WO2012023668A1 - Device and method for measuring vertical velocity distribution of river - Google Patents

Device and method for measuring vertical velocity distribution of river Download PDF

Info

Publication number
WO2012023668A1
WO2012023668A1 PCT/KR2010/008742 KR2010008742W WO2012023668A1 WO 2012023668 A1 WO2012023668 A1 WO 2012023668A1 KR 2010008742 W KR2010008742 W KR 2010008742W WO 2012023668 A1 WO2012023668 A1 WO 2012023668A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
vertical
pulse repetition
stream
measurement
Prior art date
Application number
PCT/KR2010/008742
Other languages
French (fr)
Korean (ko)
Inventor
김원
이찬주
김동구
권성일
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Publication of WO2012023668A1 publication Critical patent/WO2012023668A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • G01C13/002Measuring the movement of open water
    • G01C13/004Measuring the movement of open water vertical movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/002Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/241Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by using reflection of acoustical waves, i.e. Doppler-effect
    • G01P5/244Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by using reflection of acoustical waves, i.e. Doppler-effect involving pulsed waves

Definitions

  • the present invention relates to an apparatus and method for measuring a vertical flow velocity distribution in a stream, and more particularly, to an apparatus and a method for measuring a flow velocity distribution for each depth in a stream using single and multiple pulse repetition frequencies of ultrasonic waves.
  • ultrasonic flowmeters for measuring vertical flow rate distributions have been developed and marketed in foreign countries, and each of them uses various methods in converting ultrasonic signals to flow rates.
  • Doppler signal using a pulse repetition frequency which is used in medical devices as a method of measuring blood flow velocity of a human body, and is used in areas such as measuring a relative speed of an airplane in flight using a radar ( Ultrasonic Doppler and Radar Doppler).
  • the ultrasonic wave is inclined at the time of manufacturing the ultrasonic flowmeter using the pulse repetition frequency, it will be common to generate the ultrasonic transceiver part inclined in the ultrasonic flowmeter.
  • FIG. 1 is a diagram illustrating an ultrasonic tachometer in which the ultrasonic transceiver is inclined.
  • the present invention has been made to solve such a conventional problem, and aims to measure the vertical flow rate distribution of natural streams using a Doppler signal analysis method using a single or multiple pulse repetition frequency.
  • Stream vertical flow rate measurement apparatus for solving the above problems includes a depth measurement unit, a maximum flow rate value calculation unit, an SPRF mode execution unit, a measurement mode switching unit, and an MPRF mode execution unit.
  • the depth measuring unit measures the vertical depth of the river
  • the maximum flow rate value calculating unit measures the maximum measurement distance, which is the distance from the direction in which the vertical depth is measured to the surface of the ultrasonic signal transmitted in the inclined direction by a predetermined angle.
  • the pulse repetition frequency (PRF) is calculated using the obtained depth data
  • the maximum repetition velocity value corresponding to the depth data is calculated using the pulse repetition frequency (PRF)
  • the SPRF mode execution unit performs the pulse repetition frequency (PRF).
  • the measurement mode switching unit compares the maximum flow rate value with the representative value of the flow rate. If the maximum flow rate value is larger than the representative value of the flow rate, the measurement mode switching unit does not change the measurement mode.
  • the vertical flow velocity distribution of the stream is measured by using a plurality of ultrasonic pulse signals to which a plurality of preset pulse repetition frequencies (PRFs) that can be measured up to the maximum depth of the stream are applied.
  • PRFs pulse repetition frequencies
  • the flow rate is calculated using the Doppler signal analysis method using a single pulse repetition frequency when it is lower than the reference value, and when using the multi-pulse repetition frequency when the reference value is higher than the reference Since the flow velocity is obtained by the Doppler signal analysis method, the vertical flow velocity distribution of the natural river can be accurately measured and the measurement time can be shortened.
  • the SPRF mode execution unit measures the vertical flow rate distribution of the plurality of streams for a preset time, averages the measured plurality of vertical flow rate distributions at a preset time, and sets the fastest average flow rate as the representative value of the flow rate. have.
  • the MPRF mode execution unit transmits a plurality of pulse signals for each pulse repetition frequency (PRF), receives a plurality of scattered pulse signals, extracts scattered signals at a depth corresponding to the depth data, and extracts the extracted signals.
  • An aliased Doppler signal can be extracted from the stream to determine the vertical velocity distribution of the stream.
  • the MPRF mode executing unit may measure the vertical velocity distribution of the stream by applying the 'Chinese residual theorem' to a plurality of aliased Doppler frequencies.
  • the correct Doppler frequency can be calculated from the aliased Doppler frequency, thereby measuring the correct flow rate.
  • the stream vertical flow rate distribution measuring apparatus is implemented in a predetermined form so as to secure a path through which ultrasonic waves are transmitted and received, and to flatten the upper surface of the stream soft flow rate measurement apparatus, so as not to affect the ultrasonic transmission and reception
  • the apparatus may further include an ultrasonic path providing unit formed of a material.
  • the flow rate when the flow rate of the water depth to which the user wants to measure the flow rate in the stream is slow, the flow rate can be measured in the SPRF mode, and the flow rate can be measured in the MPRF mode when the flow rate is fast.
  • the vertical flow rate distribution of natural streams can be measured, and the SPRF mode and the MPRF mode can be executed with one device, thereby reducing the measurement time.
  • 1 is a view showing an ultrasonic flowmeter in which the ultrasonic transceiver is obliquely generated.
  • Figure 2 is a block diagram schematically showing an embodiment of the configuration of the stream vertical flow rate measurement apparatus according to the present invention.
  • Figure 3 is a view showing an embodiment for measuring the vertical flow rate distribution in the river using the stream vertical flow rate measurement apparatus.
  • Equation 4 is a graph showing the limits of the measurement depth and velocity according to the pulse repetition frequency (PRF) calculated using Equation 1 and Equation 2 when the measurement line of the ultrasonic signal forms an angle of 45 ° with the vertical direction. drawing.
  • PRF pulse repetition frequency
  • FIG. 5 is a diagram illustrating a process of measuring a vertical flow rate distribution using a pulse repetition frequency (PRF) in the SPRF mode execution unit.
  • PRF pulse repetition frequency
  • FIG. 6 is a circuit diagram showing each configuration of a stream vertical flow rate distribution measuring apparatus.
  • FIG. 7 is a side view of a stream vertical flow rate measurement apparatus embedded in the river bottom.
  • FIG. 8 is a perspective view of a stream vertical flow rate measurement apparatus embedded in the river bottom.
  • FIG. 9 is a flowchart schematically illustrating an embodiment of a method for measuring vertical flow rate distribution using the apparatus for measuring the vertical flow rate distribution in FIG. 2.
  • FIG. 10 is a flow chart showing in detail the steps of measuring the vertical flow rate distribution and setting representative values of the flow rate in the SPRF mode.
  • 11 shows the flow rate vertical distribution in MPRF mode. Flow chart detailing the steps for measuring.
  • Figure 2 is a view showing an embodiment for measuring the vertical flow rate distribution in the river using the stream vertical flow rate measurement apparatus 100 according to the present invention.
  • the vertical flow rate distribution measuring apparatus 100 is installed at the bottom of the river, and measures the vertical flow rate distribution of the stream at the point where the vertical flow rate distribution measuring apparatus 100 is installed.
  • the vertical flow rate distribution means a flow rate according to the depths of the water from the vicinity where the vertical flow rate distribution measuring apparatus 100 is installed to the vicinity of the surface of the water, and the vertical flow rate distribution measuring apparatus 100 of the present invention, as shown in FIG. Depth can be measured for each depth layer of 1 cm or less.
  • the vertical flow rate distribution measuring apparatus 100 transmits / receives ultrasonic waves obliquely in a direction opposite to the flow (main flow) flowing from the upstream to the downstream of the stream, as shown in FIG. It can be measured.
  • FIG. 3 is a block diagram schematically showing an embodiment of the configuration of the device 100 for measuring the vertical flow velocity distribution of the stream of FIG. 2.
  • the stream vertical flow rate distribution measuring apparatus 100 for measuring the flow rate distribution for each depth in the river using single and multiple ultrasonic pulse repetition frequencies is executed by the depth measuring unit 110, the maximum flow rate value calculating unit 120, and the SPRF mode.
  • the depth measuring unit 110 generally measures the vertical depth of the river by measuring the vertical distance from the measuring device 100 to the water surface using a depth sensor used for measuring the depth of the fluid.
  • the vertical depth value of the measured stream is referred to as depth data
  • the depth data may include a depth measurement time
  • the maximum flow rate value calculation unit 120 converts the depth data measured by the depth measurement unit 110 to the maximum measurement distance by reflecting the angle between the vertical direction and the measurement line in FIG. 2 (a). For example, if the measured depth is 1m and the angle between the vertical direction and the measurement line is 45 °, the maximum measurement distance may be 1m ⁇ (1 / cos 45 °), which may be 1.414m.
  • the maximum flow rate value calculator 120 calculates the pulse repetition frequency PRF by substituting the calculated maximum measurement distance into the maximum measurement distance Rmax of Equation 1, and calculates the calculated pulse repetition frequency PRF. And the frequency of the transmission signal is substituted into the pulse repetition frequency PRF of the equation (2) and the frequency fo of the transmission signal to calculate the maximum flow rate value corresponding to the depth data.
  • Equation 1 is In this case, the SPRF mode execution unit 130, which will be described later, may repeatedly derive a limitation of the measurement distance due to repeatedly transmitting / receiving a pulse signal.
  • the maximum measurement distance is determined by the pulse repetition period.
  • Equation 1 Rmax is the maximum measurement distance, Tr is the pulse repetition period, c is the sound velocity, PRF is the pulse repetition frequency.
  • Equation 2 is to be.
  • Equation 2 can be derived from the sampling theorem. That is, since the pulse repetition period becomes the sampling period of the Doppler signal, the amount of Doppler frequency shift that is 1/2 of the pulse repetition frequency (PRF) by the sampling theorem is measured. This can lead to a limitation of the maximum measurement speed.
  • PRF pulse repetition frequency
  • Vmax is the maximum measurement speed
  • c is the sound speed
  • PRF is the pulse repetition frequency
  • fo is the frequency of the transmission signal.
  • Equation 4 is a graph showing the limits of the measurement depth and velocity according to the pulse repetition frequency (PRF) calculated using Equation 1 and Equation 2 when the measurement line of the ultrasonic signal forms an angle of 45 ° with the vertical direction.
  • PRF pulse repetition frequency
  • the depth in the vertical direction from the ultrasound transceiver 140 may be within a range of about 75 cm, and the speed may measure only a flow rate of about 40 cm / s or less. It can be seen.
  • the SPRF mode execution unit 130 measures the vertical flow velocity distribution of the stream using a single ultrasonic pulse signal, and sets a representative value of the flow velocity.
  • the SPRF mode refers to a flow rate distribution measurement mode using a single pulse repetition frequency (SPRF).
  • SPRF single pulse repetition frequency
  • the ultrasonic transceiver 140 transmits a pulse signal to which the pulse repetition frequency (PRF) calculated from Equation 1 is applied by the maximum flow rate value calculator 120, which is a single ultrasonic pulse signal, in a direction opposite to the stream flow. , A pulse signal scattered from the suspended solids 20 can be received.
  • PRF pulse repetition frequency
  • the SPRF mode execution unit 130 among the scattered signals received by the ultrasound transceiver 140, a time difference according to a specific time difference (pulse repetition frequency (PRF)) at a specific distance (sleep) from the ultrasound transceiver 140. ) And extract the received signals.
  • PRF pulse repetition frequency
  • FIG. 5 is a diagram illustrating a process of measuring a vertical flow rate distribution using a pulse repetition frequency (PRF) in the SPRF mode execution unit 130, with reference to FIG. 2.
  • PRF pulse repetition frequency
  • FIG. 5 (a) shows that when an ultrasonic pulse signal is transmitted from the ultrasonic transceiver unit 140 along the measurement line as shown in FIG. 2 (a), the signal is scattered from the float 20.
  • (b) is an ultrasonic wave among the signals scattered and received by the float 20 from the ultrasonic pulse signal transmitted by the ultrasonic transceiver unit 140 according to the pulse repetition frequency (PRF) as shown in FIG. It shows a signal extracted with a time difference according to the pulse repetition frequency (PRF) at a specific distance from the transceiver 140.
  • PRF pulse repetition frequency
  • the horizontal position (relative time after transmission) of the vertical dotted line (arrow dotted line) in FIG. 5B means the distance (depth) from the vertical flow rate distribution measuring apparatus 100, if the position of the vertical dotted line is If it is on the right side, it means the depth of water far from the vertical flow rate distribution measuring apparatus 100, and if the position of the vertical dotted line is on the left side, it means the depth of water near the vertical flow rate distribution measuring apparatus 100.
  • the relative time axis after transmission is equal to the distance (depth) from the vertical flow rate distribution measuring apparatus 100.
  • the SPRF mode execution unit 130 may calculate the Doppler frequency as shown in FIG. 5C from the extracted signals with a time difference according to the pulse repetition frequency (PRF), and measure the flow rate from the Doppler frequency. .
  • PRF pulse repetition frequency
  • the Doppler frequency refers to the Doppler frequency due to the float moving at that depth (selected relative time).
  • the signals having the same period are generated by extracting signals having the same relative time from the extracted signals as shown in FIG. 5 (b), and the signal having the specific period is the Doppler signal. Becomes
  • the vertical flow velocity distribution is obtained by dividing the entire depth of the river from the ultrasonic transceiver unit 140 to the surface by 1 cm interval and the corresponding times. Can be measured.
  • the average value of the flow rate for each 1 cm depth can be obtained, and the average value of the flow velocity at the position where the fastest flow velocity appears in the vertical flow velocity distribution (generally, the position near the surface of the river) can be set as the representative value of the flow velocity.
  • the measurement mode switching unit 150 compares the maximum flow rate value calculated by the maximum flow rate value calculating unit 120 with the representative value of the flow rate measured by the SPRF mode execution unit 130, so that the maximum flow rate value is larger than the representative value of the flow rate. If large, the vertical flow rate distribution average value measured by the SPRF mode execution unit 130 may be set as the flow rate data without switching the measurement mode.
  • the vertical flow rate distribution may be re-measured and set as the flow rate data.
  • the ultrasonic transceiver unit 140 as described above may use the pulse repetition frequency (PRF) calculated by Equation 1 in the maximum flow rate value calculator 120.
  • PRF pulse repetition frequency
  • the ultrasonic signals may be transmitted, signals received from a specific distance are extracted from the scattered signals to be received, a Doppler signal may be generated from the extracted signals, and a vertical velocity distribution may be measured from the Doppler frequency.
  • the measurement mode switching unit 150 switches to the MPRF mode when the maximum flow rate value is smaller than the representative value of the flow rate.
  • the shallow flow rate and the slow flow rate can be measured by the flow rate measurement method using the SPRF mode.
  • the flow rate since the flow rate is high, the flow rate can not be measured. It may be desirable to switch to MPRF mode and measure the flow rate.
  • the MPRF mode execution unit 160 When the MPRF mode execution unit 160 switches to the MPRF mode, the MPRF mode execution unit 160 measures the vertical flow velocity distribution of the stream by using the multiple ultrasonic pulse signals.
  • the MPRF mode refers to a flow rate distribution measurement mode using a multiple pulse repetition frequency (MPRF).
  • MPRF pulse repetition frequency
  • the ultrasonic receiver 140 transmits a plurality of pulse signals to which a plurality of preset pulse repetition frequencies (PRF) are applied, which are multiple ultrasonic pulse signals, and are scattered from the float 20 in the water.
  • a plurality of pulse repetition frequencies (PRFs) for the pulse repetition frequency (PRF) can be received, wherein the plurality of preset pulse repetition frequencies (PRF) is low pulse repetition frequency (PRF) (e.g. 200 Hz, 320 Hz, 440 Hz, etc.).
  • the MPRF mode execution unit 160 extracts the received signals with a specific time difference from the ultrasound transceiver 140 at a specific distance (sleep) from the plurality of scattered signals received by the ultrasound receiver 140.
  • the MPRF mode execution unit 160 measures a flow rate by obtaining a plurality of aliased Doppler frequencies from signals having the same relative time in the extracted signals for each pulse repetition frequency (PRF).
  • PRF pulse repetition frequency
  • the aliased Doppler frequency is the Doppler frequency due to the moving float.
  • Each of the plurality of low pulse repetition frequencies (PRF) as described above is a low pulse repetition frequency (PRF) that can be measured up to the maximum depth of the fluid to be measured, so that all depths can be measured, but relatively high flow rates are measured. Since aliasing occurs beyond the maximum measurement rate, the aliased Doppler frequencies can be extracted.
  • the aliased Doppler frequency extracts signals having the same relative time from the signals having a specific time difference extracted from the above, and generates a signal having a specific period from these signals, and calculates the frequency of the generated signal. can do.
  • the MPRF mode execution unit 160 applies the 'China remaining theorem' to the multiple aliased Doppler frequencies, so that the correct flow rate can be calculated. Can be measured.
  • the Chinese Theorem Theorem gives the answer to the problem of finding a common solution of simultaneous linear joint equations, with the aliased measurement (aliased Doppler frequency) remaining and the corresponding pulse.
  • aliased Doppler frequency By applying the repetition frequency (PRF) to the rest of the Chinese theorem, a correct Doppler frequency can be calculated and converted into a flow rate to determine the correct flow rate for the corresponding depth.
  • PRF repetition frequency
  • MPRF mode uses a low pulse repetition frequency (PRF),
  • PRF pulse repetition frequency
  • Equation 3 Become,
  • Equation 4 Becomes
  • the flow rate data storage unit 170 may store data about the flow rate measured by the SPRF mode execution unit 130 and the MPRF mode execution unit 160 in association with the depth data.
  • Stored flow rate data can be used to manage streams, for example, by calculating the time to neutralize contaminants, by estimating the rate of inflow of water accumulated in the dam during the rainy season, or by setting up discharges in rivers. It can be installed in ( ⁇ ) to measure the flow of the river and can be used to grasp the amount of water resources.
  • the digital control unit 30 has the remaining components (depth measurement unit 110, the maximum flow rate value calculation unit except for the ultrasonic transceiver unit 140). 120, the SPRF mode execution unit 130, the measurement mode switching unit 150, the MPRF mode execution unit 160, and the flow rate data storage unit 170 may be included.
  • the stream vertical flow rate distribution measuring apparatus 100 as described above is installed on a stream structure having a flat bottom, such as a river bottom or a beam blocking the river, or a bottom surface of the river and an upper surface of the stream vertical flow rate measuring apparatus 100. It may be embedded to form a plane.
  • FIG. 7 is a side view of the stream vertical flow rate measurement apparatus 100 embedded in the river bottom
  • FIG. 8 is a perspective view of the stream vertical flow rate measurement apparatus 100 embedded in the river bottom.
  • the stream vertical flow rate distribution measuring apparatus 100 may further include an ultrasonic path providing unit 10, the ultrasonic path providing unit 10 may be implemented with a material that does not affect the ultrasonic transmission and reception, ultrasonic It may have a form that can secure the path to be transmitted and received, and may also be implemented in various forms according to the bottom surface of the river.
  • the upper surface of the ultrasonic path providing unit 10 may be implemented in a predetermined form such that the upper surface of the stream vertical flow rate distribution measuring apparatus 100 is flattened.
  • the user may measure the flow rate in the SPRF mode when the flow rate of the depth to which the user wants to measure the flow rate in the stream is slow, and in the MPRF mode when the flow rate is fast.
  • the vertical flow velocity distribution of the natural stream can be accurately measured without limiting the depth and flow rate, and the measurement time can be shortened because the SPRF mode and the MPRF mode can be executed by one device.
  • FIG. 9 is a flowchart schematically illustrating an example of a method for measuring a vertical flow rate distribution using the stream vertical flow rate measurement apparatus 100 of FIG. 2.
  • the stream vertical flow rate distribution measuring apparatus 100 measures the total depth of the stream, which is the vertical distance from the measuring apparatus 100 to the water surface, using a general depth sensor (S100), and the depth data of the measured depth, The maximum flow rate value is calculated using the equations (1) and (2) previously set (S200).
  • Pulse repetition frequency (PRF) is calculated by substituting Rmax of By substituting for, the maximum flow velocity value corresponding to the depth data can be calculated.
  • the stream vertical flow rate distribution measuring apparatus 100 is an SPRF mode using a single ultrasonic pulse signal, The vertical flow rate distribution is measured and a representative value of the flow rate is set (S300).
  • FIG. 10 is a flowchart illustrating in detail the steps of measuring the vertical flow rate distribution and setting the representative value of the flow rate in the SPRF mode. Referring to FIG. 9, step S300 will be described.
  • the ultrasonic transmitting / receiving unit 140 of the stream vertical flow rate distribution measuring apparatus 100 transmits a pulse signal by applying the pulse repetition frequency (PRF) calculated in step S200, which is a single ultrasonic pulse signal, from the suspended solid 20 in the water.
  • PRF pulse repetition frequency
  • the stream vertical flow rate distribution measuring apparatus 100 may extract the received signals at a specific distance from the measuring device 100 at a specific distance (S320).
  • the frequency of the generated Doppler signal is converted into a flow rate at the corresponding relative time.
  • the flow velocity of the corresponding depth can be measured (S350).
  • the vertical velocity distribution of the stream may be measured by converting the frequency of the generated Doppler signal into a flow rate (S360). ).
  • the above-described steps S310 to S360 are repeated for a preset time, and the plurality of vertical flow rate distributions are measured, and the measured results are averaged at a preset time, and the average value of the vertical flow rate distribution, which is an average value of flow rates for each 1 cm depth, is measured.
  • the position at which the fastest flow rate appears in the average value of the vertical flow rate distribution (generally, the flow rate average value of the position near the surface of the river) is set as the representative value of the flow rate (S380).
  • the stream vertical flow rate distribution measuring apparatus 100 determines whether to switch to the MPRF mode by comparing the maximum flow rate value calculated as described above and the representative value of the flow rate (S400), and the maximum flow rate value is If greater than the representative value of the flow rate (S410), the flow rate data storage unit in the stream vertical flow rate distribution measuring apparatus 100 by setting the average value of the vertical flow rate distribution calculated in the SPRF mode to generate the representative value of the flow rate as the flow rate data In operation 170, the storage is stored at 170.
  • step S310 to step S350 of FIG. 9 is an ultrasonic signal to which the pulse repetition frequency (PRF) calculated from Equation 1 is applied in step S200.
  • the vertical flow velocity distribution of the measured stream may be set as the velocity data and stored in the velocity data storage unit 170.
  • the stream vertical flow rate distribution measuring apparatus 100 is switched to the MPRF mode, and the multiple ultrasonic pulse signals The flow rate corresponding to the depth data is measured in the MPRF mode using (S600).
  • FIG. 11 is a flowchart illustrating the steps of measuring the flow rate vertical distribution in the MPRF mode in detail. Referring to FIG. 11, step S600 will be described.
  • the ultrasonic transmitting / receiving unit 140 of the stream vertical flow rate distribution measuring apparatus 100 transmits a plurality of pulse signals to which a plurality of predetermined (three or more) low pulse repetition frequencies (PRFs), which are multiple ultrasonic pulse signals, are applied and are underwater.
  • PRFs low pulse repetition frequencies
  • the stream vertical velocity distribution measuring apparatus 100 receives the signals received at a specific distance from the measuring device 100 at a specific distance from each pulse repetition frequency (PR620) is extracted for each (S620).
  • an accurate Doppler frequency can be calculated for each pulse repetition frequency (PRF) (S650), and the flow rate is calculated using the calculated Doppler frequency.
  • PRF pulse repetition frequency
  • an accurate flow velocity at a depth corresponding to the corresponding relative time may be measured.
  • step S630 by changing the relative time to correspond to the depth position of the 1cm interval and repeating step S630 to step S660, it is possible to measure the vertical flow rate distribution of the stream (S670).
  • the stream vertical flow rate distribution measuring apparatus 100 stores the flow rate data, which is a vertical flow rate distribution of the stream measured in the MPRF mode, in the flow rate data storage unit 170 in the stream vertical flow rate distribution measuring apparatus 100. (S500).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Hydrology & Water Resources (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Disclosed are a device and a method for measuring a vertical velocity distribution of a river. The device for measuring a vertical velocity distribution of a river, in which velocity distributions at each water level in the river are measured by using single and multiple pulse repetition frequencies of ultrasonic waves, comprises a water depth measurement unit, a maximum velocity value calculation unit, an SPRF mode execution unit, a measurement mode conversion unit, and an MPRF mode execution unit. The water depth measurement unit measures the vertical depth of water in the river. The maximum velocity value calculation unit: calculates a maximum measurement distance, which is the distance of an ultrasonic signal until it reaches the surface of the water, wherein the ultrasonic signal is transmitted in a direction inclined as much as the preset angle from the direction in which the vertical depth is measured, and pulse repetition frequency (PRF) which is obtained using the measured water depth data; and calculates a maximum velocity value corresponding to said water depth data by using the pulse repetition frequency (PRF). The SPRF mode execution unit measures vertical velocity distributions of the river by using a single ultrasonic pulse signal to which the pulse repetition frequency (PRF) is applied, and sets the fastest velocity to a representative value of velocity. Further, the measurement mode conversion unit compares the maximum velocity value with the representative value of the velocity, does not convert a measurement mode if the maximum velocity value is larger than the representative value of the velocity, and converts into an MPRF mode if the maximum velocity value is smaller. When the mode is converted into the MPRF mode, the MPRF mode execution unit measures vertical velocity distributions of the river by using a plurality of ultrasonic pulse signals, to which a plurality of preset pulse repetition frequencies (PRFs) measurable up to the deepest level of the river are applied. Thus, the invention accurately measures the vertical velocity distributions of natural rivers and shortens the measurement time, since based on the maximum measurement distance and a maximum measurement velocity relative to the measured water depth: the velocity is obtained by a Doppler signal analysis method using a single pulse repetition frequency if the velocity is slower than said standard; and the velocity is obtained by a Doppler signal analysis method using multiple pulse repetition frequencies if the velocity is faster than said standard.

Description

하천 연직 유속분포 측정 장치 및 방법River Vertical Flow Rate Measurement Apparatus and Method
본 발명은 하천 연직 유속분포 측정 장치 및 방법에 관한 것으로, 보다 상세하게는 초음파의 단일 및 다중 펄스 반복 주파수를 이용하여 하천에서 각 수심별 유속분포를 측정하기 위한 장치 및 방법에 관한 것이다. The present invention relates to an apparatus and method for measuring a vertical flow velocity distribution in a stream, and more particularly, to an apparatus and a method for measuring a flow velocity distribution for each depth in a stream using single and multiple pulse repetition frequencies of ultrasonic waves.
현재, 연직 유속분포를 측정하는 초음파 유속계가 외국에서 개발되어 시판되고 있는데, 이들은 각각 초음파 신호를 유속으로 바꾸는 과정에 있어서 다양한 방법을 사용하고 있다.At present, ultrasonic flowmeters for measuring vertical flow rate distributions have been developed and marketed in foreign countries, and each of them uses various methods in converting ultrasonic signals to flow rates.
그 중 하나는, 인체의 혈류 속도를 측정하는 방법으로서 의료 기기에 활용되고 있고, 레이더를 이용하여 비행 중인 비행기의 상대속도를 측정하는 등의 영역에서 활용되고 있는, 펄스 반복 주파수를 이용한 도플러 신호(초음파 도플러 및 레이더 도플러 등) 해석 방법이다.One of them is a Doppler signal using a pulse repetition frequency, which is used in medical devices as a method of measuring blood flow velocity of a human body, and is used in areas such as measuring a relative speed of an airplane in flight using a radar ( Ultrasonic Doppler and Radar Doppler).
하지만, 단일 펄스 반복 주파수를 이용한 도플러 신호 해석 방법의 경우는, 실험실에서 유체의 속도를 측정한 사례는 보고되어 있지만, 실제 하천에서 유속을 측정한 사례는 거의 보고된 바 없다. However, in the case of Doppler signal analysis using a single pulse repetition frequency, a case of measuring the velocity of the fluid in the laboratory has been reported, but there have been few reports of the measurement of the velocity in actual rivers.
또한, 단일 펄스 반복 주파수를 이용한 도플러 신호 해석 방법을 이용하여 실제 하천의 유속을 측정한다 하더라도, 하천의 수심이 깊어서 유속이 빠른 경우에는 정확한 유속을 측정하기 어렵다는 문제점이 있다. In addition, even if the actual flow velocity of the river is measured by using the Doppler signal analysis method using a single pulse repetition frequency, there is a problem that it is difficult to accurately measure the flow velocity when the flow velocity is fast because of the depth of the river.
또한, 펄스 반복 주파수를 이용하여 초음파 유속계를 제작시에, 초음파가 경사지게 방출되므로, 초음파 유속계에 초음파 송수신부를 경사지게 생성하는 것이 일반적일 것이다. In addition, since the ultrasonic wave is inclined at the time of manufacturing the ultrasonic flowmeter using the pulse repetition frequency, it will be common to generate the ultrasonic transceiver part inclined in the ultrasonic flowmeter.
상기와 같은 초음파 유속계는 도 1과 같이 구현해 볼 수 있으며, 도 1은 초음파 송수신부가 경사지게 생성된 초음파 유속계를 나타낸 도면이다. The ultrasonic tachometer as described above may be implemented as shown in FIG. 1, and FIG. 1 is a diagram illustrating an ultrasonic tachometer in which the ultrasonic transceiver is inclined.
하지만, 도 1과 같은 초음파 유속계를 하천의 바닥에 매립하게 될 경우, 초음파 송수신부가 바닥의 흙에 의해 덮이게 되어, 초음파를 정확하게 송수신하기 어렵다는 문제점이 있다. However, when the ultrasonic flowmeter as shown in Figure 1 is buried in the bottom of the river, the ultrasonic transceiver is covered by the soil on the floor, there is a problem that it is difficult to accurately transmit and receive the ultrasonic wave.
또한, 초음파 송수신부가 덮이는 것을 방지하기 위해 초음파 유속계를 하천 바닥면 위에 설치할 경우에, 하천에서 이동하고 있는 부유물에 의해 초음파 유속계가 파손될 위험이 있다는 문제점이 있다. In addition, when the ultrasonic tachometer is installed on the bottom surface of the river to prevent the ultrasonic transceiver unit from being covered, there is a problem that the ultrasonic tachometer may be damaged by the float moving in the river.
본 발명은 이와 같은 종래의 문제점을 해결하기 위해 안출된 것으로서, 단일 또는 다중 펄스 반복 주파수를 이용한 도플러 신호 해석 방법을 이용하여, 자연 하천의 연직 유속분포를 측정하는 것을 목적으로 한다. The present invention has been made to solve such a conventional problem, and aims to measure the vertical flow rate distribution of natural streams using a Doppler signal analysis method using a single or multiple pulse repetition frequency.
상술한 과제를 해결하기 위한 본 발명에 따른 하천 연직 유속분포 측정 장치는 수심 측정부, 최대 유속값 산출부, SPRF 모드 실행부, 측정 모드 전환부, 및 MPRF 모드 실행부를 포함한다. Stream vertical flow rate measurement apparatus according to the present invention for solving the above problems includes a depth measurement unit, a maximum flow rate value calculation unit, an SPRF mode execution unit, a measurement mode switching unit, and an MPRF mode execution unit.
수심 측정부는 하천의 연직 수심을 측정하고, 최대 유속값 산출부는 연직 수심이 측정되는 방향으로부터 미리 설정된 각도만큼 기울어진 방향으로 송신되는 초음파 신호가 수면에 도달하기까지의 거리인 최대 측정거리를, 측정된 수심 데이터를 이용하여 구한 후 펄스 반복 주파수(PRF)를 산출하고, 펄스 반복 주파수(PRF)를 이용하여 상기 수심 데이터에 대응하는 최대 유속값을 산출하며, SPRF 모드 실행부는 펄스 반복 주파수(PRF)를 적용한 단일 초음파 펄스 신호를 이용하여, 하천의 연직 유속분포를 측정하고, 가장 빠른 유속을 유속의 대표값으로 설정한다. The depth measuring unit measures the vertical depth of the river, and the maximum flow rate value calculating unit measures the maximum measurement distance, which is the distance from the direction in which the vertical depth is measured to the surface of the ultrasonic signal transmitted in the inclined direction by a predetermined angle. The pulse repetition frequency (PRF) is calculated using the obtained depth data, and the maximum repetition velocity value corresponding to the depth data is calculated using the pulse repetition frequency (PRF), and the SPRF mode execution unit performs the pulse repetition frequency (PRF). Using a single ultrasonic pulse signal to which is applied, the vertical flow velocity distribution of the stream is measured, and the fastest flow velocity is set as a representative value of the flow velocity.
또한, 측정 모드 전환부는 최대 유속값과 유속의 대표값을 비교하여, 최대 유속값이 유속의 대표값보다 클 경우에는 측정 모드를 전환하지 않고, 작을 경우에 MPRF 모드로 전환하며, MPRF 모드 실행부는 MPRF 모드로 전환될 경우, 하천의 최대 수심까지 측정 가능한 미리 설정된 복수의 펄스 반복 주파수(PRF)를 적용한 복수의 초음파 펄스 신호를 이용하여, 하천의 연직 유속분포를 측정한다. In addition, the measurement mode switching unit compares the maximum flow rate value with the representative value of the flow rate. If the maximum flow rate value is larger than the representative value of the flow rate, the measurement mode switching unit does not change the measurement mode. When switching to the MPRF mode, the vertical flow velocity distribution of the stream is measured by using a plurality of ultrasonic pulse signals to which a plurality of preset pulse repetition frequencies (PRFs) that can be measured up to the maximum depth of the stream are applied.
이로 인해, 측정 수심에 대한 최대 측정거리 및 최대 측정속도를 기준으로 하여, 기준보다 낮을 경우에는 단일 펄스 반복 주파수를 이용한 도플러 신호 해석 방법으로 유속을 구하고, 기준보다 높을 경우에는 다중 펄스 반복 주파수를 이용한 도플러 신호 해석 방법으로 유속을 구하므로, 정확하게 자연 하천의 연직 유속분포를 측정하고, 측정 시간을 단축할 수 있다. For this reason, based on the maximum measurement distance and the maximum measurement speed for the measurement depth, the flow rate is calculated using the Doppler signal analysis method using a single pulse repetition frequency when it is lower than the reference value, and when using the multi-pulse repetition frequency when the reference value is higher than the reference Since the flow velocity is obtained by the Doppler signal analysis method, the vertical flow velocity distribution of the natural river can be accurately measured and the measurement time can be shortened.
또한, SPRF 모드 실행부는 미리 설정된 시간 동안 복수의 하천의 연직 유속분포를 측정하고, 측정된 복수의 연직 유속분포를 미리 설정된 시간으로 평균을 낸 후, 가장 빠른 평균 유속을 유속의 대표값으로 설정할 수 있다. In addition, the SPRF mode execution unit measures the vertical flow rate distribution of the plurality of streams for a preset time, averages the measured plurality of vertical flow rate distributions at a preset time, and sets the fastest average flow rate as the representative value of the flow rate. have.
또한, MPRF 모드 실행부는 복수의 펄스 신호를 각 펄스 반복 주파수(PRF)별로 송신하고, 산란되는 복수의 펄스 신호를 수신하여, 수심 데이터에 대응하는 수심에서 산란된 신호들을 추출하고, 추출된 신호들로부터 엘리어싱(aliasing) 된 도플러 신호를 추출하여 하천의 연직 유속분포를 측정할 수 있다. Also, the MPRF mode execution unit transmits a plurality of pulse signals for each pulse repetition frequency (PRF), receives a plurality of scattered pulse signals, extracts scattered signals at a depth corresponding to the depth data, and extracts the extracted signals. An aliased Doppler signal can be extracted from the stream to determine the vertical velocity distribution of the stream.
또한, MPRF 모드 실행부는 앨리어싱(aliasing) 된 복수의 도플러 주파수에 '중국인의 나머지 정리'를 적용하여 하천의 연직 유속분포를 측정할 수 있다. In addition, the MPRF mode executing unit may measure the vertical velocity distribution of the stream by applying the 'Chinese residual theorem' to a plurality of aliased Doppler frequencies.
'중국인의 나머지 정리'를 적용함으로써, aliasing 된 도플러 주파수로도 정확한 도플러 주파수를 산출할 수 있으므로, 이로 인해 정확한 유속을 측정할 수 있다. By applying the 'Chinese remainder theorem', the correct Doppler frequency can be calculated from the aliased Doppler frequency, thereby measuring the correct flow rate.
또한, 본 발명에 따른 하천 연직 유속분포 측정 장치는 초음파가 송수신 되는 경로를 확보하고, 상기 하천 연식 유속분포 측정 장치의 상면이 평탄해지도록 미리 설정된 형태로 구현되며, 초음파 송수신에 영향을 주지 않도록 하는 재질로 구현되는 초음파 경로 제공부를 더 포함할 수 있다. In addition, the stream vertical flow rate distribution measuring apparatus according to the present invention is implemented in a predetermined form so as to secure a path through which ultrasonic waves are transmitted and received, and to flatten the upper surface of the stream soft flow rate measurement apparatus, so as not to affect the ultrasonic transmission and reception The apparatus may further include an ultrasonic path providing unit formed of a material.
아울러, 상기 장치를 방법의 형태로 구현한 발명이 개시된다.In addition, an invention embodying the apparatus in the form of a method is disclosed.
본 발명에 의해 하천에서 사용자가 유속을 측정하고자 하는 수심의 유속이 느릴 경우에는 SPRF 모드로 유속을 측정하고, 유속이 빠를 경우에는 MPRF 모드로 유속을 측정할 수 있으므로, 수심 및 유속의 제한 없이 정확하게 자연 하천의 연직 유속분포를 측정할 수 있고, 하나의 장치로 SPRF 모드와 MPRF 모드를 실행할 수 있으므로 측정 시간을 단축할 수 있다. According to the present invention, when the flow rate of the water depth to which the user wants to measure the flow rate in the stream is slow, the flow rate can be measured in the SPRF mode, and the flow rate can be measured in the MPRF mode when the flow rate is fast. The vertical flow rate distribution of natural streams can be measured, and the SPRF mode and the MPRF mode can be executed with one device, thereby reducing the measurement time.
도 1은 초음파 송수신부가 경사지게 생성된 초음파 유속계를 나타낸 도면.1 is a view showing an ultrasonic flowmeter in which the ultrasonic transceiver is obliquely generated.
도 2는 본 발명에 따른 하천 연직 유속분포 측정 장치 구성의 일 실시예를 개략적으로 나타낸 블록도.Figure 2 is a block diagram schematically showing an embodiment of the configuration of the stream vertical flow rate measurement apparatus according to the present invention.
도 3은 하천 연직 유속분포 측정 장치를 이용하여 하천에서의 연직 유속분포를 측정하는 일 실시예를 나타낸 도면.Figure 3 is a view showing an embodiment for measuring the vertical flow rate distribution in the river using the stream vertical flow rate measurement apparatus.
도 4는 초음파 신호의 측정 라인이 연직 방향과 45°각도를 이룰 경우, 수학식 1 및 수학식 2를 이용하여 산출한 펄스 반복 주파수(PRF)에 따른 측정 수심과 속도에 대한 한계를 그래프로 나타낸 도면.4 is a graph showing the limits of the measurement depth and velocity according to the pulse repetition frequency (PRF) calculated using Equation 1 and Equation 2 when the measurement line of the ultrasonic signal forms an angle of 45 ° with the vertical direction. drawing.
도 5는 SPRF 모드 실행부에서 펄스 반복 주파수(PRF)를 이용하여 연직 유속 분포를 측정하는 과정을 나타낸 도면.5 is a diagram illustrating a process of measuring a vertical flow rate distribution using a pulse repetition frequency (PRF) in the SPRF mode execution unit.
도 6은 하천 연직 유속분포 측정 장치의 각 구성을 나타내는 회로도.6 is a circuit diagram showing each configuration of a stream vertical flow rate distribution measuring apparatus.
도 7은 하천 바닥에 매설된 하천 연직 유속분포 측정 장치의 측면도.7 is a side view of a stream vertical flow rate measurement apparatus embedded in the river bottom.
도 8은 하천 바닥에 매설된 하천 연직 유속분포 측정 장치의 사시도.8 is a perspective view of a stream vertical flow rate measurement apparatus embedded in the river bottom.
도 9는 도 2의 하천 연직 유속분포 측정 장치를 이용한 연직 유속분포 측정 방법의 일 실시예를 개략적으로 나타낸 흐름도.FIG. 9 is a flowchart schematically illustrating an embodiment of a method for measuring vertical flow rate distribution using the apparatus for measuring the vertical flow rate distribution in FIG. 2.
도 10은 SPRF 모드로 연직 유속분포 측정 및 유속의 대표값을 설정하는 단계를 상세히 나타낸 흐름도.10 is a flow chart showing in detail the steps of measuring the vertical flow rate distribution and setting representative values of the flow rate in the SPRF mode.
도 11은 MPRF 모드로 유속 연직분포를 측정하는 단계를 상세히 나타낸 흐름도.11 shows the flow rate vertical distribution in MPRF mode. Flow chart detailing the steps for measuring.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다. 발명의 이해를 보다 명확하게 하기 위해 동일한 구성요소에 대해서는 상이한 도면에서도 동일한 부호를 사용하도록 한다. Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. In order to more clearly understand the present invention, the same reference numerals are used for the same components in different drawings.
도 2는 본 발명에 따른 하천 연직 유속분포 측정 장치(100)를 이용하여 하천에서의 연직 유속분포를 측정하는 일 실시예를 나타낸 도면이다. Figure 2 is a view showing an embodiment for measuring the vertical flow rate distribution in the river using the stream vertical flow rate measurement apparatus 100 according to the present invention.
연직 유속분포 측정 장치(100)는 하천의 바닥에 설치되며, 연직 유속분포 측정 장치(100)가 설치된 지점에서의 하천의 연직 유속분포를 측정한다.The vertical flow rate distribution measuring apparatus 100 is installed at the bottom of the river, and measures the vertical flow rate distribution of the stream at the point where the vertical flow rate distribution measuring apparatus 100 is installed.
연직 유속분포는 연직 유속분포 측정 장치(100)가 설치된 부근부터 수면 부근까지 수심층별 유속을 의미하며, 본 발명의 연직 유속분포 측정 장치(100)는 도 2의 (c)와 같이, 하천의 전체 수심을 1cm이하의 수심층별로 측정할 수 있다. The vertical flow rate distribution means a flow rate according to the depths of the water from the vicinity where the vertical flow rate distribution measuring apparatus 100 is installed to the vicinity of the surface of the water, and the vertical flow rate distribution measuring apparatus 100 of the present invention, as shown in FIG. Depth can be measured for each depth layer of 1 cm or less.
이때, 연직 유속분포 측정 장치(100)는 도 2의 (a)와 같이, 하천의 상류로부터 하류로 흐르는 흐름(주 흐름)의 반대 방향으로 경사지게 초음파를 송/수신하여, 하천의 연직 유속분포를 측정할 수 있다.In this case, the vertical flow rate distribution measuring apparatus 100 transmits / receives ultrasonic waves obliquely in a direction opposite to the flow (main flow) flowing from the upstream to the downstream of the stream, as shown in FIG. It can be measured.
도 3은 도 2의 하천 연직 유속분포 측정 장치(100) 구성의 일 실시예를 개략적으로 나타낸 블록도이다.3 is a block diagram schematically showing an embodiment of the configuration of the device 100 for measuring the vertical flow velocity distribution of the stream of FIG. 2.
단일 및 다중 초음파 펄스 반복 주파수를 이용하여 하천에서 각 수심별 유속분포를 측정하기 위한 하천 연직 유속분포 측정 장치(100)는 수심 측정부(110), 최대 유속값 산출부(120), SPRF 모드 실행부(130), 초음파 송수신부(140), 측정 모드 전환부(150), MPRF 모드 실행부(160), 및 유속 데이터 저장부(170)를 포함한다. The stream vertical flow rate distribution measuring apparatus 100 for measuring the flow rate distribution for each depth in the river using single and multiple ultrasonic pulse repetition frequencies is executed by the depth measuring unit 110, the maximum flow rate value calculating unit 120, and the SPRF mode. The unit 130, the ultrasonic transceiver 140, the measurement mode switching unit 150, MPRF mode execution unit 160, and the flow rate data storage unit 170.
수심 측정부(110)는 일반적으로 유체의 수심 측정에 사용되는 수심 센서를 이용하여 측정 장치(100)로부터 수면까지의 연직거리를 측정함으로써 하천의 연직 수심을 측정한다.The depth measuring unit 110 generally measures the vertical depth of the river by measuring the vertical distance from the measuring device 100 to the water surface using a depth sensor used for measuring the depth of the fluid.
이하에서, 측정한 하천의 연직 수심 값은 수심 데이터라 칭하며, 수심 데이터에는 수심 측정 시간이 포함될 수 있다. Hereinafter, the vertical depth value of the measured stream is referred to as depth data, and the depth data may include a depth measurement time.
최대 유속값 산출부(120)는 수심 측정부(110)에서 측정된 수심 데이터를, 도 2(a)에서의 연직 방향과 측정 라인 사이의 각도를 반영하여 최대 측정거리로 변환 계산하는데, 예를 들면, 측정된 수심이 1m이고, 연직 방향과 측정 라인 사이의 각도가 45°라면, 최대 측정거리는 1m×(1/cos 45°)가 되어, 1.414m가 될 수 있다. The maximum flow rate value calculation unit 120 converts the depth data measured by the depth measurement unit 110 to the maximum measurement distance by reflecting the angle between the vertical direction and the measurement line in FIG. 2 (a). For example, if the measured depth is 1m and the angle between the vertical direction and the measurement line is 45 °, the maximum measurement distance may be 1m × (1 / cos 45 °), which may be 1.414m.
최대 유속값 산출부(120)는 이와 같이 계산된 최대 측정거리를 미리 설정된 수학식 1의 최대 측정거리(Rmax)에 대입하여 펄스 반복 주파수(PRF)를 산출하고, 산출한 펄스 반복 주파수(PRF)와 송신 신호의 주파수를 미리 설정된 수학식 2의 펄스 반복 주파수(PRF)와 송신 신호의 주파수(fo)에 대입하여, 수심 데이터에 대응하는 최대 유속값을 산출한다.The maximum flow rate value calculator 120 calculates the pulse repetition frequency PRF by substituting the calculated maximum measurement distance into the maximum measurement distance Rmax of Equation 1, and calculates the calculated pulse repetition frequency PRF. And the frequency of the transmission signal is substituted into the pulse repetition frequency PRF of the equation (2) and the frequency fo of the transmission signal to calculate the maximum flow rate value corresponding to the depth data.
수학식 1은
Figure PCTKR2010008742-appb-I000001
이며, 후술 되는 SPRF 모드 실행부(130)에서 펄스 신호를 반복적으로 송/수신하는 것으로 인해 측정거리의 한계가 생기는 것으로부터 유도할 수 있다.
Equation 1 is
Figure PCTKR2010008742-appb-I000001
In this case, the SPRF mode execution unit 130, which will be described later, may repeatedly derive a limitation of the measurement distance due to repeatedly transmitting / receiving a pulse signal.
즉, n+1번째 펄스 신호의 송신 이전에 n번째 펄스 신호의 수신을 종료해야 하므로, 펄스 반복 주기에 의해서 최대 측정거리가 결정된다. That is, since the reception of the n th pulse signal must be terminated before the n + 1 th pulse signal is transmitted, the maximum measurement distance is determined by the pulse repetition period.
수학식 1에서 Rmax는 최대 측정거리, Tr은 펄스 반복 주기, c는 음속, PRF는 펄스 반복 주파수를 의미한다. In Equation 1, Rmax is the maximum measurement distance, Tr is the pulse repetition period, c is the sound velocity, PRF is the pulse repetition frequency.
또한, 수학식 2는
Figure PCTKR2010008742-appb-I000002
이다.
In addition, Equation 2 is
Figure PCTKR2010008742-appb-I000002
to be.
수학식 2는 샘플링 정리로부터 유도할 수 있는데, 즉, 펄스 반복 주기가 도플러 신호의 샘플링 주기가 되기 때문에 샘플링 정리에 의해 펄스 반복 주파수(PRF)의 1/2 이상이 되는 도플러 주파수 편이량은 측정할 수 없게 되므로, 이로 인해 최대 측정속도의 제한이 생기는 것으로부터 유도할 수 있다.Equation 2 can be derived from the sampling theorem. That is, since the pulse repetition period becomes the sampling period of the Doppler signal, the amount of Doppler frequency shift that is 1/2 of the pulse repetition frequency (PRF) by the sampling theorem is measured. This can lead to a limitation of the maximum measurement speed.
수학식 2에서 Vmax는 최대 측정속도, c는 음속, PRF는 펄스 반복 주파수, fo는 송신 신호의 주파수를 의미한다. In Equation 2, Vmax is the maximum measurement speed, c is the sound speed, PRF is the pulse repetition frequency, fo is the frequency of the transmission signal.
도 4는 초음파 신호의 측정 라인이 연직 방향과 45°각도를 이룰 경우, 수학식 1 및 수학식 2를 이용하여 산출한 펄스 반복 주파수(PRF)에 따른 측정 수심과 속도에 대한 한계를 그래프로 나타낸 도면이다. 4 is a graph showing the limits of the measurement depth and velocity according to the pulse repetition frequency (PRF) calculated using Equation 1 and Equation 2 when the measurement line of the ultrasonic signal forms an angle of 45 ° with the vertical direction. Drawing.
도 4를 참조하면, 펄스 반복 주파수(PRF)가 1000Hz일 경우, 초음파 송수신부(140)로부터 연직 방향의 수심은 약 75cm 이내의 범위에서, 속도는 약 40cm/s 이하의 유속만을 측정할 수 있음을 알 수 있다.Referring to FIG. 4, when the pulse repetition frequency (PRF) is 1000 Hz, the depth in the vertical direction from the ultrasound transceiver 140 may be within a range of about 75 cm, and the speed may measure only a flow rate of about 40 cm / s or less. It can be seen.
SPRF 모드 실행부(130)는 단일 초음파 펄스 신호를 이용하여, 하천의 연직 유속분포를 측정하고, 유속의 대표값을 설정한다. The SPRF mode execution unit 130 measures the vertical flow velocity distribution of the stream using a single ultrasonic pulse signal, and sets a representative value of the flow velocity.
즉, SPRF 모드는 단일 펄스 반복 주파수(SPRF, Single Pulse Repetition Frequency)를 이용한 유속분포 측정 모드를 의미한다. That is, the SPRF mode refers to a flow rate distribution measurement mode using a single pulse repetition frequency (SPRF).
이때, 초음파 송수신부(140)는 단일 초음파 펄스 신호인, 최대 유속값 산출부(120)에서 수학식 1로부터 산출한 펄스 반복 주파수(PRF)를 적용한 펄스 신호를 하천 주 흐름의 반대 방향으로 송신하고, 수중의 부유물(20)로부터 산란되는 펄스 신호를 수신할 수 있다. At this time, the ultrasonic transceiver 140 transmits a pulse signal to which the pulse repetition frequency (PRF) calculated from Equation 1 is applied by the maximum flow rate value calculator 120, which is a single ultrasonic pulse signal, in a direction opposite to the stream flow. , A pulse signal scattered from the suspended solids 20 can be received.
또한, SPRF 모드 실행부(130)는 초음파 송수신부(140)로 수신되는 산란된 신호들 중에서, 초음파 송수신부(140)로부터 특정한 거리(수면)에서 특정 시간차(펄스 반복 주파수(PRF)에 따른 시간차)를 두고 수신한 신호들을 추출한다.In addition, the SPRF mode execution unit 130, among the scattered signals received by the ultrasound transceiver 140, a time difference according to a specific time difference (pulse repetition frequency (PRF)) at a specific distance (sleep) from the ultrasound transceiver 140. ) And extract the received signals.
도 5는 SPRF 모드 실행부(130)에서 펄스 반복 주파수(PRF)를 이용하여 연직 유속 분포를 측정하는 과정을 나타낸 도면으로, 도 2를 함께 참조하고자 한다.FIG. 5 is a diagram illustrating a process of measuring a vertical flow rate distribution using a pulse repetition frequency (PRF) in the SPRF mode execution unit 130, with reference to FIG. 2.
도 5의 (a)는, 도 2의 (a)와 같은 측정 라인을 따라 초음파 송수신부(140)에서 초음파 펄스 신호를 송신하면, 부유물(20)로부터 신호가 산란되는 것을 나타내고 있으며, 도 5의 (b)는, 도 2의 (b)와 같이 초음파 송수신부(140)에서 펄스 반복 주파수(PRF)에 따라 송신한 초음파 펄스 신호로부터, 부유물(20)에 의해 산란되어 수신되는 신호들 중, 초음파 송수신부(140)로부터 특정한 거리에서 펄스 반복 주파수(PRF)에 따른 시간 차이를 두고 추출한 신호를 나타낸 것이다. FIG. 5 (a) shows that when an ultrasonic pulse signal is transmitted from the ultrasonic transceiver unit 140 along the measurement line as shown in FIG. 2 (a), the signal is scattered from the float 20. (b) is an ultrasonic wave among the signals scattered and received by the float 20 from the ultrasonic pulse signal transmitted by the ultrasonic transceiver unit 140 according to the pulse repetition frequency (PRF) as shown in FIG. It shows a signal extracted with a time difference according to the pulse repetition frequency (PRF) at a specific distance from the transceiver 140.
또한, 도 5의 (b)에서 수직 점선(화살표 점선)의 가로 방향 위치(송신 후의 상대 시간)는 연직 유속분포 측정 장치(100)로부터의 거리(수심)를 의미하므로, 만약 수직 점선의 위치가 우측에 있다면, 연직 유속분포 측정 장치(100)로부터 먼 곳의 수심을 의미하고, 수직 점선의 위치가 좌측에 있다면, 연직 유속분포 측정 장치(100)로부터 가까운 곳의 수심을 의미한다. In addition, since the horizontal position (relative time after transmission) of the vertical dotted line (arrow dotted line) in FIG. 5B means the distance (depth) from the vertical flow rate distribution measuring apparatus 100, if the position of the vertical dotted line is If it is on the right side, it means the depth of water far from the vertical flow rate distribution measuring apparatus 100, and if the position of the vertical dotted line is on the left side, it means the depth of water near the vertical flow rate distribution measuring apparatus 100.
즉, 송신 후의 상대 시간 축은 연직 유속분포 측정 장치(100)로부터의 거리(수심)와 같다. That is, the relative time axis after transmission is equal to the distance (depth) from the vertical flow rate distribution measuring apparatus 100.
또한, SPRF 모드 실행부(130)는 펄스 반복 주파수(PRF)에 따른 시간 차이를 두고 추출된 신호들로부터 도 5의 (c)와 같은 도플러 주파수를 산출하고, 도플러 주파수로부터 유속을 측정할 수 있다. In addition, the SPRF mode execution unit 130 may calculate the Doppler frequency as shown in FIG. 5C from the extracted signals with a time difference according to the pulse repetition frequency (PRF), and measure the flow rate from the Doppler frequency. .
도플러 주파수는 해당 수심(선택된 상대 시간)에서 이동하는 부유물에 의한 도플러 주파수를 의미한다.The Doppler frequency refers to the Doppler frequency due to the float moving at that depth (selected relative time).
도 5의 (c)를 보면, 도 5의 (b)와 같은 추출된 신호들에서 상대 시간이 동일한 신호들을 추출하여 특정 주기를 갖는 신호를 생성한 것을 나타내며, 이 특정 주기를 갖는 신호가 도플러 신호가 된다. Referring to (c) of FIG. 5, the signals having the same period are generated by extracting signals having the same relative time from the extracted signals as shown in FIG. 5 (b), and the signal having the specific period is the Doppler signal. Becomes
생성된 도플러 신호의 주파수로부터 각 수심별로 정확한 유속을 측정할 수 있는데, 자세하게는, 초음파 송수신부(140)로부터 수면까지의 하천 전체 수심을 1cm 간격으로 나눈 수심과 대응하는 상대 시간들로부터 연직 유속분포를 측정할 수 있다. From the frequency of the generated Doppler signal, it is possible to measure an accurate flow rate for each depth. In detail, the vertical flow velocity distribution is obtained by dividing the entire depth of the river from the ultrasonic transceiver unit 140 to the surface by 1 cm interval and the corresponding times. Can be measured.
이와 같은, 초음파 신호를 송신하여 연직 유속분포를 측정하기까지의 과정을 미리 설정된 시간 동안 반복하여, 복수의 연직 유속분포를 측정한 결과를 상기 미리 설정된 시간으로 평균을 내면, 1cm 수심별로 유속의 평균값을 구할 수 있고, 연직 유속분포 중에서 가장 빠른 유속이 나타나는 위치(일반적으로, 하천의 수면 부근 위치)의 유속 평균값을 유속의 대표값으로 설정할 수 있다. By repeating the above-described process for transmitting the ultrasonic signal and measuring the vertical flow rate distribution for a predetermined time, and averaging the results of measuring the plurality of vertical flow rate distributions in the predetermined time, the average value of the flow rate for each 1 cm depth Can be obtained, and the average value of the flow velocity at the position where the fastest flow velocity appears in the vertical flow velocity distribution (generally, the position near the surface of the river) can be set as the representative value of the flow velocity.
측정 모드 전환부(150)는 최대 유속값 산출부(120)에서 산출한 최대 유속값과 SPRF 모드 실행부(130)에서 측정한 유속의 대표값을 비교하여, 최대 유속값이 유속의 대표값보다 클 경우에는 측정 모드를 전환하지 않고, SPRF 모드 실행부(130)에서 측정한 연직 유속분포 평균값을 유속 데이터로 설정하여 저장할 수 있다. The measurement mode switching unit 150 compares the maximum flow rate value calculated by the maximum flow rate value calculating unit 120 with the representative value of the flow rate measured by the SPRF mode execution unit 130, so that the maximum flow rate value is larger than the representative value of the flow rate. If large, the vertical flow rate distribution average value measured by the SPRF mode execution unit 130 may be set as the flow rate data without switching the measurement mode.
또는, 연직 유속분포를 재측정하여 이를 유속 데이터로 설정할 수 있는데, 상술한 바와 같은 초음파 송수신부(140)가 최대 유속값 산출부(120)에서 수학식 1로부터 산출한 펄스 반복 주파수(PRF)로 초음파 신호를 송신하고, 수신하는 산란된 신호들 중에서 특정 거리로부터 수신된 신호들을 추출하여, 추출된 신호들로부터 도플러 신호를 생성하며, 도플러 주파수로부터 연직 유속분포를 측정할 수 있다. Alternatively, the vertical flow rate distribution may be re-measured and set as the flow rate data. The ultrasonic transceiver unit 140 as described above may use the pulse repetition frequency (PRF) calculated by Equation 1 in the maximum flow rate value calculator 120. The ultrasonic signals may be transmitted, signals received from a specific distance are extracted from the scattered signals to be received, a Doppler signal may be generated from the extracted signals, and a vertical velocity distribution may be measured from the Doppler frequency.
또한, 측정 모드 전환부(150)는 최대 유속값이 유속의 대표값보다 작을 경우에 MPRF 모드로 전환한다. In addition, the measurement mode switching unit 150 switches to the MPRF mode when the maximum flow rate value is smaller than the representative value of the flow rate.
즉, 유속의 대표값이 최대 유속값보다 클 경우(최대 측정속도를 넘어서는 도플러 주파수)에는 언더 샘플링(undersampling)에 의한 앨리어싱(aliasing) 때문에 정확한 도플러 주파수를 산출할 수 없으므로, 이를 해결하기 위해, 다중 펄스 반복 주파수를 이용하는 모드(MPRF 모드)로 전환하는 것이다.In other words, if the representative value of the flow rate is larger than the maximum flow rate value (the Doppler frequency exceeding the maximum measurement rate), an accurate Doppler frequency cannot be calculated due to aliasing due to undersampling. Switching to the mode using the pulse repetition frequency (MPRF mode).
또한, 도 4를 참조하면, SPRF 모드를 이용한 유속 측정 방법에 의해서는 얕은 수심과 느린 유속을 측정할 수 있으나, 수심이 깊으면서 유속이 빠른 흐름은 측정할 수가 없다는 것을 알 수 있으므로, 하천의 홍수 시에는 MPRF 모드로 전환하여 유속을 측정하는 것이 바람직할 것이다. In addition, referring to FIG. 4, the shallow flow rate and the slow flow rate can be measured by the flow rate measurement method using the SPRF mode. However, since the flow rate is high, the flow rate can not be measured. It may be desirable to switch to MPRF mode and measure the flow rate.
MPRF 모드 실행부(160)는 MPRF 모드로 전환되면, 다중 초음파 펄스 신호를 이용하여, 하천의 연직 유속분포를 측정한다.When the MPRF mode execution unit 160 switches to the MPRF mode, the MPRF mode execution unit 160 measures the vertical flow velocity distribution of the stream by using the multiple ultrasonic pulse signals.
즉, MPRF 모드는, 다중 펄스 반복 주파수(MPRF, Multiple Pulse Repetition Frequency)를 이용한 유속분포 측정 모드를 의미한다. In other words, the MPRF mode refers to a flow rate distribution measurement mode using a multiple pulse repetition frequency (MPRF).
이때, 초음파 수신부(140)는 다중 초음파 펄스 신호인, 미리 설정된 복수(3개 이상)의 펄스 반복 주파수(PRF)를 적용한 복수의 펄스 신호를 송신하고, 수중의 부유물(20)로부터 산란되는 복수의 펄스 반복 주파수(PRF)에 대한 복수의 펄스 신호를 수신할 수 있는데, 미리 설정된 복수의 펄스 반복 주파수(PRF)는 하천의 최대 수심까지 측정 가능하도록 하는 낮은 펄스 반복 주파수(PRF)(예컨대, 200Hz, 320Hz, 440Hz 등)가 됨이 바람직할 것이다. At this time, the ultrasonic receiver 140 transmits a plurality of pulse signals to which a plurality of preset pulse repetition frequencies (PRF) are applied, which are multiple ultrasonic pulse signals, and are scattered from the float 20 in the water. A plurality of pulse repetition frequencies (PRFs) for the pulse repetition frequency (PRF) can be received, wherein the plurality of preset pulse repetition frequencies (PRF) is low pulse repetition frequency (PRF) (e.g. 200 Hz, 320 Hz, 440 Hz, etc.).
MPRF 모드 실행부(160)는 초음파 수신부(140)에서 수신하는 복수의 산란된 신호들 중에서, 초음파 송수신부(140)로부터 특정한 거리(수면)에서 특정한 시간차를 두고 수신한 신호들을 추출한다.The MPRF mode execution unit 160 extracts the received signals with a specific time difference from the ultrasound transceiver 140 at a specific distance (sleep) from the plurality of scattered signals received by the ultrasound receiver 140.
또한, MPRF 모드 실행부(160)는 각각의 펄스 반복 주파수(PRF)에 대해, 상기 추출한 신호들에서 상대 시간이 동일한 신호로부터, 앨리어싱(aliasing) 된 복수의 도플러 주파수를 구하여 유속을 측정한다. In addition, the MPRF mode execution unit 160 measures a flow rate by obtaining a plurality of aliased Doppler frequencies from signals having the same relative time in the extracted signals for each pulse repetition frequency (PRF).
앨리어싱(aliasing) 된 도플러 주파수는 이동하는 부유물에 의한 도플러 주파수이다. 상기와 같은 복수의 각각의 낮은 펄스 반복 주파수(PRF)는 유속을 측정하고자 하는 유체의 최대 수심까지 측정 가능한 낮은 펄스 반복 주파수(PRF)이므로, 모든 수심을 측정할 수 있지만, 상대적으로 높은 유속을 측정할 수 없으므로, 최대 측정속도를 넘어서면 앨리어싱이 발생하기 때문에 앨리어싱(aliasing) 된 도플러 주파수가 추출될 수 있다.The aliased Doppler frequency is the Doppler frequency due to the moving float. Each of the plurality of low pulse repetition frequencies (PRF) as described above is a low pulse repetition frequency (PRF) that can be measured up to the maximum depth of the fluid to be measured, so that all depths can be measured, but relatively high flow rates are measured. Since aliasing occurs beyond the maximum measurement rate, the aliased Doppler frequencies can be extracted.
즉, 앨리어싱(aliasing) 된 도플러 주파수는 상기에서 추출된 특정 시간차를 가지는 신호들에서 상대 시간이 같은 신호들을 추출하고, 이 신호들로부터 특정 주기를 갖는 신호를 생성하여, 생성된 신호의 주파수로부터 산출할 수 있다. That is, the aliased Doppler frequency extracts signals having the same relative time from the signals having a specific time difference extracted from the above, and generates a signal having a specific period from these signals, and calculates the frequency of the generated signal. can do.
앨리어싱(aliasing) 된 도플러 주파수로부터는 해당 수심에 대한 정확한 유속을 산출할 수 없으므로, MPRF 모드 실행부(160)는 앨리어싱(aliasing) 된 복수의 도플러 주파수에 '중국인의 나머지 정리'를 적용하여 정확한 유속을 측정할 수 있다.Since the correct flow rate for the corresponding depth cannot be calculated from the aliased Doppler frequency, the MPRF mode execution unit 160 applies the 'China remaining theorem' to the multiple aliased Doppler frequencies, so that the correct flow rate can be calculated. Can be measured.
'중국인의 나머지 정리'는 연립 선형 합동식의 공통해를 찾는 문제에 대한 답을 주는 정리로서, 앨리어싱(aliasing)이 일어난 측정값(앨리어싱(aliasing) 된 도플러 주파수)을 나머지로 하고, 대응하는 펄스 반복 주파수(PRF)를 법(法, law)으로 하여 중국인의 나머지 정리에 적용하면, 정확한 도플러 주파수를 산출할 수 있고, 이를 유속으로 환산하여 해당 수심에 대한 정확한 유속을 측정할 수 있다.The Chinese Theorem Theorem gives the answer to the problem of finding a common solution of simultaneous linear joint equations, with the aliased measurement (aliased Doppler frequency) remaining and the corresponding pulse. By applying the repetition frequency (PRF) to the rest of the Chinese theorem, a correct Doppler frequency can be calculated and converted into a flow rate to determine the correct flow rate for the corresponding depth.
상술한 MPRF 모드 실행부(160)의 기능을 수학식 1 및 2에 적용하면, If the above-described function of the MPRF mode execution unit 160 is applied to Equations 1 and 2,
MPRF 모드에서는 낮은 펄스 반복 주파수(PRF)를 사용하므로, MPRF mode uses a low pulse repetition frequency (PRF),
수학식 1인
Figure PCTKR2010008742-appb-I000003
Equation 1
Figure PCTKR2010008742-appb-I000003
silver
수학식 3인
Figure PCTKR2010008742-appb-I000004
이 되고,
Equation 3
Figure PCTKR2010008742-appb-I000004
Become,
또한, 낮은 펄스 반복 주파수(PRF)를 복수로 사용하므로, In addition, because a plurality of low pulse repetition frequency (PRF) is used,
수학식 2인
Figure PCTKR2010008742-appb-I000005
Equation 2
Figure PCTKR2010008742-appb-I000005
Is
수학식 4인
Figure PCTKR2010008742-appb-I000006
가 된다.
Equation 4
Figure PCTKR2010008742-appb-I000006
Becomes
즉, 변경된 수학식 3 및 수학식 4를 통해, MPRF 모드로 하천의 유속을 측정함에 있어서, 측정거리(수심)나 측정속도(유속)에 제한이 없음을 수식적으로 알 수 있다. That is, through the modified equations (3) and (4), when measuring the flow velocity of the river in the MPRF mode, it can be seen that there is no restriction on the measurement distance (depth) or the measurement speed (flow velocity).
유속 데이터 저장부(170)는 SPRF 모드 실행부(130) 및 MPRF 모드 실행부(160)에서 측정한 유속에 대한 데이터를 수심 데이터와 연계시켜 저장할 수 있다. The flow rate data storage unit 170 may store data about the flow rate measured by the SPRF mode execution unit 130 and the MPRF mode execution unit 160 in association with the depth data.
저장된 유속 데이터는 하천을 관리하는 데에 이용될 수 있는데, 예를 들어보면, 오염물을 중화시키는 시간을 산출하거나, 장마철에 댐에 축적되는 물의 유입속도를 예상하여 방류량을 설정하거나, 하천에 설치된 보(洑)에 설치하여 하천의 유량을 측정하여 수자원량을 파악하는데 활용할 수 있다.Stored flow rate data can be used to manage streams, for example, by calculating the time to neutralize contaminants, by estimating the rate of inflow of water accumulated in the dam during the rainy season, or by setting up discharges in rivers. It can be installed in (洑) to measure the flow of the river and can be used to grasp the amount of water resources.
도 6은 하천 연직 유속분포 측정 장치(100)의 각 구성을 나타내는 회로도로, 디지털 제어부(30)에는 초음파 송수신부(140)를 제외한 나머지 구성들(수심 측정부(110), 최대 유속값 산출부(120), SPRF 모드 실행부(130), 측정 모드 전환부(150), MPRF 모드 실행부(160), 및 유속 데이터 저장부(170))이 포함될 수 있다. 6 is a circuit diagram showing the respective components of the stream vertical flow rate distribution measuring apparatus 100. The digital control unit 30 has the remaining components (depth measurement unit 110, the maximum flow rate value calculation unit except for the ultrasonic transceiver unit 140). 120, the SPRF mode execution unit 130, the measurement mode switching unit 150, the MPRF mode execution unit 160, and the flow rate data storage unit 170 may be included.
상술한 바와 같은 하천 연직 유속분포 측정 장치(100)는 하천 바닥 또는 하천을 가로막고 있는 보와 같은 바닥이 평평한 하천 구조물에 설치되거나, 하천의 바닥면과 하천 연직 유속분포 측정 장치(100)의 상부면이 평면을 이루도록 매설될 수 있다. The stream vertical flow rate distribution measuring apparatus 100 as described above is installed on a stream structure having a flat bottom, such as a river bottom or a beam blocking the river, or a bottom surface of the river and an upper surface of the stream vertical flow rate measuring apparatus 100. It may be embedded to form a plane.
도 7는 하천 바닥에 매설된 하천 연직 유속분포 측정 장치(100)의 측면도이고, 도8은 하천 바닥에 매설된 하천 연직 유속분포 측정 장치(100)의 사시도이다. FIG. 7 is a side view of the stream vertical flow rate measurement apparatus 100 embedded in the river bottom, and FIG. 8 is a perspective view of the stream vertical flow rate measurement apparatus 100 embedded in the river bottom.
이때, 하천 연직 유속분포 측정 장치(100)는 초음파 경로 제공부(10)를 더 포함할 수 있는데, 초음파 경로 제공부(10)는 초음파 송수신에 영향을 주지 않도록 하는 재질로 구현될 수 있으며, 초음파가 송수신 되는 경로를 확보할 수 있는 형태를 가질 수 있고, 또한 하천의 바닥면에 따라 다양한 형태로 구현될 수 있다.At this time, the stream vertical flow rate distribution measuring apparatus 100 may further include an ultrasonic path providing unit 10, the ultrasonic path providing unit 10 may be implemented with a material that does not affect the ultrasonic transmission and reception, ultrasonic It may have a form that can secure the path to be transmitted and received, and may also be implemented in various forms according to the bottom surface of the river.
예컨대, 도7 및 도8에서와 같이, 초음파 경로 제공부(10)의 상면이 하천 연직 유속분포 측정 장치(100)의 상면이 평탄해지도록 하는 미리 설정된 형태로 구현될 수 있으며, 이러한 형태는 부유물에 의한 측정 장치(100)가 파손될 위험을 줄일 수 있고, 하천의 흐름에 대한 교란을 줄일 수 있다. For example, as shown in FIG. 7 and FIG. 8, the upper surface of the ultrasonic path providing unit 10 may be implemented in a predetermined form such that the upper surface of the stream vertical flow rate distribution measuring apparatus 100 is flattened. By reducing the risk of damage to the measuring device 100, it is possible to reduce the disturbance to the flow of the river.
상술한 바와 같은 수심 측정부(110), 최대 유속값 산출부(120), SPRF 모드 실행부(130), 초음파 송수신부(140), 측정 모드 전환부(150), MPRF 모드 실행부(160), 및 유속 데이터 저장부(170)의 구성으로 인해, 하천에서 사용자가 유속을 측정하고자 하는 수심의 유속이 느릴 경우에는 SPRF 모드로 유속을 측정하고, 유속이 빠를 경우에는 MPRF 모드로 유속을 측정할 수 있으므로, 수심 및 유속의 제한 없이 정확하게 자연 하천의 연직 유속분포를 측정할 수 있고, 하나의 장치로 SPRF 모드와 MPRF 모드를 실행할 수 있으므로 측정 시간을 단축할 수 있다. Depth measurement unit 110, the maximum flow rate value calculation unit 120, the SPRF mode execution unit 130, the ultrasonic transceiver unit 140, the measurement mode switching unit 150, MPRF mode execution unit 160 as described above Due to the configuration of the flow rate data storage unit 170, the user may measure the flow rate in the SPRF mode when the flow rate of the depth to which the user wants to measure the flow rate in the stream is slow, and in the MPRF mode when the flow rate is fast. As a result, the vertical flow velocity distribution of the natural stream can be accurately measured without limiting the depth and flow rate, and the measurement time can be shortened because the SPRF mode and the MPRF mode can be executed by one device.
도 9는 도 2의 하천 연직 유속분포 측정 장치(100)를 이용한 연직 유속분포 측정 방법의 일 실시예를 개략적으로 나타낸 흐름도이다. FIG. 9 is a flowchart schematically illustrating an example of a method for measuring a vertical flow rate distribution using the stream vertical flow rate measurement apparatus 100 of FIG. 2.
하천 연직 유속분포 측정 장치(100)는, 측정 장치(100)로부터 수면까지의 연직거리인, 하천의 전체 수심을 일반적인 수심 센서를 이용하여 측정하고(S100), 측정된 수심에 대한 수심 데이터와, 미리 설정된 수학식 1 및 수학식 2를 이용하여 최대 유속값을 산출한다(S200).The stream vertical flow rate distribution measuring apparatus 100 measures the total depth of the stream, which is the vertical distance from the measuring apparatus 100 to the water surface, using a general depth sensor (S100), and the depth data of the measured depth, The maximum flow rate value is calculated using the equations (1) and (2) previously set (S200).
즉, 수심 데이터를 수학식 1인
Figure PCTKR2010008742-appb-I000007
의 Rmax에 대입하여 펄스 반복 주파수(PRF)를 산출하고, 펄스 반복 주파수(PRF)를 수학식 2인
Figure PCTKR2010008742-appb-I000008
에 대입하여, 수심 데이터에 대응하는 최대 유속값을 산출할 수 있다.
That is, the depth data is expressed by Equation 1
Figure PCTKR2010008742-appb-I000007
Pulse repetition frequency (PRF) is calculated by substituting Rmax of
Figure PCTKR2010008742-appb-I000008
By substituting for, the maximum flow velocity value corresponding to the depth data can be calculated.
다음으로, 하천 연직 유속분포 측정 장치(100)는 단일 초음파 펄스 신호를 이용하는 SPRF 모드로, 연직 유속분포를 측정하고 유속의 대표값을 설정한다(S300).Next, the stream vertical flow rate distribution measuring apparatus 100 is an SPRF mode using a single ultrasonic pulse signal, The vertical flow rate distribution is measured and a representative value of the flow rate is set (S300).
도 10은 SPRF 모드로 연직 유속분포 측정 및 유속의 대표값을 설정하는 단계를 상세히 나타낸 흐름도로, 도 9를 참조하여 단계 S300을 살펴보고자 한다. FIG. 10 is a flowchart illustrating in detail the steps of measuring the vertical flow rate distribution and setting the representative value of the flow rate in the SPRF mode. Referring to FIG. 9, step S300 will be described.
하천 연직 유속분포 측정 장치(100)의 초음파 송수신부(140)에서 단일 초음파 펄스 신호인, 단계 S200에서 산출한 펄스 반복 주파수(PRF)를 적용하여 펄스 신호를 송신하고, 수중의 부유물(20)로부터 산란되는 펄스 신호를 수신하면(S310), 하천 연직 유속분포 측정 장치(100)는 측정 장치(100)로부터 특정한 거리에서 특정 시간차를 두고 수신한 신호들을 추출할 수 있다(S320).The ultrasonic transmitting / receiving unit 140 of the stream vertical flow rate distribution measuring apparatus 100 transmits a pulse signal by applying the pulse repetition frequency (PRF) calculated in step S200, which is a single ultrasonic pulse signal, from the suspended solid 20 in the water. When receiving the scattered pulse signal (S310), the stream vertical flow rate distribution measuring apparatus 100 may extract the received signals at a specific distance from the measuring device 100 at a specific distance (S320).
그리고, 추출된 신호들로부터 상대 시간이 같은 신호들을 추출하여(S330), 상대 시간이 같은 신호들로부터 도플러 신호를 생성하면(S340), 생성한 도플러 신호의 주파수를 유속으로 환산하여 해당 상대 시간에 대응하는 수심의 유속을 측정할 수 있다(S350).When the Doppler signal is generated from the extracted signals with the same relative time (S330), and the Doppler signal is generated from the signals with the same relative time (S340), the frequency of the generated Doppler signal is converted into a flow rate at the corresponding relative time. The flow velocity of the corresponding depth can be measured (S350).
이때, 하천의 수심 1cm에 간격에 대응하는 복수의 상대 시간에서, 각 상대 시간별로 도플러 신호를 생성하면, 생성된 도플러 신호의 주파수를 유속으로 환산하여 하천의 연직 유속분포를 측정할 수 있다(S360).At this time, when a Doppler signal is generated for each relative time at a plurality of relative times corresponding to an interval at a depth of 1 cm of the stream, the vertical velocity distribution of the stream may be measured by converting the frequency of the generated Doppler signal into a flow rate (S360). ).
다음으로, 상술한 단계 S310 내지 단계 S360을 미리 설정된 시간 동안 반복하여 복수의 연직 유속분포를 측정하고, 측정한 결과를 미리 설정된 시간으로 평균을 내어, 1cm 수심별 유속의 평균값인 연직 유속분포의 평균값을 산출한 후(S370), 연직 유속분포의 평균값에서 가장 빠른 유속이 나타나는 위치(일반적으로, 하천의 수면 부근 위치의 유속 평균값)을 유속의 대표값으로 설정한다(S380).Next, the above-described steps S310 to S360 are repeated for a preset time, and the plurality of vertical flow rate distributions are measured, and the measured results are averaged at a preset time, and the average value of the vertical flow rate distribution, which is an average value of flow rates for each 1 cm depth, is measured. After calculating (S370), the position at which the fastest flow rate appears in the average value of the vertical flow rate distribution (generally, the flow rate average value of the position near the surface of the river) is set as the representative value of the flow rate (S380).
다시 도 9를 참조하면, 하천 연직 유속분포 측정 장치(100)는 상기와 같이 산출한 최대 유속값과 유속의 대표값을 비교하여 MPRF 모드로의 전환 여부를 결정하는데(S400), 최대 유속값이 유속의 대표값보다 클 경우에는(S410), 유속의 대표값을 생성하기 위해 SPRF 모드로 산출한 연직 유속분포의 평균값을 유속 데이터로 설정하여 하천 연직 유속분포 측정 장치(100) 내의 유속 데이터 저장부(170)에 저장한다(S500).Referring back to FIG. 9, the stream vertical flow rate distribution measuring apparatus 100 determines whether to switch to the MPRF mode by comparing the maximum flow rate value calculated as described above and the representative value of the flow rate (S400), and the maximum flow rate value is If greater than the representative value of the flow rate (S410), the flow rate data storage unit in the stream vertical flow rate distribution measuring apparatus 100 by setting the average value of the vertical flow rate distribution calculated in the SPRF mode to generate the representative value of the flow rate as the flow rate data In operation 170, the storage is stored at 170.
이때, 유속 데이터로 단계 S300에서 측정한 연직 유속분포의 평균값을 설정하지 않고, 단계 S200에서 수학식 1로부터 산출한 펄스 반복 주파수(PRF)를 적용한 초음파 신호로, 도 9의 단계 S310 내지 단계 S350를 다시 수행하고, 측정된 하천의 연직 유속분포를 유속 데이터로 설정하여 유속 데이터 저장부(170)에 저장할 수 있다. In this case, instead of setting the average value of the vertical flow rate measurement measured in step S300 as the flow rate data, step S310 to step S350 of FIG. 9 is an ultrasonic signal to which the pulse repetition frequency (PRF) calculated from Equation 1 is applied in step S200. In addition, the vertical flow velocity distribution of the measured stream may be set as the velocity data and stored in the velocity data storage unit 170.
만약, 최대 유속값과 유속의 대표값을 비교하여, 최대 유속값이 유속의 대표값보다 작을 경우에는(S410), 하천 연직 유속분포 측정 장치(100)는 MPRF 모드로 전환되며, 다중 초음파 펄스 신호를 이용하는 MPRF 모드로 수심 데이터에 대응하는 유속을 측정한다(S600). If the maximum flow rate value and the representative value of the flow rate are compared, and the maximum flow rate value is smaller than the representative value of the flow rate (S410), the stream vertical flow rate distribution measuring apparatus 100 is switched to the MPRF mode, and the multiple ultrasonic pulse signals The flow rate corresponding to the depth data is measured in the MPRF mode using (S600).
도 11은 MPRF 모드로 유속 연직분포를 측정하는 단계를 상세히 나타낸 흐름도로, 도 11을 참조하여 단계 S600을 살펴보고자 한다. FIG. 11 is a flowchart illustrating the steps of measuring the flow rate vertical distribution in the MPRF mode in detail. Referring to FIG. 11, step S600 will be described.
하천 연직 유속분포 측정 장치(100)의 초음파 송수신부(140)에서 다중 초음파 펄스 신호인, 미리 설정된 복수(3개 이상)의 낮은 펄스 반복 주파수(PRF)를 적용한 복수의 펄스 신호를 송신하고, 수중의 부유물(20)로부터 산란되는 복수의 펄스 신호를 수신하면(S610), 하천 연직 유속분포 측정 장치(100)는 측정 장치(100)로부터 특정한 거리에서 특정 시간차를 두고 수신한 신호들을 각 펄스 반복 주파수(PRF)별로 추출한다(S620).The ultrasonic transmitting / receiving unit 140 of the stream vertical flow rate distribution measuring apparatus 100 transmits a plurality of pulse signals to which a plurality of predetermined (three or more) low pulse repetition frequencies (PRFs), which are multiple ultrasonic pulse signals, are applied and are underwater. When receiving a plurality of pulse signals scattered from the float (20) (S610), the stream vertical velocity distribution measuring apparatus 100 receives the signals received at a specific distance from the measuring device 100 at a specific distance from each pulse repetition frequency (PR620) is extracted for each (S620).
그리고, 추출된 신호들로부터 상대 시간이 같은 신호들을 다시 추출하여(S630), 추출된 상대 시간이 같은 신호들로부터 앨리어싱(aliasing) 된 도플러 신호를 각 펄스 반복 주파수(PRF)별로 생성한다(S640). Then, signals having the same relative time are extracted again from the extracted signals (S630), and a Doppler signal aliased from the extracted signals having the same relative time is generated for each pulse repetition frequency (PRF) (S640). .
복수의 앨리어싱(aliasing) 된 도플러 신호의 주파수에 '중국인의 나머지 정리'를 적용하여, 각각의 펄스 반복 주파수(PRF)별로 정확한 도플러 주파수를 산출할 수 있으며(S650), 산출된 도플러 주파수로 유속을 구하여, 해당 상대 시간에 대응하는 수심에서의 정확한 유속을 측정할 수 있다(S660).By applying the 'Chinese residual theorem' to the frequencies of a plurality of aliased Doppler signals, an accurate Doppler frequency can be calculated for each pulse repetition frequency (PRF) (S650), and the flow rate is calculated using the calculated Doppler frequency. In operation S660, an accurate flow velocity at a depth corresponding to the corresponding relative time may be measured.
그리고나서, 1cm 간격의 수심별 위치에 대응하도록 상대 시간을 변경하며 단계 S630 내지 단계 S660을 반복하여, 하천의 연직 유속분포를 측정할 수 있다(S670). Then, by changing the relative time to correspond to the depth position of the 1cm interval and repeating step S630 to step S660, it is possible to measure the vertical flow rate distribution of the stream (S670).
다시 도 9를 참조하면, 하천 연직 유속분포 측정 장치(100)는 MPRF 모드로 측정한 하천의 연직 유속분포인 유속 데이터를 하천 연직 유속분포 측정 장치(100) 내의 유속 데이터 저장부(170)에 저장한다(S500). Referring back to FIG. 9, the stream vertical flow rate distribution measuring apparatus 100 stores the flow rate data, which is a vertical flow rate distribution of the stream measured in the MPRF mode, in the flow rate data storage unit 170 in the stream vertical flow rate distribution measuring apparatus 100. (S500).
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다. So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (9)

  1. 하천의 연직 수심을 측정하는 수심 측정부; Depth measurement unit for measuring the vertical depth of the river;
    상기 연직 수심이 측정되는 방향으로부터 미리 설정된 각도만큼 기울어진 방향으로 송신되는 초음파 신호가 수면에 도달하기까지의 거리인 최대 측정거리를, 상기 수심 측정부에서 측정된 수심 데이터를 이용하여 구한 후 펄스 반복 주파수(PRF)를 산출하고, 상기 펄스 반복 주파수(PRF)를 이용하여 상기 수심 데이터에 대응하는 최대 유속값을 산출하는 최대 유속값 산출부; Pulse repetition after obtaining the maximum measurement distance, which is the distance from the direction in which the vertical depth is measured to the ultrasonic wave transmitted in a direction inclined by a predetermined angle, to reach the surface using the depth data measured by the depth measuring unit A maximum flow rate value calculator for calculating a frequency PRF and calculating a maximum flow rate value corresponding to the depth data using the pulse repetition frequency PRF;
    상기 펄스 반복 주파수(PRF)를 적용한 단일 초음파 펄스 신호를 이용하여, 상기 하천의 연직 유속분포를 측정하고, 가장 빠른 유속을 유속의 대표값으로 설정하는 SPRF 모드 실행부;An SPRF mode execution unit for measuring a vertical flow rate distribution of the stream using a single ultrasonic pulse signal to which the pulse repetition frequency (PRF) is applied, and setting the fastest flow rate as a representative value of the flow rate;
    상기 최대 유속값과 상기 유속의 대표값을 비교하여, 상기 최대 유속값이 상기 유속의 대표값보다 클 경우에는 측정 모드를 전환하지 않고, 작을 경우에 MPRF 모드로 전환하는 측정 모드 전환부; A measurement mode switching unit which compares the maximum flow rate value with the representative value of the flow rate and does not change the measurement mode when the maximum flow rate value is larger than the representative value of the flow rate, and switches to the MPRF mode when the flow rate is small;
    상기 MPRF 모드로 전환될 경우, 하천의 최대 수심까지 측정 가능한 미리 설정된 복수의 펄스 반복 주파수(PRF)를 적용한 복수의 초음파 펄스 신호를 이용하여, 상기 하천의 연직 유속분포를 측정하는 MPRF 모드 실행부; 를 포함하는 것을 특징으로 하는 펄스 반복 주파수를 이용한 하천 연직 유속분포 측정 장치.An MPRF mode execution unit configured to measure a vertical flow velocity distribution of the stream by using a plurality of ultrasonic pulse signals to which a plurality of preset pulse repetition frequencies (PRFs) that can be measured up to a maximum depth of a river are measured when the MPRF mode is switched; Stream vertical flow rate measurement apparatus using a pulse repetition frequency comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 SPRF 모드 실행부는, The SPRF mode execution unit,
    미리 설정된 시간 동안 복수의 상기 하천의 연직 유속분포를 측정하고, 상기 측정된 복수의 연직 유속분포를 상기 미리 설정된 시간으로 평균을 낸 후, 가장 빠른 평균 유속을 유속의 대표값으로 설정하는 것을 특징으로 하는 펄스 반복 주파수를 이용한 하천 연직 유속분포 측정 장치.Measuring a vertical flow rate distribution of the plurality of streams for a preset time, averaging the measured plurality of vertical flow rate distributions to the preset time, and then setting the fastest average flow rate as a representative value of the flow rate; Stream vertical flow rate measurement device using a pulse repetition frequency.
  3. 제 1항에 있어서,The method of claim 1,
    상기 MPRF 모드 실행부는,The MPRF mode execution unit,
    상기 복수의 펄스 신호를 상기 각 펄스 반복 주파수(PRF)별로 송신하고, 산란되는 복수의 펄스 신호를 수신하여, 상기 수심 데이터에 대응하는 수심에서 산란된 신호들을 추출하고, 상기 추출된 신호들로부터 엘리어싱(aliasing) 된 도플러 신호를 추출하여 상기 하천의 연직 유속분포를 측정하는 것을 특징으로 하는 펄스 반복 주파수를 이용한 하천 연직 유속분포 측정 장치.Transmitting the plurality of pulse signals for each pulse repetition frequency (PRF), receiving a plurality of scattered pulse signals, extracting scattered signals at a depth corresponding to the depth data, and eliminating from the extracted signals. A stream vertical velocity distribution measurement apparatus using a pulse repetition frequency, characterized in that the vertical velocity distribution of the stream is measured by extracting an aliased Doppler signal.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 MPRF 모드 실행부는,The MPRF mode execution unit,
    상기 앨리어싱(aliasing) 된 복수의 도플러 신호의 주파수에 '중국인의 나머지 정리'를 적용하여 상기 하천의 연직 유속분포를 측정하는 것을 특징으로 하는 펄스 반복 주파수를 이용한 하천 연직 유속분포 측정 장치.Stream vertical flow rate measurement apparatus using a pulse repetition frequency characterized in that for measuring the vertical flow rate distribution of the stream by applying the 'China remaining theorem' to the frequency of the aliased (plural) Doppler signals.
  5. 제 1항에 있어서,The method of claim 1,
    초음파가 송수신 되는 경로를 확보하고, 상기 하천 연식 유속분포 측정 장치의 상면이 평탄해지도록 미리 설정된 형태로 구현되며, 초음파 송수신에 영향을 주지 않도록 하는 재질로 구현되는 초음파 경로 제공부; 를 더 포함하는 것을 특징으로 하는 펄스 반복 주파수를 이용한 하천 연직 유속분포 측정 장치.An ultrasonic path providing unit configured to secure a path through which ultrasonic waves are transmitted / received, and to have an upper surface of the stream soft flow rate distribution measuring device flattened, and not to affect ultrasonic transmission / reception; Stream vertical flow rate measurement apparatus using a pulse repetition frequency characterized in that it further comprises.
  6. (a) 하천의 연직 수심을 측정하는 단계; (a) measuring the vertical depth of the river;
    (b) 상기 연직 수심이 측정되는 방향으로부터 미리 설정된 각도만큼 기울어진 방향으로 송신되는 초음파 신호가 수면에 도달하기까지의 거리인 최대 측정거리를, 상기 (a)단계에서 측정된 수심 데이터를 이용하여 구한 후 펄스 반복 주파수(PRF)를 산출하고, 상기 펄스 반복 주파수(PRF)를 이용하여 상기 수심 데이터에 대응하는 최대 유속값을 산출하는 단계; (b) Using the depth data measured in step (a), the maximum measurement distance, which is the distance from the direction in which the vertical depth is measured to the surface of the ultrasound signal transmitted in a direction inclined by a predetermined angle, reaches the surface of the water; Calculating a pulse repetition frequency (PRF) and calculating a maximum flow rate value corresponding to the depth data using the pulse repetition frequency (PRF);
    (c) 상기 펄스 반복 주파수(PRF)를 적용한 단일 초음파 펄스 신호를 이용하여, 상기 하천의 연직 유속분포를 측정하고, 가장 빠른 유속을 유속의 대표값으로 설정하는 단계; (c) measuring a vertical flow rate distribution of the stream using a single ultrasonic pulse signal to which the pulse repetition frequency (PRF) is applied, and setting the fastest flow rate as a representative value of the flow rate;
    (d) 상기 최대 유속값과 상기 유속의 대표값을 비교하여, 상기 최대 유속값이 상기 유속의 대표값보다 클 경우에는 측정 모드를 전환하지 않고, 작을 경우에 MPRF 모드로 전환하는 단계; 및(d) comparing the maximum flow rate value with the representative value of the flow rate, and switching the measurement mode when the maximum flow rate value is larger than the representative value of the flow rate, and switching to the MPRF mode when the flow rate is small; And
    (f) 상기 MPRF 모드로 전환될 경우, 하천의 최대 수심까지 측정 가능한 미리 설정된 복수의 펄스 반복 주파수(PRF)를 적용한 복수의 초음파 펄스 신호를 이용하여, 상기 하천의 연직 유속분포를 측정하는 단계; 를 포함하는 것을 특징으로 하는 펄스 반복 주파수를 이용한 하천 연직 유속분포 측정 방법.(f) measuring the vertical flow velocity distribution of the stream by using a plurality of ultrasonic pulse signals to which a plurality of preset pulse repetition frequencies (PRFs), which can be measured up to the maximum depth of the stream, are converted into the MPRF mode; Stream vertical flow rate measurement method using a pulse repetition frequency comprising a.
  7. 제 6항에 있어서,The method of claim 6,
    상기 (c) 단계에서는, In the step (c),
    미리 설정된 시간 동안 복수의 상기 하천의 연직 유속분포를 측정하고, 상기 측정된 복수의 연직 유속분포를 상기 미리 설정된 시간으로 평균을 낸 후, 가장 빠른 평균 유속을 유속의 대표값으로 설정하는 것을 특징으로 하는 펄스 반복 주파수를 이용한 하천 연직 유속분포 측정 방법.After measuring the vertical flow rate distribution of the plurality of streams for a preset time, averaging the measured plurality of vertical flow rate distributions to the preset time, and setting the fastest average flow rate as a representative value of the flow rate. Stream vertical flow rate measurement method using the pulse repetition frequency.
  8. 제 6항에 있어서, The method of claim 6,
    상기 (f) 단계에서는, In the step (f),
    상기 복수의 펄스 신호를 상기 각 펄스 반복 주파수(PRF)별로, 송신하고, 산란되는 복수의 펄스 신호를 수신하여, 상기 수심 데이터에 대응하는 수심에서 산란된 신호들을 추출하고, 상기 추출된 신호들로부터 엘리어싱(aliasing) 된 도플러 신호를 추출하여 상기 하천의 연직 유속분포를 측정하는 것을 특징으로 하는 펄스 반복 주파수를 이용한 하천 연직 유속분포 측정 방법.Transmitting the plurality of pulse signals for each pulse repetition frequency (PRF), receiving a plurality of scattered pulse signals, extracting signals scattered at a depth corresponding to the depth data, and extracting the extracted signals from the extracted signals A stream vertical velocity distribution measurement method using a pulse repetition frequency, characterized in that the vertical velocity distribution of the stream is measured by extracting an aliased Doppler signal.
  9. 제 8항에 있어서, The method of claim 8,
    상기 (f) 단계에서는, In the step (f),
    상기 앨리어싱(aliasing) 된 복수의 도플러 주파수에 '중국인의 나머지 정리'를 적용하여 상기 하천의 연직 유속분포를 측정하는 것을 특징으로 하는 펄스 반복 주파수를 이용한 하천 연직 유속분포 측정 방법.The stream vertical velocity distribution measurement method using the pulse repetition frequency characterized in that for measuring the vertical flow rate distribution of the stream by applying the 'China remaining theorem' to the aliased plurality of Doppler frequencies.
PCT/KR2010/008742 2010-08-20 2010-12-08 Device and method for measuring vertical velocity distribution of river WO2012023668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100081033A KR101080711B1 (en) 2010-08-20 2010-08-20 Apparatus and method for measuring vertical velocity profile of river
KR10-2010-0081033 2010-08-20

Publications (1)

Publication Number Publication Date
WO2012023668A1 true WO2012023668A1 (en) 2012-02-23

Family

ID=45397266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008742 WO2012023668A1 (en) 2010-08-20 2010-12-08 Device and method for measuring vertical velocity distribution of river

Country Status (2)

Country Link
KR (1) KR101080711B1 (en)
WO (1) WO2012023668A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111291457A (en) * 2017-11-08 2020-06-16 四川大学 Method for predicting water depth average two-dimensional water flow direction of curved compound river channel with submerged vegetation on beach
CN112378456A (en) * 2020-12-03 2021-02-19 武汉新烽光电股份有限公司 Device and method for real-time online measurement of river channel section area and flow

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716208B1 (en) 2016-04-28 2017-03-14 한국건설기술연구원 Despiking method of abnormal signal data acquired with using three-dimensional doppler velocimetry in open channel flow and system for the same
KR101716210B1 (en) 2016-04-28 2017-03-14 한국건설기술연구원 Post-processing method of three dimensional velocity data with using doppler velocity meter in man-made open channel flow and system for the same
CN114118178B (en) * 2022-01-27 2022-04-19 北京清源华建环境科技有限公司 Method for measuring flow velocity distribution of drainage water body
CN114814282B (en) * 2022-04-13 2023-03-31 武汉大学 Velocity of flow perpendicular distribution measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333260A (en) * 2003-05-06 2004-11-25 Keio Gijuku Ultrasonic flow velocity distribution meter, flow meter, method for ultrasonically measuring flow velocity distribution and flow volume, and program for ultrasonically measuring/processing flow velocity distribution and flow rate
KR20050004213A (en) * 2002-05-24 2005-01-12 각고호우징 게이오기주크 Ultrasonic flowmeter and ultrasonic flowmetering method
JP2005208068A (en) * 2005-02-21 2005-08-04 Keio Gijuku Ultrasonic flow velocity distribution meter and flow meter, ultrasonic flow velocity distribution and flow rate measuring method, and ultrasonic flow velocity distribution and flow rate measuring processing program
WO2008004560A1 (en) * 2006-07-04 2008-01-10 Yasushi Takeda Flow velocity measurement device and ultrasonic flow rate meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050004213A (en) * 2002-05-24 2005-01-12 각고호우징 게이오기주크 Ultrasonic flowmeter and ultrasonic flowmetering method
JP2004333260A (en) * 2003-05-06 2004-11-25 Keio Gijuku Ultrasonic flow velocity distribution meter, flow meter, method for ultrasonically measuring flow velocity distribution and flow volume, and program for ultrasonically measuring/processing flow velocity distribution and flow rate
US20070156355A1 (en) * 2003-05-06 2007-07-05 Keio University Ultrasonic flow-velocity distribution meter/flowmeter, method of ultrasonically measuring flow velocity distribution/flowrate, program for ultrasonically measuring flow velocity distribution/flowrate
JP2005208068A (en) * 2005-02-21 2005-08-04 Keio Gijuku Ultrasonic flow velocity distribution meter and flow meter, ultrasonic flow velocity distribution and flow rate measuring method, and ultrasonic flow velocity distribution and flow rate measuring processing program
WO2008004560A1 (en) * 2006-07-04 2008-01-10 Yasushi Takeda Flow velocity measurement device and ultrasonic flow rate meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111291457A (en) * 2017-11-08 2020-06-16 四川大学 Method for predicting water depth average two-dimensional water flow direction of curved compound river channel with submerged vegetation on beach
CN112378456A (en) * 2020-12-03 2021-02-19 武汉新烽光电股份有限公司 Device and method for real-time online measurement of river channel section area and flow
CN112378456B (en) * 2020-12-03 2022-03-15 武汉新烽光电股份有限公司 Device and method for real-time online measurement of river channel section area and flow

Also Published As

Publication number Publication date
KR101080711B1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2012023668A1 (en) Device and method for measuring vertical velocity distribution of river
WO2014084512A1 (en) Method of detecting unknown signal and estimating position of source by using plane equipped with ads-b system
JP5029993B2 (en) Ultrasonic wind speed device
CN108572016A (en) A kind of time service optoacoustic open channel flow rate meter systems
KR20000001368A (en) Measuring method for horizontal average speed of current of rivers
Bahreinimotlagh et al. Application of shallow-water acoustic tomography to measure flow direction and river discharge
WO2008073673A1 (en) Ultrasonic flow rate measurement using doppler frequency
JP3636998B2 (en) Sediment movement monitoring system in sediment transport system
CN104133217A (en) Method and device for three-dimensional velocity joint determination of underwater moving target and water flow
WO2013002480A1 (en) Vector interpolation device and method for an ultrasonic wave image
KR20030000980A (en) Method of Stream Liquid Velocity Determination and Apparatus for thereof
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
CN208488472U (en) A kind of flow measurement apparatus
US7881156B2 (en) Method to estimate towed array angles
CN110749420A (en) OFDR detection device
Williams 3rd et al. An acoustic sensor of velocity for benthic boundary layer studies
JP2001004606A (en) Measuring method for shear wave velocity
BRPI0615188A2 (en) Method, system and ultrasonic flowmeter
KR20060039593A (en) Sag monitoring apparatus for overhead transmission line
Zhao et al. Ocean Current Velocity Measuring Device Based on Acoustic Time Difference Current Meter.
WO2020138631A1 (en) Capsule endoscope location detection system and method therefor
JPS61279233A (en) Doppler blood flow speedometer
Cabrera et al. Small scale laboratory flow measurements with the ADV-1
WO2023113069A1 (en) Shear wave parameter measurement method and ultrasonic wave device
JPH0561571B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/06/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10856210

Country of ref document: EP

Kind code of ref document: A1