WO2012023396A1 - Forward check valve and fuel-cell system - Google Patents

Forward check valve and fuel-cell system Download PDF

Info

Publication number
WO2012023396A1
WO2012023396A1 PCT/JP2011/067126 JP2011067126W WO2012023396A1 WO 2012023396 A1 WO2012023396 A1 WO 2012023396A1 JP 2011067126 W JP2011067126 W JP 2011067126W WO 2012023396 A1 WO2012023396 A1 WO 2012023396A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
protrusion
diaphragm
stop valve
fluid
Prior art date
Application number
PCT/JP2011/067126
Other languages
French (fr)
Japanese (ja)
Inventor
東山祐三
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012529542A priority Critical patent/JP5510551B2/en
Publication of WO2012023396A1 publication Critical patent/WO2012023396A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like
    • F16K31/1266Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like one side of the diaphragm being acted upon by the circulating fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a stop valve for controlling the forward flow of a fluid, and a fuel cell system including the stop valve.
  • Patent Document 1 discloses a passively driven pressure reducing valve used for a small fuel cell.
  • the pressure reducing valve is configured to automatically open and close using a pressure difference when the fluid pressure reaches a set pressure.
  • FIG. 1A and 1B are sectional views of a pressure reducing valve disclosed in Patent Document 1.
  • FIG. The pressure reducing valve includes a diaphragm 1 serving as a movable portion, a piston 2 serving as a transmission mechanism, a valve housing 7, a valve seat portion 3 forming a valve portion, a valve body portion 4, and a support portion 5.
  • the valve body portion 4 is supported around the support portion 5.
  • the support part 5 is formed of an elastic beam.
  • the valve housing 7 constitutes a valve chamber 8 together with the diaphragm 1.
  • the upper pressure of the diaphragm (movable part) 1 is P0, the primary pressure upstream of the valve is P1, the pressure downstream of the valve is P2, the area of the valve body part 4 is S1, and the area of the diaphragm (movable part) 1 is S2. .
  • the condition for opening the valve as shown in FIG. 1B is (P1-P2) S1 ⁇ (P0-P2) S2. If P2 is higher than the pressure in this condition, the valve is closed, and if P2 is lower, the valve is opened. Thereby, P2 can be kept constant.
  • a direct methanol fuel cell has a pump for transporting fuel (methanol).
  • a valve-type pump has a check function by a valve, but does not have a stop function (a function to stop a forward flow).
  • a stop function a function to stop a forward flow.
  • the fuel cartridge incorporated in the fuel cell system may become hot depending on the external environment, and high pressure fluid may be discharged. As a result, excessive fluid may be supplied to the fuel cell or the pump may be destroyed in some cases. Therefore, there is a need for a valve that stops forward flow (hereinafter referred to as a stop valve) when a high-pressure fluid is added.
  • a stop valve a valve that stops forward flow
  • the diaphragm 1 is moved by the suction pressure of the fluid by the pump, and the valve body portion 4 is pushed down by the interlocking piston 2 so that the valve open. This opens the fluid flow path.
  • the diaphragm 1 may not return to its original position due to the adhesion between the diaphragm 1 and the bottom surface 9 of the valve chamber 8, and the valve may not close. .
  • an object of the present invention is to provide a stop valve that can prevent the diaphragm and the bottom surface of the valve chamber from sticking to each other even in a low-profile structure, and a fuel cell system including the stop valve.
  • the stop valve of the present invention has the following configuration in order to solve the above problems.
  • valve housing Comprising a valve chamber together with the valve housing, and a diaphragm displaced by the pressure of fluid in the valve chamber;
  • the valve housing has an inflow hole through which fluid flows into the valve chamber, and an outflow hole through which fluid flows out of the valve chamber due to the suction pressure of the fluid by the pump.
  • a stop valve A valve body disposed in the inflow hole and configured to block or open the inflow of fluid from the inflow hole to the valve chamber by displacement of the diaphragm;
  • the valve housing has a first protrusion with which the diaphragm comes into contact when the valve body releases the inflow of fluid from the inflow hole to the valve chamber, and the fluid is supplied to the first protrusion.
  • a first flow path that passes from the inside to the outside of the part is formed around the inflow hole on the bottom surface of the valve chamber facing the diaphragm.
  • the diaphragm comes into contact with the first protruding portion instead of the bottom surface of the valve chamber when the valve is opened. Furthermore, when the diaphragm comes into contact with the first protrusion, the fluid passes from the inside of the first protrusion to the outside of the first protrusion via the first flow path. Therefore, even when a highly active fluid is used for the stop valve of this configuration, since the diaphragm does not contact the bottom surface of the valve chamber, it is possible to prevent the diaphragm swollen by the fluid and the bottom surface of the valve chamber from sticking. Therefore, according to this configuration, it is possible to prevent the diaphragm and the bottom surface of the valve chamber from sticking even with a low-profile structure. Therefore, the reliability of fluid control can be improved.
  • a pressure receiving plate that receives a differential pressure between an atmospheric pressure and an internal pressure of the valve chamber is joined to the diaphragm,
  • the first protrusion is Dc, where Dv is the inner diameter of the valve chamber, Db is the diameter of the pressure receiving plate, and Dc is the outer diameter of the first protrusion located at both ends of the inflow hole. It is preferably formed in a shape satisfying the relationship of ⁇ (Dv + Db) / 4.
  • the pressure receiving plate is bent convexly to the opposite side with respect to the bottom surface of the valve chamber, and the diaphragm is in contact with the first protrusion at an angle. That is, since the diaphragm and the first protrusion are in line contact, the diaphragm and the first protrusion are difficult to adhere.
  • the diaphragm and the first protrusion are fixed, when the pressure receiving plate tries to return to the original flat state from the bent state, a force to peel off the fixation works from the outside of the first protrusion. Therefore, the diaphragm is easily peeled off from the first protrusion. Therefore, according to this structure, it can also prevent that a diaphragm and a 1st protrusion part adhere. Therefore, the reliability of fluid control can be further improved.
  • the first protrusion is formed in a curved surface shape having a convex tip.
  • the first projecting portion having this configuration has a smaller contact area with the diaphragm when the valve is opened than the first projecting portion having a flat tip. Therefore, it is difficult for the diaphragm and the first projecting portion to adhere to each other. Further, even if the diaphragm and the first protrusion are fixed, the diaphragm is easily peeled off from the first protrusion. Therefore, according to this structure, it can also prevent that a diaphragm and a 1st protrusion part adhere. Therefore, the reliability of fluid control can be further improved.
  • the first protrusion is an aggregate of a plurality of protrusions.
  • the first projecting portion having this configuration has a smaller contact area with the diaphragm when the valve is opened than the first projecting portion having an integral structure. Therefore, it is difficult for the diaphragm and the first projecting portion to adhere to each other. Further, even if the diaphragm and the first protrusion are fixed, the diaphragm is easily peeled off from the first protrusion. Therefore, according to this structure, it can also prevent that a diaphragm and a 1st protrusion part adhere. Therefore, the reliability of fluid control can be further improved.
  • the valve housing includes a second protrusion having a height lower than that of the first protrusion, and a second flow path for allowing fluid to pass from the inside to the outside of the second protrusion.
  • a second protrusion having a height lower than that of the first protrusion, and a second flow path for allowing fluid to pass from the inside to the outside of the second protrusion.
  • it is formed inside the first protrusion on the bottom surface of the valve chamber and around the inflow hole.
  • a third protrusion is formed on the periphery of the inflow hole on the bottom surface of the valve chamber, It is preferable that the first protrusion is formed on an upper surface of the third protrusion that faces the diaphragm.
  • the thickness of the peripheral portion of the inflow hole in the valve housing is increased by providing the third protrusion. Therefore, the rigidity of the peripheral part of the inflow hole in the valve housing can be increased. Therefore, according to this configuration, the rigidity of the peripheral portion of the inflow hole in the valve housing can be increased.
  • the fluid is preferably methanol.
  • Methanol is a fluid with higher activity than other fluids. Therefore, the configuration (1) is suitable for this configuration using methanol as a fluid.
  • the material of the diaphragm is rubber, and the material of the portion of the valve housing that contacts the fluid is resin.
  • the fuel cell system of the present invention has the following configuration in order to solve the above problems.
  • FIG. 5A is a top view of the cap part 110 provided in the stop valve 101 of FIG.
  • FIG. 5B is a bottom view of the valve housing 130 provided in the stop valve 101 of FIG.
  • FIG. 6 is a cross-sectional view taken along the line SS in FIG.
  • FIG. 1 It is a schematic cross section at the time of valve opening of the stop valve 101 which concerns on the 1st Embodiment of this invention. It is a perspective view of the valve housing
  • FIG. 12 is a cross-sectional view of main parts taken along line SS in FIG. 11. It is principal part sectional drawing of the valve housing
  • FIG. 15 is a main part cross-sectional view taken along line TT in FIG. 14.
  • FIG. 2A is a schematic cross-sectional view of the stop valve 90 in a state where the valve is closed
  • FIG. 2B is a schematic cross-sectional view of the stop valve 90 in a state where the valve is open.
  • the stop valve 90 includes a diaphragm 20 serving as a movable portion, a valve housing 30 that forms a valve chamber 40 together with the diaphragm 20, a cap portion 10 joined to the valve housing 30, and a valve portion 50 having a valve body portion 51. Consists of.
  • the valve housing 30 is formed with an inflow hole 43 through which the fluid flows into the valve chamber 40 and an outflow hole 49 through which the fluid flows out of the valve chamber 40 due to the suction pressure of the fluid by the pump.
  • the diaphragm 20 has a pusher 23 that is a transmission mechanism, and is displaced by the pressure of the fluid in the valve chamber 40.
  • the pusher 23 presses the valve body unit 51.
  • the valve portion 50 has a ring-shaped valve protrusion 55 formed on the inflow hole 43 side of the valve body portion 51, and the valve protrusion 55 is disposed so as to abut on a valve seat 48 positioned at the periphery of the inflow hole 43.
  • the valve body 51 abuts or separates from the valve seat 48 due to the displacement of the diaphragm 20 to block or open the inflow of fluid from the inflow hole 43 to the valve chamber 40.
  • the cap part 10 is formed with a hole part 15 communicating with the outside air on the upper surface. As a result, atmospheric pressure is applied to the upper part of the diaphragm 20.
  • the stop valve 90 is configured such that when the fluid pressure reaches a set pressure, the valve unit 50 automatically opens and closes using the pressure difference. More specifically, the pressure of the atmosphere above the diaphragm 20 is P0, the primary pressure upstream of the valve is P1, and the pressure downstream of the valve is P2, and the area of the valve body 51 (here, the valve body 51 includes a ring-shaped valve). S1 is the area determined by the diameter of the region surrounded by the valve protrusion 55 because the protrusion 55 is formed, S2 is the area of the diaphragm 20, and Fs is the force that the valve body 51 is biased upward. At this time, from the balance of pressure, the condition for opening the valve unit 50 as shown in FIG.
  • FIG. 3 is a system configuration diagram of the fuel cell system 100 including the stop valve 101 according to the first embodiment of the present invention.
  • the fuel cell system 100 includes a fuel cartridge 102 that stores methanol as a fuel, a stop valve 101, a pump 103 that transports methanol, and a power generation cell 104 that receives the supply of methanol from the pump 103 and generates power. .
  • a direct methanol fuel cell includes a pump 103 that transports methanol as a fuel.
  • the valve-type pump 103 has a check function by a valve, but does not have a stop function.
  • the pump 103 without the stop function is used, when the upstream pressure (forward pressure) is applied to the methanol, the methanol flows even when the pump 103 is not operated. Therefore, it is preferable to provide a stop valve 101 that is used in combination with the pump 103 and opens and closes the valve using the pump pressure.
  • the stop valve 101 includes a valve housing 130 that constitutes a valve chamber 140 together with the diaphragm 120.
  • the valve housing 130 is formed with an inflow hole 143 to which the fuel cartridge 102 is connected via the inflow path 163 and an outflow hole 149 to which the pump 103 is connected via the outflow path 165.
  • the stop valve 101 is mounted on the surface of a system housing 160 made of polyphenylene sulfide (PPS) resin, in which an inflow path 163 and an outflow path 165 are formed, via O-rings 161 and 162 that prevent leakage.
  • PPS polyphenylene sulfide
  • methanol flows from the fuel cartridge 102 into the valve chamber 140 through the inflow path 163 and the inflow hole 143. Then, methanol flows out from the valve chamber 140 to the pump 103 through the outflow passage 165 and the outflow hole 149 by the suction pressure of methanol by the pump 103. Then, methanol is supplied to the power generation cell 104 by the pump 103.
  • FIG. 4 is an exploded perspective view of the stop valve 101 according to the first embodiment.
  • FIG. 5A is a top view of the cap part 110 provided in the stop valve 101 of FIG.
  • FIG. 5B is a bottom view of the valve housing 130 provided in the stop valve 101 of FIG.
  • FIG. 6 is a cross-sectional view taken along the line SS in FIG.
  • FIG. 7 is a schematic cross-sectional view of the stop valve 101 according to the first embodiment of the present invention when the valve is opened.
  • the stop valve 101 includes a cap part 110, a diaphragm 120 serving as a movable part, a valve housing 130, and a valve part 150, as shown in an exploded perspective view in FIG. 4.
  • the valve housing 130 has a substantially square plate shape.
  • the valve housing 130 is formed with an inflow hole 143 through which the fluid flows into the valve chamber 140 and an outflow hole 149 through which the fluid flows out from the valve chamber 140 due to the suction pressure of the fluid by the pump 103.
  • the valve casing 130 has a cap section 110 and a screw fixing hole 131 for fixing the valve casing 130 to the system casing 160 and a mounting section 134 on which the peripheral edge 121 of the diaphragm 120 is mounted. And are formed.
  • the diaphragm 120 contacts the valve housing 130 when the valve unit 150 releases the inflow of methanol from the inflow hole 143 to the valve chamber 140.
  • the first protrusion 144 and the first flow path 145 that allows methanol to pass from the inside to the outside of the first protrusion 144 are around the inflow hole 143 on the bottom surface 141 of the valve chamber 140 facing the diaphragm 120. Is formed.
  • the first protruding portion 144 has an inner diameter of the valve chamber 140 as Dv, a diameter of a pressure receiving plate 125, which will be described in detail later, as Db, and an outer diameter of the first protruding portion 144 positioned at both ends of the inflow hole 143. Is a shape satisfying the relationship of Dc ⁇ (Dv + Db) / 4.
  • valve housing 130 is fitted with the valve portion 150 from the mounting surface side of the valve housing 130 to accommodate the valve portion 150, and A valve seat 148 positioned at the periphery of the inflow hole 143 is formed.
  • the materials 134, 141, 144, 145, and 148 that contact the methanol of the valve housing 130 are made of a resin having high methanol resistance, such as PPS (Polyphenylene sulfide) resin.
  • the material of the edge 132 that does not contact the methanol of the housing 130 is made of metal.
  • the valve housing 130 is formed by an insert mold in which an edge 132 of a metal part is inserted into a mold and is injection-molded.
  • the diaphragm 120 has a pusher 123 as a transmission mechanism at the center, and the peripheral portion 121 is formed in a disk shape that is thicker than the central portion 122.
  • the material of the diaphragm 120 is a rubber having high methanol resistance, such as ethylene propylene rubber or silicone rubber.
  • Diaphragm 120 constitutes valve chamber 140 together with valve casing 130 with peripheral edge 121 placed on valve casing 130.
  • the central part 122 inside the peripheral part 121 is displaced by the pressure of the fluid in the valve chamber 140.
  • the pusher 123 presses the valve body portion 151.
  • the liquid When the liquid is used as the fluid for the stop valve 101, the liquid has a large surface tension, so that a larger fluid flow path is required than when the gas is used as the fluid for the stop valve 101.
  • the stop valve 101 of this embodiment since the material of the diaphragm 120 is rubber, the movable range of the diaphragm 120 is larger than when the diaphragm 120 is formed of silicon or metal. Therefore, the stop valve 101 of this embodiment can secure a sufficient methanol flow path.
  • the valve portion 150 has a substantially circular shape and is made of a rubber having high methanol resistance, such as silicone rubber.
  • the valve unit 150 contacts or separates from the valve seat 148 due to the displacement of the diaphragm 120, and a valve body unit 151 that blocks or releases the inflow of fluid (methanol) from the inflow hole 143 to the valve chamber 140.
  • the support part 152 that supports the valve body part 151 movably in the direction in which the part 151 approaches and separates from the valve seat 148, the hole part 153 that allows methanol to pass through, and the valve part 150 are accommodated in the opening part 147.
  • the valve body portion 151 is formed with a ring-shaped valve protrusion 155 on the inflow hole 43 side, but the valve protrusion 155 is not necessarily formed.
  • valve protrusion 155 of the valve body 151 comes into contact with the valve seat 148 when the valve 150 is housed in the opening 147, and the valve body 151 flows from the inlet hole 143 to the valve chamber 140.
  • valve seat 148 is pressurized in a direction to block the inflow of the valve.
  • the valve body 151 is separated from the valve seat 148 when the diaphragm 120 is lowered and pushed down by the diaphragm 120, and the inflow hole 143 and the hole 153 communicate with each other to release the inflow of methanol into the valve chamber 140.
  • the cap part 110 has a substantially square plate shape, and is formed, for example, by molding using a stainless steel plate.
  • the cap part 110 is formed with a screw hole 111 for fixing the cap part 110 and the valve casing 130 to the system casing 160.
  • the edge 116 of the metal cap portion 110 is joined to the metal edge 132 of the valve housing 130 by welding in a state where the diaphragm 120 is placed on the placement portion 134.
  • the peripheral part 114 of the cap part 110 is joined, the peripheral part 121 of the diaphragm 120 is pressed to hold the peripheral part 121 together with the mounting part 134.
  • a hole 115 communicating with outside air is formed in the central portion 113 of the cap portion 110.
  • atmospheric pressure is applied to the upper part of the diaphragm 120.
  • a pressure receiving plate 125 made of a circular metal that receives a differential pressure between the atmospheric pressure and the internal pressure of the valve chamber 140 is joined to the diaphragm 120.
  • the stop valve 101 is configured to automatically open and close the valve unit 150 using the pressure difference when the fluid pressure reaches the set pressure. ing.
  • the valve housing 130 of this embodiment includes an annular first protruding portion 144 with which the diaphragm 120 abuts when the valve portion 150 is opened.
  • a first flow path 145 that allows methanol to pass from the inside to the outside of the protrusion 144 is formed around the inflow hole 143 on the bottom surface 141 of the valve chamber 140.
  • the inner diameter of the valve chamber 140 is Dv
  • the diameter of the pressure receiving plate 125 is Db
  • the outer diameter of the first protrusion 144 located at both ends of the inflow hole 143 is Dc. At this time, it is formed in a shape satisfying the relationship of Dc ⁇ (Dv + Db) / 4.
  • the rubber diaphragm 120 contacts the first protrusion 144 instead of the bottom surface 141 of the valve chamber 140 when the valve portion 150 is opened (see FIG. 7). Further, when the diaphragm 120 contacts the first protrusion 144, methanol passes from the inside of the first protrusion 144 to the outside of the first protrusion 144 via the first flow path 145.
  • the shape of the first protrusion 144 that satisfies the relationship of Dc ⁇ (Dv + Db) / 4 will be described in detail with reference to FIG.
  • the outer diameter Dc (4 mm in this embodiment) of the first protrusion 144 is less than half of the effective pressure receiving diameter Dp (10 mm in this embodiment).
  • the effective pressure receiving diameter corresponds to the diameter of the pressure acting on the entire surface of the diaphragm 120 excluding the pressure applied to the outer peripheral portion, that is, the diameter of the portion on which the pressure available for opening and closing the valve portion 150 acts. In the case of FIG.
  • the pressure receiving plate 125 is as shown in FIG. It bends convexly toward the hole 115 side.
  • the diaphragm 120 since the diaphragm 120 is in contact with the first protrusion 144 and the diaphragm 120 is made of rubber, the diaphragm 120 may be fixed to the first protrusion 144.
  • the pressure receiving plate 125 is bent convexly toward the hole 115 as described above, so that the diaphragm 120 is in contact with the first protrusion 144 obliquely. That is, since the diaphragm 120 and the first protrusion 144 are substantially in line contact, the diaphragm 120 and the first protrusion 144 are difficult to adhere.
  • the diaphragm 120 and the first protrusion 144 are fixed, if the pressure receiving plate 125 tries to return to the original flat state from the bent state, the adhesion is peeled off from the outside of the first protrusion 144. Therefore, the diaphragm 120 is easily peeled off from the first protrusion 144.
  • the diaphragm 120 does not contact the bottom surface 141 of the valve chamber 140, and therefore the diaphragm 120 swollen by the fluid and the bottom surface of the valve chamber 140. 141 can be prevented from adhering.
  • the stop valve 101 in this embodiment it is possible to prevent the diaphragm 120 and the bottom surface 141 of the valve chamber 140 from sticking even with a low-profile structure. Therefore, the reliability of fluid control can be improved.
  • the parts 134, 141, 144, 145 and 148 in contact with methanol of the valve housing 130 are all made of resin, and the material of the diaphragm 120 and the valve part 150 is also rubber, so that metal ions It does not elute in methanol. Therefore, in the stop valve 101 of this embodiment, the DMFC characteristic does not deteriorate due to elution of metal ions. Therefore, by using the stop valve 101 of this embodiment, the same effect can be obtained in the fuel cell system 100 including the stop valve 101.
  • FIG. 8 is a perspective view of the valve housing 230 provided in the stop valve 201 according to the second embodiment of the present invention.
  • the difference between the stop valve 201 in this embodiment and the stop valve 101 is the first protrusion 244, and the other configuration is the same as that of the stop valve 101.
  • the first projecting portion 244 is different from the first projecting portion 144 shown in FIG. 4 in that its tip is formed in a convex curved shape.
  • the first projecting portion 244 of this embodiment has a tip with a convex curved surface, so that the contact area with the diaphragm 120 when the valve portion 150 is opened is narrower than that with a flat tip. Therefore, the diaphragm 120 and the first protrusion 244 are difficult to adhere. Further, even if the diaphragm 120 and the first protrusion 244 are fixed, the diaphragm 120 is easily peeled off from the first protrusion 244. Further, when the diaphragm 120 contacts the first protrusion 244, methanol passes from the inside of the first protrusion 244 to the outside of the first protrusion 244 via the first flow path 245.
  • the stop valve 201 in this embodiment it is possible to prevent the diaphragm 120 and the first projecting portion 244 from sticking. Therefore, the reliability of fluid control can be further improved. Further, by using the stop valve 201 of this embodiment, the same effect can be obtained in a fuel cell system including the stop valve 201.
  • FIG. 9 is a perspective view of the valve housing 330 provided in the stop valve 301 according to the third embodiment of the present invention.
  • the difference between the stop valve 301 in this embodiment and the stop valve 201 is the first protrusion 344, and the other configuration is the same as that of the stop valve 201.
  • the first protrusion 344 is different from the first protrusion 244 shown in FIG. 8 in that it is an aggregate of a plurality of protrusions.
  • the first projecting portion 344 is an aggregate of a plurality of hemispherical protrusions whose tips are formed in a convex curved shape, so that the contact area with the diaphragm 120 when the valve portion 150 is opened is integral. Narrower than the first protrusion 244. Therefore, it is difficult for the diaphragm 120 and the first protrusion 344 to adhere to each other. Further, even if the diaphragm 120 and the first protrusion 344 are fixed, the diaphragm 120 is easily peeled off from the first protrusion 344. Further, when the diaphragm 120 comes into contact with the first protrusion 344, methanol passes from the inside of the first protrusion 344 to the outside of the first protrusion 344 via the first flow path 345.
  • the stop valve 301 in this embodiment it is possible to prevent the diaphragm 120 and the first projecting portion 344 from adhering to each other. Therefore, the reliability of fluid control can be further improved. Further, by using the stop valve 301 of this embodiment, the same effect can be obtained in a fuel cell system including the stop valve 301.
  • the projections forming the first projecting portion 244 are formed in a hemispherical shape, but the projections may be cylindrical in implementation.
  • FIG. 10 is a perspective view of a valve housing 430 provided in a stop valve 401 according to the fourth embodiment of the present invention.
  • the stop valve 401 in this embodiment is different from the stop valve 101 in the first protrusion 444, and the other configuration is the same as that of the stop valve 101.
  • the first projecting portion 444 has a circular shape, and has a tip area larger than that of the first projecting portion 144 shown in FIG.
  • the diaphragm 120 contacts the first protruding portion 444 instead of the bottom surface 141 of the valve chamber 140 when the valve portion 150 is opened. Further, when the diaphragm 120 comes into contact with the first protrusion 444, the methanol flows from the inflow hole 143 inside the first protrusion 444 to the outside of the first protrusion 444 via the first flow path 445. pass.
  • the same effect as the stop valve 101 can be obtained. Further, by using the stop valve 401 of this embodiment, the same effect can be obtained in a fuel cell system including the stop valve 401.
  • FIG. 11 is a perspective view of a valve housing 530 provided in a stop valve 501 according to the fifth embodiment of the present invention.
  • 12 is a cross-sectional view of a principal part taken along line SS in FIG.
  • the stop valve 501 in this embodiment is different from the stop valve 301 shown in FIG. 9 in that a second protrusion 564 is provided, and other configurations are the same as those of the stop valve 301. .
  • valve housing 530 in this embodiment includes a second protrusion 564 having a height lower than that of the first protrusion 344, and a hole 143 inside the second protrusion 564.
  • a second flow path 565 that passes outside is formed on the bottom surface 141 of the valve chamber 140 inside the first protrusion 344 and around the inflow hole 143.
  • the adhesion between the diaphragm 120 and the bottom surface 141 of the valve chamber 140 is prevented by the first protrusion 344 as in the case of the stop valve 301.
  • the first protruding portion 344 also has a function of determining the bottom dead center of the diaphragm 120 when the valve portion 150 is opened.
  • the diaphragm 120 may be connected to the first protrusion 344. It may come into contact and undergo local compression deformation, and a part of the first protrusion 344 may bite into the diaphragm 120. In this case, the first flow path 345 is narrowed by the deformed diaphragm 120, and the diaphragm 120 may obstruct the flow of methanol.
  • the second protrusion 564 having a flat tip is formed on the inner side of the first protrusion 344 lower than the first protrusion 344. Accordingly, even when the diaphragm 120 comes into contact with the first protruding portion 344 when the valve portion 150 is opened and a part of the first protruding portion 344 bites into the diaphragm 120, the second protruding portion 564 causes the second flow. Since the channel 565 is secured, a sufficient methanol channel can be secured. That is, the stop valve 501 of this embodiment has a structure having a first protrusion 344 for preventing sticking and a second protrusion 564 for securing a flow path.
  • the stop valve 501 of this embodiment since the first protrusion 344 is provided, it is possible to prevent the diaphragm 120 and the bottom surface 141 of the valve chamber 140 from sticking to each other. Further, even when the diaphragm 120 comes into contact with the first protrusion 344 and the first protrusion 344 bites into the diaphragm 120 when the valve portion 150 is opened, the second protrusion 564 can sufficiently Two flow paths 565 can be secured. For this reason, it can prevent obstructing the flow of methanol. Further, by using the stop valve 501 of this embodiment, the same effect can be obtained in the fuel cell system including the stop valve 501.
  • FIG. 13 is principal part sectional drawing of the valve housing
  • the stop valve 601 in this embodiment is different from the stop valve 301 shown in FIG. 9 in that a third protrusion 674 is provided, and other configurations are the same as those of the stop valve 301. .
  • valve housing 630 has a third protrusion 674 formed on the periphery of the inflow hole 143 on the bottom surface 141 of the valve chamber 140, and the first protrusion 344 faces the diaphragm 120. It is formed on the upper surface of the third protrusion 674.
  • the valve seat 148 is pressurized when the valve is closed by the valve body 151 in a direction to block the inflow of fluid from the inflow hole 143 to the valve chamber 140. Therefore, the peripheral portion of the inflow hole 143 in the valve housing 630 needs to have high rigidity, and it is desirable to make the thickness as thick as possible. On the other hand, in order to reduce the height of the stop valve 601, it is desirable to make the thickness of the valve housing 630 as thin as possible.
  • the thickness of the peripheral portion of the inflow hole 143 in the valve housing 630 is increased by providing the third protrusion 674.
  • the rigidity of the peripheral part of the inflow hole 143 in the valve housing 630 can be increased.
  • the flow of resin at the time of injection molding is improved, so that the occurrence of molding defects and the like can be reduced. That is, since the yield is improved, the manufacturing cost can be reduced.
  • the rigidity of the peripheral portion of the inflow hole 143 in the valve housing 630 can be increased, and the manufacturing cost can be reduced. Further, by using the stop valve 601 of this embodiment, the same effect can be obtained in a fuel cell system including the stop valve 601.
  • the diaphragm 120 contacts the first protrusion 344 instead of the bottom surface 141 of the valve chamber 140 when the valve unit 150 is opened. Further, when the diaphragm 120 comes into contact with the first protrusion 344, methanol passes from the inside of the first protrusion 344 to the outside of the first protrusion 344 via the first flow path 345. Therefore, according to the stop valve 601 in this embodiment, the same effect as the stop valve 301 can be obtained.
  • FIG. 14 is a perspective view of a valve housing 730 provided in a stop valve 701 according to the seventh embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of a main part taken along line TT in FIG.
  • the main point of difference between the stop valve 701 in this embodiment and the stop valve 501 shown in FIG. 9 is that it includes a third protrusion 774, and the rest of the configuration is the same as that of the stop valve 501. It is.
  • the valve housing 730 has a third protrusion 774 and a third flow path 775 formed on the periphery of the inflow hole 143 on the bottom surface 141 of the valve chamber 140, and the first protrusion 744.
  • the second protrusion 764 is formed on the upper surface of the third protrusion 774 facing the diaphragm 120.
  • the first protruding portion 744 is a protruding portion for preventing sticking similarly to the first protruding portion 344 shown in FIG. 11, and the protrusions constituting the first protruding portion 744 are the first protruding portions 344. It is the same as the protrusion which comprises.
  • the first flow path 745 allows methanol to pass from the inner side to the outer side of the first projecting portion 744 in the same manner as the first flow path 345.
  • the second protrusion 764 is a protrusion for securing a flow path similarly to the second protrusion 564 shown in FIG. 11, and the second flow path 775 contains methanol similarly to the second flow path 565.
  • the second protrusion 564 is passed through the hole 143 inside the second protrusion 564.
  • the third projecting portion 774 is a projecting portion for improving rigidity, like the third projecting portion 674 shown in FIG. That is, the stop valve 701 of this embodiment has a structure having a first protrusion 744 for preventing sticking, a second protrusion 764 for securing a flow path, and a third protrusion 774 for improving rigidity. Yes.
  • the same effects as those of the stop valve 501 and the stop valve 601 can be obtained. Furthermore, in the stop valve 701 of this embodiment, since the third flow path 775 is provided between the second flow path 765 and the outflow hole 149, the methanol that has flowed from the inflow hole 143 flows into the second flow path. It flows straight from the path 765 to the outflow hole 149 via the third flow path 775. Therefore, according to the stop valve 701 in this embodiment, the methanol flow path can be secured from the stop valve 601 when the valve portion 150 is opened. Further, by using the stop valve 701 of this embodiment, the same effect can be obtained in a fuel cell system including the stop valve 701.
  • methanol is used as a highly active fluid, but the fluid may be any of gas, liquid, gas-liquid mixed flow, solid-liquid mixed flow, solid-gas mixed flow, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

Disclosed are a forward check valve and fuel-cell system wherein a diaphragm is prevented from sticking to the bottom surface of a valve chamber, even in a low-profile structure. Inside a valve housing (130), an annular first protruding part (144), against which a diaphragm (120) abuts when a valve part (150) is opened, and first channels (145), which let methanol flow from inside the protruding part (144) to outside, are formed around an inlet (143) in the bottom surface (141) of the valve chamber (140). Thus in the disclosed forward check valve (101), when the valve part (150) is opened, the rubber diaphragm (120) contacts the first protruding part (144), not the bottom surface (141) of the valve chamber (140). Also, when the diaphragm (120) is in contact with the first protruding part (144), methanol flows outside the first protruding part (144) from inside said first protruding part (144) via the first channels (145).

Description

順止バルブ、燃料電池システムStop valve, fuel cell system
 本発明は、流体の順方向の流れを制御する順止バルブ、及びこの順止バルブを備える燃料電池システムに関するものである。 The present invention relates to a stop valve for controlling the forward flow of a fluid, and a fuel cell system including the stop valve.
 小型の燃料電池に用いられるパッシブ駆動の減圧弁が特許文献1に開示されている。この減圧弁は、流体の圧力が設定圧力になると、圧力差を利用してバルブが自動的に開閉するように構成されている。 Patent Document 1 discloses a passively driven pressure reducing valve used for a small fuel cell. The pressure reducing valve is configured to automatically open and close using a pressure difference when the fluid pressure reaches a set pressure.
 図1(A),図1(B)に、特許文献1に開示されている減圧弁の断面図を示す。この減圧弁は、可動部となるダイヤフラム1、伝達機構であるピストン2、バルブ筐体7、および、弁部を形成する弁座部3、弁体部4、および、支持部5からなる。弁体部4は支持部5によって周囲に支持されている。支持部5は、弾性を有する梁によって形成されている。また、バルブ筐体7は、ダイヤフラム1とともにバルブ室8を構成する。 1A and 1B are sectional views of a pressure reducing valve disclosed in Patent Document 1. FIG. The pressure reducing valve includes a diaphragm 1 serving as a movable portion, a piston 2 serving as a transmission mechanism, a valve housing 7, a valve seat portion 3 forming a valve portion, a valve body portion 4, and a support portion 5. The valve body portion 4 is supported around the support portion 5. The support part 5 is formed of an elastic beam. The valve housing 7 constitutes a valve chamber 8 together with the diaphragm 1.
 ダイヤフラム(可動部)1上部の圧力をP0、バルブ上流の1次圧力をP1、バルブ下流の圧力をP2とし、弁体部4の面積をS1、ダイヤフラム(可動部)1の面積をS2とする。このとき、圧力の釣り合いから、図1(B)のようにバルブが開く条件は、(P1-P2)S1<(P0-P2)S2となる。P2がこの条件の圧力より高いとバルブは閉じ、低いとバルブは開く。これによって、P2を一定に保つことができる。 The upper pressure of the diaphragm (movable part) 1 is P0, the primary pressure upstream of the valve is P1, the pressure downstream of the valve is P2, the area of the valve body part 4 is S1, and the area of the diaphragm (movable part) 1 is S2. . At this time, from the balance of pressure, the condition for opening the valve as shown in FIG. 1B is (P1-P2) S1 <(P0-P2) S2. If P2 is higher than the pressure in this condition, the valve is closed, and if P2 is lower, the valve is opened. Thereby, P2 can be kept constant.
特開2008-59093号公報JP 2008-59093 A
 例えば、ダイレクトメタノール型燃料電池(DMFC)においては、燃料(メタノール)の輸送を行うポンプを備えている。一般に、弁方式のポンプには弁による逆止機能はあるが、順止機能(順方向の流れを止める機能)は無い。順止機能の無いポンプを用いると、上流側の圧力(順方向の圧力)が燃料に印加される場合に、ポンプの非作動時にも燃料が流れてしまう。 For example, a direct methanol fuel cell (DMFC) has a pump for transporting fuel (methanol). In general, a valve-type pump has a check function by a valve, but does not have a stop function (a function to stop a forward flow). When a pump without a stop function is used, when upstream pressure (forward pressure) is applied to the fuel, the fuel flows even when the pump is not operating.
 また、燃料電池システム内に組み込まれる燃料カートリッジが、外環境によっては高温になることがあり、高圧の流体が吐出されることがある。これにより、過剰な流体が燃料セルに供給されたり、場合によってはポンプを破壊してしまうおそれがある。そこで、高圧な流体が万が一加わった時に、順方向の流れを止めるバルブ(以下、順止バルブという)が求められている。図1(A),図1(B)に示した特許文献1の減圧弁では、ポンプによる流体の吸引圧力によってダイヤフラム1を可動させ、連動するピストン2により弁体部4を押し下げることで、弁を開く。これにより、流体の流路が開く。 Also, the fuel cartridge incorporated in the fuel cell system may become hot depending on the external environment, and high pressure fluid may be discharged. As a result, excessive fluid may be supplied to the fuel cell or the pump may be destroyed in some cases. Therefore, there is a need for a valve that stops forward flow (hereinafter referred to as a stop valve) when a high-pressure fluid is added. In the pressure reducing valve of Patent Document 1 shown in FIGS. 1 (A) and 1 (B), the diaphragm 1 is moved by the suction pressure of the fluid by the pump, and the valve body portion 4 is pushed down by the interlocking piston 2 so that the valve open. This opens the fluid flow path.
 しかしながら、ダイヤフラム1と対向するバルブ室8の底面9とダイヤフラム1との距離を狭くし、特許文献1の減圧弁を低背化すると、ダイヤフラム1が、弁の開放時にバルブ室8の底面9に接触するおそれがある。そして、当該減圧弁のダイヤフラム1をゴムで形成し、メタノールのような活性の高い流体を当該減圧弁に使用した場合、ダイヤフラム1とバルブ室8の底面9とが接触した時に、当該流体により膨潤したダイヤフラム1とバルブ室8の底面9とが固着するおそれがある。そのため、特許文献1の減圧弁を低背化した構造では、ダイヤフラム1とバルブ室8の底面9との固着によりダイヤフラム1が元の位置に戻らなくなってしまい、弁が閉じなくなってしまうことがある。 However, when the distance between the bottom surface 9 of the valve chamber 8 facing the diaphragm 1 and the diaphragm 1 is reduced and the pressure reducing valve of Patent Document 1 is lowered, the diaphragm 1 is placed on the bottom surface 9 of the valve chamber 8 when the valve is opened. There is a risk of contact. When the diaphragm 1 of the pressure reducing valve is made of rubber and a highly active fluid such as methanol is used for the pressure reducing valve, the diaphragm 1 swells with the fluid when the diaphragm 1 comes into contact with the bottom surface 9 of the valve chamber 8. There is a possibility that the diaphragm 1 and the bottom surface 9 of the valve chamber 8 are fixed. Therefore, in the structure in which the pressure reducing valve of Patent Document 1 has a low profile, the diaphragm 1 may not return to its original position due to the adhesion between the diaphragm 1 and the bottom surface 9 of the valve chamber 8, and the valve may not close. .
 従って、上記特許文献1の減圧弁を低背化した構造を備える従来の順止バルブでは、ダイヤフラムをゴムで形成し、その順止バルブに活性の高い流体を使用する場合、流体制御の十分な信頼性が得られないという問題があった。 Therefore, in the conventional stop valve having a structure in which the pressure reducing valve of Patent Document 1 has a low profile, when the diaphragm is formed of rubber and a highly active fluid is used for the stop valve, sufficient fluid control is achieved. There was a problem that reliability could not be obtained.
 そこで本発明は、低背な構造でも、ダイヤフラムとバルブ室の底面とが固着するのを防ぐことができる順止バルブ、及びこの順止バルブを備える燃料電池システムの提供を目的とする。 Therefore, an object of the present invention is to provide a stop valve that can prevent the diaphragm and the bottom surface of the valve chamber from sticking to each other even in a low-profile structure, and a fuel cell system including the stop valve.
 本発明の順止バルブは、前記課題を解決するために以下の構成を備えている。 The stop valve of the present invention has the following configuration in order to solve the above problems.
(1)バルブ筐体と、
 前記バルブ筐体とともにバルブ室を構成し、前記バルブ室の流体の圧力によって変位するダイヤフラムと、を備え、
 前記バルブ筐体には、前記バルブ室へ流体が流入する流入孔と、ポンプが接続されて前記ポンプによる流体の吸引圧力によって前記バルブ室から流体が流出する流出孔と、が形成された、順止バルブであって、
 前記流入孔に配置され、前記ダイヤフラムの変位によって前記流入孔から前記バルブ室への流体の流入を遮断または開放させる弁体と、を備え、
 前記バルブ筐体には、前記弁体が前記流入孔から前記バルブ室への流体の流入を開放させたときに、前記ダイヤフラムが当接する第1の突出部と、当該流体を前記第1の突出部の内側から外側へ通過させる第1の流路とが、前記ダイヤフラムと対向する前記バルブ室の底面上における前記流入孔の周囲に形成された。
(1) a valve housing;
Comprising a valve chamber together with the valve housing, and a diaphragm displaced by the pressure of fluid in the valve chamber;
The valve housing has an inflow hole through which fluid flows into the valve chamber, and an outflow hole through which fluid flows out of the valve chamber due to the suction pressure of the fluid by the pump. A stop valve,
A valve body disposed in the inflow hole and configured to block or open the inflow of fluid from the inflow hole to the valve chamber by displacement of the diaphragm;
The valve housing has a first protrusion with which the diaphragm comes into contact when the valve body releases the inflow of fluid from the inflow hole to the valve chamber, and the fluid is supplied to the first protrusion. A first flow path that passes from the inside to the outside of the part is formed around the inflow hole on the bottom surface of the valve chamber facing the diaphragm.
 この構成では、ダイヤフラムが、弁開放時にバルブ室の底面でなく第1の突出部に接触する。さらに、ダイヤフラムが第1の突出部に接触した時、流体は第1の突出部の内側から第1の流路を介して第1の突出部の外側へ通過する。
 よって、この構成の順止バルブに活性の高い流体を使用した場合でも、ダイヤフラムがバルブ室の底面と接触しないため、当該流体により膨潤したダイヤフラムとバルブ室の底面とが固着することを防止できる。
 従って、この構成によれば、低背な構造でも、ダイヤフラムとバルブ室の底面とが固着することを防ぐことができる。従って、流体制御の信頼性を向上できる。
In this configuration, the diaphragm comes into contact with the first protruding portion instead of the bottom surface of the valve chamber when the valve is opened. Furthermore, when the diaphragm comes into contact with the first protrusion, the fluid passes from the inside of the first protrusion to the outside of the first protrusion via the first flow path.
Therefore, even when a highly active fluid is used for the stop valve of this configuration, since the diaphragm does not contact the bottom surface of the valve chamber, it is possible to prevent the diaphragm swollen by the fluid and the bottom surface of the valve chamber from sticking.
Therefore, according to this configuration, it is possible to prevent the diaphragm and the bottom surface of the valve chamber from sticking even with a low-profile structure. Therefore, the reliability of fluid control can be improved.
(2)前記ダイヤフラムには、大気圧と前記バルブ室の内圧との差圧を受ける受圧板が接合され、
 前記第1の突出部は、前記バルブ室の内径をDvとし、前記受圧板の直径をDbとし、前記流入孔の両端に位置する前記第1の突出部の外径をDcとしたとき、Dc≦(Dv+Db)/4の関係を満たす形状に形成されることが好ましい。
(2) A pressure receiving plate that receives a differential pressure between an atmospheric pressure and an internal pressure of the valve chamber is joined to the diaphragm,
The first protrusion is Dc, where Dv is the inner diameter of the valve chamber, Db is the diameter of the pressure receiving plate, and Dc is the outer diameter of the first protrusion located at both ends of the inflow hole. It is preferably formed in a shape satisfying the relationship of ≦ (Dv + Db) / 4.
 この構成では、受圧板がバルブ室の底面に対して反対側へ凸に撓み、ダイヤフラムが第1の突出部と斜めに接触する。即ち、ダイヤフラムと第1の突出部とが線接触となるため、ダイヤフラムと第1の突出部とが固着し難い。また、仮にダイヤフラムと第1の突出部が固着しても、受圧板が撓んでいる状態から元の平らな状態に戻ろうとしたとき、第1の突出部の外側から固着を剥離する力が働くため、ダイヤフラムが第1の突出部から剥がれ易い。
 従って、この構成によれば、ダイヤフラムと第1の突出部とが固着することも防ぐことができる。従って、流体制御の信頼性を一層向上できる。
In this configuration, the pressure receiving plate is bent convexly to the opposite side with respect to the bottom surface of the valve chamber, and the diaphragm is in contact with the first protrusion at an angle. That is, since the diaphragm and the first protrusion are in line contact, the diaphragm and the first protrusion are difficult to adhere. In addition, even if the diaphragm and the first protrusion are fixed, when the pressure receiving plate tries to return to the original flat state from the bent state, a force to peel off the fixation works from the outside of the first protrusion. Therefore, the diaphragm is easily peeled off from the first protrusion.
Therefore, according to this structure, it can also prevent that a diaphragm and a 1st protrusion part adhere. Therefore, the reliability of fluid control can be further improved.
(3)前記第1の突出部は、その先端が凸の曲面状に形成されることが好ましい。 (3) It is preferable that the first protrusion is formed in a curved surface shape having a convex tip.
 この構成の第1の突出部は、弁開放時のダイヤフラムとの接触面積が、先端が平面状の第1の突出部より狭い。そのため、ダイヤフラムと第1の突出部とが固着し難い。また、仮にダイヤフラムと第1の突出部が固着しても、ダイヤフラムが第1の突出部から剥がれ易い。
 従って、この構成によれば、ダイヤフラムと第1の突出部とが固着することも防ぐことができる。従って、流体制御の信頼性を一層向上できる。
The first projecting portion having this configuration has a smaller contact area with the diaphragm when the valve is opened than the first projecting portion having a flat tip. Therefore, it is difficult for the diaphragm and the first projecting portion to adhere to each other. Further, even if the diaphragm and the first protrusion are fixed, the diaphragm is easily peeled off from the first protrusion.
Therefore, according to this structure, it can also prevent that a diaphragm and a 1st protrusion part adhere. Therefore, the reliability of fluid control can be further improved.
(4)前記第1の突出部は、複数の突起の集合体であることが好ましい。 (4) It is preferable that the first protrusion is an aggregate of a plurality of protrusions.
 この構成の第1の突出部は、弁開放時のダイヤフラムとの接触面積が一体ものの第1の突出部より狭い。そのため、ダイヤフラムと第1の突出部とが固着し難い。また、仮にダイヤフラムと第1の突出部が固着しても、ダイヤフラムが第1の突出部から剥がれ易い。
 従って、この構成によれば、ダイヤフラムと第1の突出部とが固着することも防ぐことができる。従って、流体制御の信頼性を一層向上できる。
The first projecting portion having this configuration has a smaller contact area with the diaphragm when the valve is opened than the first projecting portion having an integral structure. Therefore, it is difficult for the diaphragm and the first projecting portion to adhere to each other. Further, even if the diaphragm and the first protrusion are fixed, the diaphragm is easily peeled off from the first protrusion.
Therefore, according to this structure, it can also prevent that a diaphragm and a 1st protrusion part adhere. Therefore, the reliability of fluid control can be further improved.
(5)前記バルブ筐体には、前記第1の突出部より高さの低い第2の突出部と、流体を前記第2の突出部の内側から外側へ通過させる第2の流路とが、前記バルブ室の底面上における前記第1の突出部の内側かつ前記流入孔の周囲に形成されることが好ましい。 (5) The valve housing includes a second protrusion having a height lower than that of the first protrusion, and a second flow path for allowing fluid to pass from the inside to the outside of the second protrusion. Preferably, it is formed inside the first protrusion on the bottom surface of the valve chamber and around the inflow hole.
 この構成では、弁開放時にダイヤフラムが第1の突出部と接触して局所的に圧縮変形し、第1の突出部の一部がダイヤフラムに喰い込んだとしても、第2の突出部によって第2の流路を確保しているため、流体の流路を十分に確保することができる。
 よって、この構成の順止バルブによれば、第1の突出部を設けているため、ダイヤフラムとバルブ室の底面との固着を防止することができる。さらに、第2の突出部を設けているため、弁開放時にダイヤフラムが第1の突出部と接触して第1の突出部がダイヤフラムに喰い込んでも、十分な流路を確保することができる。
In this configuration, when the valve is opened, the diaphragm comes into contact with the first protrusion and is locally compressed and deformed, and even if a part of the first protrusion bites into the diaphragm, the second protrusion causes the second protrusion. Therefore, a sufficient fluid flow path can be secured.
Therefore, according to the stop valve of this structure, since the 1st protrusion part is provided, sticking with a diaphragm and the bottom face of a valve chamber can be prevented. Furthermore, since the second protrusion is provided, a sufficient flow path can be secured even if the diaphragm comes into contact with the first protrusion when the valve is opened and the first protrusion bites into the diaphragm.
(6)前記バルブ筐体には、第3の突出部が前記バルブ室の底面上における前記流入孔の周縁に形成され、
 前記第1の突出部は、前記ダイヤフラムと対向する前記第3の突出部の上面に形成されることが好ましい。
(6) In the valve housing, a third protrusion is formed on the periphery of the inflow hole on the bottom surface of the valve chamber,
It is preferable that the first protrusion is formed on an upper surface of the third protrusion that faces the diaphragm.
 この構成では、第3の突出部を設けることにより、バルブ筐体における流入孔の周縁部位の厚みを厚くしている。これにより、バルブ筐体における流入孔の周縁部位の剛性を高めることができる。
 従って、この構成によれば、バルブ筐体における流入孔の周縁部位の剛性を高めることができる。
In this configuration, the thickness of the peripheral portion of the inflow hole in the valve housing is increased by providing the third protrusion. Thereby, the rigidity of the peripheral part of the inflow hole in the valve housing can be increased.
Therefore, according to this configuration, the rigidity of the peripheral portion of the inflow hole in the valve housing can be increased.
(7)前記流体はメタノールであることが好ましい。 (7) The fluid is preferably methanol.
 メタノールは他の流体に比べて活性が高い流体である。そのため、上記(1)の構成は、メタノールを流体として使用するこの構成において好適である。 Methanol is a fluid with higher activity than other fluids. Therefore, the configuration (1) is suitable for this configuration using methanol as a fluid.
(8)前記ダイヤフラムの材質はゴムであり、前記バルブ筐体の前記流体と接する部分の材質は樹脂であることが好ましい。 (8) Preferably, the material of the diaphragm is rubber, and the material of the portion of the valve housing that contacts the fluid is resin.
 この構成では、流体がバルブ室を通過しても、金属イオンが流体中に溶出することがない。そのため、この構成によれば、金属イオンの溶出によるDMFCの特性の劣化が起こらない。 In this configuration, even when the fluid passes through the valve chamber, metal ions do not elute into the fluid. Therefore, according to this configuration, the degradation of the DMFC characteristics due to elution of metal ions does not occur.
 また、本発明の燃料電池システムは、前記課題を解決するために以下の構成を備えている。 Further, the fuel cell system of the present invention has the following configuration in order to solve the above problems.
(9)上記(1)~(8)のいずれかに記載の順止バルブと、
 前記順止バルブの前記流入孔に接続される燃料貯蔵部と、
 前記順止バルブの前記流出孔に接続されるポンプと、を備える。
(9) The stop valve according to any one of (1) to (8) above,
A fuel reservoir connected to the inflow hole of the stop valve;
And a pump connected to the outflow hole of the stop valve.
 この構成により、上記(1)~(8)のうちいずれかに記載の順止バルブを用いることで、当該順止バルブを備える燃料電池システムにおいても同様の効果を奏する。 With this configuration, by using the stop valve described in any one of the above (1) to (8), the same effect can be obtained in a fuel cell system including the stop valve.
 この発明によれば、低背な構造でも、ダイヤフラムとバルブ室の底面とが固着することを防ぐことができる。従って、流体制御の信頼性を向上できる。 According to this invention, it is possible to prevent the diaphragm and the bottom surface of the valve chamber from sticking even with a low-profile structure. Therefore, the reliability of fluid control can be improved.
特許文献1の順止バルブの構造を説明する断面図である。It is sectional drawing explaining the structure of the stop valve of patent document 1. FIG. 順止バルブの動作原理を説明する順止バルブの模式断面図である。It is a schematic cross section of a stop valve for explaining the operating principle of the stop valve. 本発明の第1の実施形態に係る順止バルブ101を備える燃料電池システムのシステム構成図である。1 is a system configuration diagram of a fuel cell system including a stop valve 101 according to a first embodiment of the present invention. 本発明の第1の実施形態に係る順止バルブ101の構造を説明する分解斜視図である。It is a disassembled perspective view explaining the structure of the stop valve 101 which concerns on the 1st Embodiment of this invention. 図5(A)は、図4の順止バルブ101に備えられるキャップ部110の上面図である。図5(B)は、図4の順止バルブ101に備えられるバルブ筐体130の下面図である。FIG. 5A is a top view of the cap part 110 provided in the stop valve 101 of FIG. FIG. 5B is a bottom view of the valve housing 130 provided in the stop valve 101 of FIG. 図5(A)のS-S線における断面図である。FIG. 6 is a cross-sectional view taken along the line SS in FIG. 本発明の第1の実施形態に係る順止バルブ101の弁開放時の模式断面図である。It is a schematic cross section at the time of valve opening of the stop valve 101 which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る順止バルブ201に備えられるバルブ筐体230の斜視図である。It is a perspective view of the valve housing | casing 230 with which the stop valve 201 which concerns on the 2nd Embodiment of this invention is equipped. 本発明の第3の実施形態に係る順止バルブ301に備えられるバルブ筐体330の斜視図である。It is a perspective view of the valve housing | casing 330 with which the stop valve 301 which concerns on the 3rd Embodiment of this invention is equipped. 本発明の第4の実施形態に係る順止バルブ401に備えられるバルブ筐体430の斜視図である。It is a perspective view of the valve housing | casing 430 with which the stop valve 401 which concerns on the 4th Embodiment of this invention is equipped. 本発明の第5の実施形態に係る順止バルブ501に備えられるバルブ筐体530の斜視図である。It is a perspective view of the valve housing | casing 530 with which the stop valve 501 which concerns on the 5th Embodiment of this invention is equipped. 図11のS-S線における要部断面図である。FIG. 12 is a cross-sectional view of main parts taken along line SS in FIG. 11. 本発明の第6の実施形態に係る順止バルブ601に備えられるバルブ筐体630の要部断面図である。It is principal part sectional drawing of the valve housing | casing 630 with which the stop valve 601 which concerns on the 6th Embodiment of this invention is equipped. 本発明の第7の実施形態に係る順止バルブ701に備えられるバルブ筐体730の斜視図である。It is a perspective view of the valve housing | casing 730 with which the stop valve 701 which concerns on the 7th Embodiment of this invention is equipped. 図14のT-T線における要部断面図である。FIG. 15 is a main part cross-sectional view taken along line TT in FIG. 14.
《順止バルブの動作原理》
 まず、小型の燃料電池に用いられるパッシブ駆動の順止バルブの動作原理について説明する。
 図2(A)は、弁が閉じた状態における順止バルブ90の模式断面図であり、図2(B)は、弁が開いた状態における順止バルブ90の模式断面図である。順止バルブ90は、可動部となるダイヤフラム20、ダイヤフラム20とともにバルブ室40を構成するバルブ筐体30、バルブ筐体30に接合されたキャップ部10、および、弁体部51を有する弁部50からなる。
《Operation principle of stop valve》
First, the principle of operation of a passively driven stop valve used in a small fuel cell will be described.
2A is a schematic cross-sectional view of the stop valve 90 in a state where the valve is closed, and FIG. 2B is a schematic cross-sectional view of the stop valve 90 in a state where the valve is open. The stop valve 90 includes a diaphragm 20 serving as a movable portion, a valve housing 30 that forms a valve chamber 40 together with the diaphragm 20, a cap portion 10 joined to the valve housing 30, and a valve portion 50 having a valve body portion 51. Consists of.
 バルブ筐体30には、バルブ室40へ流体が流入する流入孔43と、ポンプが接続されてポンプによる流体の吸引圧力によってバルブ室40から流体が流出する流出孔49とが形成されている。 The valve housing 30 is formed with an inflow hole 43 through which the fluid flows into the valve chamber 40 and an outflow hole 49 through which the fluid flows out of the valve chamber 40 due to the suction pressure of the fluid by the pump.
 ダイヤフラム20は、伝達機構であるプッシャ23を有し、バルブ室40の流体の圧力によって変位する。ダイヤフラム20が弁部50に近づく方向へ変位した時、プッシャ23が弁体部51を押下する。 The diaphragm 20 has a pusher 23 that is a transmission mechanism, and is displaced by the pressure of the fluid in the valve chamber 40. When the diaphragm 20 is displaced in a direction approaching the valve unit 50, the pusher 23 presses the valve body unit 51.
 弁部50は、弁体部51の流入孔43側にリング状の弁突起55が形成されており、弁突起55が流入孔43の周縁に位置する弁座48に当接するよう配置される。そして、弁体部51は、ダイヤフラム20の変位によって弁座48に対して当接または離間し、流入孔43からバルブ室40への流体の流入を遮断または開放させる。 The valve portion 50 has a ring-shaped valve protrusion 55 formed on the inflow hole 43 side of the valve body portion 51, and the valve protrusion 55 is disposed so as to abut on a valve seat 48 positioned at the periphery of the inflow hole 43. The valve body 51 abuts or separates from the valve seat 48 due to the displacement of the diaphragm 20 to block or open the inflow of fluid from the inflow hole 43 to the valve chamber 40.
 キャップ部10には、外気と通じる孔部15が上面に形成されている。この結果、ダイヤフラム20の上部に大気圧が加わる。 The cap part 10 is formed with a hole part 15 communicating with the outside air on the upper surface. As a result, atmospheric pressure is applied to the upper part of the diaphragm 20.
 順止バルブ90は、流体の圧力が設定圧力になると、圧力差を利用して弁部50が自動的に開閉するように構成されている。詳述すると、ダイヤフラム20上部の大気の圧力をP0、バルブ上流の1次圧力をP1、バルブ下流の圧力をP2とし、弁体部51の面積(ここでは、弁体部51にリング状の弁突起55が形成されているため弁突起55で囲まれた領域の径で決まる面積)をS1、ダイヤフラム20の面積をS2、弁体部51が上向きに付勢する力をFsとする。このとき、圧力の釣り合いから、図2(B)のように弁部50が開く条件は、(P1-P2)S1+Fs<(P0-P2)S2となる。P2がこの条件の圧力より高いと弁部50は閉じ、低いと弁部50は開く。これによって、P2を一定に保つことができる。 The stop valve 90 is configured such that when the fluid pressure reaches a set pressure, the valve unit 50 automatically opens and closes using the pressure difference. More specifically, the pressure of the atmosphere above the diaphragm 20 is P0, the primary pressure upstream of the valve is P1, and the pressure downstream of the valve is P2, and the area of the valve body 51 (here, the valve body 51 includes a ring-shaped valve). S1 is the area determined by the diameter of the region surrounded by the valve protrusion 55 because the protrusion 55 is formed, S2 is the area of the diaphragm 20, and Fs is the force that the valve body 51 is biased upward. At this time, from the balance of pressure, the condition for opening the valve unit 50 as shown in FIG. 2B is (P1−P2) S1 + Fs <(P0−P2) S2. When P2 is higher than the pressure under this condition, the valve unit 50 is closed, and when P2 is low, the valve unit 50 is opened. Thereby, P2 can be kept constant.
《第1の実施形態》
 以下、本発明の第1の実施形態に係る順止バルブ101について説明する。
 図3は、本発明の第1の実施形態に係る順止バルブ101を備える燃料電池システム100のシステム構成図である。燃料電池システム100は、燃料であるメタノールを貯蔵する燃料カートリッジ102と、順止バルブ101と、メタノールを輸送するポンプ103と、ポンプ103からメタノールの供給を受けて発電する発電セル104と、を備える。
<< First Embodiment >>
Hereinafter, the stop valve 101 according to the first embodiment of the present invention will be described.
FIG. 3 is a system configuration diagram of the fuel cell system 100 including the stop valve 101 according to the first embodiment of the present invention. The fuel cell system 100 includes a fuel cartridge 102 that stores methanol as a fuel, a stop valve 101, a pump 103 that transports methanol, and a power generation cell 104 that receives the supply of methanol from the pump 103 and generates power. .
 ダイレクトメタノール型燃料電池(DMFC)においては、燃料であるメタノールの輸送を行うポンプ103を備えている。一般に、弁方式のポンプ103には弁による逆止機能はあるが、順止機能は無い。順止機能の無いポンプ103を用いると、上流側の圧力(順方向の圧力)がメタノールに印加される場合に、ポンプ103の非作動時にもメタノールが流れてしまう。
 そのため、ポンプ103と組み合わせて使用し、ポンプ圧力を利用して弁の開閉を行う順止バルブ101を設ける方が好ましい。
A direct methanol fuel cell (DMFC) includes a pump 103 that transports methanol as a fuel. In general, the valve-type pump 103 has a check function by a valve, but does not have a stop function. When the pump 103 without the stop function is used, when the upstream pressure (forward pressure) is applied to the methanol, the methanol flows even when the pump 103 is not operated.
Therefore, it is preferable to provide a stop valve 101 that is used in combination with the pump 103 and opens and closes the valve using the pump pressure.
 順止バルブ101は、詳細を後述するが、ダイヤフラム120とともにバルブ室140を構成するバルブ筐体130を備える。バルブ筐体130には、燃料カートリッジ102が流入路163を介して接続される流入孔143と、ポンプ103が流出路165を介して接続される流出孔149とが形成されている。順止バルブ101は、流入路163と流出路165とが形成されたポリフェニレンサルファイド(PPS)樹脂製のシステム筐体160に、流漏れを防ぐOリング161、162を介して表面実装される。 Although the details of the stop valve 101 will be described later, the stop valve 101 includes a valve housing 130 that constitutes a valve chamber 140 together with the diaphragm 120. The valve housing 130 is formed with an inflow hole 143 to which the fuel cartridge 102 is connected via the inflow path 163 and an outflow hole 149 to which the pump 103 is connected via the outflow path 165. The stop valve 101 is mounted on the surface of a system housing 160 made of polyphenylene sulfide (PPS) resin, in which an inflow path 163 and an outflow path 165 are formed, via O- rings 161 and 162 that prevent leakage.
 燃料電池システム100では、メタノールが燃料カートリッジ102から流入路163と流入孔143を介してバルブ室140へ流入する。そして、ポンプ103によるメタノールの吸引圧力によってバルブ室140から流出路165と流出孔149を介してポンプ103へメタノールが流出する。そして、メタノールはポンプ103によって発電セル104へ供給される。 In the fuel cell system 100, methanol flows from the fuel cartridge 102 into the valve chamber 140 through the inflow path 163 and the inflow hole 143. Then, methanol flows out from the valve chamber 140 to the pump 103 through the outflow passage 165 and the outflow hole 149 by the suction pressure of methanol by the pump 103. Then, methanol is supplied to the power generation cell 104 by the pump 103.
 図4は、第1の実施形態に係る順止バルブ101の分解斜視図である。図5(A)は、図4の順止バルブ101に備えられるキャップ部110の上面図である。図5(B)は、図4の順止バルブ101に備えられるバルブ筐体130の下面図である。図6は、図5(A)のS-S線における断面図である。図7は、本発明の第1の実施形態に係る順止バルブ101の弁開放時の模式断面図である。 FIG. 4 is an exploded perspective view of the stop valve 101 according to the first embodiment. FIG. 5A is a top view of the cap part 110 provided in the stop valve 101 of FIG. FIG. 5B is a bottom view of the valve housing 130 provided in the stop valve 101 of FIG. FIG. 6 is a cross-sectional view taken along the line SS in FIG. FIG. 7 is a schematic cross-sectional view of the stop valve 101 according to the first embodiment of the present invention when the valve is opened.
 順止バルブ101は、図4に分解斜視するように、キャップ部110と、可動部となるダイヤフラム120と、バルブ筐体130と、弁部150と、を備える。 The stop valve 101 includes a cap part 110, a diaphragm 120 serving as a movable part, a valve housing 130, and a valve part 150, as shown in an exploded perspective view in FIG. 4.
 バルブ筐体130は、略正方形板状である。バルブ筐体130には、バルブ室140へ流体が流入する流入孔143と、ポンプ103が接続されてポンプ103による流体の吸引圧力によってバルブ室140から流体が流出する流出孔149と、が形成されている。また、バルブ筐体130には、キャップ部110とバルブ筐体130をシステム筐体160に固定するためのネジ止め用の穴131と、ダイヤフラム120の周縁部121が載置される載置部134と、が形成されている。 The valve housing 130 has a substantially square plate shape. The valve housing 130 is formed with an inflow hole 143 through which the fluid flows into the valve chamber 140 and an outflow hole 149 through which the fluid flows out from the valve chamber 140 due to the suction pressure of the fluid by the pump 103. ing. Further, the valve casing 130 has a cap section 110 and a screw fixing hole 131 for fixing the valve casing 130 to the system casing 160 and a mounting section 134 on which the peripheral edge 121 of the diaphragm 120 is mounted. And are formed.
 また、バルブ筐体130には、図4、図6及び図7に示すように、弁部150が流入孔143からバルブ室140へのメタノールの流入を開放させたときに、ダイヤフラム120が当接する第1の突出部144と、メタノールを第1の突出部144の内側から外側へ通過させる第1の流路145とが、ダイヤフラム120と対向するバルブ室140の底面141上における流入孔143の周囲に形成されている。ここで、第1の突出部144は、バルブ室140の内径をDvとし、詳細を後述する受圧板125の直径をDbとし、流入孔143の両端に位置する第1の突出部144の外径をDcとしたとき、Dc≦(Dv+Db)/4の関係を満たす形状に形成されている。 Further, as shown in FIGS. 4, 6, and 7, the diaphragm 120 contacts the valve housing 130 when the valve unit 150 releases the inflow of methanol from the inflow hole 143 to the valve chamber 140. The first protrusion 144 and the first flow path 145 that allows methanol to pass from the inside to the outside of the first protrusion 144 are around the inflow hole 143 on the bottom surface 141 of the valve chamber 140 facing the diaphragm 120. Is formed. Here, the first protruding portion 144 has an inner diameter of the valve chamber 140 as Dv, a diameter of a pressure receiving plate 125, which will be described in detail later, as Db, and an outer diameter of the first protruding portion 144 positioned at both ends of the inflow hole 143. Is a shape satisfying the relationship of Dc ≦ (Dv + Db) / 4.
 また、バルブ筐体130には、図5(B)及び図6に示すように、弁部150をバルブ筐体130の実装面側から嵌めこむことにより弁部150を収納する開口部147と、流入孔143の周縁に位置する弁座148と、が形成されている。 Further, as shown in FIGS. 5B and 6, the valve housing 130 is fitted with the valve portion 150 from the mounting surface side of the valve housing 130 to accommodate the valve portion 150, and A valve seat 148 positioned at the periphery of the inflow hole 143 is formed.
 なお、バルブ筐体130の材質については、バルブ筐体130のメタノールと接する部分134、141、144、145、148の材質は耐メタノール性の高い樹脂、例えばPPS(Polyphenylenesulfide)樹脂等からなり、バルブ筐体130のメタノールと接しない縁132の材質は金属からなる。バルブ筐体130は、金属部分の縁132をモールド金型にインサートして射出成形するインサートモールドにより形成される。 As for the material of the valve housing 130, the materials 134, 141, 144, 145, and 148 that contact the methanol of the valve housing 130 are made of a resin having high methanol resistance, such as PPS (Polyphenylene sulfide) resin. The material of the edge 132 that does not contact the methanol of the housing 130 is made of metal. The valve housing 130 is formed by an insert mold in which an edge 132 of a metal part is inserted into a mold and is injection-molded.
 ダイヤフラム120は、図4及び図6に示すように、伝達機構であるプッシャ123を中心に有し、周縁部121の厚みが中央部122より厚い円板状に形成されている。ダイヤフラム120の材質は、耐メタノール性の高いゴム、例えばエチレンプロピレンゴムまたはシリコーンゴムである。ダイヤフラム120は、周縁部121がバルブ筐体130に載置されてバルブ筐体130とともにバルブ室140を構成する。ダイヤフラム120は、バルブ室140の流体の圧力によって周縁部121の内側の中央部122が変位する。ダイヤフラム120の中央部122が弁部150に近づく方向へ変位した時、プッシャ123が弁体部151を押下する。 As shown in FIGS. 4 and 6, the diaphragm 120 has a pusher 123 as a transmission mechanism at the center, and the peripheral portion 121 is formed in a disk shape that is thicker than the central portion 122. The material of the diaphragm 120 is a rubber having high methanol resistance, such as ethylene propylene rubber or silicone rubber. Diaphragm 120 constitutes valve chamber 140 together with valve casing 130 with peripheral edge 121 placed on valve casing 130. In the diaphragm 120, the central part 122 inside the peripheral part 121 is displaced by the pressure of the fluid in the valve chamber 140. When the central portion 122 of the diaphragm 120 is displaced in a direction approaching the valve portion 150, the pusher 123 presses the valve body portion 151.
 なお、液体を流体として順止バルブ101に使用した場合、液体の表面張力が大きいため、気体を流体として順止バルブ101に使用した場合より大きな流体の流路が必要となる。しかし、この実施形態の順止バルブ101ではダイヤフラム120の材質がゴムであるため、ダイヤフラム120をシリコンや金属で形成した場合に比べてダイヤフラム120の可動範囲が大きくなる。そのため、この実施形態の順止バルブ101では、十分なメタノールの流路を確保できる。 When the liquid is used as the fluid for the stop valve 101, the liquid has a large surface tension, so that a larger fluid flow path is required than when the gas is used as the fluid for the stop valve 101. However, in the stop valve 101 of this embodiment, since the material of the diaphragm 120 is rubber, the movable range of the diaphragm 120 is larger than when the diaphragm 120 is formed of silicon or metal. Therefore, the stop valve 101 of this embodiment can secure a sufficient methanol flow path.
 弁部150は、図4及び図6に示すように、略円形状であり、耐メタノール性の高いゴム、例えばシリコーンゴムからなる。弁部150は、ダイヤフラム120の変位によって弁座148に対して当接または離間し、流入孔143からバルブ室140への流体(メタノール)の流入を遮断または開放させる弁体部151と、弁体部151が弁座148に対して接近および離間する方向へ可動自在に弁体部151を支持する支持部152と、メタノールを通過させる孔部153と、弁部150が開口部147に収納されたときにバルブ筐体130の開口部147の内周面に当接し、支持部152を固定する固定部154と、を有する。
 なお、弁体部151には、弁座148とのシール性を高めるため、流入孔43側にリング状の弁突起155が形成されているが、弁突起155は必ずしも形成される必要はない。
As shown in FIGS. 4 and 6, the valve portion 150 has a substantially circular shape and is made of a rubber having high methanol resistance, such as silicone rubber. The valve unit 150 contacts or separates from the valve seat 148 due to the displacement of the diaphragm 120, and a valve body unit 151 that blocks or releases the inflow of fluid (methanol) from the inflow hole 143 to the valve chamber 140. The support part 152 that supports the valve body part 151 movably in the direction in which the part 151 approaches and separates from the valve seat 148, the hole part 153 that allows methanol to pass through, and the valve part 150 are accommodated in the opening part 147. And a fixing portion 154 that contacts the inner peripheral surface of the opening 147 of the valve housing 130 and fixes the support portion 152.
In addition, in order to improve the sealing performance with the valve seat 148, the valve body portion 151 is formed with a ring-shaped valve protrusion 155 on the inflow hole 43 side, but the valve protrusion 155 is not necessarily formed.
 弁体部151は、弁部150が開口部147に収納されたときに弁体部151の弁突起155が弁座148に当接し、弁体部151が流入孔143からバルブ室140への流体の流入を遮断する方向へ弁座148を弁閉時に与圧する。そして、弁体部151は、ダイヤフラム120が下降してダイヤフラム120に押し下げられることによって弁座148から離間し、流入孔143と孔部153が連通して、バルブ室140へのメタノールの流入を開放させる。 In the valve body 151, the valve protrusion 155 of the valve body 151 comes into contact with the valve seat 148 when the valve 150 is housed in the opening 147, and the valve body 151 flows from the inlet hole 143 to the valve chamber 140. When the valve is closed, the valve seat 148 is pressurized in a direction to block the inflow of the valve. The valve body 151 is separated from the valve seat 148 when the diaphragm 120 is lowered and pushed down by the diaphragm 120, and the inflow hole 143 and the hole 153 communicate with each other to release the inflow of methanol into the valve chamber 140. Let
 キャップ部110は、図4、図5(A)及び図6に示すように、略正方形板状であり、例えば、ステンレススチールの板を用いて金型成形により形成される。キャップ部110には、キャップ部110とバルブ筐体130をシステム筐体160に固定するためのネジ止め用の穴111が形成されている。ここで、金属製のキャップ部110の縁116は、ダイヤフラム120が載置部134に載置された状態で、バルブ筐体130の金属製の縁132と溶接により接合される。キャップ部110の周縁部位114は、接合されると、ダイヤフラム120の周縁部121を押圧して載置部134とともに周縁部121を挟持する。 As shown in FIGS. 4, 5 (A) and 6, the cap part 110 has a substantially square plate shape, and is formed, for example, by molding using a stainless steel plate. The cap part 110 is formed with a screw hole 111 for fixing the cap part 110 and the valve casing 130 to the system casing 160. Here, the edge 116 of the metal cap portion 110 is joined to the metal edge 132 of the valve housing 130 by welding in a state where the diaphragm 120 is placed on the placement portion 134. When the peripheral part 114 of the cap part 110 is joined, the peripheral part 121 of the diaphragm 120 is pressed to hold the peripheral part 121 together with the mounting part 134.
 また、キャップ部110の中央部位113には、外気と通じる孔部115が形成されている。この結果、ダイヤフラム120の上部に大気圧が加わる。
 ダイヤフラム120には、この大気圧とバルブ室140の内圧との差圧を受ける円形の金属からなる受圧板125が接合されている。
In addition, a hole 115 communicating with outside air is formed in the central portion 113 of the cap portion 110. As a result, atmospheric pressure is applied to the upper part of the diaphragm 120.
A pressure receiving plate 125 made of a circular metal that receives a differential pressure between the atmospheric pressure and the internal pressure of the valve chamber 140 is joined to the diaphragm 120.
 順止バルブ101は、上述した順止バルブ90(図2参照)と同じように、流体の圧力が設定圧力になると、圧力差を利用して弁部150が自動的に開閉するように構成されている。 Similar to the above-described stop valve 90 (see FIG. 2), the stop valve 101 is configured to automatically open and close the valve unit 150 using the pressure difference when the fluid pressure reaches the set pressure. ing.
 以上の構成では、バルブ室140の底面141とダイヤフラム120との距離を狭くし、順止バルブ101を低背化している。しかし、この実施形態のバルブ筐体130には、図4、図6及び図7に示すように、弁部150を開放させたときに、ダイヤフラム120が当接する環状の第1の突出部144と、メタノールを突出部144の内側から外側へ通過させる第1の流路145とが、バルブ室140の底面141上における流入孔143の周囲に形成されている。そして、この第1の突出部144は、バルブ室140の内径をDvとし、受圧板125の直径をDbとし、流入孔143の両端に位置する第1の突出部144の外径をDcとしたとき、Dc≦(Dv+Db)/4の関係を満たす形状に形成されている。 In the above configuration, the distance between the bottom surface 141 of the valve chamber 140 and the diaphragm 120 is narrowed, and the stop valve 101 is lowered. However, as shown in FIGS. 4, 6, and 7, the valve housing 130 of this embodiment includes an annular first protruding portion 144 with which the diaphragm 120 abuts when the valve portion 150 is opened. A first flow path 145 that allows methanol to pass from the inside to the outside of the protrusion 144 is formed around the inflow hole 143 on the bottom surface 141 of the valve chamber 140. In the first protrusion 144, the inner diameter of the valve chamber 140 is Dv, the diameter of the pressure receiving plate 125 is Db, and the outer diameter of the first protrusion 144 located at both ends of the inflow hole 143 is Dc. At this time, it is formed in a shape satisfying the relationship of Dc ≦ (Dv + Db) / 4.
 そのため、この実施形態における順止バルブ101では、ゴム製のダイヤフラム120が、弁部150の開放時にバルブ室140の底面141でなく第1の突出部144に接触する(図7参照)。さらに、ダイヤフラム120が第1の突出部144に接触した時、メタノールは第1の突出部144の内側から第1の流路145を介して第1の突出部144の外側へ通過する。 Therefore, in the stop valve 101 in this embodiment, the rubber diaphragm 120 contacts the first protrusion 144 instead of the bottom surface 141 of the valve chamber 140 when the valve portion 150 is opened (see FIG. 7). Further, when the diaphragm 120 contacts the first protrusion 144, methanol passes from the inside of the first protrusion 144 to the outside of the first protrusion 144 via the first flow path 145.
 ここで、上述のDc≦(Dv+Db)/4の関係を満たす第1の突出部144の形状について図7を用いて詳述する。図7に示すように、ダイヤフラム120には下向きに圧力が働き、第1の突出部144に当接した状態となっている。この第1の突出部144の外径Dc(この実施形態では4mm)は受圧有効径Dp(この実施形態では10mm)の半分以下になっている。ここで受圧有効径とは、ダイヤフラム120全面に作用する圧力の内、外周部分にかかる圧力を除いた圧力、即ち弁部150の開閉に利用できる圧力が作用する部分の直径に相当する。図7の場合、受圧板125の直径Dbとバルブ室140の内径Dvの平均値にほぼ等しくなる。このとき受圧板125に加わる力については、第1の突出部144の外側に加わる力の方が第1の突出部144の内側に加わる力より大きいため、受圧板125は図7の示すように孔部115側へ凸に撓む。しかし、ダイヤフラム120は第1の突出部144と接触し、またダイヤフラム120はゴムで形成されているため、ダイヤフラム120が第1の突出部144と固着してしまう可能性がある。特に、流体の温度が高い場合やダイヤフラム120と第1の突出部144との接触が長時間続いた場合にはその可能性が高くなる。しかし、この実施形態では上述のように受圧板125が孔部115側へ凸に撓むため、ダイヤフラム120が第1の突出部144と斜めに接触する。即ち、ダイヤフラム120と第1の突出部144とが実質的に線接触となるため、ダイヤフラム120と第1の突出部144とが固着し難い。また、仮にダイヤフラム120と第1の突出部144が固着しても、受圧板125が撓んでいる状態から元の平らな状態に戻ろうとしたとき、第1の突出部144の外側から固着を剥離する力が働くため、ダイヤフラム120が第1の突出部144から剥がれ易い。 Here, the shape of the first protrusion 144 that satisfies the relationship of Dc ≦ (Dv + Db) / 4 will be described in detail with reference to FIG. As shown in FIG. 7, the diaphragm 120 is pressed downward and is in contact with the first protrusion 144. The outer diameter Dc (4 mm in this embodiment) of the first protrusion 144 is less than half of the effective pressure receiving diameter Dp (10 mm in this embodiment). Here, the effective pressure receiving diameter corresponds to the diameter of the pressure acting on the entire surface of the diaphragm 120 excluding the pressure applied to the outer peripheral portion, that is, the diameter of the portion on which the pressure available for opening and closing the valve portion 150 acts. In the case of FIG. 7, it is substantially equal to the average value of the diameter Db of the pressure receiving plate 125 and the inner diameter Dv of the valve chamber 140. As for the force applied to the pressure receiving plate 125 at this time, the force applied to the outside of the first protruding portion 144 is larger than the force applied to the inside of the first protruding portion 144. Therefore, the pressure receiving plate 125 is as shown in FIG. It bends convexly toward the hole 115 side. However, since the diaphragm 120 is in contact with the first protrusion 144 and the diaphragm 120 is made of rubber, the diaphragm 120 may be fixed to the first protrusion 144. In particular, when the temperature of the fluid is high or when the contact between the diaphragm 120 and the first protrusion 144 continues for a long time, the possibility increases. However, in this embodiment, the pressure receiving plate 125 is bent convexly toward the hole 115 as described above, so that the diaphragm 120 is in contact with the first protrusion 144 obliquely. That is, since the diaphragm 120 and the first protrusion 144 are substantially in line contact, the diaphragm 120 and the first protrusion 144 are difficult to adhere. Even if the diaphragm 120 and the first protrusion 144 are fixed, if the pressure receiving plate 125 tries to return to the original flat state from the bent state, the adhesion is peeled off from the outside of the first protrusion 144. Therefore, the diaphragm 120 is easily peeled off from the first protrusion 144.
 以上より、メタノールのような活性の高い流体を当該順止バルブ101に使用した場合でも、ダイヤフラム120がバルブ室140の底面141と接触しないため、当該流体により膨潤したダイヤフラム120とバルブ室140の底面141とが固着することを防止できる。 As described above, even when a highly active fluid such as methanol is used for the stop valve 101, the diaphragm 120 does not contact the bottom surface 141 of the valve chamber 140, and therefore the diaphragm 120 swollen by the fluid and the bottom surface of the valve chamber 140. 141 can be prevented from adhering.
 従って、この実施形態における順止バルブ101によれば、低背な構造でも、ダイヤフラム120とバルブ室140の底面141とが固着するのを防ぐことができる。従って、流体制御の信頼性を向上できる。 Therefore, according to the stop valve 101 in this embodiment, it is possible to prevent the diaphragm 120 and the bottom surface 141 of the valve chamber 140 from sticking even with a low-profile structure. Therefore, the reliability of fluid control can be improved.
 また、以上の構成において、バルブ筐体130のメタノールと接する部分134、141、144、145、148の材質は全て樹脂であり、ダイヤフラム120と弁部150の材質もゴムであるため、金属イオンがメタノール中に溶出することがない。そのため、この実施形態の順止バルブ101では、金属イオンの溶出によるDMFCの特性の劣化も起こらない。
 従って、この実施形態の順止バルブ101を用いることで、当該順止バルブ101を備える燃料電池システム100においても同様の効果を奏する。
In the above configuration, the parts 134, 141, 144, 145 and 148 in contact with methanol of the valve housing 130 are all made of resin, and the material of the diaphragm 120 and the valve part 150 is also rubber, so that metal ions It does not elute in methanol. Therefore, in the stop valve 101 of this embodiment, the DMFC characteristic does not deteriorate due to elution of metal ions.
Therefore, by using the stop valve 101 of this embodiment, the same effect can be obtained in the fuel cell system 100 including the stop valve 101.
《第2の実施形態》
 図8は、本発明の第2の実施形態に係る順止バルブ201に備えられるバルブ筐体230の斜視図である。この実施形態における順止バルブ201が上記順止バルブ101と相違する点は、第1の突出部244であり、その他の構成については上記順止バルブ101と同じである。第1の突出部244は、その先端が凸の曲面状に形成されている点で、図4に示す第1の突出部144と異なる。
<< Second Embodiment >>
FIG. 8 is a perspective view of the valve housing 230 provided in the stop valve 201 according to the second embodiment of the present invention. The difference between the stop valve 201 in this embodiment and the stop valve 101 is the first protrusion 244, and the other configuration is the same as that of the stop valve 101. The first projecting portion 244 is different from the first projecting portion 144 shown in FIG. 4 in that its tip is formed in a convex curved shape.
 この実施形態の第1の突出部244は、その先端が凸の曲面状に形成されているため、弁部150の開放時のダイヤフラム120との接触面積が、先端が平面状のものより狭い。そのため、ダイヤフラム120と第1の突出部244とが固着し難い。また、仮にダイヤフラム120と第1の突出部244が固着しても、ダイヤフラム120が第1の突出部244から剥がれ易い。さらに、ダイヤフラム120が第1の突出部244に接触した時、メタノールは第1の突出部244の内側から第1の流路245を介して第1の突出部244の外側へ通過する。 The first projecting portion 244 of this embodiment has a tip with a convex curved surface, so that the contact area with the diaphragm 120 when the valve portion 150 is opened is narrower than that with a flat tip. Therefore, the diaphragm 120 and the first protrusion 244 are difficult to adhere. Further, even if the diaphragm 120 and the first protrusion 244 are fixed, the diaphragm 120 is easily peeled off from the first protrusion 244. Further, when the diaphragm 120 contacts the first protrusion 244, methanol passes from the inside of the first protrusion 244 to the outside of the first protrusion 244 via the first flow path 245.
 従って、この実施形態における順止バルブ201によれば、ダイヤフラム120と第1の突出部244とが固着することも防ぐことができる。従って、流体制御の信頼性を一層向上できる。また、この実施形態の順止バルブ201を用いることで、当該順止バルブ201を備える燃料電池システムにおいても同様の効果を奏する。 Therefore, according to the stop valve 201 in this embodiment, it is possible to prevent the diaphragm 120 and the first projecting portion 244 from sticking. Therefore, the reliability of fluid control can be further improved. Further, by using the stop valve 201 of this embodiment, the same effect can be obtained in a fuel cell system including the stop valve 201.
《第3の実施形態》
 図9は、本発明の第3の実施形態に係る順止バルブ301に備えられるバルブ筐体330の斜視図である。この実施形態における順止バルブ301が上記順止バルブ201と相違する点は、第1の突出部344であり、その他の構成については上記順止バルブ201と同じである。第1の突出部344は、複数の突起の集合体である点で、図8に示す第1の突出部244と異なる。
<< Third Embodiment >>
FIG. 9 is a perspective view of the valve housing 330 provided in the stop valve 301 according to the third embodiment of the present invention. The difference between the stop valve 301 in this embodiment and the stop valve 201 is the first protrusion 344, and the other configuration is the same as that of the stop valve 201. The first protrusion 344 is different from the first protrusion 244 shown in FIG. 8 in that it is an aggregate of a plurality of protrusions.
 第1の突出部344は、その先端が凸の曲面状に形成されている複数の半球状の突起の集合体であるため、弁部150が開放した時のダイヤフラム120との接触面積が一体ものの第1の突出部244より狭い。そのため、ダイヤフラム120と第1の突出部344とが固着し難い。また、仮にダイヤフラム120と第1の突出部344が固着しても、ダイヤフラム120が第1の突出部344から剥がれ易い。さらに、ダイヤフラム120が第1の突出部344に接触した時、メタノールは第1の突出部344の内側から第1の流路345を介して第1の突出部344の外側へ通過する。 The first projecting portion 344 is an aggregate of a plurality of hemispherical protrusions whose tips are formed in a convex curved shape, so that the contact area with the diaphragm 120 when the valve portion 150 is opened is integral. Narrower than the first protrusion 244. Therefore, it is difficult for the diaphragm 120 and the first protrusion 344 to adhere to each other. Further, even if the diaphragm 120 and the first protrusion 344 are fixed, the diaphragm 120 is easily peeled off from the first protrusion 344. Further, when the diaphragm 120 comes into contact with the first protrusion 344, methanol passes from the inside of the first protrusion 344 to the outside of the first protrusion 344 via the first flow path 345.
 従って、この実施形態における順止バルブ301によれば、ダイヤフラム120と第1の突出部344とが固着することも防ぐことができる。従って、流体制御の信頼性を一層向上できる。また、この実施形態の順止バルブ301を用いることで、当該順止バルブ301を備える燃料電池システムにおいても同様の効果を奏する。 Therefore, according to the stop valve 301 in this embodiment, it is possible to prevent the diaphragm 120 and the first projecting portion 344 from adhering to each other. Therefore, the reliability of fluid control can be further improved. Further, by using the stop valve 301 of this embodiment, the same effect can be obtained in a fuel cell system including the stop valve 301.
 なお、この実施形態では、第1の突出部244を構成する突起が半球状に形成されているが、実施の際は、当該突起が円筒状でも構わない。 In this embodiment, the projections forming the first projecting portion 244 are formed in a hemispherical shape, but the projections may be cylindrical in implementation.
《第4の実施形態》
 図10は、本発明の第4の実施形態に係る順止バルブ401に備えられるバルブ筐体430の斜視図である。この実施形態における順止バルブ401が上記順止バルブ101と相違する点は、第1の突出部444であり、その他の構成については上記順止バルブ101と同じである。第1の突出部444は、円形状であり、その先端の面積が図4に示す第1の突出部144より広い形状となっている。
<< Fourth Embodiment >>
FIG. 10 is a perspective view of a valve housing 430 provided in a stop valve 401 according to the fourth embodiment of the present invention. The stop valve 401 in this embodiment is different from the stop valve 101 in the first protrusion 444, and the other configuration is the same as that of the stop valve 101. The first projecting portion 444 has a circular shape, and has a tip area larger than that of the first projecting portion 144 shown in FIG.
 この実施形態の順止バルブ401においても、ダイヤフラム120が、弁部150の開放時にバルブ室140の底面141でなく第1の突出部444に接触する。さらに、ダイヤフラム120が第1の突出部444に接触した時、メタノールは第1の突出部444の内側にある流入孔143から第1の流路445を介して第1の突出部444の外側へ通過する。 Also in the stop valve 401 of this embodiment, the diaphragm 120 contacts the first protruding portion 444 instead of the bottom surface 141 of the valve chamber 140 when the valve portion 150 is opened. Further, when the diaphragm 120 comes into contact with the first protrusion 444, the methanol flows from the inflow hole 143 inside the first protrusion 444 to the outside of the first protrusion 444 via the first flow path 445. pass.
 従って、この実施形態における順止バルブ401によれば、上記順止バルブ101と同様の効果を奏する。また、この実施形態の順止バルブ401を用いることで、当該順止バルブ401を備える燃料電池システムにおいても同様の効果を奏する。 Therefore, according to the stop valve 401 in this embodiment, the same effect as the stop valve 101 can be obtained. Further, by using the stop valve 401 of this embodiment, the same effect can be obtained in a fuel cell system including the stop valve 401.
《第5の実施形態》
 図11は、本発明の第5の実施形態に係る順止バルブ501に備えられるバルブ筐体530の斜視図である。図12は、図11のS-S線における要部断面図である。この実施形態における順止バルブ501が図9に示す上記順止バルブ301と相違する点は、第2の突出部564を備える点であり、その他の構成については上記順止バルブ301と同じである。
<< Fifth Embodiment >>
FIG. 11 is a perspective view of a valve housing 530 provided in a stop valve 501 according to the fifth embodiment of the present invention. 12 is a cross-sectional view of a principal part taken along line SS in FIG. The stop valve 501 in this embodiment is different from the stop valve 301 shown in FIG. 9 in that a second protrusion 564 is provided, and other configurations are the same as those of the stop valve 301. .
 詳述すると、この実施形態におけるバルブ筐体530には、第1の突出部344より高さの低い第2の突出部564と、流体を第2の突出部564の内側にある孔部143から外側へ通過させる第2の流路565とが、バルブ室140の底面141上における第1の突出部344の内側かつ流入孔143の周囲に形成されている。 More specifically, the valve housing 530 in this embodiment includes a second protrusion 564 having a height lower than that of the first protrusion 344, and a hole 143 inside the second protrusion 564. A second flow path 565 that passes outside is formed on the bottom surface 141 of the valve chamber 140 inside the first protrusion 344 and around the inflow hole 143.
 この実施形態において、ダイヤフラム120とバルブ室140の底面141との固着に関しては、上記順止バルブ301と同様に第1の突出部344によって防止する。一方、第1の突出部344には、弁部150の開放時におけるダイヤフラム120の下死点を決める働きもある。しかし、図9に示すように第1の突出部344が曲面形状である場合、弁部150の開放時、作用する圧力が非常に高い場合、場合によってはダイヤフラム120が第1の突出部344と接触して局所的に圧縮変形し、第1の突出部344の一部がダイヤフラム120に喰い込むこともある。この場合、第1の流路345が変形したダイヤフラム120によって狭くなり、ダイヤフラム120がメタノールの流れを妨げることもある。 In this embodiment, the adhesion between the diaphragm 120 and the bottom surface 141 of the valve chamber 140 is prevented by the first protrusion 344 as in the case of the stop valve 301. On the other hand, the first protruding portion 344 also has a function of determining the bottom dead center of the diaphragm 120 when the valve portion 150 is opened. However, as shown in FIG. 9, when the first protrusion 344 has a curved surface shape, when the valve 150 is opened, when the acting pressure is very high, in some cases, the diaphragm 120 may be connected to the first protrusion 344. It may come into contact and undergo local compression deformation, and a part of the first protrusion 344 may bite into the diaphragm 120. In this case, the first flow path 345 is narrowed by the deformed diaphragm 120, and the diaphragm 120 may obstruct the flow of methanol.
 そこで、この実施形態の順止バルブ501では、先端が平面形状の第2の突出部564を第1の突出部344の内側に第1の突出部344より低く形成している。これにより、弁部150の開放時にダイヤフラム120が第1の突出部344と接触して第1の突出部344の一部がダイヤフラム120に喰い込んでも、第2の突出部564によって第2の流路565を確保しているため、メタノールの流路を十分に確保することができる。即ち、この実施形態の順止バルブ501は、固着防止用の第1の突出部344と流路確保用の第2の突出部564を有する構造となっている。 Therefore, in the stop valve 501 of this embodiment, the second protrusion 564 having a flat tip is formed on the inner side of the first protrusion 344 lower than the first protrusion 344. Accordingly, even when the diaphragm 120 comes into contact with the first protruding portion 344 when the valve portion 150 is opened and a part of the first protruding portion 344 bites into the diaphragm 120, the second protruding portion 564 causes the second flow. Since the channel 565 is secured, a sufficient methanol channel can be secured. That is, the stop valve 501 of this embodiment has a structure having a first protrusion 344 for preventing sticking and a second protrusion 564 for securing a flow path.
 以上より、この実施形態の順止バルブ501によれば、第1の突出部344を設けているため、ダイヤフラム120とバルブ室140の底面141との固着を防止することができる。さらに、弁部150の開放時にダイヤフラム120が第1の突出部344と接触して第1の突出部344がダイヤフラム120に喰い込んだ場合であっても、第2の突出部564によって十分な第2の流路565を確保することができる。このため、メタノールの流れを妨げることを防止できる。また、この実施形態の順止バルブ501を用いることで、当該順止バルブ501を備える燃料電池システムにおいても同様の効果を奏する。 As described above, according to the stop valve 501 of this embodiment, since the first protrusion 344 is provided, it is possible to prevent the diaphragm 120 and the bottom surface 141 of the valve chamber 140 from sticking to each other. Further, even when the diaphragm 120 comes into contact with the first protrusion 344 and the first protrusion 344 bites into the diaphragm 120 when the valve portion 150 is opened, the second protrusion 564 can sufficiently Two flow paths 565 can be secured. For this reason, it can prevent obstructing the flow of methanol. Further, by using the stop valve 501 of this embodiment, the same effect can be obtained in the fuel cell system including the stop valve 501.
《第6の実施形態》
 図13は、本発明の第6の実施形態に係る順止バルブ601に備えられるバルブ筐体630の要部断面図である。この実施形態における順止バルブ601が図9に示す上記順止バルブ301と相違する点は、第3の突出部674を備える点であり、その他の構成については上記順止バルブ301と同じである。
<< Sixth Embodiment >>
FIG. 13: is principal part sectional drawing of the valve housing | casing 630 with which the stop valve 601 which concerns on the 6th Embodiment of this invention is equipped. The stop valve 601 in this embodiment is different from the stop valve 301 shown in FIG. 9 in that a third protrusion 674 is provided, and other configurations are the same as those of the stop valve 301. .
 詳述すると、バルブ筐体630には、第3の突出部674がバルブ室140の底面141上における流入孔143の周縁に形成されており、第1の突出部344が、ダイヤフラム120と対向する第3の突出部674の上面に形成されている。 Specifically, the valve housing 630 has a third protrusion 674 formed on the periphery of the inflow hole 143 on the bottom surface 141 of the valve chamber 140, and the first protrusion 344 faces the diaphragm 120. It is formed on the upper surface of the third protrusion 674.
 ここで、上述したように弁座148は、流入孔143からバルブ室140への流体の流入を遮断する方向へ弁体部151によって弁閉時に与圧されている。そのため、バルブ筐体630における流入孔143の周縁部位は、高い剛性が必要であり、厚みをできるだけ厚くすることが望ましい。一方、順止バルブ601の低背化のためにバルブ筐体630の厚みをできるだけ薄くすることが望ましい。 Here, as described above, the valve seat 148 is pressurized when the valve is closed by the valve body 151 in a direction to block the inflow of fluid from the inflow hole 143 to the valve chamber 140. Therefore, the peripheral portion of the inflow hole 143 in the valve housing 630 needs to have high rigidity, and it is desirable to make the thickness as thick as possible. On the other hand, in order to reduce the height of the stop valve 601, it is desirable to make the thickness of the valve housing 630 as thin as possible.
 そこで、この実施形態では、第3の突出部674を設けることで、バルブ筐体630における流入孔143の周縁部位の厚みを厚くしている。これにより、バルブ筐体630における流入孔143の周縁部位の剛性を高めることができる。また、バルブ筐体630における流入孔143の周縁部位の厚みを厚くすることにより射出成形時の樹脂の流れもよくなるため、成形不良等の発生を減らすことができる。即ち、歩留まりが向上するため、製造コストを低減できる。 Therefore, in this embodiment, the thickness of the peripheral portion of the inflow hole 143 in the valve housing 630 is increased by providing the third protrusion 674. Thereby, the rigidity of the peripheral part of the inflow hole 143 in the valve housing 630 can be increased. Further, by increasing the thickness of the peripheral portion of the inflow hole 143 in the valve housing 630, the flow of resin at the time of injection molding is improved, so that the occurrence of molding defects and the like can be reduced. That is, since the yield is improved, the manufacturing cost can be reduced.
 従って、この実施形態における順止バルブ601によれば、バルブ筐体630における流入孔143の周縁部位の剛性を高めることができ、製造コストも低減できる。また、この実施形態の順止バルブ601を用いることで、当該順止バルブ601を備える燃料電池システムにおいても同様の効果を奏する。 Therefore, according to the stop valve 601 in this embodiment, the rigidity of the peripheral portion of the inflow hole 143 in the valve housing 630 can be increased, and the manufacturing cost can be reduced. Further, by using the stop valve 601 of this embodiment, the same effect can be obtained in a fuel cell system including the stop valve 601.
 なお、この実施形態の順止バルブ601においても、ダイヤフラム120が、弁部150の開放時にバルブ室140の底面141でなく第1の突出部344に接触する。さらに、ダイヤフラム120が第1の突出部344に接触した時、メタノールは第1の突出部344の内側から第1の流路345を介して第1の突出部344の外側へ通過する。従って、この実施形態における順止バルブ601によれば、上記順止バルブ301と同様の効果を奏する。 In the stop valve 601 of this embodiment as well, the diaphragm 120 contacts the first protrusion 344 instead of the bottom surface 141 of the valve chamber 140 when the valve unit 150 is opened. Further, when the diaphragm 120 comes into contact with the first protrusion 344, methanol passes from the inside of the first protrusion 344 to the outside of the first protrusion 344 via the first flow path 345. Therefore, according to the stop valve 601 in this embodiment, the same effect as the stop valve 301 can be obtained.
《第7の実施形態》
 図14は、本発明の第7の実施形態に係る順止バルブ701に備えられるバルブ筐体730の斜視図である。図15は、図14のT-T線における要部断面図である。この実施形態における順止バルブ701が図9に示す上記順止バルブ501と相違する主な点は、第3の突出部774を備える点であり、その他の構成については上記順止バルブ501と同様である。
<< Seventh Embodiment >>
FIG. 14 is a perspective view of a valve housing 730 provided in a stop valve 701 according to the seventh embodiment of the present invention. FIG. 15 is a cross-sectional view of a main part taken along line TT in FIG. The main point of difference between the stop valve 701 in this embodiment and the stop valve 501 shown in FIG. 9 is that it includes a third protrusion 774, and the rest of the configuration is the same as that of the stop valve 501. It is.
 詳述すると、バルブ筐体730には、第3の突出部774と第3の流路775がバルブ室140の底面141上における流入孔143の周縁に形成されており、第1の突出部744と第2の突出部764が、ダイヤフラム120と対向する第3の突出部774の上面に形成されている。ここで、第1の突出部744は図11に示す第1の突出部344と同様に固着防止用の突出部であり、第1の突出部744を構成する突起は第1の突出部344を構成する突起と同じものである。そして、第1の流路745は第1の流路345と同様にメタノールを第1の突出部744の内側から外側へ通過させるものである。また、第2の突出部764は図11に示す第2の突出部564と同様に流路確保用の突出部であり、第2の流路775は第2の流路565と同様にメタノールを第2の突出部564の内側にある孔部143から外側へ通過させるものである。また、第3の突出部774は図13に示す第3の突出部674と同様に剛性向上用の突出部である。即ちこの実施形態の順止バルブ701は、固着防止用の第1の突出部744と流路確保用の第2の突出部764と剛性向上用の第3の突出部774を有する構造となっている。 More specifically, the valve housing 730 has a third protrusion 774 and a third flow path 775 formed on the periphery of the inflow hole 143 on the bottom surface 141 of the valve chamber 140, and the first protrusion 744. The second protrusion 764 is formed on the upper surface of the third protrusion 774 facing the diaphragm 120. Here, the first protruding portion 744 is a protruding portion for preventing sticking similarly to the first protruding portion 344 shown in FIG. 11, and the protrusions constituting the first protruding portion 744 are the first protruding portions 344. It is the same as the protrusion which comprises. The first flow path 745 allows methanol to pass from the inner side to the outer side of the first projecting portion 744 in the same manner as the first flow path 345. In addition, the second protrusion 764 is a protrusion for securing a flow path similarly to the second protrusion 564 shown in FIG. 11, and the second flow path 775 contains methanol similarly to the second flow path 565. The second protrusion 564 is passed through the hole 143 inside the second protrusion 564. Further, the third projecting portion 774 is a projecting portion for improving rigidity, like the third projecting portion 674 shown in FIG. That is, the stop valve 701 of this embodiment has a structure having a first protrusion 744 for preventing sticking, a second protrusion 764 for securing a flow path, and a third protrusion 774 for improving rigidity. Yes.
 従って、この実施形態における順止バルブ701によれば、上記順止バルブ501及び上記順止バルブ601と同様の効果を奏する。さらに、この実施形態の順止バルブ701では、第2の流路765と流出孔149との間に第3の流路775を設けているため、流入孔143から流入したメタノールが第2の流路765から第3の流路775を介して流出孔149へ真直ぐに流れる。そのため、この実施形態における順止バルブ701によれば、弁部150開放時におけるメタノールの流路を上記順止バルブ601より確保できる。
 また、この実施形態の順止バルブ701を用いることで、当該順止バルブ701を備える燃料電池システムにおいても同様の効果を奏する。
Therefore, according to the stop valve 701 in this embodiment, the same effects as those of the stop valve 501 and the stop valve 601 can be obtained. Furthermore, in the stop valve 701 of this embodiment, since the third flow path 775 is provided between the second flow path 765 and the outflow hole 149, the methanol that has flowed from the inflow hole 143 flows into the second flow path. It flows straight from the path 765 to the outflow hole 149 via the third flow path 775. Therefore, according to the stop valve 701 in this embodiment, the methanol flow path can be secured from the stop valve 601 when the valve portion 150 is opened.
Further, by using the stop valve 701 of this embodiment, the same effect can be obtained in a fuel cell system including the stop valve 701.
《その他の実施形態》
 以上の実施形態では活性の高い流体としてメタノールを用いているが、当該流体が、気体や、液体、気液混合流、固液混合流、固気混合流などのいずれであっても適用できる。
<< Other Embodiments >>
In the above embodiment, methanol is used as a highly active fluid, but the fluid may be any of gas, liquid, gas-liquid mixed flow, solid-liquid mixed flow, solid-gas mixed flow, and the like.
 なお、上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be noted that the above description of the embodiment is an example in all respects and is not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1  ダイヤフラム
 2  ピストン
 3  弁座部
 4  弁体部
 5  支持部
 7  バルブ筐体
 8  バルブ室
 9  底面
 10  キャップ部
 15  孔部
 20  ダイヤフラム
 23  プッシャ
 30  バルブ筐体
 40  バルブ室
 43  流入孔
 48  弁座
 49  流出孔
 50  弁部
 51  弁体部
 55  弁突起
 90  順止バルブ
 100  燃料電池システム
 101、201、301、401、501、601、701  順止バルブ
 102  燃料カートリッジ
 103  ポンプ
 104  発電セル
 110  キャップ部
 111  穴
 113  中央部位
 114  周縁部位
 115  孔部
 116  縁
 120  ダイヤフラム
 121  周縁部
 122  中央部
 123  プッシャ
 125  受圧板
 130、230、330、430、530、630、730  バルブ筐体
 131  穴
 132  縁
 134  載置部
 140  バルブ室
 141  底面
 143  流入孔
 144、244、344、444、744  第1の突出部
 145、245、345、445、745  第1の流路
 564、764  第2の突出部
 565、765  第2の流路
 674、774  第3の突出部
 775  第3の流路
 147  開口部
 148  弁座
 149  流出孔
 150  弁部
 151  弁体部
 152  支持部
 153  孔部
 154  固定部
 155  弁突起
 160  システム筐体
 161、162  Oリング
 163  流入路
 165  流出路
DESCRIPTION OF SYMBOLS 1 Diaphragm 2 Piston 3 Valve seat part 4 Valve body part 5 Support part 7 Valve housing 8 Valve chamber 9 Bottom face 10 Cap part 15 Hole part 20 Diaphragm 23 Pusher 30 Valve housing 40 Valve chamber 43 Inflow hole 48 Valve seat 49 Outlet hole DESCRIPTION OF SYMBOLS 50 Valve part 51 Valve body part 55 Valve protrusion 90 Stop valve 100 Fuel cell system 101, 201, 301, 401, 501, 601, 701 Stop valve 102 Fuel cartridge 103 Pump 104 Power generation cell 110 Cap part 111 Hole 113 Central part 114 Peripheral part 115 Hole part 116 Edge 120 Diaphragm 121 Peripheral part 122 Central part 123 Pusher 125 Pressure receiving plate 130, 230, 330, 430, 530, 630, 730 Valve housing 131 Hole 132 Edge 134 Placed 140 Valve chamber 141 Bottom surface 143 Inflow hole 144, 244, 344, 444, 744 First protrusion 145, 245, 345, 445, 745 First flow path 564, 764 Second protrusion 565, 765 Second Flow path 674, 774 Third protrusion 775 Third flow path 147 Opening 148 Valve seat 149 Outflow hole 150 Valve part 151 Valve body part 152 Supporting part 153 Hole part 154 Fixing part 155 Valve protrusion 160 System housing 161, 162 O-ring 163 Inflow path 165 Outflow path

Claims (9)

  1.  バルブ筐体と、
     前記バルブ筐体とともにバルブ室を構成し、前記バルブ室の流体の圧力によって変位するダイヤフラムと、を備え、
     前記バルブ筐体には、前記バルブ室へ流体が流入する流入孔と、ポンプが接続されて前記ポンプによる流体の吸引圧力によって前記バルブ室から流体が流出する流出孔と、が形成された、順止バルブであって、
     前記流入孔に配置され、前記ダイヤフラムの変位によって前記流入孔から前記バルブ室への流体の流入を遮断または開放させる弁体と、を備え、
     前記バルブ筐体には、前記弁体が前記流入孔から前記バルブ室への流体の流入を開放させたときに、前記ダイヤフラムが当接する第1の突出部と、当該流体を前記第1の突出部の内側から外側へ通過させる第1の流路とが、前記ダイヤフラムと対向する前記バルブ室の底面上における前記流入孔の周囲に形成された、順止バルブ。
    A valve housing;
    Comprising a valve chamber together with the valve housing, and a diaphragm displaced by the pressure of fluid in the valve chamber;
    The valve housing has an inflow hole through which fluid flows into the valve chamber, and an outflow hole through which fluid flows out of the valve chamber due to the suction pressure of the fluid by the pump. A stop valve,
    A valve body disposed in the inflow hole and configured to block or open the inflow of fluid from the inflow hole to the valve chamber by displacement of the diaphragm;
    The valve housing has a first protrusion with which the diaphragm comes into contact when the valve body releases the inflow of fluid from the inflow hole to the valve chamber, and the fluid is supplied to the first protrusion. A stop valve in which a first flow path that passes from the inside to the outside of the part is formed around the inflow hole on the bottom surface of the valve chamber facing the diaphragm.
  2.  前記ダイヤフラムには、大気圧と前記バルブ室の内圧との差圧を受ける受圧板が接合され、
     前記第1の突出部は、前記バルブ室の内径をDvとし、前記受圧板の直径をDbとし、前記流入孔の両端に位置する前記第1の突出部の外径をDcとしたとき、Dc≦(Dv+Db)/4の関係を満たす形状に形成された、請求項1に記載の順止バルブ。
    A pressure receiving plate that receives a differential pressure between the atmospheric pressure and the internal pressure of the valve chamber is joined to the diaphragm,
    The first protrusion is Dc, where Dv is the inner diameter of the valve chamber, Db is the diameter of the pressure receiving plate, and Dc is the outer diameter of the first protrusion located at both ends of the inflow hole. The stop valve according to claim 1, wherein the stop valve is formed in a shape satisfying a relationship of ≦ (Dv + Db) / 4.
  3.  前記第1の突出部は、その先端が凸の曲面状に形成された、請求項1又は2に記載の順止バルブ。 The stop valve according to claim 1 or 2, wherein the first protrusion has a curved surface with a convex tip.
  4.  前記第1の突出部は、複数の突起の集合体である、請求項1から3のいずれかに記載の順止バルブ。 The stop valve according to any one of claims 1 to 3, wherein the first protrusion is an assembly of a plurality of protrusions.
  5.  前記バルブ筐体には、前記第1の突出部より高さの低い第2の突出部と、流体を前記第2の突出部の内側から外側へ通過させる第2の流路とが、前記バルブ室の底面上における前記第1の突出部の内側かつ前記流入孔の周囲に形成された、請求項1から4のいずれかに記載の順止バルブ。 The valve housing includes a second protrusion having a height lower than that of the first protrusion, and a second flow path for allowing fluid to pass from the inside to the outside of the second protrusion. The stop valve according to any one of claims 1 to 4, wherein the stop valve is formed on the bottom surface of the chamber inside the first protrusion and around the inflow hole.
  6.  前記バルブ筐体には、第3の突出部が前記バルブ室の底面上における前記流入孔の周縁に形成され、
     前記第1の突出部は、前記ダイヤフラムと対向する前記第3の突出部の上面に形成された、請求項1から5のいずれかに記載の順止バルブ。
    In the valve housing, a third protrusion is formed on the periphery of the inflow hole on the bottom surface of the valve chamber,
    6. The stop valve according to claim 1, wherein the first protrusion is formed on an upper surface of the third protrusion that faces the diaphragm. 7.
  7.  前記流体はメタノールである、請求項1から6のいずれかに記載の順止バルブ。 The stop valve according to any one of claims 1 to 6, wherein the fluid is methanol.
  8.  前記ダイヤフラムの材質はゴムであり、前記バルブ筐体の前記流体と接する部分の材質は樹脂である、請求項1から7のいずれかに記載の順止バルブ。 The stop valve according to any one of claims 1 to 7, wherein a material of the diaphragm is rubber, and a material of a portion of the valve housing that is in contact with the fluid is resin.
  9.  請求項1から8のいずれかに記載の順止バルブと、
     前記順止バルブの前記流入孔に接続される燃料貯蔵部と、
     前記順止バルブの前記流出孔に接続されるポンプと、を備える燃料電池システム。
    A stop valve according to any one of claims 1 to 8,
    A fuel reservoir connected to the inflow hole of the stop valve;
    And a pump connected to the outflow hole of the stop valve.
PCT/JP2011/067126 2010-08-20 2011-07-27 Forward check valve and fuel-cell system WO2012023396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012529542A JP5510551B2 (en) 2010-08-20 2011-07-27 Stop valve, fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-184874 2010-08-20
JP2010184874 2010-08-20

Publications (1)

Publication Number Publication Date
WO2012023396A1 true WO2012023396A1 (en) 2012-02-23

Family

ID=45605057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067126 WO2012023396A1 (en) 2010-08-20 2011-07-27 Forward check valve and fuel-cell system

Country Status (2)

Country Link
JP (1) JP5510551B2 (en)
WO (1) WO2012023396A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014452A (en) * 2011-07-29 2013-02-07 아구스타웨스트랜드 에스.피.에이. Convertiplane
WO2023167284A1 (en) * 2022-03-04 2023-09-07 株式会社村田製作所 Valve, and fluid control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031199A (en) * 2002-06-27 2004-01-29 Canon Inc Fuel cell and electric equipment
JP2008059097A (en) * 2006-08-29 2008-03-13 Canon Inc Pressure control valve, method for manufacturing the pressure control valve, fuel battery system equipped with the pressure control valve and pressure control method
JP2008169976A (en) * 2007-01-15 2008-07-24 Fuji Koki Corp Control valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031199A (en) * 2002-06-27 2004-01-29 Canon Inc Fuel cell and electric equipment
JP2008059097A (en) * 2006-08-29 2008-03-13 Canon Inc Pressure control valve, method for manufacturing the pressure control valve, fuel battery system equipped with the pressure control valve and pressure control method
JP2008169976A (en) * 2007-01-15 2008-07-24 Fuji Koki Corp Control valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014452A (en) * 2011-07-29 2013-02-07 아구스타웨스트랜드 에스.피.에이. Convertiplane
KR101958331B1 (en) 2011-07-29 2019-03-15 아구스타웨스트랜드 에스.피.에이. Convertiplane
WO2023167284A1 (en) * 2022-03-04 2023-09-07 株式会社村田製作所 Valve, and fluid control device

Also Published As

Publication number Publication date
JP5510551B2 (en) 2014-06-04
JPWO2012023396A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
US9574674B2 (en) Valve, fluidic apparatus, and fluid-supplying apparatus
RU2570344C2 (en) Deformable valve mechanism for fluid supply control
JP5062327B2 (en) Micro valve and valve seat member
EP2416038B1 (en) Sealing arrangement for a diaphragm valve
JP5582250B2 (en) Stop valve, fuel cell system
JP5510551B2 (en) Stop valve, fuel cell system
JP5425831B2 (en) Pressure reducing valve with cutoff mechanism
JP5565464B2 (en) Stop valve, fuel cell system
JP5790786B2 (en) Valve, fuel cell system
JP5527101B2 (en) Stop valve, fuel cell system
JP5510142B2 (en) High-pressure shut-off valve, fuel cartridge, and fuel cell system
JPH11182706A (en) Constant flow valve having check function
JP5817314B2 (en) Stop valve, fuel cell system
JP5780304B2 (en) Valve, fuel cell system
JP5664014B2 (en) Stop valve, fuel cell system
JP2003232456A (en) Check valve
JP2005315290A (en) Check valve
JP4710071B2 (en) Check valve and double check valve, depressurization type check valve applying the check valve
CN112963594A (en) Pressure reducing valve and water purification system
US20210270379A1 (en) Fluid system
WO2012020645A1 (en) Forward check valve and fuel cell system
GB2547944A (en) Diaphragm pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529542

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818039

Country of ref document: EP

Kind code of ref document: A1