WO2012024824A1 - 基于数字信号编码的第五代宽带无线通信的方法及系统 - Google Patents

基于数字信号编码的第五代宽带无线通信的方法及系统 Download PDF

Info

Publication number
WO2012024824A1
WO2012024824A1 PCT/CN2010/001845 CN2010001845W WO2012024824A1 WO 2012024824 A1 WO2012024824 A1 WO 2012024824A1 CN 2010001845 W CN2010001845 W CN 2010001845W WO 2012024824 A1 WO2012024824 A1 WO 2012024824A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital signal
wireless communication
code
signal
transmission
Prior art date
Application number
PCT/CN2010/001845
Other languages
English (en)
French (fr)
Inventor
黄风义
姜楠
龙肖虎
张在琛
李滔
Original Assignee
爱斯泰克(上海)高频通讯技术有限公司
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱斯泰克(上海)高频通讯技术有限公司, 东南大学 filed Critical 爱斯泰克(上海)高频通讯技术有限公司
Publication of WO2012024824A1 publication Critical patent/WO2012024824A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/717Pulse-related aspects

Definitions

  • the invention relates to the technical field of broadband wireless communication, in particular, directly encoding and converting a high-speed baseband digital signal, and directly amplifying and transmitting the high-speed baseband digital signal without using a radio carrier and without modulating the transmission signal.
  • Information transmission is an important area of modern society.
  • modern information technology converts analog signals such as sounds and images into digital signals for information processing or storage.
  • the logic and information storage in a computer are all in the form of digital signals.
  • information is also transmitted as a digital signal onto a light-propagating medium for propagation.
  • information is based on digital signals.
  • wireless transmission of digital signals usually requires modulation of digital signals onto radio frequency RF signals through radio transmission, transmission, and reception.
  • This method has been the main mode of transmission of all radio information.
  • sound information is loaded onto a radio carrier for transmission, transmission, and reception; and information therein is embedded into a radio carrier by modulation.
  • a wireless communication mode that can be compatible with digital signals, computer information, and optical fiber communication, and has a simple structure, low cost, and superior performance.
  • the traditional wireless communication system has a radio frequency front-end transceiver module subsystem (referred to as a transceiver system) mainly including two implementation modes, one is a modulation carrier mode that converts the frequency, and the other is a pulse-free mode. Line radio mode.
  • the modulated carrier mode is a mature system that has been developed for many years, and is characterized by the need for radio carriers to achieve wireless transmission of signals.
  • the transmitting end of the transceiver system uses a baseband signal (including information to be transmitted) to modulate the carrier radio signal, and the low frequency baseband signal and the carrier signal are mixed by the mixer to load the information to be transmitted onto the radio frequency signal. And then transmitting the radio carrier through the antenna to realize the transmission of information in space.
  • Several typical structures of this mode such as direct upconversion transmitter architecture, superheterodyne transmitter architecture, etc., require modulation of the carrier by the radio carrier and the baseband signal.
  • the receiving end of the modulated carrier mode mixes the received RF signal and the carrier signal, restores the low frequency baseband signal from the RF signal, and transmits it to the subsequent module for processing.
  • Typical implementations of such receivers include, for example, zero intermediate frequency receivers, dual intermediate frequency heterodyne receivers, and the like. Please refer to "RF Microelectronics", Behzad Razavi, Yu Zhiping, Zhou Runde, The First Edition, April 2006 (Reference 1).
  • CDMA Code Division Multiple Access
  • Relevant patents include: Zhu Yingjian, "CDMA-Sub-frequency Transmitter System with Digital Modulation", Dongfang Communication Technology Development Co., Ltd., Authorization No.: CN1440149, 2003 (Reference Patent 1); Miura Tatsuya, "CDMA Receiver and its Receiving method", Nippon Electric Co., Ltd., authorization number CN1402911, 2003 (refer to Patent 2).
  • the traditional mainstream wireless communication system mode needs to rely on the modulation carrier mode, that is, the communication system needs to rely on the baseband digital signal to modulate the radio carrier, through the radio.
  • Waves enable the transmission and transmission of information.
  • Other information storage and transmission systems such as computer systems and fiber-optic communication systems, have a digital signal.
  • the wireless transmission of computer information and optical fiber information needs to rely on the modulation carrier mode. Modulating the digital signal to the radio carrier signal increases the complexity of the system, thereby increasing the cost of the system and, in addition, affecting signal integrity.
  • the Ultra Wide Band-UWB wireless communication mode that has emerged in recent years includes two main types, one is orthogonal frequency division interoperability mode, and the other is pulse ultra-wideband mode.
  • more mature technologies such as “Multi-band-OFDM” (Multi Band-OFDM) systems also adopt modulation/demodulation modes.
  • Multi-band-OFDM Multi Band-OFDM
  • the above modes involve the modulation of the baseband signal onto the high frequency radio carrier signal and the transmission of the information by transmitting the radio carrier.
  • a representative feature is that both radio carrier signals are required and frequency conversion is required. From the perspective of circuit implementation, the above systems all require a mixer.
  • Software radio is a wireless communication design that implements physical layer connections in software, such as Buracchini, E.; "The software radio concept,” Communications Magazine, IEEE, Sep 2000, Vol.38, Issue 9, page: 138-143 ( Reference 4).
  • Software radio is often considered a system that can be reconfigured. It only needs to develop a common hardware system that adapts to different environments through different software: including multiple services, standards, and frequency bands. Thus, a mobile terminal can be used unimpeded between different systems and platforms.
  • the full-band ideal software radio is still only conceived. What can be achieved at present is the design idea of using software radio as much as possible. It is fully digital below the intermediate frequency, so it is also called digital radio.
  • Digital Radio technology is often used to describe the application of digital signal processing techniques to baseband signals.
  • a wireless communication system that processes, modulates, and demodulates, IFs, and even RF signals.
  • Layer DH
  • Digital radio takes to the road
  • Spectrum IEEE, Volume: 38, Issue: 7, Page(s): 40-46 (Reference 5).
  • impulse radio technology uses digital signals to "modulate" the amplitude, position, etc. of the pulse signal.
  • This mode is generally considered to be a “carrier-less” mode, but still requires the baseband signal to modulate the carrier signal formed by the ultra-wideband pulse, and then transmit and receive the information.
  • the conventional radio transmission system is either based on the modulation carrier and the frequency conversion, or needs to modulate the carrier signal of the ultra-wideband pulse.
  • Frequency conversion or modulation is the mode used in all conventional radio signal transmission systems.
  • the fourth generation (4G) mobile communication technology currently under development in the world, because the system is required to have reconfigurability between different wireless communication modes, for example, between the long-distance mobile phone mode and the short-range wireless connection mode. Reconfigurable, so the correlation system needs to be based on the mode of the modulated carrier. Because the information of computer systems and fiber-optic communication systems are stored in the form of digital signals or transmitted in fiber, 4G wireless communication still cannot achieve direct interconnection and information transmission between wireless communication and all-digital computer and optical fiber communication.
  • the wireless communication method and system proposed by the present invention is based on the encoding of high-speed baseband digital signals, and can realize direct wireless connection with computer systems and optical fiber communication systems, and has a wireless transmission rate of more than 1 gigabit per second. ability.
  • the technology of the invention can realize simple structure, low cost and high transmission A wireless communication system with high transmission rate and compatibility, thus providing a possible solution for the fifth generation (5G) all-digital broadband mobile communication technology.
  • the technical problem to be solved by the present invention is to provide a method and system for all-digital broadband wireless communication based on digital signal coding.
  • a high-speed baseband is proposed.
  • the broadband wireless communication method and system for directly amplifying and transmitting digital signal coding, compared with the current mature wireless communication mode, the wireless communication system of the invention has no carrier, no pulse, no frequency conversion, no modulation processing, but passes
  • the high-speed baseband digital signal is encoded to form a transmission code, and then directly amplified, transmitted, transmitted and received, thereby realizing a broadband wireless communication system with simple structure, low cost and high transmission rate.
  • the technical solution provided by the present invention is to first encode a high-speed baseband digital signal to form a spreading code and further transform the waveform to form a transmission code, and then directly amplify and transmit the transmission code by using a broadband wireless radio frequency system, without using a conventional system.
  • the radio carrier including ultra-wideband pulses), the modulation/demodulation of the carrier signal by digital signals.
  • the transmitting end of the wireless communication system of the present invention generates a transmission code by encoding a high-speed baseband digital signal, and is amplified by a broadband power amplifier, and then transmitted to a space through a broadband antenna; the receiving end receives a signal from the broadband antenna and inputs the signal to the broadband low-noise amplifier.
  • the signal is amplified by a wideband low noise amplifier and input to a high-speed sampler or analog-to-digital converter, and then input to the baseband for signal processing.
  • the system of the invention does not need to load and receive the high-speed baseband digital signal onto another radio carrier or pulse signal, so that the radio frequency part of the transmitting end of the system does not need to up-convert the mixer and the local oscillator signal, and the receiving end of the system
  • the RF portion does not require a downconverting mixer and the encoding process for the high speed baseband digital signal in the system scheme of the present invention is divided into the following two steps: The first step is to extend the high speed baseband digital signal to obtain a spreading code.
  • the digital signal is usually a random sequence of high and low levels, where the high level is usually represented by 1 and the low level is usually represented by 0.
  • the spreading code is formed by expanding the original digital signal codes 1 and 0 to two or more codes, respectively, wherein the spreading code includes both high and low level components, for example, a high level 1 is expanded to a spreading code of 10, low. Level 0 is expanded to a spreading code of 01.
  • the spreading code solves the high level of the long sequence (or low power)
  • the low frequency component (or approximately DC component) formed by the RF system cannot be directly transmitted, transmitted, and received by the RF system.
  • the spreading code can also expand the low-frequency digital signals in some cases into high-frequency signals.
  • the function of the spreading code is to move the low-frequency component of the digital signal to the high-frequency end without affecting the signal integrity, so that the frequency band of the digital signal to be transmitted falls within a certain bandwidth.
  • the second step is the waveform transformation.
  • the spreading code formed by the high speed baseband digital signal is then subjected to waveform conversion processing to obtain a transmission code.
  • the transmission code is obtained by transforming the pulse waveform by a filter using a spreading code of the digital signal (which can be regarded as a square wave pulse sequence). This waveform transformation is based on the high-frequency components of the digital signal waveform without affecting the signal integrity.
  • the waveform-converted transmission code reduces the bandwidth of the transmitted signal (at the high-frequency side) compared to the spreading code, thereby reducing the bandwidth requirements of the system for RF transmission and reception.
  • the formation of the transmission code requires compression of the spread code bandwidth without introducing additional inter-code crosstalk. This function is implemented by a specific filter.
  • the transmit end structure of the system of the present invention a high speed digital signal of the baseband (carrying information that needs to be transmitted), the signal amplitude of which is typically on the order of tens of millivolts (mV) or less.
  • the amplitude of the transmission code digital signal is amplified directly to the order of hundreds of millivolts or more by a wideband power amplifier and then transmitted through the wideband antenna.
  • Receiver structure of the system of the present invention After receiving the radio signal, the wideband antenna is amplified by a wideband low noise amplifier, then input to a high speed sampler for sampling and analog/digital signal conversion, and finally input to the baseband for signal processing.
  • the above system can realize all-digital, carrierless, non-frequency conversion, non-modulation broadband wireless communication system for high-speed baseband digital signal direct wireless transmission, transmission and reception.
  • the baseband digital signal is represented by binary 0's and 1's. Among them, 0 represents a low level (such as the commonly used zero voltage), and 1 represents a high level. High-order hexadecimal hexadecimal 1, 0, and -1 are also used in some cases. Among them, -1 represents the absolute value of the amplitude and the level of 1 is the same, but through the above-mentioned high-speed baseband digital signal coding technology and the corresponding system structure, the basic digital signal can be wirelessly transmitted, transmitted and received. In order to further increase the system capacity and increase the frequency band utilization efficiency, different time periods and different shapes of the high-speed digital signal series can be utilized, including different letters. The amplitude of the number, the time constant of the rising/falling edge, the phase and position of the waveform, etc., constitute different information transmission channels, thereby realizing a multi-user, multi-channel wireless communication system.
  • the system of the present invention encodes the high-speed baseband digital signal directly through the broadband power amplifier and transmits it through the broadband antenna.
  • the transmitted radio signal is received by the broadband antenna and amplified by the broadband low-noise amplifier. Then, it is sent to the baseband for signal processing through a high-speed sampler or an analog-to-digital converter.
  • the invention avoids the devices necessary for the modulation and demodulation structure in the conventional wireless communication mode, such as the mixer and the pulse generator in the pulse radio mode, thereby realizing a broadband wireless communication system with simple structure, low cost and high transmission speed.
  • Figure 1 is a block diagram of the main part of the system of the present invention.
  • Figure 2 shows the structure of a conventional direct upconversion transmitter (Reference 1);
  • Figure 3 shows the structure of a conventional zero-IF receiver (Reference 1);
  • Figure 4 shows the transmission of digital signals in the system without waveform transformation.
  • the square wave signal rate is 1 Gbps, and the system maximum frequency is 1 GHz.
  • Figure 5 Random digital signal transmission without waveform transformation in the system, square wave signal rate 1 Gbps, system maximum operating frequency 1 GHz;
  • Figure 7 The transmission of the random digital signal in the system after waveform transformation to form the transmission code.
  • the square wave signal rate is 1 Gbps, and the maximum operating frequency of the system is 1 GHz.
  • Fig. 1 shows a system transmitting portion (left side) and a receiving end portion (right side) of the broadband wireless communication of the present invention.
  • a high-speed baseband digital signal that needs to transmit information is carried, and is input to the transmitting end in the form of a square wave signal or other pulse signal.
  • the frequency of the high speed baseband digital signal may include radio frequencies, microwaves, millimeter wave frequencies, etc. of several hundred megahertz or more.
  • the long-sequence information of the same level corresponds to low-frequency or near-direct DC information.
  • the original baseband digital signal is first encoded, that is, the digital signal is expanded and shaped, and thus The digital signal is converted into a transmission code of a certain frequency width.
  • the signal received by the wideband antenna is amplified by the wideband low noise amplifier, the signal is sampled and analog/digital signal converted by the high speed sampler, and then transmitted to the subsequent baseband circuit for signal processing.
  • Time division multiplexing (TDM) systems can be implemented using different time segments of the digital signal sequence.
  • TDM Time division multiplexing
  • the use of different shapes of digital signals (such as square waves and other pulses), including amplitude, rise/fall time, and position (or phase), can carry more information.
  • the all-digital carrierless broadband wireless communication system described above has a function of realizing a wireless connection between computers.
  • the system since the information is transmitted in a digital mode, the system also has the direct compatibility with the optical fiber communication, thereby realizing the wireless connection between the optical fiber communication.
  • the on-chip interconnection of digital integrated circuit chips can also achieve wireless on-chip interconnection through this system mode.
  • FIG. 1 is a core part of the structure of an all-digital broadband wireless communication system proposed by the present invention.
  • the transmitting end and the receiving end of the system for broadband wireless communication of the present invention are as shown in FIG. 1 , wherein the transmitting end comprises: a baseband digital signal generating system 10, a transmission code 11 formed after encoding, a broadband power amplifier 12 at the transmitting end, and a broadband antenna at the transmitting end.
  • the receiving end includes: a wideband antenna 14 at the receiving end, a broadband low noise amplifier 15 at the receiving end, a high-speed sampler module 16 at the receiving end, and a digital processing module 17 at the receiving end;
  • the transmitting end of the system is a high-speed baseband digital signal 10 (such as a square wave)
  • the signal is encoded to form a spreading code and a waveform transform to form a transmission code 11, which is directly input to the wideband power amplifier 12 at the transmitting end.
  • Figure 2 shows the structure of a conventional direct upconversion transmitter.
  • the digital signal 20 is loaded with the radio carrier 21 to form a modulated frequency-converted signal 22 for transmission, and the local oscillator signal 23 is adjusted by the phase shifter 24, and then loaded to the radio frequency signal by the mixer 25, and the mixed and modulated radio frequency signal passes through the power. After the amplifier is amplified, it is transmitted through the antenna.
  • Figure 3 shows the structure of a conventional zero-IF receiver. Wherein: After the RF signal received by the antenna passes through the low noise amplifier, the local oscillator signal 30 is adjusted by the phase shifter 31, converted into a low frequency signal by the mixer 32, and then transmitted to the subsequent circuit for processing.
  • the technical novelty of the coding technique of the present invention is mainly embodied in the control of the radio frequency bandwidth of the wireless system.
  • the spreading code can avoid the low frequency (or near DC) component in the digital signal, and the waveform conversion avoids the high frequency component in the square wave digital signal.
  • a strict periodic square wave signal will be described below as an example.
  • the strictly periodic square wave signal is represented by an infinite sequence of (a 01010101 -).
  • the receiving end In order to be able to restore a strictly periodic square wave signal at the receiving end while maintaining the waveform substantially unchanged, the receiving end must contain at least the 5th harmonic component of the fundamental component of the square wave. For example, if the fundamental frequency of the baseband square wave signal is 1 GHz, the amplifier, antenna, and amplifier at the transmitting end of the system need to cover the 1-5 GHz band.
  • ISI inter-symbol interference
  • the multi-channel signal combining transmission causes the baseband digital signal frequency to rise further, and the required bandwidth will increase by 5 times, which will cause more serious ISI.
  • the bandwidth of the system corresponds to the other extreme at the low end.
  • the width of the corresponding square wave will be very wide (1000 times that of a single signal), in this case Causes the frequency to be too low and beyond the system bandwidth.
  • Such a signal may not be able to be transmitted through the antenna because the frequency is too low.
  • the control of the corresponding signal bandwidth is accomplished by encoding the high speed baseband digital signal.
  • the encoding of the digital signal is divided into two steps of expansion and waveform transformation.
  • the above process can be regarded as converting the frequency conversion and modulation process of the radio frequency part of the conventional wireless transmission system into the coding process of the baseband digital signal.
  • Encoding a digital signal and forming a wirelessly transmitted transmission code having a certain bandwidth The core technology of the present invention is also the fundamental difference between the wireless transmission system and other conventional wireless transmission systems.
  • the extension of the digital signal to form a spreading code is to extend the original code sequence of the high-speed baseband digital signal to form a corresponding spreading code.
  • the level of the original code is expanded into a combined sequence of high and low (zero voltage) combinations to form a spreading code.
  • the simplest combination sequence is a two-bit transmission code 10 consisting of expanding the original code 1 to a high and low level, and the original code 0 is expanded to a two-bit transmission code 01.
  • the number of bits of the spreading code is not limited to two bits, and a code combination containing both high and low levels can be used as a spreading code with respect to the original code.
  • the receiving end will determine the actual level to be accepted by the level change: the level transition from high level to low level means that the received signal is 1, and vice versa. The signal is 0.
  • the original digital signal of the long sequence can be guaranteed to have a high level and a low level after being converted into a spreading code without excessively high.
  • Level or low level sequence Although the spreading code sequence has a rate that is twice that of the original baseband digital signal, the lowest frequency of the spreading code is the transmission rate of the original baseband signal before spreading. This solves the problem that the excessively long single sequence causes the frequency to be too low, which is beneficial to the design and implementation of the RF system.
  • Another way to form a spreading code is to introduce a separator.
  • a separator When a very long high level signal 1 is encountered, a low level separator signal 3 is inserted every other or several signal widths. The level of this separator s and the level 0 representing the original code have different characteristics, for example, the time width of the level is different. Thus, the system will determine the separator based on the low level of this different width.
  • a baseband signal sequence (01101111111001) is expressed as COl lOl lsl lsl lslOODo by the introduction of a separator.
  • a separator is introduced every two high levels. By the introduction of a separator, a very long high level can be separated into short sequence signals and transmitted and received wirelessly.
  • the next step is to perform waveform transformation on the digital signal.
  • This process replaces the square wave with a high frequency band with a narrow-band waveform to form the final transmission code.
  • the pulse waveform used to replace the square wave can overlap with other pulses before and after according to the Nyqui St Signaling rule, but it is necessary to ensure that when a certain pulse reaches a peak, the other pulses have a value of 0 at that point.
  • the waveforms satisfying the above conditions are called Nyquist Signal, and the Raised Cosine signal is the most widely used signal shape because it achieves better balance in all aspects. Style. Moreover, the method is relatively simple to implement, and the transmitting end and the receiving end are added in the system.
  • the "Root-Raised-Cosine” filter can achieve the above waveform transformation.
  • Waveform conversion can greatly reduce the bandwidth required by the system without affecting the transmission performance.
  • the processing of the original baseband digital signal is completed.
  • the combination of the above extended processing and waveform transformation completes the encoding process of the original baseband digital signal.
  • the encoding process expands and waveforms the original code to form a transmission code that can be transmitted, transmitted, and received by a radio system with a certain bandwidth.
  • the core technical idea of the invention includes two main aspects:
  • the high-speed baseband digital signal is directly amplified by the broadband power amplifier and sent to the antenna for transmission. After receiving at the receiving end, the broadband amplifier directly samples and recovers the original signal. There is no traditional carrier modulation process in the whole process, to some extent. Simplified system structure.
  • the second aspect is to form a transmission code by encoding and transforming the high-speed baseband digital signal, thereby reducing the bandwidth of the radio frequency system and realizing a low-bit error rate wireless transmission system.
  • the encoding of the digital signal comprises two steps, the first step is to expand the digital signal to form a spreading code, and the second step is to perform waveform transformation on the spreading code to form a transmission code.
  • the function of the spreading code is to extend the low frequency digital signal, or a long sequence single level, such as a high level sequence (near the DC signal), and then move the low frequency component of the digital signal to the high frequency end to form a certain bandwidth of the radio frequency. signal.
  • the purpose of the waveform transformation is to compress the bandwidth of the digital signal (the high-frequency component of the compressed signal) so that the rate of the RF system does not require several times the baseband digital signal rate, for example, at a bandwidth close to the digital signal rate. Underneath, the error-free rate (or low bit error rate) of the information can be transmitted.
  • the high-speed baseband digital signal is first encoded to form a spreading code, and the waveform is further converted to form a transmission code, and then a wideband power amplifier is used to amplify the digital signal of the transmission code, and the amplified signal is amplified by a broadband signal.
  • the antenna is launched into space.
  • the signal transmitted from the transmitting end is attenuated by the spatial transmission and then received by the antenna of the receiving end, and then amplified by the broadband low noise amplifier.
  • the amplified signal is sampled by a high speed sampler And the analog/digital signal is converted and input to the baseband for signal processing.
  • the spreading code is formed in the original high level 1 by introducing a two-digit 10 (or 01) code extension to form a spreading code of the sequence of (... 10101010101010).
  • the low-frequency signal of the original high-level sequence (...1111117) is expanded by a spreading code into a high-frequency radio signal, which can be transmitted by the transmitting end.
  • the ordinate axis Vin is the time domain waveform of the spread code signal
  • Vs is the signal amplified by the power amplifier signal at the transmitting end and then transmitted to the space
  • Vout is the output signal of the low noise amplifier at the receiving end, wherein, the voltage The unit of Vin, Vs, and Vout is mV.
  • the abscissa axis in the figure is time in nanoseconds (ns).
  • the long sequence of spreading codes corresponds to a strictly periodic square wave sequence (... 10101010101010)].
  • it contains an infinite number of odd harmonic components. If you want to recover the square wave signal with low distortion, at least It needs to include its 5th harmonic component.
  • the baseband of the baseband square wave signal is 1 GHz, the system bandwidth should reach 5 GHz. Therefore, for a specific bandwidth of the transmitting end and the receiving end, for example, if the bandwidth of the radio frequency system is close to the digital signal, the high frequency component will be lost. Inter-code crosstalk and waveform distortion are generated.
  • the high frequency portion of the signal is filtered out, encoded by the power amplifier to amplify the transmitted signal Vs after the spreading code is formed, and amplified at the receiving end by a low noise amplifier.
  • the received signal Vout has waveforms that are approximately regular sinusoidal waveforms, rather than square waves formed after encoding.
  • the system has distortion but the original information that needs to be transmitted can still be recovered at the receiving end.
  • the above case illustrates how, in the case of a digital signal to be transmitted, when a long sequence of high levels is included, a high frequency radio signal is formed by the spreading code, thereby being transmitted, transmitted and received by the system of the present invention.
  • the extension will form a strict infinitely long high (1 or 10) cycle sequence.
  • the above situation only corresponds to a limit case, and the more common form of the baseband digital signal is an approximate random sequence.
  • Approximate random sequence (... 0100101101017), instead of a regular square wave, the signal time domain waveform for a spreading code with a Vin input rate of 1 Gbps, at the wireless transmitter receiving end with a maximum operating frequency of 1 GHz
  • the simulation results are shown in Figure 5. At this time, since the high-frequency components are filtered during the transmission, severe inter-symbol interference will occur under the bandwidth of the RF system to cause waveform distortion.
  • one method is to increase the RF bandwidth of the system, including the amplifier, antenna, and amplifier at the receiver.
  • the simulation results of the system are shown in Figure 6.
  • the transmitted and received signals basically contain the required frequency components, and the rising and falling edges of the time domain waveform become steeper and closer to the square wave.
  • the operating frequency of the radio frequency system including the transmitting end, the antenna, and the receiving end
  • the error-free transmission of the system signal is achieved when the bandwidth is wide enough.
  • Another important technical idea of the present invention is to reduce the bandwidth required by the radio frequency system by using a waveform transform technique to replace the square wave pulse of the spreading code with a pulse having a smaller bandwidth.
  • the function of waveform transforming a spreading code to form a transmission code in the present invention is realized by adding a "Root-Raised-Cosine Filter" to the system.
  • a raised cosine filter whose symbol rate is twice the digital signal transmission rate
  • the transmission code is formed by filtering the spreading code and then transmitted.
  • the transmission code formed by a raised cosine filter with a symbol rate of 2 GHz the signal simulation result of the transmitter and the receiver at the highest operating frequency of the RF system at 1 GHz is shown in the figure. 7 is shown.
  • the raised cosine filter is The spread code band is compressed without inter-code crosstalk, reducing the bandwidth required by the system. Therefore, with the introduction of the raised cosine filter of the present invention, a low error rate transmission which can be realized by a radio frequency system which originally requires 5 times of bandwidth can be realized in an RF system close to 1 time bandwidth. By reducing the bandwidth of the RF system, the complexity and cost of the system can be greatly reduced. In addition, considering the difference in the degree of spatial attenuation of signals at different frequencies, the waveform is transformed by a raised cosine filter to form a transmission code to reduce the bandwidth of the RF system, simply by increasing the system bandwidth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

基于数字信号编码的第五代宽带无线通信的方法及系统 技术领域
本发明涉及一种宽带无线通信技术领域, 特别是在不需要借助无线电载波 以及不需要对发送信号进行调制处理的情况下, 通过对高速基带数字信号进行 编码及波形转换处理后直接放大、 发射以及接收来实现第五代 (5G- 5th generation ) 全数字宽带无线通信的方法与系统。 背景技术
信息传输特别是信息的无线传输是现代社会的一个重要领域。 一般情况下, 现代信息技术是把声音、 图像等模拟信号 (analog signal) 信息转化成数字信号 (digital signal)进行信息处理或者保存。比如,计算机中的逻辑运算和信息存储全 部都是采用数字信号的形式。 在光纤通信系统中, 信息也是以数字信号的形式 加载到光传播媒介上而进行传播。 从而, 在计算机、 光纤通讯、 以及图像、 声 音等信号处理和存储的很多应用领域, 信息都是以数字信号为基本形式。
历史上, 因为数字信号通常具有信号幅度小、 频率低等特点, 数字信号的 无线传输通常需要把数字信号调制到无线电信号(radio frequency RF signal)上, 通过无线电的发射、 传输和接收, 而实现信号的传输。 这种方法一直是所有无 线电信息传输的主要模式。 比如, 传统的无线电广播系统, 就是把声音信息加 载到无线电载波上, 实现发射、 传输和接收; 而其中的信息, 是通过调制方式 嵌入到无线电载波。 但随着技术的进步, 对无线通信的泛在性要求, 迫切需要 一种无线通信模式可以兼容数字信号、 计算机信息以及光纤通信等几种主要模 式, 并同时具有结构简单、 成本低廉、 性能优越等特点。 .
下面, 我们将在分析传统无线电通信系统的特点基础上, 提出一种区别于 传统的无线电通信模式的新的无线通信方法和系统结构。
传统的无线通信系统其射频前端收发模块子系统 (简称收发系统) 主要包 括两种实现模式, 一种是采用将频率进行变换的调制载波模式, 一种是脉冲无 线电 (impulse radio)模式。
其中, 调制载波模式是发展了很多年的成熟系统, 其特点是需要无线电载 波来实现信号的无线传输。 其收发系统的发射端是利用基带信号 (包含了需要传 输的信息)去调制载波无线电信号, 通过混频器将低频基带信号和载波信号进行 混频, 从而将需要传送的信息加载到射频信号上, 然后通过天线发射无线电载 波而实现信息在空间的传输。 这种模式的几种典型结构比如直接上变频发射机 结构, 超外差式发射机结构等, 都需要无线电载波以及基带信号对载波的调制。
调制载波模式的接收端则将接收的射频信号和载波信号进行混频, 从射频 信号中还原出低频基带信号, 再传送给后续模块进行处理。 这种接收端的典型 实现方法包括如, 零中频接收机, 双中频外差接收机等。请参考 "射频微电子", Behzad Razavi 著, 余志平, 周润德 译, 2006年 4月第一版 (参考文献 1 )。
传统的无线广播通信系统, 移动通信的第二代 (second generation - 2G) , 第三代(3G),以及目前正在幵发的第四代 (4G)系统等是基于以上的调制载波 模式。 其中, 第三代 (3G) 移动通信技术的国际标准己经比较完善, 产品已经 普及, 可实现无线传输速率达到约每秒几兆比特。 而第四代 (4G) 移动通信技 术的国际标准目前还不是很完善, 产品还在开发阶段, 其无线传输速率可达每 秒 1 百兆比特或以上。 虽然技术标准还没有完全确定, 但国际上形成的共同认 识是第四代移动通信系统需要具备可重构性, 即兼容多种不同的无线通信模式 和标准。 第五代 (5G) 移动通信技术目前国际上还处于前期研发阶段, 相关技 术还没有明确的国际标准, 预期的无线传输速率将在每秒 1千兆比特或者以上。
调制载波模式中一种被广泛应用的技术是码分多址 (CDMA) 技术, 这种 技术可以提高频谱的有效利用率, 提高信息传输效率, 降低干扰。 相关专利包 括如: 朱应剑, "数字调制方式的 CDMA—次变频发射系统", 东方通信科技发 展有限公司, 授权号: CN1440149, 2003年 (参考专利 1 ); 三浦彻也, "CDMA 接收机及其接收方法", 日本电气株式会社, 授权号 CN1402911 , 2003年(参考 专利 2 )。
通过以上的分析得知, 传统的主流无线通信系统模式都需要依靠调制载波 模式, 即通信系统需要依靠基带数字信号对无线电载波的调制, 通过无线电载 波实现信息的发射和传输。 而其它的信息储存和传输系统比如计算机系统和光 纤通信系统, 其信息形式是数字信号。 在传统的无线通信技术模式下, 计算机 信息以及光纤信息的无线传输, 都需要依靠调制载波模式。 把数字信号调制到 无线电载波信号, 一方面增加了系统的复杂度, 从而提高了系统的成本, 另外, 也影响了信号完整性。
最近几年兴起的超宽带 (Ultra Wide Band-UWB)无线通信模式包括两种主要 类型, 一种是正交频分互用模式, 一种是脉冲超宽带模式。 在超宽带通信中, 目前比较成熟的技术比如 "多带-正交频分互用"(Multi Band-OFDM)系统, 也 采用了调制 /解调的模式。 如: Behzad Razavi, Han-Chang Kang, Turgut Aytur, Ran Yan, "Ultrawideband CMOS transceiver", US Patent, Pub. No. 2006/0103473 Al, May 16, 2006 (参考专利 3); Ismail, A. Abidi, "A 3.1 to 8.2GHz Direct Conversion Receiver for MB-OFDM UWB Communications " , 2005 IEEE International Solid-State Circuits Conference, pp.208-210 (参考文献 2 ) ; Hui Zheng, et al., " A 3.1-8.0 GHz MB-OFDM UWB Transceiver in 0.18μιη CMOS, " IEEE 2007 Custom Integrated Circuits Conference (CICC), pp.651-654 (参考文献 3 )。
以上模式都涉及到把基带信号经过调制加载到高频无线电载波信号上, 再 通过发射无线电载波而实现信息传输。 其代表性特征是都需要无线电载波信号, 并需要进行频率转化。 从电路实现的角度分析, 以上系统均需要混频器。
过去近 20 年间, 在无线通信领域两个被广泛研究的技术是软件无线电 (software radio )和数字无线电 (digital radio)技术。 软件无线电是一种用软件 实现物理层连接的无线通信设计, 如 Buracchini, E.; "The software radio concept," Communications Magazine, IEEE, Sep 2000, Vol.38, Issue 9, page: 138— 143 (参考文 献 4 ) 。软件无线电通常被认为是一个可以进行重新配置的系统, 它只需要开发 一套通用的硬件系统, 系统通过不同的软件来适应不同的环境: 包括多种业务、 标准、 和频带等。 从而, 一个移动终端可以在不同系统和平台间畅通无阻地使 用。 .全波段理想软件无线电目前还只是设想,目前所能实现的是尽量采用软件无 线电的设计思想,在中频以下达到全数字化,所以也称为数字无线电。
"数字无线电 "技术通常被用来描述那些将数字信号处理技术应用于基带信 号处理、调制和解调、中频甚至射频信号处理的无线通信系统。请参考 Layer, D.H.; "Digital radio takes to the road,", Spectrum, IEEE, Volume: 38 , Issue: 7, Page(s): 40 - 46 (参考文献 5 )。
从以上分析可以看出, 软件无线电和数字无线电也都是建立在调制载波以 及变频的基础上。
同调制载波的无线通信模式不同, 脉冲无线电( impulse radio)技术作为超 宽带无线通信的一种实现模式是利用数字信号对脉冲信号进行幅度、位置等 "调 制"。 这种模式通常被认为是一种 "无载波"(carrier-less)模式, 但仍然需要基带 信号对超宽带脉冲所形成的载波信号进行调制, 然后再进行信息传输和接收。 如: Byunghoo Jung et al., "Pulse generator design for UWB IR communication systems, " Circuits and Systems, 2005,4381- 4384 Vol. 5 (参考文献 6); 马龙, "一 种新的基于混沌脉冲位置调制的 UWB-IR通信系统, " 解放军理工大学学报(自 然科学版), 2007年 04期 (参考文献 7 )。
综上所述, 传统的无线电传输系统或者是建立在调制载波以及变频的基础 上, 或者需要对超宽带脉冲的载波信号进行调制。 变频或者调制是所有传统无 线电信号传输系统中所采用的模式。
目前国际上还处于开发阶段的第四代 (4G ) 移动通信技术, 因为要求系统 具有在不同无线通信模式之间的可重构性, 比如, 在长距离手机模式与短程无 线连接模式之间的可重构, 从而相关系统也需要建立在调制载波的模式基础上。 因为计算机系统以及光纤通信系统的信息都是以数字信号的形式存储或者在光 纤中传输, 4G无线通信也仍然无法实现无线通信与全数字的计算机与光纤通信 之间的直接互联和信息传输。
基于以上分析得知, 迄今尚没有一种无线通信系统是建立在对高速基带数 字信号进行数字信号处理基础上, 对数字信号进行编码形成传输码后, 直接通 过对数字信号放大、 发射、 传输以及接收而实现信息的全数字宽带无线传输。 本发明提出的无线通信方法和系统是建立在高速基带数字信号的编码基础上, 可实现与计算机系统以及光纤通信系统之间的直接无线连接, 并具有每秒 1 千 兆比特以上无线传输速率的能力。 本发明技术可实现结构简单、 成本低、 高传 输速率、 兼容性强的无线通信系统, 从而为第五代 (5G) 全数字宽带移动通信 技术提供一种可能的解决方案。 发明内容
本发明要解决的技术问题在于提供一种基于数字信号编码的全数字宽带无 线通信的方法及系统, 是在详细分析传统各种无线通信的方法及系统模式的基 础上, 提出一种基于高速基带数字信号编码后直接放大与传输的宽带无线通信 方法及系统, 与目前成熟的无线通信模式相比, 本发明的无线通信系统无载波、 无脉冲、 无需变频, 也不需要调制处理, 而是通过对高速基带数字信号进行编 码形成传输码后直接放大、 发射、 传输和接收, 从而实现结构简单、 低成本、 高传输速率的宽带无线通信系统。
本发明提供的技术方案是把高速基带数字信号首先进行编码形成扩展码并 进一步对波形进行变换形成传输码后, 利用宽带无线射频系统直接对传输码进 行信号放大与传输, 而不需要传统系统中的无线电载波 (包括超宽带脉冲)、 数 字信号对载波信号的调制 /解调等步骤。 在本发明的无线通信系统的发射端通过 将高速基带数字信号编码形成传输码, 经过宽带功率放大器放大后, 通过宽带 天线发射到空间; 接收端从宽带天线接收信号, 输入到宽带低噪声放大器, 信 号经过宽带低噪声放大器放大后输入到高速采样器或者模数转化器, 再输入到 基带进行信号处理。 本发明系统不需要把高速基带数字信号加载到另外的无线 电载波或脉冲信号上之后进行发射和接收, 从而本系统的发射端的射频部分无 需上变频混频器和本振信号, 本系统的接收端的射频部分无需下变频混频器和 本发明系统方案中对高速基带数字信号的编码过程分为如下两个步骤: 第一个步骤是将高速基带数字信号进行扩展后得到扩展码。 数字信号通常 是高、 低电平的一个随机序列, 其中高电平通常用 1代表, 低电平通常用 0代 表。 扩展码是通过将原来的数字信号代码 1和 0分别扩展为二位或以上的代码 后形成, 其中扩展码中同时包括高低电平分量, 比如, 高电平 1扩展成 10的扩 展码, 低电平 0扩展成 01的扩展码。 扩展码解决了长序列的高电平 (或者低电 平)所形成的低频分量 (或者近似直流分量) 无法被射频系统直接发射、 传输、 和接收的问题。 除了解决长序列单一电平频率过低无法被无线传输的问题, 扩 展码同时可以将某些情况下的低频数字信号扩展为高频信号。 扩展码的作用是 在不影响信号完整性的情况下, 把数字信号的低频分量向高频端搬移, 使需要 传输的数字信号的频带落在一定的带宽范围内。
第二个步骤是波形变换。 高速基带数字信号形成的扩展码接着经过波形变 换处理后得到传输码。 传输码是将数字信号的扩展码 (可被看作是方波脉冲序 列), 通过滤波器对脉冲波形进行变换后得到。 这种波形变换是在不影响信号完 整性的基础上, 对数字信号波形的高频分量进行取舍。 波形变换后的传输码同 扩展码相比降低了传输信号 (在高频端) 的带宽, 从而降低了系统对射频发射 和接收端的带宽要求。 传输码的形成需要在压缩扩展码带宽的同时, 而不引入 额外的码间串扰, 这个功能是通过特定的滤波器来实现。
本发明系统的发射端结构:基带的高速数字信号(携带了需要传输的信息), 其信号幅度通常在几十个毫伏 (mV) 或者以下的量级。 通过对数字信号编码进 行扩展处理并形成传输码后, 直接通过宽带的功率放大器将传输码数字信号的 幅度放大到数百毫伏或者以上的量级, 然后通过宽带天线发射出去。
本发明系统的接收端结构: 宽带天线接收到无线电信号后, 通过宽带低噪 声放大器放大, 然后输入到高速采样器进行采样和模拟 /数字信号转化, 最后输 入到基带进行信号处理。 : 通过以上系统可以实现高速基带数字信号直接无线发送、 传输和接收的全 数字、 无载波、 无变频、 无调制宽带无线通信系统。
在多数应用情况下, 基带数字信号是采用二进制的 0和 1表示。 其中, 0代 表低电平(比如通常采用的零电压), 1代表高电平。 高位进制如三进制的 1 , 0, 和- 1也在某些情况下被使用。 其中, -1代表幅度的绝对值和 1的电平相同, 但 通过上述的高速基带数字信号编码技术以及相应的系统结构, 可以实现基 本的数字信号的无线发射、 传输和接收。 为了进一步增加系统容量、 增加频带 利用效率, 可以利用高速数字信号系列的不同时段、 不同形状, 包括不同的信 号幅度、 上升 /下降沿的时间常数、 波形的相位及位置等, 构成不同的信息传输 通道, 从而实现多用户、 多通道的无线通信系统。
通过以上分析可知, 本发明系统对高速基带数字信号进行编码后直接经过 宽带功率放大器放大, 通过宽带天线发射; 在系统的接收端, 传输的无线电信 号被宽带天线接收后, 经过宽带低噪声放大器放大, 再通过高速采样器或模数 转化器送到基带进行信号处理。 本发明避免了传统无线通信模式中调制解调结 构所必须的器件如混频器以及脉冲无线电模式中的脉冲发生器, 从而实现结构 简单, 低成本, 高传输速赛的宽带无线通信系统。 附图说明 下面结合附图和实施例对本发明作进一步说明。
图 1是本发明系统中主要部分的框图;
图 2是传统的直接上变频发射机结构 (参考文献 1 ) ;
图 3是传统的零中频接收机结构 (参考文献 1 ) ;
图 4是数字信号未经波形变换在系统中的传输情况, 方波信号速率 1 Gbps, 系统最高频率 1 GHz ;
图 5随机数字信号未经波形变换在系统中的传输情况,方波信号速率 1 Gbps, 系统最高工作频率 1 GHz ;
图 6随机数字信号未经波形变换在系统中的传输情况,方波信号速率 i Gbps, 系统工作带宽 1-5 GHz ;
图 7 随机数字信号经过波形变换形成传输码后在系统中的传输情况, 方波 信号速率 1 Gbps,系统最高工作频率 1 GHz。
以上图 1中有:
10 -基带数字信号发生系统
11 -传输码 T N2010/001845
14 -接收端的宽带天线
15 -接收端的宽带低噪声放大器
16 -接收端的高速采样器模块
17 -接收端的数字处理模块
图 2中有:
20 -数字信号
21 -无线电载波
22 调制变频后的信号
23 -本振信号
24 -移相器
25 -混频器
图 3中有:
30 -本振信号
31 -移相器
32―混频器。 具体实施方式
图 1 显示本发明的宽带无线通信的系统发射端部分 (左边) 和接收端部分 (右边)。 在本发明系统的发射端部分, 携带了需要传输信息的高速基带数字信 号, 以方波信号或其他的脉冲信号形式, 输入到发射端。 该高速基带数字信号 的频率可以包括几百兆赫兹以上的射频、 微波、 毫米波频率等。 数字信号中, 同一种电平的长序列信息对应了低频或者接近直流信息, 为了实现信息的无线 收发, 首先对原始的基带数字信号进行编码, 即对数字信号进行扩展与形状调 整处理, 从而将数字信号转换为一定频率宽度的传输码。
在接收机部分, 宽带天线接收到的信号被宽带低噪声放大器放大后, 利用 高速采样器对信号进行采样和模拟 /数字信号转化, 再传送给后续基带电路进行 信号处理。
整个系统中, 功率放大器, 低噪声放大器, 以及天线的频率响应带宽需要 满足相应的系统带宽要求。
在以上的系统中, 采用以下几种模式可实现多用户、 多通道通信。 利用数 字信号序列的不同时间段, 可实现时分复用 (TDM) 系统。 利用数字信号(如方 波以及其他脉冲)的不同形状, 包括幅度, 上升 /下降沿的时间, 位置(或相位) 的不同, 可携带更多的信息。
以上所述的全数字无载波宽带无线通信系统, 具有实现计算机之间的无线 连接的功能。 同时, 在光纤通信中因为信息的传递也是采用数字化模式, 本系 统也具有同光纤通信直接兼容的特性, 从而实现光纤通信之间的无线连接。 此 外, 数字集成电路芯片的片上互连 (interconnect ) , 也可以通过本系统模式实 现无线片上互联。
以上所述的实施例仅是为说明本发明专利的技术思想及特点,而不能以之限 仍应涵盖在本专利权利要求书的保护范围内。
图 1为本发明所提出的全数字宽带无线通信系统结构的核心部分。 本发明 的宽带无线通信的系统发射端及接收端如图 1 所示, 其中发射端包括: 基带数 字信号发生系统 10、 编码后形成的传输码 11、 发射端的宽带功率放大器 12和 发射端的宽带天线 13 ; 接收端包括: 接收端的宽带天线 14、 接收端的宽带低噪 声放大器 15、 接收端的高速采样器模块 16和接收端的数字处理模块 17 ; 系统 的发射端是将高速基带数字信号 10 (如方波信号) 经过编码形成扩展码和波形 变换后形成传输码 11后, 直接输入到发射端的宽带功率放大器 12。
图 2为传统的直接上变频发射机结构。 其中: 数字信号 20加载无线电载波 21形成调制变频后的信号 22发射, 本振信号 23通过移相器 24调整, 再通过混 频器 25加载到射频信号, 经过混频和调制的射频信号经过功率放大器放大后, 通过天线发射出去。
图 3 为传统的零中频接收机结构。 其中: 天线接收到的射频信号通过低噪 声放大器后, 本振信号 30通过移相器 31调整, 通过混频器 32, 转化为低频信 号, 再传送给后续电路进行处理。
将图 1和图 2、 图 3进行对比后发现, 采用变频的传统调制载波模式, 其特 征都是需要无线电载波信号, 并需要进行频率转化; 而本发明所提出的结构不 需要变频, 并且不需要另外的无线电载波。
下面, 我们以二进制为例, 详细分析本发明的技术实现方案以及技术新颖 性。 对于高位进制的情况, 可根据二进制做类似拓展。
本发明的编码技术所具有的技术新颖性, 主要体现在对无线系统的射频带 宽的控制。 其中, 扩展码可以避免数字信号中的低频 (或者接近直流) 分量, 而波形转换则避免了方波数字信号中的高频分量。
关于数字信号的高频分量, 下文以严格周期性方波信号为例进行说明。在 0 和 1 的二进制体系下, 严格周期性的方波信号用(一01010101 -)的无穷序列来 表示。 为了能够在接收端还原严格周期性的方波信号而保持波形大致不变, 接 收端至少需包含方波基频分量的 5 次谐波分量。 例如, 若基带方波信号基频是 1GHz , 则系统发射端的放大器、 天线, 以及接收端的放大器需覆盖 1-5 GHz 的 频带范围。 否则, 当系统带宽达不到相应要求时, 方波信号高频分量将丢失, ' 信号发生失真, 进而引起前后码元之问的互相干扰, 即产生所谓的码间串扰 ( Inter- symbol interference, ISI )。 而如果采用时分复用系统, 多路信号合 并传输导致基带数字信号频率进一步上升, 所要求带宽将以 5倍的速度增长,将 引起更严重的 ISI。 以上说明周期性方波信号对系统带宽在高频端的要求。
而系统的带宽在低频端对应了另外一个极端。 当遇到一个很长的同一电平 序列时, 比如 1000个高电平 ·· 1111111 ·· ), 其对应的方波的宽度将很宽(是 单个信号的 1000倍), 这种情况下会导致频率过低而超出系统带宽范围。 这样 的信号因为频率过低甚至有可能无法通过天线迸行发射。
从而, 如何实现对任意组合的数字基带信号特别是长序列的同一电平的信 号或者接近周期性的方波信号进行无线传输, 并且将系统的射频带宽控制在一 定的带宽范围, 成为本发明的一个核心技术难题。
本发明中通过对高速基带数字信号进行编码来完成相应信号带宽的控制。 其中对数字信号的编码分为扩展和波形变换两个步骤。 以上过程, 可以看成是 将传统无线传输系统中射频部分的变频及调制过程, 转化成基带数字信号的编 码处理。 对数字信号进行编码并形成具有一定带宽的可无线传输的传输码, 是 本发明的核心技术, 也是该无线传输系统同其它传统无线传输系统的根本区别。 对数字信号的扩展而形成扩展码, 是将高速基带数字信号的原始代码序列, 进行扩展后形成相应扩展码。 比如, 原始代码的电平扩展成含有高、低电平(零 电压) 组合的一个组合序列, 形成扩展码。 最简单的一种组合序列是将原始代 码 1扩展为高低电平组成的二位传输码 10, 原始代码 0扩展为二位传输码 01。 扩展码的位数不限于二位, 相对于原始码, 同时含有高低电平的代码组合都可 作为扩展码。 以这种方式形成的扩展码, 接收端将以电平变化情况来决定接受 的实际电平: 电平由高电平跃至低电平则代表接收到的信号是 1, 反之则代表接 收到的信号是 0。
在原始代码进行上述的短序列扩展形成扩展码后, 因为扩展码中含有高低 电平, 可保证长序列的原始数字信号在转化成扩展码后含有高低电平, 而不会 发生过长的高电平或者低电平序列。 虽然扩展码序列其速率变为原基带数字信 号的两倍, 但是扩展码的最低频率是扩展前原始基带信号的传输速率。 这样便 解决了过长单一序列导致频率过低的问题, 有利于射频系统的设计与实现。
形成扩展码的另外一种方法是引入分隔符。当遇到一个很长的高电平信号 1 时, 每隔一个或者几个信号宽度, 插入一个低电平的分隔符信号3。 这种分隔符 s的电平和代表原始代码的电平 0, 具有不同的特性, 比如, 电平的时间宽度不 同。 从而, 系统将根据这种不同宽度的低电平判断出分隔符。 比如, 一个基带 信号序列 (01101111111001 ) ,通过分隔符的引入表达成 COl lOl lsl lsl lslOODo 这里, 是每隔两个高电平引入一个分隔符。 通过分隔符的引入, 一个很长的高 电平将可以被分隔成短序列信号, 并被无线发射和接收。
在形成扩展码后, 下一个步骤是对数字信号进行波形变换。 这个过程用频 带窄的波形来代替对频带要求高的方波, 形成最终的传输码。 用来代替方波的 脉冲波形根据 Nyqui st Signal ing规则, 可以与前后其他脉冲重叠, 但是需保 证某一脉冲达到峰值时, 其他脉冲在该点的值为 0。 通过以上方法, 一方面扩展 了脉冲的时域宽度降低其频带宽度, 另一方面成功的避免了码间串扰。 满足上 述条件的波形均被称为耐奎斯特信号 (Nyquist Signal ) , 而升余弦 (Raised Cosine ) 信号因为其在各方面达到较好的均衡, 成为了应用最为广泛的信号形 式。 而且该方法实现较为简单, 在系统中发射端和接收端加入
"Root- Raised- Cosine "滤波器即可实现上述波形变换。
波形变换在不影响传输性能的情况下, 可大大降低系统所需的带宽。 与扩 展处理共同作用, 完成了对原始基带数字信号的处理。
以上的扩展处理和波形变换的组合完成了对原始基带数字信号的编码过 程。 编码过程将对原始代码进行扩展和波形调整, 从而形成可以被具有一定带 宽的射频系统发射、 传输和接收的传输码。
具体实施例一: 为了证明本发明的可行性, 我们对本发明所提出的系统结 构和功能进行技术验证。
本发明的核心技术思想包括两个主要方面:
第一个方面, 是高速基带数字信号直接由宽带功率放大器放大后送至天线 发射传输, 在接收端由宽带放大器接收后直接采样恢复原信号, 整个过程中没 有传统的载波调制过程, 一定程度上简化了系统结构。
第二个方面, 是通过对高速基带数字信号的编码与变换形成传输码, 从而 降低射频系统的带宽, 实现低误码率的无线传输系统。 其中, 对数字信号的编 码包含两个步骤, 第一个步骤是对数字信号进行扩展形成扩展码, 第二个步骤 是对扩展码进行波形变换形成传输码。 其中扩展码的作用是把低频的数字信号, 或者长序列单一电平, 比如高电平序列 (接近直流信号) 扩展后, 把数字信号 的低频分量搬移到高频端而形成一定带宽的无线电射频信号。 波形变换的作用 是压缩数字信号的带宽 (压缩信号的高频分量), 从而, 使射频系统的速率在不 需要几倍于基带数字信号速率的情况下, 比如, 在接近数字信号速率的带宽情 况下, 就可以实现信息的无误码率 (或者低误码率) 传输。
下面, 我们结合一个具体的系统, 对以上步骤进行验证。
在系统的发射端, 首先将高速基带数字信号进行编码形成扩展码, 并进一 步对波形进行转换处理形成传输码后, 利用一个宽带功率放大器将传输码的数 字信号进行放大, 放大后的信号由宽带天线发射到空间。
在系统的接收端, 从发射端发送的信号, 经过空间传输衰减后被接收端的 天线接收, 然后被宽带低噪声放大器放大。 放大后的信号经过高速采样器采样 以及模拟 /数字信号转化后输入到基带进行信号处理。
对于系统的传输端, 我们首先考虑如何利用扩展码来实现长序列码或者低 频信号的传输。 对于基带数字信号, 一种可能情况是长序列或者接近无穷长序 列的高电平(…… 111111……)。这种序列可以看作是频率很低的无线电信号 (或 者接近直流信号), 而在传统的无线传输系统中, 这种序列必须调制到高频射频 信号上才能发射。 这种长序列的高电平所对应的低频信号是无法直接作为无线 电信号被发射和传输的。 为了解决长序列的高电平码的直接传输, 我们首先对 这种码进行扩展, 从而形成扩展码。 扩展码的形成是在原来的高电平 1 中, 引 入二位 10 (或者 01 ) 编码扩展, 形成 (…… 10101010101010…… ) 序列的扩展 码。 通过扩展码, 使原来的高电平序列 (…… 111111……) 的低频信号, 扩展 成一个高频无线电信号, 从而可以被发射端发射。
我们接下来考虑长序列的高电平 (…… 111111……) 在扩展后的发射情况。 一种简单的考虑, 是将扩展后的高频 (无线电) 信号直接发射, 而不经过波形 变换步骤。 对扩展码信号输入速率为 1 Gbps的仿真结果如图 4所示。
在图 4-图 7中, 纵坐标轴 Vin是扩展码信号时域波形, Vs是经过发射端的 功率放大器信号放大后发射至空间的信号, Vout 是接收端低噪声放大器的输出 信号, 其中, 电压 Vin、 Vs、 Vout的单位是 mV。 图中的横坐标轴为时间, 单位 是纳秒 (ns )。
因为长序列的扩展码对应了一个严格周期性方波序列 (…… 10101010101010……), 理论上它包含了无穷多的奇次谐波分量, 如果希望失真 度较低地恢复方波信号, 至少需要包含其 5 次谐波分量。 若基带方波信号基频 是 lGHz, 则系统带宽要达到 5 GHz c 从而, 对于一个特定带宽的发射端和接收 端, 比如, 射频系统的带宽接近数字信号的情况下, 由于高频分量丢失将产生 码间串扰以及波形失真。 比如, 对于一个最高工作频率为 1GHz的发射端和接收 端系统, 信号的高频部分被滤除, 编码形成扩展码后经过功率放大器放大的发 射信号 Vs, 以及在接收端经过低噪声放大器放大的接收信号 Vout , 其波形都是 近似规则的正弦波形, 而不是编码后形成的方波。 在以上情况下, 系统存在失 真但在接收端仍然可以恢复所需要传输的原始信息。 以上案例, 说明在需要传输的数字信号中, 当含有长序列高电平情况下, 如何通过扩展码而形成一个高频的无线电信号, 从而被本发明的系统所发射、 传输和接收。 对于一个无穷长序列的高电平, 扩展后将形成一个严格的无穷长 高低电平 (10或者 01 ) 周期序列。 以上这种情况只对应了一种极限情况, 基带 数字信号更通常的形式是近似的无规则序列。 近似无规则序列 (…… 010010110101……), 而不再是规则的方波时, 对于 Vin 输入速率为 1 Gbps的扩展码的信号时域波形, 在最高工作频率为 1GHz的无线 发射端接收端系统中, 仿真结果如图 5所示。 这时由于传输过程中高频分量被 滤除, 在此带宽的射频系统下将产生严重的码间串扰造成波形失真。 不同于上 面讨论的严格周期性方波, 在接收端对接收信号进行采样恢复后在某些点将会 出现误码。 而为了避免出现这种误码, 一种方法是提高系统的射频带宽, 包括 发射端的放大器、 天线以及接收端的放大器。 比如, 当我们把射频系统的带宽 提高到 5GHz时, 系统的仿真结果如图 6所示。 由于带宽增加, 这时传输以及接 收信号基本上包含了所需的频率分量, 时域波形上升下降沿变陡, 接近方波。. 以上结果说明, 对于编码后形成一个近似无规则序列的扩展码, 可以通过 将射频系统 (包括发射端、 天线、 接收端) 的工作频率提高到数字信号数据传 输速率的 5倍或者以上, 在带宽足够宽时实现系统信号的无误码传输。
但随着射频系统带宽的增加, 系统的复杂度和成本也相应大幅度增加。 本 发明的另外一个重要技术思想, 是通过波形变换的技术, 用带宽较小的脉冲代 替扩展码的方波脉冲形成传输码, 从而降低射频系统所需要的带宽。
本发明中对扩展码进行波形变换形成传输码的功能是通过在系统中加入 "升余弦滤波器 (Root-Raised-Cosine Filter) "来实现的。 通过引入符号速率为 数字信号传输速率两倍的升余弦滤波器, 通过对扩展码进行滤波形成传输码后 再进行传输。 比如, 对于码速率为 1 Gbps的数字信号, 通过符号速率为 2 GHz 的升余弦滤波器后所形成的传输码, 在射频系统的最高工作频率为 1GHz的发射 端以及接收端的信号仿真结果如图 7所示。我们比较经过升余弦滤波器处理(图 7 ) 与没有经过升余弦滤波器处理的情况 (图 5 ) 的结果, 可见升余弦滤波器在 不产生码间串扰的情况下对扩展码频带进行了压缩, 减少了系统所需的带宽。 从而, 通过本发明的升余弦滤波器的引入, 可以把本来需要 5 倍带宽的射频系 统才可以实现的低误码率传输, 在接近 1 倍带宽的射频系统中就可以实现。 通 过降低射频系统的带宽, 可以大大降低系统的复杂度和成本。 . 此外, 考虑到不同频率的信号在空间衰减程度的不同, 通过升余弦滤波器 对波形进行变换形成传输码而降低射频系统的带宽, 比单纯增加系统带宽, 在

Claims

1.一种基于数字信号编码的第五代宽带无线通信的方法, 其特征在于: 该 宽带无线通信方法是通过对高速基带数字信号进行编码处理形成传输码后, 直 接通过高速基带数字信号的放大、 发射、 传输和接收而实现高速基带数字信号 无线传输。
2.根据权利要求 1所述的基于数字信号编码的第五代宽带无线通信的方法, 其特征在于: 该宽带无线通信方法的发射端数字信号编码分为扩展和波形变换 两个步骤, 先后得到扩展码与传输码。
3.根据权利要求 2所述的基于数字信号编码的第五代宽带无线通信的方法, 其特征在于: 扩展码是将数字信号的原始代码进行扩展, 原始代码的电平扩展 成含有高、 低电平组合的一个组合序列。
4.根据权利要求 2所述的基于数字信号编码的第五代宽带无线通信的方法, 其特征在于: 扩展码是在原始代码中引入分隔符, 每连续规定数目的相同电平 后插入与基本码元均不相同的分隔符。
5.根据权利要求 2所述的基于数字信号编码的第五代宽带无线通信的方法, 其特征在于: 传输码是对扩展码进行波形变换后, 用窄频带的脉冲波形来代替 宽频带的方波。
6.根据权利要求 5所述的基于数字信号编码的第五代宽带无线通信的方法, 其特征在于: 用来替代方波的脉冲波形为耐奎斯特信号, 使波形变换不引入额 外的码间串扰。
7.根据权利要求 5所述的基于数字信号编码的第五代宽带无线通信的方法, 其特征在于: 波形变换通过在基于数字信号编码的第五代宽带无线通信系统中 加入升余弦滤波器而实现。
8.根据权利要求 2所述的基于数字信号编码的第五代宽带无线通信的方法, 其特征在于: 扩展和波形变换的处理完成了对原始基带数字信号的编码过程, 编码过程将对原始代码进行扩展和波形转换, 形成可被具有一定带宽的射频系 统发射、 传输和接收的传输码。
9.一种基于数字信号编码的第五代宽带无线通信系统, 其特征在于: 该基 于数字信号编码的第五代宽带无线通信 、统的发射端,通过将高速基带数字信 号编码形成传输码, 经过宽带功率放大器放大后, 通过宽带天线发射到空间; 该宽带无线通信系统的接收端, 从宽带天线接收的信号输入到宽带低噪声放大 器, 经过宽带低噪声放大器放大后输入到高速采样器或者模数转化器, 再输入 到基带进行信号处理。
10.根据权利要求 9所述的基于数字信号编码的第五代宽带无线通信系统, 其特征在于: 该宽带无线通信系统的发射端部分包括: 基带数字信号发生系统、 宽带功率放大器和宽带天线; 该宽带无线通信系统的接收端部分包括: 宽带天 线、 宽带低噪声放大器、 高速采样器模块和数字处理模块。
PCT/CN2010/001845 2010-08-27 2010-11-17 基于数字信号编码的第五代宽带无线通信的方法及系统 WO2012024824A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010268251XA CN102387102A (zh) 2010-08-27 2010-08-27 基于数字信号编码的第五代宽带无线通信的方法及系统
CN201010268251.X 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012024824A1 true WO2012024824A1 (zh) 2012-03-01

Family

ID=45722808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001845 WO2012024824A1 (zh) 2010-08-27 2010-11-17 基于数字信号编码的第五代宽带无线通信的方法及系统

Country Status (2)

Country Link
CN (1) CN102387102A (zh)
WO (1) WO2012024824A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983876A (zh) * 2012-11-01 2013-03-20 上海集成电路研发中心有限公司 一种超宽带通信系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111185A (zh) * 2010-12-23 2011-06-29 爱斯泰克(上海)高频通讯技术有限公司 一种多用户全数字宽带无线通信的方法及系统
CN107634778A (zh) * 2017-09-26 2018-01-26 普天智能照明研究院有限公司 具有宽窄度的脉冲信号传输系统及传输方法
US10523478B1 (en) * 2018-06-12 2019-12-31 Mitsubishi Electric Research Laboratories, Inc. System and method for generating high speed digitized-RF signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179833A1 (en) * 2002-03-19 2003-09-25 Motorola , Inc. Method and apparatus for reducing transmitter peak power requirements using dual matrices
JP2007184784A (ja) * 2006-01-06 2007-07-19 Hitachi Kokusai Electric Inc 無線送信機
CN101599773A (zh) * 2009-06-05 2009-12-09 东南大学 基于数字信号直接放大与传输的宽带无线通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179833A1 (en) * 2002-03-19 2003-09-25 Motorola , Inc. Method and apparatus for reducing transmitter peak power requirements using dual matrices
JP2007184784A (ja) * 2006-01-06 2007-07-19 Hitachi Kokusai Electric Inc 無線送信機
CN101599773A (zh) * 2009-06-05 2009-12-09 东南大学 基于数字信号直接放大与传输的宽带无线通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG PINGCHUAN ET AL.: "modern communication principle and technology simple tutorial", PEKING UNIVERSITY PRESS, ISBN: 7-301-09953-3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983876A (zh) * 2012-11-01 2013-03-20 上海集成电路研发中心有限公司 一种超宽带通信系统
CN102983876B (zh) * 2012-11-01 2016-09-28 上海集成电路研发中心有限公司 一种超宽带通信系统

Also Published As

Publication number Publication date
CN102387102A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
CN101647202B (zh) 数字线性发送器架构
US20160365950A1 (en) Direct digital synthesis of signals using maximum likelihood bit-stream encoding
CN101946474B (zh) 脉冲超宽带无线电通信系统
KR100656339B1 (ko) 초광대역 송수신을 위한 펄스신호 발생기 및 이를포함하는 송수신장치
US7796574B2 (en) Multi-carrier reception for ultra-wideband (UWB) systems
Paquelet et al. An energy adaptive demodulation for high data rates with impulse radio
JP2009544206A (ja) デジタル送受信機
CN102739590A (zh) 伪随机序列相位调制的cp-ebpsk通信系统及其通信方法
CN101056294A (zh) 超宽带通信系统和用于超宽带通信的方法
CN110971344A (zh) 一种线性调频扩频调制技术的软解调方法
WO2012024824A1 (zh) 基于数字信号编码的第五代宽带无线通信的方法及系统
CN1969467B (zh) 用于在无线通信网络中调制比特序列的方法与系统
CN101040455B (zh) 调制无线通信网络中的位序列的方法和调制器
US20080291971A1 (en) Method and Transmitter, Receiver and Transceiver Systems for Ultra Wideband Communication
US20070087776A1 (en) Analog front-end circuit
CN101719773B (zh) 一种用于超宽带零中频接收机的信号处理方法和系统
CN101599773A (zh) 基于数字信号直接放大与传输的宽带无线通信方法
CN102111185A (zh) 一种多用户全数字宽带无线通信的方法及系统
US8934517B1 (en) Impulse radio ultra wide bandwidth data transmission encoding/decoding method and encoding/decoding module
Lee et al. A 3.1 to 10.6 GHz 100 Mb/s pulse-based ultra-wideband radio receiver chipset
JP7083694B2 (ja) 送信装置及び送信方法
Vanderperren et al. A flexible low power subsampling UWB receiver based on line spectrum estimation methods
JP2007507964A (ja) 差動位相変調マルチ・バンド超広帯域通信システム
Wu et al. Carrier-less, single and multi-carrier UWB radio technology
EP1557993A2 (en) System and method for simplifying analogue processing in a transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856277

Country of ref document: EP

Kind code of ref document: A1