WO2012023471A1 - Pressure dispersion material and process for producing same - Google Patents

Pressure dispersion material and process for producing same Download PDF

Info

Publication number
WO2012023471A1
WO2012023471A1 PCT/JP2011/068254 JP2011068254W WO2012023471A1 WO 2012023471 A1 WO2012023471 A1 WO 2012023471A1 JP 2011068254 W JP2011068254 W JP 2011068254W WO 2012023471 A1 WO2012023471 A1 WO 2012023471A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion material
pressure dispersion
water
gel
porous gel
Prior art date
Application number
PCT/JP2011/068254
Other languages
French (fr)
Japanese (ja)
Inventor
原口 和敏
厚 縄田
正博 金木
Original Assignee
一般財団法人川村理化学研究所
アルケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人川村理化学研究所, アルケア株式会社 filed Critical 一般財団法人川村理化学研究所
Publication of WO2012023471A1 publication Critical patent/WO2012023471A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/05Parts, details or accessories of beds
    • A61G7/057Arrangements for preventing bed-sores or for supporting patients with burns, e.g. mattresses specially adapted therefor
    • A61G7/05738Arrangements for preventing bed-sores or for supporting patients with burns, e.g. mattresses specially adapted therefor with fluid-like particles, e.g. sand, mud, seeds, gel, beads

Definitions

  • the present invention relates to a pressure dispersion material and a manufacturing method thereof. More specifically, the present invention relates to a pressure dispersion material used for pressure-absorbing pads and the like for pressure ulcer prevention tools and various appliances in medical and daily life fields such as orthopedics, surgery, rehabilitation, nursing, nursing care, and sports.
  • pressure bedding has been used in bedding, chairs (including wheelchairs), vehicle seats, cushions, etc., to disperse body pressure, enhance comfort and prevent pressure ulcers.
  • pressure dispersion materials are used for muscle and joint supporters, lower wrapping materials for prosthetic limbs and external fixation materials (coil bandages, under sleeves, etc.), insoles for shoes and footwear, and for patients with foot disease such as diabetes.
  • As a pressure-removing pad it is also applied to buffer friction, impact, pressure and the like.
  • Patent Document 1 states that “a body pressure dispersion material characterized in that a substance having a small pressure deformation is mixed in a gel substance, and the substance is dissolved or contracted later to form a cavity therein. Is disclosed (see claim 1 of the document). This body pressure dispersion material has good body pressure dispersibility, and is lightweight and easy to handle.
  • Patent Document 2 discloses a cushion material comprising active hydrogen component polyether polyol, organic polyisocyanate, and foaming agent as essential components, and having a predetermined density and displacement force (the document). (See claim 2).
  • This cushion material is excellent in body pressure dispersibility and has good characteristics against shearing force.
  • organic / inorganic composite polymer hydrogels (hereinafter simply referred to as “poly (N-isopropylacrylamide)” and “poly (N, N-dimethylacrylamide)”), which are composed of an organic polymer and an inorganic swellable clay.
  • poly (N-isopropylacrylamide) and “poly (N, N-dimethylacrylamide)”
  • Organic / inorganic composite polymer gel has been developed (see Patent Document 3).
  • Patent Document 4 discloses a foam of an organic / inorganic composite polymer gel that has both light weight and high stretchability and flexibility.
  • Patent Document 5 describes a gel containing a low-volatile medium as an organic / inorganic composite polymer gel capable of maintaining stable performance even in an open air system.
  • JP 2002-60533 A JP 2006-051067 A JP 2002-53629 A Japanese Patent No. 4245406 JP 2006-28446 A
  • Patent Documents 4 and 5 describe that organic / inorganic composite polymer gels or foams thereof can be used in fields such as medical and hygiene products and household products.
  • these organic / inorganic composite polymer gels as the pressure dispersion material.
  • the main object of the present invention is to provide a pressure dispersion material comprising an organic / inorganic composite polymer gel imparted with suitable load dispersibility.
  • Another object of the present invention is to provide a pressure dispersion material comprising an organic / inorganic composite polymer gel with little discomfort even when it is in contact with a human body for a long time and used for a long time.
  • the present inventors have intensively studied paying attention to the situation in which the material and the living body are in contact with each other for a long time, and as a result, the organic / inorganic composite polymer gel having new characteristics has It came to complete the porous gel used for a dispersing material.
  • the present invention includes a porous gel containing a low-volatile medium (C) in a three-dimensional network formed from a polymer (A) of a water-soluble organic monomer and a clay mineral (B).
  • a pressure dispersion material is provided.
  • the low volatile medium (C) is a low volatile medium of 0.1 g / cm 2 ⁇ hr ⁇ 60 ° C ⁇ 1 atm or less, or a low volatility of which vapor pressure at 20 ° C is 1000 Pa or less and boiling point at 1 atm is 130 ° C or more. It is a sex medium.
  • the porous gel has an expansion ratio of 1.2 to 20 and a bulk density of less than 1 g / cm 3 .
  • each component in the porous gel with respect to the total mass (A + B + C) of the polymer (A) of the water-soluble organic monomer, the clay mineral (B), and the low-volatile medium (C).
  • the water-soluble organic monomer polymer (A) is 0.003 to 0.35
  • the clay mineral (B) is 0.002 to 0.15
  • the low-volatile medium (C) is 0. It is preferable to be set to 0.5 to 0.995.
  • the porous gel exhibits the following suitable moisture permeability / water absorption characteristics and mechanical characteristics. That is, the moisture permeability of the porous gel is higher in the environment of 40 ° C. than the environment of 26 ° C. in the same relative humidity environment, and the relative humidity is 80% in the same temperature environment. The value is higher in an environment with a relative humidity of 30% than in the above environment.
  • the compressive stress at 30% displacement of the porous gel is 15 kPa or less, and the stress when the porous gel is compressed to 70% displacement or more and then returned to 50% displacement is 10 kPa or less.
  • a polymer or copolymer of (meth) acrylamide and / or (meth) acrylamide derivatives is preferably used for the polymer (A) of the water-soluble organic monomer.
  • the low volatile medium (C) includes at least one selected from the group consisting of polyhydric alcohols, specifically glycerin, polyglycerin, polyethylene glycol, ethylene glycol and propylene glycol, and derivatives thereof.
  • a monohydric alcohol is preferably used.
  • the present invention polymerizes and foams a water-soluble organic monomer dispersed in a dispersion together with a clay mineral (B) and a low-volatile medium (C) of 0.1 g / cm 2 ⁇ hr ⁇ 60 ° C. ⁇ 1 atm or less.
  • C low-volatile medium
  • the present invention provides a pressure dispersion material comprising an organic / inorganic composite polymer gel imparted with suitable load dispersibility.
  • the present invention also provides a pressure dispersion material comprising an organic / inorganic composite polymer gel imparted with characteristics suitable for skin physiological functions such as perspiration.
  • Pressure dispersion material (1) Water-soluble organic monomer polymer (A)
  • the pressure dispersion material according to the present invention is a porous gel containing a low-volatile medium (C) in a three-dimensional network formed from a polymer (A) of a water-soluble organic monomer and a clay mineral (B). Comprising.
  • the water-soluble organic monomer polymer (A) is preferably a polymer or copolymer of (meth) acrylamide and / or (meth) acrylamide derivatives.
  • the polymer or copolymer of (meth) acrylamide and / or (meth) acrylamide derivatives is bonded to the clay mineral (B) dispersed in water by non-covalent bonds such as hydrogen bonds or ionic bonds, and a three-dimensional network is formed.
  • Examples of (meth) acrylamide or derivatives thereof include N-substituted acrylamide derivatives, N, N-disubstituted acrylamide derivatives, N-substituted methacrylamide derivatives, and N, N-disubstituted methacrylamide derivatives.
  • N-isopropylacrylamide, N, N-diethylacrylamide, etc. having polymer properties (hydrophilicity and hydrophobicity) in an aqueous solution having LCST (lower critical solution temperature) are preferable from the viewpoint of functionality.
  • the pores formed in the porous gel are crushed during pressurization to change the shape, and when the pressurization is released, the pores are re-expanded to restore the voids. .
  • the monomer polymer may form a network having an appropriate interaction with the clay mineral.
  • a copolymer obtained by combining a plurality of the above monomers is preferable.
  • Clay mineral (B) The clay mineral (B) is preferably one that swells in water or an aqueous solution, and more preferably one that can be exfoliated and dispersed finely and uniformly in a solution containing a water-soluble organic monomer.
  • the clay mineral (B) is preferably dispersed at a nanometer level (thickness) of preferably 10 layers or less, more preferably 3 layers or less, and particularly preferably 1 layer or 2 layers.
  • the dispersion of the clay mineral (B) is confirmed by observing an ultrathin section of the dried porous gel with a transmission electron microscope.
  • the diffraction angle (2 ⁇ ) is preferably 3 ° to 8 °, more preferably 2 ° to 8 °, and particularly preferably 1 ° to 8 °. This is confirmed by the fact that no clear diffraction peak based on clay mineral stacking is observed.
  • the clay mineral (B) is bonded to the water-soluble organic monomer polymer (A) by a non-covalent bond such as a hydrogen bond or an ionic bond to form a three-dimensional network. That is, the clay mineral (B) can form a three-dimensional network with the water-soluble organic monomer polymer (A) without using an organic crosslinking agent such as methylenebisacrylamide.
  • the clay mineral (B) for example, a swellable inorganic clay mineral that swells in water such as water-swellable smectite or water-swellable mica and can be finely dispersed in a layered state is used.
  • a swellable inorganic clay mineral that swells in water such as water-swellable smectite or water-swellable mica and can be finely dispersed in a layered state.
  • Specific examples include water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, and water-swellable synthetic mica.
  • the layer can be peeled in a solvent together with the water-soluble organic monomer, a clay mineral partially organicized with a surfactant or the like can be used.
  • the low-volatile medium (C) is uniformly contained in the three-dimensional network composed of the water-soluble organic monomer polymer (A) and the clay mineral (B), and has a lower volatility than water. It is done.
  • the low volatile medium (C) is 0.1 g or less, preferably 0.05 g or less, more preferably 0.01 g or less, even more preferably 0.1 g or less per 1 cm 2 / hour in an open system having a volatility of 60 ° C. and 1 atm. 0.001 g or less is used. Particularly preferred is one that hardly volatilizes at room temperature (10-30 ° C.). Further, the low volatile medium (C) has a vapor pressure at 20 ° C. lower than that of water, and preferably has a vapor pressure at 20 ° C. of 1000 Pa or less, more preferably 100 Pa or less, more preferably 50 Pa or less. Things are used.
  • the low volatile medium (C) has a boiling point higher than that of water at 1 atm, preferably has a boiling point at 1 atm of 130 ° C. or higher, more preferably 150 ° C. or higher, more preferably 170 ° C. or higher. Is used.
  • the low volatile medium (C) has a volatility of 0.1 g / cm 2 ⁇ hr ⁇ 60 ° C. ⁇ 1 atm or less, a vapor pressure at 20 ° C. of 1000 Pa or less, and a boiling point at 1 atm of 130 ° C. or more. Is the best.
  • Examples of the low volatile medium (C) include polyhydric alcohols, polyhydric alcohol derivatives, ionic liquids, oils, and the like. Of these, hydrophilic and / or hygroscopic materials are suitable for exhibiting the moisture permeability described later, polyhydric alcohols and polyhydric alcohol derivatives are preferred, and polyhydric alcohols are particularly preferred. These substances can be used alone or in combination of two or more.
  • polyhydric alcohol examples include glycerin, polyglycerin (diglycerin, triglycerin, tetraglycerin, etc.), ethylene glycol, propylene glycol, polyethylene glycol (PEG 600, etc.), diethylene glycol, triethylene glycol.
  • Table 1 The volatility, vapor pressure, and boiling point of these polyhydric alcohols are shown in “Table 1”.
  • glycerin glycerin, diglycerin, ethylene glycol, propylene glycol and polyethylene glycol are preferred, glycerin and diglycerin are more preferred, and glycerin is particularly preferred.
  • polyhydric alcohol derivatives examples include ester compounds and ether compounds of the polyhydric alcohols.
  • ester compounds examples include ester compounds and ether compounds of the polyhydric alcohols.
  • the ionic liquid is called an ionic liquid, a room temperature molten salt, or simply a molten salt, and is in a temperature range of 150 ° C. or lower, more preferably 100 ° C. or lower, particularly preferably 60 ° C. or lower. It is a salt that exhibits a liquid molten state.
  • the ionic liquid is roughly classified into a hydrophilic ionic liquid and a hydrophobic ionic liquid.
  • water and an ionic liquid are mixed at a mass ratio of 1: 1, sufficiently stirred, allowed to stand, and separated into an aqueous phase and an ionic liquid phase within 10 minutes is defined as a hydrophobic ionic liquid.
  • a substance having no phase separation observed after 10 minutes is defined as a hydrophilic ionic liquid. Whether the ionic liquid is hydrophilic or hydrophobic depends on the combination of cations and anions, slight differences in the structure of various cations, and the like.
  • hydrophilic ionic liquid examples include the following. As a cation, it has an ethyl methyl imidazole ion structure, and as an anion, chlorine ion, brom ion, thiocyanic acid, tetrafluoroboric acid, hexafluorophosphoric acid, trifluoromethanesulfonic acid, nitric acid, methylsulfonic acid ion structure, etc.
  • a cation it has an ethyldimethylimidazole ion structure, and as an anion, a chloride ion, a bromide ion, a thiocyanic acid, a tetrafluoroboric acid, a hexafluorophosphoric acid, a trifluoromethanesulfonic acid, a nitric acid, a methylsulfonic acid ion structure, etc.
  • hydrophobic ionic liquid examples include the following.
  • the cation has a hexylmethylimidazole, hexylpyridinium ion structure, etc.
  • the anion has a tetrafluoroboric acid, hexafluorophosphoric acid, trifluoromethanesulfonic acid, bis (trifluoromethylsulfonyl) imido ion structure, etc. Ionic liquid.
  • hydrophilic ionic liquid 1-butyl-3-methylimidazolium methyl sulfate, 1-butyl-3-methylimidazolium thiocyanate, 1-ethyl-3-methylimidazolium ethyl sulfate, tetrabutylammonium Hydroxide 30-hydrate or the like is preferably used. Further, 1-butyl-3-methylimidazolium hexafluorophosphate is preferably used as the hydrophobic ionic liquid.
  • oils such as mineral oil, vegetable oil, animal oil and synthetic oil can be used singly or in combination of two or more.
  • mineral oil examples include liquid paraffin, liquid isoparaffin, naphthene oil, petroleum jelly, polydecene, hydrogenated polyisobutene, and the like.
  • Examples of vegetable oils include olive oil, olive squalane, macadamia nut oil, jojoba oil, castor oil, palm oil, palm oil, safflower oil, sunflower oil, hardened palm oil, hardened palm oil, almond oil, peanut oil, cottonseed oil, avocado oil, apricot oil, grape seed oil, corn oil, soybean oil, rapeseed oil, sesame oil, apricot oil, shea butter oil, wheat germ oil, apricot oil, hazel oil, alfalfa oil, poppy oil, pumpkin oil, kidney bean oil, Examples include blackcurrant oil, evening primrose oil, millet oil, barley oil, quinoa oil, rye oil, kukui oil, passiflora oil and muskrose oil.
  • animal oils include lanolin, turtle oil, beeswax, squalene, pristane, perhydrosqualane and the like.
  • Synthetic oils include, for example, fatty acid triglycerides such as glycerin tri-2-ethylhexanoate; silicone oils such as polymethylphenylsiloxane, polydimethylsiloxane, phenylsilicone, aminosilicone; isopropyl myristate, octyldodecyl myristate, isononane Fatty acid esters such as isononyl acid, isopropyl palmitate, ethylhexyl palmitate, prusserine oil, isopropyl myristate, 2-ethylhexyl palmitate, 2-octyldodecyl stearate, 2-octyldodecyl erucate, isostearyl isostearate; Isostearyl lactate, octyl hydroxy stearate, octyl dodecyl hydroxy stearate
  • the polymer (A) of the water-soluble organic monomer is a total mass (hereinafter referred to as “total mass”) of the polymer (A) of the water-soluble organic monomer, the clay mineral (B), and the low-volatile medium (C).
  • total mass a total mass of the polymer (A) of the water-soluble organic monomer, the clay mineral (B), and the low-volatile medium (C).
  • (A + B + C) ”) is preferably blended so that the mass ratio is 0.003 to 0.35, and is preferably blended so as to be 0.05 to 0.30. Further preferred.
  • the clay mineral (B) is preferably blended so that the mass ratio with respect to the total mass (A + B + C) is 0.002 to 0.15, and is preferably blended so as to be 0.005 to 0.10. Is more preferable.
  • the low volatility medium (C) is preferably blended so that the mass ratio with respect to the total mass (A + B + C) is 0.5 to 0.995, and is preferably
  • the porous gel can be provided with suitable mechanical properties such as moisture permeability / water absorption characteristics and load dispersibility described below.
  • the porous gel used in the pressure dispersion material according to the present invention may contain the following substances. These additives are preferably preliminarily mixed with the water-soluble organic monomer at the time of production of the gel foam, and in some cases can be injected into the foam after foaming.
  • hydrophilic polymer compound a natural, semi-synthetic or synthetic hydrophilic polymer compound may be contained alone or in combination of two or more. By blending the hydrophilic polymer compound, volatilization of water can be suppressed when water is included in the gel. From the viewpoint of long-term use as a pressure dispersion material and durability, the hydrophilic polymer compound is preferably one that is difficult to disintegrate or dissolve even when contacted with water by controlling the number of crosslinks or hydrophilic functional groups. The thing of nature is further preferable.
  • the hydrophilic polymer compound is preferably added in an amount of 0.1 to 50% by mass, more preferably 1 to 20% by mass, in the gel foam.
  • natural hydrophilic polymer compounds include plant systems such as gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, agar, starch (eg, rice, corn, potato and wheat starch).
  • Polymers Microbial polymers such as xanthan gum, dextrin, dextran, succinoglucan and pullulan; animal polymers such as casein, albumin and gelatin.
  • semi-synthetic hydrophilic polymer compound examples include, for example, starch-based polymers such as carboxymethyl starch and methylhydroxypropyl starch; methylcellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate, hydroxypropylcellulose, carboxy Cellulose polymers such as methylcellulose and carboxymethylcellulose / sodium; and alginic acid polymers such as sodium alginate and propylene glycol alginate.
  • starch-based polymers such as carboxymethyl starch and methylhydroxypropyl starch
  • methylcellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate, hydroxypropylcellulose carboxy Cellulose polymers such as methylcellulose and carboxymethylcellulose / sodium
  • alginic acid polymers such as sodium alginate and propylene glycol alginate.
  • the synthetic hydrophilic polymer compound include, for example, vinyl polymers such as polyvinyl alcohol, polyvinyl methyl ether, polyvinyl pyrrolidone and carboxyvinyl polymer; acrylic polymers such as sodium polyacrylate and polyacrylamide; polyethyleneimine and the like Is mentioned.
  • (5-2) Filler etc.
  • Conventionally known inorganic fillers, liquid fillers, flame retardants, fibrous reinforcing materials, colorants and the like can be contained.
  • a volatile medium such as water used in the process of producing the gel foam of the present invention may be contained.
  • the gel foam contains 0.1 to 60% by mass. It is preferable to add 1 to 40% by mass.
  • the pressure dispersion material according to the present invention contains pores in the gel, thereby reducing the density while maintaining the stretchability and exhibiting high flexibility.
  • the size of the pores formed in the gel, the type and shape of the independent pores / continuous pores, etc. are not particularly limited.
  • the foaming ratio of the porous gel used in the pressure dispersion material according to the present invention is the foaming of the dispersion containing the water-soluble organic monomer polymer (A), the clay mineral (B), and the low-volatile medium (C). It is 1.2 to 20, preferably 1.5 to 10 with respect to the previous volume. If the expansion ratio was above range, the bulk density of the porous gel is less than 1 g / cm 3, preferably 0.05g / cm 3 ⁇ 0.9g / cm 3, more preferably 0.1 g / cm 3 ⁇ 0.7 g / cm 3 , particularly preferably 0.15 to 0.5 g / cm 3 .
  • the average pore diameter of the pores formed by foaming is preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, still more preferably 10 to 300 ⁇ m, and particularly preferably 20 to 200 ⁇ m.
  • the porous gel has the following suitable moisture permeability / moisture absorption characteristics and dynamics such as load dispersibility, compressive stress, and elongation under load. Characteristics can be imparted. Specifically, when the expansion ratio of the porous gel or the average pore diameter of the pores is smaller than the lower limit value of the numerical range (when the bulk density is larger than the upper limit value of the numerical range), it is difficult to provide sufficient moisture permeability. If the expansion ratio or the average pore diameter of the pores is larger than the upper limit value of the above numerical range (if the bulk density is smaller than the lower limit value of the numerical range), sufficient load dispersibility and durability are difficult to be imparted.
  • the porous gel used in the pressure dispersion material according to the present invention has a blending ratio of each composition, an expansion ratio (bulk density), and an average pore diameter within a predetermined range. Exhibits suitable moisture permeability and moisture absorption characteristics.
  • the moisture permeability of the porous gel is the same in the relative humidity environment (for example, 30RH%, 50RH%, or 80RH%) in the environment where the temperature is 40 ° C rather than the environment where the temperature is 26 ° C. Is preferably high. In this case, the moisture permeability of the porous gel in an environment at a temperature of 26 ° C.
  • the moisture permeability of the porous gel in an environment at a temperature of 40 ° C. is 1000 to 5000 g / day. m 2 ⁇ day is preferable.
  • the moisture permeability of the porous gel is 30% relative humidity than 80% relative humidity in the same temperature environment (for example, any environment of 26 ° C., 32 ° C., or 40 ° C.). It is preferable that the lower one has a higher value.
  • the moisture permeability of the porous gel in an environment with a relative humidity of 80% is preferably 100 to 2500 g / m 2 ⁇ day
  • the moisture permeability of the porous gel in an environment with a relative humidity of 30% is 1000 to It is preferably 5000 g / m 2 ⁇ day.
  • the porous gel of the present invention changes in moisture permeability characteristics depending on the temperature and humidity environment. For example, in an environment where the relative humidity is 30% and the temperature is 40 ° C., the moisture permeability is 3000 to 5000 g / hr.
  • the moisture permeability is preferably 1000 to 3000 g / m 2 ⁇ day, and the relative humidity is 80% and the temperature is 26 ° C. Then, the moisture permeability is preferably 100 to 1000 g / m 2 ⁇ day. Furthermore, after the porous gel of the present invention is left for 24 hours in an environment with a relative humidity of 30%, the water retained in the gel is released and the gel mass decreases, and the porous gel is left for 24 hours in an environment with a relative humidity of 80%. It is preferable to increase the gel mass by absorbing ambient moisture later.
  • the porous gel of the present invention is allowed to stand for 24 hours in an environment with a relative humidity of 30% under the same temperature environment (for example, any environment of 26 ° C., 32 ° C., or 40 ° C.).
  • the gel mass is preferably reduced by 1 to 30%, more preferably 2 to 25%.
  • the porous gel of the present invention has a gel mass after being left for 24 hours in an environment with a relative humidity of 80% under the same temperature environment (for example, any environment of 26 ° C., 32 ° C., or 40 ° C.). It is preferably increased by 5 to 50%, more preferably increased by 10 to 40%.
  • the pressure dispersion material of the present invention has the moisture permeability / moisture absorption characteristics as described above, when sweating or insensitive steaming increases at high temperatures and high humidity, it absorbs and emits excess moisture. In addition, it eliminates discomfort and skin damage due to stuffiness, and emits moisture to dry skin when dried, etc., so that skin improvement by moisturizing action can be expected. As described above, the pressure dispersion material of the present invention can maintain homeostasis and comfort of skin physiological functions even when used for a long time. In addition, when the moisture permeability of a pressure dispersion material is too high, load dispersibility may become inadequate or durability of a porous gel may fall. On the other hand, if the moisture permeability is too low, discomfort due to stuffiness or the like tends to occur.
  • the porous gel retains moisture in the voids of the formed pores and the low-volatile medium, and releases moisture through the voids of the pores due to environmental changes such as temperature and humidity.
  • the expansion ratio is 1.2 to 20 (bulk density is less than 1 g / cm 3 ), and the average pore diameter is 1 to 1000 ⁇ m, more preferably 5 to By adjusting to 500 ⁇ m, it is considered that such moisture absorption and sustained release properties are adjusted so that the above-described suitable moisture permeability and moisture absorption characteristics can be exhibited.
  • the porous gel retains moisture due to its affinity with water such as polyhydric alcohol, and absorbs moisture gradually. It is thought that it shows.
  • the mass ratio (C) / ⁇ (A) + (B) + (C) ⁇ of the low volatile medium (C) is 0.5 to 0.995. And more preferably 0.7 to 0.95, and by adjusting the hygroscopic sustained release property due to hydrophilicity, the above-mentioned preferable moisture permeability is exhibited.
  • the porous gel used for the pressure dispersion material according to the present invention exhibits suitable load dispersibility by setting the expansion ratio and the like within a predetermined range.
  • the pressure dispersion material according to the present invention has a maximum pressure of preferably 160 mmHg or less, more preferably 130 mmHg or less when used as a cushion material for a mattress for bedding, a chair or a wheelchair as a sheet having a thickness of 50 mm. Note that the maximum pressure when the pressure dispersion material is not used is usually 200 mmHg or more.
  • the pressure dispersion material according to the present invention exhibits a good load dispersibility of about 110 mmHg.
  • the pressure dispersion material of the present invention has such suitable load dispersibility, pressure absorption of pressure ulcer prevention tools and various appliances in medical and daily life fields such as orthopedics, surgery, rehabilitation, nursing, nursing care, sports, etc. It is suitable as a pressure dispersion material used for a pad or the like. If the load dispersibility of the pressure dispersion material is insufficient, it may cause skin damage (in some cases pressure sores) due to local stress concentration, or damage to bones, joints, and the like.
  • the porous gel exhibits load dispersibility by changing the shape by crushing the pores during pressurization.
  • the expansion ratio is 1.2 to 20 (bulk density is less than 1 g / cm 3 ) and the load dispersibility is adjusted to the above numerical range. Body pressure dispersion performance is demonstrated.
  • the polymer (A) of the water-soluble organic monomer, the clay mineral (B), and the low-volatile medium (C) are blended at a predetermined ratio, and the porous gel is used. By adjusting the elasticity and recoverability of the gel, suitable body pressure dispersion performance is exhibited.
  • the pressure dispersion material of the present invention is a pressure absorbing material for pressure ulcer prevention devices and various appliances in the fields of medical and daily life such as orthopedics, surgery, rehabilitation, nursing, nursing care and sports.
  • the compressive stress at 30% displacement of the pressure dispersion material is preferably 15 kPa or less, and more preferably 0.5 to 10 kPa.
  • the stress when the pressure dispersion material is compressed by 70% displacement or more and then returned to 50% displacement is preferably 10 kPa or less, more preferably 0.1 to 8 kPa.
  • the pressure dispersion material of the present invention can relieve stress in the compression direction by exhibiting the above-mentioned predetermined characteristics, and can also have load supportability.
  • the pressure dispersion material of the present invention desirably has shear stress dispersibility peculiar to gel materials, more specifically, shear stress dispersibility expressed by the softness and viscoelastic properties of the gel itself.
  • the porous gel used in the pressure dispersion material of the present invention has a complex elastic modulus
  • the pressure dispersion material of the present invention has a complex elastic modulus
  • the pressure dispersion material of the present invention can relieve the stress in the shearing direction applied to the skin surface and the inside by exhibiting the above-mentioned predetermined viscoelastic characteristics, and can also have load supportability.
  • the porous gel used in the pressure dispersion material of the present invention applies stress to the skin when a deformation force is applied when the pressure dispersion material is attached or when a body load is applied. It is preferable that the extension force at 100% extension is 50 kPa or less.
  • the porous gel used in the pressure dispersion material of the present invention preferably has an elongation rate of 100% or more at a load of 30 kPa in order to enhance adhesion to the body surface.
  • the pressure dispersion material of the present invention can adjust the body surface environment to a comfortable environment.
  • the temperature / humidity range considered to be comfortable in a general clothing environment is an environment having a humidity of less than 65 RH% at a temperature of 30.5 to 33.5 ° C., more preferably 40 to 60 RH% at 31 to 33 ° C.
  • the condition is considered to be the same between the human body surface and the wearing object.
  • the porous gel used in the present invention can keep the environment between the human body surface and the porous gel in this comfortable environment by having the moisture absorption and sustained release property described above.
  • the temperature / humidity around the rupture of the seating part is maintained at a temperature of 31-32 ° C. and a humidity of 50-55% RH, and a comfortable temperature / humidity state can be maintained. It is.
  • the manufacturing method of the pressure dispersion material according to the present invention is a water-soluble material dispersed in a dispersion together with a clay mineral and a low-volatile medium of 0.1 g / cm 2 ⁇ hr ⁇ 60 ° C ⁇ 1 atm or less. It comprises a porous gel comprising steps of polymerizing and foaming organic monomers.
  • the water-soluble organic monomer and the clay mineral A foaming agent or a gas is introduced into a mixture of the solvent and the solvent, polymerized and foamed.
  • the water-soluble organic monomer may be foamed by introducing a foaming agent or a gas into the solvent after polymerization.
  • a polymerization initiator, a catalyst, and other water-soluble compounds (additives) may be mixed and dissolved in advance.
  • the method for producing a pressure dispersion material introduces a water-soluble organic monomer and a foaming agent into a dispersion containing water together with a clay mineral, polymerizes the water-soluble organic monomer, forms a gel, It comprises a porous gel including a step of foaming after substituting at least a part of it with a low-volatile medium of 0.1 g / cm 2 ⁇ hr ⁇ 60 ° C. ⁇ 1 atm or less.
  • foaming occurs in a mixture of the water-soluble organic monomer, the clay mineral, and water.
  • a polymerization initiator, a catalyst, and other water-soluble compounds (additives) may be mixed and dissolved in advance.
  • foaming agent low boiling point hydrocarbon compounds such as heptane, pentane, cyclopentane and hexane, chlorinated hydrocarbon compounds, chlorofluorocarbons, carbonates such as NaHCO 3 , Na 2 CO 3 and CaCO 3 are preferable.
  • hydrocarbon compounds and carbonates are particularly preferably used because they are easy to operate and have little influence on the environment.
  • the addition amount of the foaming agent varies depending on the foaming ratio of the desired foam, the type of foaming agent used, and the foaming conditions (eg, temperature and pressure), and is appropriately selected. For example, in the case of pentane, 50 to 1000% by mass is preferably used with respect to the water-soluble organic monomer and clay mineral.
  • pentane when used as the foaming agent, pentane is added with stirring during the polymerization process to prepare a gel.
  • the obtained gel is held in the air at room temperature or as needed, foaming occurs and a uniform gel foam can be obtained.
  • the gas is preferably an inert gas, and examples thereof include nitrogen gas and carbon dioxide gas.
  • the amount of gas introduced is also appropriately selected depending on the desired foaming ratio of the foam.
  • nitrogen gas is introduced in the polymerization process, preferably so as to form fine bubbles when the viscosity rises to 30 mPa ⁇ s or more, and polymerized to obtain a gel foam.
  • a microcapsule having a property of expanding by heat is effectively used.
  • thermally expandable microcapsules include thermoplastic polymers (eg, polymethyl methacrylate, polyglycolic acid, etc.) and their crosslinked polymers as shells, and low-boiling hydrocarbons inside them.
  • thermally expandable microcapsules are introduced into a reaction solution for gel preparation, and then, after the polymerization process and / or polymerization, are preferably thermally expanded and expanded in an organic-inorganic composite gel containing a low-volatile medium. It becomes a capsule and has the function of making the gel into a foamed state.
  • the size of the thermally expandable microcapsule to be used is not necessarily limited, but in order to be finely dispersed and contained in the three-dimensional network in the gel, it is 1 to 500 ⁇ m, more preferably 3 to 100 ⁇ m, and particularly preferably 5 to 50 ⁇ m. The size of the range is used.
  • the amount of thermally expandable microcapsules used varies depending on the desired expansion ratio, the type of thermally expandable microcapsules used, and the conditions during expansion (foaming) (eg, temperature and pressure).
  • the mass ratio with respect to the organic monomer is preferably in the range of 0.01 to 10.
  • the temperature causing the expansion a range that does not inhibit the synthesis of the organic-inorganic composite gel is used.
  • the expansion temperature is preferably equal to or higher than the polymerization temperature of the gel, specifically, a range of 20 ° C. to 250 ° C. is used, more preferably 30 ° C. to 200 ° C., still more preferably 50 ° C. to 150 ° C.
  • thermally expandable microcapsules that can be used in the present invention include Matsumoto Microsphere F series (Matsumoto Pharmaceutical Co., Ltd .: F-20, F-30, F-36LV, F-36, F-48). , F-50, F-78K, F-79, F-80S, F-82, F-100, F-102, F-105, F-170, F-190D, F-230D, F-260D, etc. FN-series (Matsumoto Pharmaceutical Co., Ltd .: FN-100, FN-105, FN-180S, FN-180, etc.).
  • Example 1 19.8 g of N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) as the water-soluble organic monomer, 4.58 g of water-swellable hectorite (trademark Laponite XLG, manufactured by Rockwood Co., Ltd.) as the swellable clay mineral, A uniformly transparent solution containing 14.85 g (dry weight) of a heat-expandable microcapsule (F20: Matsumoto Yushi Seiyaku Co., Ltd., average particle size: 10 to 20 ⁇ m) and 190 g of pure water was prepared in a 500 ml glass container with stirring. .
  • the solution was placed in an ice bath, and then 10 g of an aqueous initiator solution containing 0.2 g of potassium peroxodisulfate was added with stirring to obtain a homogeneous reaction solution.
  • the reaction solution is poured into a glass container for film production (internal volume 60 cm 3 : length 10 cm, width 10 cm, thickness 6 mm), and the glass container is placed in a constant temperature water bath at 50 ° C. and held for 5 hours to remove the water-soluble organic monomer.
  • Polymerization was performed to prepare an organic-inorganic composite gel.
  • the mass ratio of thermally expandable microcapsule / water-soluble organic monomer polymer is 0.75. The above steps were all performed in a state where oxygen was removed.
  • This organic-inorganic composite gel was treated in an autoclave at a temperature of 105 ° C. for 20 minutes to expand the thermally expandable microcapsules and obtain a foamed gel. Furthermore, the organic-inorganic composite porous gel was obtained by performing humidity control by holding for 1 day in an atmosphere of 60% humidity and 25 ° C. temperature. The mass ratio of water / glycerin in the medium of the obtained organic-inorganic composite porous gel was 0.2.
  • the volume ratio (foaming ratio) of the organic-inorganic composite porous gel to the organic-inorganic composite gel before foaming (expansion) is 3.6
  • the density of the organic-inorganic composite porous gel is 0.30 g / cm 3 , average
  • the pore diameter was 51 ⁇ m.
  • the obtained organic-inorganic porous gel was a lightweight gel porous body that was flexible, had surface tackiness, and was excellent in handleability.
  • the organic / inorganic porous gel was cut into a rectangular parallelepiped having a length of 2 cm and a thickness of 1 cm, and a stretching test was performed by cutting into a rectangular parallelepiped having a cross section of 1 cm ⁇ 1 cm and a length of 7 cm.
  • the compression and stretching tests were performed using a desktop universal testing machine AGS-H manufactured by Shimadzu Corporation at deformation speeds of 30 mm / min and 50 mm / min.
  • 90% compression compression up to 10% of the original length
  • the stress at 60% compression was 21 kPa for the first time and 18 kPa for the second time and thereafter.
  • the obtained organic-inorganic porous gel showed a stable shape and physical properties in the air for a long period (one year or more).
  • Example 2 An organic-inorganic composite gel was prepared in the same manner as in Example 1 except that 130 g of pure water and 60 g of glycerin were used instead of 190 g of water. The glycerin content in the medium in the obtained gel was 30%. This organic-inorganic composite gel was treated in a thermostat at a temperature of 80 ° C. and a humidity of 95% for 120 minutes to expand the thermally expandable microcapsules, thereby obtaining an organic-inorganic composite porous gel. The mass ratios of glycerin, polymer and clay mineral to (glycerin + polymer + clay mineral) in the obtained organic-inorganic composite porous gel were 0.711, 0.235 and 0.05, respectively.
  • the foaming ratio of the organic-inorganic composite porous gel was 4.0 times, and the density was 0.27 g / cm 3 . Reversible repetitive deformation was possible in each of the compression tests without breaking even when compressed by 90% or even when stretched to 200% in the stretching test.
  • the stress at 60% compression was 29 kPa.
  • Example 3-5 An organic-inorganic composite porous gel shown in “Table 3” was prepared in the same manner as in Example 1 except that the mass ratio of each component and the mass ratio of the thermally expandable microcapsule to the monomer were changed.
  • Specimens total mass including the moisture-permeable cup moisture-permeable cup, porous gel specimen, packing, rings, and the total mass of the wing nut
  • the initial specimen total mass C 0.
  • Temperature 26 ° C., 32 ° C., respectively 30% relative humidity at 40 ° C., 50% the specimen total mass C 2 after exposure to moisture permeation cup 2 hours under 80% of the test environment was measured, starting further tested After 24 hours, the total mass C 24 of the test specimen was measured, and the moisture permeability was calculated according to the following formula.
  • T ((C 2 -C 24 ) / S) ⁇ 24/22 T: Moisture permeability [g / m 2 ⁇ day]
  • C 2 Mass of test specimen 2 hours after start of measurement [g]
  • C 24 Mass of test specimen 24 hours after start of measurement [g]
  • S Moisture permeable area of cup [m 2 ]
  • the pressure dispersion material of the present invention having a thickness of 50 mm was used as a cushioning material for a standard wheelchair, and the maximum pressure when a healthy person was seated was measured with a pressure distribution measuring device (VERS (Canada) FSA).
  • VERS yearly FSA
  • a 75 mm thick urethane foam wheelchair cushion, a 50 mm thick low-resilience urethane foam cushion, and a 25 mm thick urethane gel pad which are commercially available highly breathable cushion materials, were similarly tested and compared.
  • thermohygrometer SK-110TRH TYPE4 The test was carried out in an indoor environment at a temperature of 28 ° C. and a relative humidity of 65%.
  • the pressure dispersion material of the present invention having a thickness of 50 mm as a cushioning material for a standard type wheelchair, the temperature and humidity around the rupture of the seating part when a healthy person continues to sit for 1 hour is a thermohygrometer (manufactured by Sato Keiki Seisakusho) It was measured by “digital thermohygrometer SK-110TRH TYPE4”).
  • urethane foam wheelchair cushion a 75 mm thick urethane foam wheelchair cushion, a 50 mm thick low-resilience urethane foam cushion, and a 25 mm thick urethane gel pad, which are commercially available highly breathable cushion materials, were similarly tested and compared.
  • the pressure dispersion material of the present invention has suitable mechanical properties (load dispersibility, compressive stress, elongation rate, elongation force, etc.) as the pressure dispersion material as described above, and has the physiological function of skin. It also has moisture permeability and moisture absorption characteristics that are considered desirable for homeostasis and comfort, and is useful as a pressure dispersion material for use on the human body.
  • the pressure dispersion material according to the present invention has suitable load dispersibility and moisture permeability / water absorption characteristics. Therefore, it can be suitably used as a pressure-absorbing pad for pressure ulcer prevention tools and various appliances in medical and daily life fields such as orthopedics, surgery, rehabilitation, nursing, nursing care, and sports.

Abstract

Provided is a pressure dispersion material that comprises a composite polymeric hydrogel to which suitable load dispersion properties, moisture permeability, and water-absorbing properties have been imparted. The pressure dispersion material comprises a porous gel which comprises: a three-dimensional network formed from (A) a polymer of a water-soluble organic monomer and (B) a clay mineral; and (C) a lowly volatile medium incorporated into the network. The lowly volatile medium (C) is a lowly volatile medium which has a volatility of 0.1 g/cm2·hr·60ºC·atm or less or a lowly volatile medium which has a vapor pressure measured at 20ºC of 1,000 Pa or lower and a boiling point measured at 1 atm of 130ºC or higher.

Description

圧力分散材及びその製造方法Pressure dispersion material and manufacturing method thereof
 本発明は、圧力分散材及びその製造方法に関する。詳しくは、整形外科、外科、リハビリ、看護、介護、スポーツ等の医療や日用生活分野における褥瘡予防用具や各種装具の圧力吸収パッドなどに用いられる圧力分散材等に関する。 The present invention relates to a pressure dispersion material and a manufacturing method thereof. More specifically, the present invention relates to a pressure dispersion material used for pressure-absorbing pads and the like for pressure ulcer prevention tools and various appliances in medical and daily life fields such as orthopedics, surgery, rehabilitation, nursing, nursing care, and sports.
 従来、寝具、椅子(車椅子含む)、乗物用シート、座布団等において、体圧を分散させ、快適性を高めたり褥瘡を予防したりするために、圧力分散材が用いられている。また、圧力分散材は、筋肉や関節用のサポーター、義肢や外固定材の下巻き材(巻軸包帯、アンダースリーブ等)、靴や足用装具のインソール、糖尿病等の足病を有する患者の除圧用パッドなどとして、摩擦、衝撃、圧力等を緩衝するためにも適用されている。 Conventionally, pressure bedding has been used in bedding, chairs (including wheelchairs), vehicle seats, cushions, etc., to disperse body pressure, enhance comfort and prevent pressure ulcers. In addition, pressure dispersion materials are used for muscle and joint supporters, lower wrapping materials for prosthetic limbs and external fixation materials (coil bandages, under sleeves, etc.), insoles for shoes and footwear, and for patients with foot disease such as diabetes. As a pressure-removing pad, it is also applied to buffer friction, impact, pressure and the like.
 これらの圧力分散材では、特に長時間使用するため体圧分散性や快適性を改善、向上させる試みがなされてきた。例えば、特許文献1には、「ゲル状物質中に、圧力変形の小さい物質を混合し、その物質を後から溶解または収縮させることによりそこに空洞を形成したことを特徴とする体圧力分散材」が開示されている(当該文献請求項1参照)。この体圧力分散材は、体圧分散性が良好であり、軽量で取扱い易いものとされている。 These pressure dispersion materials have been tried to improve and improve body pressure dispersibility and comfort because they are used for a long time. For example, Patent Document 1 states that “a body pressure dispersion material characterized in that a substance having a small pressure deformation is mixed in a gel substance, and the substance is dissolved or contracted later to form a cavity therein. Is disclosed (see claim 1 of the document). This body pressure dispersion material has good body pressure dispersibility, and is lightweight and easy to handle.
 また、特許文献2には、活性水素成分ポリエーテルポリオールと、有機ポリイソシアネートと、発泡剤とを必須成分として成り、かつ、所定の密度とずれ力を備えるクッション材が開示されている(当該文献請求項2参照)。このクッション材は、体圧分散性に優れ、せん断力に対して良好な特性を有するものとされている。 Further, Patent Document 2 discloses a cushion material comprising active hydrogen component polyether polyol, organic polyisocyanate, and foaming agent as essential components, and having a predetermined density and displacement force (the document). (See claim 2). This cushion material is excellent in body pressure dispersibility and has good characteristics against shearing force.
 本発明に関連して、近年、ポリ(N-イソプロピルアクリルアミド)やポリ(N,N-ジメチルアクリルアミド)等の有機高分子と無機膨潤性クレイからなる、有機・無機複合高分子ヒドロゲル(以下、単に「有機・無機複合高分子ゲル」と称する)が開発されてきている(特許文献3参照)。 In relation to the present invention, in recent years, organic / inorganic composite polymer hydrogels (hereinafter simply referred to as “poly (N-isopropylacrylamide)” and “poly (N, N-dimethylacrylamide)”), which are composed of an organic polymer and an inorganic swellable clay. "Organic / inorganic composite polymer gel" has been developed (see Patent Document 3).
 有機・無機複合高分子ゲルは、従来にない高い力学物性を有するヒドロゲル材料として注目されている。特許文献4には、有機・無機複合高分子ゲルの発泡体であって、軽量性と高い伸縮性及び柔軟性を併せ持つゲル発泡体が開示されている。また、特許文献5には、大気開放系でも安定した性能を保持できる有機・無機複合高分子ゲルとして、低揮発性媒体を含有させたゲルが記載されている。 Organic / inorganic composite polymer gels are attracting attention as hydrogel materials having unprecedented high mechanical properties. Patent Document 4 discloses a foam of an organic / inorganic composite polymer gel that has both light weight and high stretchability and flexibility. Patent Document 5 describes a gel containing a low-volatile medium as an organic / inorganic composite polymer gel capable of maintaining stable performance even in an open air system.
特開2002-60533号公報JP 2002-60533 A 特開2006-051067号公報JP 2006-051067 A 特開2002-53629号公報JP 2002-53629 A 特許4245406号公報Japanese Patent No. 4245406 特開2006-28446号公報JP 2006-28446 A
 上記特許文献4,5には、有機・無機複合高分子ゲルあるいはその発泡体が、医療や衛生用品、家庭用品などの分野で用いられ得ることが記載されている。しかし、これらの有機・無機複合高分子ゲル等を上述の圧力分散材として用いることについては、開示がない。特に、圧力分散材のような人体に長時間接触させ、長期間使用する場合の技術については、何ら開示がない。 Patent Documents 4 and 5 describe that organic / inorganic composite polymer gels or foams thereof can be used in fields such as medical and hygiene products and household products. However, there is no disclosure about using these organic / inorganic composite polymer gels as the pressure dispersion material. In particular, there is no disclosure about a technique in which a human body such as a pressure dispersion material is brought into contact with the human body for a long time and used for a long time.
 そこで、本発明は、好適な荷重分散性が付与された有機・無機複合高分子ゲルを含んでなる圧力分散材を提供することを主な目的とする。
 また、人体に長時間接触させ、長期間使用する場合でも、不快感の少ない有機・無機複合高分子ゲルを含んでなる圧力分散材を提供することを他の目的とする。
Accordingly, the main object of the present invention is to provide a pressure dispersion material comprising an organic / inorganic composite polymer gel imparted with suitable load dispersibility.
Another object of the present invention is to provide a pressure dispersion material comprising an organic / inorganic composite polymer gel with little discomfort even when it is in contact with a human body for a long time and used for a long time.
 上記課題解決のため、本発明者らは、特に材料と生体が長時間接触する状況に着目して鋭意研究した結果、新たな特性を備える有機・無機複合高分子ゲルとして、本発明に係る圧力分散材に用いられる多孔質ゲルを完成させるに至った。 In order to solve the above-mentioned problems, the present inventors have intensively studied paying attention to the situation in which the material and the living body are in contact with each other for a long time, and as a result, the organic / inorganic composite polymer gel having new characteristics has It came to complete the porous gel used for a dispersing material.
 すなわち、本発明は、水溶性有機モノマーの重合体(A)と、粘土鉱物(B)とから形成される三次元網目中に、低揮発性媒体(C)を含有する多孔質ゲルを含んでなる圧力分散材を提供する。低揮発性媒体(C)は、0.1g/cm2・hr・60℃・1atm以下の低揮発性媒体、あるいは20℃における蒸気圧が1000Pa以下で1気圧における沸点が130℃以上の低揮発性媒体とされる。
 この圧力分散材において、前記多孔質ゲルの発泡倍率は1.2~20、嵩密度は1g/cm未満とされることが好適となる。
 また、この圧力分散材において、前記水溶性有機モノマーの重合体(A)、粘土鉱物(B)及び低揮発性媒体(C)の合計質量(A+B+C)に対する、前記多孔質ゲル中での各成分の質量比は、水溶性有機モノマーの重合体(A)については0.003~0.35、粘土鉱物(B)については0.002~0.15、低揮発性媒体(C)については0.5~0.995とされることが好適となる。
 多孔質ゲルの発泡倍率と嵩密度及び各成分の配合比率を上記数値範囲とすることにより、多孔質ゲルは以下のような好適な透湿・吸水特性や力学的特性を示す。
 すなわち、前記多孔質ゲルの透湿度は、同一相対湿度環境下において、温度26℃の環境下よりも、温度40℃の環境下の方が高値であり、同一温度環境下において、相対湿度80%の環境下よりも、相対湿度30%の環境下の方が高値である。
 また、前記多孔質ゲルの30%変位での圧縮応力は15kPa以下であり、前記多孔質ゲルを70%変位以上圧縮した後、50%変位まで戻した時の応力は10kPa以下である。
 この圧力分散材において、前記水溶性有機モノマーの重合体(A)には、(メタ)アクリルアミド及び/又は(メタ)アクリルアミド誘導体の重合物あるいは共重合物が好適に用いられる。
 また、前記低揮発性媒体(C)には、多価アルコール、具体的にはグリセリン、ポリグリセリン、ポリエチエレングリコール、エチレングリコール及びプロピレングリコール並びにこれらの誘導体からなる群より選択される一以上の多価アルコールが好適に用いられる。
That is, the present invention includes a porous gel containing a low-volatile medium (C) in a three-dimensional network formed from a polymer (A) of a water-soluble organic monomer and a clay mineral (B). A pressure dispersion material is provided. The low volatile medium (C) is a low volatile medium of 0.1 g / cm 2 · hr · 60 ° C · 1 atm or less, or a low volatility of which vapor pressure at 20 ° C is 1000 Pa or less and boiling point at 1 atm is 130 ° C or more. It is a sex medium.
In this pressure dispersion material, it is preferable that the porous gel has an expansion ratio of 1.2 to 20 and a bulk density of less than 1 g / cm 3 .
Moreover, in this pressure dispersion material, each component in the porous gel with respect to the total mass (A + B + C) of the polymer (A) of the water-soluble organic monomer, the clay mineral (B), and the low-volatile medium (C). Of the water-soluble organic monomer polymer (A) is 0.003 to 0.35, the clay mineral (B) is 0.002 to 0.15, and the low-volatile medium (C) is 0. It is preferable to be set to 0.5 to 0.995.
By setting the expansion ratio and bulk density of the porous gel and the blending ratio of each component within the above numerical ranges, the porous gel exhibits the following suitable moisture permeability / water absorption characteristics and mechanical characteristics.
That is, the moisture permeability of the porous gel is higher in the environment of 40 ° C. than the environment of 26 ° C. in the same relative humidity environment, and the relative humidity is 80% in the same temperature environment. The value is higher in an environment with a relative humidity of 30% than in the above environment.
The compressive stress at 30% displacement of the porous gel is 15 kPa or less, and the stress when the porous gel is compressed to 70% displacement or more and then returned to 50% displacement is 10 kPa or less.
In this pressure dispersion material, a polymer or copolymer of (meth) acrylamide and / or (meth) acrylamide derivatives is preferably used for the polymer (A) of the water-soluble organic monomer.
The low volatile medium (C) includes at least one selected from the group consisting of polyhydric alcohols, specifically glycerin, polyglycerin, polyethylene glycol, ethylene glycol and propylene glycol, and derivatives thereof. A monohydric alcohol is preferably used.
 本発明は、粘土鉱物(B)及び0.1g/cm2・hr・60℃・1atm以下の低揮発性媒体(C)とともに分散液中に分散させた水溶性有機モノマーを重合し、発泡させる工程を含む多孔質ゲルを含んでなる圧力分散材の製造方法と、粘土鉱物(B)とともに水を含む分散液中に分散させた水溶性有機モノマーを重合し、ゲルを形成した後、水の少なくとも一部を0.1g/cm2・hr・60℃・1atm以下の低揮発性媒体(C)で置換し、次いで発泡させる工程を含む多孔質ゲルを含んでなる圧力分散材の製造方法をも提供する。 The present invention polymerizes and foams a water-soluble organic monomer dispersed in a dispersion together with a clay mineral (B) and a low-volatile medium (C) of 0.1 g / cm 2 · hr · 60 ° C. · 1 atm or less. A method for producing a pressure dispersion material comprising a porous gel comprising a step, and polymerizing a water-soluble organic monomer dispersed in a dispersion containing water together with a clay mineral (B) to form a gel, A method for producing a pressure dispersion material comprising a porous gel comprising a step of substituting at least a part with a low-volatile medium (C) of 0.1 g / cm 2 · hr · 60 ° C. · 1 atm or less and then foaming. Also provide.
 本発明により、好適な荷重分散性が付与された有機・無機複合高分子ゲルを含んでなる圧力分散材が提供される。
 また、本発明により、発汗等の皮膚の生理機能にとって好適な特性が付与された有機・無機複合高分子ゲルを含んでなる圧力分散材が提供される。
The present invention provides a pressure dispersion material comprising an organic / inorganic composite polymer gel imparted with suitable load dispersibility.
The present invention also provides a pressure dispersion material comprising an organic / inorganic composite polymer gel imparted with characteristics suitable for skin physiological functions such as perspiration.
実施例において評価したダンベル型試験片の形状を説明する模式図である。It is a schematic diagram explaining the shape of the dumbbell-type test piece evaluated in the Example.
 以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, preferred embodiments for carrying out the present invention will be described. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.
1.圧力分散材
(1)水溶性有機モノマー重合体(A)
 本発明に係る圧力分散材は、水溶性有機モノマーの重合体(A)と、粘土鉱物(B)とから形成される三次元網目中に、低揮発性媒体(C)を含有する多孔質ゲルを含んでなる。
1. Pressure dispersion material (1) Water-soluble organic monomer polymer (A)
The pressure dispersion material according to the present invention is a porous gel containing a low-volatile medium (C) in a three-dimensional network formed from a polymer (A) of a water-soluble organic monomer and a clay mineral (B). Comprising.
 水溶性有機モノマー重合体(A)は、(メタ)アクリルアミド及び/又は(メタ)アクリルアミド誘導体の重合物あるいは共重合物とすることが好ましい。(メタ)アクリルアミド及び/又は(メタ)アクリルアミド誘導体の重合物あるいは共重合物は、水に分散させた粘土鉱物(B)と水素結合やイオン結合等の非共有結合によって結合し、三次元網目を形成する。
 (メタ)アクリルアミド又はその誘導体としては、N-置換アクリルアミド誘導体、N,N-ジ置換アクリルアミド誘導体、N-置換メタクリルアミド誘導体、N,N-ジ置換メタクリルアミド誘導体などが挙げられる。具体的には、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-シクロプロピルアクリルアミド、N-イソプロピルアクリルアミド、メタクリルアミド、N-メチルメタクリルアミド、N-シクロプロピルメタクリルアミド、N-イソプロピルメタクリルアミド、N,N-ジメチルアクリルアミド、N-メチル-N-エチルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N,N-ジエチルアクリルアミド、N-アクリロイルピロリディン、N-アクリロイルピペリディン、N-アクリロイルメチルホモピペラディン、N-アクリロイルメチルピペラディンなどが例示される。これらモノマーは、他の有機モノマーとの共重合物としてもよい。
The water-soluble organic monomer polymer (A) is preferably a polymer or copolymer of (meth) acrylamide and / or (meth) acrylamide derivatives. The polymer or copolymer of (meth) acrylamide and / or (meth) acrylamide derivatives is bonded to the clay mineral (B) dispersed in water by non-covalent bonds such as hydrogen bonds or ionic bonds, and a three-dimensional network is formed. Form.
Examples of (meth) acrylamide or derivatives thereof include N-substituted acrylamide derivatives, N, N-disubstituted acrylamide derivatives, N-substituted methacrylamide derivatives, and N, N-disubstituted methacrylamide derivatives. Specifically, acrylamide, N-methylacrylamide, N-ethylacrylamide, N-cyclopropylacrylamide, N-isopropylacrylamide, methacrylamide, N-methylmethacrylamide, N-cyclopropylmethacrylamide, N-isopropylmethacrylamide, N, N-dimethylacrylamide, N-methyl-N-ethylacrylamide, N-methyl-N-isopropylacrylamide, N-methyl-Nn-propylacrylamide, N, N-diethylacrylamide, N-acryloylpyrrolidine, N-acryloyl Examples include piperidin, N-acryloylmethyl homopiperazine, N-acryloylmethylpiperazine and the like. These monomers may be copolymers with other organic monomers.
 これらのモノマーのうち、水溶液中でのポリマー物性(親水性と疎水性)がLCST(下限臨界共溶温度)を持つN-イソプロピルアクリルアミド、N,N-ジエチルアクリルアミドなどが機能性の観点から好ましい。 Of these monomers, N-isopropylacrylamide, N, N-diethylacrylamide, etc., having polymer properties (hydrophilicity and hydrophobicity) in an aqueous solution having LCST (lower critical solution temperature) are preferable from the viewpoint of functionality.
 本発明に係る圧力分散材では、多孔質ゲル中に形成された気孔が加圧時に押し潰されて形状を変化させ、加圧が解除された際には気孔が再拡張して空隙を回復させる。押し潰された気孔の表面同士が密着してしまうことにより気孔の再拡張が阻害されるのを防止するため、モノマーの重合体は、粘土鉱物と適切な相互作用を有するネットワークを形成することが必要であり、そのためには、上記モノマーを複数組み合わせた共重合体が好ましい。 In the pressure dispersion material according to the present invention, the pores formed in the porous gel are crushed during pressurization to change the shape, and when the pressurization is released, the pores are re-expanded to restore the voids. . In order to prevent the re-expansion of the pores from being inhibited by the close contact between the crushed pore surfaces, the monomer polymer may form a network having an appropriate interaction with the clay mineral. For this purpose, a copolymer obtained by combining a plurality of the above monomers is preferable.
(2)粘土鉱物(B)
 粘土鉱物(B)は、水または水溶液中で膨潤するものであることが好ましく、より好ましくは水溶性有機モノマーを含む溶液中で層状剥離し、微細かつ均一に分散可能なものである。粘土鉱物(B)は、好ましくは10層以下、より好ましくは3層以下、特に好ましくは1層または2層のナノメーターレベル(の厚み)で分散しているものである。
(2) Clay mineral (B)
The clay mineral (B) is preferably one that swells in water or an aqueous solution, and more preferably one that can be exfoliated and dispersed finely and uniformly in a solution containing a water-soluble organic monomer. The clay mineral (B) is preferably dispersed at a nanometer level (thickness) of preferably 10 layers or less, more preferably 3 layers or less, and particularly preferably 1 layer or 2 layers.
 粘土鉱物(B)の分散は多孔質ゲルを乾燥したものの超薄切片を透過型電子顕微鏡により観察することによって確認される。また、同様な試料を用いた小角X線回折測定によっても確認され、回折角(2θ)が好ましくは3度~8度で、より好ましくは2度~8度で、特に好ましくは1度~8度で粘土鉱物の積層に基づく明確な回折ピークが観測されないことによって確認される。 The dispersion of the clay mineral (B) is confirmed by observing an ultrathin section of the dried porous gel with a transmission electron microscope. The diffraction angle (2θ) is preferably 3 ° to 8 °, more preferably 2 ° to 8 °, and particularly preferably 1 ° to 8 °. This is confirmed by the fact that no clear diffraction peak based on clay mineral stacking is observed.
 また、粘土鉱物(B)は、水溶性有機モノマー重合体(A)と水素結合やイオン結合等の非共有結合によって結合し、三次元網目を形成するものであることが好ましい。すなわち、粘土鉱物(B)は、メチレンビスアクリルアミド等の有機架橋剤を用いないで水溶性有機モノマー重合体(A)との三次元網目を形成できるものである。 Further, it is preferable that the clay mineral (B) is bonded to the water-soluble organic monomer polymer (A) by a non-covalent bond such as a hydrogen bond or an ionic bond to form a three-dimensional network. That is, the clay mineral (B) can form a three-dimensional network with the water-soluble organic monomer polymer (A) without using an organic crosslinking agent such as methylenebisacrylamide.
 粘土鉱物(B)としては、例えば、水膨潤性スメクタイトや水膨潤性雲母などの水中で膨潤し、層状剥離した状態で微分散することが可能な膨潤性の無機粘土鉱物が用いられる。具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。また、水溶性有機モノマーと共に溶媒中で層状剥離可能であれば、界面活性剤などにより部分的に有機化した粘土鉱物を用いることもできる。 As the clay mineral (B), for example, a swellable inorganic clay mineral that swells in water such as water-swellable smectite or water-swellable mica and can be finely dispersed in a layered state is used. Specific examples include water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, and water-swellable synthetic mica. In addition, if the layer can be peeled in a solvent together with the water-soluble organic monomer, a clay mineral partially organicized with a surfactant or the like can be used.
(3)低揮発性媒体(C)
 低揮発性媒体(C)は、水溶性有機モノマー重合体(A)と粘土鉱物(B)とからなる三次元網目中に均一に含有されるもので、水より低い揮発性を有するものが用いられる。
(3) Low volatile medium (C)
The low-volatile medium (C) is uniformly contained in the three-dimensional network composed of the water-soluble organic monomer polymer (A) and the clay mineral (B), and has a lower volatility than water. It is done.
 低揮発性媒体(C)は、揮発性が60℃・1気圧の開放系において1cm・1時間当たり0.1g以下、好ましくは0.05g以下、より好ましくは0.01g以下、さらに好ましくは0.001g以下のものが用いられる。特に好ましくは、室温(10~30℃)においてほとんど揮発しないものである。
 また、低揮発性媒体(C)は、20℃における蒸気圧が水より低いものが用いられ、20℃における蒸気圧が1000Pa以下のものが好ましく、より好ましくは100Pa以下、さらに好ましくは50Pa以下のものが用いられる。
 さらに、低揮発性媒体(C)は、1気圧における沸点が水より高いものが用いられ、1気圧における沸点が130℃以上のものが好ましく、より好ましくは150℃以上、さらに好ましくは170℃以上のものが用いられる。
 低揮発性媒体(C)は、揮発性が、0.1g/cm2・hr・60℃・1atm以下で、20℃における蒸気圧が1000Pa以下で、1気圧における沸点が130℃以上のものが、最適である。
The low volatile medium (C) is 0.1 g or less, preferably 0.05 g or less, more preferably 0.01 g or less, even more preferably 0.1 g or less per 1 cm 2 / hour in an open system having a volatility of 60 ° C. and 1 atm. 0.001 g or less is used. Particularly preferred is one that hardly volatilizes at room temperature (10-30 ° C.).
Further, the low volatile medium (C) has a vapor pressure at 20 ° C. lower than that of water, and preferably has a vapor pressure at 20 ° C. of 1000 Pa or less, more preferably 100 Pa or less, more preferably 50 Pa or less. Things are used.
Further, the low volatile medium (C) has a boiling point higher than that of water at 1 atm, preferably has a boiling point at 1 atm of 130 ° C. or higher, more preferably 150 ° C. or higher, more preferably 170 ° C. or higher. Is used.
The low volatile medium (C) has a volatility of 0.1 g / cm 2 · hr · 60 ° C. · 1 atm or less, a vapor pressure at 20 ° C. of 1000 Pa or less, and a boiling point at 1 atm of 130 ° C. or more. Is the best.
 低揮発性媒体(C)としては、例えば、多価アルコール、多価アルコール誘導体、イオン液体、油等が挙げられる。このうち、親水性及び/又は吸湿性のものが後述する透湿性を発揮させるために好適であり、多価アルコール、多価アルコール誘導体が好ましく、多価アルコールが特に好ましい。これらの物質は、1種又は2種以上を適宜組み合わせて用いることができる。 Examples of the low volatile medium (C) include polyhydric alcohols, polyhydric alcohol derivatives, ionic liquids, oils, and the like. Of these, hydrophilic and / or hygroscopic materials are suitable for exhibiting the moisture permeability described later, polyhydric alcohols and polyhydric alcohol derivatives are preferred, and polyhydric alcohols are particularly preferred. These substances can be used alone or in combination of two or more.
(3-1)多価アルコール
 多価アルコールとしては、例えば、グリセリン、ポリグリセリン(ジグリセリン、トリグリセリン、テトラグリセリン等)、エチレングリコール、プロピレングリコール、ポリエチレングリコール(PEG600等)、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、1,5-ペンタンジオール(ペンタメチレングリコール)、1,2,6-へキサントリオール、オクチレングリコール(エトヘキサジオール)、ブチレングリコール(1,3-ブチレングリコール、1,4-ブチレングリコール、2,3-ブタンジオール等)、へキシレングリコール、1,3-プロパンジオール(トリメチレングリコール)、1,6-ヘキサンジオール(ヘキサメチレングリコール)等が例示される。これらの多価アルコールの揮発性、蒸気圧、沸点を「表1」に示す。
(3-1) Polyhydric alcohol Examples of the polyhydric alcohol include glycerin, polyglycerin (diglycerin, triglycerin, tetraglycerin, etc.), ethylene glycol, propylene glycol, polyethylene glycol (PEG 600, etc.), diethylene glycol, triethylene glycol. , Tetraethylene glycol, dipropylene glycol, 1,5-pentanediol (pentamethylene glycol), 1,2,6-hexanetriol, octylene glycol (ethohexadiol), butylene glycol (1,3-butylene glycol, 1,4-butylene glycol, 2,3-butanediol, etc.), hexylene glycol, 1,3-propanediol (trimethylene glycol), 1,6-hexanediol (hexamethylene glycol) Example). The volatility, vapor pressure, and boiling point of these polyhydric alcohols are shown in “Table 1”.
Figure JPOXMLDOC01-appb-T000001

※60℃・1atmの開放系で1cm2・1時間あたりの揮発量。単位は、g/cm2・hr・60℃・1atm。
Figure JPOXMLDOC01-appb-T000001

* Volatilization volume per 1cm 2 · 1 hour in an open system at 60 ° C and 1atm. The unit is g / cm 2 · hr · 60 ° C · 1 atm.
 これらの多価アルコールのうち、グリセリン、ジグリセリン、エチレングリコール、プロピレングリコール、ポリエチレングリコールが好ましく、グリセリン、ジグリセリンがより好ましく、グリセリンが特に好ましい。 Of these polyhydric alcohols, glycerin, diglycerin, ethylene glycol, propylene glycol and polyethylene glycol are preferred, glycerin and diglycerin are more preferred, and glycerin is particularly preferred.
(3-2)多価アルコール誘導体
 多価アルコール誘導体としては、前記多価アルコールのエステル化合物、エーテル化合物等が挙げられる。例えば、エチレングリコールモノブチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールベンジルエーテル、エチレングリコールモノアセテート、エチレングリコールジアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、トリグリコールジクロリド、1-ブトキシエトキシプロパノール、グリセリルモノアセテート、グリセリルジアセテート、グリセリルトリアセテート、グリセリルモノブチレート、グリセリンエーテル、ポリ(オキシエチレン-オキシプロピレン)誘導体等が挙げられる。これらの多価アルコール誘導体の蒸気圧、沸点を「表2」に示す。
(3-2) Polyhydric alcohol derivatives Examples of the polyhydric alcohol derivatives include ester compounds and ether compounds of the polyhydric alcohols. For example, ethylene glycol monobutyl ether, ethylene glycol dibutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, ethylene glycol benzyl ether, ethylene glycol monoacetate, ethylene glycol diacetate, ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether Acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol monoacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monomer Butyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, propylene glycol monoacetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, triglycol dichloride, Examples thereof include 1-butoxyethoxypropanol, glyceryl monoacetate, glyceryl diacetate, glyceryl triacetate, glyceryl monobutyrate, glycerin ether, and poly (oxyethylene-oxypropylene) derivatives. The vapor pressure and boiling point of these polyhydric alcohol derivatives are shown in “Table 2”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(3-3)イオン液体
 イオン液体は、イオン性液体、常温溶融塩或いは単に溶融塩などと称されるものであり、150℃以下、より好ましく100℃以下、特に好ましくは60℃以下の温度域で液状の溶融状態を呈する塩である。
(3-3) Ionic liquid The ionic liquid is called an ionic liquid, a room temperature molten salt, or simply a molten salt, and is in a temperature range of 150 ° C. or lower, more preferably 100 ° C. or lower, particularly preferably 60 ° C. or lower. It is a salt that exhibits a liquid molten state.
 本発明では、イオン液体は、親水性イオン液体と疎水性イオン液体とに大別される。本発明では、水とイオン液体とを質量比1:1で混合し、十分に撹拌後、静置し10分以内に水相とイオン液体の相に分離するものを疎水性イオン液体と定義し、10分経過しても相分離が観察されないものを親水性イオン液体と定義する。イオン液体が親水性であるか、疎水性であるかはカチオンとアニオンの組み合わせや、多様なカチオンの構造の僅かな違いなどにより異なる。 In the present invention, the ionic liquid is roughly classified into a hydrophilic ionic liquid and a hydrophobic ionic liquid. In the present invention, water and an ionic liquid are mixed at a mass ratio of 1: 1, sufficiently stirred, allowed to stand, and separated into an aqueous phase and an ionic liquid phase within 10 minutes is defined as a hydrophobic ionic liquid. A substance having no phase separation observed after 10 minutes is defined as a hydrophilic ionic liquid. Whether the ionic liquid is hydrophilic or hydrophobic depends on the combination of cations and anions, slight differences in the structure of various cations, and the like.
 親水性イオン液体の例として、以下が挙げられる。
 カチオンとして、エチルメチルイミダゾリームイオン構造を有し、アニオンとして、塩素イオン、ブロムイオンや、チオシアン酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、トリフロロメタンスルホン酸、硝酸、メチルスルホン酸イオン構造等を有するイオン液体。
 カチオンとして、ブチルメチルイミダゾリームイオン構造を有し、アニオンとして、塩素イオン、ブロムイオンや、チオシアン酸、テトラフルオロホウ酸、トリフロロメタンスルホン酸、硝酸、メチルスルホン酸イオン構造等を有するイオン液体。
 カチオンとして、ヘキシルメチルイミダゾリーム、ブチルジメチルイミダゾリウムイオン構造を有し、アニオンとして、塩素イオン、ブロムイオンや、チオシアン酸、硝酸、メチルスルホン酸イオン構造等を有するイオン液体。
 カチオンとして、エチルジメチルイミダゾリームイオン構造を有し、アニオンとして、塩素イオン、ブロムイオンや、チオシアン酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、トリフロロメタンスルホン酸、硝酸、メチルスルホン酸イオン構造等を有するイオン液体。
 カチオンとして、エチルピリジニウムイオン構造を有し、アニオンとして、塩素イオン、ブロムイオンや、チオシアン酸、トリフロロメタンスルホン酸、硝酸、メチルスルホン酸イオン構造等を有するイオン液体。
Examples of the hydrophilic ionic liquid include the following.
As a cation, it has an ethyl methyl imidazole ion structure, and as an anion, chlorine ion, brom ion, thiocyanic acid, tetrafluoroboric acid, hexafluorophosphoric acid, trifluoromethanesulfonic acid, nitric acid, methylsulfonic acid ion structure, etc. An ionic liquid having
An ionic liquid having a butylmethylimidazole ion structure as a cation and a chloride ion, a bromide ion, a thiocyanic acid, tetrafluoroboric acid, trifluoromethanesulfonic acid, nitric acid, a methylsulfonic acid ion structure or the like as an anion.
An ionic liquid having a hexylmethylimidazolium or butyldimethylimidazolium ion structure as a cation and a chloride ion, a bromide ion, a thiocyanic acid, nitric acid, or a methylsulfonate ion structure as an anion.
As a cation, it has an ethyldimethylimidazole ion structure, and as an anion, a chloride ion, a bromide ion, a thiocyanic acid, a tetrafluoroboric acid, a hexafluorophosphoric acid, a trifluoromethanesulfonic acid, a nitric acid, a methylsulfonic acid ion structure, etc. An ionic liquid having
An ionic liquid having an ethylpyridinium ion structure as a cation and a chloride ion, a bromide ion, a thiocyanic acid, trifluoromethanesulfonic acid, nitric acid, or a methylsulfonic acid ion structure as an anion.
 疎水性イオン液体の例として、以下が挙げられる。
 カチオンとして、エチルメチルイミダゾリームイオン構造を有し、アニオンとして、ビス(トリフロロメチルスルホニル)イミド酸イオン構造を有するイオン液体。
 カチオンとして、ブチルメチルイミダゾリームイオン構造を有し、アニオンとして、ヘキサフルオロリン酸、ビス(トリフロロメチルスルホニル)イミド酸イオン構造等を有するイオン液体。
 カチオンとして、ヘキシルメチルイミダゾリーム、ヘキシルピリジニウムイオン構造等を有し、アニオンとして、テトラフルオロホウ酸、ヘキサフルオロリン酸、トリフロロメタンスルホン酸、ビス(トリフロロメチルスルホニル)イミド酸イオン構造等を有するイオン液体。
Examples of the hydrophobic ionic liquid include the following.
An ionic liquid having an ethylmethylimidazolium ion structure as a cation and a bis (trifluoromethylsulfonyl) imido ion structure as an anion.
An ionic liquid having a butyl methyl imidazole ion structure as a cation and a hexafluorophosphoric acid, bis (trifluoromethylsulfonyl) imido acid ion structure or the like as an anion.
The cation has a hexylmethylimidazole, hexylpyridinium ion structure, etc., and the anion has a tetrafluoroboric acid, hexafluorophosphoric acid, trifluoromethanesulfonic acid, bis (trifluoromethylsulfonyl) imido ion structure, etc. Ionic liquid.
 より具体的には、親水性イオン液体として、1-ブチル-3-メチルイミダゾリウム メチルサルフェート、1-ブチル-3-メチルイミダゾリウム チオシアネート、1-エチル-3-メチルイミダゾリウム
エチルサルフェート、テトラブチルアンモニウム ハイドロキシド 30-ハイドレート等を使用することが好ましい。また、疎水性イオン液体として、1-ブチル-3-メチルイミダゾリウム
ヘキサフロロホスフェートを使用することが好ましい。
More specifically, as the hydrophilic ionic liquid, 1-butyl-3-methylimidazolium methyl sulfate, 1-butyl-3-methylimidazolium thiocyanate, 1-ethyl-3-methylimidazolium ethyl sulfate, tetrabutylammonium Hydroxide 30-hydrate or the like is preferably used. Further, 1-butyl-3-methylimidazolium hexafluorophosphate is preferably used as the hydrophobic ionic liquid.
(3-4)油
 油には、鉱油、植物油、動物油及び合成油等の公知の低揮発性油を、1種又は2種以上適宜組み合わせて用いることができる。
(3-4) Oil As the oil, known low volatility oils such as mineral oil, vegetable oil, animal oil and synthetic oil can be used singly or in combination of two or more.
 鉱油としては、例えば、流動パラフィン、流動イソパラフィン、ナフテン油、石油ゼリー、ポリデセン、水素化ポリイソブテン等を挙げることができる。 Examples of mineral oil include liquid paraffin, liquid isoparaffin, naphthene oil, petroleum jelly, polydecene, hydrogenated polyisobutene, and the like.
 植物油としては、例えば、オリーブ油、オリーブスクワラン、マカデミアナッツ油、ホホバ油、ひまし油、やし油、パーム油、サフラワー油、ひまわり油、硬化やし油、硬化パーム油、アーモンド油、落花生油、綿実油、アボガド油、杏仁油、グレープシード油、トウモロコシ油、大豆油、菜種油、胡麻油、アプリコットオイル、シアバター油、コムギ胚種油、アンズ油、ハシバミ油、アルファルファ油、ケシ油、カボチャ油、インゲンマメ油、クロフサスグリ油、オオマツヨイグサ油、キビ油、オオムギ油、キノア油、ライムギ油、ククイ油、トケイソウ油、ジャコウバラ油等を挙げることができる。 Examples of vegetable oils include olive oil, olive squalane, macadamia nut oil, jojoba oil, castor oil, palm oil, palm oil, safflower oil, sunflower oil, hardened palm oil, hardened palm oil, almond oil, peanut oil, cottonseed oil, Avocado oil, apricot oil, grape seed oil, corn oil, soybean oil, rapeseed oil, sesame oil, apricot oil, shea butter oil, wheat germ oil, apricot oil, hazel oil, alfalfa oil, poppy oil, pumpkin oil, kidney bean oil, Examples include blackcurrant oil, evening primrose oil, millet oil, barley oil, quinoa oil, rye oil, kukui oil, passiflora oil and muskrose oil.
 動物油としては、例えば、ラノリン、タートル油、ミツロウ、スクワレン、プリスタン、パーヒドロスクワラン等を挙げることができる。 Examples of animal oils include lanolin, turtle oil, beeswax, squalene, pristane, perhydrosqualane and the like.
 合成油としては、例えば、グリセリントリ-2-エチルヘキサノエート等の脂肪酸トリグリセライド;ポリメチルフェニルシロキサン、ポリジメチルシロキサン、フェニルシリコーン、アミノシリコーン等のシリコーンオイル;ミリスチン酸イソプロピル、ミリスチン酸オクチルドデシル、イソノナン酸イソノニル、パルミチン酸イソプロピル、パルミチン酸エチルヘキシル、プルセリンオイル,イソプロピルミリステート,2-エチルヘキシルパルミテート,2-オクチルドデシルステアレート,2-オクチルドデシルエルケート,イソステアリルイソステアレート等の脂肪酸エステル類;イソステアリルラクテート,オクチルヒドロキシステアレート,オクチルドデシルヒドロキシステアレート,ジイソステアリルマレート,クエン酸トリイソセチル,脂肪族アルコールのヘプタン酸エステル,オクタン酸エステル,デカン酸エステル等のヒドロキシル化エステル;プロピレングリコールジオクタノエート,ネオペンチルグリコールジヘプタノエート,ジエチレングリコールジイソノナノエート等のポリオールエステル;オクチルドデカノール,2-ブチルオクタノール,2-ヘキシルデカノール,2-ウンデシルペンタデカノール,オレイルアルコール等の脂肪族アルコール;オレイン酸、リノール酸およびリノレン酸等の高級脂肪酸;等を挙げることができる。 Synthetic oils include, for example, fatty acid triglycerides such as glycerin tri-2-ethylhexanoate; silicone oils such as polymethylphenylsiloxane, polydimethylsiloxane, phenylsilicone, aminosilicone; isopropyl myristate, octyldodecyl myristate, isononane Fatty acid esters such as isononyl acid, isopropyl palmitate, ethylhexyl palmitate, prusserine oil, isopropyl myristate, 2-ethylhexyl palmitate, 2-octyldodecyl stearate, 2-octyldodecyl erucate, isostearyl isostearate; Isostearyl lactate, octyl hydroxy stearate, octyl dodecyl hydroxy stearate, diisostearyl malate, triisocitrate Hydroxyl esters such as chill, heptanoic acid ester of fatty alcohol, octanoic acid ester, decanoic acid ester; polyol ester such as propylene glycol dioctanoate, neopentyl glycol diheptanoate, diethylene glycol diisononanoate; octyldeca For example, aliphatic alcohols such as diol, 2-butyloctanol, 2-hexyldecanol, 2-undecylpentadecanol and oleyl alcohol; higher fatty acids such as oleic acid, linoleic acid and linolenic acid; and the like.
(4)配合比率
 水溶性有機モノマーの重合体(A)は、水溶性有機モノマーの重合体(A)、粘土鉱物(B)及び低揮発性媒体(C)の合計質量(以下、「合計質量(A+B+C)」と呼ぶことがある。)に対する質量比が、0.003~0.35となるように配合されることが好ましく、0.05~0.30となるように配合されることが更に好ましい。粘土鉱物(B)は、合計質量(A+B+C)に対する質量比が、0.002~0.15となるように配合されることが好ましく、0.005~0.10となるように配合されることが更に好ましい。低揮発性媒体(C)は、合計質量(A+B+C)に対する質量比が、0.5~0.995となるように配合されることが好ましく、0.7~0.95となるように配合されることが更に好ましい。
(4) Blending ratio The polymer (A) of the water-soluble organic monomer is a total mass (hereinafter referred to as “total mass”) of the polymer (A) of the water-soluble organic monomer, the clay mineral (B), and the low-volatile medium (C). (A + B + C) ”) is preferably blended so that the mass ratio is 0.003 to 0.35, and is preferably blended so as to be 0.05 to 0.30. Further preferred. The clay mineral (B) is preferably blended so that the mass ratio with respect to the total mass (A + B + C) is 0.002 to 0.15, and is preferably blended so as to be 0.005 to 0.10. Is more preferable. The low volatility medium (C) is preferably blended so that the mass ratio with respect to the total mass (A + B + C) is 0.5 to 0.995, and is preferably 0.7 to 0.95. More preferably.
 各組成の配合比率を上記の数値範囲とすることで、多孔質ゲルに次に説明する好適な透湿・吸水特性と荷重分散性等の力学的特性を付与できる。 By setting the blending ratio of each composition within the above numerical range, the porous gel can be provided with suitable mechanical properties such as moisture permeability / water absorption characteristics and load dispersibility described below.
(5)添加物
 本発明に係る圧力分散材に用いられる多孔質ゲルには、以下の物質を含有させてもよい。これらの添加物については、好ましくはゲル発泡体の製造時に予め水溶性有機モノマーに混合し、場合によっては発泡後に発泡体に注入することもできる。
(5) Additives The porous gel used in the pressure dispersion material according to the present invention may contain the following substances. These additives are preferably preliminarily mixed with the water-soluble organic monomer at the time of production of the gel foam, and in some cases can be injected into the foam after foaming.
(5-1)親水性高分子化合物
 親水性高分子化合物として、天然、半合成又は合成の親水性高分子化合物を、1種又は2種以上適宜組み合わせて含有させることができる。親水性高分子化合物を配合することにより、ゲル中に水を包含させた場合に水の揮発を抑制できる。親水性高分子化合物は、圧力分散材としての長期の使用や耐久性の観点から、架橋や親水性官能基数の制御等により、水と接触しても崩壊又は溶解し難いものが好ましく、非水溶性のものがさらに好ましい。親水性高分子化合物はゲル発泡体中には、0.1~50質量%添加することが好ましく、1~20質量%添加することがさらに好ましい。
(5-1) Hydrophilic polymer compound As the hydrophilic polymer compound, a natural, semi-synthetic or synthetic hydrophilic polymer compound may be contained alone or in combination of two or more. By blending the hydrophilic polymer compound, volatilization of water can be suppressed when water is included in the gel. From the viewpoint of long-term use as a pressure dispersion material and durability, the hydrophilic polymer compound is preferably one that is difficult to disintegrate or dissolve even when contacted with water by controlling the number of crosslinks or hydrophilic functional groups. The thing of nature is further preferable. The hydrophilic polymer compound is preferably added in an amount of 0.1 to 50% by mass, more preferably 1 to 20% by mass, in the gel foam.
 天然親水性高分子化合物の具体例として、例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンテン、デンプン(例えば、コメ、トウモロコシ、バレイショ及びコムギのデンプン)等の植物系高分子;キサンタンガム、デキストリン、デキストラン、サクシノグルカン、プルラン等の微生物系高分子;カゼイン、アルブミン、ゼラチン等の動物系高分子等が挙げられる。 Specific examples of natural hydrophilic polymer compounds include plant systems such as gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, agar, starch (eg, rice, corn, potato and wheat starch). Polymers: Microbial polymers such as xanthan gum, dextrin, dextran, succinoglucan and pullulan; animal polymers such as casein, albumin and gelatin.
 半合成親水性高分子化合物の具体例として、例えば、カルボキシメチルデンプン、メチルヒドロキシプロピルデンプン等のデンプン系高分子;メチルセルロース、エチルセルロース、メチルヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、セルロース硫酸ナトリウム、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロース・ナトリウム等のセルロース系高分子;アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等のアルギン酸系高分子等が挙げられる。 Specific examples of the semi-synthetic hydrophilic polymer compound include, for example, starch-based polymers such as carboxymethyl starch and methylhydroxypropyl starch; methylcellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate, hydroxypropylcellulose, carboxy Cellulose polymers such as methylcellulose and carboxymethylcellulose / sodium; and alginic acid polymers such as sodium alginate and propylene glycol alginate.
 合成親水性高分子化合物の具体例として、例えば、ポリビニルアルコール、ポリビニルメチルエーテル、ポリビニルピロリドン、カルボキシビニルポリマー等のビニル系高分子;ポリアクリル酸ナトリウム、ポリアクリルアミド等のアクリル系高分子;ポリエチレンイミン等が挙げられる。 Specific examples of the synthetic hydrophilic polymer compound include, for example, vinyl polymers such as polyvinyl alcohol, polyvinyl methyl ether, polyvinyl pyrrolidone and carboxyvinyl polymer; acrylic polymers such as sodium polyacrylate and polyacrylamide; polyethyleneimine and the like Is mentioned.
(5-2)充填材等
 従来公知の無機充填材、液状充填剤、難燃剤、繊維状強化材、着色剤などを含有させることができる。また、本発明のゲル発泡体を製造する過程で使用する水等の揮発性媒体を含有させておいてもよく、水を含有させる場合は、ゲル発泡体中に0.1~60質量%含有させることが好ましく、1~40質量%添加することがさらに好ましい。
(5-2) Filler, etc. Conventionally known inorganic fillers, liquid fillers, flame retardants, fibrous reinforcing materials, colorants and the like can be contained. Further, a volatile medium such as water used in the process of producing the gel foam of the present invention may be contained. When water is contained, the gel foam contains 0.1 to 60% by mass. It is preferable to add 1 to 40% by mass.
(6)発泡倍率・気孔孔径
 本発明に係る圧力分散材は、ゲル中に気孔を含有することで、伸縮性を保ったままで低密度化され、高い柔軟性を発揮する。なお、ゲル中に形成する気孔の大きさ、独立気孔/連続気孔の種類、形状等は、特に限定されない。
(6) Foaming ratio / pore diameter The pressure dispersion material according to the present invention contains pores in the gel, thereby reducing the density while maintaining the stretchability and exhibiting high flexibility. The size of the pores formed in the gel, the type and shape of the independent pores / continuous pores, etc. are not particularly limited.
 本発明に係る圧力分散材に用いられる多孔質ゲルの発泡倍率は、水溶性有機モノマー重合体(A)と、粘土鉱物(B)と、低揮発性媒体(C)を含有する分散液の発泡前の体積に対して1.2~20、好ましくは1.5~10とされる。発泡倍率を上記数値範囲とした場合、多孔質ゲルの嵩密度は、1g/cm未満、好ましくは0.05g/cm~0.9g/cm、更に好ましくは0.1g/cm~0.7g/cm、特に好ましくは0.15~0.5g/cmとなる。
 また、発泡により形成される気孔の平均孔径は、1~1000μmであることが好ましく、より好ましくは5~500μm、さらに好ましくは10~300μm、特に好ましくは20~200μmであることが更に好ましい。
The foaming ratio of the porous gel used in the pressure dispersion material according to the present invention is the foaming of the dispersion containing the water-soluble organic monomer polymer (A), the clay mineral (B), and the low-volatile medium (C). It is 1.2 to 20, preferably 1.5 to 10 with respect to the previous volume. If the expansion ratio was above range, the bulk density of the porous gel is less than 1 g / cm 3, preferably 0.05g / cm 3 ~ 0.9g / cm 3, more preferably 0.1 g / cm 3 ~ 0.7 g / cm 3 , particularly preferably 0.15 to 0.5 g / cm 3 .
The average pore diameter of the pores formed by foaming is preferably 1 to 1000 μm, more preferably 5 to 500 μm, still more preferably 10 to 300 μm, and particularly preferably 20 to 200 μm.
 発泡倍率、嵩密度、及び気孔の平均孔径を上記の数値範囲とすることで、多孔質ゲルに次に説明する好適な透湿・吸湿特性と荷重分散性、圧縮応力、荷重時伸長等の力学的特性を付与できる。具体的には、多孔質ゲルの発泡倍率又は気孔の平均孔径が上記数値範囲の下限値より小さいと(嵩密度が上記数値範囲の上限値より大きいと)、十分な透湿性が付与され難く、発泡倍率又は気孔の平均孔径が上記数値範囲の上限値より大きいと(嵩密度が上記数値範囲の下限値より小さいと)、十分な荷重分散性や耐久性が付与され難くなる。 By setting the expansion ratio, the bulk density, and the average pore diameter of the pores within the above numerical ranges, the porous gel has the following suitable moisture permeability / moisture absorption characteristics and dynamics such as load dispersibility, compressive stress, and elongation under load. Characteristics can be imparted. Specifically, when the expansion ratio of the porous gel or the average pore diameter of the pores is smaller than the lower limit value of the numerical range (when the bulk density is larger than the upper limit value of the numerical range), it is difficult to provide sufficient moisture permeability. If the expansion ratio or the average pore diameter of the pores is larger than the upper limit value of the above numerical range (if the bulk density is smaller than the lower limit value of the numerical range), sufficient load dispersibility and durability are difficult to be imparted.
(7)透湿・吸湿特性
 本発明に係る圧力分散材に用いられる多孔質ゲルは、各組成の配合比率、発泡倍率(嵩密度)、及び気孔の平均孔径を所定の範囲とすること等により、好適な透湿・吸湿特性を発揮する。
 多孔質ゲルの透湿度は、同一相対湿度環境下(例えば、30RH%、50RH%、又は80RH%のいずれかの環境)において、温度26℃の環境下よりも、温度40℃の環境下の方が高値となることが好ましい。この場合、温度26℃の環境下での多孔質ゲルの透湿度は、100~2500g/m・dayが好ましく、温度40℃の環境下での多孔質ゲルの透湿度は、1000~5000g/m・dayであることが好ましい。
 また、多孔質ゲルの透湿度は、同一温度環境下(例えば、26℃、32℃、又は40℃のいずれかの環境)において、相対湿度80%の環境下よりも、相対湿度30%の環境下の方が高値となることが好ましい。この場合、相対湿度80%の環境下での多孔質ゲルの透湿度は、100~2500g/m・dayが好ましく、相対湿度30%の環境下での多孔質ゲルの透湿度は、1000~5000g/m・dayであることが好ましい。
 このように、本発明の多孔質ゲルは、温度、湿度の環境によって透湿特性が変化するものであるが、例えば、相対湿度30%、温度40℃の環境下では透湿度は3000~5000g/m・dayであることが好ましく、相対湿度50%、温度32℃の環境下では透湿度は1000~3000g/m・dayであることが好ましく、相対湿度80%、温度26℃の環境下では透湿度は100~1000g/m・dayであることが好ましい。
 さらに、本発明の多孔質ゲルは、相対湿度30%の環境下に24時間放置後にはゲルの保持している水分が放出されゲル質量が減少し、相対湿度80%の環境下に24時間放置後には周囲の湿分を吸収してゲル質量が増加することが好ましい。
 具体的には、本発明の多孔質ゲルは、同一温度環境下(例えば、26℃、32℃、又は40℃のいずれかの環境)において、相対湿度30%の環境下に24時間放置後にはゲル質量が1~30%減少することが好ましく、2~25%減少することが更に好ましい。また、本発明の多孔質ゲルは、同一温度環境下(例えば、26℃、32℃、又は40℃のいずれかの環境)において、相対湿度80%の環境下に24時間放置後にはゲル質量が5~50%増加することが好ましく、10~40%増加することが更に好ましい。
(7) Moisture permeability / moisture absorption characteristics The porous gel used in the pressure dispersion material according to the present invention has a blending ratio of each composition, an expansion ratio (bulk density), and an average pore diameter within a predetermined range. Exhibits suitable moisture permeability and moisture absorption characteristics.
The moisture permeability of the porous gel is the same in the relative humidity environment (for example, 30RH%, 50RH%, or 80RH%) in the environment where the temperature is 40 ° C rather than the environment where the temperature is 26 ° C. Is preferably high. In this case, the moisture permeability of the porous gel in an environment at a temperature of 26 ° C. is preferably 100 to 2500 g / m 2 · day, and the moisture permeability of the porous gel in an environment at a temperature of 40 ° C. is 1000 to 5000 g / day. m 2 · day is preferable.
In addition, the moisture permeability of the porous gel is 30% relative humidity than 80% relative humidity in the same temperature environment (for example, any environment of 26 ° C., 32 ° C., or 40 ° C.). It is preferable that the lower one has a higher value. In this case, the moisture permeability of the porous gel in an environment with a relative humidity of 80% is preferably 100 to 2500 g / m 2 · day, and the moisture permeability of the porous gel in an environment with a relative humidity of 30% is 1000 to It is preferably 5000 g / m 2 · day.
As described above, the porous gel of the present invention changes in moisture permeability characteristics depending on the temperature and humidity environment. For example, in an environment where the relative humidity is 30% and the temperature is 40 ° C., the moisture permeability is 3000 to 5000 g / hr. m 2 · day is preferable, and in an environment where the relative humidity is 50% and the temperature is 32 ° C, the moisture permeability is preferably 1000 to 3000 g / m 2 · day, and the relative humidity is 80% and the temperature is 26 ° C. Then, the moisture permeability is preferably 100 to 1000 g / m 2 · day.
Furthermore, after the porous gel of the present invention is left for 24 hours in an environment with a relative humidity of 30%, the water retained in the gel is released and the gel mass decreases, and the porous gel is left for 24 hours in an environment with a relative humidity of 80%. It is preferable to increase the gel mass by absorbing ambient moisture later.
Specifically, the porous gel of the present invention is allowed to stand for 24 hours in an environment with a relative humidity of 30% under the same temperature environment (for example, any environment of 26 ° C., 32 ° C., or 40 ° C.). The gel mass is preferably reduced by 1 to 30%, more preferably 2 to 25%. In addition, the porous gel of the present invention has a gel mass after being left for 24 hours in an environment with a relative humidity of 80% under the same temperature environment (for example, any environment of 26 ° C., 32 ° C., or 40 ° C.). It is preferably increased by 5 to 50%, more preferably increased by 10 to 40%.
 本発明の圧力分散材は、上記のような透湿・吸湿特性を有するため、高温や高湿度で発汗や不感蒸泄等が多くなる場合には、過剰な湿分を吸湿・発散等するため、蒸れによる不快感や皮膚障害をなくし、乾燥時のドライスキン等に対しては、湿分を発散するため、保湿作用による皮膚改善を期待できる。このように、本発明の圧力分散材は、長時間使用した場合でも皮膚生理機能の恒常性、快適性を維持することができる。なお、圧力分散材の透湿性が高すぎると、荷重分散性が不十分となったり多孔質ゲルの耐久性が低下したりすることがある。一方、透湿性が低すぎると、蒸れ等による不快感が発生し易くなる。 Since the pressure dispersion material of the present invention has the moisture permeability / moisture absorption characteristics as described above, when sweating or insensitive steaming increases at high temperatures and high humidity, it absorbs and emits excess moisture. In addition, it eliminates discomfort and skin damage due to stuffiness, and emits moisture to dry skin when dried, etc., so that skin improvement by moisturizing action can be expected. As described above, the pressure dispersion material of the present invention can maintain homeostasis and comfort of skin physiological functions even when used for a long time. In addition, when the moisture permeability of a pressure dispersion material is too high, load dispersibility may become inadequate or durability of a porous gel may fall. On the other hand, if the moisture permeability is too low, discomfort due to stuffiness or the like tends to occur.
 多孔質ゲルは、形成された気孔の空隙や上記低揮発性媒体中に湿気を保持し、温度や湿度等の環境変化により、気孔の空隙を通して水分を放出すると考えられる。本発明に係る圧力分散材に用いられる多孔質ゲルでは、発泡倍率を1.2~20(嵩密度を1g/cm未満)とし、さらに気孔の平均孔径を1~1000μm、より好ましくは5~500μmに調整することにより、このような吸湿徐放性を調整し、上記の好適な透湿・吸湿特性を発揮し得るようにするものと考えられる。 It is considered that the porous gel retains moisture in the voids of the formed pores and the low-volatile medium, and releases moisture through the voids of the pores due to environmental changes such as temperature and humidity. In the porous gel used for the pressure dispersion material according to the present invention, the expansion ratio is 1.2 to 20 (bulk density is less than 1 g / cm 3 ), and the average pore diameter is 1 to 1000 μm, more preferably 5 to By adjusting to 500 μm, it is considered that such moisture absorption and sustained release properties are adjusted so that the above-described suitable moisture permeability and moisture absorption characteristics can be exhibited.
 また、多孔質ゲルは、組成として含む低揮発性媒体(C)を多価アルコール又はその誘導体とした場合には、多価アルコール等の水との親和性により湿気を保持し、吸湿徐放性を示すものと考えられる。本発明に係る圧力分散材に用いられる多孔質ゲルでは、低揮発性媒体(C)の質量比(C)/{(A)+(B)+(C)}を0.5~0.995とし、より好ましくは0.7~0.95とし、親水性による吸湿徐放性を調整することにより、上記の好適な透湿性が発揮される。 In addition, when the low volatile medium (C) included in the composition is a polyhydric alcohol or a derivative thereof, the porous gel retains moisture due to its affinity with water such as polyhydric alcohol, and absorbs moisture gradually. It is thought that it shows. In the porous gel used for the pressure dispersion material according to the present invention, the mass ratio (C) / {(A) + (B) + (C)} of the low volatile medium (C) is 0.5 to 0.995. And more preferably 0.7 to 0.95, and by adjusting the hygroscopic sustained release property due to hydrophilicity, the above-mentioned preferable moisture permeability is exhibited.
(8)荷重分散性
 本発明に係る圧力分散材に用いられる多孔質ゲルは、発泡倍率等を所定の範囲としたことにより、好適な荷重分散性を発揮する。本発明に係る圧力分散材は、厚み50mmのシートとして寝具用マットレス、椅子や車椅子などのクッション材として用いた場合に、最大圧力が好ましくは160mmHg以下、さらに好ましくは130mmHg以下のものである。なお、圧力分散材を用いない際の最大圧力は、通常、200mmHg以上となる。本発明に係る圧力分散材は、約110mmHgと良好な荷重分散性を示す。
(8) Load dispersibility The porous gel used for the pressure dispersion material according to the present invention exhibits suitable load dispersibility by setting the expansion ratio and the like within a predetermined range. The pressure dispersion material according to the present invention has a maximum pressure of preferably 160 mmHg or less, more preferably 130 mmHg or less when used as a cushion material for a mattress for bedding, a chair or a wheelchair as a sheet having a thickness of 50 mm. Note that the maximum pressure when the pressure dispersion material is not used is usually 200 mmHg or more. The pressure dispersion material according to the present invention exhibits a good load dispersibility of about 110 mmHg.
 本発明の圧力分散材は、このように好適な荷重分散性を有するため、整形外科、外科、リハビリ、看護、介護、スポーツ等の医療や日用生活分野における褥瘡予防用具や各種装具の圧力吸収パッドなどに用いられる圧力分散材等として好適である。圧力分散材の荷重分散性が不十分であると、局所的な応力集中により皮膚障害(場合によっては褥瘡)を発生したり、骨、関節等に障害を与えたりする原因となり得る。 Since the pressure dispersion material of the present invention has such suitable load dispersibility, pressure absorption of pressure ulcer prevention tools and various appliances in medical and daily life fields such as orthopedics, surgery, rehabilitation, nursing, nursing care, sports, etc. It is suitable as a pressure dispersion material used for a pad or the like. If the load dispersibility of the pressure dispersion material is insufficient, it may cause skin damage (in some cases pressure sores) due to local stress concentration, or damage to bones, joints, and the like.
 多孔質ゲルは、加圧時に気孔が押し潰されて形状を変化させることによって荷重分散性を示す。本発明に係る圧力分散材に用いられる多孔質ゲルでは、発泡倍率を1.2~20(嵩密度を1g/cm未満)とし、荷重分散性を上記数値範囲に調整することにより、好適な体圧分散性能が発揮される。 The porous gel exhibits load dispersibility by changing the shape by crushing the pores during pressurization. In the porous gel used for the pressure dispersion material according to the present invention, it is preferable that the expansion ratio is 1.2 to 20 (bulk density is less than 1 g / cm 3 ) and the load dispersibility is adjusted to the above numerical range. Body pressure dispersion performance is demonstrated.
 また、本発明に係る圧力分散材に用いられる多孔質ゲルでは、水溶性有機モノマーの重合体(A)、粘土鉱物(B)及び低揮発性媒体(C)を所定比率で配合し、多孔質ゲルの弾性および回復性を調整することにより、好適な体圧分散性能が発揮される。 In the porous gel used for the pressure dispersion material according to the present invention, the polymer (A) of the water-soluble organic monomer, the clay mineral (B), and the low-volatile medium (C) are blended at a predetermined ratio, and the porous gel is used. By adjusting the elasticity and recoverability of the gel, suitable body pressure dispersion performance is exhibited.
(9)その他の特性
(9-1)圧縮応力
 本発明の圧力分散材は整形外科、外科、リハビリ、看護、介護、スポーツ等の医療や日用生活分野における褥瘡予防用具や各種装具の圧力吸収パッドなどに用いられる圧力分散材等として好適な荷重分散性に加えて、良好な衝撃吸収、荷重支持性を示す。具体的には圧力分散材の30%変位での圧縮応力が、15kPa以下であることが好ましく、0.5~10kPaであることが更に好ましい。また前記圧分散材を70%変位以上圧縮した後、50%変位まで戻した時の応力が10kPa以下であることが好ましく、0.1~8kPaであることが更に好ましい。
 本発明の圧力分散材は上記の所定の特性を示すことにより圧縮方向のストレスを緩和し、かつ荷重支持性をも兼ね備えることができる。
(9) Other properties (9-1) Compressive stress The pressure dispersion material of the present invention is a pressure absorbing material for pressure ulcer prevention devices and various appliances in the fields of medical and daily life such as orthopedics, surgery, rehabilitation, nursing, nursing care and sports. In addition to load dispersibility suitable as a pressure dispersion material used for a pad or the like, it exhibits good shock absorption and load support. Specifically, the compressive stress at 30% displacement of the pressure dispersion material is preferably 15 kPa or less, and more preferably 0.5 to 10 kPa. The stress when the pressure dispersion material is compressed by 70% displacement or more and then returned to 50% displacement is preferably 10 kPa or less, more preferably 0.1 to 8 kPa.
The pressure dispersion material of the present invention can relieve stress in the compression direction by exhibiting the above-mentioned predetermined characteristics, and can also have load supportability.
(9-2)粘弾性特性
 本発明の圧力分散材は、ゲル材料特有の剪断応力分散性、より詳しくはゲル自身の柔らかさと粘弾性特性によって発現する剪断応力分散性を兼ね備えていることが望ましい。具体的には本発明の圧力分散材に用いられる多孔質ゲルは37℃、ひずみ速度1.0Hzにおける複素弾性率|G*|が1.0~10.0kPaであり、損失正接tanδが0.01~1.00であることが好ましく、複素弾性率|G*|が0.8~8.0kPaであり、損失正接tanδが0.05~0.50であることがより好ましい。また、本発明の圧力分散材の37℃、ひずみ速度0.1~10.0Hzにおける複素弾性率|G*|が1.0~10.0kPaであり、損失正接tanδが0.01~1.00であることが好ましい。
 本発明の圧力分散材は上記の所定の粘弾性特性を示すことにより皮膚表面及び内部に負荷される剪断方向のストレスを緩和し、かつ荷重支持性をも兼ね備えることができる。
(9-2) Viscoelastic properties The pressure dispersion material of the present invention desirably has shear stress dispersibility peculiar to gel materials, more specifically, shear stress dispersibility expressed by the softness and viscoelastic properties of the gel itself. . Specifically, the porous gel used in the pressure dispersion material of the present invention has a complex elastic modulus | G * | of 1.0 to 10.0 kPa at 37 ° C. and a strain rate of 1.0 Hz, and a loss tangent tan δ of 0.1. It is preferably 01 to 1.00, the complex elastic modulus | G * | is preferably 0.8 to 8.0 kPa, and the loss tangent tan δ is more preferably 0.05 to 0.50. Further, the pressure dispersion material of the present invention has a complex elastic modulus | G * | of 1.0 to 10.0 kPa at 37 ° C. and a strain rate of 0.1 to 10.0 Hz, and a loss tangent tan δ of 0.01 to 1. 00 is preferable.
The pressure dispersion material of the present invention can relieve the stress in the shearing direction applied to the skin surface and the inside by exhibiting the above-mentioned predetermined viscoelastic characteristics, and can also have load supportability.
(9-3)伸長力・伸長率
 本発明の圧力分散材に用いられる多孔質ゲルは、圧力分散材装着時に変形力を加えた際や、体荷重を加えた際に、皮膚にストレスをかけないように、100%伸長時の伸長力が、50kPa以下であることが好ましい。
 また、本発明の圧分散材に用いられる多孔質ゲルは、体表面への密着性を高めるために、30kPa荷重時の伸長率が、100%以上であることが好ましい。
(9-3) Elongation force / Elongation rate The porous gel used in the pressure dispersion material of the present invention applies stress to the skin when a deformation force is applied when the pressure dispersion material is attached or when a body load is applied. It is preferable that the extension force at 100% extension is 50 kPa or less.
The porous gel used in the pressure dispersion material of the present invention preferably has an elongation rate of 100% or more at a load of 30 kPa in order to enhance adhesion to the body surface.
(9-4)着座温湿度
 本発明の圧力分散材は体表面環境を快適環境下に調節することが可能である。一般の被服内環境において快適とされる温湿度域は温度30.5~33.5℃において湿度65RH%未満、より好ましくは31~33℃において湿度40~60RH%の環境であり、この好適環境条件は人体表面-装着物間においても同様と考えられる。本発明に用いられる多孔質ゲルは、前記の吸湿徐放性を有することにより人体表面と多孔質ゲルとの間の環境をこの快適環境に保つことが可能である。本発明の圧分散材を車椅子クッションとして用いた際の着座部臀裂辺りの温湿度は、温度31~32℃、湿度50~55%RHを維持し、快適な温湿度状態を保つことが可能である。
(9-4) Seating Temperature and Humidity The pressure dispersion material of the present invention can adjust the body surface environment to a comfortable environment. The temperature / humidity range considered to be comfortable in a general clothing environment is an environment having a humidity of less than 65 RH% at a temperature of 30.5 to 33.5 ° C., more preferably 40 to 60 RH% at 31 to 33 ° C. The condition is considered to be the same between the human body surface and the wearing object. The porous gel used in the present invention can keep the environment between the human body surface and the porous gel in this comfortable environment by having the moisture absorption and sustained release property described above. When the pressure dispersion material of the present invention is used as a wheelchair cushion, the temperature / humidity around the rupture of the seating part is maintained at a temperature of 31-32 ° C. and a humidity of 50-55% RH, and a comfortable temperature / humidity state can be maintained. It is.
2.圧力分散材の製造方法
 本発明に係る圧力分散材の製造方法は、粘土鉱物及び0.1g/cm2・hr・60℃・1atm以下の低揮発性媒体とともに分散液中に分散させた水溶性有機モノマーを重合し、発泡させる工程を含む多孔質ゲルを含んでなる。
2. Manufacturing method of pressure dispersion material The manufacturing method of the pressure dispersion material according to the present invention is a water-soluble material dispersed in a dispersion together with a clay mineral and a low-volatile medium of 0.1 g / cm 2 · hr · 60 ° C · 1 atm or less. It comprises a porous gel comprising steps of polymerizing and foaming organic monomers.
 具体的には、溶媒(水および低揮発性媒体)中で、層状剥離して均一に微分散した粘土鉱物の共存下に、水溶性有機モノマーを重合させる過程において、水溶性有機モノマーと粘土鉱物と溶媒との混合物に、発泡剤または気体を導入し、重合して発泡させる。あるいは、水溶性有機モノマーを重合後に溶媒中に、発泡剤または気体を導入し、発泡させてもよい。溶媒には、重合開始剤や触媒、他の水溶性化合物(添加物)を予め混合、溶解させておいてもよい。
 また、本発明に係る圧力分散材の製造方法は、粘土鉱物とともに水を含む分散液中に水溶性有機モノマーと発泡剤を導入し、水溶性有機モノマーを重合してゲルを形成した後、水の少なくとも一部を0.1g/cm2・hr・60℃・1atm以下の低揮発性媒体で置換した後、発泡させる工程を含む多孔質ゲルを含んでなる。
 具体的には、溶媒(水)中で層状剥離して均一に微分散した粘土鉱物の共存下に水溶性有機モノマーを重合させる過程において、水溶性有機モノマーと粘土鉱物と水との混合物に発泡剤を導入し、水溶性有機モノマーを重合した後、水の少なくとも一部を低揮発性媒体に置換し、その後、加熱等により発泡させる。溶媒には、重合開始剤や触媒、他の水溶性化合物(添加物)を予め混合、溶解させておいてもよい。
Specifically, in the process of polymerizing a water-soluble organic monomer in the presence of a clay mineral that has been exfoliated and uniformly dispersed in a solvent (water and a low-volatile medium), the water-soluble organic monomer and the clay mineral A foaming agent or a gas is introduced into a mixture of the solvent and the solvent, polymerized and foamed. Alternatively, the water-soluble organic monomer may be foamed by introducing a foaming agent or a gas into the solvent after polymerization. In the solvent, a polymerization initiator, a catalyst, and other water-soluble compounds (additives) may be mixed and dissolved in advance.
Further, the method for producing a pressure dispersion material according to the present invention introduces a water-soluble organic monomer and a foaming agent into a dispersion containing water together with a clay mineral, polymerizes the water-soluble organic monomer, forms a gel, It comprises a porous gel including a step of foaming after substituting at least a part of it with a low-volatile medium of 0.1 g / cm 2 · hr · 60 ° C. · 1 atm or less.
Specifically, in the process of polymerizing a water-soluble organic monomer in the presence of a clay mineral that has been exfoliated and uniformly dispersed in a solvent (water), foaming occurs in a mixture of the water-soluble organic monomer, the clay mineral, and water. After introducing the agent and polymerizing the water-soluble organic monomer, at least a part of the water is replaced with a low-volatile medium, and then foamed by heating or the like. In the solvent, a polymerization initiator, a catalyst, and other water-soluble compounds (additives) may be mixed and dissolved in advance.
 発泡剤としては、ヘプタン、ペンタン、シクロペンタン、ヘキサン等の低沸点の炭化水素化合物、塩素化炭化水素化合物、フロン、NaHCO、NaCO、CaCO等の炭酸塩などが好ましい。特に、操作が容易であり、環境に与える影響が小さいことから特に炭化水素化合物や炭酸塩は好ましく用いられる。発泡剤の添加量は、所望の発泡体の発泡倍率、用いる発泡剤の種類、発泡時の条件(例:温度や圧力)によって異なり、適宜選択される。例えばペンタンの場合、水溶性有機モノマー及び粘土鉱物に対して好ましくは50~1000質量%が用いられる。発泡剤として、例えばペンタンを使用する場合は、ペンタンを重合過程で撹拌しながら加えてゲルを調製する。得られたゲルを大気中、室温または必要に応じて加温して保持することにより、発泡が生じ、均一なゲル発泡体を得ることができる。 As the foaming agent, low boiling point hydrocarbon compounds such as heptane, pentane, cyclopentane and hexane, chlorinated hydrocarbon compounds, chlorofluorocarbons, carbonates such as NaHCO 3 , Na 2 CO 3 and CaCO 3 are preferable. In particular, hydrocarbon compounds and carbonates are particularly preferably used because they are easy to operate and have little influence on the environment. The addition amount of the foaming agent varies depending on the foaming ratio of the desired foam, the type of foaming agent used, and the foaming conditions (eg, temperature and pressure), and is appropriately selected. For example, in the case of pentane, 50 to 1000% by mass is preferably used with respect to the water-soluble organic monomer and clay mineral. For example, when pentane is used as the foaming agent, pentane is added with stirring during the polymerization process to prepare a gel. When the obtained gel is held in the air at room temperature or as needed, foaming occurs and a uniform gel foam can be obtained.
 また、気体としては、不活性なガスが好ましく、例えば窒素ガス、炭酸ガスなどを挙げることができる。また、気体の導入量も、所望の発泡体の発泡倍率によって適宜選択される。気体を用いる場合には、例えば窒素ガスを重合過程で、好ましくは粘度が30mPa・s以上に上昇した時点で微細な泡となるように導入し、重合してゲル発泡体を得ることができる。
 また、発泡剤として、熱により膨張する性質を有するマイクロカプセルが有効に用いられる。具体的な熱膨張性マイクロカプセルの例としては、熱可塑性高分子(例:ポリメタクリル酸メチル、ポリグリコール酸など)やその架橋高分子を殻(シェル)にして、その内部に低沸点炭化水を包み込んだマイクロカプセルがあげられる。かかる熱膨張性マイクロカプセルはゲル調製用の反応液中に導入され、その後、重合過程及び/又は重合化後に、好ましくは低揮発性媒体を含む有機無機複合ゲル中において熱膨張させ、膨張したマイクロカプセルとなり、ゲルを発泡状態とする働きを有する。用いる熱膨張性マイクロカプセルの大きさは必ずしも限定されないが、ゲル中の三次元網目に微細に分散して含まれるためには、1~500μm、より好ましくは3~100μm、特に好ましくは5~50μmの範囲の大きさが用いられる。熱膨張性マイクロカプセルの使用量は、所望の発泡倍率、用いる熱膨張性マイクロカプセルの種類、膨張(発泡)時の条件(例:温度や圧力)によって異なり、適宜選択されるが、例えば、水溶性有機モノマーに対する質量比として、0.01~10の範囲が好ましく用いられる。一方、膨張を起こさせる温度としては、有機無機複合ゲルの合成を阻害しない範囲が用いられる。例えば、膨張温度としてはゲルの重合温度以上とするのが好ましく、具体的には20℃~250℃の範囲が用いられ、より好ましくは30℃~200℃、更に好ましくは50℃~150℃、特に好ましくは60℃~120℃の範囲が用いられる。本発明で使用できる熱膨張性マイクロカプセルの具体的としては、例えば、マツモトマイクロスフェアーFシリーズ(松本製薬工業株式会社:F-20、F-30、F-36LV、F-36、F-48、F-50、F-78K、F-79、F-80S、F-82、F-100、F-102、F-105、F-170、F-190D、F-230D、F-260D、等)、FN-シリーズ(松本製薬工業株式会社:FN-100、FN-105、FN-180S、FN-180、等)があげられる。
The gas is preferably an inert gas, and examples thereof include nitrogen gas and carbon dioxide gas. The amount of gas introduced is also appropriately selected depending on the desired foaming ratio of the foam. In the case of using a gas, for example, nitrogen gas is introduced in the polymerization process, preferably so as to form fine bubbles when the viscosity rises to 30 mPa · s or more, and polymerized to obtain a gel foam.
As the foaming agent, a microcapsule having a property of expanding by heat is effectively used. Specific examples of thermally expandable microcapsules include thermoplastic polymers (eg, polymethyl methacrylate, polyglycolic acid, etc.) and their crosslinked polymers as shells, and low-boiling hydrocarbons inside them. A microcapsule wrapped around Such thermally expandable microcapsules are introduced into a reaction solution for gel preparation, and then, after the polymerization process and / or polymerization, are preferably thermally expanded and expanded in an organic-inorganic composite gel containing a low-volatile medium. It becomes a capsule and has the function of making the gel into a foamed state. The size of the thermally expandable microcapsule to be used is not necessarily limited, but in order to be finely dispersed and contained in the three-dimensional network in the gel, it is 1 to 500 μm, more preferably 3 to 100 μm, and particularly preferably 5 to 50 μm. The size of the range is used. The amount of thermally expandable microcapsules used varies depending on the desired expansion ratio, the type of thermally expandable microcapsules used, and the conditions during expansion (foaming) (eg, temperature and pressure). The mass ratio with respect to the organic monomer is preferably in the range of 0.01 to 10. On the other hand, as the temperature causing the expansion, a range that does not inhibit the synthesis of the organic-inorganic composite gel is used. For example, the expansion temperature is preferably equal to or higher than the polymerization temperature of the gel, specifically, a range of 20 ° C. to 250 ° C. is used, more preferably 30 ° C. to 200 ° C., still more preferably 50 ° C. to 150 ° C. Particularly preferably, a range of 60 ° C. to 120 ° C. is used. Specific examples of thermally expandable microcapsules that can be used in the present invention include Matsumoto Microsphere F series (Matsumoto Pharmaceutical Co., Ltd .: F-20, F-30, F-36LV, F-36, F-48). , F-50, F-78K, F-79, F-80S, F-82, F-100, F-102, F-105, F-170, F-190D, F-230D, F-260D, etc. FN-series (Matsumoto Pharmaceutical Co., Ltd .: FN-100, FN-105, FN-180S, FN-180, etc.).
(実施例1)
 水溶性有機モノマーとしてN,N-ジメチルアクリルアミド(興人株式会社製)を19.8g、膨潤性粘土鉱物として水膨潤性ヘクトライト(商標ラポナイトXLG、英国ロックウッド株式会社製)を4.58g、熱膨張性マイクロカプセル(F20:松本油脂製薬株式会社製、平均粒子径10~20μm)14.85g(乾燥重量)、純水190g含む均一透明な溶液を500mlのガラス容器中で撹拌しながら調製した。該溶液を氷浴に入れ、次いで、ペルオキソ二硫酸カリウム0.2gを含む開始剤水溶液10gを撹拌して加え、均一反応溶液を得た。次いで、フィルム作成用ガラス容器(内容積60cm:縦10cm、横10cm、厚み6mm)に反応溶液を注入し、ガラス容器を50℃の恒温水槽に入れ5時間保持して、水溶性有機モノマーを重合させ、有機無機複合ゲルを調製した。熱膨張性マイクロカプセル/水溶性有機モノマー重合物の質量比は0.75。以上の工程は全て酸素を除いた状態にて行った。重合後、容器から取りだした有機無機複合ゲルを大過剰(ゲルの約5倍量)のグリセリンと水の混合溶液(グリセリン:水=71:29(質量比))中に入れ、40℃で60時間保持した。その間、12時間おきに新鮮な混合溶液に交換した。得られた有機無機複合ゲルの一部を切り出し、含まれているグリセリン量を乾燥重量と熱重量分析により測定したところ、グリセリンの(高分子+粘土(ヘクトライト)+グリセリン)に対する質量比が0.89であり、高分子および粘土の(高分子+粘土(ヘクトライト)+グリセリン)に対する質量比は各々0.088および0.02であった。この有機無機複合ゲルを温度105℃のオートクレーブ内で20分処理することにより、熱膨張性マイクロカプセルを膨張させ、発泡状態のゲルを得た。更に、湿度60%、温度25℃の雰囲気で1日保持して調湿処理を行うことにより、有機無機複合多孔質ゲルを得た。得られた有機無機複合多孔質ゲルの媒体中の水/グリセリンの質量比は0.2であった。また、発泡(膨張)前の有機無機複合ゲルに対する有機無機複合多孔質ゲルの体積比(発泡倍率)は3.6であり、有機無機複合多孔質ゲルの密度は0.30g/cm、平均気孔径は51μmであった。得られた有機無機多孔質ゲルは柔軟で、表面粘着性があり、取り扱い性に優れた軽量のゲル多孔質体であった。有機無機多孔質ゲルを一片が2cmで厚みが1cmの直方体に切り出して圧縮試験を、また1cm×1cmの断面で長さが7cmの直方体に切り出して延伸試験を行った。圧縮及び延伸試験には、島津製作所製卓上型万能試験機AGS-Hを用い、変形速度30mm/分及び50mm/分にて行った。その結果、圧縮試験において90%圧縮(元の長さの10%迄圧縮)しても破壊することなく、また延伸試験において200%まで延伸しても破壊することなくいずれも可逆的な繰り返し変形が可能であった。60%圧縮時の応力は初回が21kPa、2回以降が18kPaであった。一方、得られた有機無機多孔質ゲルは、大気中でも長期間(1年以上)において安定した形状と物性を示した。
Example 1
19.8 g of N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) as the water-soluble organic monomer, 4.58 g of water-swellable hectorite (trademark Laponite XLG, manufactured by Rockwood Co., Ltd.) as the swellable clay mineral, A uniformly transparent solution containing 14.85 g (dry weight) of a heat-expandable microcapsule (F20: Matsumoto Yushi Seiyaku Co., Ltd., average particle size: 10 to 20 μm) and 190 g of pure water was prepared in a 500 ml glass container with stirring. . The solution was placed in an ice bath, and then 10 g of an aqueous initiator solution containing 0.2 g of potassium peroxodisulfate was added with stirring to obtain a homogeneous reaction solution. Next, the reaction solution is poured into a glass container for film production (internal volume 60 cm 3 : length 10 cm, width 10 cm, thickness 6 mm), and the glass container is placed in a constant temperature water bath at 50 ° C. and held for 5 hours to remove the water-soluble organic monomer. Polymerization was performed to prepare an organic-inorganic composite gel. The mass ratio of thermally expandable microcapsule / water-soluble organic monomer polymer is 0.75. The above steps were all performed in a state where oxygen was removed. After the polymerization, the organic-inorganic composite gel taken out from the container was placed in a large excess (about 5 times the amount of the gel) of a mixed solution of glycerin and water (glycerin: water = 71: 29 (mass ratio)). Held for hours. Meanwhile, the fresh mixed solution was exchanged every 12 hours. A part of the obtained organic-inorganic composite gel was cut out and the amount of glycerin contained was measured by dry weight and thermogravimetric analysis. The mass ratio of glycerin to (polymer + clay (hectorite) + glycerin) was 0. The mass ratio of polymer and clay to (polymer + clay (hectorite) + glycerin) was 0.088 and 0.02, respectively. This organic-inorganic composite gel was treated in an autoclave at a temperature of 105 ° C. for 20 minutes to expand the thermally expandable microcapsules and obtain a foamed gel. Furthermore, the organic-inorganic composite porous gel was obtained by performing humidity control by holding for 1 day in an atmosphere of 60% humidity and 25 ° C. temperature. The mass ratio of water / glycerin in the medium of the obtained organic-inorganic composite porous gel was 0.2. Moreover, the volume ratio (foaming ratio) of the organic-inorganic composite porous gel to the organic-inorganic composite gel before foaming (expansion) is 3.6, and the density of the organic-inorganic composite porous gel is 0.30 g / cm 3 , average The pore diameter was 51 μm. The obtained organic-inorganic porous gel was a lightweight gel porous body that was flexible, had surface tackiness, and was excellent in handleability. The organic / inorganic porous gel was cut into a rectangular parallelepiped having a length of 2 cm and a thickness of 1 cm, and a stretching test was performed by cutting into a rectangular parallelepiped having a cross section of 1 cm × 1 cm and a length of 7 cm. The compression and stretching tests were performed using a desktop universal testing machine AGS-H manufactured by Shimadzu Corporation at deformation speeds of 30 mm / min and 50 mm / min. As a result, 90% compression (compression up to 10% of the original length) in the compression test does not break, and even in the stretching test, it does not break even if stretched to 200%. Was possible. The stress at 60% compression was 21 kPa for the first time and 18 kPa for the second time and thereafter. On the other hand, the obtained organic-inorganic porous gel showed a stable shape and physical properties in the air for a long period (one year or more).
(実施例2)
 水190gの代わりに、純水130gとグリセリン60gを用いる以外は実施例1と同様にして、有機無機複合ゲルを調製した。得られたゲル中の媒体中のグリセリン含有率は30%であった。この有機無機複合ゲルを温度80℃、湿度95%の恒温恒湿器内で120分処理することにより、熱膨張性マイクロカプセルを膨張させ、有機無機複合多孔質ゲルを得た。得られた有機無機複合多孔質ゲル中のグリセリン、高分子および粘土鉱物の(グリセリン+高分子+粘土鉱物)に対する質量比は、各々、0.711、0.235、0.05であった。また、有機無機複合多孔質ゲルの発泡倍率は4.0倍、密度は0.27g/cmであった。圧縮試験においては90%圧縮しても、または延伸試験において200%まで延伸しても破壊することなく、いずれも可逆的な繰り返し変形が可能であった。60%圧縮時の応力は29kPaであった。
(Example 2)
An organic-inorganic composite gel was prepared in the same manner as in Example 1 except that 130 g of pure water and 60 g of glycerin were used instead of 190 g of water. The glycerin content in the medium in the obtained gel was 30%. This organic-inorganic composite gel was treated in a thermostat at a temperature of 80 ° C. and a humidity of 95% for 120 minutes to expand the thermally expandable microcapsules, thereby obtaining an organic-inorganic composite porous gel. The mass ratios of glycerin, polymer and clay mineral to (glycerin + polymer + clay mineral) in the obtained organic-inorganic composite porous gel were 0.711, 0.235 and 0.05, respectively. The foaming ratio of the organic-inorganic composite porous gel was 4.0 times, and the density was 0.27 g / cm 3 . Reversible repetitive deformation was possible in each of the compression tests without breaking even when compressed by 90% or even when stretched to 200% in the stretching test. The stress at 60% compression was 29 kPa.
(実施例3-5)
 各成分の質量比および熱膨張性マイクロカプセルのモノマーに対する質量比を変化させること以外は実施例1と同様な方法で、「表3」に示す有機無機複合多孔質ゲルを調製した。
(Example 3-5)
An organic-inorganic composite porous gel shown in “Table 3” was prepared in the same manner as in Example 1 except that the mass ratio of each component and the mass ratio of the thermally expandable microcapsule to the monomer were changed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記の実施例に係る有機無機複合多孔質ゲルの各特性について、以下の方法で評価した。 Each characteristic of the organic-inorganic composite porous gel according to the above example was evaluated by the following method.
(透湿度)
(1)サンプル調整
 多孔質ゲルを厚さ5mmのシート状に切り出し、温度23±2℃、相対湿度65±5%の環境下において24時間以上調整した。
(2)試験方法
 JIS K6404、及びJIS L1099 A-2「ウォーター法」に準じて測定した。
 予め測定環境温度に調整した透湿カップに測定環境温度の水を約42ml入れ、透湿カップにシート状の多孔質ゲルの試験片、パッキン、リングを順次載せ、ちょうナットで固定し、装着側面をビニル粘着テープでシールする。
 透湿カップを含む試験体全質量(透湿カップ、多孔質ゲル試験片、パッキン、リング、及びちょうナットの合計質量)を測定し、初期試験体全質量Cとする。
 温度26℃、32℃、40℃においてそれぞれ相対湿度30%、50%、80%の各試験環境下に透湿カップを2時間晒した後の試験体全質量Cを測定し、さらに試験開始後24時間後の試験体全質量C24を測定して以下の式に従い、透湿度を算出した。
 T = ((C-C24) /S)×24/22
 T:透湿度 [g/m・day]
 C:測定開始2時間後の試験体質量 [g]
 C24:測定開始24時間後の試験体質量 [g]
 S:カップの透湿面積 [m]
(Moisture permeability)
(1) Sample adjustment The porous gel was cut into a sheet having a thickness of 5 mm and adjusted for 24 hours or more in an environment of a temperature of 23 ± 2 ° C. and a relative humidity of 65 ± 5%.
(2) Test method Measured according to JIS K6404 and JIS L1099 A-2 “Water Method”.
About 42 ml of water at the measurement environment temperature is put in a moisture permeable cup that has been adjusted to the measurement environment temperature in advance, and a sheet-like porous gel test piece, packing, and ring are placed on the moisture permeable cup in order, and fixed with a butterfly nut. Is sealed with vinyl adhesive tape.
Specimens total mass including the moisture-permeable cup (moisture-permeable cup, porous gel specimen, packing, rings, and the total mass of the wing nut) was measured, and the initial specimen total mass C 0.
Temperature 26 ° C., 32 ° C., respectively 30% relative humidity at 40 ° C., 50%, the specimen total mass C 2 after exposure to moisture permeation cup 2 hours under 80% of the test environment was measured, starting further tested After 24 hours, the total mass C 24 of the test specimen was measured, and the moisture permeability was calculated according to the following formula.
T = ((C 2 -C 24 ) / S) × 24/22
T: Moisture permeability [g / m 2 · day]
C 2 : Mass of test specimen 2 hours after start of measurement [g]
C 24 : Mass of test specimen 24 hours after start of measurement [g]
S: Moisture permeable area of cup [m 2 ]
(多孔質ゲルの質量変化率)
(1)サンプル調整
 上記「透湿度」の試験に用いたシート状の多孔質ゲルの試験片を用いて測定を行う。
(2)試験方法
 上記「透湿度」の試験と同様に、温度23±2℃、相対湿度65±5%の環境下で24時間以上調整した多孔質ゲルサンプルを透湿カップにセットし、透湿カップを含む試験体全質量(透湿カップ、多孔質ゲル試験片、パッキン、リング、及びちょうナットの合計質量)を測定し、初期試験体全質量Cを求める。
 その後、温度26℃、32℃、40℃において、それぞれ相対湿度30%、50%、80%の各試験環境下に透湿カップを24時間晒した後の試験体全質量C24を測定し、以下の式に従い、多孔質ゲルの質量変化率を算出した。
 R = ((C24 -C ) /C)
 R:多孔質ゲルの質量変化率(%)
 C:測定開始前の初期試験体全質量 [g]
 C24:測定開始24時間後の試験体質量 [g]
(Mass change rate of porous gel)
(1) Sample adjustment Measurement is performed using a sheet-like porous gel test piece used in the above-mentioned "moisture permeability" test.
(2) Test method As in the above test of “moisture permeability”, a porous gel sample adjusted for 24 hours or more in an environment of a temperature of 23 ± 2 ° C. and a relative humidity of 65 ± 5% is set in a moisture permeable cup. The total mass of the test specimen including the wet cup (the total mass of the moisture permeable cup, the porous gel test piece, the packing, the ring, and the wing nut) is measured to determine the total mass C 0 of the initial specimen.
Thereafter, at a temperature of 26 ° C., 32 ° C., and 40 ° C., the total mass C 24 of the test body after the moisture permeable cup was exposed for 24 hours in each test environment of 30%, 50%, and 80% relative humidity, The mass change rate of the porous gel was calculated according to the following formula.
R = ((C 24 -C 0 ) / C 0 )
R: Mass change rate of porous gel (%)
C 0 : initial test specimen total mass before starting measurement [g]
C 24 : Mass of test specimen 24 hours after start of measurement [g]
(圧縮応力)
(1)サンプル調整
 温度23±2℃、相対湿度65±5%の環境下において24時間以上調整した。
(2)試験方法
 JISK6400-2に準拠し、厚み50mm以上の試験片について、10mm毎分の試験速度にて実施した。試験機は引張試験機(島津製作所社製 商品名「オートグラフAG-I」)を用い、変位を元の試験片の厚みで序した百分率にて70%に相当する変位以上まで試験片を圧縮し、元の厚みになるまで戻す操作の各変位における試験力を測定した。
(A)30%変位での圧縮応力
 元の試験片の厚みで序した百分率にて30%に相当する変位まで試験片を圧縮したときの試験力を試験開始前の試験片面積で除した値を「30%圧縮応力」として算出した。
(B)70%変位以上圧縮した後、50%変位まで戻した時の応力
 元の試験片の厚みで序した百分率にて70%に相当する変位以上の圧縮を加えた後に、元の厚みの50%変位になるまで戻した際の試験力を測定し、試験開始前の試験片面積で除した値を「戻りの50%圧縮応力」として算出した。
(Compressive stress)
(1) Sample adjustment It adjusted for 24 hours or more in the environment of temperature 23 +/- 2 degreeC and relative humidity 65 +/- 5%.
(2) Test method Based on JISK6400-2, a test piece having a thickness of 50 mm or more was carried out at a test speed of 10 mm per minute. Using a tensile tester (trade name “Autograph AG-I”, manufactured by Shimadzu Corporation), the test piece is compressed to a displacement equivalent to 70% or more in terms of the percentage starting from the thickness of the original test piece. Then, the test force at each displacement of the operation of returning to the original thickness was measured.
(A) Compressive stress at 30% displacement Value obtained by dividing the test force when the test piece is compressed to a displacement equivalent to 30% by the percentage starting from the thickness of the original test piece, by the area of the test piece before starting the test. Was calculated as “30% compressive stress”.
(B) Stress when compressed to 70% displacement or more and then returned to 50% displacement. After applying compression more than 70% displacement at a percentage starting from the thickness of the original test piece, The test force when returning to 50% displacement was measured, and the value divided by the test piece area before the start of the test was calculated as “return 50% compressive stress”.
(粘弾性特性)
(1)サンプル調整
 多孔質ゲルを厚さ5mmのシート状に切り出し、温度23±2℃、相対湿度65±5%の環境下において24時間以上調整した。
(2)試験方法
 粘弾性測定装置(HAAKE社製、商品名「Rheo Stress RS150」)を用いて動的粘弾性の測定を行った。測定温度は37℃、応力を100(Pa)とした条件下にてひずみ速度(周波数)を0.01~100.0(1/s)と変化させたときの、複素弾性率および損失正接の測定を行った。
(Viscoelastic properties)
(1) Sample adjustment The porous gel was cut into a sheet having a thickness of 5 mm and adjusted for 24 hours or more in an environment of a temperature of 23 ± 2 ° C. and a relative humidity of 65 ± 5%.
(2) Test method Dynamic viscoelasticity was measured using a viscoelasticity measuring device (manufactured by HAAKE, trade name “Rheo Stress RS150”). The complex elastic modulus and loss tangent when the strain rate (frequency) is changed from 0.01 to 100.0 (1 / s) under the conditions where the measurement temperature is 37 ° C. and the stress is 100 (Pa). Measurements were made.
(伸長率・伸長力)
(1)サンプル調整
 多孔質ゲルを、厚さ5mmで、図1に示すダンベル型試験片の形状にうち抜き、温度32℃、相対湿度50%の環境下において24時間調整した。
(2)試験方法
 JIS K 6251「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に準じ、上記のダンベル型試験片について、0.75N(30kPa)荷重時の伸長率(%)及び100%伸長時の伸長力を、引張試験機(インストロン社製、商品名「INSTRON5564」)を用いて、引張速度100mm/min、チャック間距離20mmの条件で測定した。荷重又は伸長時の標点間断面積は25mmとなる。
(Elongation rate / Elongation force)
(1) Sample preparation The porous gel was removed from the shape of the dumbbell-shaped test piece shown in FIG. 1 with a thickness of 5 mm, and was adjusted for 24 hours in an environment of a temperature of 32 ° C. and a relative humidity of 50%.
(2) Test method According to JIS K 6251 “Vulcanized rubber and thermoplastic rubber-Determination of tensile properties”, the above-mentioned dumbbell-shaped test piece was stretched at a load of 0.75 N (30 kPa) (%) and 100 The elongation force at% elongation was measured using a tensile tester (Instron, trade name “INSTRON 5564”) under the conditions of a tensile speed of 100 mm / min and a distance between chucks of 20 mm. The cross-sectional area between the gauge points at the time of load or extension is 25 mm 2 .
 評価結果を「表4」に示す。 The evaluation results are shown in “Table 4”.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1の多孔質ゲルを用いて、圧力分散材としての実用試験を以下の通り行った。 Using the porous gel of Example 1, a practical test as a pressure dispersion material was performed as follows.
(荷重分散性)
 標準型車椅子にクッション材として厚み50mmの本発明の圧力分散材を用い、健常人が着座した際の最大圧力を圧力分布測定装置(VERG社(カナダ)製 FSA)によって計測した。同様に、市販の通気性の高いクッション材である厚み75mmのウレタンフォーム製車椅子クッション、厚み50mmの低反発ウレタンフォームクッション、厚み25mmのウレタンゲルパッドについて同様に試験を行い、比較を行った。
(Load dispersibility)
The pressure dispersion material of the present invention having a thickness of 50 mm was used as a cushioning material for a standard wheelchair, and the maximum pressure when a healthy person was seated was measured with a pressure distribution measuring device (VERS (Canada) FSA). Similarly, a 75 mm thick urethane foam wheelchair cushion, a 50 mm thick low-resilience urethane foam cushion, and a 25 mm thick urethane gel pad, which are commercially available highly breathable cushion materials, were similarly tested and compared.
(着座温湿度)
 温度28℃、相対湿度65%の室内環境下において試験を実施した。
 標準型車椅子にクッション材として厚み50mmの本発明の圧力分散材を用い、健常人が1時間着座し続けた際の着座部臀裂辺りの温湿度を温湿度計(佐藤計量器製作所製 商品名「デジタル温湿度計SK-110TRH TYPE4」)によって計測した。同様に、市販の通気性の高いクッション材である厚み75mmのウレタンフォーム製車椅子クッション、厚み50mmの低反発ウレタンフォームクッション、厚み25mmのウレタンゲルパッドについて同様に試験を行い、比較を行った。
(Sitting temperature and humidity)
The test was carried out in an indoor environment at a temperature of 28 ° C. and a relative humidity of 65%.
Using the pressure dispersion material of the present invention having a thickness of 50 mm as a cushioning material for a standard type wheelchair, the temperature and humidity around the rupture of the seating part when a healthy person continues to sit for 1 hour is a thermohygrometer (manufactured by Sato Keiki Seisakusho) It was measured by “digital thermohygrometer SK-110TRH TYPE4”). Similarly, a 75 mm thick urethane foam wheelchair cushion, a 50 mm thick low-resilience urethane foam cushion, and a 25 mm thick urethane gel pad, which are commercially available highly breathable cushion materials, were similarly tested and compared.
 その結果を「表5」に示す。
Figure JPOXMLDOC01-appb-T000005
The results are shown in “Table 5”.
Figure JPOXMLDOC01-appb-T000005
 以上の結果より、本発明の圧力分散材は、上記したような圧力分散材としての好適な力学的特性(荷重分散性、圧縮応力、伸長率、伸長力等)を備えつつ、皮膚生理機能の恒常性や快適性にとって望ましいと考えられる透湿・吸湿特性も備えており、人体に使用する圧力分散材として有用である。 From the above results, the pressure dispersion material of the present invention has suitable mechanical properties (load dispersibility, compressive stress, elongation rate, elongation force, etc.) as the pressure dispersion material as described above, and has the physiological function of skin. It also has moisture permeability and moisture absorption characteristics that are considered desirable for homeostasis and comfort, and is useful as a pressure dispersion material for use on the human body.
 本発明に係る圧力分散材は、好適な荷重分散性や透湿・吸水特性を有している。そのため、整形外科、外科、リハビリ、看護、介護、スポーツ等の医療や日用生活分野における褥瘡予防用具や各種装具の圧力吸収パッド等として好適に用いられ得る。 The pressure dispersion material according to the present invention has suitable load dispersibility and moisture permeability / water absorption characteristics. Therefore, it can be suitably used as a pressure-absorbing pad for pressure ulcer prevention tools and various appliances in medical and daily life fields such as orthopedics, surgery, rehabilitation, nursing, nursing care, and sports.

Claims (14)

  1.  水溶性有機モノマーの重合体(A)と、粘土鉱物(B)とから形成される三次元網目中に、0.1g/cm2・hr・60℃・1atm以下の低揮発性媒体(C)を含有する多孔質ゲルを含んでなる圧力分散材。 Low volatile medium (C) of 0.1 g / cm 2 · hr · 60 ° C · 1 atm or less in a three-dimensional network formed from a polymer (A) of a water-soluble organic monomer and a clay mineral (B) A pressure dispersion material comprising a porous gel containing
  2.  水溶性有機モノマーの重合体(A)と、粘土鉱物(B)とから形成される三次元網目中に、20℃における蒸気圧が1000Pa以下で1気圧における沸点が130℃以上の低揮発性媒体(C)を含有する多孔質ゲルを含んでなる圧力分散材。 A low-volatile medium having a vapor pressure of 1000 Pa or less at 20 ° C. and a boiling point of 130 ° C. or more at 1 atm in a three-dimensional network formed from a polymer (A) of a water-soluble organic monomer and a clay mineral (B) A pressure dispersion material comprising a porous gel containing (C).
  3.  前記多孔質ゲルの発泡倍率が、1.2~20である請求項1又は2記載の圧力分散材。 The pressure dispersion material according to claim 1 or 2, wherein the foaming ratio of the porous gel is 1.2 to 20.
  4.  前記多孔質ゲルの嵩密度が、1g/cm未満である請求項1~3のいずれか一項に記載の圧力分散材。 The pressure dispersion material according to any one of claims 1 to 3, wherein a bulk density of the porous gel is less than 1 g / cm 3 .
  5.  前記水溶性有機モノマーの重合体(A)、粘土鉱物(B)及び低揮発性媒体(C)の合計質量(A+B+C)に対する、前記多孔質ゲル中での各成分の質量比が、
    水溶性有機モノマーの重合体(A)については0.003~0.35であり、
    粘土鉱物(B)については0.002~0.15であり、
    低揮発性媒体(C)については0.5~0.995である
    請求項1~4のいずれか一項に記載の圧力分散材。
    The mass ratio of each component in the porous gel to the total mass (A + B + C) of the polymer (A), the clay mineral (B), and the low-volatile medium (C) of the water-soluble organic monomer,
    The water-soluble organic monomer polymer (A) is 0.003 to 0.35,
    The clay mineral (B) is 0.002 to 0.15,
    The pressure dispersion material according to any one of claims 1 to 4, wherein the low volatile medium (C) is 0.5 to 0.995.
  6.  前記多孔質ゲルの透湿度が、同一相対湿度環境下において、温度26℃の環境下よりも、温度40℃の環境下の方が高値である請求項1~5のいずれか一項に記載の圧力分散材。 The moisture permeability of the porous gel is higher in an environment at a temperature of 40 ° C than in an environment at a temperature of 26 ° C under the same relative humidity environment. Pressure dispersion material.
  7.  前記多孔質ゲルの透湿度が、同一温度環境下において、相対湿度80%の環境下よりも、相対湿度30%の環境下の方が高値である請求項1~6のいずれか一項に記載の圧力分散材。 The moisture permeability of the porous gel is higher in an environment having a relative humidity of 30% than in an environment having a relative humidity of 80% under the same temperature environment. Pressure dispersion material.
  8.  前記多孔質ゲルの30%変位での圧縮応力が、15kPa以下である請求項1~7のいずれか一項に記載の圧力分散材。 The pressure dispersion material according to any one of claims 1 to 7, wherein a compressive stress at 30% displacement of the porous gel is 15 kPa or less.
  9.  前記多孔質ゲルを70%変位以上圧縮した後、50%変位まで戻した時の応力が10kPa以下である請求項1~8のいずれか一項に記載の圧力分散材。 The pressure dispersion material according to any one of claims 1 to 8, wherein a stress when the porous gel is compressed to 70% displacement or more and then returned to 50% displacement is 10 kPa or less.
  10.  前記水溶性有機モノマーの重合体(A)が、(メタ)アクリルアミド及び/又は(メタ)アクリルアミド誘導体の重合物あるいは共重合物である請求項1~9のいずれか一項に記載の圧力分散材。 The pressure dispersion material according to any one of claims 1 to 9, wherein the polymer (A) of the water-soluble organic monomer is a polymer or copolymer of (meth) acrylamide and / or (meth) acrylamide derivatives. .
  11.  前記低揮発性媒体(C)が、多価アルコールである請求項1~10のいずれか一項に記載の圧力分散材。 The pressure dispersion material according to any one of claims 1 to 10, wherein the low-volatile medium (C) is a polyhydric alcohol.
  12.  前記多価アルコールが、グリセリン、ポリグリセリン、ポリエチエレングリコール、エチレングリコール及びプロピレングリコール並びにこれらの誘導体からなる群より選択される一以上である請求項11記載の圧力分散材。 The pressure dispersion material according to claim 11, wherein the polyhydric alcohol is one or more selected from the group consisting of glycerin, polyglycerin, polyethylene glycol, ethylene glycol, propylene glycol, and derivatives thereof.
  13.  粘土鉱物(B)及び0.1g/cm2・hr・60℃・1atm以下の低揮発性媒体(C)とともに分散液中に分散させた水溶性有機モノマーを重合し、発泡させる工程を含む多孔質ゲルを含んでなる圧力分散材の製造方法。 Porous process including polymerizing and foaming a water-soluble organic monomer dispersed in a dispersion together with a clay mineral (B) and a low volatile medium (C) of 0.1 g / cm 2 · hr · 60 ° C. · 1 atm or less For producing a pressure dispersion material comprising a gel.
  14.  粘土鉱物(B)とともに水を含む分散液中に分散させた水溶性有機モノマーを重合し、ゲルを形成した後、水の少なくとも一部を0.1g/cm2・hr・60℃・1atm以下の低揮発性媒体(C)で置換し、次いで発泡させる工程を含む多孔質ゲルを含んでなる圧力分散材の製造方法。 After polymerizing a water-soluble organic monomer dispersed in a dispersion containing water together with the clay mineral (B) to form a gel, at least part of the water is 0.1 g / cm 2 · hr · 60 ° C · 1 atm or less A method for producing a pressure dispersion material comprising a porous gel comprising a step of substituting with a low-volatile medium (C) and then foaming.
PCT/JP2011/068254 2010-08-19 2011-08-10 Pressure dispersion material and process for producing same WO2012023471A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-183916 2010-08-19
JP2010183916A JP4956653B2 (en) 2010-08-19 2010-08-19 Pressure dispersion material and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2012023471A1 true WO2012023471A1 (en) 2012-02-23

Family

ID=45605125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068254 WO2012023471A1 (en) 2010-08-19 2011-08-10 Pressure dispersion material and process for producing same

Country Status (2)

Country Link
JP (1) JP4956653B2 (en)
WO (1) WO2012023471A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046136A1 (en) * 2012-09-18 2014-03-27 日産化学工業株式会社 Hydrogel forming composition and hydrogel produced therefrom
WO2014046127A1 (en) * 2012-09-18 2014-03-27 日産化学工業株式会社 Hydrogel forming composition and hydrogel produced therefrom

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018006260A (en) * 2015-12-04 2018-09-05 Avent Inc Pressure-distributing wound prevention and treatment device.
JP7259469B2 (en) * 2019-03-26 2023-04-18 東洋紡株式会社 Complex containing 3D structure in gel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302834A (en) * 2000-04-18 2001-10-31 Nishikawa Rubber Co Ltd Method for producing foamed material
JP2004339431A (en) * 2003-05-19 2004-12-02 Kawamura Inst Of Chem Res Foamed gel and method for producing the same
JP2005290073A (en) * 2004-03-31 2005-10-20 Dainippon Ink & Chem Inc Method for producing polymer hydrogel
JP2006028446A (en) * 2004-07-21 2006-02-02 Dainippon Ink & Chem Inc Organoinorganic composite polymer gel and preparation process of the same
JP2009269971A (en) * 2008-05-02 2009-11-19 Kawamura Inst Of Chem Res Organic/inorganic complex gel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302834A (en) * 2000-04-18 2001-10-31 Nishikawa Rubber Co Ltd Method for producing foamed material
JP2004339431A (en) * 2003-05-19 2004-12-02 Kawamura Inst Of Chem Res Foamed gel and method for producing the same
JP2005290073A (en) * 2004-03-31 2005-10-20 Dainippon Ink & Chem Inc Method for producing polymer hydrogel
JP2006028446A (en) * 2004-07-21 2006-02-02 Dainippon Ink & Chem Inc Organoinorganic composite polymer gel and preparation process of the same
JP2009269971A (en) * 2008-05-02 2009-11-19 Kawamura Inst Of Chem Res Organic/inorganic complex gel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046136A1 (en) * 2012-09-18 2014-03-27 日産化学工業株式会社 Hydrogel forming composition and hydrogel produced therefrom
WO2014046127A1 (en) * 2012-09-18 2014-03-27 日産化学工業株式会社 Hydrogel forming composition and hydrogel produced therefrom
US9238718B2 (en) 2012-09-18 2016-01-19 Nissan Chemical Industries, Ltd. Hydrogel forming composition and hydrogel produced therefrom
US9243115B2 (en) 2012-09-18 2016-01-26 Nissan Chemical Industries, Ltd. Hydrogel forming composition and hydrogel produced therefrom
JPWO2014046136A1 (en) * 2012-09-18 2016-08-18 日産化学工業株式会社 Hydrogel-forming composition and hydrogel made therefrom

Also Published As

Publication number Publication date
JP4956653B2 (en) 2012-06-20
JP2012041446A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US4728551A (en) Flowable pressure compensating fitting materials
JP4956653B2 (en) Pressure dispersion material and manufacturing method thereof
JP5898626B2 (en) Method for preparing flexible urethane foam and urethane foam obtained by the method
US5571529A (en) Method of making polyurethane foam
AU2003208303B2 (en) A wound care device
CA2082365C (en) Wound dressing comprising polyurethane foam
Swan et al. Synthesis and properties of a novel anisotropic self-inflating hydrogel tissue expander
JP6204475B2 (en) Silicone compositions and related methods
US20050214334A1 (en) Composition for topical substance delivery
US10953127B2 (en) Absorbent foam wound dressing materials
JP3465235B2 (en) Individual position holder
Ohura et al. Evaluating dressing materials for the prevention of shear force in the treatment of pressure ulcers
US5407481A (en) Flowable, pressure-compensating materials
KR101047196B1 (en) Superabsorbent materials with low gel-bed friction angles and composites made therefrom
AU2020273195A1 (en) Superporous hydrogels, methods of making the same, and articles incorporating the same
KR20110115063A (en) Water-containing adhesive gel sheet
Patwa et al. Magnetic hydrogel based shoe insoles for prevention of diabetic foot
Meakin et al. Rheological properties of poly (2-hydroxyethyl methacrylate)(pHEMA) as a function of water content and deformation frequency
Yee et al. Development of carrageenan hydrogel as a sustained release matrix containing tocotrienol-rich palm-based vitamin E
KR20060047475A (en) Medical non-crosslinked pressure-sensitive adhesive composition, medical adhesive sheet employing the same, and process for producing medical non-crosslinked pressure-sensitive adhesive composition
Gefen The selection of cushioning and padding materials for effective prophylaxis of medical device-related pressure ulcers: clinical intuition does not always work
KR20050025969A (en) Superabsorbent materials having high, controlled gel-bed friction angles and composites made from the same
JP2005052183A (en) Body pressure dispersing mat and posture holding device
EP3773464A1 (en) Aerogels and their use in cosmetic applications
EP2994172A1 (en) Sheet for cutaneous application containing vitamin e or an ester thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818113

Country of ref document: EP

Kind code of ref document: A1