WO2012023459A1 - Illuminating device, display device and television receiver - Google Patents

Illuminating device, display device and television receiver Download PDF

Info

Publication number
WO2012023459A1
WO2012023459A1 PCT/JP2011/068147 JP2011068147W WO2012023459A1 WO 2012023459 A1 WO2012023459 A1 WO 2012023459A1 JP 2011068147 W JP2011068147 W JP 2011068147W WO 2012023459 A1 WO2012023459 A1 WO 2012023459A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
led light
diffusion plate
led
Prior art date
Application number
PCT/JP2011/068147
Other languages
French (fr)
Japanese (ja)
Inventor
香織 生田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012023459A1 publication Critical patent/WO2012023459A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • liquid crystal display device requires a backlight device as a separate illumination device because the liquid crystal panel used for this does not emit light.
  • a direct-type backlight device that directly supplies light from the back surface to a liquid crystal panel is known.
  • a reflection member may be disposed on an installation surface on which a light source such as an LED is installed.
  • Patent Document 1 discloses a reflective member that is used in a direct backlight device or the like and has a three-dimensional shape having a plurality of inclined surfaces that are inclined from the LED installation surface toward the liquid crystal panel. .
  • a reflective member that is used in a direct backlight device or the like and has a three-dimensional shape having a plurality of inclined surfaces that are inclined from the LED installation surface toward the liquid crystal panel.
  • the technology disclosed in this specification has been created in view of the above problems.
  • the technology disclosed in this specification is a technology that can prevent or suppress uneven brightness on the display surface without increasing the number of light sources in a direct-type illumination device including a reflective member that directs light on the display surface.
  • the purpose is to provide.
  • the technology disclosed in this specification includes a light source having a light distribution such that light having a peak emission intensity is directed in a direction inclined with respect to the front direction, and the light source is accommodated and directed toward the light emitting side. And a reflecting member that directs light from the light source in the front direction of the light source by the inclined surface.
  • the reflecting member has a plurality of inclined surfaces that are inclined from the installation surface of the light source toward the opening side of the chassis.
  • a diffusing plate disposed on the opening side of the chassis and having a light shielding pattern printed on a surface facing the light source.
  • the light-shielding pattern printed on the surface of the diffuser plate facing the light source is a light-shielding pattern for light incident from the front direction
  • the light may pass through the light-shielding pattern.
  • luminance unevenness occurs when the display surface is viewed from an oblique direction.
  • the light from the light source is directed in the front direction of the light source by the reflecting member, so that the light is incident on the surface facing the light source of the diffusion plate on which the light shielding pattern is printed, from an oblique direction. Can be prevented or suppressed.
  • all or most of the light incident on the diffusion plate can be suitably adjusted by the light-shielding pattern printed on the diffusion plate, thereby preventing or suppressing luminance unevenness of the display surface of the light transmitted through the diffusion plate. Can do.
  • a plurality of the light shielding patterns may be printed on the entire surface of the diffusion plate facing the light source. According to this configuration, most of the light directed in the front direction of the light source by the reflecting member can be applied to the light shielding pattern of the diffusing plate, so that uneven brightness on the display surface can be further prevented or suppressed.
  • Each of the plurality of light shielding patterns may have a different degree of light shielding according to the printing density, and the printing density may be adjusted according to the luminance of light incident on the light shielding pattern. According to this configuration, an effective luminance design of the display surface can be performed by adjusting the printing density of the light shielding pattern.
  • Each of the plurality of light shielding patterns may have a plurality of portions having different printing densities. According to this configuration, the print density can be finely adjusted in each light shielding pattern, and more effective luminance design of the display surface can be performed.
  • Each of the plurality of light shielding patterns may be formed of a plurality of striped or dot-like layers having different printing densities. According to this configuration, each light shielding pattern can be formed in a predetermined shape, and the light shielding pattern can be efficiently printed on the diffusion plate.
  • the angle of the inclined surface of the reflecting member with respect to the front direction of the light source is smaller than the angle formed with respect to the front direction of light from the light source that has a peak emission intensity. May be. According to this configuration, light having a peak emission intensity among the light from the light source hits the inclined surface of the reflecting member, so that most of the light emitted from the light source can be directed in the front direction of the light source. For this reason, it is possible to further prevent or suppress luminance unevenness of the display surface of light transmitted through the diffusion plate on which the light shielding pattern is printed.
  • the light shielding pattern may be printed on the diffusion plate by any one of gravure printing, ink jet printing, and silk screen printing. According to this configuration, by using a predetermined printing method, it is possible to efficiently print the light shielding pattern on the diffusion plate.
  • the reflective member may be shaped to individually surround the light sources. According to this configuration, since the light from each light source can be effectively directed to the display surface side by the reflecting member, luminance unevenness on the display surface can be further prevented or suppressed.
  • the reflection member may have a constant inclination angle of the plurality of inclined surfaces. According to this configuration, the direction in which light is directed can be made constant on each inclined surface, and a uniform luminance distribution can be formed on the light emission side of the light source.
  • An interval between the adjacent light sources may be constant. According to this configuration, a uniform luminance distribution can be formed on the light emission side of the light source.
  • the interval between the adjacent light sources may not be constant, and the inclination angles of the plurality of inclined surfaces of the reflecting member may be adjusted according to the interval between the adjacent light sources. According to this configuration, even if the interval between the light sources is not constant, a uniform luminance distribution can be formed on the light emission side of the light source. Therefore, the number of light sources can be reduced while preventing or suppressing luminance unevenness on the display surface, and the mounting cost of the light sources, the power consumption of the lighting device, and the like can be reduced.
  • the technology disclosed in this specification can also be expressed as a display device including a display panel that performs display using light from the above-described lighting device.
  • a display device in which the display panel is a liquid crystal panel using liquid crystal is also new and useful.
  • a television receiver provided with the above display device is also new and useful. According to the display device and the television set described above, the display area can be increased.
  • FIG. 1 is an exploded perspective view of a television receiver TV according to Embodiment 1.
  • FIG. An exploded perspective view of the liquid crystal display device 10 is shown.
  • the top view of the backlight apparatus 24 is shown.
  • the top view which looked at the diffusion plate 20 from the back side is shown.
  • a cross-sectional view of the backlight device 24 is shown.
  • the expanded sectional view of the backlight apparatus 24 is shown.
  • a normal direct type backlight device provided with a reflecting member 26 the luminance distribution on the display surface of the liquid crystal panel when two LED light sources are arranged in parallel in the X-axis direction is shown.
  • the luminance distribution on the display surface of the liquid crystal panel 16 when two LED light sources 28 are arranged in parallel in the X-axis direction is shown.
  • the top view of the backlight apparatus 124 which concerns on Embodiment 2 is shown.
  • the top view which looked at the diffusion plate 120 from the back side is shown.
  • the top view of the backlight apparatus 224 which concerns on Embodiment 3 is shown.
  • the top view which looked at the diffusion plate 220 from the back side is shown.
  • Embodiment 1 will be described with reference to the drawings.
  • a part of each drawing shows an X-axis, a Y-axis, and a Z-axis, and each axis direction is drawn in a common direction in each drawing.
  • the Y-axis direction coincides with the vertical direction
  • the X-axis direction coincides with the horizontal direction.
  • FIG. 1 is an exploded perspective view of the television receiver TV according to the first embodiment.
  • the television receiver TV includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, a tuner T, and a stand S. I have.
  • the liquid crystal display device 10 has a horizontally long rectangular shape as a whole and is accommodated in a vertically placed state.
  • FIG. 2 is an exploded perspective view of the liquid crystal display device 10.
  • the upper side shown in FIG. 2 is the front side, and the lower side is the back side.
  • the liquid crystal display device 10 includes a liquid crystal panel 16 that is a display panel and a backlight device 24 that is an external light source, and these are integrally held by a bezel 12 or the like having a frame shape. It is like that.
  • the liquid crystal panel 16 has a configuration in which a pair of transparent (highly translucent) glass substrates are bonded together with a predetermined gap therebetween, and a liquid crystal layer (not shown) is sealed between the glass substrates. Is done.
  • One glass substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like.
  • the substrate is provided with a color filter and counter electrodes in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, and an alignment film.
  • image data and various control signals necessary for displaying an image are supplied to a source wiring, a gate wiring, a counter electrode, and the like from a drive circuit board (not shown).
  • a polarizing plate (not shown) is disposed outside both glass substrates.
  • FIG. 3 shows a plan view of the backlight device 24.
  • FIG. 4 is a plan view of the diffusing plate 20 as viewed from the back side, and shows a plan view of the back surface 20 a of the diffusing plate 20.
  • FIG. 5 shows a cross-sectional view of a cross section of the backlight device 24 cut in the horizontal direction (X-axis direction).
  • the backlight device 24 includes a chassis 22, a diffusion plate 20, an optical member 18, and a frame 14.
  • the chassis 22 has a substantially box shape opened to the front side (light emitting side, liquid crystal panel 16 side).
  • the diffusion plate 20 is disposed on the front side of the chassis 22 so as to cover the opening of the chassis 22.
  • the optical member 18 is disposed on the front side of the diffusion plate 20.
  • the frame 14 has a frame shape and supports the liquid crystal panel 16 along the inner edge.
  • an LED substrate 30 (see FIG. 5) on which a plurality of light emitting diode (LED) light sources 28 are arranged and a reflecting member 26 are accommodated.
  • the backlight device 24 has a light emitting side on the diffusion plate 20 side rather than the LED substrate 30 side, and is a direct type in which light is directly supplied to the liquid crystal panel 16 from the back side through the diffusion plate 20 and the like. This is a backlight device.
  • the chassis 22 is made of, for example, a metal such as an aluminum-based material, and includes a bottom plate 22a, a side plate 22c, and a receiving plate 22d. Is made.
  • the bottom plate 22 a has a horizontally long rectangular shape as in the liquid crystal panel 16, and is disposed on the back side of the LED substrate 30, that is, on the side opposite to the light emitting side of the LED light source 28.
  • the side plate 22c rises from the outer edge of each side of the bottom plate 22a.
  • the receiving plate 22d projects outward from the rising end of each side plate 22c, and the diffusion plate 20 and the frame 14 can be placed on the front side.
  • the frame 14 is fixed to the receiving plate 22d by being screwed to the receiving plate 22d.
  • the long side direction of the chassis 22 coincides with the X-axis direction (horizontal direction), and the short side direction thereof coincides with the Y-axis direction (vertical direction).
  • the LED substrate 30 and the LED light source 28 disposed on the surface of the LED substrate 30 will be described.
  • the LED substrate 30 has a horizontally long flat plate shape similar to the bottom plate 22 a of the chassis 22.
  • the long side direction coincides with the X axis direction
  • the short side direction coincides with the Y axis direction.
  • the LED board 30 has a size that can cover the entire area of the bottom plate 22a, specifically, a size that can cover many portions on the center side excluding the outer peripheral end of the bottom plate 22a. Yes.
  • the LED light source 28 is mounted on the surface 30 a of the LED substrate 30. As shown in FIG. 3, the LED light sources 28 are arranged in parallel on the LED substrate 30 in a plurality of planes in the X-axis direction and the Y-axis direction. The arrangement pitch of the LED light sources 28 arranged in parallel along the X-axis direction and the arrangement pitch of the LED light sources 28 arranged in parallel along the Y-axis direction are fixed. The LED light sources 28 are connected to each other by a wiring pattern (not shown) formed on the LED substrate 30. Driving power is supplied to the LED light source 28 by a power supply circuit board (not shown) attached to the back side of the bottom plate 22 a of the chassis 22.
  • the LED light source 28 emits white light.
  • three types of LED chips (not shown) of red, green, and blue may be surface-mounted, or the blue light emitting element emits light in a yellow region. It may be one that emits white light by applying a phosphor having a peak.
  • the blue light emitting element may emit white light by applying a phosphor having emission peaks in the green and red regions.
  • a phosphor having a light emission peak in a green region may be applied to a blue light emitting element, and white light may be emitted by combining a red light emitting element.
  • the LED light source 28 may emit white light by combining a blue light emitting element, a green light emitting element, and a red light emitting element.
  • a combination of an ultraviolet light emitting element and a phosphor may be used.
  • an ultraviolet light-emitting element may emit white light by applying a phosphor having emission peaks in blue, green, and red, respectively.
  • the reflection member 26 is made of a synthetic resin material having thermoplasticity, and the surface thereof has a white color with excellent light reflectivity.
  • the reflection member 26 is laid on the front side of the LED board 30 laid on the surface of the chassis 22 and has a size that can cover the LED board 30 over almost the entire area.
  • the reflecting member 26 extends along the LED substrate 30 and includes four rising portions 26c and four extending portions 26e as shown in FIGS.
  • the rising portions 26 c rise from the outer peripheral end of the bottom portion of the reflecting member 26 and have a shape that is inclined with respect to the bottom plate 22 a of the chassis 22.
  • the extending portion 26 e extends outward from the outer end of each rising portion 26 c and is placed on the receiving plate 22 d of the chassis 22.
  • a plurality of light source insertion holes 26d through which the LED light sources 28 are individually inserted are provided on the bottom portion of the reflection member 26 at positions overlapping the LED light sources 28 in plan view.
  • the light source insertion holes 26d are arranged in parallel in the X-axis direction and the Y-axis direction corresponding to the arrangement of the LED light sources 28.
  • the reflecting member 26 is provided with a plurality of inclined surfaces 26a that are inclined from the LED substrate 30 side to the front side (side where the chassis 22 is opened).
  • the inclination angle of each inclined surface 26a is fixed.
  • the inclined surface 26 a is formed by projecting many portions excluding the hole edge of each light source insertion hole 26 d to the front side, and the remaining portion of the bottom of the reflecting member 26 is supported by the LED substrate 30.
  • the inclined surface 26a is made into the circular-arc-shaped curved surface about the circumferential direction, and is formed so that each LED light source 28 may be enclosed individually in an inverted cone shape.
  • each inclined surface 26a can direct the light emitted from each LED light source 28 and reaching the inclined surface 26a to the front side (the diffuser plate 20 side).
  • the projecting tip portions of each inclined surface 26 a are connected via a top surface portion 26 b parallel to the surface of the LED substrate 30. Further, the inclined surface 26 a is in a state where the tip thereof is not in contact with the diffusion plate 20.
  • the diffusion plate 20 and the optical member 18 arranged on the opening side of the chassis 22 will be described.
  • the diffusion plate 20 is placed on the receiving plate 22d of the chassis via the extending portion 26e of the reflecting member 26 so as to be parallel to the LED substrate 30, and covers the opening side of the chassis 22.
  • the diffusing plate 20 has a structure in which a large number of diffusing particles are dispersed in a substantially transparent resin base material having a predetermined thickness, and has a function of diffusing transmitted light. As shown in FIG. 4, a plurality of the same light shielding patterns 25 are printed on the back surface (surface facing the LED light source 28) 20 a of the diffusion plate 20 by gravure printing over the entire surface.
  • each light shielding pattern 25 is adjusted according to the luminance of incident light. Specifically, each light-shielding pattern 25 is a striped pattern composed of quadruple circles 25a, 25b, 25c, and 25d, and the print density gradually increases from the innermost circle 25a toward the outermost circle 25d. It is getting thinner.
  • the light shielding pattern 25 is a pattern in which a plurality of minute reflective dots having a reflectance of almost 100% are printed. The density of the reflective dots is high in a portion where the print density is high, and the density of the reflective dots is low in a portion where the print density is low. ing. Accordingly, a portion with a high printing density has a high reflectance (low transmittance), and a portion with a low printing density has a low reflectance (high transmittance).
  • a part of the light incident from the front direction with respect to the back surface 20a of the diffusion plate 20 is reflected according to the print density of the incident light shielding pattern 25, and the rest is transmitted through the diffusion plate 20 and emitted to the liquid crystal panel 16 side. Will be.
  • the reflected light is reflected by the reflecting member 26, is incident on the back surface of the diffusion plate 20 again, and is repeatedly reflected until it passes through the diffusion plate 20. In this way, light corresponding to the light shielding pattern 25 is emitted from the surface of the diffusion plate 20.
  • light having a high emission intensity and light having a low emission intensity are incident on a light shielding pattern having the same print density, light having a higher light emission intensity transmits more light through the light shielding pattern. .
  • the light shielding pattern 25 has a positional relationship in which light with high emission intensity is incident on a portion with high reflectance and light with low emission intensity is incident on a portion with low reflectance.
  • the LED light source 28, the inclined surface 26a of the reflecting member 26, and the light shielding pattern 25 are arranged. For this reason, the luminance distribution of the light transmitted through the diffusion plate 20 and displayed on the light exit surface of the diffusion plate 20 is made substantially uniform.
  • the optical member 18 covers almost the entire surface of the diffusion plate 20 and is arranged on the front side of the diffusion plate 20.
  • a liquid crystal panel 16 is installed on the front side of the optical member 18, and the optical member 18 is disposed between the diffusion plate 20 and the liquid crystal panel 16.
  • the optical member 18 is configured by laminating two sheets.
  • the optical member 18 imparts a predetermined optical action to the light emitted from the LED light source 28 and transmitted through the diffusion plate 20, and the light is transmitted to the outside on the front side. It can be emitted. Examples of these two sheets include a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used.
  • FIG. 6 is a cross-sectional view of the backlight device 24 and shows a cross-sectional view in which a part of FIG. 5 is enlarged.
  • reference symbol L indicates an emission direction of light having a peak emission intensity among the light emitted from the LED light source 28.
  • each LED light source 28 is mounted on the surface of the LED substrate 30, and is configured by a substrate portion 28a that emits light and a transparent hemispherical light emitting surface 28b that covers the substrate portion 28a.
  • the LED light source 28 has a light distribution such that light having a peak emission intensity is directed in a direction inclined with respect to the front direction of the LED light source 28.
  • the specific unit of emission intensity can be radiant intensity (W / sr ⁇ m2), radiant flux (W), irradiance (W / m2), etc. It is also possible to do.
  • the light with the peak emission intensity is emitted radially from the center of the LED light source 28 and travels in a direction L that forms a predetermined angle A with respect to the front direction of the LED light source 28. Thereby, the light emitted from the LED light source 28 is diffused over a wide range.
  • the inclined surface 26 a of the reflecting member 26 forms a predetermined angle B with respect to the front direction of the LED light source 28. In the backlight device 24, the relationship of angle A> angle B is established. For this reason, of the light emitted from the LED light source 28, the light having the peak emission intensity hits the inclined surface 26 a of the reflecting member 26, and most of the light emitted from the LED light source 28 is directed in the front direction of the LED light source 28. Oriented.
  • the light emitted in the front direction of the LED light source 28 is directly incident on the back surface of the diffusion plate 20 from the front direction without being reflected by the reflecting member 26.
  • the intensity of the light directed in the front direction of the LED light source 28 by the reflecting member 26 decreases. Therefore, the light having the highest intensity among the light incident on the light shielding pattern 25 is light incident on a portion located immediately above the LED light source 28. For this reason, the relative position of the light shielding pattern 25 and the LED light source 28 is adjusted so that the darkest portion (25a) of the light shielding pattern 25 is located in the front direction of the LED light source 28.
  • each LED light source 28 of the backlight device 24 When each LED light source 28 of the backlight device 24 is turned on, most of the light emitted from each LED light source 28 in a wide range directly or against the light shielding pattern 25 printed on the back surface 20a of the diffusion plate 20 Directed by the inclined surface 26a of the reflecting member 26 and indirectly incident from the front direction. The light that passes through the diffusion plate 20 is diffused by the diffusion plate 20, is emitted from the front side, and enters the optical member 18. The light transmitted through the optical member 18 is emitted toward the liquid crystal panel 16.
  • FIG. 7 shows a normal direct-type backlight device having a reflecting member 26 (in other words, in the backlight device 24 according to this embodiment, the LED light source 28 and the diffusion plate 20 on which the light shielding pattern 25 is printed are applied. In the case of not), the luminance distribution of the display surface of the liquid crystal panel when two LED light sources are arranged in parallel in the X-axis direction is shown.
  • FIG. 7 shows a normal direct-type backlight device having a reflecting member 26 (in other words, in the backlight device 24 according to this embodiment, the LED light source 28 and the diffusion plate 20 on which the light shielding pattern 25 is printed are applied. In the case of not), the luminance distribution of the display surface of the liquid crystal panel when two LED light sources are arranged in parallel in the X-axis direction is shown.
  • FIG. 7 shows a normal direct-type backlight device having a reflecting member 26 (in other words, in the backlight device 24 according to this embodiment, the LED light source 28 and the diffusion plate 20 on which the light shielding pattern 25 is
  • the vertical axis indicates the light emission intensity (arbitrary unit)
  • the horizontal axis indicates the LED light source arrangement (arbitrary unit) in the X-axis direction.
  • the liquid crystal panel is in a state where the light emitted from the LED light source is not sufficiently multiply reflected. Therefore, the emission intensity peaks are formed at positions corresponding to the positions of the two LED light sources.
  • the peak of the light emission intensity is substantially uniform along the X-axis direction. This is because light emitted from the LED light source 28 is diffused over a wide range, so that most of the light is directed toward the front surface of the LED light source 28 by the reflecting member 26, and thereby the light transmitted through the light shielding pattern 25.
  • the luminance distribution is almost uniform on the light exit surface of the diffusion plate 20.
  • Such a luminance distribution is realized when most of the light incident on the light shielding pattern 25 printed on the diffusion plate 20 enters from the front direction. That is, the diffusion plate 20 on which the light shielding pattern 25 is printed by combining the diffusion plate 20 on which the light shielding pattern 25 is printed and the reflecting member 26 that directs light in the front direction with respect to the surface on which the light shielding pattern 25 is printed. 20 effects can be suitably obtained.
  • the LED light source 28 having a high diffusion light distribution is not applied among the LED light source 28 having a high diffusion light distribution, the reflecting member 26, and the diffusion plate 20 having the light shielding pattern 25 printed on the surface facing the LED light source 28,
  • the light emitted from the LED light source 28 cannot be sufficiently applied to the reflecting member 26, and light incident from the oblique direction to the back surface 20 a of the diffusion plate 20 on which the light shielding pattern 25 is printed is generated.
  • the reflecting member 26 is not applied, the light emitted from the LED light source 28 is not directed, so that light incident on the rear surface 20a of the diffusion plate 20 from an oblique direction is generated. In these cases, luminance unevenness occurs when the display surface of the liquid crystal panel 16 is viewed from an oblique direction.
  • the backlight device 24 includes an LED light source 28 having a high diffusion light distribution, a reflecting member 26 that directs light in the front direction of the surface on which the light shielding pattern 25 is printed, By providing the diffusing plate 20 on which the light shielding pattern 25 is printed, luminance unevenness of the liquid crystal panel 16 is prevented or suppressed.
  • the back surface of the diffusion plate 20 on which the light shielding pattern 25 is printed by directing the light from the LED light source 28 toward the front of the LED light source 28 by the reflecting member 26. It is possible to prevent or suppress light from entering obliquely from 20a. For this reason, all or most of the light incident on the diffusing plate 20 can be suitably adjusted by the light shielding pattern 25 printed on the diffusing plate 20, thereby preventing or suppressing luminance unevenness on the display surface of the liquid crystal panel 16. Can do.
  • the LED light source 28 having a high diffusion light distribution and the diffusion plate 20 on which the light shielding pattern 25 is printed are not applied, the LED light source is reduced when the backlight device is thinned. Unless the number is increased, luminance unevenness on the display surface cannot be prevented or suppressed.
  • the backlight device 24 according to the present embodiment since the luminance unevenness of the display surface can be prevented or suppressed without increasing the number of LED light sources, the mounting cost of the LED light sources is reduced as compared with the case where the number of LED light sources is increased. In addition, power consumption by the LED light source can be reduced.
  • a plurality of light shielding patterns 25 are printed on the entire back surface 20a of the diffusion plate 20. For this reason, most of the light directed in the front direction of the LED light source 28 by the reflecting member 26 can be applied to the light shielding pattern 25 of the diffusing plate 20, thereby further preventing or suppressing luminance unevenness on the display surface of the liquid crystal panel 16. Can do.
  • each of the plurality of light shielding patterns 25 has a different degree of light shielding according to the print density, and the light shielding pattern 25 has a light shielding degree according to the luminance of light incident on the light shielding pattern 25.
  • the print density is adjusted. For this reason, by adjusting the printing density of the light shielding pattern 25, it is possible to perform effective luminance design of the display surface of the liquid crystal panel 16.
  • each of the plurality of light shielding patterns 25 has a plurality of portions having different printing densities. For this reason, the print density can be finely adjusted in each light shielding pattern 25, and more effective luminance design of the display surface of the liquid crystal panel 16 can be performed.
  • each of the plurality of light shielding patterns 25 includes a plurality of striped layers having different printing densities. For this reason, each light shielding pattern 25 can be formed in a predetermined shape, and the light shielding pattern 25 can be efficiently printed on the diffusion plate 20.
  • the angle B formed with respect to the front direction of the LED light source 28 on the inclined surface 26 a of the reflecting member 26 has a peak emission intensity in the light from the LED light source 28.
  • the angle is smaller than the angle A formed by the light with respect to the front direction.
  • the light having the peak emission intensity among the light from the LED light source 28 strikes the inclined surface 26 a of the reflecting member 26, so that most of the light emitted from the LED light source 28 is directed in the front direction of the LED light source 28.
  • luminance unevenness on the display surface of the liquid crystal panel 16 can be further prevented or suppressed.
  • the light shielding pattern 25 is printed on the diffusion plate 20 by gravure printing. For this reason, the light shielding pattern 25 can be efficiently printed on the diffusion plate 20.
  • the reflecting member 26 is shaped so as to individually surround the LED light sources 28. For this reason, the light from each LED light source 28 can be effectively directed to the display surface side of the liquid crystal panel 16 by the reflecting member 26, and luminance unevenness on the display surface of the liquid crystal panel 16 can be further prevented or suppressed. it can.
  • the reflecting member 26 has a constant inclination angle of the plurality of inclined surfaces 26a. For this reason, the direction in which light is directed can be made constant on each inclined surface 26a, and a uniform luminance distribution can be formed on the light emitting side of the LED light source 28.
  • the interval between the adjacent LED light sources 28 is constant. For this reason, a uniform luminance distribution can be formed on the light emitting side of the LED light source 28.
  • FIG. 9 is a plan view of the backlight device 124 according to the second embodiment.
  • FIG. 10 is a plan view of the diffusing plate 120 viewed from the back side, and shows a plan view of the back surface 120a of the diffusing plate 120.
  • the shape of the reflection member 126 and the light shielding pattern 125 printed on the diffusion plate 120 are different from those in the first embodiment. Since the other configuration is the same as that of the first embodiment, the description of the structure, operation, and effect is omitted.
  • the part obtained by adding the numeral 100 to the reference numerals in FIGS. 3 and 4 is the same as the part described in the first embodiment.
  • the inclined surface 126a of the reflecting member 126 is formed so as to individually surround each LED light source 128 in an inverted quadrangular pyramid shape, and its circumferential direction is entirely As a square shape. Therefore, each LED light source 128 is surrounded by four inclined surfaces 126a inclined from the LED substrate 130 side to the front side, and the inclination angle of each inclined surface 126a is constant. As described above, when the LED light sources 128 are formed so as to surround each inclined surface 126a of the reflecting member 126 in an inverted quadrangular pyramid shape, the LED light sources 128 are formed so as to be surrounded in an inverted cone shape (Embodiment). 1), the reflective member 126 can be made excellent in shape stability.
  • a plurality of the same light shielding patterns 125 are printed on the back surface (surface facing the LED light source 128) 120a of the diffusion plate 120 by inkjet printing over the entire surface.
  • Each light shielding pattern 125 is formed in a dot shape composed of quadruple squares 125a, 125b, 125c, and 125d, and the print density gradually decreases from the innermost square 125a toward the outermost circle 125d. .
  • a portion where the printing density of the light shielding pattern 125 is high has a high reflectance (low transmittance), and a portion where the printing density is low has a low reflectance (high transmittance).
  • the relative positions of the light shielding patterns 125 and the LED light sources 128 are adjusted so that the portions with the highest print density are positioned in the front direction of the LED light sources 128.
  • each of the plurality of light shielding patterns 125 includes a plurality of dot-shaped layers having different printing densities, each light shielding pattern 125 can be formed in a predetermined shape, and the light shielding pattern 125 to the diffusion plate 120 is formed. Can be efficiently printed. Furthermore, since each light shielding pattern 125 is printed on the diffusion plate 120 by inkjet printing, the light shielding pattern 125 can be efficiently printed on the diffusion plate 120.
  • FIG. 11 is a plan view of the backlight device 224 according to the third embodiment.
  • FIG. 12 is a plan view of the diffusion plate 220 as viewed from the back side, and shows a plan view of the back surface 220 a of the diffusion plate 220.
  • the third embodiment is different from that of the first embodiment in that the distance between the LED light sources 228 and the inclination angles of the inclined surfaces 226a1 and 226a2 of the reflecting member 226 are not constant. Since the other configuration is the same as that of the first embodiment, the description of the structure, operation, and effect is omitted.
  • the part obtained by adding the numeral 200 to the reference numeral in FIG. 3 is the same as the part described in the first embodiment.
  • the inclined surface 226a of the reflecting member 226 is formed so as to individually surround each LED light source 228 in an inverted quadrangular pyramid shape. And the space
  • the interval between the adjacent LED light sources 228 is close, and the inclined surface 226a1 of the reflecting member 226 surrounding the LED light sources 228 is included. Has become steep.
  • the interval between the adjacent LED light sources 228 is rough, and the inclined surface 226a2 of the reflecting member 226 surrounding the LED light sources 228 is formed. It is moderate.
  • a plurality of light shielding patterns 225 and 227 are printed on the back surface (surface facing the LED light source 228) 220a of the diffusion plate 220 by silk screen printing over the entire surface.
  • the light shielding pattern 225 has a dot shape composed of quadruple rectangles 225a, 225b, 225c, and 225d
  • the light shielding pattern 227 has a dot shape composed of quadruple squares 227a, 227b, 227c, and 227d.
  • the light shielding pattern 225 is superimposed on the reflective member 226 a 2 and the LED light source 228 surrounded by the reflective member 226 a 2, and is printed so that the darkest part is located in the front direction of the LED light source 228.
  • the light-shielding pattern 227 is superimposed on the reflective member 226a1 and the LED light source 228 surrounded by the reflective member 226a1, and is printed so that the darkest part is located in the front direction of the LED light source 228.
  • the backlight device 224 according to the third embodiment is configured as described above, the number of LED light sources 228 is reduced as compared with the backlight device 24 according to the first embodiment. Further, since the light shielding patterns 225 and 227 are printed on the diffusion plate 220 according to the reflection member 226 according to the interval between the LED light sources 228, the number of the light shielding patterns 225 and 227 is also reduced. And even if it is a case where the space
  • the backlight device 224 can reduce the number of the LED light sources 228 and the light shielding patterns 225 and 227 while preventing or suppressing luminance unevenness on the display surface of the liquid crystal panel. The power consumption of the light device 224 can be further reduced.
  • the LED light sources 28, 128, and 228 are examples of “light sources”.
  • the backlight devices 24, 124, and 224 are examples of “illumination devices”.
  • the printing method of the light shielding pattern can be appropriately changed.
  • a configuration is adopted in which only the edge portion of the diffusion plate is supported.
  • the diffusion plate is attached to the bottom plate of the chassis, extends from the bottom plate to the diffusion plate side, and the tip thereof is the back surface of the diffusion plate.
  • a configuration in which a support pin that supports the diffusion plate by abutting is provided may be adopted.
  • the shape and the like of the reflecting member can be appropriately changed.
  • a television receiver provided with a tuner has been exemplified.
  • the present invention can also be applied to a display device that does not include a tuner.
  • TV TV receiver, Ca, Cb: cabinet, T: tuner, S: stand
  • 10 liquid crystal display, 12: bezel, 14: frame
  • 16 liquid crystal panel
  • 18 optical member, 20, 120, 220: Diffusion plate, 20a, 120a, 220a: back surface (of diffusion plate) 22, 222: chassis, 24, 124, 224: backlight device, 25, 125, 225, 227: light shielding pattern, 26, 126, 226: reflection Member, 26a, 126a, 226a1, 226a2: inclined surface, 28, 128, 228: LED light source, 30: LED substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

The purpose of the present invention is to eliminate or suppress luminance non-uniformity of the display surface without increasing the number of light sources in an illuminating device. A backlight device of the present invention is provided with: an LED light source (28), which has light distribution wherein light having a peak emission intensity travels in the tilted direction with respect to the front direction; a chassis (22) which houses the LED light source (28), and which is opened to the light outputting side; a reflection member (26), which has a plurality of tilted surfaces (26a) that are tilted from the surface where the LED light source (28) is disposed to the side where the chassis (22) is opened, and which directs the light emitted from the LED light source (28) to the front direction of the LED light source (28) by means of the tilted surface (26a); and a diffuser panel (20), which is provided on the side where the chassis (22) is opened, and has a light blocking pattern (25) printed on the surface that faces the LED light source (28).

Description

照明装置、表示装置及びテレビ受信装置Lighting device, display device, and television receiver
 本発明は、照明装置、表示装置及びテレビ受信装置に関する。 The present invention relates to a lighting device, a display device, and a television receiver.
 近年、テレビ受信装置をはじめとする画像表示装置の表示素子は、従来のブラウン管から液晶パネルやプラズマディスプレイパネルなどの薄型表示素子を適用した薄型表示装置に移行しつつあり、画像表示装置の薄型化を可能としている。液晶表示装置は、これに用いる液晶パネルが自発光しないため、別途に照明装置としてバックライト装置を必要としている。 In recent years, display elements of image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display devices to which thin display elements such as liquid crystal panels and plasma display panels are applied. Is possible. The liquid crystal display device requires a backlight device as a separate illumination device because the liquid crystal panel used for this does not emit light.
 バックライト装置として、液晶パネルに対してその背面から光を直接供給する直下型のバックライト装置が知られている。このようなバックライト装置では、LED等の光源が設置された設置面上に反射部材が配されることがある。 As a backlight device, a direct-type backlight device that directly supplies light from the back surface to a liquid crystal panel is known. In such a backlight device, a reflection member may be disposed on an installation surface on which a light source such as an LED is installed.
 特許文献1に、直下型のバックライト装置等に利用される反射部材であって、LEDの設置面から液晶パネル側に傾斜する複数の傾斜面を有する立体形状を成す反射部材が開示されている。このような反射部材を、光源としてLEDを備える直下型のバックライト装置に適用することにより、各LEDからの光が反射部材の傾斜面によって液晶パネル側に指向されるため、液晶パネルの表示面の輝度ムラを防止ないし抑制することができる。 Patent Document 1 discloses a reflective member that is used in a direct backlight device or the like and has a three-dimensional shape having a plurality of inclined surfaces that are inclined from the LED installation surface toward the liquid crystal panel. . By applying such a reflective member to a direct type backlight device including LEDs as a light source, the light from each LED is directed to the liquid crystal panel side by the inclined surface of the reflective member. Brightness unevenness can be prevented or suppressed.
特開2008-292991号公報JP 2008-292991 A
(発明が解決しようとする課題)
 しかしながら、特許文献1の反射部材を適用した直下型のバックライト装置では、バックライト装置を薄型化した場合、LEDから出射された光が十分に多重反射されない状態で液晶パネル側に出射され、液晶パネルの表示面に輝度ムラが生じることがある。この場合、LEDの数を増やさなければ、液晶パネルの表示面の輝度ムラを防止ないし抑制することができず、LEDの増加に伴うLEDの実装コストの増加や消費電力の増加等が問題となる。
(Problems to be solved by the invention)
However, in the direct type backlight device to which the reflecting member of Patent Document 1 is applied, when the backlight device is thinned, the light emitted from the LED is emitted to the liquid crystal panel side in a state where the light is not sufficiently reflected, and the liquid crystal panel Luminance unevenness may occur on the display surface of the panel. In this case, unless the number of LEDs is increased, luminance unevenness on the display surface of the liquid crystal panel cannot be prevented or suppressed, and there are problems such as an increase in LED mounting cost and an increase in power consumption accompanying the increase in LEDs. .
 本明細書で開示される技術は、上記の課題に鑑みて創作されたものである。本明細書で開示される技術は、表示面に光を指向する反射部材を備える直下型の照明装置において、光源の数を増やすことなく、表示面の輝度ムラを防止ないし抑制することができる技術を提供することを目的とする。 The technology disclosed in this specification has been created in view of the above problems. The technology disclosed in this specification is a technology that can prevent or suppress uneven brightness on the display surface without increasing the number of light sources in a direct-type illumination device including a reflective member that directs light on the display surface. The purpose is to provide.
(課題を解決するための手段)
 本明細書で開示される技術は、発光強度がピークとなる光が正面方向に対して傾いた方向へ向かうような配光分布を有する光源と、該光源を収容し、その光出射側に向けて開口するシャーシと、前記光源の設置面から前記シャーシの前記開口する側に傾斜する複数の傾斜面を有し、該傾斜面によって前記光源からの光を該光源の正面方向に指向する反射部材と、前記シャーシの前記開口する側に配され、前記光源と対向する面に遮光パターンが印刷された拡散板と、を備える照明装置に関する。
(Means for solving problems)
The technology disclosed in this specification includes a light source having a light distribution such that light having a peak emission intensity is directed in a direction inclined with respect to the front direction, and the light source is accommodated and directed toward the light emitting side. And a reflecting member that directs light from the light source in the front direction of the light source by the inclined surface. The reflecting member has a plurality of inclined surfaces that are inclined from the installation surface of the light source toward the opening side of the chassis. And a diffusing plate disposed on the opening side of the chassis and having a light shielding pattern printed on a surface facing the light source.
 拡散板の光源と対向する面に印刷される遮光パターンは、正面方向から入射する光に対する遮光パターンであるため、斜め方向から光が入射すると、その光が遮光パターンを透過することがある。この場合、表示面を斜め方向から視たときに輝度ムラとなる。上記の照明装置によると、光源からの光を反射部材によって光源の正面方向に指向させることで、遮光パターンが印刷された拡散板の光源と対向する面に対して斜め方向から光が入射することを防止ないし抑制することができる。このため、拡散板に入射する光の全てないしその多くを拡散板に印刷された遮光パターンによって好適に調整することができ、拡散板を透過した光の表示面の輝度ムラを防止ないし抑制することができる。 Since the light-shielding pattern printed on the surface of the diffuser plate facing the light source is a light-shielding pattern for light incident from the front direction, when light enters from an oblique direction, the light may pass through the light-shielding pattern. In this case, luminance unevenness occurs when the display surface is viewed from an oblique direction. According to the illuminating device described above, the light from the light source is directed in the front direction of the light source by the reflecting member, so that the light is incident on the surface facing the light source of the diffusion plate on which the light shielding pattern is printed, from an oblique direction. Can be prevented or suppressed. For this reason, all or most of the light incident on the diffusion plate can be suitably adjusted by the light-shielding pattern printed on the diffusion plate, thereby preventing or suppressing luminance unevenness of the display surface of the light transmitted through the diffusion plate. Can do.
 前記遮光パターンは、前記拡散板の前記光源と対向する面の全面に複数印刷されていてもよい。
 この構成によると、反射部材によって光源の正面方向に指向された光の多くを拡散板の遮光パターンに当てることができるため、表示面の輝度ムラを一層防止ないし抑制することができる。
A plurality of the light shielding patterns may be printed on the entire surface of the diffusion plate facing the light source.
According to this configuration, most of the light directed in the front direction of the light source by the reflecting member can be applied to the light shielding pattern of the diffusing plate, so that uneven brightness on the display surface can be further prevented or suppressed.
 複数の前記遮光パターンの各々は、その印刷濃度に応じて遮光の程度が異なるものとされ、該遮光パターンに入射する光の輝度に応じてその印刷濃度が調整されていてもよい。
 この構成によると、遮光パターンの印刷濃度を調整することにより、表示面の効果的な輝度設計を行うことができる。
Each of the plurality of light shielding patterns may have a different degree of light shielding according to the printing density, and the printing density may be adjusted according to the luminance of light incident on the light shielding pattern.
According to this configuration, an effective luminance design of the display surface can be performed by adjusting the printing density of the light shielding pattern.
 複数の前記遮光パターンの各々は、印刷濃度が異なる複数の部分を有していてもよい。
 この構成によると、各遮光パターンにおいて印刷濃度を細かく調整することができ、表示面のより効果的な輝度設計を行うことができる。
Each of the plurality of light shielding patterns may have a plurality of portions having different printing densities.
According to this configuration, the print density can be finely adjusted in each light shielding pattern, and more effective luminance design of the display surface can be performed.
 複数の前記遮光パターンの各々は、印刷濃度が異なる縞状又はドット状の複数の層により成ってもよい。
 この構成によると、各遮光パターンを所定の形状で形成することができ、拡散板への遮光パターンの印刷を効率的に行うことができる。
Each of the plurality of light shielding patterns may be formed of a plurality of striped or dot-like layers having different printing densities.
According to this configuration, each light shielding pattern can be formed in a predetermined shape, and the light shielding pattern can be efficiently printed on the diffusion plate.
 前記反射部材の前記傾斜面は、前記光源の正面方向に対して成す角度が、前記光源からの光のうち発光強度がピークとなる光が前記正面方向に対して成す角度より小さいものとされていてもよい。
 この構成によると、光源からの光のうち発光強度がピークとなる光が反射部材の傾斜面に当たることとなるため、光源から出射される光の多くを光源の正面方向へ指向することができる。このため、遮光パターンが印刷された拡散板を透過した光の表示面の輝度ムラを一層防止ないし抑制することができる。
The angle of the inclined surface of the reflecting member with respect to the front direction of the light source is smaller than the angle formed with respect to the front direction of light from the light source that has a peak emission intensity. May be.
According to this configuration, light having a peak emission intensity among the light from the light source hits the inclined surface of the reflecting member, so that most of the light emitted from the light source can be directed in the front direction of the light source. For this reason, it is possible to further prevent or suppress luminance unevenness of the display surface of light transmitted through the diffusion plate on which the light shielding pattern is printed.
 前記遮光パターンは、グラビア印刷又はインクジェット印刷又はシルクスクリーン印刷のいずれかの印刷手法により前記拡散板に印刷されていてもよい。
 この構成によると、所定の印刷手法を用いることで、拡散板への遮光パターンの印刷を効率的に行うことができる。
The light shielding pattern may be printed on the diffusion plate by any one of gravure printing, ink jet printing, and silk screen printing.
According to this configuration, by using a predetermined printing method, it is possible to efficiently print the light shielding pattern on the diffusion plate.
 前記反射部材は、前記光源を個別に取り囲むような形状を成してもよい。
 この構成によると、個々の光源からの光を反射部材によって表示面側に効果的に指向することができるため、表示面の輝度ムラを一層防止ないし抑制することができる。
The reflective member may be shaped to individually surround the light sources.
According to this configuration, since the light from each light source can be effectively directed to the display surface side by the reflecting member, luminance unevenness on the display surface can be further prevented or suppressed.
 前記反射部材は、複数の前記傾斜面の傾斜角度が一定とされていてもよい。
 この構成によると、光の指向する方向を各傾斜面で一定とすることができ、光源の光出射側により均一な輝度分布を形成することができる。
The reflection member may have a constant inclination angle of the plurality of inclined surfaces.
According to this configuration, the direction in which light is directed can be made constant on each inclined surface, and a uniform luminance distribution can be formed on the light emission side of the light source.
 隣り合う前記光源の間隔が一定とされていてもよい。
 この構成によると、光源の光出射側により均一な輝度分布を形成することができる。
An interval between the adjacent light sources may be constant.
According to this configuration, a uniform luminance distribution can be formed on the light emission side of the light source.
 隣り合う前記光源の間隔が一定とされておらず、隣り合う前記光源の間隔に応じて前記反射部材の複数の前記傾斜面の傾斜角度がそれぞれ調整されていてもよい。
 この構成によると、光源の間隔が一定とされていない場合であっても、光源の光出射側に均一な輝度分布を形成することができる。このため、表示面の輝度ムラを防止ないし抑制しながら、光源の数を削減することができ、光源の実装コストや照明装置の消費電力等を低減することができる。
The interval between the adjacent light sources may not be constant, and the inclination angles of the plurality of inclined surfaces of the reflecting member may be adjusted according to the interval between the adjacent light sources.
According to this configuration, even if the interval between the light sources is not constant, a uniform luminance distribution can be formed on the light emission side of the light source. Therefore, the number of light sources can be reduced while preventing or suppressing luminance unevenness on the display surface, and the mounting cost of the light sources, the power consumption of the lighting device, and the like can be reduced.
 本明細書で開示される技術は、上記の照明装置からの光を利用して表示を行う表示パネルと、を備える表示装置として表現することもできる。また、当該表示パネルを、液晶を用いた液晶パネルとする表示装置も、新規で有用である。また、上記の表示装置を備えるテレビ受信装置も、新規で有用である。上記の表示装置およびテレビによると、表示領域の大面積化を実現することが可能となる。 The technology disclosed in this specification can also be expressed as a display device including a display panel that performs display using light from the above-described lighting device. A display device in which the display panel is a liquid crystal panel using liquid crystal is also new and useful. A television receiver provided with the above display device is also new and useful. According to the display device and the television set described above, the display area can be increased.
(発明の効果)
 本明細書で開示される技術によれば、表示面に光を指向する反射部材を備える直下型の照明装置において、光源の数を増やすことなく、表示面の輝度ムラを防止ないし抑制することができる技術を提供することができる。
(The invention's effect)
According to the technology disclosed in this specification, in a direct illumination device including a reflective member that directs light on a display surface, luminance unevenness on the display surface can be prevented or suppressed without increasing the number of light sources. Technology that can be provided.
実施形態1に係るテレビ受信装置TVの分解斜視図を示す。1 is an exploded perspective view of a television receiver TV according to Embodiment 1. FIG. 液晶表示装置10の分解斜視図を示す。An exploded perspective view of the liquid crystal display device 10 is shown. バックライト装置24の平面図を示す。The top view of the backlight apparatus 24 is shown. 拡散板20をその裏側から視た平面図を示す。The top view which looked at the diffusion plate 20 from the back side is shown. バックライト装置24の断面図を示す。A cross-sectional view of the backlight device 24 is shown. バックライト装置24の拡大断面図を示す。The expanded sectional view of the backlight apparatus 24 is shown. 反射部材26を備える通常の直下型のバックライト装置において、2つのLED光源をX軸方向に並列配置したときの、液晶パネルの表示面の輝度分布を示す。In a normal direct type backlight device provided with a reflecting member 26, the luminance distribution on the display surface of the liquid crystal panel when two LED light sources are arranged in parallel in the X-axis direction is shown. 実施形態1に係るバックライト装置24において、2つのLED光源28をX軸方向に並列配置したときの、液晶パネル16の表示面の輝度分布を示す。In the backlight device 24 according to Embodiment 1, the luminance distribution on the display surface of the liquid crystal panel 16 when two LED light sources 28 are arranged in parallel in the X-axis direction is shown. 実施形態2に係るバックライト装置124の平面図を示す。The top view of the backlight apparatus 124 which concerns on Embodiment 2 is shown. 拡散板120をその裏側から視た平面図を示す。The top view which looked at the diffusion plate 120 from the back side is shown. 実施形態3に係るバックライト装置224の平面図を示す。The top view of the backlight apparatus 224 which concerns on Embodiment 3 is shown. 拡散板220をその裏側から視た平面図を示す。The top view which looked at the diffusion plate 220 from the back side is shown.
 <実施形態1>
 図面を参照して実施形態1を説明する。なお、各図面の一部にはX軸、Y軸およびZ軸を示しており、各軸方向が各図面で共通した方向となるように描かれている。このうちY軸方向は、鉛直方向と一致し、X軸方向は、水平方向と一致している。
<Embodiment 1>
Embodiment 1 will be described with reference to the drawings. A part of each drawing shows an X-axis, a Y-axis, and a Z-axis, and each axis direction is drawn in a common direction in each drawing. Among these, the Y-axis direction coincides with the vertical direction, and the X-axis direction coincides with the horizontal direction.
 図1は、実施形態1に係るテレビ受信装置TVの分解斜視図を示している。図1に示すように、テレビ受信装置TVは、液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネットCa、Cbと、電源Pと、チューナーTと、スタンドSと、を備えている。液晶表示装置10は、全体として横長の方形を成し、縦置き状態で収容されている。 FIG. 1 is an exploded perspective view of the television receiver TV according to the first embodiment. As shown in FIG. 1, the television receiver TV includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, a tuner T, and a stand S. I have. The liquid crystal display device 10 has a horizontally long rectangular shape as a whole and is accommodated in a vertically placed state.
 図2は、液晶表示装置10の分解斜視図を示している。ここで、図2に示す上側を表側とし、同図下側を裏側とする。図2に示すように、液晶表示装置10は、表示パネルである液晶パネル16と、外部光源であるバックライト装置24とを備え、これらが枠状をなすベゼル12等により一体的に保持されるようになっている。 FIG. 2 is an exploded perspective view of the liquid crystal display device 10. Here, the upper side shown in FIG. 2 is the front side, and the lower side is the back side. As shown in FIG. 2, the liquid crystal display device 10 includes a liquid crystal panel 16 that is a display panel and a backlight device 24 that is an external light source, and these are integrally held by a bezel 12 or the like having a frame shape. It is like that.
 続いて、液晶パネル16について説明する。液晶パネル16は、透明な(高い透光性を有する)一対のガラス基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両ガラス基板間に液晶層(図示しない)が封入された構成とされる。一方のガラス基板には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、そのスイッチング素子に接続された画素電極、さらには配向膜等が設けられ、他方のガラス基板には、R(赤色),G(緑色),B(青色)等の各着色部が所定配列で配置されたカラーフィルタや対向電極、さらには配向膜等が設けられている。このうち、ソース配線、ゲート配線および対向電極などには、図示しない駆動回路基板から画像を表示するのに必要な画像データや各種制御信号が供給されるようになっている。なお、両ガラス基板の外側には偏光板(図示しない)が配されている。 Subsequently, the liquid crystal panel 16 will be described. The liquid crystal panel 16 has a configuration in which a pair of transparent (highly translucent) glass substrates are bonded together with a predetermined gap therebetween, and a liquid crystal layer (not shown) is sealed between the glass substrates. Is done. One glass substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like. The substrate is provided with a color filter and counter electrodes in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, and an alignment film. Of these, image data and various control signals necessary for displaying an image are supplied to a source wiring, a gate wiring, a counter electrode, and the like from a drive circuit board (not shown). A polarizing plate (not shown) is disposed outside both glass substrates.
 続いて、バックライト装置24について説明する。図3は、バックライト装置24の平面図を示している。図4は、拡散板20をその裏側から視た平面図であって、拡散板20の裏面20aの平面図を示している。図5は、バックライト装置24を水平方向(X軸方向)に切断した断面の断面図を示している。バックライト装置24は、図2に示すように、シャーシ22と、拡散板20と、光学部材18と、フレーム14とを備えている。シャーシ22は、表側(光出射側、液晶パネル16側)に開口した略箱型をなしている。拡散板20は、シャーシ22の表側に、シャーシ22の開口を覆うようにして配されている。光学部材18は、拡散板20の表側に配されている。フレーム14は、枠状をなしており、内縁に沿って液晶パネル16を支持している。 Subsequently, the backlight device 24 will be described. FIG. 3 shows a plan view of the backlight device 24. FIG. 4 is a plan view of the diffusing plate 20 as viewed from the back side, and shows a plan view of the back surface 20 a of the diffusing plate 20. FIG. 5 shows a cross-sectional view of a cross section of the backlight device 24 cut in the horizontal direction (X-axis direction). As shown in FIG. 2, the backlight device 24 includes a chassis 22, a diffusion plate 20, an optical member 18, and a frame 14. The chassis 22 has a substantially box shape opened to the front side (light emitting side, liquid crystal panel 16 side). The diffusion plate 20 is disposed on the front side of the chassis 22 so as to cover the opening of the chassis 22. The optical member 18 is disposed on the front side of the diffusion plate 20. The frame 14 has a frame shape and supports the liquid crystal panel 16 along the inner edge.
 シャーシ22内には、点状の複数のLED(Light Emitting Diode)光源28が配されたLED基板30(図5参照)と、反射部材26とが収容されている。なお、バックライト装置24は、LED基板30側よりも拡散板20側が光出射側となっており、液晶パネル16に対してその裏側から拡散板20等を介して直接光が供給される直下型のバックライト装置である。 In the chassis 22, an LED substrate 30 (see FIG. 5) on which a plurality of light emitting diode (LED) light sources 28 are arranged and a reflecting member 26 are accommodated. Note that the backlight device 24 has a light emitting side on the diffusion plate 20 side rather than the LED substrate 30 side, and is a direct type in which light is directly supplied to the liquid crystal panel 16 from the back side through the diffusion plate 20 and the like. This is a backlight device.
 シャーシ22は、例えばアルミ系材料などの金属製とされ、底板22aと、側板22cと、受け板22dとから構成され、全体としては表側に向けて開口した浅い略箱型(略浅皿状)を成している。底板22aは、液晶パネル16と同様に横長の方形を成しており、LED基板30に対して裏側、即ちLED光源28の光出射側とは反対側に配されている。側板22cは、底板22aの各辺の外縁から立ち上がっている。受け板22dは、各側板22cの立ち上がり端部から外向きに張り出しており、その表側に拡散板20及びフレーム14を載置可能となっている。フレーム14は、受け板22dにネジ留めされることにより、受け板22dに対して固定されている。シャーシ22は、その長辺方向がX軸方向(水平方向)と一致し、その短辺方向がY軸方向(鉛直方向)と一致している。 The chassis 22 is made of, for example, a metal such as an aluminum-based material, and includes a bottom plate 22a, a side plate 22c, and a receiving plate 22d. Is made. The bottom plate 22 a has a horizontally long rectangular shape as in the liquid crystal panel 16, and is disposed on the back side of the LED substrate 30, that is, on the side opposite to the light emitting side of the LED light source 28. The side plate 22c rises from the outer edge of each side of the bottom plate 22a. The receiving plate 22d projects outward from the rising end of each side plate 22c, and the diffusion plate 20 and the frame 14 can be placed on the front side. The frame 14 is fixed to the receiving plate 22d by being screwed to the receiving plate 22d. The long side direction of the chassis 22 coincides with the X-axis direction (horizontal direction), and the short side direction thereof coincides with the Y-axis direction (vertical direction).
 続いて、LED基板30及びLED基板30の表面に配されたLED光源28について説明する。LED基板30は、図5に示すように、シャーシ22の底板22aと同様の横長の平板状を成し、その長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致する状態でシャーシ22の底板22aの表側に敷設されている。LED基板30は、底板22aを概ね全域に亘って覆うことができる大きさ、具体的には底板22aの外周端部を除いた中央側の多くの部分を覆うことができる大きさを有している。 Subsequently, the LED substrate 30 and the LED light source 28 disposed on the surface of the LED substrate 30 will be described. As shown in FIG. 5, the LED substrate 30 has a horizontally long flat plate shape similar to the bottom plate 22 a of the chassis 22. The long side direction coincides with the X axis direction, and the short side direction coincides with the Y axis direction. In the state, it is laid on the front side of the bottom plate 22 a of the chassis 22. The LED board 30 has a size that can cover the entire area of the bottom plate 22a, specifically, a size that can cover many portions on the center side excluding the outer peripheral end of the bottom plate 22a. Yes.
 LED光源28は、LED基板30の表面30aに実装されている。LED光源28は、図3に示すように、LED基板30においてX軸方向及びY軸方向に複数づつ平面的に並列配置されている。X軸方向に沿って並列する各LED光源28の配列ピッチと、Y軸方向に沿って並列する各LED光源28の配列ピッチは、それぞれ一定とされている。各LED光源28は、LED基板30上に形成された図示しない配線パターンによって相互に接続されている。LED光源28には、シャーシ22の底板22aの裏側に取り付けられた図示しない電源回路基板によって駆動電力が供給される。 The LED light source 28 is mounted on the surface 30 a of the LED substrate 30. As shown in FIG. 3, the LED light sources 28 are arranged in parallel on the LED substrate 30 in a plurality of planes in the X-axis direction and the Y-axis direction. The arrangement pitch of the LED light sources 28 arranged in parallel along the X-axis direction and the arrangement pitch of the LED light sources 28 arranged in parallel along the Y-axis direction are fixed. The LED light sources 28 are connected to each other by a wiring pattern (not shown) formed on the LED substrate 30. Driving power is supplied to the LED light source 28 by a power supply circuit board (not shown) attached to the back side of the bottom plate 22 a of the chassis 22.
 LED光源28は、白色発光するものであり、例えば赤色、緑色、青色の3種類のLEDチップ(図示しない)が面実装された構成としてもよく、あるいは、青色発光素子に、黄色の領域に発光ピークを持つ蛍光体を塗布することにより白色発光するものとしたものであってもよい。また、青色発光素子に、緑色と赤色の領域にそれぞれ発光ピークを持つ蛍光体を塗布することにより白色発光するものとしたものであってもよい。また、青色発光素子に、緑色の領域に発光ピークを持つ蛍光体を塗布すると共に、赤色発光素子を組み合わせることにより白色発光するものとしたものであってもよい。また、LED光源28は、青色発光素子と、緑色発光素子と、赤色発光素子と、を組み合わせることにより白色発光するものとしたものであってもよい。また、紫外光発光素子と、蛍光体と、を組み合わせたものであってもよい。特に、紫外光発光素子に、青色と緑色と赤色にそれぞれ発光ピークを持つ蛍光体を塗布することにより白色発光するものとしたものであってもよい。 The LED light source 28 emits white light. For example, three types of LED chips (not shown) of red, green, and blue may be surface-mounted, or the blue light emitting element emits light in a yellow region. It may be one that emits white light by applying a phosphor having a peak. Alternatively, the blue light emitting element may emit white light by applying a phosphor having emission peaks in the green and red regions. Further, a phosphor having a light emission peak in a green region may be applied to a blue light emitting element, and white light may be emitted by combining a red light emitting element. The LED light source 28 may emit white light by combining a blue light emitting element, a green light emitting element, and a red light emitting element. Further, a combination of an ultraviolet light emitting element and a phosphor may be used. In particular, an ultraviolet light-emitting element may emit white light by applying a phosphor having emission peaks in blue, green, and red, respectively.
 反射部材26は、熱可塑性を有する合成樹脂材料により形成され、その表面が光の反射性に優れた白色を呈するものとされている。反射部材26は、シャーシ22の表面に敷設されたLED基板30の表側に敷設され、LED基板30をほぼ全域に亘って覆うことが可能な大きさを有している。反射部材26は、LED基板30に沿って延在しており、図2及び図3に示すように、4つの立ち上がり部26cと、4つの延出部26eとから構成されている。立ち上がり部26cは、反射部材26の底部の外周端からそれぞれ立ち上がっており、シャーシ22の底板22aに対して傾斜する形状を成している。延出部26eは、各立ち上がり部26cの外端から外向きに延出しており、シャーシ22の受け板22dに載置されている。また、反射部材26の底部には、各LED光源28と平面視において重畳する位置に、各LED光源28を個別に挿通する複数の光源挿通孔26dが設けられている。この光源挿通孔26dは、各LED光源28の配置に対応してX軸方向及びY軸方向に並列配置されている。 The reflection member 26 is made of a synthetic resin material having thermoplasticity, and the surface thereof has a white color with excellent light reflectivity. The reflection member 26 is laid on the front side of the LED board 30 laid on the surface of the chassis 22 and has a size that can cover the LED board 30 over almost the entire area. The reflecting member 26 extends along the LED substrate 30 and includes four rising portions 26c and four extending portions 26e as shown in FIGS. The rising portions 26 c rise from the outer peripheral end of the bottom portion of the reflecting member 26 and have a shape that is inclined with respect to the bottom plate 22 a of the chassis 22. The extending portion 26 e extends outward from the outer end of each rising portion 26 c and is placed on the receiving plate 22 d of the chassis 22. In addition, a plurality of light source insertion holes 26d through which the LED light sources 28 are individually inserted are provided on the bottom portion of the reflection member 26 at positions overlapping the LED light sources 28 in plan view. The light source insertion holes 26d are arranged in parallel in the X-axis direction and the Y-axis direction corresponding to the arrangement of the LED light sources 28.
 また、反射部材26には、LED基板30側から表側(シャーシ22の開口する側)に傾斜する複数の傾斜面26aが設けられている。各傾斜面26aの傾斜角度は一定とされている。傾斜面26aは、各光源挿通孔26dの孔縁を除いた多くの部分を表側に突出させることで形成されており、反射部材26の底部の残された部分がLED基板30によって支持されている。そして、傾斜面26aは、周方向については円弧状の曲面とされており、各LED光源28を逆円錐状に個別に取り囲むように形成されている。そして傾斜面26aは、各LED光源28から出射されて傾斜面26aまで到達した光を表側(拡散板20側)に指向させることが可能となっている。各傾斜面26aにおける突出先端部同士は、LED基板30の表面と平行な頂面部26bを介して繋がっている。また、傾斜面26aは、その先端部が拡散板20とは非接触の状態とされている。 Further, the reflecting member 26 is provided with a plurality of inclined surfaces 26a that are inclined from the LED substrate 30 side to the front side (side where the chassis 22 is opened). The inclination angle of each inclined surface 26a is fixed. The inclined surface 26 a is formed by projecting many portions excluding the hole edge of each light source insertion hole 26 d to the front side, and the remaining portion of the bottom of the reflecting member 26 is supported by the LED substrate 30. . And the inclined surface 26a is made into the circular-arc-shaped curved surface about the circumferential direction, and is formed so that each LED light source 28 may be enclosed individually in an inverted cone shape. And the inclined surface 26a can direct the light emitted from each LED light source 28 and reaching the inclined surface 26a to the front side (the diffuser plate 20 side). The projecting tip portions of each inclined surface 26 a are connected via a top surface portion 26 b parallel to the surface of the LED substrate 30. Further, the inclined surface 26 a is in a state where the tip thereof is not in contact with the diffusion plate 20.
 続いて、シャーシ22の開口する側に配された拡散板20及び光学部材18について説明する。拡散板20は、反射部材26の延出部26eを介してシャーシの受け板22dに、LED基板30に対して平行となるように載置され、シャーシ22の開口する側を覆っている。拡散板20は、所定の厚みを有するほぼ透明な樹脂製の基材内に拡散粒子が多数分散された構成とされ、透過する光を拡散させる機能を有する。また、図4に示すように、拡散板20の裏面(LED光源28と対向する面)20aには、その全面に亘って同一の遮光パターン25がグラビア印刷により複数印刷されている。 Subsequently, the diffusion plate 20 and the optical member 18 arranged on the opening side of the chassis 22 will be described. The diffusion plate 20 is placed on the receiving plate 22d of the chassis via the extending portion 26e of the reflecting member 26 so as to be parallel to the LED substrate 30, and covers the opening side of the chassis 22. The diffusing plate 20 has a structure in which a large number of diffusing particles are dispersed in a substantially transparent resin base material having a predetermined thickness, and has a function of diffusing transmitted light. As shown in FIG. 4, a plurality of the same light shielding patterns 25 are printed on the back surface (surface facing the LED light source 28) 20 a of the diffusion plate 20 by gravure printing over the entire surface.
 各遮光パターン25は、入射する光の輝度に応じてその印刷濃度が調整されている。具体的には、各遮光パターン25は四重円25a、25b、25c、25dから成る縞模様とされており、最も内側の円25aから最も外側の円25dに向かうにつれてその印刷濃度が段階的に薄くなっている。遮光パターン25は反射率がほぼ100%の微小な反射ドットが複数印刷されたものであり、印刷濃度が濃い部分は反射ドットの密度が高く、印刷濃度が薄い部分は反射ドットの密度が低くなっている。従って、印刷濃度が濃い部分は反射率が高く(透過率が低く)、印刷濃度が薄い部分は反射率が低く(透過率が高く)なっている。 The printing density of each light shielding pattern 25 is adjusted according to the luminance of incident light. Specifically, each light-shielding pattern 25 is a striped pattern composed of quadruple circles 25a, 25b, 25c, and 25d, and the print density gradually increases from the innermost circle 25a toward the outermost circle 25d. It is getting thinner. The light shielding pattern 25 is a pattern in which a plurality of minute reflective dots having a reflectance of almost 100% are printed. The density of the reflective dots is high in a portion where the print density is high, and the density of the reflective dots is low in a portion where the print density is low. ing. Accordingly, a portion with a high printing density has a high reflectance (low transmittance), and a portion with a low printing density has a low reflectance (high transmittance).
 拡散板20の裏面20aに対して正面方向から入射した光は、入射した遮光パターン25の印刷濃度に応じてその一部が反射され、残りが拡散板20を透過して液晶パネル16側に出射されることとなる。反射した光は反射部材26によって反射され、再び拡散板20の裏面に入射し、拡散板20を透過するまで反射が繰り返される。このようにして、遮光パターン25に応じた光が拡散板20の表面から出射される。また、発光強度が高い光と発光強度が低い光とが、印刷濃度の等しい遮光パターンにそれぞれ入射する場合、発光強度が高い光の方がより多くの光がその遮光パターンを透過することとなる。そして、バックライト装置24では、遮光パターン25のうち、反射率が高い箇所には発光強度が高い光が入射し、反射率が低い箇所には発光強度が低い光が入射するような位置関係でLED光源28、反射部材26の傾斜面26a及び遮光パターン25が配されている。このため、拡散板20を透過して拡散板20の出光面に表示される光の輝度分布はほぼ均一化される。 A part of the light incident from the front direction with respect to the back surface 20a of the diffusion plate 20 is reflected according to the print density of the incident light shielding pattern 25, and the rest is transmitted through the diffusion plate 20 and emitted to the liquid crystal panel 16 side. Will be. The reflected light is reflected by the reflecting member 26, is incident on the back surface of the diffusion plate 20 again, and is repeatedly reflected until it passes through the diffusion plate 20. In this way, light corresponding to the light shielding pattern 25 is emitted from the surface of the diffusion plate 20. In addition, when light having a high emission intensity and light having a low emission intensity are incident on a light shielding pattern having the same print density, light having a higher light emission intensity transmits more light through the light shielding pattern. . In the backlight device 24, the light shielding pattern 25 has a positional relationship in which light with high emission intensity is incident on a portion with high reflectance and light with low emission intensity is incident on a portion with low reflectance. The LED light source 28, the inclined surface 26a of the reflecting member 26, and the light shielding pattern 25 are arranged. For this reason, the luminance distribution of the light transmitted through the diffusion plate 20 and displayed on the light exit surface of the diffusion plate 20 is made substantially uniform.
 光学部材18は、拡散板20の表面のほぼ全面を覆っており、拡散板20の表側に配されている。光学部材18の表側には液晶パネル16が設置されており、光学部材18は拡散板20と液晶パネル16との間に配されている。光学部材18は、2枚のシートが積層されて構成されており、LED光源28から出射されて拡散板20を透過した光に所定の光学的作用を付与しつつ、その光を表側外部へと出射させることが可能とされている。これら2枚のシートの種類としては、拡散シート、レンズシート、反射型偏光シート等があり、これらの中から適宜に選択して使用することが可能である。 The optical member 18 covers almost the entire surface of the diffusion plate 20 and is arranged on the front side of the diffusion plate 20. A liquid crystal panel 16 is installed on the front side of the optical member 18, and the optical member 18 is disposed between the diffusion plate 20 and the liquid crystal panel 16. The optical member 18 is configured by laminating two sheets. The optical member 18 imparts a predetermined optical action to the light emitted from the LED light source 28 and transmitted through the diffusion plate 20, and the light is transmitted to the outside on the front side. It can be emitted. Examples of these two sheets include a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used.
 続いてLED光源28の配光分布について説明する。図6は、バックライト装置24の断面図であって、図5の一部を拡大した断面図を示している。なお、図6において、参照符号Lは、LED光源28から出射される光のうち発光強度がピークとなる光の出射方向を示している。図6に示すように、各LED光源28は、LED基板30の表面に実装され、光を出射する基板部28aと、基板部28aを覆う透明な半球状の光出射面28bとにより構成されている。そして、LED光源28は、発光強度がピークとなる光がLED光源28の正面方向に対して傾いた方向へ向かうような配光分布を有している。ここで、発光強度の具体的な単位は、放射強度(W/sr・m2)、放射束(W)、放射照度(W/m2)等とすることができ、それ以外の放射量に関する物理量とすることも可能である。 Subsequently, the light distribution of the LED light source 28 will be described. FIG. 6 is a cross-sectional view of the backlight device 24 and shows a cross-sectional view in which a part of FIG. 5 is enlarged. In FIG. 6, reference symbol L indicates an emission direction of light having a peak emission intensity among the light emitted from the LED light source 28. As shown in FIG. 6, each LED light source 28 is mounted on the surface of the LED substrate 30, and is configured by a substrate portion 28a that emits light and a transparent hemispherical light emitting surface 28b that covers the substrate portion 28a. Yes. The LED light source 28 has a light distribution such that light having a peak emission intensity is directed in a direction inclined with respect to the front direction of the LED light source 28. Here, the specific unit of emission intensity can be radiant intensity (W / sr · m2), radiant flux (W), irradiance (W / m2), etc. It is also possible to do.
 発光強度がピークとなる光はLED光源28の中心から放射状に出射されてLED光源28の正面方向に対して所定の角度Aを成す方向Lへ向かうものとされている。これにより、LED光源28から出射された光は広い範囲に拡散される。一方、反射部材26の傾斜面26aは、LED光源28の正面方向に対して所定の角度Bを成している。そして、バックライト装置24では、角度A>角度Bの関係が成立している。このため、LED光源28から出射された光のうち発光強度がピークとなる光は反射部材26の傾斜面26aに当たることとなり、LED光源28から出射される光の多くがLED光源28の正面方向へ指向される。 The light with the peak emission intensity is emitted radially from the center of the LED light source 28 and travels in a direction L that forms a predetermined angle A with respect to the front direction of the LED light source 28. Thereby, the light emitted from the LED light source 28 is diffused over a wide range. On the other hand, the inclined surface 26 a of the reflecting member 26 forms a predetermined angle B with respect to the front direction of the LED light source 28. In the backlight device 24, the relationship of angle A> angle B is established. For this reason, of the light emitted from the LED light source 28, the light having the peak emission intensity hits the inclined surface 26 a of the reflecting member 26, and most of the light emitted from the LED light source 28 is directed in the front direction of the LED light source 28. Oriented.
 また、LED光源28から出射される光のうち、LED光源28の正面方向に出射される光は、反射部材26によって反射されることなく拡散板20の裏面に対してその正面方向から直接入射する。一方、反射部材26によってLED光源28の正面方向に指向された光はその強度が低下する。従って、遮光パターン25に入射する光のうち最も強度が高い光は、LED光源28の直上に位置する箇所に入射する光となる。このため、遮光パターン25のうち印刷濃度が最も濃い箇所(25a)がLED光源28の正面方向に位置するように遮光パターン25とLED光源28との相対位置が調整されている。 Of the light emitted from the LED light source 28, the light emitted in the front direction of the LED light source 28 is directly incident on the back surface of the diffusion plate 20 from the front direction without being reflected by the reflecting member 26. . On the other hand, the intensity of the light directed in the front direction of the LED light source 28 by the reflecting member 26 decreases. Therefore, the light having the highest intensity among the light incident on the light shielding pattern 25 is light incident on a portion located immediately above the LED light source 28. For this reason, the relative position of the light shielding pattern 25 and the LED light source 28 is adjusted so that the darkest portion (25a) of the light shielding pattern 25 is located in the front direction of the LED light source 28.
 続いて、本実施形態に係るバックライト装置24の作用を説明する。バックライト装置24の各LED光源28を点灯させると、各LED光源28から広い範囲に出射された光の多くは、拡散板20の裏面20aに印刷された遮光パターン25に対して直接的に又は反射部材26の傾斜面26aによって指向されて間接的に、その正面方向から入射する。拡散板20を透過する光は拡散板20によって拡散されてその表側から出射され、光学部材18に入射する。そして光学部材18を透過した光は液晶パネル16に向けて出射される。 Subsequently, the operation of the backlight device 24 according to the present embodiment will be described. When each LED light source 28 of the backlight device 24 is turned on, most of the light emitted from each LED light source 28 in a wide range directly or against the light shielding pattern 25 printed on the back surface 20a of the diffusion plate 20 Directed by the inclined surface 26a of the reflecting member 26 and indirectly incident from the front direction. The light that passes through the diffusion plate 20 is diffused by the diffusion plate 20, is emitted from the front side, and enters the optical member 18. The light transmitted through the optical member 18 is emitted toward the liquid crystal panel 16.
 ここで、反射部材26を備える通常の直下型のバックライト装置における表示面の輝度分布と本実施形態に係るバックライト装置24における表示面の輝度分布の対比について説明する。図7は、反射部材26を備える通常の直下型のバックライト装置(換言すれば、本実施形態に係るバックライト装置24において、LED光源28と遮光パターン25が印刷された拡散板20とを適用しない場合)において、2つのLED光源をX軸方向に並列配置したときの、液晶パネルの表示面の輝度分布を示している。一方、図8は、本実施形態に係るバックライト装置24において、2つのLED光源28をX軸方向に並列配置したときの、液晶パネル16の表示面の輝度分布を示している。なお、図7及び図8における縦軸は光の発光強度(任意単位)を示しており、横軸はX軸方向におけるLED光源の配置(任意単位)を示している。 Here, a description will be given of the contrast between the luminance distribution of the display surface in a normal direct backlight device including the reflecting member 26 and the luminance distribution of the display surface in the backlight device 24 according to the present embodiment. FIG. 7 shows a normal direct-type backlight device having a reflecting member 26 (in other words, in the backlight device 24 according to this embodiment, the LED light source 28 and the diffusion plate 20 on which the light shielding pattern 25 is printed are applied. In the case of not), the luminance distribution of the display surface of the liquid crystal panel when two LED light sources are arranged in parallel in the X-axis direction is shown. On the other hand, FIG. 8 shows the luminance distribution on the display surface of the liquid crystal panel 16 when the two LED light sources 28 are arranged in parallel in the X-axis direction in the backlight device 24 according to the present embodiment. 7 and 8, the vertical axis indicates the light emission intensity (arbitrary unit), and the horizontal axis indicates the LED light source arrangement (arbitrary unit) in the X-axis direction.
 図7に示すように、本実施形態に係るLED光源28と遮光パターン25が印刷された拡散板20を適用しない場合には、LED光源から出射された光が十分に多重反射されない状態で液晶パネル側に出射されるため、2つのLED光源の位置に対応する位置にそれぞれ発光強度のピークが形成される。一方、本実施形態に係るバックライト装置24では、図8に示すように、発光強度のピークがX軸方向に沿ってほぼ均一となる。これは、LED光源28から出射された光が広い範囲に拡散されることで、その光の多くが反射部材26によってLED光源28の正面方向に指向され、これにより、遮光パターン25を透過する光がその印刷濃度に応じて好適に調整され、拡散板20の出光面においてほぼ均一な輝度分布となることを示している。このような輝度分布は、拡散板20に印刷された遮光パターン25に入射する光の多くがその正面方向から入射することにより実現される。即ち、遮光パターン25が印刷された拡散板20と遮光パターン25が印刷された面に対してその正面方向に光を指向する反射部材26とを組み合わせることにより、遮光パターン25が印刷された拡散板20の効果を好適に得ることができる。 As shown in FIG. 7, when the diffuser plate 20 on which the LED light source 28 and the light shielding pattern 25 according to the present embodiment are not applied, the liquid crystal panel is in a state where the light emitted from the LED light source is not sufficiently multiply reflected. Therefore, the emission intensity peaks are formed at positions corresponding to the positions of the two LED light sources. On the other hand, in the backlight device 24 according to the present embodiment, as shown in FIG. 8, the peak of the light emission intensity is substantially uniform along the X-axis direction. This is because light emitted from the LED light source 28 is diffused over a wide range, so that most of the light is directed toward the front surface of the LED light source 28 by the reflecting member 26, and thereby the light transmitted through the light shielding pattern 25. Is suitably adjusted according to the printing density, and the luminance distribution is almost uniform on the light exit surface of the diffusion plate 20. Such a luminance distribution is realized when most of the light incident on the light shielding pattern 25 printed on the diffusion plate 20 enters from the front direction. That is, the diffusion plate 20 on which the light shielding pattern 25 is printed by combining the diffusion plate 20 on which the light shielding pattern 25 is printed and the reflecting member 26 that directs light in the front direction with respect to the surface on which the light shielding pattern 25 is printed. 20 effects can be suitably obtained.
 高拡散配光を有するLED光源28と、反射部材26と、LED光源28と対向する面に遮光パターン25が印刷された拡散板20のうち、高拡散配光のLED光源28が適用されない場合、LED光源28から出射された光を十分に反射部材26に当てることができず、遮光パターン25が印刷された拡散板20の裏面20aに対してその斜め方向から入射する光が生じることとなる。また、反射部材26が適用されない場合にも、LED光源28から出射された光が指向されないことにより、拡散板20の裏面20aに対してその斜め方向から入射する光が生じることとなる。これらの場合、液晶パネル16の表示面を斜め方向から視たときに輝度ムラとなる。また、遮光パターン25が印刷されていない拡散板20を適用した場合、LED光源28から出射された光が十分に多重反射されない状態で液晶パネル側に出射されるため、液晶パネル16の表示面に輝度ムラが生じる。これに対し、本実施形態に係るバックライト装置24は、高拡散配光を有するLED光源28と、遮光パターン25が印刷された面に対してその正面方向に光を指向する反射部材26と、遮光パターン25が印刷された拡散板20とを備えることにより、液晶パネル16の輝度ムラが防止ないし抑制されている。 When the LED light source 28 having a high diffusion light distribution is not applied among the LED light source 28 having a high diffusion light distribution, the reflecting member 26, and the diffusion plate 20 having the light shielding pattern 25 printed on the surface facing the LED light source 28, The light emitted from the LED light source 28 cannot be sufficiently applied to the reflecting member 26, and light incident from the oblique direction to the back surface 20 a of the diffusion plate 20 on which the light shielding pattern 25 is printed is generated. Even when the reflecting member 26 is not applied, the light emitted from the LED light source 28 is not directed, so that light incident on the rear surface 20a of the diffusion plate 20 from an oblique direction is generated. In these cases, luminance unevenness occurs when the display surface of the liquid crystal panel 16 is viewed from an oblique direction. In addition, when the diffusion plate 20 on which the light shielding pattern 25 is not printed is applied, the light emitted from the LED light source 28 is emitted to the liquid crystal panel side in a state where it is not sufficiently multiple-reflected. Brightness unevenness occurs. On the other hand, the backlight device 24 according to the present embodiment includes an LED light source 28 having a high diffusion light distribution, a reflecting member 26 that directs light in the front direction of the surface on which the light shielding pattern 25 is printed, By providing the diffusing plate 20 on which the light shielding pattern 25 is printed, luminance unevenness of the liquid crystal panel 16 is prevented or suppressed.
 以上のように本実施形態に係るバックライト装置24では、LED光源28からの光を反射部材26によってLED光源28の正面方向に指向させることで、遮光パターン25が印刷された拡散板20の裏面20aに対して斜め方向から光が入射することを防止ないし抑制することができる。このため、拡散板20に入射する光の全てないしその多くを拡散板20に印刷された遮光パターン25によって好適に調整することができ、液晶パネル16の表示面の輝度ムラを防止ないし抑制することができる。 As described above, in the backlight device 24 according to the present embodiment, the back surface of the diffusion plate 20 on which the light shielding pattern 25 is printed by directing the light from the LED light source 28 toward the front of the LED light source 28 by the reflecting member 26. It is possible to prevent or suppress light from entering obliquely from 20a. For this reason, all or most of the light incident on the diffusing plate 20 can be suitably adjusted by the light shielding pattern 25 printed on the diffusing plate 20, thereby preventing or suppressing luminance unevenness on the display surface of the liquid crystal panel 16. Can do.
 なお、反射部材26を備える直下型のバックライト装置において、高拡散配光を有するLED光源28及び遮光パターン25が印刷された拡散板20を適用しない場合、バックライト装置を薄型化すると、LED光源の数を増やさなければ表示面の輝度ムラを防止ないし抑制することができない。本実施形態に係るバックライト装置24では、LED光源の数を増やさなくとも表示面の輝度ムラを防止ないし抑制できるため、LED光源の数を増やす場合に比してLED光源の実装コストを低減することができ、さらに、LED光源による消費電力を低減することもできる。 In addition, in the direct type backlight device including the reflecting member 26, when the LED light source 28 having a high diffusion light distribution and the diffusion plate 20 on which the light shielding pattern 25 is printed are not applied, the LED light source is reduced when the backlight device is thinned. Unless the number is increased, luminance unevenness on the display surface cannot be prevented or suppressed. In the backlight device 24 according to the present embodiment, since the luminance unevenness of the display surface can be prevented or suppressed without increasing the number of LED light sources, the mounting cost of the LED light sources is reduced as compared with the case where the number of LED light sources is increased. In addition, power consumption by the LED light source can be reduced.
 また、本実施形態に係るバックライト装置24では、遮光パターン25が、拡散板20の裏面20aの全面に複数印刷されている。このため、反射部材26によってLED光源28の正面方向に指向された光の多くを拡散板20の遮光パターン25に当てることができ、液晶パネル16の表示面の輝度ムラを一層防止ないし抑制することができる。 In the backlight device 24 according to the present embodiment, a plurality of light shielding patterns 25 are printed on the entire back surface 20a of the diffusion plate 20. For this reason, most of the light directed in the front direction of the LED light source 28 by the reflecting member 26 can be applied to the light shielding pattern 25 of the diffusing plate 20, thereby further preventing or suppressing luminance unevenness on the display surface of the liquid crystal panel 16. Can do.
 また、本実施形態に係るバックライト装置24では、複数の遮光パターン25の各々が、その印刷濃度に応じて遮光の程度が異なるものとされ、遮光パターン25に入射する光の輝度に応じてその印刷濃度が調整されている。このため、遮光パターン25の印刷濃度を調整することにより、液晶パネル16の表示面の効果的な輝度設計を行うことができる。 Further, in the backlight device 24 according to the present embodiment, each of the plurality of light shielding patterns 25 has a different degree of light shielding according to the print density, and the light shielding pattern 25 has a light shielding degree according to the luminance of light incident on the light shielding pattern 25. The print density is adjusted. For this reason, by adjusting the printing density of the light shielding pattern 25, it is possible to perform effective luminance design of the display surface of the liquid crystal panel 16.
 また、本実施形態に係るバックライト装置24では、複数の遮光パターン25の各々が、印刷濃度が異なる複数の部分を有している。このため、各遮光パターン25において印刷濃度を細かく調整することができ、液晶パネル16の表示面のより効果的な輝度設計を行うことができる。 Further, in the backlight device 24 according to the present embodiment, each of the plurality of light shielding patterns 25 has a plurality of portions having different printing densities. For this reason, the print density can be finely adjusted in each light shielding pattern 25, and more effective luminance design of the display surface of the liquid crystal panel 16 can be performed.
 また、本実施形態に係るバックライト装置24では、複数の遮光パターン25の各々が、印刷濃度が異なる縞状の複数の層により成っている。このため、各遮光パターン25を所定の形状で形成することができ、拡散板20への遮光パターン25の印刷を効率的に行うことができる。 Further, in the backlight device 24 according to the present embodiment, each of the plurality of light shielding patterns 25 includes a plurality of striped layers having different printing densities. For this reason, each light shielding pattern 25 can be formed in a predetermined shape, and the light shielding pattern 25 can be efficiently printed on the diffusion plate 20.
 また、本実施形態に係るバックライト装置24では、反射部材26の傾斜面26aは、LED光源28の正面方向に対して成す角度Bが、LED光源28からの光のうち発光強度がピークとなる光が正面方向に対して成す角度Aより小さいものとされている。これにより、LED光源28からの光のうち発光強度がピークとなる光が反射部材26の傾斜面26aに当たることとなるため、LED光源28から出射される光の多くをLED光源28の正面方向へ指向することができる。この結果、液晶パネル16の表示面の輝度ムラを一層防止ないし抑制することができる。 Further, in the backlight device 24 according to this embodiment, the angle B formed with respect to the front direction of the LED light source 28 on the inclined surface 26 a of the reflecting member 26 has a peak emission intensity in the light from the LED light source 28. The angle is smaller than the angle A formed by the light with respect to the front direction. As a result, the light having the peak emission intensity among the light from the LED light source 28 strikes the inclined surface 26 a of the reflecting member 26, so that most of the light emitted from the LED light source 28 is directed in the front direction of the LED light source 28. Can be oriented. As a result, luminance unevenness on the display surface of the liquid crystal panel 16 can be further prevented or suppressed.
 また、本実施形態に係るバックライト装置24では、遮光パターン25は、グラビア印刷により拡散板20に印刷されている。このため、拡散板20への遮光パターン25の印刷を効率的に行うことができる。 Further, in the backlight device 24 according to the present embodiment, the light shielding pattern 25 is printed on the diffusion plate 20 by gravure printing. For this reason, the light shielding pattern 25 can be efficiently printed on the diffusion plate 20.
 また、本実施形態に係るバックライト装置24では、反射部材26が、LED光源28を個別に取り囲むような形状を成している。このため、個々のLED光源28からの光を反射部材26によって液晶パネル16の表示面側に効果的に指向することができ、液晶パネル16の表示面の輝度ムラを一層防止ないし抑制することができる。 Further, in the backlight device 24 according to the present embodiment, the reflecting member 26 is shaped so as to individually surround the LED light sources 28. For this reason, the light from each LED light source 28 can be effectively directed to the display surface side of the liquid crystal panel 16 by the reflecting member 26, and luminance unevenness on the display surface of the liquid crystal panel 16 can be further prevented or suppressed. it can.
 また、本実施形態に係るバックライト装置24では、反射部材26は、複数の傾斜面26aの傾斜角度が一定とされている。このため、光の指向する方向を各傾斜面26aで一定とすることができ、LED光源28の光出射側により均一な輝度分布を形成することができる。 Further, in the backlight device 24 according to the present embodiment, the reflecting member 26 has a constant inclination angle of the plurality of inclined surfaces 26a. For this reason, the direction in which light is directed can be made constant on each inclined surface 26a, and a uniform luminance distribution can be formed on the light emitting side of the LED light source 28.
 また、本実施形態に係るバックライト装置24では、隣り合うLED光源28の間隔が一定とされている。このため、LED光源28の光出射側により均一な輝度分布を形成することができる。 Further, in the backlight device 24 according to the present embodiment, the interval between the adjacent LED light sources 28 is constant. For this reason, a uniform luminance distribution can be formed on the light emitting side of the LED light source 28.
 <実施形態2>
 図面を参照して実施形態2を説明する。図9は、実施形態2に係るバックライト装置124の平面図を示している。図10は、拡散板120をその裏側から視た平面図であって、拡散板120の裏面120aの平面図を示している。実施形態2は、反射部材126の形状及び拡散板120に印刷された遮光パターン125が実施形態1のものと異なっている。その他の構成については実施形態1と同じであるため、構造、作用、および効果の説明は省略する。なお、図9及び図10において、図3及び図4の参照符号に数字100を加えた部位は、実施形態1で説明した部位と同一である。
<Embodiment 2>
A second embodiment will be described with reference to the drawings. FIG. 9 is a plan view of the backlight device 124 according to the second embodiment. FIG. 10 is a plan view of the diffusing plate 120 viewed from the back side, and shows a plan view of the back surface 120a of the diffusing plate 120. FIG. In the second embodiment, the shape of the reflection member 126 and the light shielding pattern 125 printed on the diffusion plate 120 are different from those in the first embodiment. Since the other configuration is the same as that of the first embodiment, the description of the structure, operation, and effect is omitted. 9 and 10, the part obtained by adding the numeral 100 to the reference numerals in FIGS. 3 and 4 is the same as the part described in the first embodiment.
 実施形態2に係るバックライト装置124では、図9に示すように、反射部材126の傾斜面126aが、各LED光源128を逆四角錐状に個別に取り囲むように形成され、その周方向が全体として正方形状を成している。従って、各LED光源128はLED基板130側から表側に傾斜する4つの傾斜面126aによって取り囲まれており、各傾斜面126aの傾斜角度は一定とされている。このように、反射部材126の傾斜面126aについて各LED光源128を逆四角錐状に取り囲むような形状とすることで、各LED光源128を逆円錐状に取り囲むような形状とする場合(実施形態1の反射部材26を適用する場合)に比して、反射部材126を形状安定性において優れたものとすることができる。 In the backlight device 124 according to the second embodiment, as shown in FIG. 9, the inclined surface 126a of the reflecting member 126 is formed so as to individually surround each LED light source 128 in an inverted quadrangular pyramid shape, and its circumferential direction is entirely As a square shape. Therefore, each LED light source 128 is surrounded by four inclined surfaces 126a inclined from the LED substrate 130 side to the front side, and the inclination angle of each inclined surface 126a is constant. As described above, when the LED light sources 128 are formed so as to surround each inclined surface 126a of the reflecting member 126 in an inverted quadrangular pyramid shape, the LED light sources 128 are formed so as to be surrounded in an inverted cone shape (Embodiment). 1), the reflective member 126 can be made excellent in shape stability.
 また、実施形態2に係るバックライト装置124では、拡散板120の裏面(LED光源128と対向する面)120aに、その全面に亘って同一の遮光パターン125がインクジェット印刷により複数印刷されている。各遮光パターン125は四重の正方形125a、125b、125c、125dから成るドット状とされており、最も内側の正方形125aから最も外側の円125dに向かうにつれてその印刷濃度が段階的に薄くなっている。遮光パターン125の印刷濃度が濃い部分は反射率が高く(透過率が低く)、印刷濃度が薄い部分は反射率が低く(透過率が高く)なっている。そして、各遮光パターン125は、印刷濃度が最も濃い箇所がLED光源128の正面方向に位置するように遮光パターン125とLED光源128との相対位置がそれぞれ調整されている。 Further, in the backlight device 124 according to the second embodiment, a plurality of the same light shielding patterns 125 are printed on the back surface (surface facing the LED light source 128) 120a of the diffusion plate 120 by inkjet printing over the entire surface. Each light shielding pattern 125 is formed in a dot shape composed of quadruple squares 125a, 125b, 125c, and 125d, and the print density gradually decreases from the innermost square 125a toward the outermost circle 125d. . A portion where the printing density of the light shielding pattern 125 is high has a high reflectance (low transmittance), and a portion where the printing density is low has a low reflectance (high transmittance). The relative positions of the light shielding patterns 125 and the LED light sources 128 are adjusted so that the portions with the highest print density are positioned in the front direction of the LED light sources 128.
 従って、実施形態2に係るバックライト装置124では、拡散板120に入射する光の全てないし多くの部分を拡散板120に印刷された遮光パターン125によって調整することができ、液晶パネル116の表示面の輝度ムラを防止ないし抑制することができる。また、複数の遮光パターン125の各々が、印刷濃度が異なるドット状の複数の層により成っているため、各遮光パターン125を所定の形状で形成することができ、拡散板120への遮光パターン125の印刷を効率的に行うことができる。さらに、各遮光パターン125がインクジェット印刷により拡散板120に印刷されているため、拡散板120への遮光パターン125の印刷を効率的に行うことができる。 Therefore, in the backlight device 124 according to the second embodiment, all or a large part of the light incident on the diffusion plate 120 can be adjusted by the light shielding pattern 125 printed on the diffusion plate 120, and the display surface of the liquid crystal panel 116 can be adjusted. Brightness unevenness can be prevented or suppressed. Further, since each of the plurality of light shielding patterns 125 includes a plurality of dot-shaped layers having different printing densities, each light shielding pattern 125 can be formed in a predetermined shape, and the light shielding pattern 125 to the diffusion plate 120 is formed. Can be efficiently printed. Furthermore, since each light shielding pattern 125 is printed on the diffusion plate 120 by inkjet printing, the light shielding pattern 125 can be efficiently printed on the diffusion plate 120.
 <実施形態3>
 図面を参照して実施形態3を説明する。図11は、実施形態3に係るバックライト装置224の平面図を示している。また、図12は、拡散板220をその裏側から視た平面図であって、拡散板220の裏面220aの平面図を示している。実施形態3は、LED光源228の間隔及び反射部材226の傾斜面226a1、226a2の傾斜角度が一定でない点で実施形態1のものと異なっている。その他の構成については実施形態1と同じであるため、構造、作用、および効果の説明は省略する。なお、図11において、図3の参照符号に数字200を加えた部位は、実施形態1で説明した部位と同一である。
<Embodiment 3>
Embodiment 3 will be described with reference to the drawings. FIG. 11 is a plan view of the backlight device 224 according to the third embodiment. FIG. 12 is a plan view of the diffusion plate 220 as viewed from the back side, and shows a plan view of the back surface 220 a of the diffusion plate 220. The third embodiment is different from that of the first embodiment in that the distance between the LED light sources 228 and the inclination angles of the inclined surfaces 226a1 and 226a2 of the reflecting member 226 are not constant. Since the other configuration is the same as that of the first embodiment, the description of the structure, operation, and effect is omitted. In FIG. 11, the part obtained by adding the numeral 200 to the reference numeral in FIG. 3 is the same as the part described in the first embodiment.
 実施形態3に係るバックライト装置224では、図11に示すように、反射部材226の傾斜面226aが、各LED光源228を逆四角錐状に個別に取り囲むように形成されている。そして、隣り合うLED光源228の間隔が一定とされておらず、間隔が密となっている部分と粗となっている部分とが混在している。また、反射部材226の各傾斜面226a1、226a2の角度が、隣り合うLED光源228の間隔に応じて調整されている。具体的には、バックライト装置224の中央側に位置する9つのLED光源228は、隣り合うLED光源228の間隔が密となっており、それらのLED光源228を取り囲む反射部材226の傾斜面226a1が急なものとなっている。一方、バックライト装置224の水平方向両端側に位置する6つのLED光源228は、隣り合うLED光源228の間隔が粗となっており、それらのLED光源228を取り囲む反射部材226の傾斜面226a2が緩やかなものとなっている。 In the backlight device 224 according to the third embodiment, as shown in FIG. 11, the inclined surface 226a of the reflecting member 226 is formed so as to individually surround each LED light source 228 in an inverted quadrangular pyramid shape. And the space | interval of the adjacent LED light source 228 is not made constant, but the part where the space | interval is close | packed, and the part which is coarse are mixed. Further, the angles of the inclined surfaces 226a1 and 226a2 of the reflecting member 226 are adjusted according to the interval between the adjacent LED light sources 228. Specifically, in the nine LED light sources 228 located on the center side of the backlight device 224, the interval between the adjacent LED light sources 228 is close, and the inclined surface 226a1 of the reflecting member 226 surrounding the LED light sources 228 is included. Has become steep. On the other hand, in the six LED light sources 228 positioned on both ends in the horizontal direction of the backlight device 224, the interval between the adjacent LED light sources 228 is rough, and the inclined surface 226a2 of the reflecting member 226 surrounding the LED light sources 228 is formed. It is moderate.
 一方、拡散板220には、その裏面(LED光源228と対向する面)220aに、その全面に亘って2種類の遮光パターン225、227がそれぞれシルクスクリーン印刷により複数印刷されている。遮光パターン225は四重の長方形225a、225b、225c、225dから成るドット状とされており、遮光パターン227は四重の正方形227a、227b、227c、227dから成るドット状とされている。遮光パターン225は、反射部材226a2及び反射部材226a2に囲まれたLED光源228と重畳し、印刷濃度が最も濃い箇所がLED光源228の正面方向に位置するように印刷されている。遮光パターン227は、反射部材226a1及び反射部材226a1に囲まれたLED光源228と重畳し、印刷濃度が最も濃い箇所がLED光源228の正面方向に位置するように印刷されている。 On the other hand, a plurality of light shielding patterns 225 and 227 are printed on the back surface (surface facing the LED light source 228) 220a of the diffusion plate 220 by silk screen printing over the entire surface. The light shielding pattern 225 has a dot shape composed of quadruple rectangles 225a, 225b, 225c, and 225d, and the light shielding pattern 227 has a dot shape composed of quadruple squares 227a, 227b, 227c, and 227d. The light shielding pattern 225 is superimposed on the reflective member 226 a 2 and the LED light source 228 surrounded by the reflective member 226 a 2, and is printed so that the darkest part is located in the front direction of the LED light source 228. The light-shielding pattern 227 is superimposed on the reflective member 226a1 and the LED light source 228 surrounded by the reflective member 226a1, and is printed so that the darkest part is located in the front direction of the LED light source 228.
 実施形態3に係るバックライト装置224は、上記のような構成とされていることにより、実施形態1のバックライト装置24に比してLED光源228の数が削減されている。また、LED光源228の間隔に応じて反射部材226に応じて拡散板220に遮光パターン225、227が印刷されていることにより、遮光パターン225、227の数も削減されている。そして、隣り合うLED光源228の間隔に応じて反射部材226の各傾斜面226a1、226a2の傾斜角度が調整されていることにより、各LED光源228の間隔が異なる場合であっても、LED光源228から出射された光の多くの部分を、拡散板220のLED光源228と対向する面に対してその正面方向から入射させることができる。このため、バックライト装置224では、液晶パネルの表示面の輝度ムラを防止ないし抑制しながら、LED光源228の数及び遮光パターン225、227を削減することができ、LED光源228の実装コストやバックライト装置224の消費電力等をより低減することができる。 Since the backlight device 224 according to the third embodiment is configured as described above, the number of LED light sources 228 is reduced as compared with the backlight device 24 according to the first embodiment. Further, since the light shielding patterns 225 and 227 are printed on the diffusion plate 220 according to the reflection member 226 according to the interval between the LED light sources 228, the number of the light shielding patterns 225 and 227 is also reduced. And even if it is a case where the space | interval of each LED light source 228 differs because the inclination | tilt angle of each inclined surface 226a1, 226a2 of the reflection member 226 is adjusted according to the space | interval of the adjacent LED light source 228, LED light source 228 is different. Many portions of the light emitted from the light can be incident on the surface of the diffusion plate 220 facing the LED light source 228 from the front direction. Therefore, the backlight device 224 can reduce the number of the LED light sources 228 and the light shielding patterns 225 and 227 while preventing or suppressing luminance unevenness on the display surface of the liquid crystal panel. The power consumption of the light device 224 can be further reduced.
 各実施形態の構成と本発明の構成との対応関係を記載しておく。LED光源28、128、228が「光源」の一例である。また、バックライト装置24、124、224が「照明装置」の一例である。 The correspondence between the configuration of each embodiment and the configuration of the present invention is described. The LED light sources 28, 128, and 228 are examples of “light sources”. The backlight devices 24, 124, and 224 are examples of “illumination devices”.
 上記の各実施形態の変形例を以下に列挙する。
(1)上記の各実施形態では、遮光パターンが縞状又はドット状の複数の層により成る構成を採用したが、遮光パターンが他の形状により成る構成を採用してもよい。
The modifications of the above embodiments are listed below.
(1) In each of the above-described embodiments, a configuration in which the light shielding pattern is formed of a plurality of striped or dot layers is employed, but a configuration in which the light shielding pattern is formed in another shape may be employed.
(2)上記の各実施形態では、拡散板に複数の遮光パターンが印刷された構成を採用したが、拡散板に複数の層から成る1つ又は少数の遮光パターンが印刷された構成を採用してもよい。 (2) In each of the above embodiments, a configuration in which a plurality of light shielding patterns are printed on the diffusion plate is adopted. However, a configuration in which one or a small number of light shielding patterns including a plurality of layers is printed on the diffusion plate is employed. May be.
(3)上記の各実施形態で採用したグラビア印刷、インクジェット印刷、シルクスクリーン印刷以外にも、遮光パターンの印刷手法は適宜に変更可能である。 (3) Besides the gravure printing, ink jet printing, and silk screen printing employed in each of the above embodiments, the printing method of the light shielding pattern can be appropriately changed.
(4)上記の各実施形態では、拡散板の端縁部のみが支持される構成を採用したが、シャーシの底板に取り付けられ、該底板から拡散板側に延びてその先端が拡散板の裏面と当接することで拡散板を支持する支持ピンが設けられた構成を採用してもよい。 (4) In each of the above embodiments, a configuration is adopted in which only the edge portion of the diffusion plate is supported. However, the diffusion plate is attached to the bottom plate of the chassis, extends from the bottom plate to the diffusion plate side, and the tip thereof is the back surface of the diffusion plate. A configuration in which a support pin that supports the diffusion plate by abutting is provided may be adopted.
(5)上記の各実施形態以外にも、反射部材の形状等については、適宜に変更可能である。 (5) In addition to the above embodiments, the shape and the like of the reflecting member can be appropriately changed.
(6)上記の各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。 (6) In each of the above embodiments, a liquid crystal display device using a liquid crystal panel as the display panel has been illustrated, but the present invention can also be applied to display devices using other types of display panels.
(7)上記の各実施形態では、チューナーを備えたテレビ受信装置を例示したが、チューナーを備えない表示装置にも本発明は適用可能である。 (7) In each of the above embodiments, a television receiver provided with a tuner has been exemplified. However, the present invention can also be applied to a display device that does not include a tuner.
 以上、本明細書で開示される技術の各実施形態について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 As mentioned above, although each embodiment of the technique disclosed by this specification was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Further, the technical elements described in the present specification or drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.
 TV:テレビ受信装置、Ca、Cb:キャビネット、T:チューナー、S:スタンド、10:液晶表示装置、12:ベゼル、14:フレーム、16:液晶パネル、18:光学部材、20、120、220:拡散板、20a、120a、220a:(拡散板の)裏面、22、222:シャーシ、24、124、224:バックライト装置、25、125、225、227:遮光パターン、26、126、226:反射部材、26a、126a、226a1、226a2:傾斜面、28、128、228:LED光源、30:LED基板 TV: TV receiver, Ca, Cb: cabinet, T: tuner, S: stand, 10: liquid crystal display, 12: bezel, 14: frame, 16: liquid crystal panel, 18: optical member, 20, 120, 220: Diffusion plate, 20a, 120a, 220a: back surface (of diffusion plate) 22, 222: chassis, 24, 124, 224: backlight device, 25, 125, 225, 227: light shielding pattern, 26, 126, 226: reflection Member, 26a, 126a, 226a1, 226a2: inclined surface, 28, 128, 228: LED light source, 30: LED substrate

Claims (14)

  1.  発光強度がピークとなる光が正面方向に対して傾いた方向へ向かうような配光分布を有する光源と、
     該光源を収容し、その光出射側に向けて開口するシャーシと、
     前記光源の設置面から前記シャーシの前記開口する側に傾斜する複数の傾斜面を有し、該傾斜面によって前記光源からの光を該光源の正面方向に指向する反射部材と、
     前記シャーシの前記開口する側に配され、前記光源と対向する面に遮光パターンが印刷された拡散板と、
     を備えることを特徴とする照明装置。
    A light source having a light distribution such that light having a peak emission intensity is directed in a direction inclined with respect to the front direction;
    A chassis that houses the light source and opens toward the light exit side;
    A reflective member that has a plurality of inclined surfaces that are inclined from the installation surface of the light source toward the opening side of the chassis, and that directs light from the light source in the front direction of the light source by the inclined surface;
    A diffusion plate disposed on the opening side of the chassis and having a light-shielding pattern printed on a surface facing the light source;
    A lighting device comprising:
  2.  前記遮光パターンは、前記拡散板の前記光源と対向する面の全面に複数印刷されていることを特徴とする請求項1に記載の照明装置。 The lighting device according to claim 1, wherein a plurality of the light shielding patterns are printed on the entire surface of the diffusion plate facing the light source.
  3.  複数の前記遮光パターンの各々は、その印刷濃度に応じて遮光の程度が異なるものとされ、該遮光パターンに入射する光の輝度に応じてその印刷濃度が調整されていることを特徴とする請求項2に記載の照明装置。 Each of the plurality of light-shielding patterns has a different degree of light-shielding depending on the print density, and the print density is adjusted according to the luminance of light incident on the light-shielding pattern. Item 3. The lighting device according to Item 2.
  4.  複数の前記遮光パターンの各々は、印刷濃度が異なる複数の部分を有していることを特徴とする請求項3に記載の照明装置。 4. The illumination device according to claim 3, wherein each of the plurality of light shielding patterns has a plurality of portions having different printing densities.
  5.  複数の前記遮光パターンの各々は、印刷濃度が異なる縞状又はドット状の複数の層により成ることを特徴とする請求項4に記載の照明装置。 5. The lighting device according to claim 4, wherein each of the plurality of light shielding patterns includes a plurality of striped or dot layers having different printing densities.
  6.  前記反射部材の前記傾斜面は、前記光源の正面方向に対して成す角度が、前記光源からの光のうち発光強度がピークとなる光が前記正面方向に対して成す角度より小さいものとされていることを特徴とする請求項1から請求項5のいずれか1項に記載の照明装置。 The angle of the inclined surface of the reflecting member with respect to the front direction of the light source is smaller than the angle formed with respect to the front direction of light from the light source that has a peak emission intensity. The lighting device according to any one of claims 1 to 5, wherein:
  7.  前記遮光パターンは、グラビア印刷又はインクジェット印刷又はシルクスクリーン印刷のいずれかの印刷手法により前記拡散板に印刷されていることを特徴とする請求項1から請求項6のいずれか1項に記載の照明装置。 The illumination according to any one of claims 1 to 6, wherein the light shielding pattern is printed on the diffusion plate by any one of gravure printing, ink jet printing, and silk screen printing. apparatus.
  8.  前記反射部材は、前記傾斜面が前記光源を個別に取り囲むような形状を成すことを特徴とする請求項1から請求項7のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 7, wherein the reflecting member has a shape in which the inclined surface individually surrounds the light source.
  9.  前記反射部材は、複数の前記傾斜面の傾斜角度が一定とされていることを特徴とする請求項1から請求項8のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 8, wherein the reflecting member has a plurality of inclined angles that are constant.
  10.  隣り合う前記光源の間隔が一定とされていることを特徴とする請求項1から請求項9のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 9, wherein an interval between the adjacent light sources is constant.
  11.  隣り合う前記光源の間隔が一定とされておらず、隣り合う前記光源の間隔に応じて前記反射部材の複数の前記傾斜面の傾斜角度がそれぞれ調整されていることを特徴とする請求項1から請求項8のいずれか1項に記載の照明装置。 The interval between the adjacent light sources is not constant, and the inclination angles of the plurality of inclined surfaces of the reflecting member are respectively adjusted according to the interval between the adjacent light sources. The lighting device according to claim 8.
  12.  請求項1から請求項11のいずれか1項に記載の照明装置からの光を利用して表示を行う表示パネルを備えることを特徴とする表示装置。 A display device comprising a display panel that performs display using light from the illumination device according to any one of claims 1 to 11.
  13.  前記表示パネルが液晶を用いた液晶パネルであることを特徴とする請求項12に記載の表示装置。 The display device according to claim 12, wherein the display panel is a liquid crystal panel using liquid crystal.
  14.  請求項12又は請求項13に記載の表示装置を備えることを特徴とするテレビ受信装置。 A television receiver comprising the display device according to claim 12 or 13.
PCT/JP2011/068147 2010-08-20 2011-08-09 Illuminating device, display device and television receiver WO2012023459A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010185266 2010-08-20
JP2010-185266 2010-08-20

Publications (1)

Publication Number Publication Date
WO2012023459A1 true WO2012023459A1 (en) 2012-02-23

Family

ID=45605114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068147 WO2012023459A1 (en) 2010-08-20 2011-08-09 Illuminating device, display device and television receiver

Country Status (1)

Country Link
WO (1) WO2012023459A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968265A (en) * 2013-01-24 2014-08-06 野菜工房农业科技有限公司 Illuminating device
JP2015153477A (en) * 2014-02-10 2015-08-24 豊田合成株式会社 Light-emitting device and manufacturing method of the same
CN107644869A (en) * 2016-07-20 2018-01-30 日亚化学工业株式会社 Light-emitting device
JP2018056367A (en) * 2016-09-29 2018-04-05 日亜化学工業株式会社 Light emitting device
CN108701742A (en) * 2016-03-31 2018-10-23 索尼公司 Luminescence unit, display device and lighting device
KR20190024730A (en) 2017-08-31 2019-03-08 니치아 카가쿠 고교 가부시키가이샤 Light emitting device
CN109696772A (en) * 2017-10-23 2019-04-30 三星电子株式会社 Display device with diffuser plate supporting member
CN109991774A (en) * 2017-12-29 2019-07-09 康佳集团股份有限公司 Backlight module
US10527257B2 (en) 2016-09-16 2020-01-07 Nichia Corporation Light emitting device
JP2020528211A (en) * 2017-08-04 2020-09-17 ルミレッズ ホールディング ベーフェー Ultra-wide light distribution diode (LED) lens for thin direct backlight
JP2020161646A (en) * 2019-03-27 2020-10-01 日亜化学工業株式会社 Light-emitting device
US10903193B2 (en) 2018-06-29 2021-01-26 Nichia Corporation Light-emitting device
CN112305806A (en) * 2019-07-30 2021-02-02 乐金显示有限公司 Color conversion sheet, backlight unit and display device
US11437429B2 (en) 2019-09-30 2022-09-06 Nichia Corporation Light emitting device
US11874561B2 (en) 2021-01-04 2024-01-16 Samsung Electronics Co., Ltd. Display apparatus and light source device thereof with optical dome

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037035A1 (en) * 2005-09-28 2007-04-05 The Furukawa Electric Co., Ltd. Light box, light reflector for the same, and method for producing light reflector
WO2007148508A1 (en) * 2006-06-21 2007-12-27 Idemitsu Kosan Co., Ltd. Beam reflecting multilayer sheet, refractor using the sheet, illuminating device, and liquid crystal display device
WO2008075476A1 (en) * 2006-12-20 2008-06-26 Sharp Kabushiki Kaisha Illumination device for display device, and display device
JP2010128447A (en) * 2008-12-01 2010-06-10 Oji Paper Co Ltd Optical sheet, method of manufacturing the same, lighting device, projector, signboard and image display device
WO2010084649A1 (en) * 2009-01-23 2010-07-29 シャープ株式会社 Illuminating device, display device and television receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037035A1 (en) * 2005-09-28 2007-04-05 The Furukawa Electric Co., Ltd. Light box, light reflector for the same, and method for producing light reflector
WO2007148508A1 (en) * 2006-06-21 2007-12-27 Idemitsu Kosan Co., Ltd. Beam reflecting multilayer sheet, refractor using the sheet, illuminating device, and liquid crystal display device
WO2008075476A1 (en) * 2006-12-20 2008-06-26 Sharp Kabushiki Kaisha Illumination device for display device, and display device
JP2010128447A (en) * 2008-12-01 2010-06-10 Oji Paper Co Ltd Optical sheet, method of manufacturing the same, lighting device, projector, signboard and image display device
WO2010084649A1 (en) * 2009-01-23 2010-07-29 シャープ株式会社 Illuminating device, display device and television receiver

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968265A (en) * 2013-01-24 2014-08-06 野菜工房农业科技有限公司 Illuminating device
JP2015153477A (en) * 2014-02-10 2015-08-24 豊田合成株式会社 Light-emitting device and manufacturing method of the same
CN108701742A (en) * 2016-03-31 2018-10-23 索尼公司 Luminescence unit, display device and lighting device
CN114188464A (en) * 2016-03-31 2022-03-15 索尼公司 Light-emitting unit, display device, and lighting device
JP2021166190A (en) * 2016-03-31 2021-10-14 ソニーグループ株式会社 Light emitting device, display device, and illuminating device
JPWO2017169123A1 (en) * 2016-03-31 2019-02-07 ソニー株式会社 LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE
JP7190003B2 (en) 2016-03-31 2022-12-14 ソニーグループ株式会社 Light-emitting device, display device and lighting device
EP3447807A4 (en) * 2016-03-31 2019-03-20 Sony Corporation Light emitting device, display apparatus, and illumination apparatus
CN107644869A (en) * 2016-07-20 2018-01-30 日亚化学工业株式会社 Light-emitting device
CN107644869B (en) * 2016-07-20 2023-10-20 日亚化学工业株式会社 Light emitting device
US11585516B2 (en) 2016-09-16 2023-02-21 Nichia Corporation Light emitting device
US10527257B2 (en) 2016-09-16 2020-01-07 Nichia Corporation Light emitting device
US11906156B2 (en) 2016-09-16 2024-02-20 Nichia Corporation Light emitting device
US11118757B2 (en) 2016-09-16 2021-09-14 Nichia Corporation Light emitting device
JP7125636B2 (en) 2016-09-29 2022-08-25 日亜化学工業株式会社 light emitting device
JP2018056367A (en) * 2016-09-29 2018-04-05 日亜化学工業株式会社 Light emitting device
JP2021101474A (en) * 2016-09-29 2021-07-08 日亜化学工業株式会社 Light emitting device
JP2020528211A (en) * 2017-08-04 2020-09-17 ルミレッズ ホールディング ベーフェー Ultra-wide light distribution diode (LED) lens for thin direct backlight
JP2021036619A (en) * 2017-08-04 2021-03-04 ルミレッズ ホールディング ベーフェー Ultra-wide light distribution diode (LED) lens for thin direct backlight
US10845028B2 (en) 2017-08-04 2020-11-24 Lumileds Llc Extremely wide distribution light-emitting diode (LED) lens for thin direct-lit backlight
JP7244480B2 (en) 2017-08-04 2023-03-22 ルミレッズ ホールディング ベーフェー Ultra Wide Light-Emitting Diode (LED) Lenses for Thin Direct Backlights
US11073256B2 (en) 2017-08-31 2021-07-27 Nichia Corporation Light-emitting device
JP2023052790A (en) * 2017-08-31 2023-04-12 日亜化学工業株式会社 Light-emitting device
JP7381974B2 (en) 2017-08-31 2023-11-16 日亜化学工業株式会社 light emitting device
US10718487B2 (en) 2017-08-31 2020-07-21 Nichia Corporation Light-emitting device
US11892157B2 (en) 2017-08-31 2024-02-06 Nichia Corporation Light-emitting device
KR20190024730A (en) 2017-08-31 2019-03-08 니치아 카가쿠 고교 가부시키가이샤 Light emitting device
CN109696772B (en) * 2017-10-23 2023-02-21 三星电子株式会社 Display device with diffusion plate supporting member
CN109696772A (en) * 2017-10-23 2019-04-30 三星电子株式会社 Display device with diffuser plate supporting member
CN109991774A (en) * 2017-12-29 2019-07-09 康佳集团股份有限公司 Backlight module
US11646298B2 (en) 2018-06-29 2023-05-09 Nichia Corporation Light-emitting device
US10903193B2 (en) 2018-06-29 2021-01-26 Nichia Corporation Light-emitting device
JP7025660B2 (en) 2019-03-27 2022-02-25 日亜化学工業株式会社 Luminescent device
JP2020161646A (en) * 2019-03-27 2020-10-01 日亜化学工業株式会社 Light-emitting device
CN112305806A (en) * 2019-07-30 2021-02-02 乐金显示有限公司 Color conversion sheet, backlight unit and display device
US11437429B2 (en) 2019-09-30 2022-09-06 Nichia Corporation Light emitting device
US11798977B2 (en) 2019-09-30 2023-10-24 Nichia Corporation Light emitting device
US11874561B2 (en) 2021-01-04 2024-01-16 Samsung Electronics Co., Ltd. Display apparatus and light source device thereof with optical dome

Similar Documents

Publication Publication Date Title
WO2012023459A1 (en) Illuminating device, display device and television receiver
US8520150B2 (en) Lighting device, display device and television receiver
WO2012029600A1 (en) Illuminating device, display device and television receiver
US8833956B2 (en) Lighting device, display device and television receiver
WO2012014598A1 (en) Lighting device, display device, and television receiving device
JP5390704B2 (en) Lighting device, display device, and television receiver
JP5337883B2 (en) Lighting device, display device, and television receiver
US9116387B2 (en) Lighting device, display device and television device
JP2006059606A (en) Backlight device
WO2012073778A1 (en) Illuminating device, display device and television receiver
JP5138813B2 (en) Lighting device, display device, and television receiver
WO2012014600A1 (en) Lighting device, display device, and television receiving device
JPWO2011077866A1 (en) Lighting device, display device, and television receiver
WO2011148696A1 (en) Lighting device, display device, and television receiving device
JP5662952B2 (en) Lighting device, display device, and television receiver
WO2012165282A1 (en) Illumination device, display device, and television reception device
WO2011055635A1 (en) Base material for light source unit, illumination device, display device, and television receiving device
WO2012029598A1 (en) Illumination device, display device, and television reception device
WO2013051437A1 (en) Lighting device, display device and television receiving device
WO2011062023A1 (en) Lighting device, display device, and television receiving device
WO2011067987A1 (en) Light source package, illumination device, display device, and television receiving device
WO2010146921A1 (en) Illumination device, display device, and television receiver
JP2020024876A (en) Illumination device, display device, and television receiver
WO2011114790A1 (en) Lighting device, display device, and television receiver
JP7033512B2 (en) Lighting equipment, display equipment, and television receivers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP