WO2012023521A1 - 入力表示装置、入力位置認識方法 - Google Patents

入力表示装置、入力位置認識方法 Download PDF

Info

Publication number
WO2012023521A1
WO2012023521A1 PCT/JP2011/068469 JP2011068469W WO2012023521A1 WO 2012023521 A1 WO2012023521 A1 WO 2012023521A1 JP 2011068469 W JP2011068469 W JP 2011068469W WO 2012023521 A1 WO2012023521 A1 WO 2012023521A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
area
input
display device
illuminance
Prior art date
Application number
PCT/JP2011/068469
Other languages
English (en)
French (fr)
Inventor
敏明 中川
雅幸 畠
敏幸 吉水
之雄 水野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012023521A1 publication Critical patent/WO2012023521A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to an input display device that receives input from a light-emitting or light-reflecting input device.
  • Patent Document 1 discloses an input display device that recognizes an input position by sensing light of a specific pattern emitted from a light pen, which is an input device, and performing pattern matching.
  • the conventional input display device has a problem that the input position is not correctly recognized when the ambient light is stronger than the light emitted from the light pen or when the intensity of the ambient light varies depending on the position.
  • An object of the present invention is to provide an input display device that is not easily affected by ambient light.
  • This input display device is an input display device that includes a plurality of photosensors and recognizes an input position to the display unit of the light emitting device or the reflection device, and the plurality of photosensors included in the display unit from the detection result of each photosensor.
  • the illuminance index value of each area is obtained, and the illuminance index value of one area is set as the target value, and N values obtained from the illuminance index values of N areas (N is an integer of 2 or more) adjacent to the one area.
  • the input position is recognized by calculating a correction value for each area, with the difference between the result of dividing the total of the comparison values by N and the value of interest as the correction value for the one area.
  • the illuminance index value of one area is used with N comparison values obtained from the illuminance index values of N areas close to the one area (for example, surrounding the one area).
  • N comparison values obtained from the illuminance index values of N areas close to the one area (for example, surrounding the one area).
  • FIG. It is a schematic diagram which shows the input example (spot C) to an electronic blackboard. It is a schematic diagram which shows arrangement
  • FIG. It is a schematic diagram which shows the illumination intensity of the spot C vicinity. It is a schematic diagram showing a correction value (lux) near the spot C. It is a schematic diagram showing a correction value (lux) and an interpolation value near a spot C. It is a schematic diagram which shows binarization of the spot C vicinity. It is a schematic diagram which shows the position (coordinate) recognition of the spot C.
  • FIG. It is a flowchart which shows another processing procedure of a data analysis part. It is a flowchart which shows another process sequence of a data analysis part. It is a schematic diagram which shows the illumination intensity index value (gradation) of four sensing areas. It is a schematic diagram which shows the coefficient assignment
  • the input display device 1 includes a backlight 3, a liquid crystal touch panel 4, a processor 5, a liquid crystal driver 6, a sensor driver 9, an ADC (analog / digital conversion circuit) 10, a memory 18, and a temperature measurement unit 11. Is provided.
  • the liquid crystal touch panel 4 includes a display unit including pixels P (not shown) and the optical sensor S, and receives input from the optical pen 20 (input device).
  • the processor 5 includes a data acquisition unit 12, a data analysis unit 13, and a display control unit 14 as functional blocks.
  • a plurality of pixels P are arranged in a matrix in the display unit, and pixels belonging to an odd-numbered (x-th) pixel column and an odd-numbered (y-th) pixel row.
  • P (x, y) corresponds to the area AR (x, y)
  • the optical sensor S (x, y) is provided in the area AR (x, y).
  • the illuminance index value of AR (x, y) obtained from the optical sensor S (x, y) is described in lux (L (x, y)) or gradation (D (x, y)).
  • the sensor driver 9 drives the optical sensor S of the touch panel 4 under the control of the processor 5, and the output (potential) of the optical sensor S is It is stored in the memory 18 via the ADC 10. Note that the output of the temperature measurement unit 11 is also stored in the memory 18 via the ADC 10.
  • the processor 5 recognizes the input position based on the output of the optical sensor S read from the memory 18 (illuminance index value for each area). Then, under the control of the processor 5, the liquid crystal driver 6 drives the display unit, whereby display is performed on the liquid crystal touch panel 4.
  • the optical sensor S includes nodes m1 to m5, a transistor TR, a capacitor C, and a photodiode PD.
  • the transistor TR one conduction electrode is connected to the node m1
  • the other conduction electrode is connected to the node m2
  • the control electrode is connected to the node m3
  • a capacitor C is disposed between the node m3 and the node m4.
  • a photodiode PD is disposed between the node m3 and the node m5, and the power supply potential Vs is applied to the node m2.
  • the sensor driver 9 inputs the reset potential Vrs to the node m5 to reset the node m3, and inputs the read signal Vrw to the node m4 after the time CT has elapsed. Accordingly, the potential of the node m3 changes according to the illuminance received by the photodiode PD during the time CT (for example, the potential of the node m3 decreases as the illuminance increases), and the input period (Vrw of the Vrw) The potential Vout (output of the optical sensor PS) of the node m1 is sent to the ADC 10 at a time corresponding to the width. Note that the width of the time CT and the read signal Vrw is determined by the processor 5 (described later).
  • the data acquisition unit determines the time CT and the width of the readout signal Vrw described in FIG. 3 in step S1, and controls the sensor driver 9 in step S2.
  • step S 3 data (illuminance index value for each area) and temperature data obtained by converting the output (potential) of the optical sensor S by the ADC 10 are read from the memory 18.
  • the initial set value is changed as necessary based on the output data and temperature data of the photosensor PS obtained using the time CT and the width of the readout signal Vrw as the initial set value. Specifically, as shown in FIG.
  • the data analysis unit removes ambient light noise in step S11. That is, the illuminance index value is a gradation, and is obtained from the illuminance index value (D (x, y)) of the area AR (x, y) and the illuminance index values of eight areas surrounding the area AR (x, y).
  • the illuminance index value is used as a comparison value, and the illuminance index value exceeds the threshold.
  • the threshold value is used as a comparison value regardless of the illuminance index value, and as shown in FIG.
  • the above threshold is a gradation corresponding to the maximum value of environmental illuminance, and is obtained from the frequency distribution of the illuminance index value of each area.
  • exceeding the threshold means being smaller than the threshold (gradation), and not exceeding the threshold means exceeding the threshold (gradation).
  • interpolation is performed in step S12. Specifically, as shown in FIG. 8, from the correction values of the four areas arranged at positions corresponding to the squares of the square, it corresponds to five gaps (portions surrounded by broken lines) in the square. Calculate the interpolation value.
  • the interpolation value corresponding to the gap between the area AR (x, y) and the area AR (x, y + 2) ⁇ 0 ⁇ FD (x ⁇ 2, y) + 2 ⁇ FD (x, y) + 0 ⁇ FD (x ⁇ 2, y + 2) + 2 ⁇ FD (x, y + 2) ⁇ / 4.
  • step S13 binarization is performed in step S13.
  • an area where the correction value is larger than the determination value and a gap where the interpolation value is larger than the determination value are set to 1, and an area where the correction value is less than the determination value and a gap where the interpolation value is less than the determination value are set to 0.
  • the determination value is, for example, a gradation corresponding to 5 to 35% (for example, 25%) of the illuminance of the light pen.
  • step S14 position recognition is performed in step S14. Specifically, for the position of the area (flag 1) where the correction value exceeds the determination value and the position of the gap (flag 1) where the interpolation value exceeds the determination value, an intermediate value between the minimum value and the maximum value of the x coordinate. Mx and an intermediate value My between the minimum and maximum values of the y coordinate are obtained, and the position (Mx, My) is determined as the center of the input position.
  • the display control unit creates display data based on the input center position obtained in S ⁇ b> 14 and outputs the display data to the liquid crystal driver 6.
  • FIGS. 9 to 10 illustrate the processing of steps S11 and S12 using the illuminance index value as lux.
  • the illuminance index value is used as a comparison value, and the illuminance index value exceeds the threshold.
  • the threshold value is used as a comparison value regardless of the illuminance index value, and as shown in FIG.
  • the corrected illuminance value FL (x, y) L (x, y) ⁇ ⁇ L ′ (x ⁇ 2 , Y-2) + L '(x-2, y) + L' (x-2, y + 2) + L '(x, y-2) + L' (x, y + 2) + L '(x + 2, y-2) + L' It is defined as (x + 2, y) + L ′ (x + 2, y + 2) ⁇ / 8, and correction values are calculated for all areas.
  • exceeding the threshold value is larger than the threshold value (lux), and not exceeding the threshold value means less than the threshold value (lux).
  • the area where the correction value exceeds the determination value and the gap where the interpolation value exceeds the determination value are set to 1, and the area where the correction value does not exceed the determination value and the interpolation value set the determination value as above.
  • the gap not exceeding is set to zero.
  • the determination value is, for example, an illuminance index value corresponding to 10 to 35% (preferably 25%) of the illuminance of the light pen.
  • FIG. 11 is a schematic diagram of the electronic blackboard 101 provided with the input display device 1.
  • the ambient light illuminance (environmental illuminance) varies depending on the position (the ambient light illuminance increases from the left to the right in the figure), and there is a light pen input (spot A) at a position where the ambient illuminance is small Is shown.
  • FIG. 12 is an enlarged view of the vicinity of the spot A.
  • Four areas AR (m ⁇ 1, i ⁇ 1), AR (m ⁇ 1, i + 1), AR (m + 1, i ⁇ 1), AR (m + 1, i + 1) shows that light from the light pen is irradiated.
  • FIG. 13 shows illuminance index values near the spot A, and shows four areas (AR (m ⁇ 1, i ⁇ 1), AR (m ⁇ 1, i + 1), AR (m + 1, i ⁇ 1), AR. (M + 1, i + 1)) is irradiated with light from a light pen (1.7 ⁇ 10 4 lux) in addition to ambient light (2.4 to 26,000 lux). However, it is 4.1 ⁇ 10 4 to 4.3 ⁇ 10 4 lux, which is higher than the ambient light sensor (2.0 ⁇ 10 4 to 3.0 ⁇ 10 4 ) irradiated only with ambient light. I understand.
  • FIG. 14 shows correction values for each area near the spot A.
  • Four areas AR (m ⁇ 1, i ⁇ 1), AR (m ⁇ 1, i + 1), AR (m + 1, i ⁇ 1) are shown.
  • AR (m + 1, i + 1)) correction value (about 1.0 ⁇ 10 4 lux) is higher than 25% (about 0.4 ⁇ 10 4 lux) of the illumination intensity of the light pen, which is the determination value
  • the correction value ( ⁇ 0.4 ⁇ 10 4 to 0 ⁇ 10 4 lux) in the surrounding area is lower than the above judgment value (0.4 ⁇ 10 4 lux), and ambient light noise is removed.
  • the illuminance index values of the four areas are all smaller than the threshold value (5.0 ⁇ 10 4 lux)
  • the comparison value illuminance index value for these four areas.
  • FIG. 15 shows the correction value of each area near the spot A and the interpolation value between the areas, and it can be seen that the correction value or the interpolation value is calculated for each pixel position.
  • FIG. 16 illustrates binarization in the vicinity of the spot A.
  • pixel positions lower than the determination value (0.4 ⁇ 10 4 lux) are marked with “0 (hatched in the figure)”. It can be seen that “1 (black)” is attached to a pixel position higher than the determination value (0.4 ⁇ 10 4 lux).
  • FIG. 17 illustrates the position recognition near the spot A.
  • the intermediate value i between the minimum value and the maximum value of m and the y coordinate is obtained, and the pixel position (m, i) corresponding to the center of the spot A can be recognized even under ambient light that is stronger than the light pen and has position dependency.
  • FIG. 18 shows a case where there is a light pen input (spot B) at a position where the ambient illuminance is medium in the electronic blackboard 101.
  • FIG. 19 is an enlarged view of the vicinity of the spot B.
  • Four areas AR (n ⁇ 1, i ⁇ 1), AR (n ⁇ 1, i + 1), AR (n + 1, i ⁇ 1), AR (n + 1, i + 1) shows that light from the light pen is irradiated.
  • FIG. 20 shows the illuminance index values near the spot B.
  • Four areas AR (n ⁇ 1, i ⁇ 1), AR (n ⁇ 1, i + 1), AR (n + 1, i ⁇ 1), AR (N + 1, i + 1)
  • AR (n ⁇ 1, i + 1) is irradiated with light from a light pen (1.7 ⁇ 10 4 lux) in addition to ambient light (3.4 to 36,000 lux).
  • FIG. 21 shows correction values for each area near the spot B.
  • Four areas AR (n ⁇ 1, i ⁇ 1), AR (n ⁇ 1, i + 1), AR (n + 1, i ⁇ 1) are shown.
  • AR (n + 1, i + 1)) (about 1.0 ⁇ 10 4 to 1.1 ⁇ 10 4 lux) is 25% (about 0.4 ⁇ 10 4 lux) of the illuminance of the light pen, which is the judgment value. )
  • the correction value ( ⁇ 0.4 ⁇ 10 4 to 0.3 ⁇ 10 4 lux) in the surrounding area is lower than the above judgment value (0.4 ⁇ 10 4 lux). It can be seen that ambient light noise is removed.
  • FIG. 22 shows the correction value of each area near the spot B and the interpolation value between the areas, and it can be seen that the correction value or the interpolation value is calculated for each pixel position.
  • FIG. 23 illustrates binarization in the vicinity of the spot B.
  • a pixel position lower than the determination value (0.4 ⁇ 10 4 lux) is assigned “0 (hatched line in the figure)”. It can be seen that “1 (black)” is attached to a pixel position higher than the determination value (0.4 ⁇ 10 4 lux).
  • FIG. 24 illustrates position recognition near the spot B.
  • the intermediate value i between the minimum value and the maximum value of m and the y coordinate is obtained, and the pixel position (n, i) corresponding to the center of the spot B can be recognized even under ambient light that is stronger than the light pen and has position dependency.
  • FIG. 25 shows a case where there is a light pen input (spot C) at a position where the ambient illuminance is large on the electronic blackboard 101.
  • FIG. 26 is an enlarged view of the vicinity of the spot C.
  • Four areas AR (N ⁇ 1, i ⁇ 1), AR (N ⁇ 1, i + 1), AR (N + 1, i ⁇ 1), AR (N + 1, i + 1) shows that light from the light pen is irradiated.
  • FIG. 27 shows illuminance index values near the spot C, and shows four areas (AR (N ⁇ 1, i ⁇ 1), AR (N ⁇ 1, i + 1), AR (N + 1, i ⁇ 1), AR. (N + 1, i + 1)) is irradiated with light from a light pen (1.7 ⁇ 10 4 lux) in addition to ambient light (4.4 to 46,000 lux). Is 5.9 ⁇ 10 4 to 6.1 ⁇ 10 4 lux, which is higher than the ambient light sensor (4.0 ⁇ 10 4 to 5.0 ⁇ 10 4 ) irradiated only with ambient light. I understand.
  • FIG. 29 shows the correction value of each area near the spot B and the interpolation value between the areas, and it can be seen that the correction value or the interpolation value is calculated for each pixel position.
  • FIG. 30 illustrates binarization in the vicinity of the spot C.
  • a pixel position lower than the determination value (0.4 ⁇ 10 4 lux) is assigned “0 (hatched line in the figure)”. It can be seen that “1 (black)” is attached to a pixel position higher than the determination value (0.4 ⁇ 10 4 lux).
  • FIG. 31 illustrates position recognition near the spot C.
  • an intermediate value between the minimum value and the maximum value of the x-coordinate for the “1 (blacked out)” portion of FIG. N and an intermediate value i between the minimum and maximum values of the y coordinate are obtained, and the pixel position (N, i) corresponding to the center of the spot C is recognized even under ambient light that is considerably stronger than the light pen and has position dependency. You can see that it is made.
  • interpolation is performed in S12, but this is not essential.
  • the entire display unit is interpolated, but the present invention is not limited to this.
  • noise removal from ambient light is performed in S211
  • binarization is performed in S212
  • temporary position recognition is performed in S213, and temporary recognition obtained in S213 in S214.
  • Local interpolation only in the vicinity of the position may be performed, and in S215, local binarization only in the vicinity of the temporary recognition position obtained in S213 may be performed, and final real position recognition may be performed in S216.
  • the present invention is not limited to this. It is also possible to further increase the ratio of the area where the optical sensor is provided (sensing area) to the area where the optical sensor is not provided (non-sensing area).
  • the sensing area shows the arrangement.
  • four coefficients (K ⁇ , K ⁇ , K ⁇ , K ⁇ ) are attached to the non-sensing area according to the distances to the four sensing areas, and the illuminance index value of the non-sensing area is expressed as (D ⁇ ⁇ K ⁇ + D ⁇ ⁇ K ⁇ + D ⁇ ⁇ K ⁇ + D ⁇ ⁇ k ⁇ ) / 16 (see FIG. 36).
  • correction values for each area are obtained according to the processing procedure of FIG. 32 (see FIG. 36).
  • the threshold value is 202 gradations
  • the comparison value of (P-1, Q-1) is 202 gradations.
  • each area can be made smaller than a pixel (the area resolution is made larger than the display resolution), and small letters can be clearly written on an electronic blackboard or the like. .
  • one pixel corresponds to one area, but the present invention is not limited to this.
  • a plurality of pixels can correspond to one area.
  • one optical sensor is provided for a plurality of areas (a non-sensing area and a sensing area are provided), but the configuration is not limited to this.
  • a configuration in which one optical sensor is provided for one area (no non-sensing area is provided) may be employed.
  • the light emitting input device (light pen 20) is used in the input display device 1 of FIG. 1, the present invention is not limited to this.
  • this input display device it is also possible to use a reflection type input device that reflects light emitted from the back surface of the panel.
  • the input display device may be configured to recognize the input position based on the position of the area where the correction value exceeds the determination value.
  • the one area may be surrounded by the N areas.
  • the illuminance index value is used as a comparison value for an area where the illuminance index value does not exceed the threshold value among the N areas.
  • an area having an illuminance index value exceeding the threshold value among the N areas may be configured to use the threshold value as a comparison value regardless of the illuminance index value.
  • the threshold value may be a value corresponding to the maximum illuminance of ambient light.
  • an optical sensor is provided for each area, and interpolation values corresponding to a plurality of positions in the rectangle are calculated from correction values of the four areas arranged at positions corresponding to the squares of the rectangle.
  • the input position may be recognized based on the position of the area where the correction value exceeds the determination value and the position where the interpolation value exceeds the determination value.
  • the determination value may be an illuminance index value corresponding to 5 to 35% (for example, 25%) of the emitted light or reflected light of the input device.
  • This input display device can also be configured to change the driving conditions of each optical sensor in accordance with the environmental temperature.
  • the plurality of areas include a sensing area in which a photosensor is provided and a non-sensing area in which no photosensor is provided, and is arranged at positions corresponding to quadrangular squares. It can also be set as the structure which calculates
  • This electronic blackboard is equipped with the above input display device.
  • the input position recognition method is an input position recognition method for recognizing an input position of a light emitting device or a reflection device with respect to an input display device having a plurality of optical sensors.
  • the illuminance index value of each of a plurality of areas included in the area is obtained, and the illuminance index value of one area is set as a target value.
  • the input position is recognized by calculating a correction value for each area, using the difference between the result obtained by dividing the total of N comparison values obtained by N and the value of interest as the correction value for the area.
  • the present invention is not limited to the above-described embodiments, and those obtained by appropriately modifying the above-described embodiments based on common general technical knowledge and those obtained by combining them are also included in the embodiments of the present invention.
  • the present invention is suitable for an input display device (for example, an electronic blackboard) having a large touch panel.
  • an input display device for example, an electronic blackboard
  • Input display device 20 Optical pen (input device) S light sensor P pixel L (x, y) Illuminance index value (lux) FL (x, y) Correction value (lux) D (x, y) Illuminance index value (gradation) FD (x, y) Correction value (gradation)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

 本入力表示装置は、アレイ状の複数の光センサを備え、発光装置あるいは反射装置の表示部への入力位置を認識する入力表示装置であって、各光センサの検出結果から、上記表示部に含まれる複数のエリアそれぞれの照度指標値を求め、1つのエリアの照度指標値を着目値とし、この1つのエリアと近接するN個(Nは2以上の整数)のエリアの照度指標値から得られるN個の比較値の総和をNで除した結果と上記着目値との差を上記エリアの補正値として、各エリアについて補正値を算出することで上記入力位置を認識する。

Description

入力表示装置、入力位置認識方法
 本発明は、発光型あるいは光反射型の入力装置の入力を受け付ける入力表示装置に関する。
 特許文献1には、入力装置である光ペンから出射された特定パターンの光をセンシングし、パターンマッチングを行うことによって入力位置を認識する入力表示装置が開示されている。
特開2005-309859(公開日:2005年11月4日)
 しかしながら、上記従来の入力表示装置では、環境光が光ペンの出射光よりも強い場合や環境光の強度が位置によって異なる場合に、入力位置が正しく認識されなくなるという問題があった。
 本発明は、環境光の影響を受けにくい入力表示装置を提供することを目的とする。
 本入力表示装置は、複数の光センサを備え、発光装置あるいは反射装置の表示部への入力位置を認識する入力表示装置であって、各光センサの検出結果から、上記表示部に含まれる複数のエリアそれぞれの照度指標値を求め、1つのエリアの照度指標値を着目値とし、この1つのエリアに近接するN個(Nは2以上の整数)のエリアの照度指標値から得られるN個の比較値の総和をNで除した結果と上記着目値との差を上記1つのエリアの補正値として、各エリアについて補正値を算出することで上記入力位置を認識する。
 上記のように、1つのエリアの照度指標値を、この1つのエリアと近接する(例えば、この1つのエリアを取り囲む)N個のエリアの照度指標値から得られるN個の比較値を用いて補正することで、環境光ノイズの影響を抑制しながら位置認識を行うことができる。これにより、環境光の影響を受けにくい入力表示装置を実現することができる。
 本発明によれば、環境光の影響を受けにくい入力表示装置を実現することができる。
本入力表示装置の構成を示すブロック図である。 画素と光センサの配置を示す模式図である。 光センサの構成を示す回路図である。 データ取得部の処理手順を示すフローチャートである。 CTおよびVrw幅の決定方法を示すグラフである。 データ解析部の処理手順を示すフローチャートである。 補正値(階調)の算出方法を示す模式図である。 図7における補間値の算出方法を示す模式図である。 補正値(ルクス)の算出方法を示す模式図である。 図9における補間値の算出方法を示す模式図である。 電子黒板への入力例(スポットA)を示す模式図である。 スポットA付近の画素と光センサの配置を示す模式図である。 スポットA付近の照度を示す模式図である。 スポットA付近の補正値(ルクス)を示す模式図である。 スポットA付近の補正値(ルクス)および補間値を示す模式図である。 スポットA付近の2値化を示す模式図である。 スポットAの位置(座標)認識を示す模式図である。 電子黒板への入力例(スポットB)を示す模式図である。 スポットB付近の画素と光センサの配置を示す模式図である。 スポットB付近の照度を示す模式図である。 スポットB付近の補正値(ルクス)を示す模式図である。 スポットB付近の補正値(ルクス)および補間値を示す模式図である。 スポットB付近の2値化を示す模式図である。 スポットBの位置(座標)認識を示す模式図である。 電子黒板への入力例(スポットC)を示す模式図である。 スポットC付近の画素と光センサの配置を示す模式図である。 スポットC付近の照度を示す模式図である。 スポットC付近の補正値(ルクス)を示す模式図である。 スポットC付近の補正値(ルクス)および補間値を示す模式図である。 スポットC付近の2値化を示す模式図である。 スポットCの位置(座標)認識を示す模式図である。 データ解析部の別の処理手順を示すフローチャートである。 データ解析部のさらに別の処理手順を示すフローチャートである。 4つのセンシングエリアの照度指標値(階調)を示す模式図である。 4つのセンシングエリアで囲まれる各非センシングエリアの係数付けを示す模式図である。 図35の各非センシングエリアの照度指標値(階調)と、2つの非センシングエリアの補正値(階調)を示す模式図である。 閾値(環境照度の最大値)の設定例を示すグラフである。 エリアおよび光センサの配置の別形態(4画素1エリア、1エリア1光センサ)を示す模式図である。 エリアおよび光センサの配置のさらなる別形態(1画素1エリア、1エリア1光センサ)を示す模式図である。
 本発明の実施の形態を、図1~39を用いて説明すれば、以下のとおりである。図1に示すように、本入力表示装置1は、バックライト3、液晶タッチパネル4、プロセッサ5、液晶ドライバ6、センサドライバ9、ADC(アナログデジタル変換回路)10、メモリ18、および温度計測部11を備える。液晶タッチパネル4は、画素P(図示せず)を含む表示部と光センサSとを備え、光ペン20(入力装置)による入力を受け付ける。プロセッサ5は、機能ブロックとして、データ取得部12、データ解析部13、および表示制御部14を含む。
 液晶タッチパネル4では、図2に示すように、表示部に複数の画素Pがマトリクス状に配置され、さらに、奇数番目(x番目)の画素列および奇数番目(y番目)の画素行に属する画素P(x,y)がエリアAR(x,y)に対応し、エリアAR(x,y)に光センサS(x,y)が設けられている。以下では、光センサS(x,y)から得られるAR(x,y)の照度指標値を、ルクス(L(x,y))あるいは階調(D(x,y))で記載するものとする。
 入力表示装置1では、光ペン20によって液晶タッチパネル4に入力がなされると、プロセッサ5の制御を受けてセンサドライバ9がタッチパネル4の光センサSを駆動し、光センサSの出力(電位)がADC10を介してメモリ18に格納される。なお、温度測定部11の出力もADC10を介してメモリ18に格納される。プロセッサ5は、メモリ18から読み出した光センサSの出力(エリアごとの照度指標値)に基づいて入力位置を認識する。そして、プロセッサ5の制御を受けて液晶ドライバ6が表示部を駆動することで、液晶タッチパネル4に表示が行われる。
 光センサSの一具体例を図3に示す。同図に示されるように、光センサSは、ノードm1~m5、トランジスタTR、容量C、およびフォトダイオードPDを含む。トランジスタTRは、一方の導通電極がノードm1に接続され、他方の導通電極がノードm2に接続され、制御電極がノードm3に接続され、ノードm3とノードm4との間に容量Cは配され、ノードm3とノードm5との間にフォトダイオードPDが配され、ノードm2には電源電位Vsが与えられている。センサドライバ9は、ノードm5にリセット電位Vrsを入力してノードm3をリセットし、時間CT経過後にノードm4に読み出し信号Vrwを入力する。これにより、時間CTの間にノードm3の電位がフォトダイオードPDの受けた照度に応じて変化し(例えば、照度が大きい程ノードm3の電位は低くなる)、読み出し信号Vrwの入力期間(Vrwの幅に対応する時間)にノードm1の電位Vout(光センサPSの出力)がADC10に送られる。なお、時間CTおよび読み出し信号Vrwの幅は、プロセッサ5によって決定される(後述)。
 以下、プロセッサ5の各機能ブロック(データ取得部、データ解析部、および表示制御部)の処理内容を説明する。
 データ取得部は、図4に示すように、ステップS1で、図3で説明した時間CTおよび読み出し信号Vrwの幅を決定し、ステップS2でセンサドライバ9を制御する。そして、ステップS3で、光センサSの出力(電位)をADC10で変換して得られたデータ(エリアごとの照度指標値)および温度データをメモリ18から読み出す。S1では、時間CTおよび読み出し信号Vrwの幅を初期設定値として得られる光センサPSの出力データおよび温度データに基づいて、上記初期設定値を必要に応じて変更する。具体的には、図5に示すように、例えばADC10が、入力0~5V、出力0~1023階調(10ビット)であるときに、光センサSの出力の最大値(環境照度の最小値に対応する電位)が4V(819階調)、光センサSの出力の最小値(環境照度の最大値+光ペンの照度に対応する電位)が0.65V(133階調)となるように、時間CTおよび読み出し信号Vrwの幅を設定する。
 データ解析部は、図6に示すように、ステップS11で環境光ノイズの除去を行う。すなわち、照度指標値を階調とし、エリアAR(x,y)の照度指標値(D(x,y))と、エリアAR(x,y)を取り囲む8つのエリアの照度指標値から得られる8つの比較値(D’(x-2,y-2)、D’(x-2,y)、D’(x-2,y+2)、D’(x,y-2)、D’(x,y+2)、D’(x+2,y-2)、D’(x+2,y)、D’(x+2,y+2))とを用いて、エリアAR(x,y)の補正値FD(x,y)を算出する。
 具体的には、エリアAR(x,y)を取り囲む8つのエリアのうち、照度指標値が閾値を超えないエリアについては、その照度指標値を比較値とし、照度指標値が閾値を超えるエリアについては、その照度指標値に関わらず上記閾値を比較値とした上で、図7に示すように、補正値FD(x,y)={D’(x-2,y-2)+D’(x-2,y)+D’(x-2,y+2)+D’(x,y-2)+D’(x,y+2)+D’(x+2,y-2)+D’(x+2,y)+D’(x+2,y+2)}/8-D(x,y)と規定し、すべてのエリアについて補正値を算出する。
 上記閾値は、環境照度の最大値に対応する階調であり、各エリアの照度指標値の度数分布から求められる。例えば図37に示すように、全エリアの照度指標値(階調)の度数分布において下から0.1~10パーセント(例えば、1パーセント=202階調)に設定する。なお、入力表示装置1の商品仕様値等に応じて設定してもよい。この場合、閾値を超えるとは、閾値(階調)よりも小さいことであり、閾値を超えないとは、閾値(階調)以上のことをいう。
 次いで、ステップS12で補間を行う。具体的には、図8に示すように、正方形の四角に相当する位置に配された4つのエリアそれぞれの補正値から、この正方形内の5つの間隙(破線で囲まれた部分)に対応する補間値を算出する。例えば、エリアAR(x,y)およびエリアAR(x,y+2)の間隙に対応する補間値={0×FD(x-2,y)+2×FD(x,y)+0×FD(x-2,y+2)+2×FD(x,y+2)}/4と規定する。
 次いで、ステップS13で二値化を行う。ここでは、補正値が判定値よりも大きいエリアと補間値が上記判定値よりも大きい間隙とを1とし、補正値が判定値以下のエリアと補間値が上記判定値以下の間隙とを0とする。上記判定値は、例えば、光ペンの照度の5~35%(例えば、25%)に対応する階調とする。
 次いで、ステップS14で位置認識を行う。具体的には、補正値が判定値を超えたエリア(フラグ1)の位置および補間値が上記判定値を超えた間隙(フラグ1)の位置について、x座標の最小値および最大値の中間値Mx、並びにy座標の最小値および最大値の中間値Myを求め、位置(Mx,My)を入力位置の中心と決定する。
 表示制御部は、S14で求められた入力の中心位置に基づいて表示データを作成し、液晶ドライバ6に出力する。
 図9~図10は、照度指標値をルクスとして、ステップS11およびS12の処理を説明したものである。
 この場合、エリアAR(x,y)の照度指標値(L(x,y))と、エリアAR(x,y)を取り囲む8つのエリアの照度指標値から得られる8つの比較値(L’(x-2,y-2)、L’(x-2,y)、L’(x-2,y+2)、L’(x,y-2)、L’(x,y+2)、L’(x+2,y-2)、L’(x+2,y)、L’(x+2,y+2))とを用いて、エリアAR(x,y)の補正値FL(x,y)を算出する。
 具体的には、エリアAR(x,y)を取り囲む8つのエリアのうち、照度指標値が閾値を超えないエリアについては、その照度指標値を比較値とし、照度指標値が閾値を超えるエリアについては、その照度指標値に関わらず上記閾値を比較値とした上で、図9に示すように、補正照度値FL(x,y)=L(x,y)-{L’(x-2,y-2)+L’(x-2,y)+L’(x-2,y+2)+L’(x,y-2)+L’(x,y+2)+L’(x+2,y-2)+L’(x+2,y)+L’(x+2,y+2)}/8と規定し、すべてのエリアについて補正値を算出する。
 上記閾値は環境照度の最大値であり、各エリアの照度指標値(ルクス)から求められる。例えば、全エリアの照度指標値(ルクス)の度数分布において下から0.1~10パーセント(例えば、1パーセント=202階調)に設定される。あるいは、入力表示装置1の商品仕様値等に応じて、設定してもよい。この場合、閾値を超えるとは、閾値(ルクス)よりも大きいことであり、閾値を超えないとは、閾値(ルクス)以下のことをいう。
 さらに、図10に示すように、正方形の四角に相当する位置に配された4つのエリアそれぞれの補正値から、この正方形内の5つの間隙(破線で囲まれた部分)に対応する補間値を算出する。例えば、エリアAR(x,y)およびエリアAR(x,y+2)の間隙に対応する補間値={0×FL(x-2,y)+2×FL(x,y)+0×FL(x-2,y+2)+2×FL(x,y+2)}/4と規定する。
 なお、二値化処理では、補正値が判定値を超えたエリアと補間値が上記判定値を超えた間隙とを1とし、補正値が判定値を超えないエリアと補間値が上記判定値を超えない間隙とを0とする。上記判定値は、例えば、光ペンの照度の10~35%(好ましくは25%)に対応する照度指標値とする。
 図11は、入力表示装置1を備えた電子黒板101の模式図である。同図は、環境光の照度(環境照度)が位置によって異なり(図中左から右にかけて環境光の照度が高まり)、環境照度が小の位置に光ペンの入力(スポットA)があった場合を示している。
 図12は、スポットA付近の拡大図であり、4つのエリア(AR(m-1,i-1),AR(m-1,i+1),AR(m+1,i-1),AR(m+1,i+1))に光ペンからの光が照射されていることを示している。
 図13は、スポットA付近の照度指標値を示しており、4つのエリア(AR(m-1,i-1),AR(m-1,i+1),AR(m+1,i-1),AR(m+1,i+1))には、環境光(2.4~2.6万ルクス)に加えて光ペンからの光(1.7×10ルクス)が照射される結果、これらの照度指標値が、環境光のみが照射される周囲の光センサ(2.0×10~3.0×10)よりも高い、4.1×10~4.3×10ルクスなっていることがわかる。
 図14は、スポットA付近の各エリアの補正値を示しており、4つのエリア(AR(m-1,i-1),AR(m-1,i+1),AR(m+1,i-1),AR(m+1,i+1))の補正値(約1.0×10ルクス)は、判定値である光ペンの照度の25パーセント(約0.4×10ルクス)よりも高くなる一方、周囲のエリアの補正値(-0.4×10~0×10ルクス)は、上記判定値(0.4×10ルクス)よりも低くなっており、環境光ノイズが除去されていることがわかる。なお、上記4つのエリアの照度指標値はいずれも閾値(5.0×10ルクス)よりも小さいため、これら4つのエリアについては、比較値=照度指標値となる。
 図15は、スポットA付近の各エリアの補正値およびエリア間の補間値を示しており、画素位置ごとに、補正値または補間値が算出されていることがわかる。
 図16は、スポットA付近の二値化を説明するものであり、図15において判定値(0.4×10ルクス)よりも低い画素位置には「0(図中斜線)」が付され、判定値(0.4×10ルクス)よりも高い画素位置には「1(黒塗り)」が付されていることがわかる。
 図17は、スポットA付近の位置認識を説明するものであり、各画素行をスキャンすることで、図16の「1(黒塗り)」部分について、x座標の最小値および最大値の中間値m、並びにy座標の最小値および最大値の中間値iが求められ、光ペンよりも強く、位置依存性のある環境光の下でもスポットAの中心に当たる画素位置(m,i)を認識できていることがわかる。
 図18は、電子黒板101において、環境照度が中の位置に光ペンの入力(スポットB)があった場合を示している。図19は、スポットB付近の拡大図であり、4つのエリア(AR(n-1,i-1),AR(n-1,i+1),AR(n+1,i-1),AR(n+1,i+1))に光ペンからの光が照射されていることを示している。
 図20は、スポットB付近の照度指標値を示しており、4つのエリア(AR(n-1,i-1),AR(n-1,i+1),AR(n+1,i-1),AR(n+1,i+1))には、環境光(3.4~3.6万ルクス)に加えて光ペンからの光(1.7×10ルクス)が照射される結果、これらの照度指標値が、環境光のみが照射される周囲の光センサ(3.0×10~4.0×10)よりも高い、5.0×10~5.2×10ルクスなっていることがわかる。
 図21は、スポットB付近の各エリアの補正値を示しており、4つのエリア(AR(n-1,i-1),AR(n-1,i+1),AR(n+1,i-1),AR(n+1,i+1))の補正値(約1.0×10~1.1×10ルクス)は、判定値である光ペンの照度の25パーセント(約0.4×10ルクス)よりも高くなる一方、周囲のエリアの補正値(-0.4×10~0.3×10ルクス)は、上記判定値(0.4×10ルクス)よりも低くなっており、環境光ノイズが除去されていることがわかる。なお、上記4つのエリアのうち、AR(n-1,i-1)とAR(n-1,i+1)については、照度指標値が閾値(5.0×10ルクス)と同じため(図20参照)、比較値=照度指標値となる。一方、上記4つのエリアのうち、AR(n+1,i-1)とAR(n+1,i+1)については、照度指標値(図20)が閾値(5.0×10ルクス)よりも大きいため(図20参照)、比較値=閾値となる。
 図22は、スポットB付近の各エリアの補正値およびエリア間の補間値を示しており、画素位置ごとに、補正値または補間値が算出されていることがわかる。
 図23は、スポットB付近の二値化を説明するものであり、図22において判定値(0.4×10ルクス)よりも低い画素位置には「0(図中斜線)」が付され、判定値(0.4×10ルクス)よりも高い画素位置には「1(黒塗り)」が付されていることがわかる。
 図24は、スポットB付近の位置認識を説明するものであり、各画素行をスキャンすることで、図23の「1(黒塗り)」部分について、x座標の最小値および最大値の中間値m、並びにy座標の最小値および最大値の中間値iが求められ、光ペンよりも強く、位置依存性のある環境光の下でもスポットBの中心に当たる画素位置(n,i)を認識できていることがわかる。
 図25は、電子黒板101において、環境照度が大の位置に光ペンの入力(スポットC)があった場合を示している。図26は、スポットC付近の拡大図であり、4つのエリア(AR(N-1,i-1),AR(N-1,i+1),AR(N+1,i-1),AR(N+1,i+1))に光ペンからの光が照射されていることを示している。
 図27は、スポットC付近の照度指標値を示しており、4つのエリア(AR(N-1,i-1),AR(N-1,i+1),AR(N+1,i-1),AR(N+1,i+1))には、環境光(4.4~4.6万ルクス)に加えて光ペンからの光(1.7×10ルクス)が照射される結果、これらの照度指標値が、環境光のみが照射される周囲の光センサ(4.0×10~5.0×10)よりも高い、5.9×10~6.1×10ルクスなっていることがわかる。
 図28は、スポットC付近の各エリアの補正値を示しており、4つのエリア(AR(N-1,i-1),AR(N-1,i+1),AR(N+1,i-1),AR(N+1,i+1))の補正値(約1.3×10~1.3×10ルクス)は、判定値である光ペンの照度の25パーセント(約0.4×10ルクス)よりも高くなる一方、周囲のエリアの補正値(-0.1×10~0)は、上記判定値(0.4×10ルクス)よりも低くなっており、環境光ノイズが除去されていることがわかる。なお、上記4つのエリアについては、照度指標値が閾値(5.0×10ルクス)よりも大きいため(図27参照)、比較値=閾値となる。
 図29は、スポットB付近の各エリアの補正値およびエリア間の補間値を示しており、画素位置ごとに、補正値または補間値が算出されていることがわかる。
 図30は、スポットC付近の二値化を説明するものであり、図29において判定値(0.4×10ルクス)よりも低い画素位置には「0(図中斜線)」が付され、判定値(0.4×10ルクス)よりも高い画素位置には「1(黒塗り)」が付されていることがわかる。
 図31は、スポットC付近の位置認識を説明するものであり、各画素行をスキャンすることで、図30の「1(黒塗り)」部分について、x座標の最小値および最大値の中間値N、並びにy座標の最小値および最大値の中間値iが求められ、光ペンよりもかなり強く、位置依存性のある環境光の下でもスポットCの中心に当たる画素位置(N,i)を認識できていることがわかる。
 図6ではS12で補間を行っているがこれは必須ではない。例えば、図32に示すように、S111で環境光のノイズ除去を行い、S111に次ぐS112で2値化を行い、S112に次ぐS113で位置認識を行うことも可能である。
 また、図6では、表示部全体に補間を行っているがこれに限定されない。図33に示すように、S211で環境光のノイズ除去を行い、S212で2値化を行い、S213で、仮位置認識(ラフな位置認識)を行い、S214で、S213で求めた仮の認識位置付近のみの局所補間を行い、S215で、S213で求めた仮の認識位置付近のみの局所2値化を行い、S216で、最終的な本位置認識を行ってもよい。
 ここまでは表示部の4つのエリアに対して1つの光センサを設けている場合を説明してきたがこれに限定されない。表示部に、光センサが設けられているエリア(センシングエリア)と光センサが設けられていないエリア(非センシングエリア)の比をさらに大きくとることもできる。
 図34は、正方形の四角に相当する位置に4つのセンシングエリア(照度指標値は、Dα=200、Dβ=100、Dγ=400、Dδ=500)が配され、この正方形内に77個の非センシングエリアは配されている構成を示している。この場合、図35のように、非センシングエリアに、4つのセンシングエリアとの距離に応じて4つの係数(Kα,Kβ,Kγ,Kδ)付けを行い、この非センシングエリアの照度指標値を、(Dα×Kα+Dβ×Kβ+Dγ×Kγ+Dδ×kδ)/16とする(図36参照)。そして、図32の処理手順に従って、各エリア(センシングエリアおよび非センシングエリア)の補正値を求める(図36参照)。ここでは、閾値を202階調としているため、例えば、照度指標値が188階調である非センシングエリアAR(P-1,Q)の比較値や照度指標値が200階調であるセンシングエリアAR(P-1,Q-1)の比較値は、202階調となる。
 図34~図36のように構成すれば、各エリアを画素よりも小さくする(エリア分解能を表示解像度よりも大きくする)ことができ、電子黒板等のおいて小さな字を鮮明に書くことができる。
 なお、図2では1画素を1エリアに対応させているがこれに限定されない。図38に示すように複数の画素を1エリアに対応させることもできる。
 また、図2や図34では複数のエリアに対して1つの光センサが設けられている(非センシングエリアとセンシングエリアとが設けられている)がこの構成に限定されない。例えば図38や図39に示すように、1つのエリアに対して1つの光センサが設けられている(非センシングエリアを設けない)構成でもよい。
 また、図1の入力表示装置1では発光型の入力装置(光ペン20)を用いているがこれに限定されない。本入力表示装置では、パネル裏面から照射された光を反射する反射型の入力装置を用いることも可能である。
 本入力表示装置では、補正値が判定値を超えたエリアの位置に基づいて上記入力位置を認識する構成とすることもできる。
 本入力表示装置では、上記1つのエリアを上記N個のエリアが取り囲んでいる構成とすることもできる。
本入力表示装置では、上記N個のエリアのうち、照度指標値が閾値を超えないエリアについては、その照度指標値を比較値とする構成とすることもできる。
 本入力表示装置では、上記N個のエリアのうち、照度指標値が閾値を超えるエリアについては、その照度指標値に関わらず上記閾値を比較値とする構成とすることもできる。
 本入力表示装置では、上記閾値は、環境光の最大照度に対応する値である構成とすることもできる。
 本入力表示装置では、エリアごとに光センサが設けられ、四角形の四角に相当する位置に配された4つのエリアそれぞれの補正値から、この四角形内の複数の位置に対応する補間値を算出し、補正値が判定値を超えたエリアの位置と補間値が該判定値を超えた位置とに基づいて上記入力位置を認識する構成とすることもできる。
 本入力表示装置では、上記判定値は、入力装置の出射光あるいは反射光の5~35%(例えば、25パーセント)に対応する照度指標値である構成とすることもできる。
 本入力表示装置では、環境温度に応じて各光センサの駆動条件を変更する構成とすることもできる。
 本入力表示装置では、上記複数のエリアには、光センサが設けられたセンシングエリアと、光センサが設けられていない非センシングエリアとが含まれ、四角形の四角に相当する位置に配された4つのセンシングエリアそれぞれの照度指標値から、この四角形内の非センシングエリアの照度指標値を求める構成とすることもできる。
 本電子黒板は、上記入力表示装置を備える。
 本入力位置認識方法は、複数の光センサを備えた入力表示装置に対する発光装置あるいは反射装置の入力位置を認識するための入力位置認識方法であって、各光センサの検出結果から、上記表示部に含まれる複数のエリアそれぞれの照度指標値を求め、1つのエリアの照度指標値を着目値とし、この1つのエリアと近接するN個(Nは2以上の整数)のエリアの照度指標値から得られるN個の比較値の総和をNで除した結果と上記着目値との差を上記エリアの補正値として、各エリアについて補正値を算出することで上記入力位置を認識する。
 本発明は上記の実施の形態に限定されるものではなく、上記実施の形態を技術常識に基づいて適宜変更したものやそれらを組み合わせて得られるものも本発明の実施の形態に含まれる。
 本発明は、大型のタッチパネルを備えた入力表示装置(例えば、電子黒板)に好適である。
 1 入力表示装置
 20 光ペン(入力装置)
 S 光センサ
 P 画素
 L(x,y) 照度指標値(ルクス)
 FL(x,y) 補正値(ルクス)
 D(x,y) 照度指標値(階調)
 FD(x,y) 補正値(階調)

Claims (12)

  1.  複数の光センサを備え、発光装置あるいは反射装置の表示部への入力位置を認識する入力表示装置であって、
     各光センサの検出結果から、上記表示部に含まれる複数のエリアそれぞれの照度指標値を求め、1つのエリアの照度指標値を着目値とし、この1つのエリアと近接するN個(Nは2以上の整数)のエリアの照度指標値から得られるN個の比較値の総和をNで除した結果と上記着目値との差を上記エリアの補正値として、各エリアについて補正値を算出することで上記入力位置を認識する入力表示装置。
  2.  補正値が判定値を超えたエリアの位置に基づいて上記入力位置を認識する請求項1記載の入力表示装置。
  3.  上記1つのエリアを上記N個のエリアが取り囲んでいる請求項1記載の入力表示装置。
  4.  上記N個のエリアのうち、照度指標値が閾値を超えないエリアについては、その照度指標値を比較値とする請求項1記載の入力表示装置。
  5.  上記N個のエリアのうち、照度指標値が閾値を超えるエリアについては、その照度指標値に関わらず上記閾値を比較値とする請求項1記載の入力表示装置。
  6.  上記閾値は、環境光の最大照度に対応する値である請求項4または5記載の入力表示装置。
  7.  エリアごとに光センサが設けられ、
     四角形の四角に相当する位置に配された4つのエリアそれぞれの補正値から、この四角形内の複数の位置に対応する補間値を算出し、
     補正値が判定値を超えたエリアの位置と補間値が該判定値を超えた位置とに基づいて上記入力位置を認識する請求項1記載の入力表示装置。
  8.  上記判定値は、入力装置の出射光あるいは反射光の5~35%に対応する照度指標値である請求項2記載の入力表示装置。
  9.  環境温度に応じて各光センサの駆動条件を変更する請求項1記載の入力表示装置。
  10.  上記複数のエリアには、光センサが設けられたセンシングエリアと、光センサが設けられていない非センシングエリアとが含まれ、
     四角形の四角に相当する位置に配された4つのセンシングエリアそれぞれの照度指標値から、この四角形内の非センシングエリアの照度指標値を求める請求項1記載の入力表示装置。
  11.  請求項1~10のいずれか1項に記載の入力表示装置を備えた電子黒板。
  12.  複数の光センサを備えた入力表示装置に対する発光装置あるいは反射装置の入力位置を認識するための入力位置認識方法であって、
     各光センサの検出結果から、上記表示部に含まれる複数のエリアそれぞれの照度指標値を求め、1つのエリアの照度指標値を着目値とし、この1つのエリアと近接するN個(Nは2以上の整数)のエリアの照度指標値から得られるN個の比較値の総和をNで除した結果と上記着目値との差を上記エリアの補正値として、各エリアについて補正値を算出することで上記入力位置を認識する入力位置認識方法。
PCT/JP2011/068469 2010-08-19 2011-08-12 入力表示装置、入力位置認識方法 WO2012023521A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-184263 2010-08-19
JP2010184263 2010-08-19

Publications (1)

Publication Number Publication Date
WO2012023521A1 true WO2012023521A1 (ja) 2012-02-23

Family

ID=45605175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068469 WO2012023521A1 (ja) 2010-08-19 2011-08-12 入力表示装置、入力位置認識方法

Country Status (1)

Country Link
WO (1) WO2012023521A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843830A (zh) * 2012-08-21 2012-12-26 常熟卓辉光电科技有限公司 一种基于物联网技术的无线智能照明控制装置
JP2015103118A (ja) * 2013-11-27 2015-06-04 アルプス電気株式会社 入力装置及びその情報入力方法
JP2015153278A (ja) * 2014-02-18 2015-08-24 日本電産リード株式会社 タッチパネルのタッチ位置検出方法、タッチパネル検査方法、及びタッチパネル検査装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193329A (ja) * 2008-02-14 2009-08-27 Sony Corp 表示装置および撮像装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193329A (ja) * 2008-02-14 2009-08-27 Sony Corp 表示装置および撮像装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843830A (zh) * 2012-08-21 2012-12-26 常熟卓辉光电科技有限公司 一种基于物联网技术的无线智能照明控制装置
JP2015103118A (ja) * 2013-11-27 2015-06-04 アルプス電気株式会社 入力装置及びその情報入力方法
JP2015153278A (ja) * 2014-02-18 2015-08-24 日本電産リード株式会社 タッチパネルのタッチ位置検出方法、タッチパネル検査方法、及びタッチパネル検査装置

Similar Documents

Publication Publication Date Title
CN107180853B (zh) 一种oled显示面板及其控制方法、显示装置
JP4510738B2 (ja) 表示装置
TWI417769B (zh) 用於檢測觸碰點的方法與設備
KR101352319B1 (ko) 터치위치 검출 방법 및 장치와 이를 이용한 평판표시장치
JP5014439B2 (ja) 光センサ付き表示装置
US7800594B2 (en) Display device including function to input information from screen by light
JP5203070B2 (ja) 画像入出力装置およびその受光レベル補正方法、ならびに画像入力方法
US20120086672A1 (en) Method of locating touch position
KR101318756B1 (ko) 터치정보 처리방법 및 장치와 이를 이용한 평판표시장치
KR20150039205A (ko) 이미지 소자 휘도 조정
US20200050322A1 (en) Floating touch control panel, touch control method of the same, and display device
US20100271335A1 (en) Display device having optical sensors
KR20090101356A (ko) 결함 검출 장치 및 결함 검출 방법
US10885304B2 (en) Electronic apparatus and under-screen fingerprint sensing method thereof
JP2010055213A5 (ja)
WO2012023521A1 (ja) 入力表示装置、入力位置認識方法
TWI752592B (zh) 物件辨識方法、物件辨識電路與取樣電路
JP2005339444A5 (ja)
US9269148B2 (en) Displacement detection device
US20100177062A1 (en) Light compensation method
TW201140400A (en) Scanning method for determining the touch position of touch input apparatus
JP4469680B2 (ja) 光入力機能付き表示装置
US9389731B2 (en) Optical touch system having an image sensing module for generating a two-dimensional image and converting to a one-dimensional feature
CN111476164B (zh) 生物特征图像的采集装置及采集方法、智能设备
KR20220087586A (ko) 입력 감지 장치 및 입력 감지 장치의 보정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP