WO2012023915A1 - Combined system for separating gas mixtures and converting energy - Google Patents

Combined system for separating gas mixtures and converting energy Download PDF

Info

Publication number
WO2012023915A1
WO2012023915A1 PCT/UA2011/000024 UA2011000024W WO2012023915A1 WO 2012023915 A1 WO2012023915 A1 WO 2012023915A1 UA 2011000024 W UA2011000024 W UA 2011000024W WO 2012023915 A1 WO2012023915 A1 WO 2012023915A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
stirling
energy
gas mixtures
heat pump
Prior art date
Application number
PCT/UA2011/000024
Other languages
French (fr)
Russian (ru)
Inventor
Анатолий Юрьевич ГАЛЕЦКИЙ
Тарас Юрьевич ГАЛЕЦКИЙ
Антон Анатольевич ГАЛЕЦКИЙ
Original Assignee
Galetskij Anatolij Jurevich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galetskij Anatolij Jurevich filed Critical Galetskij Anatolij Jurevich
Publication of WO2012023915A1 publication Critical patent/WO2012023915A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/52Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen enriched compared to air ("crude oxygen")
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
    • F25J2260/44Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery using nitrogen for cooling purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration

Definitions

  • COMBINED SYSTEM FOR SEPARATION OF GAS MIXTURES AND ENERGY CONVERSION The invention relates to the field of separation of gases or mixtures thereof by cold treatment using cryogenic gas machines and energy conversion by heat pumps and engines operating on the Stirling cycle, and can be used in various industries.
  • the closest to the claimed invention in technical essence and the achieved result is a combined system for separating gas mixtures and energy conversion, containing a cryogenic Sterling machine, a distillation column, a heat exchanger for freezing moisture and carbon dioxide, an insulated tank for liquid nitrogen, a high pressure pump, liquid and gaseous pipelines nitrogen and a device for converting energy of gaseous nitrogen [RF patent N ° 2162579, IPC F25J 1/02, F25B 9/14, publ. 01/27/2001], selected as a prototype.
  • the claimed invention is aimed at solving the problem of expanding the possibility of separation of various gas mixtures into components, the full use of heat and cold released during cooling during gasification of liquefied components with obtaining a high degree of energy conversion with different temperatures, which will improve the efficiency of separation of gas mixtures with minimal energy costs.
  • a combined system for separating gas mixtures and energy conversion containing a cryogenic Stirling machine, a distillation column, a heat exchanger for freezing moisture and carbon dioxide, a heat-insulated container for liquid nitrogen, a high pressure pump, pipelines of liquid and gaseous nitrogen and a device for converting gaseous energy nitrogen, according to the invention, contains a Stirling heat pump and a Stirling engine cooled by liquid nitrogen, installed with a cryogen hydrochloric Stirling machine in a single housing and having a common shaft with a hydraulic cylinder and air cylinder, and further comprises a heat energy converting apparatus and the difference in liquid nitrogen, at least one Stirling engine.
  • the cryogenic machine and the heat pump are connected by a heat exchanger, and the heat pump with the engine is connected by a heat exchanger with a heat accumulator.
  • the introduction of the Stirling heat pump into the combined system allows you to collect all the thermal energy released during the cooling of gas mixtures, and the Stirling engine, using this heat and cooled by liquid nitrogen, generates energy for the entire system to work together a hydraulic cylinder and a pneumatic cylinder using nitrogen gas energy.
  • the optional Stirling engine uses excess liquid nitrogen and the energy of the heat accumulator or an additional source of thermal energy to perform useful mechanical work.
  • the combined system comprises a cryogenic Stirling machine 1, a Stirling heat pump 2 and a Stirling engine 3, having a common rod 4 with a hydraulic cylinder 5 and an air cylinder 6, installed in one housing (not shown in Fig.), While the cryogenic machine 1 and heat pump 2 are connected by a heat exchanger 7, and the heat pump 2 is connected to the engine 3 by a recuperator 8 with a heat accumulator 9, a distillation column 10, a gas mixture supply pipe 11, a heat exchanger 12 for freezing moisture, a heat exchanger 13 for freezing carbon dioxide, heat exchange Ennik 14 for liquefying gases with a temperature range of -110 ° C - -170 ° C, a chilled gas mixture pipe 15 with a pump 16, a pipe 17 with a heat-insulated container 18 of a liquefied gas mixture, a pipe 19 for supplying a liquefied gas mixture with a pump 20 to a distillation column 10, a pipe 21 and a thermally insulated container 22 for liquid oxygen, a pipe 23 and a high pressure
  • the cryogenic machine 1 pumps heat energy into the recuperator 6 from the gas mixture entering through the pipe 11.
  • the liquefied gas mixture through the pipe 17 is poured into a heat-insulated tank 18.
  • the heat pump 2 transfers heat energy with a temperature of + 60 ° ⁇ - + 100 ° ⁇ from the recuperator 7 to the recuperator 8 with heat accumulator 9, increasing the temperature to + 550 ° ⁇ - + 600 ° ⁇ .
  • the liquefied gas mixture is piped 19 to the distillation column through a pipe 19 10.
  • the separated liquid oxygen through a pipe 21 enters a thermally insulated tank 22 and through a pipe 23 with a high pressure pump 24 it is fed to a heat exchanger 14, in which the components of the gas mixture are liquefied with a boiling point of 110 ° C to -170 ° C and collected through pipelines 26 into thermally insulated containers 27 and 28.
  • Oxygen gas with a temperature of -110 ° C is sent through pipeline 25 to a heat exchanger 13 for freezing and collecting carbon dioxide from the gas mixture.
  • Heated to -70 ° C oxygen is sent to a heat exchanger 12 to remove moisture from the gas mixture entering the system.
  • the gas mixture is pumped through a pipe 15 to a cryogenic machine 1, where the remaining components are liquefied when cooled to -200 ° C. Not liquefied, but cooled to a temperature of -200 ° C, hydrogen, helium and neon are sent through pipeline 41 for the further technological cycle.
  • pipeline 29 detachable components of the gas mixture with a boiling point of -185 ° C to -191 ° C are collected in a thermally insulated container 30 and sent for disposal.
  • Liquid nitrogen is collected through pipeline 31 to a heat-insulating tank 32 and pump 33 is fed into a cooling system of Stirling engines 3 and 35 through a pipe 33.
  • thermal efficiency of the engine 3 with an external supply and removal of heat is equal to:
  • Gaseous nitrogen heated in engines 3 and 35 is sent via line 39 to the pneumatic cylinder 6 of two-stage expansion of nitrogen to use its energy together with the energy of engine 3, providing for the operation of the combined system to reduce its external consumption.
  • gaseous nitrogen is sent through a power removal shaft 37 to a turbine (not shown in the diagram) with an electric generator 38.
  • Gaseous oxygen and nitrogen, heated to the required temperature and mixed in the proportion necessary for breathing, are sent to the premises of hospitals and enterprises and housing.
  • the presented scheme shows the general principles of operation of the nodes of the inventive combined system and can be redirected and supplemented to perform special tasks.
  • the inventive combined system for separation of gas mixtures and energy conversion allowed expanding the range of separation of various gas mixtures into components and made it possible to utilize harmful components, fully use the heat and cold released during cooling during gasification of liquefied components with an efficiency of 91% conversion of energy with different temperatures to mechanical, opening up new prospects for engines external combustion, and significantly increase the efficiency of separation of gas mixtures, for example, removing carbon dioxide, carbon monoxide There is gas and methane in coal mines with minimal energy costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The invention relates to the field of gas separation. The combined system for separating gas mixtures and converting energy comprises, in a single housing, a Stirling cryogenic cooler (1), a Stirling heat pump (2) and a Stirling engine (3) which have a common rod (4) with a hydraulic cylinder (5) and a pneumatic cylinder (6). The cryogenic cooler (1) and the heat pump (2) are connected by a recuperator (7), and the heat pump (2) is connected to the engine (3) by a recuperator (8) with a heat accumulator (9). The system further comprises a fractionating column (10), conduits, heat exchangers for freezing out moisture and carbon dioxide and an additional Stirling engine as a device for converting heat and liquid nitrogen energy. The invention makes it possible to separate gas mixtures more efficiently with minimal energy expenditure.

Description

КОМБИНИРОВАННАЯ СИСТЕМА ДЛЯ РАЗДЕЛЕНИЯ ГАЗОВЫХ СМЕСЕЙ И ЭНЕРГОПРЕОБРАЗОВАНИЯ Изобретение относится к области разделения газов или их смесей посредством обработки холодом с использованием криогенных газовых машин и энергопреобразования тепловыми насосами и двигателями, работающими по циклу Стирлинга, и может быть использовано в различных отраслях промышленности.  COMBINED SYSTEM FOR SEPARATION OF GAS MIXTURES AND ENERGY CONVERSION The invention relates to the field of separation of gases or mixtures thereof by cold treatment using cryogenic gas machines and energy conversion by heat pumps and engines operating on the Stirling cycle, and can be used in various industries.
В настоящее время известны установки и системы для производства жидкого азота и кислорода, содержащие криогенную машину Стирлинга, ректификационную колонну, теплообменник для вымораживания влаги и углекислоты, теплоизолированные емкости для жидкого азота и кислорода [Вопросы глубокого охлаждения./ Сб. статей под ред. М.П. Малкова. - М.: Иностр. литература, 1961.— С. 44; патенты РФ: jN 2151976, МПК F25J 1/00, опубл. 27.06.2000; Ш 2151977, МПК F25J 1/02, F25J 3/00, опубл. 27.06.2000; Ш 2166710, МПК F25J 3/04, F25B 9/14, опубл. 10.05.2001]. Указанные установки позволяют достаточно эффективно получать жидкий азот и кислород, выделяя их из воздуха.  Currently known installations and systems for the production of liquid nitrogen and oxygen, containing a cryogenic Stirling machine, a distillation column, a heat exchanger for freezing moisture and carbon dioxide, insulated containers for liquid nitrogen and oxygen [Questions of deep cooling. / Sat. articles edited by M.P. Malkova. - M .: Inostr. literature, 1961. - S. 44; RF patents: jN 2151976, IPC F25J 1/00, publ. 06/27/2000; W 2151977, IPC F25J 1/02, F25J 3/00, publ. 06/27/2000; W 2166710, IPC F25J 3/04, F25B 9/14, publ. 05/10/2001]. These installations allow you to quite effectively receive liquid nitrogen and oxygen, releasing them from the air.
Однако в воздухе и промышленных газах содержится достаточно большое количество других газообразных примесей, утилизация которых необходима для снижения вредных выбросов в атмосферу. Указанные устройства и системы не позволяют разделять такие газовые смеси на составляющие и утилизировать их.  However, air and industrial gases contain a sufficiently large number of other gaseous impurities, the disposal of which is necessary to reduce harmful emissions into the atmosphere. These devices and systems do not allow to separate such gas mixtures into components and dispose of them.
Кроме того, при работе таких систем и установок выделяется огромное количество тепла, которое выбрасывается в атмосферу, что нецелесообразно с экономической и экологической точки зрения. In addition, the operation of such systems and installations stands out a huge amount of heat that is released into the atmosphere, which is impractical from an economic and environmental point of view.
Наиболее близкой к заявляемому изобретению по технической сущности и достигаемому результату является комбинированная система для разделения газовых смесей и энергопреобразования, содержащая криогенную машину Стерлинга, ректификационную колонну, теплообменник для вымораживания влаги и углекислоты, теплоизолированную емкость для жидкого азота, насос высокого давления, трубопроводы жидкого и газообразного азота и устройство преобразования энергии газообразного азота [патент РФ N° 2162579, МПК F25J 1/02, F25B 9/14, опубл. 27.01.2001], выбранная в качестве прототипа. В указанной системе возможно получить не только жидкий азот, но и сжиженный природный газ, и при этом использовать энергию газообразного азота на совершение полезной работы, применяя в качестве устройства преобразования энергии газообразного азота турбину с электрогенератором, расположенным на одном валу с турбиной.  The closest to the claimed invention in technical essence and the achieved result is a combined system for separating gas mixtures and energy conversion, containing a cryogenic Sterling machine, a distillation column, a heat exchanger for freezing moisture and carbon dioxide, an insulated tank for liquid nitrogen, a high pressure pump, liquid and gaseous pipelines nitrogen and a device for converting energy of gaseous nitrogen [RF patent N ° 2162579, IPC F25J 1/02, F25B 9/14, publ. 01/27/2001], selected as a prototype. In this system, it is possible to obtain not only liquid nitrogen, but also liquefied natural gas, and at the same time use the energy of nitrogen gas to perform useful work, using a turbine with an electric generator located on the same shaft as the turbine as a device for converting nitrogen gas energy.
Недостатками известной системы являются:  The disadvantages of the known system are:
- невозможность разделения газовых смесей на составляющие; - высокие энергетические потери из-за неполного использования получаемого холода и выделяющегося при этом тепла;  - the inability to separate gas mixtures into components; - high energy losses due to the incomplete use of the resulting cold and the heat generated during this;
- низкая эффективность газификации сжиженного газа, приводящая к невысокой эффективности всей системы;  - low efficiency of gasification of liquefied gas, leading to low efficiency of the entire system;
- высокая энергоемкость системы.  - high energy intensity of the system.
Заявляемое изобретение направлено на решение задачи расширения возможности разделения различных газовых смесей на составляющие, полного использования выделяемого при охлаждении тепла и холода при газификации сжиженных составляющих с получением высокой степени преобразования энергии с разными температурами, что позволит повысить эффективность разделения газовых смесей с минимальными энергетическими затратами. The claimed invention is aimed at solving the problem of expanding the possibility of separation of various gas mixtures into components, the full use of heat and cold released during cooling during gasification of liquefied components with obtaining a high degree of energy conversion with different temperatures, which will improve the efficiency of separation of gas mixtures with minimal energy costs.
Поставленная задача решается тем, что комбинированная система для разделения газовых смесей и энергопреобразования, содержащая криогенную машину Стирлинга, ректификационную колонну, теплообменник для вымораживания влаги и углекислоты, теплоизолированную емкость для жидкого азота, насос высокого давления, трубопроводы жидкого и газообразного азота и устройство преобразования энергии газообразного азота, согласно изобретению, содержит тепловой насос Стирлинга и двигатель Стирлинга, охлаждаемый жидким азотом, установленные с криогенной машиной Стирлинга в одном корпусе и имеющие общий шток с гидроцилиндром и пневмоцилиндром, и дополнительно содержит в качестве устройства преобразования разности энергии тепла и жидкого азота, по крайней мере, один двигатель Стирлинга. При этом криогенная машина и тепловой насос соединены рекуператором, а тепловой насос с двигателем - рекуператором с тепловым аккумулятором.  The problem is solved in that a combined system for separating gas mixtures and energy conversion, containing a cryogenic Stirling machine, a distillation column, a heat exchanger for freezing moisture and carbon dioxide, a heat-insulated container for liquid nitrogen, a high pressure pump, pipelines of liquid and gaseous nitrogen and a device for converting gaseous energy nitrogen, according to the invention, contains a Stirling heat pump and a Stirling engine cooled by liquid nitrogen, installed with a cryogen hydrochloric Stirling machine in a single housing and having a common shaft with a hydraulic cylinder and air cylinder, and further comprises a heat energy converting apparatus and the difference in liquid nitrogen, at least one Stirling engine. In this case, the cryogenic machine and the heat pump are connected by a heat exchanger, and the heat pump with the engine is connected by a heat exchanger with a heat accumulator.
Введение в состав комбинированной системы теплового насоса Стирлинга позволяет собрать всю тепловую энергию, выделяемую при охлаждении газовых смесей, а двигатель Стирлинга, использующий это тепло и охлаждаемый жидким азотом, вырабатывает энергию для работы всей системы совместно с гидроцилиндром и пневмоцилиндром, использующим энергию газообразного азота. The introduction of the Stirling heat pump into the combined system allows you to collect all the thermal energy released during the cooling of gas mixtures, and the Stirling engine, using this heat and cooled by liquid nitrogen, generates energy for the entire system to work together a hydraulic cylinder and a pneumatic cylinder using nitrogen gas energy.
Дополнительный двигатель Стерлинга использует избыток жидкого азота и энергию теплового аккумулятора или дополнительный источник тепловой энергии для совершения полезной механической работы.  The optional Stirling engine uses excess liquid nitrogen and the energy of the heat accumulator or an additional source of thermal energy to perform useful mechanical work.
Сущность заявляемой комбинированной системы для разделения газовых смесей и энергопреобразования поясняется чертежом.  The essence of the inventive combined system for the separation of gas mixtures and energy conversion is illustrated in the drawing.
Комбинированная система содержит установленные в одном корпусе (на фиг. не показано) криогенную машину Стирлинга 1, тепловой насос Стирлинга 2 и двигатель Стирлинга 3, имеющие общий шток 4 с гидроцилиндром 5 и пневмоцилиндром 6, при этом криогенная машина 1 и тепловой насос 2 соединены рекуператором 7, и тепловой насос 2 соединен с двигателем 3 рекуператором 8 с тепловым аккумулятором 9, ректификационную колонну 10, трубопровод подачи газовой смеси 11, теплообменник 12 для вымораживания влаги, теплообменник 13 для вымораживания углекислоты, теплообменник 14 для сжижения газов с диапазоном температур -110°С - -170°С, трубопровод 15 охлажденной газовой смеси с насосом 16, трубопровод 17 с теплоизолированной емкостью 18 сжиженной газовой смеси, трубопровод 19 подачи сжиженной газовой смеси насосом 20 в ректификационную колонну 10, трубопровод 21 и теплоизолированная емкость 22 для жидкого кислорода, трубопровод 23 и насос высокого давления 24 подачи жидкого кислорода в теплообменник 14, трубопровод 25 подачи газообразного кислорода потребителю, трубопроводы 26 с теплоизолированными емкостями 27, 28 для жидких газовых составляющих с температурой -l iO°C - -170°С, трубопровод 29 с теплоизолированной емкостью 30 для жидких газовых составляющих с температурой -185°С - -191°С, трубопровод 31 с теплоизолированной емкостью 32 для жидкого азота, трубопровод 33 с насосом 34 подачи жидкого азота в двигатели Стерлинга 3 и 35, трубопровод 36 с жидкометаллическим теплоносителем подачи энергии теплового аккумулятора 9, вал отвода мощности 37 на электрогенератор 38, трубопровод 39 отвода газообразного азота на устройство преобразования энергии газообразного азота на пневмоцилиндр 6, трубопровод 40 отвода газообразного азота потребителю, трубопровод 41 отвода газообразных составляющих— водорода, неона, гелия. The combined system comprises a cryogenic Stirling machine 1, a Stirling heat pump 2 and a Stirling engine 3, having a common rod 4 with a hydraulic cylinder 5 and an air cylinder 6, installed in one housing (not shown in Fig.), While the cryogenic machine 1 and heat pump 2 are connected by a heat exchanger 7, and the heat pump 2 is connected to the engine 3 by a recuperator 8 with a heat accumulator 9, a distillation column 10, a gas mixture supply pipe 11, a heat exchanger 12 for freezing moisture, a heat exchanger 13 for freezing carbon dioxide, heat exchange Ennik 14 for liquefying gases with a temperature range of -110 ° C - -170 ° C, a chilled gas mixture pipe 15 with a pump 16, a pipe 17 with a heat-insulated container 18 of a liquefied gas mixture, a pipe 19 for supplying a liquefied gas mixture with a pump 20 to a distillation column 10, a pipe 21 and a thermally insulated container 22 for liquid oxygen, a pipe 23 and a high pressure pump 24 for supplying liquid oxygen to a heat exchanger 14, a supply pipe 25 oxygen gas to the consumer, pipelines 26 with thermally insulated containers 27, 28 for liquid gas components with a temperature of -l iO ° C - -170 ° С, pipeline 29 with thermally insulated containers 30 for liquid gas components with a temperature of -185 ° С - -191 ° С , pipeline 31 with a thermally insulated tank 32 for liquid nitrogen, pipeline 33 with a pump 34 for supplying liquid nitrogen to Stirling engines 3 and 35, pipeline 36 with liquid metal coolant for supplying energy to a heat accumulator 9, a power take-off shaft 37 to an electric generator 38, pipeline 39, the removal of gaseous nitrogen to the device for converting energy of gaseous nitrogen to the pneumatic cylinder 6, the pipeline 40 of the removal of gaseous nitrogen to the consumer, the pipeline 41 of the removal of gaseous components — hydrogen, neon, helium.
Комбинированная система для разделения газовых смесей и энергопреобразования работает следующим образом.  The combined system for the separation of gas mixtures and energy conversion works as follows.
От внешнего источника (на фиг. не показано) энергию подводят к гидроцилиндру 5, приводя в движение шток 4. Криогенная машина 1 откачивает тепловую энергию в рекуператор 6 из газовой смеси, поступающей по трубопроводу 11. Сжиженную газовую смесь по трубопроводу 17 сливают в теплоизолированную ёмкость 18. Тепловой насос 2 перекачивает тепловую энергию с температурой +60°С - +100°С из рекуператора 7 в рекуператор 8 с тепловым аккумулятором 9, повышая температуру до +550°С - +600°С.  From an external source (not shown in Fig.), Energy is supplied to the hydraulic cylinder 5, driving the rod 4. The cryogenic machine 1 pumps heat energy into the recuperator 6 from the gas mixture entering through the pipe 11. The liquefied gas mixture through the pipe 17 is poured into a heat-insulated tank 18. The heat pump 2 transfers heat energy with a temperature of + 60 ° С - + 100 ° С from the recuperator 7 to the recuperator 8 with heat accumulator 9, increasing the temperature to + 550 ° С - + 600 ° С.
Из теплоизолированной ёмкости 18 сжиженную газовую смесь по трубопроводу 19 насосом 20 подают в ректификационную колонну 10. Отделённый жидкий кислород по трубопроводу 21 поступает в теплоизолированную ёмкость 22 и по трубопроводу 23 насосом 24 высокого давления его подают в теплообменник 14, в котором сжижают составляющие газовой смеси с температурой кипения - 110°С - -170°С и их собирают по трубопроводам 26 в теплоизолированные ёмкости 27 и 28. По трубопроводу 25 газообразный кислород с температурой -110°С направляют в теплообменник 13 для вымораживания и сбора углекислого газа из газовой смеси. Нагретый до -70°С кислород направляют в теплообменник 12 для удаления влаги из поступающей в систему газовой смеси. Охлаждённую до -170°С газовую смесь насосом 16 по трубопроводу 15 подают на криогенную машину 1, где остальные составляющие при охлаждении до -200°С сжижаются. Не сжиженные, но охлаждённые до температуры -200°С, водород, гелий и неон по трубопроводу 41 направляют для дальнейшего технологического цикла. По трубопроводу 29 в теплоизолированную ёмкость 30 собирают отделяемые составляющие газовой смеси с температурой кипения -185°С - -191°С и направляют на утилизацию. По трубопроводу 31 в теплоизолирующую ёмкость 32 собирают жидкий азот и по трубопроводу 33 насосом 34 подают в систему охлаждения двигателей Стирлинга 3 и 35. При температуре жидкометаллического теплоносителя теплового аккумулятора 9 +600°С (873°К) и охлаждения жидким азотом -196°С (77°К) термический КПД двигателя 3 с внешним подводом и отводом тепла равен: From the insulated tank 18, the liquefied gas mixture is piped 19 to the distillation column through a pipe 19 10. The separated liquid oxygen through a pipe 21 enters a thermally insulated tank 22 and through a pipe 23 with a high pressure pump 24 it is fed to a heat exchanger 14, in which the components of the gas mixture are liquefied with a boiling point of 110 ° C to -170 ° C and collected through pipelines 26 into thermally insulated containers 27 and 28. Oxygen gas with a temperature of -110 ° C is sent through pipeline 25 to a heat exchanger 13 for freezing and collecting carbon dioxide from the gas mixture. Heated to -70 ° C, oxygen is sent to a heat exchanger 12 to remove moisture from the gas mixture entering the system. Cooled to -170 ° C, the gas mixture is pumped through a pipe 15 to a cryogenic machine 1, where the remaining components are liquefied when cooled to -200 ° C. Not liquefied, but cooled to a temperature of -200 ° C, hydrogen, helium and neon are sent through pipeline 41 for the further technological cycle. By pipeline 29, detachable components of the gas mixture with a boiling point of -185 ° C to -191 ° C are collected in a thermally insulated container 30 and sent for disposal. Liquid nitrogen is collected through pipeline 31 to a heat-insulating tank 32 and pump 33 is fed into a cooling system of Stirling engines 3 and 35 through a pipe 33. At a temperature of the liquid metal coolant of a heat accumulator of 9 + 600 ° C (873 ° K) and cooling with liquid nitrogen -196 ° C (77 ° K) thermal efficiency of the engine 3 with an external supply and removal of heat is equal to:
КПД = (Тна1 - ToM)/T„arp = (873 -77)/873 = 0,91.Efficiency = (T on1 - To M ) / T „arp = (873 -77) / 873 = 0.91.
Это значит, что 91% тепловой энергии переходит в механическую, а отводить необходимо только 9% подведённого тепла и оставшийся жидкий азот можно использовать в одном или нескольких дополнительных двигателях 35, а тепло для нагрева жидкометаллическим теплоносителем подводить по трубопроводам 36. Если его не будет хватать в тепловом аккумуляторе 9, то подводить от любого другого источника, например, воздуха в жарких регионах. При этом получаемая мощность и КПД будут ниже, но на воздушных теплообменниках сконденсируется большое количество находящейся в атмосфере воды. При использовании солнечного и геотермального тепла двигатели 35 комбинированной системы работают без вредных выбросов в атмосферу и не изменяют тепловой баланс Земли. This means that 91% of the thermal energy goes into mechanical energy, and it is necessary to remove only 9% of the supplied heat and the remaining liquid nitrogen can be used in one or several additional engines 35, and heat for heating with liquid metal coolant should be supplied through pipelines 36. If it is not enough in the heat accumulator 9, then it must be supplied from any other source, for example air in hot regions. At the same time, the resulting power and efficiency will be lower, but a large amount of water in the atmosphere is condensed on air heat exchangers. When using solar and geothermal heat, engines 35 of the combined system operate without harmful emissions into the atmosphere and do not alter the thermal balance of the Earth.
Нагретый в двигателях 3 и 35 газообразный азот по трубопроводу 39 направляют в пневмоцилиндр 6 двухступенчатого расширения азота для использования его энергии вместе с энергией двигателя 3, обеспечивая для работы комбинированной системы уменьшение её потребления извне. По трубопроводу 40 для утилизации остаточной энергии газообразный азот направляют через вал отвода мощности 37 на турбину (на схеме не показано) с электрогенератором 38. Газообразные кислород и азот, нагретые до требуемой температуры и смешанные в необходимой для дыхания пропорции, направляют в помещения больниц, предприятий и жилья.  Gaseous nitrogen heated in engines 3 and 35 is sent via line 39 to the pneumatic cylinder 6 of two-stage expansion of nitrogen to use its energy together with the energy of engine 3, providing for the operation of the combined system to reduce its external consumption. Through the pipeline 40 for utilization of residual energy, gaseous nitrogen is sent through a power removal shaft 37 to a turbine (not shown in the diagram) with an electric generator 38. Gaseous oxygen and nitrogen, heated to the required temperature and mixed in the proportion necessary for breathing, are sent to the premises of hospitals and enterprises and housing.
Представленная схема показывает общие принципы работы узлов заявляемой комбинированной системы и может быть перенаправлена и дополнена для выполнения специальных задач.  The presented scheme shows the general principles of operation of the nodes of the inventive combined system and can be redirected and supplemented to perform special tasks.
Таким образом, заявляемая комбинированная система для разделения газовых смесей и энергопреобразования позволила расширить диапазон разделения различных газовых смесей на составляющие и предоставила возможность утилизировать вредные составляющие, полностью использовать выделяемое при охлаждении тепло и холод при газификации сжиженных составляющих с получением КПД 91% преобразования энергии с разными температурами в механическую, открывая новые перспективы двигателям внешнего сгорания, и значительно повысить эффективность разделения газовых смесей, например, удаляя углекислый, угарньш газ и метан в угольных шахтах с минимальными энергетическими затратами. Thus, the inventive combined system for separation of gas mixtures and energy conversion allowed expanding the range of separation of various gas mixtures into components and made it possible to utilize harmful components, fully use the heat and cold released during cooling during gasification of liquefied components with an efficiency of 91% conversion of energy with different temperatures to mechanical, opening up new prospects for engines external combustion, and significantly increase the efficiency of separation of gas mixtures, for example, removing carbon dioxide, carbon monoxide There is gas and methane in coal mines with minimal energy costs.

Claims

' ФОРМУЛА ИЗОБРЕТЕНИЯ ' CLAIM
1. Комбинированная система для разделения газовых смесей и энергопреобразования, содержащая криогенную машину Стирлинга, ректификационную колонну, теплообменник для вымораживания влаги и углекислоты, теплоизолированную емкость для жидкого азота, насос высокого давления, трубопроводы жидкого и газообразного азота и устройство преобразования энергии газообразного азота, отличающаяся тем, что она содержит тепловой насос Стирлинга и двигатель Стирлинга, охлаждаемый жидким азотом, установленные с криогенной машиной Стирлинга в одном корпусе и имеющие общий шток с гидроцилиндром и пневмоцилиндром, и дополнительно содержит в качестве устройства преобразования разности энергии тепла и жидкого азота, по крайней мере, один двигатель Стирлинга 1. A combined system for separating gas mixtures and energy conversion, comprising a cryogenic Stirling machine, a distillation column, a heat exchanger for freezing moisture and carbon dioxide, an insulated tank for liquid nitrogen, a high pressure pump, pipelines of liquid and gaseous nitrogen and a device for converting energy of gaseous nitrogen, characterized in that it contains a Stirling heat pump and a Stirling engine cooled by liquid nitrogen, installed with a cryogenic Stirling machine in one sensor body and having a common shaft with a hydraulic cylinder and air cylinder, and further comprises a heat energy converting apparatus and the difference in liquid nitrogen, at least one Stirling engine
2. Система по п. 1, отличающаяся тем, что криогенная машина и тепловой насос соединены рекуператором.  2. The system according to claim 1, characterized in that the cryogenic machine and the heat pump are connected by a recuperator.
3. Система по п. 1, отличающаяся тем, что тепловой насос с двигателем соединены рекуператором с тепловым аккумулятором.  3. The system according to claim 1, characterized in that the heat pump with the engine is connected by a heat exchanger to the heat accumulator.
PCT/UA2011/000024 2010-08-19 2011-04-11 Combined system for separating gas mixtures and converting energy WO2012023915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA201010218A UA99328C2 (en) 2010-08-19 2010-08-19 Combined system for separation of gas mixes and energy conversion
UAA201010218 2010-08-19

Publications (1)

Publication Number Publication Date
WO2012023915A1 true WO2012023915A1 (en) 2012-02-23

Family

ID=45605359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2011/000024 WO2012023915A1 (en) 2010-08-19 2011-04-11 Combined system for separating gas mixtures and converting energy

Country Status (2)

Country Link
UA (1) UA99328C2 (en)
WO (1) WO2012023915A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046503A (en) * 2012-12-18 2013-04-17 成都宇能通能源开发有限公司 Cleaning vehicle powered by regenerative Stirling engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1530126A (en) * 1975-12-22 1978-10-25 Oxley A Methods of and means for the storage of surplus energy
RU2156373C1 (en) * 1999-05-19 2000-09-20 Военный инженерно-космический университет им. А.Ф. Можайского Off-line stirling-stirling power plant
US6151896A (en) * 1997-02-04 2000-11-28 Stichting Energieonderzoek Centrum Nederland Heating installation based on a stirling system
RU2162579C2 (en) * 1999-04-13 2001-01-27 Военный инженерно-космический университет им. А.Ф. Можайского Combined natural gas liquefaction system on basis of liquid nitrogen producing unit with cryogenic stirling machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1530126A (en) * 1975-12-22 1978-10-25 Oxley A Methods of and means for the storage of surplus energy
US6151896A (en) * 1997-02-04 2000-11-28 Stichting Energieonderzoek Centrum Nederland Heating installation based on a stirling system
RU2162579C2 (en) * 1999-04-13 2001-01-27 Военный инженерно-космический университет им. А.Ф. Можайского Combined natural gas liquefaction system on basis of liquid nitrogen producing unit with cryogenic stirling machine
RU2156373C1 (en) * 1999-05-19 2000-09-20 Военный инженерно-космический университет им. А.Ф. Можайского Off-line stirling-stirling power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046503A (en) * 2012-12-18 2013-04-17 成都宇能通能源开发有限公司 Cleaning vehicle powered by regenerative Stirling engine
WO2014094499A1 (en) * 2012-12-18 2014-06-26 成都宇能通能源开发有限公司 Cleaning vehicle using heat accumulating type stirling engine as power

Also Published As

Publication number Publication date
UA99328C2 (en) 2012-08-10

Similar Documents

Publication Publication Date Title
She et al. Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement
DK2753861T3 (en) METHOD AND APPARATUS FOR ENERGY STORAGE
EP3640449B1 (en) Staged cold energy storage type supercritical compressed air energy storage system and method
WO2018224054A1 (en) Waste heat recovery system, method therefor and power station
NO20120029A1 (en) Thermal control system and method in one or more insustrial processes
US4227374A (en) Methods and means for storing energy
US20150192065A1 (en) Process and apparatus for generating electric energy
WO2013104904A1 (en) Electricity generation device and method
RU151882U1 (en) INSTALLATION OF REGASIFICATION OF LIQUID CRYOPRODUCT WITH ELECTRICITY GENERATION
CN102230403A (en) Method and equipment for realizing low-temperature thermal power generation by cryogenic technology
Nabat et al. Liquid air energy storage
Liu et al. Techno-economic analysis of a liquid air energy storage system combined with calcium carbide production and waste heat recovery
RU2739165C1 (en) Power technological complex of natural gas processing and method of operation of complex
WO2019081916A1 (en) Energy storage apparatus and method
JP2005090636A (en) Transportation system for liquefied hydrogen
WO2012023915A1 (en) Combined system for separating gas mixtures and converting energy
CN206530369U (en) A kind of cryogenic liquid vaporizer electricity generation system
Guo et al. Progress of liquefied natural gas cold energy utilization
CN105840312B (en) A kind of liquid fuel liquid oxygen high pressure direct combustion steam power system
CN210239766U (en) Utilize natural working medium to retrieve LNG cold energy power generation's device
CN209875312U (en) Thermal power generation system suitable for low-temperature environment
RU2548708C1 (en) Method of conversion of thermal energy into useful yield
RU92110U1 (en) CRYOGENIC HYDRO POWER PLANT
CN101749206B (en) Low-temperature liquefied energy recovery power supply system
US20140230486A1 (en) Method and device for recovering high-pressure oxygen and high-pressure nitrogen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818463

Country of ref document: EP

Kind code of ref document: A1