengesellschaft Hilfskraftunterstütztes Lenksystem für ein Kraftfahrzeug, mit hydraulischer offener Mitte
CN1835861A (zh) * 2003-08-19 2006-09-20 株式会社日立制作所 动力转向设备和控制动力转向设备的方法
CN201321074Y (zh) * 2008-12-11 2009-10-07 湖北三江航天万山特种车辆有限公司 一种马达驱动独立转向系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1234748B1 (de) * 2001-02-23 2003-11-12 Visteon Global Technologies, Inc. Dämpfungsventil für hydraulisch unterstütztes Lenkungssystem
US6923289B1 (en) * 2003-09-11 2005-08-02 Sauer-Danfoss, Inc. Closed circuit steering circuit for mobile vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446697A (en) * 1978-05-18 1984-05-08 Eaton Corporation Hydraulic fan drive system including variable displacement pump
EP1508494A2 (de) * 2003-08-19 2005-02-23 Bayerische Motoren Werke Aktiengesellschaft Hilfskraftunterstütztes Lenksystem für ein Kraftfahrzeug, mit hydraulischer offener Mitte
CN1835861A (zh) * 2003-08-19 2006-09-20 株式会社日立制作所 动力转向设备和控制动力转向设备的方法
CN201321074Y (zh) * 2008-12-11 2009-10-07 湖北三江航天万山特种车辆有限公司 一种马达驱动独立转向系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106741163A (zh) * 2016-12-27 2017-05-31 潍柴动力股份有限公司 一种车辆转向的控制方法和装置

Also Published As

Publication number Publication date
CN102372025B (zh) 2013-06-12
CN102372025A (zh) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2012024973A1 (zh) 电控闭式液压转向系统、控制方法和具有该系统的车辆
US6989640B2 (en) Actuator driving device of working machine
KR101199244B1 (ko) 하이브리드식 건설기계
CN101456429B (zh) 用于控制电机驱动动力转向系统的方法
CN102076557B (zh) 操舵机
CN102372022B (zh) 多轴车辆电液伺服转向系统、转向控制方法和多轴车辆
KR101349464B1 (ko) 상용 하이브리드 전동 조향장치 및 이의 제어를 통한 성능 및 연비 개선방법
WO2009119703A1 (ja) ハイブリッド建設機械の制御装置
CN103527774B (zh) 作业车辆的行走控制装置
WO2016194409A1 (ja) 作業機械の油圧駆動装置
JP5317517B2 (ja) ハイブリッド建設機械の制御装置
WO2009119706A1 (ja) ハイブリッド建設機械の制御装置
WO2015027916A1 (zh) 混合动力车的双驱动助力转向系统和控制方法
JP4942699B2 (ja) ハイブリッド建設機械の制御装置
CN110962919B (zh) 一种主动电液耦合转向系统及车辆
US20220307595A1 (en) Hydraulic circuit architecture with enhanced operation efficency
CN102874305B (zh) 车桥转向系统及其控制方法、工程车辆
WO2018102956A1 (zh) 用于起重机械的主动转向系统及起重机械
CN210739342U (zh) 柔性换挡液压系统与工程机械
CN104385896A (zh) 具有双发动机动力系统的装载机
US9708795B2 (en) Work vehicle and control method for same
CN113502871B (zh) 一种基于电动机-泵/马达的装载机转向系统
CN107010107A (zh) 一种大客车液压主动转向系统及控制方法
CN110778540B (zh) 摊铺机液压系统与摊铺机
US11993919B2 (en) Work vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819348

Country of ref document: EP

Kind code of ref document: A1