WO2012023342A1 - Fluid control device - Google Patents

Fluid control device Download PDF

Info

Publication number
WO2012023342A1
WO2012023342A1 PCT/JP2011/064309 JP2011064309W WO2012023342A1 WO 2012023342 A1 WO2012023342 A1 WO 2012023342A1 JP 2011064309 W JP2011064309 W JP 2011064309W WO 2012023342 A1 WO2012023342 A1 WO 2012023342A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve seat
valve body
rod
axial direction
motor
Prior art date
Application number
PCT/JP2011/064309
Other languages
French (fr)
Japanese (ja)
Inventor
立視 鍋井
雪恵 中村
Original Assignee
シーケーディ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーケーディ株式会社 filed Critical シーケーディ株式会社
Priority to JP2012529516A priority Critical patent/JP5150009B2/en
Priority to CN2011800377873A priority patent/CN103097789A/en
Priority to KR1020127032803A priority patent/KR101250654B1/en
Publication of WO2012023342A1 publication Critical patent/WO2012023342A1/en
Priority to US13/756,361 priority patent/US20130142675A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/046Actuating devices; Operating means; Releasing devices electric; magnetic using a motor with electric means, e.g. electric switches, to control the motor or to control a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/124Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston servo actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/50Mechanical actuating means with screw-spindle or internally threaded actuating means
    • F16K31/508Mechanical actuating means with screw-spindle or internally threaded actuating means the actuating element being rotatable, non-rising, and driving a non-rotatable axially-sliding element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K35/00Means to prevent accidental or unauthorised actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K41/00Spindle sealings
    • F16K41/10Spindle sealings with diaphragm, e.g. shaped as bellows or tube
    • F16K41/103Spindle sealings with diaphragm, e.g. shaped as bellows or tube the diaphragm and the closure member being integrated in one member
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Definitions

  • the present invention relates to a fluid control device that controls the position of a valve element based on rotation of a motor.
  • the present invention has been made in view of such circumstances, and it is a main object of the fluid control device to suppress the valve body from being strongly pressed against a valve seat or the like and an excessive load applied to the motor. Is.
  • the present invention employs the following means in order to solve the above problems.
  • the first means moves relative to the first engagement portion along the axial direction of the drive shaft, a motor having a drive shaft, a first engagement portion provided on the drive shaft.
  • a second engagement portion that receives a rotational force from the first engagement portion, a valve body provided with a fluid flow path and a valve seat part, and an opening of the flow path provided opposite to the valve seat part.
  • a valve body that adjusts the degree of movement a moving member that is connected to the valve body, is allowed to move in the axial direction, and is restricted from rotating around the axis, and a direction in which the valve body approaches the valve seat portion
  • An elastic member for applying a force to the moving member, a first restricting portion for restricting the second engaging portion from moving to the valve seat portion side from the first restricting position, and the moving member being a second member.
  • the valve body is provided with a fluid flow path and a valve seat portion, and a valve body for adjusting the opening degree of the flow path is provided opposite to the valve seat portion.
  • a moving member is connected to the valve body, the moving member is movable in the axial direction of the drive shaft, and rotation about the axis is restricted.
  • a male screw part and a female screw part are provided on one and the other of the second engaging part and the moving member, respectively.
  • the male screw portion and the female screw portion mesh with each other, and are relatively screw-fed in the axial direction of the drive shaft by relative rotation. Then, when the second engaging portion is rotated, the moving member whose rotation is restricted and the second engaging portion are relatively rotated.
  • the moving member moves away from the valve seat portion by rotating the drive shaft in the direction in which the second engaging portion and the moving member approach, that is, the direction in which the second engaging portion is pressed against the first restricting portion. Screwed. A force in a direction in which the valve body approaches the valve seat is applied to the moving member by an elastic member. For this reason, when the moving member is screwed, the moving member is moved against the force of the elastic member. And according to the screw feed amount of a moving member, the distance of a valve seat part and a valve body, ie, the opening degree of a flow path, is adjusted.
  • the moving member is screw-fed in a direction approaching the valve seat portion.
  • the second engaging portion is connected to the first restricting portion via the male screw portion and the female screw portion that mesh with each other. It is pressed against.
  • the second restricting portion restricts the moving member from moving toward the valve seat portion.
  • the first engaging portion and the second engaging portion are relatively movable in the axial direction of the drive shaft. For this reason, when the movement of the moving member is restricted, the second engaging portion is rotated so that the second engaging portion is separated from the moving member, that is, the second engaging portion is the first restricting portion. Screwed in the direction away from Therefore, even if the motor is further driven from the state where the movement of the moving member is restricted, it is possible to suppress the valve body from being strongly pressed against the valve seat portion and an excessive load applied to the motor. As a result, generation of particles from the valve body and the valve seat, deformation and damage of the valve body and the valve seat, damage to the motor, and the like can be suppressed.
  • first engaging portion and the second engaging portion transmit a rotational force to each other, while the first engaging portion and the second engaging portion are relatively movable in the axial direction of the drive shaft. For this reason, the reaction of the force that screw-feeds the moving member in the axial direction and the reaction of the force that screw-feeds the second engagement portion away from the first restricting portion act in the axial direction with respect to the drive shaft of the motor. This can be suppressed. As a result, an increase in the rotational load of the motor can be suppressed, and the durability of the motor can be reduced and the increase in size of the motor can be suppressed.
  • the second restricting portion is provided with a spacer for adjusting the second restricting position, and movement of the moving member is restricted by the second restricting portion. In the state, a gap is provided between the valve seat portion and the valve body.
  • the second restricting position is adjusted by the spacer in the second restricting portion that restricts the moving member from moving toward the valve seat portion relative to the second restricting position. For this reason, it is possible to precisely control the distance between the valve seat portion and the valve body, that is, the fluid flow state, in a state where the valve body is closest to the valve seat portion. Furthermore, since the gap is provided between the valve seat portion and the valve body in a state where the movement of the moving member is restricted by the second restricting portion, it is possible to avoid the valve body from hitting the valve seat portion. As a result, generation of particles from the valve body and the valve seat can be effectively suppressed. In particular, it is effective to apply the above configuration to a flow rate adjustment device or a pressure adjustment device that is used in a state in which the valve body maintains the opening of the flow path at a constant level.
  • a cylinder for guiding the movement of the moving member in the axial direction is provided, and the cylinder is provided with an insertion port through which the spacer can be inserted from the outside. It is characterized by that.
  • the movement of the moving member in the axial direction is guided by the cylinder.
  • a spacer can be inserted from the outside of the cylinder through the insertion port. For this reason, after assembling the fluid control device, the distance between the valve seat portion and the valve body can be precisely adjusted by the spacer. Therefore, it is not necessary to require high dimensional accuracy for the valve body, cylinder, moving member, etc., and it is possible to maintain fluid control accuracy while suppressing costs.
  • one of the first engagement portion and the second engagement portion includes a rectangular parallelepiped insertion portion, and the other includes the insertion portion.
  • a concave portion that can be inserted in the axial direction is provided, and the outer side surface of the insertion portion that is parallel to the inner side surface of the concave portion is fitted with a gap.
  • the rectangular parallelepiped insertion portion provided in one of the first engagement portion and the second engagement portion can be inserted into the recess provided in the other.
  • the outer side surfaces of the insertion portion that are parallel to each other and the inner side surface of the recess are fitted with a gap. Therefore, the first engagement portion and the second engagement portion can be moved relative to each other in the axial direction of the drive shaft, and the first engagement portion and the second engagement portion can mutually rotate. Can communicate. Therefore, a 1st engaging part and a 2nd engaging part are realizable by simple structure.
  • the motor is a stepping motor that rotates in synchronization with the pulse power, an excessive load is applied to the motor.
  • the stepping it is possible to suppress the stepping motor from stepping out. Therefore, it is possible to suppress a decrease in position adjustment accuracy due to step-out while employing a stepping motor having excellent position adjustment accuracy and controllability.
  • FIG. 1 The fragmentary sectional view which shows a flow volume adjustment apparatus.
  • the elements on larger scale of FIG. The figure which shows an insertion port and a shim.
  • the disassembled perspective view which shows a 1st engaging part and a 2nd engaging part.
  • the elements on larger scale which show the opening operation
  • the elements on larger scale which show the closing operation of the valve body in a flow regulating device.
  • FIG. 1 is a partial cross-sectional view showing the flow rate adjusting device 10.
  • the flow rate adjusting device 10 includes a valve body 20, a first cylinder 30, a second cylinder 50, a motor 110, and a housing 120.
  • the valve body 20 is provided with an inflow port 25 through which a fluid (liquid) flows and an outflow port 26 through which the liquid flows out.
  • the valve body 20 is made of a chemical-resistant fluororesin such as PTFE (Poly-Tetra-Fluoro-Ethylene). Inside the valve body 20, a flow path 21 connected to the inflow port 25, a flow path 23 connected to the outflow port 26, and a valve chamber 22 connecting these flow paths 21 and 23 are provided. .
  • the valve chamber 22 is formed as a cylindrical space, and opens on one surface (upper surface) of the valve body 20. Then, a liquid having a predetermined pressure flows from the inflow port 25.
  • the first cylinder 30 is fixed to one surface (upper surface) of the valve body 20 where the valve chamber 22 opens.
  • the first cylinder 30 is formed of a general-purpose resin such as PP (Poly Propylene).
  • a columnar first accommodating portion 31 is formed inside the first cylinder 30. The first accommodating portion 31 passes through the first cylinder 30, and the central axis of the valve chamber 22 coincides with the central axis of the first cylinder 30. The first accommodating portion 31 communicates with the valve chamber 22.
  • the second cylinder 50 is fixed to one surface (upper surface) of the first cylinder 30 opposite to the valve body 20.
  • the second cylinder 50 is made of a general-purpose resin such as PP (PolyPoPropylene).
  • PP PolyPoPropylene
  • Inside the second cylinder 50 a cylindrical second accommodating portion 54 and a cylindrical third accommodating portion 55 are formed.
  • the second storage part 54 and the third storage part 55 are in communication with each other, and their central axes coincide with the central axis of the first storage part 31.
  • the second accommodating portion 54 opens on one surface (lower surface) of the second cylinder 50, and the third accommodating portion 55 opens on one surface (upper surface) opposite to the second cylinder 50.
  • the second housing part 54 communicates with the first housing part 31 of the first cylinder 30.
  • the diameter of the second storage part 54 is made larger than the diameter of the first storage part 31. For this reason, a step is formed between the first housing part 31 and the second housing part 54.
  • annular projecting part 51 is provided by the inner walls projecting inward. That is, the overhanging portion 51 is a boundary between the second housing portion 54 and the third housing portion 55.
  • a stepping motor 110 (motor) is fixed to one surface (upper surface) of the third accommodating portion 55 that is open through an attachment portion 113.
  • the motor 110 includes a drive circuit 112, and a signal line 132 from a controller (not shown) is connected to the drive circuit 112. Then, a drive control signal (pulse signal) is input from the controller to the drive circuit 112, and the rotational position of the drive shaft 111 of the motor 110 is controlled by a drive control signal corresponding to the number of steps.
  • a photosensor 74 is provided on the outer periphery of the second cylinder 50, and a signal line 131 from the controller is connected to the photosensor 74.
  • a housing 120 is fixed to one surface (upper surface) of the first cylinder 30 opposite to the valve body 20. The housing 120 covers the second cylinder 50, the motor 110, and the photosensor 74.
  • FIG. 2 is a partially enlarged view of FIG.
  • a columnar rod 60 is accommodated across the first accommodation part 31 and the second accommodation part 54.
  • the rod 60 is formed of a fluorine resin having chemical resistance, such as PVDF (Poly Vinylidene Di Fluoride).
  • PVDF Poly Vinylidene Di Fluoride
  • the valve body 20 A cylindrical valve body 41 is connected to the end on the side.
  • a diaphragm 42 is provided on the outer peripheral edge of the valve body 41.
  • An annular support 43 is provided on the outer peripheral edge of the diaphragm 42.
  • the support portion 43 is fixed between the valve body 20 and the first cylinder 30.
  • the diaphragm 42 divides the valve chamber 22 and the first storage portion 31, and the liquid in the valve chamber 22 is prevented from flowing into the first storage portion 31.
  • the valve body 41 includes an enlarged diameter portion 41a having a larger diameter than other portions.
  • an annular valve seat portion 24 is provided at a connection portion between the flow path 21 and the valve chamber 22.
  • the enlarged diameter part 41a of the valve body 41 is arrange
  • the wall surface of the valve seat part 24 and the wall surface of the enlarged diameter part 41a are parallel, and the distance between these wall surfaces is uniform.
  • the rod 60 (moving member) includes a first rod part 61 accommodated in the first accommodating part 31 and a second rod part 62 accommodated in the second accommodating part 54.
  • the diameter of the second rod part 62 is larger than the diameter of the first rod part 61. That is, the 1st rod part 61 and the 2nd rod part 62 become a size according to the 1st accommodating part 31 and the 2nd accommodating part 54, respectively.
  • the central axis of the rod 60 and the central axis of the valve body 41 coincide with each other.
  • An annular groove portion 65 is provided on the outer peripheral surface of the first rod portion 61.
  • An annular seal member 77 is fitted into the groove portion 65, and the space between the inner peripheral surface of the first cylinder 30 and the outer peripheral surface of the first rod portion 61 is sealed by the seal member 77.
  • the first rod portion 61 is guided by the inner peripheral surface of the first housing portion 31 and slides in the axial direction thereof. At this time, the second rod portion 62 moves in the axial direction within the second housing portion 54.
  • a groove 52 extending in the axial direction of the second housing portion 54 is provided in a part of the inner wall of the second housing portion 54.
  • the groove 52 extends from the vicinity of the overhanging portion 51 to the end portion on the first cylinder 30 side.
  • a pin 72 extending in the outer diameter direction is provided on the outer peripheral edge of the second rod portion 62 of the rod 60. The tip of the pin 72 is inserted into the groove 52, and the second rod portion 62 is movable in the axial direction thereof, and rotation around the axial line is restricted.
  • a sensor insertion port 53 that penetrates the second cylinder 50 in the radial direction is provided.
  • a detection unit 74 a provided at the tip of the photosensor 74 is inserted into the second cylinder 50 from the sensor insertion port 53.
  • a pin 73 extending in the outer diameter direction is provided on the outer peripheral edge of the second rod portion 62 of the rod 60. The tip of the pin 73 is inserted between the light emitting part and the light receiving part of the detecting part 74a, and the light irradiated from the light emitting part is blocked by the pin 73, whereby the fully open position of the valve element 41 is detected.
  • the 1 and 2 show a state in which the valve body 41 is moved to the maximum closing side.
  • a cylindrical groove 63 is provided on the end surface of the second rod portion 62 on the motor 110 side.
  • the central axis of the groove 63 coincides with the central axis of the second rod portion 62 (first rod portion 61).
  • a spring 71 (elastic member) having a diameter substantially equal to the diameter of the groove 63 is inserted into the groove 63.
  • One end of the spring 71 is in contact with the bottom of the groove 63, and the other end is in contact with the overhang 51.
  • the spring 71 applies an elastic force to the rod 60 and the overhanging portion 51, and moves the rod 60 in a direction in which the rod 60 moves away from the overhanging portion 51, that is, in a direction in which the valve body 41 approaches the valve seat portion 24. .
  • the portion of the second rod portion 62 that protrudes to the outer diameter side from the first rod portion 61 faces the upper surface of the first cylinder 30. For this reason, when the rod 60 is moved in a direction away from the overhanging portion 51, the second rod portion 62 hits the first cylinder 30 (second restricting portion), and the movement of the rod 60 toward the valve seat portion 24 is restricted. Is done. At this time, the valve element 41 is closest to the valve seat portion 24, and the opening of the flow path 21 is minimized, that is, the flow rate of the liquid flowing out from the outflow port 26 is minimized.
  • FIG. 3A is a side view of the second cylinder 50
  • FIG. 3B is a plan view of the shim 75.
  • the second cylinder 50 is provided with an insertion port 56 that allows a shim 75 (spacer) to be inserted from the outside.
  • the insertion port 56 passes through the inside and outside of the second cylinder 50 and is provided at a portion where the first cylinder 30 and the second cylinder 50 face each other.
  • the shim 75 is formed in a “U” shape, and has a bifurcated portion 75 a inserted between the first cylinder 30 and the second rod portion 62, and an arc shape. Arc portion 75b.
  • the shim 75 is inserted from the insertion port 56 until the arc portion 75 b hits the first rod portion 61 of the rod 60. For this reason, the shim 75 can be inserted from the insertion port 56 after the flow rate adjusting device 10 is assembled.
  • the thickness of the shim 75 inserted between the second rod portion 62 and the first cylinder 30 is adjusted.
  • the shim 75 those having a thickness of 0.2 mm or 0.1 mm are used singly or in combination.
  • the distance (gap) between the valve seat portion 24 and the valve body 41 in the axial direction of the valve body 41 is 0. It is adjusted to be 2mm.
  • the distance between the valve seat portion 24 and the valve body 41 may be adjusted as appropriate according to the application of the flow rate adjustment device 10.
  • a portion surrounded by the groove 63 is a female screw portion 64 in which a female screw is cut.
  • the female screw portion 64 is formed in a cylindrical shape and extends in the axial direction of the second rod portion 62. Since the female thread portion 64 and the spring 71 (groove 63) are provided coaxially, the arrangement space in the axial direction of the rod 60 can be reduced.
  • the drive shaft 111 of the motor 110 is inserted into the third housing portion 55.
  • a first engagement portion 90 is provided on the drive shaft 111.
  • a second engaging portion 80 that engages with the first engaging portion 90 is accommodated across the third accommodating portion 55 and the second accommodating portion 54.
  • the first engaging portion 90 and the second engaging portion 80 are made of a material that can transmit the driving force of the motor 110, for example, stainless steel.
  • FIG. 4 is an exploded perspective view showing the first engaging portion 90 and the second engaging portion 80.
  • the second engaging portion 80 includes a male screw portion 82 having a male screw cut therein and a head 81 having a diameter larger than that of the male screw portion 82.
  • the second engaging portion 80 has a shape similar to a minus screw as a whole, and a male screw portion 82 extends in the axial direction thereof.
  • the head portion 81 is provided with a groove portion 83 (concave portion) extending in the radial direction.
  • the width and depth of the groove 83 are constant, and the depth of the groove 83 is substantially equal to the thickness of the head 81.
  • the two inner side surfaces 80a of the groove portion 83 are parallel to each other and have the same distance from the central axis of the head portion 81.
  • the central axis of the head 81 coincides with the central axis of the male screw portion 82.
  • the drive shaft 111 of the motor 110 is provided with a first engagement portion 90 (insertion portion) that is inserted into the groove portion 83 of the second engagement portion 80.
  • the first engaging portion 90 is formed in a rectangular parallelepiped shape, and the center portion in the longitudinal direction is fixed to the drive shaft 111.
  • the first engaging portion 90 includes outer surfaces 90a that are parallel to each other. The thickness of the outer side surface 90 a in the axial direction of the drive shaft 111 is thinner than the thickness of the head 81 of the second engaging portion 80.
  • the length of the first engaging portion 90 in the longitudinal direction is substantially equal to the diameter of the head 81 in the second engaging portion 80.
  • the width of the first engaging portion 90 is slightly narrower than the width of the groove portion 83 of the second engaging portion 80.
  • the first engaging portion 90 and the second engaging portion 80 can be relatively moved in the axial direction of the drive shaft 111 and can transmit a rotational force to each other.
  • the male screw portion 82 of the second engaging portion 80 is engaged with the female screw portion 64 of the second rod portion 62 (rod 60).
  • the rod 60 is pushed toward the valve seat 24 by a spring 71.
  • the second engaging portion 80 is connected to the rod 60 via the male screw portion 82 and the female screw portion 64. For this reason, the second engaging portion 80 is pulled in the direction of the valve seat portion 24 by the rod 60.
  • the head 81 of the second engagement portion 80 hits the overhang portion 51 (first restriction portion), and the second engagement portion 80 is moved. Movement toward the valve seat 24 is restricted.
  • a thrust washer 76 that receives a force acting in the axial direction of the second engagement portion 80 is provided between the second engagement portion 80 and the overhang portion 51. For this reason, when the 2nd engaging part 80 rotates centering on the external thread part 82, the head 81 and the thrust washer 76 will slide smoothly. Further, the force that pulls the second engagement portion 80 in the direction of the valve seat portion 24 is received by the overhang portion 51 and the thrust washer 76. The position where the movement of the second engagement portion 80 is restricted corresponds to the first restriction position.
  • FIG. 2 shows a state where the rotational position (number of steps) of the drive shaft 111 of the motor 110 is the reference position (reference step number).
  • the second rod portion 62 of the rod 60 contacts the shim 75 and the head 81 of the second engagement portion 80 contacts the thrust washer 76.
  • a gap (space) is formed between the bottom portion of the first engagement portion 90 and the bottom portion of the groove portion 83 of the second engagement portion 80.
  • Rotational force is transmitted from the first engaging portion 90 to the second engaging portion 80 by rotating the drive shaft 111 in the direction of the arrow in the figure.
  • the second engaging portion 80 is pulled in the direction of the valve seat portion 24 by the elastic force of the spring 71, and its movement is restricted by the thrust washer 76 and the overhang portion 51. Further, the rotation of the rod 60 in the rotation direction of the drive shaft 111 is restricted by a pin 72 inserted in the groove 52 of the second cylinder 50.
  • the female screw portion 64 is screw-fed in a direction approaching the drive shaft 111, and the head 81 of the second engagement portion 80 and the second rod of the rod 60 are fed.
  • the part 62 will approach.
  • the rod 60 is moved in the direction of the arrow in the drawing, and the valve body 41 is moved in a direction away from the valve seat portion 24 accordingly.
  • the distance between the valve seat portion 24 and the valve body 41 that is, the opening degree of the flow path 21 is adjusted, and the flow rate of the liquid flowing out to the flow path 23 is adjusted.
  • the reaction of the force when the rod 60 is screwed in the axial direction. Can be prevented from acting on the drive shaft 111 in the axial direction.
  • the rotational position of the drive shaft 111 is precisely controlled based on the number of steps of the motor 110, the opening degree of the flow path 21 can be precisely controlled.
  • Rotational force is transmitted from the first engaging portion 90 to the second engaging portion 80 by rotating the drive shaft 111 in the direction of the arrow in the figure (the reverse direction of FIG. 5).
  • the male screw portion 82 of the second engagement portion 80 by rotating the male screw portion 82 of the second engagement portion 80, the female screw portion 64 is screw-fed in a direction approaching the valve seat portion 24, and the head 81 and the rod 60 of the second engagement portion 80 are rotated.
  • the 2nd rod part 62 of this will leave
  • the rod 60 is moved in the direction of the arrow in the figure (the reverse direction in FIG. 5), and accordingly, the valve body 41 is moved in a direction approaching the valve seat portion 24. For this reason, the distance between the valve seat portion 24 and the valve body 41, that is, the opening degree of the flow path 21 is adjusted, and the flow rate of the liquid flowing out to the flow path 23 is adjusted.
  • the valve body 41 is brought closest to the valve seat portion 24.
  • the drive shaft 111 is further rotated from this state, the head 81 of the second engaging portion 80 and the second rod portion 62 of the rod 60 are relatively screw-fed.
  • the first engaging portion 90 and the second engaging portion 80 are relatively movable in the axial direction of the drive shaft 111, and movement of the rod 60 in the direction of the valve seat portion 24 is restricted.
  • the second engaging portion 80 is moved in the direction in which the head 81 moves away from the thrust washer 76 and the overhanging portion 51, that is, in the direction of the arrow in the figure.
  • the rotation of the second engagement part 80 and the drive shaft 111 is not restricted. For this reason, it can suppress that an excessive load is applied to the motor 110, and can suppress the motor 110 from stepping out.
  • a space is provided between the bottom portion of the first engaging portion 90 and the bottom portion of the groove portion 83, even if the drive shaft 111 is rotated in a state where the movement of the rod 60 is restricted, The second engagement portion 80 can be sufficiently released in the direction of the motor 110.
  • the 2nd engaging part 80 can be exposed by removing the housing 120 and the motor 110 from the flow volume adjustment apparatus 10. FIG. For this reason, the 2nd engaging part 80 can be easily rotated manually, and it becomes possible to adjust the position of the valve body 41 manually. For this reason, the maintainability of the flow control device 10 can be improved.
  • the first engaging portion 90 and the second engaging portion 80 are relatively movable in the axial direction of the drive shaft 111. For this reason, when the movement of the rod 60 is restricted, the direction in which the head 81 of the second engagement portion 80 moves away from the second rod portion 62 of the rod 60 by rotating the second engagement portion 80. That is, the head 81 of the second engagement portion 80 is screwed in a direction away from the overhanging portion 51. Therefore, even if the motor 110 is further driven from the state in which the movement of the rod 60 is restricted, it is possible to prevent an excessive load from being applied to the motor 110. As a result, the motor 110 can be prevented from stepping out, and the position adjustment accuracy of the valve body 41 can be prevented from decreasing. Further, damage or the like of the motor 110 can be suppressed.
  • first engagement portion 90 and the second engagement portion 80 transmit rotational force to each other, while the first engagement portion 90 and the second engagement portion 80 are relatively movable in the axial direction of the drive shaft 111. It has become. For this reason, the reaction of the force of screw feeding the rod 60 in the axial direction and the reaction of the force of screw feeding the head 81 of the second engagement portion 80 away from the overhanging portion 51 are the drive shaft 111 of the motor 110. Can be prevented from acting in the axial direction. As a result, an increase in the rotational load of the motor 110 can be suppressed, and the durability of the motor 110 can be reduced and the increase in size of the motor 110 can be suppressed.
  • the second restricting position is adjusted by the shim 75 on the upper surface portion of the first cylinder 30 that restricts the movement of the rod 60 toward the valve seat 24 from the second restricting position. For this reason, the distance between the valve seat portion 24 and the valve body 41, that is, the flow state of the liquid can be precisely controlled in the state where the valve body 41 is closest to the valve seat portion 24. Further, since the clearance is provided between the valve seat portion 24 and the valve body 41 in a state where the movement of the rod 60 is restricted by the upper surface portion of the first cylinder 30, the valve body 41 hits the valve seat portion 24. You can avoid that. As a result, it is effective that the valve body 41 is strongly pressed against the valve seat portion 24, particles are generated from the valve body 41 and the valve seat portion 24, and the valve body 41 and the valve seat portion 24 are deformed or damaged. Can be suppressed.
  • the movement of the rod 60 in the axial direction is guided by the first cylinder 30 and the second cylinder 50.
  • the shim 75 can be inserted from the outside of the first cylinder 30 through the insertion port 56. For this reason, after assembling the flow rate adjusting device 10, the interval between the valve seat portion 24 and the valve body 41 can be precisely adjusted by the shim 75. Therefore, it is not necessary to require high dimensional accuracy for the valve body 20, the first cylinder 30, the rod 60, and the like, and it is possible to maintain the liquid control accuracy while suppressing costs.
  • the rectangular parallelepiped insertion portion provided in the first engagement portion 90 can be inserted into the groove portion 83 provided in the second engagement portion 80.
  • the mutually parallel outer side surface 90a of the 1st engaging part 90 and the inner side surface 80a of the groove part 83 are fitted in the state with a clearance gap. Therefore, the functions of the first engaging portion 90 and the second engaging portion 80 can be realized with a simple configuration.
  • the present invention is not limited to the above embodiment, and can be implemented as follows, for example.
  • the insertion portion is provided in the first engagement portion 90 and the groove portion 83 (recess portion) is provided in the second engagement portion 80.
  • the groove portion (recess portion) is provided in the first engagement portion 90.
  • an insertion portion may be provided in the second engagement portion 80.
  • the first engaging portion 90 and the second engaging portion 80 can be moved relative to each other in the axial direction of the drive shaft 111 of the motor 110 and can transmit rotational force to each other.
  • the shape can be arbitrarily changed.
  • the male thread portion 82 is provided in the second engaging portion 80 and the female screw portion 64 is provided in the rod 60.
  • the female screw portion 64 is provided in the second engaging portion 80 and the male screw is provided in the rod 60.
  • a portion may be provided.
  • valve body 41 contacts the valve seat portion 24 in a state where the valve body 41 is closest to the valve seat portion 24 may be employed. Even in such a configuration, the valve element 41 is strongly pressed against the valve seat portion 24 and an excessive load is applied to the motor 110 by releasing the second engaging portion 80 in the direction of the motor 110. be able to.
  • an elastic member such as a rubber material, a configuration using a repulsive force by a magnet, or the like may be adopted.
  • a motor other than the stepping motor 110 such as a servo motor or a DC motor, may be employed.
  • the flow rate adjusting device 10 can be embodied as a pressure adjusting device for adjusting the pressure of the fluid.
  • the fluid is not limited to liquid, and gas can also be used.
  • SYMBOLS 10 Flow control apparatus, 20 ... Valve body, 21, 23 ... Flow path, 22 ... Valve chamber, 24 ... Valve seat part, 30 ... 1st cylinder, 41 ... Valve body, 50 ... 2nd cylinder, 51 ... Overhang , 60... Rod, 64... Female threaded portion, 80... Second engaging portion, 82... Male threaded portion, 90.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

A fluid control device configured in such a manner that a valve element is not strongly pressed against the valve seat, etc. and that an excessive load is not applied to a motor. A flow rate adjustment device is provided with: a first engagement section (90) provided to the drive shaft (111) of a motor; and a second engagement section (80) movable in the axial direction relative to the first engagement section (90) and transmitting and receiving a rotational force to and from the first engagement section (90). The flow rate adjustment device is provided with: a valve element (41) for adjusting the extent of opening of a flow path (21); and a rod (60) which is connected to the valve element (41), is movable in the axial direction, and is prevented from rotating about the axis. The flow rate adjustment device is provided with: a male thread section (82) and a female thread section (64) which mesh with each other and which are fed relative to each other by the threads in the axial direction when rotated relative to each other: a protrusion section (51) for preventing the second engagement section (80) from moving further toward the valve seat (24) side than a first restriction position; and a first cylinder (30) for preventing the rod (60) from moving further toward the valve seat (24) side than a second restriction position.

Description

流体制御装置Fluid control device
 本発明は、モータの回転に基づいて弁体の位置を制御する流体制御装置に関する。 The present invention relates to a fluid control device that controls the position of a valve element based on rotation of a motor.
 従来、この種の流体制御装置として、モータの駆動軸に連結された雄ねじ部材を回転させることにより、雄ねじ部材と噛み合う雌ねじ部材を雄ねじ部材の軸線方向にねじ送りし、開状態での弁体の位置を決定するものがある(例えば、特許文献1,2参照)。これら特許文献1,2に記載のものでは、弁体に連結されたピストンが、雌ねじ部材に突き当たることで、開状態における弁体の停止位置が決定される。 Conventionally, as a fluid control device of this type, by rotating a male screw member connected to a drive shaft of a motor, a female screw member that meshes with the male screw member is screwed in the axial direction of the male screw member, and the valve body in the open state is Some determine the position (see, for example, Patent Documents 1 and 2). In those described in Patent Documents 1 and 2, the stop position of the valve body in the open state is determined by the piston connected to the valve body striking the female screw member.
特開2003-083466号公報Japanese Patent Laid-Open No. 2003-083466 特開2007-278514号公報JP 2007-278514 A
 ところで、特許文献1,2に記載のものでは、雌ねじ部材を雄ねじ部材の軸線方向にねじ送りして、開状態における弁体の開度を小さくする際に、雌ねじ部材がピストンや他の部材に当たるおそれがある。その場合には、弁体が弁座等に強く押し付けられたり、雌ねじ部材のねじ送りが規制されることにより、モータに過大な負荷が掛かったりするおそれがある。 By the way, in the thing of patent document 1, 2, when a female screw member is screwed in the axial direction of a male screw member and the opening degree of the valve body in an open state is made small, a female screw member contacts a piston or another member. There is a fear. In that case, there is a possibility that an excessive load is applied to the motor due to the valve body being strongly pressed against the valve seat or the like, or screw feed of the female screw member being restricted.
 本発明は、こうした実情に鑑みてなされたものであり、流体制御装置において、弁体が弁座等に強く押し付けられることや、モータに過大な負荷が掛かることを抑制することを主たる目的とするものである。 The present invention has been made in view of such circumstances, and it is a main object of the fluid control device to suppress the valve body from being strongly pressed against a valve seat or the like and an excessive load applied to the motor. Is.
 本発明は、上記課題を解決するために、以下の手段を採用した。 The present invention employs the following means in order to solve the above problems.
 第1の手段は、駆動軸を有するモータと、前記駆動軸に設けられた第1係合部と、前記駆動軸の軸線方向に沿って前記第1係合部に対して相対的に移動し、前記第1係合部から回転力を受ける第2係合部と、流体の流路及び弁座部が設けられたバルブ本体と、前記弁座部に対向して設けられ前記流路の開度を調節する弁体と、前記弁体に連結されるとともに、前記軸線方向の移動が許容され、前記軸線回りの回転が規制された移動部材と、前記弁体を前記弁座部に近付ける方向へ前記移動部材に力を作用させる弾性部材と、前記第2係合部が第1規制位置よりも前記弁座部側へ移動することを規制する第1規制部と、前記移動部材が第2規制位置よりも前記弁座部側へ移動することを規制する第2規制部と、を備え、前記第2係合部及び前記移動部材は、相互に螺合されていることによって、相対的な回転で前記移動部材と前記第2係合部とを前記軸線方向に沿って相対的に移動させることを特徴とする。 The first means moves relative to the first engagement portion along the axial direction of the drive shaft, a motor having a drive shaft, a first engagement portion provided on the drive shaft. A second engagement portion that receives a rotational force from the first engagement portion, a valve body provided with a fluid flow path and a valve seat part, and an opening of the flow path provided opposite to the valve seat part. A valve body that adjusts the degree of movement, a moving member that is connected to the valve body, is allowed to move in the axial direction, and is restricted from rotating around the axis, and a direction in which the valve body approaches the valve seat portion An elastic member for applying a force to the moving member, a first restricting portion for restricting the second engaging portion from moving to the valve seat portion side from the first restricting position, and the moving member being a second member. A second restricting portion for restricting movement to the valve seat portion side from the restricting position, and the second engaging portion and the front Moving member, by being screwed to each other, and wherein the relatively moving along the said moving member and the second engaging portion in the axial direction by relative rotation.
 上記構成によれば、モータが駆動されることにより、モータの駆動軸に設けられた第1係合部が回転させられる。そして、第1係合部から第2係合部に回転力が伝達され、第2係合部が回転させられる。また、バルブ本体には流体の流路及び弁座部が設けられており、この弁座部に対向して流路の開度を調節する弁体が設けられている。この弁体に移動部材が連結されており、移動部材は駆動軸の軸線方向に移動可能であり、且つ軸線を中心とする回転が規制される。 According to the above configuration, when the motor is driven, the first engagement portion provided on the drive shaft of the motor is rotated. Then, the rotational force is transmitted from the first engagement portion to the second engagement portion, and the second engagement portion is rotated. Further, the valve body is provided with a fluid flow path and a valve seat portion, and a valve body for adjusting the opening degree of the flow path is provided opposite to the valve seat portion. A moving member is connected to the valve body, the moving member is movable in the axial direction of the drive shaft, and rotation about the axis is restricted.
 第2係合部及び移動部材の一方と他方とに、それぞれ雄ねじ部及び雌ねじ部が設けられている。これら雄ねじ部及び雌ねじ部は互いに噛み合っており、相対回転することにより駆動軸の軸線方向へ相対的にねじ送りされる。そして、第2係合部が回転させられることにより、回転の規制された移動部材と第2係合部とが相対回転させられる。 A male screw part and a female screw part are provided on one and the other of the second engaging part and the moving member, respectively. The male screw portion and the female screw portion mesh with each other, and are relatively screw-fed in the axial direction of the drive shaft by relative rotation. Then, when the second engaging portion is rotated, the moving member whose rotation is restricted and the second engaging portion are relatively rotated.
 このとき、第2係合部が第1規制位置よりも弁座部側へ移動することは、第1規制部により規制される。このため、第2係合部と移動部材とが近づく方向、すなわち第2係合部が第1規制部へ押し付けられる方向へ駆動軸を回転させることにより、弁座部から離れる方向へ移動部材がねじ送りされる。移動部材には弾性部材により弁体を弁座部に近付ける方向の力が作用させられている。このため、移動部材がねじ送りされることにより、弾性部材の力に抗して移動部材が移動させられる。そして、移動部材のねじ送り量に応じて、弁座部と弁体との距離、すなわち流路の開度が調節される。 At this time, the movement of the second engagement portion toward the valve seat portion from the first restriction position is restricted by the first restriction portion. For this reason, the moving member moves away from the valve seat portion by rotating the drive shaft in the direction in which the second engaging portion and the moving member approach, that is, the direction in which the second engaging portion is pressed against the first restricting portion. Screwed. A force in a direction in which the valve body approaches the valve seat is applied to the moving member by an elastic member. For this reason, when the moving member is screwed, the moving member is moved against the force of the elastic member. And according to the screw feed amount of a moving member, the distance of a valve seat part and a valve body, ie, the opening degree of a flow path, is adjusted.
 一方、第2係合部と移動部材とが離れる方向へ駆動軸を回転させると、弁座部へ近付く方向へ移動部材がねじ送りされる。このとき、移動部材には弾性部材により弁体を弁座部に近付ける方向の力が作用させられているため、互いに噛み合う雄ねじ部及び雌ねじ部を介して、第2係合部は第1規制部に押し付けられている。そして、移動部材が第2規制位置に到達すると、移動部材が弁座部側へ移動することが第2規制部により規制される。 On the other hand, when the drive shaft is rotated in a direction in which the second engaging portion and the moving member are separated from each other, the moving member is screw-fed in a direction approaching the valve seat portion. At this time, since the force in the direction in which the valve body is brought close to the valve seat portion is applied to the moving member by the elastic member, the second engaging portion is connected to the first restricting portion via the male screw portion and the female screw portion that mesh with each other. It is pressed against. When the moving member reaches the second restricting position, the second restricting portion restricts the moving member from moving toward the valve seat portion.
 ここで、第1係合部と第2係合部とは、駆動軸の軸線方向に相対移動可能となっている。このため、移動部材の移動が規制された場合には、第2係合部が回転させられることにより、第2係合部が移動部材から離れる方向、すなわち第2係合部が第1規制部から離れる方向へねじ送りされる。したがって、移動部材の移動が規制された状態から更にモータが駆動されたとしても、弁体が弁座部に強く押し付けられることや、モータに過大な負荷が掛かること抑制することができる。その結果、弁体及び弁座部からのパーティクル発生や、弁体及び弁座部の変形や損傷、モータの損傷等を抑制することができる。 Here, the first engaging portion and the second engaging portion are relatively movable in the axial direction of the drive shaft. For this reason, when the movement of the moving member is restricted, the second engaging portion is rotated so that the second engaging portion is separated from the moving member, that is, the second engaging portion is the first restricting portion. Screwed in the direction away from Therefore, even if the motor is further driven from the state where the movement of the moving member is restricted, it is possible to suppress the valve body from being strongly pressed against the valve seat portion and an excessive load applied to the motor. As a result, generation of particles from the valve body and the valve seat, deformation and damage of the valve body and the valve seat, damage to the motor, and the like can be suppressed.
 さらに、第1係合部と第2係合部とは互いに回転力を伝達する一方、第1係合部と第2係合部とは駆動軸の軸線方向に相対移動可能となっている。このため、移動部材を軸線方向にねじ送りする力の反作用や、第2係合部を第1規制部から離れる方向にねじ送りする力の反作用が、モータの駆動軸に対して軸線方向に働くことを抑制することができる。その結果、モータの回転負荷が増大することを抑制することができ、モータの耐久性が低下することやモータの大型化を抑制することができる。 Furthermore, the first engaging portion and the second engaging portion transmit a rotational force to each other, while the first engaging portion and the second engaging portion are relatively movable in the axial direction of the drive shaft. For this reason, the reaction of the force that screw-feeds the moving member in the axial direction and the reaction of the force that screw-feeds the second engagement portion away from the first restricting portion act in the axial direction with respect to the drive shaft of the motor. This can be suppressed. As a result, an increase in the rotational load of the motor can be suppressed, and the durability of the motor can be reduced and the increase in size of the motor can be suppressed.
 第2の手段では、第1の発明において、前記第2規制部には、前記第2規制位置を調節するスペーサが設けられており、前記第2規制部により前記移動部材の移動が規制された状態において、前記弁座部と前記弁体との間に隙間が設けられていることを特徴とする。 In the second means, in the first invention, the second restricting portion is provided with a spacer for adjusting the second restricting position, and movement of the moving member is restricted by the second restricting portion. In the state, a gap is provided between the valve seat portion and the valve body.
 上記構成によれば、移動部材が第2規制位置よりも弁座部側へ移動することを規制する第2規制部において、スペーサにより第2規制位置が調節される。このため、弁体を弁座部に最も近付けた状態について、弁座部と弁体との間隔、すなわち流体の流通状態を精密に制御することができる。さらに、第2規制部により移動部材の移動が規制された状態において、弁座部と弁体との間に隙間が設けられているため、弁体が弁座部に当たることを避けることができる。その結果、弁体及び弁座部からパーティクルが発生することを効果的に抑制することができる。特に、上記構成は、弁体が流路の開度を一定に維持した状態で使用される流量調整装置や圧力調整装置に適用することが有効である。 According to the above configuration, the second restricting position is adjusted by the spacer in the second restricting portion that restricts the moving member from moving toward the valve seat portion relative to the second restricting position. For this reason, it is possible to precisely control the distance between the valve seat portion and the valve body, that is, the fluid flow state, in a state where the valve body is closest to the valve seat portion. Furthermore, since the gap is provided between the valve seat portion and the valve body in a state where the movement of the moving member is restricted by the second restricting portion, it is possible to avoid the valve body from hitting the valve seat portion. As a result, generation of particles from the valve body and the valve seat can be effectively suppressed. In particular, it is effective to apply the above configuration to a flow rate adjustment device or a pressure adjustment device that is used in a state in which the valve body maintains the opening of the flow path at a constant level.
 第3の手段では、第2の発明において、前記移動部材の前記軸線方向への移動を案内するシリンダを備え、前記シリンダには、外部から前記スペーサを挿入可能とする挿入口が設けられていることを特徴とする。 According to a third means, in the second invention, a cylinder for guiding the movement of the moving member in the axial direction is provided, and the cylinder is provided with an insertion port through which the spacer can be inserted from the outside. It is characterized by that.
 上記構成によれば、移動部材の軸線方向への移動が、シリンダにより案内される。そして、シリンダの外部から、挿入口を通じてスペーサを挿入することができる。このため、流体制御装置を組み立てた後に、スペーサにより弁座部と弁体との間隔を精密に調整することができる。したがって、バルブ本体やシリンダ、移動部材等に高い寸法精度を要求する必要がなく、コストを抑制しつつ流体の制御精度を維持することができる。 According to the above configuration, the movement of the moving member in the axial direction is guided by the cylinder. A spacer can be inserted from the outside of the cylinder through the insertion port. For this reason, after assembling the fluid control device, the distance between the valve seat portion and the valve body can be precisely adjusted by the spacer. Therefore, it is not necessary to require high dimensional accuracy for the valve body, cylinder, moving member, etc., and it is possible to maintain fluid control accuracy while suppressing costs.
 第4の手段では、第1~第3のいずれかの発明において、前記第1係合部及び前記第2係合部の一方は直方体状の挿入部を備えており、他方は前記挿入部を前記軸線方向に挿入可能な凹部を備えており、前記挿入部の互いに平行な外側面と前記凹部の内側面とが隙間のある状態で嵌合していることを特徴とする。 According to a fourth means, in any one of the first to third inventions, one of the first engagement portion and the second engagement portion includes a rectangular parallelepiped insertion portion, and the other includes the insertion portion. A concave portion that can be inserted in the axial direction is provided, and the outer side surface of the insertion portion that is parallel to the inner side surface of the concave portion is fitted with a gap.
 上記構成によれば、駆動軸の軸線方向において、第1係合部及び第2係合部の一方が備える直方体状の挿入部を、他方が備える凹部に挿入することができる。そして、挿入部の互いに平行な外側面と凹部の内側面とが、隙間のある状態で嵌合している。このため、第1係合部と第2係合部とを、駆動軸の軸線方向に相対移動可能にすることができるとともに、第1係合部と第2係合部とで互いに回転力を伝達することができる。したがって、簡易な構成により、第1係合部及び第2係合部を実現することができる。 According to the above configuration, in the axial direction of the drive shaft, the rectangular parallelepiped insertion portion provided in one of the first engagement portion and the second engagement portion can be inserted into the recess provided in the other. The outer side surfaces of the insertion portion that are parallel to each other and the inner side surface of the recess are fitted with a gap. Therefore, the first engagement portion and the second engagement portion can be moved relative to each other in the axial direction of the drive shaft, and the first engagement portion and the second engagement portion can mutually rotate. Can communicate. Therefore, a 1st engaging part and a 2nd engaging part are realizable by simple structure.
 さらに、第2係合部を露出させて手動で回転させることにより、弁体の位置を手動で調節することが可能となる。このため、流体制御装置のメンテナンス性を向上させることができる。 Furthermore, it is possible to manually adjust the position of the valve body by exposing the second engaging portion and manually rotating the second engaging portion. For this reason, the maintainability of the fluid control apparatus can be improved.
 第5の手段のように、第1~第4のいずれかの発明において、前記モータは、パルス電力に同期して回転するステッピングモータであるといった構成を採用した場合には、モータに過大な負荷が掛かること抑制することにより、ステッピングモータが脱調することを抑制することができる。したがって、位置調節精度や制御性に優れるステッピングモータを採用しつつ、脱調による位置調節精度の低下を抑制することができる。 As in the fifth means, in the first to fourth inventions, if the motor is a stepping motor that rotates in synchronization with the pulse power, an excessive load is applied to the motor. By suppressing the stepping, it is possible to suppress the stepping motor from stepping out. Therefore, it is possible to suppress a decrease in position adjustment accuracy due to step-out while employing a stepping motor having excellent position adjustment accuracy and controllability.
流量調整装置を示す部分断面図。The fragmentary sectional view which shows a flow volume adjustment apparatus. 図1の部分拡大図。The elements on larger scale of FIG. 挿入口及びシムを示す図。The figure which shows an insertion port and a shim. 第1係合部及び第2係合部を示す分解斜視図。The disassembled perspective view which shows a 1st engaging part and a 2nd engaging part. 流量調整装置における弁体の開動作を示す部分拡大図。The elements on larger scale which show the opening operation | movement of the valve body in a flow regulating device. 流量調整装置における弁体の閉動作を示す部分拡大図。The elements on larger scale which show the closing operation of the valve body in a flow regulating device.
 以下、一実施形態について図面を参照しつつ説明する。本実施形態では、半導体製造装置等において液体の流量を調整する流量調整装置として具体化している。 Hereinafter, an embodiment will be described with reference to the drawings. In this embodiment, it is embodied as a flow rate adjusting device that adjusts the flow rate of liquid in a semiconductor manufacturing apparatus or the like.
 図1は、流量調整装置10を示す部分断面図である。 FIG. 1 is a partial cross-sectional view showing the flow rate adjusting device 10.
 この流量調整装置10(流体制御装置)は、バルブ本体20と、第1シリンダ30と、第2シリンダ50と、モータ110と、ハウジング120とを備えている。 The flow rate adjusting device 10 (fluid control device) includes a valve body 20, a first cylinder 30, a second cylinder 50, a motor 110, and a housing 120.
 バルブ本体20には、流体(液体)の流入する流入ポート25と、液体の流出する流出ポート26とが設けられている。バルブ本体20は、耐薬品性を有するフッ素樹脂、例えばPTFE(Poly Tetra Fluoro Ethylene)で形成されている。バルブ本体20の内部には、流入ポート25に接続された流路21と、流出ポート26に接続された流路23と、これら流路21,23を接続する弁室22とが設けられている。弁室22は、円柱状の空間として形成されており、バルブ本体20の一面(上面)に開口している。そして、流入ポート25から所定圧力の液体が流入される。 The valve body 20 is provided with an inflow port 25 through which a fluid (liquid) flows and an outflow port 26 through which the liquid flows out. The valve body 20 is made of a chemical-resistant fluororesin such as PTFE (Poly-Tetra-Fluoro-Ethylene). Inside the valve body 20, a flow path 21 connected to the inflow port 25, a flow path 23 connected to the outflow port 26, and a valve chamber 22 connecting these flow paths 21 and 23 are provided. . The valve chamber 22 is formed as a cylindrical space, and opens on one surface (upper surface) of the valve body 20. Then, a liquid having a predetermined pressure flows from the inflow port 25.
 バルブ本体20において弁室22の開口する一面(上面)には、第1シリンダ30が固定されている。第1シリンダ30は、汎用性の樹脂、例えばPP(Poly Propylene)で形成されている。第1シリンダ30の内部には、円柱状の第1収容部31が形成されている。第1収容部31は、第1シリンダ30を貫通しており、上記弁室22の中心軸線と第1シリンダ30の中心軸線とは一致している。第1収容部31は弁室22と連通している。 The first cylinder 30 is fixed to one surface (upper surface) of the valve body 20 where the valve chamber 22 opens. The first cylinder 30 is formed of a general-purpose resin such as PP (Poly Propylene). A columnar first accommodating portion 31 is formed inside the first cylinder 30. The first accommodating portion 31 passes through the first cylinder 30, and the central axis of the valve chamber 22 coincides with the central axis of the first cylinder 30. The first accommodating portion 31 communicates with the valve chamber 22.
 第1シリンダ30においてバルブ本体20と反対側の一面(上面)には、第2シリンダ50が固定されている。第2シリンダ50は、汎用性の樹脂、例えばPP(Poly Propylene)で形成されている。第2シリンダ50の内部には、円柱状の第2収容部54と円柱状の第3収容部55とが形成されている。第2収容部54と第3収容部55とは、互いに連通しており、それらの中心軸線は上記第1収容部31の中心軸線と一致している。第2収容部54は第2シリンダ50の一面(下面)に開口しており、第3収容部55は第2シリンダ50の反対側の一面(上面)に開口している。第2収容部54は、上記第1シリンダ30の第1収容部31と連通している。第2収容部54の径は、第1収容部31の径よりも大きくされている。このため、第1収容部31と第2収容部54との間には段差が形成されている。 The second cylinder 50 is fixed to one surface (upper surface) of the first cylinder 30 opposite to the valve body 20. The second cylinder 50 is made of a general-purpose resin such as PP (PolyPoPropylene). Inside the second cylinder 50, a cylindrical second accommodating portion 54 and a cylindrical third accommodating portion 55 are formed. The second storage part 54 and the third storage part 55 are in communication with each other, and their central axes coincide with the central axis of the first storage part 31. The second accommodating portion 54 opens on one surface (lower surface) of the second cylinder 50, and the third accommodating portion 55 opens on one surface (upper surface) opposite to the second cylinder 50. The second housing part 54 communicates with the first housing part 31 of the first cylinder 30. The diameter of the second storage part 54 is made larger than the diameter of the first storage part 31. For this reason, a step is formed between the first housing part 31 and the second housing part 54.
 第2収容部54と第3収容部55との間には、それらの内壁が内側へ張り出すことにより、円環状の張出部51が設けられている。すなわち、この張出部51が、第2収容部54と第3収容部55との境界になっている。 Between the second housing part 54 and the third housing part 55, an annular projecting part 51 is provided by the inner walls projecting inward. That is, the overhanging portion 51 is a boundary between the second housing portion 54 and the third housing portion 55.
 第2シリンダ50において第3収容部55の開口する一面(上面)には、取付け部113を介してステッピングモータ110(モータ)が固定されている。モータ110は、駆動回路112を備えており、駆動回路112にはコントローラ(図示略)からの信号線132が接続されている。そして、コントローラから駆動回路112へ駆動制御信号(パルス信号)が入力され、モータ110の駆動軸111の回転位置がステップ数に相当する駆動制御信号により制御される。また、第2シリンダ50の外周には、フォトセンサ74が設けられており、フォトセンサ74にはコントローラからの信号線131が接続されている。第1シリンダ30においてバルブ本体20と反対側の一面(上面)には、ハウジング120が固定されている。このハウジング120によって、第2シリンダ50,モータ110,フォトセンサ74が覆われている。 In the second cylinder 50, a stepping motor 110 (motor) is fixed to one surface (upper surface) of the third accommodating portion 55 that is open through an attachment portion 113. The motor 110 includes a drive circuit 112, and a signal line 132 from a controller (not shown) is connected to the drive circuit 112. Then, a drive control signal (pulse signal) is input from the controller to the drive circuit 112, and the rotational position of the drive shaft 111 of the motor 110 is controlled by a drive control signal corresponding to the number of steps. A photosensor 74 is provided on the outer periphery of the second cylinder 50, and a signal line 131 from the controller is connected to the photosensor 74. A housing 120 is fixed to one surface (upper surface) of the first cylinder 30 opposite to the valve body 20. The housing 120 covers the second cylinder 50, the motor 110, and the photosensor 74.
 図2は、図1の部分拡大図である。 FIG. 2 is a partially enlarged view of FIG.
 同図に示すように、第1収容部31と第2収容部54とに渡って、円柱状のロッド60が収容されている。ロッド60は、耐薬品性を有するフッ素樹脂、例えばPVDF(Poly Vinylidene Di Fluoride)で形成されている。ロッド60において上記バルブ本体20
側の端部には、円柱状の弁体41が連結されている。弁体41の外周縁には、ダイアフラム42が設けられている。ダイアフラム42の外周縁には、円環状の支持部43が設けられている。そして、支持部43が、バルブ本体20と第1シリンダ30とに挟まれて固定されている。ダイアフラム42によって、弁室22と第1収容部31とが区画されており、弁室22内の液体が第1収容部31へ流入することが防止されている。
As shown in the figure, a columnar rod 60 is accommodated across the first accommodation part 31 and the second accommodation part 54. The rod 60 is formed of a fluorine resin having chemical resistance, such as PVDF (Poly Vinylidene Di Fluoride). In the rod 60, the valve body 20
A cylindrical valve body 41 is connected to the end on the side. A diaphragm 42 is provided on the outer peripheral edge of the valve body 41. An annular support 43 is provided on the outer peripheral edge of the diaphragm 42. The support portion 43 is fixed between the valve body 20 and the first cylinder 30. The diaphragm 42 divides the valve chamber 22 and the first storage portion 31, and the liquid in the valve chamber 22 is prevented from flowing into the first storage portion 31.
 弁体41は、他の部分よりも径の大きい拡径部41aを備えている。バルブ本体20において流路21と弁室22との接続部には、環状の弁座部24が設けられている。そして、弁座部24に対向するように弁体41の拡径部41aが配置されている。弁座部24の壁面と拡径部41aの壁面とは平行になっており、これら壁面間の距離は均一になっている。 The valve body 41 includes an enlarged diameter portion 41a having a larger diameter than other portions. In the valve body 20, an annular valve seat portion 24 is provided at a connection portion between the flow path 21 and the valve chamber 22. And the enlarged diameter part 41a of the valve body 41 is arrange | positioned so that the valve seat part 24 may be opposed. The wall surface of the valve seat part 24 and the wall surface of the enlarged diameter part 41a are parallel, and the distance between these wall surfaces is uniform.
 ロッド60(移動部材)は、第1収容部31に収容された第1ロッド部61と、第2収容部54に収容された第2ロッド部62とを備えている。第2ロッド部62の径は、第1ロッド部61の径よりも大きくなっている。すなわち、第1ロッド部61,第2ロッド部62は、それぞれ第1収容部31,第2収容部54に応じた寸法となっている。ロッド60の中心軸線と上記弁体41の中心軸線とは一致している。 The rod 60 (moving member) includes a first rod part 61 accommodated in the first accommodating part 31 and a second rod part 62 accommodated in the second accommodating part 54. The diameter of the second rod part 62 is larger than the diameter of the first rod part 61. That is, the 1st rod part 61 and the 2nd rod part 62 become a size according to the 1st accommodating part 31 and the 2nd accommodating part 54, respectively. The central axis of the rod 60 and the central axis of the valve body 41 coincide with each other.
 第1ロッド部61の外周面には、円環状の溝部65が設けられている。溝部65には、円環状のシール部材77が嵌合されており、シール部材77によって第1シリンダ30の内周面と第1ロッド部61の外周面との間がシールされている。第1ロッド部61は、第1収容部31の内周面により案内されて、その軸線方向に摺動する。このとき、第2ロッド部62は、第2収容部54内でその軸線方向に移動する。 An annular groove portion 65 is provided on the outer peripheral surface of the first rod portion 61. An annular seal member 77 is fitted into the groove portion 65, and the space between the inner peripheral surface of the first cylinder 30 and the outer peripheral surface of the first rod portion 61 is sealed by the seal member 77. The first rod portion 61 is guided by the inner peripheral surface of the first housing portion 31 and slides in the axial direction thereof. At this time, the second rod portion 62 moves in the axial direction within the second housing portion 54.
 第2収容部54の内壁の一部には、第2収容部54の軸線方向に延びる溝52が設けられている。この溝52は、張出部51付近から第1シリンダ30側の端部まで延びている。ロッド60の第2ロッド部62の外周縁には、外径方向へ延びるピン72が設けられている。このピン72の先端が溝52に挿入されており、第2ロッド部62は、その軸線方向に移動可能であるとともに、その軸線を中心とする回転が規制されている。 A groove 52 extending in the axial direction of the second housing portion 54 is provided in a part of the inner wall of the second housing portion 54. The groove 52 extends from the vicinity of the overhanging portion 51 to the end portion on the first cylinder 30 side. A pin 72 extending in the outer diameter direction is provided on the outer peripheral edge of the second rod portion 62 of the rod 60. The tip of the pin 72 is inserted into the groove 52, and the second rod portion 62 is movable in the axial direction thereof, and rotation around the axial line is restricted.
 第2シリンダ50において溝52と対向する部分には、第2シリンダ50を径方向に貫通するセンサ挿入口53が設けられている。そして、上記フォトセンサ74の先端に設けられた検出部74aが、センサ挿入口53から第2シリンダ50の内部に挿入されている。ロッド60の第2ロッド部62の外周縁には、外径方向へ延びるピン73が設けられている。このピン73の先端が、検出部74aの発光部と受光部との間に挿入されており、発光部から照射された光がピン73によって遮られることにより、弁体41の全開位置が検出される。なお、図1,2は、弁体41を最大限閉じる側へ移動させた状態を示している。 In a portion of the second cylinder 50 that faces the groove 52, a sensor insertion port 53 that penetrates the second cylinder 50 in the radial direction is provided. A detection unit 74 a provided at the tip of the photosensor 74 is inserted into the second cylinder 50 from the sensor insertion port 53. A pin 73 extending in the outer diameter direction is provided on the outer peripheral edge of the second rod portion 62 of the rod 60. The tip of the pin 73 is inserted between the light emitting part and the light receiving part of the detecting part 74a, and the light irradiated from the light emitting part is blocked by the pin 73, whereby the fully open position of the valve element 41 is detected. The 1 and 2 show a state in which the valve body 41 is moved to the maximum closing side.
 第2ロッド部62のモータ110側の端面には、円筒状の溝63が設けられている。溝63の中心軸線と、第2ロッド部62(第1ロッド部61)の中心軸線とは一致している。この溝63の内部に、溝63の径と略等しい径を有するスプリング71(弾性部材)が挿入されている。スプリング71の一端は溝63の底部に接しており、他端は張出部51に接している。スプリング71は、ロッド60と張出部51とに弾性力を作用させており、ロッド60が張出部51から離れる方向、すなわち弁体41が弁座部24に近付く方向へロッド60を移動させる。 A cylindrical groove 63 is provided on the end surface of the second rod portion 62 on the motor 110 side. The central axis of the groove 63 coincides with the central axis of the second rod portion 62 (first rod portion 61). A spring 71 (elastic member) having a diameter substantially equal to the diameter of the groove 63 is inserted into the groove 63. One end of the spring 71 is in contact with the bottom of the groove 63, and the other end is in contact with the overhang 51. The spring 71 applies an elastic force to the rod 60 and the overhanging portion 51, and moves the rod 60 in a direction in which the rod 60 moves away from the overhanging portion 51, that is, in a direction in which the valve body 41 approaches the valve seat portion 24. .
 第2ロッド部62において、第1ロッド部61よりも外径側に張り出した部分は、第1シリンダ30の上面と対向している。このため、ロッド60が張出部51から離れる方向へ移動させられると、第2ロッド部62が第1シリンダ30(第2規制部)に当たって、ロッド60の弁座部24側への移動が規制される。このとき、弁体41が弁座部24に最も近付いた状態となり、流路21の開度が最も小さくされた状態、すなわち流出ポート26から流出する液体の流量が最も少なくされた状態となる。 The portion of the second rod portion 62 that protrudes to the outer diameter side from the first rod portion 61 faces the upper surface of the first cylinder 30. For this reason, when the rod 60 is moved in a direction away from the overhanging portion 51, the second rod portion 62 hits the first cylinder 30 (second restricting portion), and the movement of the rod 60 toward the valve seat portion 24 is restricted. Is done. At this time, the valve element 41 is closest to the valve seat portion 24, and the opening of the flow path 21 is minimized, that is, the flow rate of the liquid flowing out from the outflow port 26 is minimized.
 ここで、第2ロッド部62と第1シリンダ30との間には、ロッド60の弁座部24側への移動を規制する位置(第2規制位置)を調節するシム75が設けられている。図3(a)は第2シリンダ50の側面図であり、図3(b)はシム75の平面図である。 Here, between the 2nd rod part 62 and the 1st cylinder 30, the shim 75 which adjusts the position (2nd control position) which controls the movement to the valve-seat part 24 side of the rod 60 is provided. . FIG. 3A is a side view of the second cylinder 50, and FIG. 3B is a plan view of the shim 75.
 図3(a)に示すように、第2シリンダ50には、外部からシム75(スペーサ)を挿入することを可能とする挿入口56が設けられている。挿入口56は、第2シリンダ50の内外を貫通しており、第1シリンダ30と第2シリンダ50とが面する部分に設けられている。図3(b)に示すように、シム75は、「U」字状に形成されており、第1シリンダ30と第2ロッド部62との間に挿入される二股部75aと、円弧状の円弧部75bとを備えている。そして、円弧部75bがロッド60の第1ロッド部61に当たるまで、挿入口56からシム75が挿入される。このため、流量調整装置10を組み立てた後に挿入口56からシム75を挿入することができる。 As shown in FIG. 3A, the second cylinder 50 is provided with an insertion port 56 that allows a shim 75 (spacer) to be inserted from the outside. The insertion port 56 passes through the inside and outside of the second cylinder 50 and is provided at a portion where the first cylinder 30 and the second cylinder 50 face each other. As shown in FIG. 3B, the shim 75 is formed in a “U” shape, and has a bifurcated portion 75 a inserted between the first cylinder 30 and the second rod portion 62, and an arc shape. Arc portion 75b. The shim 75 is inserted from the insertion port 56 until the arc portion 75 b hits the first rod portion 61 of the rod 60. For this reason, the shim 75 can be inserted from the insertion port 56 after the flow rate adjusting device 10 is assembled.
 そして、第2ロッド部62と第1シリンダ30との間に挿入するシム75の厚みを調節することにより、ロッド60の弁座部24側への移動が規制される位置を調節する。シム75としては、0.2mmや、0.1mmの厚みのものを、単数又は複数組み合わせて用いる。本実施形態では、第2ロッド部62がシム75を介して第1シリンダ30に押し付けられた状態において、弁体41の軸線方向における弁座部24と弁体41との距離(隙間)が0.2mmとなるように調節している。なお、弁座部24と弁体41との距離は、流量調整装置10の用途に応じて適宜調整すればよい。 Then, by adjusting the thickness of the shim 75 inserted between the second rod portion 62 and the first cylinder 30, the position where the movement of the rod 60 toward the valve seat portion 24 is regulated is adjusted. As the shim 75, those having a thickness of 0.2 mm or 0.1 mm are used singly or in combination. In the present embodiment, when the second rod portion 62 is pressed against the first cylinder 30 via the shim 75, the distance (gap) between the valve seat portion 24 and the valve body 41 in the axial direction of the valve body 41 is 0. It is adjusted to be 2mm. The distance between the valve seat portion 24 and the valve body 41 may be adjusted as appropriate according to the application of the flow rate adjustment device 10.
 図2に戻り、第2ロッド部62において、上記溝63で囲まれた部分は、内部に雌ねじの切られた雌ねじ部64となっている。雌ねじ部64は、円筒状に形成されており、第2ロッド部62の軸線方向に延びている。雌ねじ部64と上記スプリング71(溝63)とは、同軸状に設けられているため、ロッド60の軸線方向におけるこれらの配置スペースを小さくすることができる。 Referring back to FIG. 2, in the second rod portion 62, a portion surrounded by the groove 63 is a female screw portion 64 in which a female screw is cut. The female screw portion 64 is formed in a cylindrical shape and extends in the axial direction of the second rod portion 62. Since the female thread portion 64 and the spring 71 (groove 63) are provided coaxially, the arrangement space in the axial direction of the rod 60 can be reduced.
 第3収容部55内に、モータ110の駆動軸111が挿入されている。駆動軸111には、第1係合部90が設けられている。第3収容部55と第2収容部54とに渡って、第1係合部90と係合する第2係合部80が収容されている。第1係合部90及び第2係合部80は、モータ110の駆動力を伝達可能な材料、例えばステンレスにより形成されている。 The drive shaft 111 of the motor 110 is inserted into the third housing portion 55. A first engagement portion 90 is provided on the drive shaft 111. A second engaging portion 80 that engages with the first engaging portion 90 is accommodated across the third accommodating portion 55 and the second accommodating portion 54. The first engaging portion 90 and the second engaging portion 80 are made of a material that can transmit the driving force of the motor 110, for example, stainless steel.
 図4は、第1係合部90及び第2係合部80を示す分解斜視図である。 FIG. 4 is an exploded perspective view showing the first engaging portion 90 and the second engaging portion 80.
 同図に示すように、第2係合部80は、雄ねじの切られた雄ねじ部82と、雄ねじ部82よりも径の大きい頭部81とを備えている。第2係合部80は、全体としてマイナスねじに類似した形状を有しており、その軸線方向に雄ねじ部82が延びている。頭部81には、径方向に延びる溝部83(凹部)が設けられている。溝部83の幅及び深さは一定となっており、溝部83の深さは頭部81の厚みと略等しくなっている。溝部83の2つの内側面80aは、互いに平行をなすとともに、頭部81の中心軸線からの距離が等しくなっている。頭部81の中心軸線と、雄ねじ部82の中心軸線とは一致している。 As shown in the figure, the second engaging portion 80 includes a male screw portion 82 having a male screw cut therein and a head 81 having a diameter larger than that of the male screw portion 82. The second engaging portion 80 has a shape similar to a minus screw as a whole, and a male screw portion 82 extends in the axial direction thereof. The head portion 81 is provided with a groove portion 83 (concave portion) extending in the radial direction. The width and depth of the groove 83 are constant, and the depth of the groove 83 is substantially equal to the thickness of the head 81. The two inner side surfaces 80a of the groove portion 83 are parallel to each other and have the same distance from the central axis of the head portion 81. The central axis of the head 81 coincides with the central axis of the male screw portion 82.
 モータ110の駆動軸111には、第2係合部80の溝部83に挿入される第1係合部90(挿入部)が設けられている。第1係合部90は、直方体状に形成されており、その長手方向の中央部が駆動軸111に固定されている。第1係合部90は、互いに平行な外側面90aを備えている。駆動軸111の軸線方向における外側面90aの厚みは、第2係合部80の頭部81の厚みよりも薄くなっている。 The drive shaft 111 of the motor 110 is provided with a first engagement portion 90 (insertion portion) that is inserted into the groove portion 83 of the second engagement portion 80. The first engaging portion 90 is formed in a rectangular parallelepiped shape, and the center portion in the longitudinal direction is fixed to the drive shaft 111. The first engaging portion 90 includes outer surfaces 90a that are parallel to each other. The thickness of the outer side surface 90 a in the axial direction of the drive shaft 111 is thinner than the thickness of the head 81 of the second engaging portion 80.
 第1係合部90の長手方向の長さは、第2係合部80における頭部81の直径と略等しくなっている。第1係合部90の幅は、第2係合部80の溝部83の幅よりも若干狭くなっている。そして、モータ110の駆動軸111の中心軸線と第2係合部80の中心軸線とを一致させた状態において、その中心軸線方向に沿って第1係合部90が溝部83に挿入される。これにより、第1係合部90の外側面90aと溝部83の内側面80aとが、隙間のある状態で嵌合する。 The length of the first engaging portion 90 in the longitudinal direction is substantially equal to the diameter of the head 81 in the second engaging portion 80. The width of the first engaging portion 90 is slightly narrower than the width of the groove portion 83 of the second engaging portion 80. Then, in a state where the central axis of the drive shaft 111 of the motor 110 and the central axis of the second engaging portion 80 are aligned, the first engaging portion 90 is inserted into the groove portion 83 along the central axial direction. Thereby, the outer side surface 90a of the first engaging portion 90 and the inner side surface 80a of the groove portion 83 are fitted with a gap.
 図2に戻り、第1係合部90と第2係合部80とは、駆動軸111の軸線方向に相対移動可能であるとともに、互いに回転力を伝達可能となっている。第2係合部80の雄ねじ部82は、第2ロッド部62(ロッド60)の雌ねじ部64と噛み合っている。ロッド60は、スプリング71によって弁座部24の方向へ押されている。そして、第2係合部80は、雄ねじ部82及び雌ねじ部64を介してロッド60と連結されている。このため、第2係合部80は、ロッド60により弁座部24の方向へ引っ張られている。第2係合部80が弁座部24の方向へ移動させられると、第2係合部80の頭部81が上記張出部51(第1規制部)に当たって、第2係合部80の弁座部24側への移動が規制される。 2, the first engaging portion 90 and the second engaging portion 80 can be relatively moved in the axial direction of the drive shaft 111 and can transmit a rotational force to each other. The male screw portion 82 of the second engaging portion 80 is engaged with the female screw portion 64 of the second rod portion 62 (rod 60). The rod 60 is pushed toward the valve seat 24 by a spring 71. The second engaging portion 80 is connected to the rod 60 via the male screw portion 82 and the female screw portion 64. For this reason, the second engaging portion 80 is pulled in the direction of the valve seat portion 24 by the rod 60. When the second engagement portion 80 is moved in the direction of the valve seat portion 24, the head 81 of the second engagement portion 80 hits the overhang portion 51 (first restriction portion), and the second engagement portion 80 is moved. Movement toward the valve seat 24 is restricted.
 第2係合部80と張出部51との間には、第2係合部80の軸線方向に作用する力を受け止めるスラストワッシャ76が設けられている。このため、第2係合部80が雄ねじ部82を中心として回転すると、頭部81とスラストワッシャ76とが滑らかに摺動する。また、第2係合部80を弁座部24の方向へ引っ張る力が、張出部51及びスラストワッシャ76によって受け止められる。この第2係合部80の移動が規制される位置が、第1規制位置に相当する。 A thrust washer 76 that receives a force acting in the axial direction of the second engagement portion 80 is provided between the second engagement portion 80 and the overhang portion 51. For this reason, when the 2nd engaging part 80 rotates centering on the external thread part 82, the head 81 and the thrust washer 76 will slide smoothly. Further, the force that pulls the second engagement portion 80 in the direction of the valve seat portion 24 is received by the overhang portion 51 and the thrust washer 76. The position where the movement of the second engagement portion 80 is restricted corresponds to the first restriction position.
 弁体41,ロッド60,第2係合部80,駆動軸111の各中心軸線は全て一致している。第2係合部80の雄ねじ部82とロッド60の雌ねじ部64とは、相対回転することにより駆動軸111の軸線方向に相対的にねじ送りされる。すなわち、第2係合部80が第1係合部90を介して駆動軸111により回転させられることにより、第2係合部80の頭部81とロッド60の第2ロッド部62との距離が変更される。図2は、モータ110の駆動軸111の回転位置(ステップ数)が基準位置(基準ステップ数)である状態を示している。この状態では、ロッド60の第2ロッド部62がシム75に当たるとともに、第2係合部80の頭部81がスラストワッシャ76に当たっている。そして、第1係合部90の底部と第2係合部80の溝部83の底部との間には、隙間(空間)が形成されている。 The central axes of the valve body 41, the rod 60, the second engagement portion 80, and the drive shaft 111 all coincide. The male screw portion 82 of the second engaging portion 80 and the female screw portion 64 of the rod 60 are relatively screw-fed in the axial direction of the drive shaft 111 by relatively rotating. That is, the distance between the head 81 of the second engaging portion 80 and the second rod portion 62 of the rod 60 by the second engaging portion 80 being rotated by the drive shaft 111 via the first engaging portion 90. Is changed. FIG. 2 shows a state where the rotational position (number of steps) of the drive shaft 111 of the motor 110 is the reference position (reference step number). In this state, the second rod portion 62 of the rod 60 contacts the shim 75 and the head 81 of the second engagement portion 80 contacts the thrust washer 76. A gap (space) is formed between the bottom portion of the first engagement portion 90 and the bottom portion of the groove portion 83 of the second engagement portion 80.
 次に、図5を参照して、流量調整装置10において、弁体41により流路21の開度を大きくする動作について説明する。ステッピングモータ110の駆動軸111の駆動は、上記コントローラによって制御される。 Next, with reference to FIG. 5, the operation of increasing the opening degree of the flow path 21 by the valve body 41 in the flow rate adjusting device 10 will be described. The driving of the drive shaft 111 of the stepping motor 110 is controlled by the controller.
 駆動軸111を図の矢印方向へ回転させることにより、第1係合部90から第2係合部80へ回転力が伝達される。スプリング71の弾性力により第2係合部80は弁座部24の方向へ引っ張られており、その移動がスラストワッシャ76及び張出部51によって規制されている。また、ロッド60が駆動軸111の回転方向に回転することは、第2シリンダ50の溝52に挿入されたピン72により規制されている。 Rotational force is transmitted from the first engaging portion 90 to the second engaging portion 80 by rotating the drive shaft 111 in the direction of the arrow in the figure. The second engaging portion 80 is pulled in the direction of the valve seat portion 24 by the elastic force of the spring 71, and its movement is restricted by the thrust washer 76 and the overhang portion 51. Further, the rotation of the rod 60 in the rotation direction of the drive shaft 111 is restricted by a pin 72 inserted in the groove 52 of the second cylinder 50.
 したがって、第2係合部80の雄ねじ部82を回転させることにより、雌ねじ部64が駆動軸111に近付く方向へねじ送りされ、第2係合部80の頭部81とロッド60の第2ロッド部62とが近付くこととなる。これにより、ロッド60が図の矢印方向へ移動させられ、それに伴って弁体41が弁座部24から離れる方向へ移動する。このため、弁座部24と弁体41との距離、すなわち流路21の開度が調節され、流路23へ流出する液体の流量が調整される。 Therefore, by rotating the male screw portion 82 of the second engagement portion 80, the female screw portion 64 is screw-fed in a direction approaching the drive shaft 111, and the head 81 of the second engagement portion 80 and the second rod of the rod 60 are fed. The part 62 will approach. As a result, the rod 60 is moved in the direction of the arrow in the drawing, and the valve body 41 is moved in a direction away from the valve seat portion 24 accordingly. For this reason, the distance between the valve seat portion 24 and the valve body 41, that is, the opening degree of the flow path 21 is adjusted, and the flow rate of the liquid flowing out to the flow path 23 is adjusted.
 ここで、第1係合部90と第2係合部80とは駆動軸111の軸線方向に相対移動可能となっているため、ロッド60を軸線方向にねじ送りする際に、その力の反作用が駆動軸111に対して軸線方向に作用することを抑制することができる。また、駆動軸111の回転位置は、モータ110のステップ数に基づいて精密に制御されるため、流路21の開度を精密に制御することができる。 Here, since the first engaging portion 90 and the second engaging portion 80 are relatively movable in the axial direction of the drive shaft 111, the reaction of the force when the rod 60 is screwed in the axial direction. Can be prevented from acting on the drive shaft 111 in the axial direction. Moreover, since the rotational position of the drive shaft 111 is precisely controlled based on the number of steps of the motor 110, the opening degree of the flow path 21 can be precisely controlled.
 また、ロッド60が更に移動させられて、フォトセンサ74の検出部74aによりピン73が検出された場合には、弁体41が全開位置に到達したと判断して、駆動軸111の回転を停止させる。このとき、ロッド60の第2ロッド部62と張出部51との間には、隙間が形成されている。すなわち、第2ロッド部62が張出部51に当たるまでは、ロッド60を図の矢印方向へ移動させることが可能であるが、検出部74aにより弁体41の全開位置が検出された場合には、それ以上ロッド60を移動させることを禁止する。このため、ロッド60が張出部51に当たることを防止することができ、モータ110に過大な負荷が掛かることを抑制することができる。 Further, when the rod 60 is further moved and the pin 73 is detected by the detection unit 74a of the photosensor 74, it is determined that the valve body 41 has reached the fully open position, and the rotation of the drive shaft 111 is stopped. Let At this time, a gap is formed between the second rod portion 62 of the rod 60 and the overhang portion 51. That is, the rod 60 can be moved in the direction of the arrow in the drawing until the second rod portion 62 hits the overhanging portion 51, but when the fully open position of the valve body 41 is detected by the detecting portion 74a. Further movement of the rod 60 is prohibited. For this reason, it can prevent that the rod 60 contacts the overhang | projection part 51, and can suppress that an excessive load is applied to the motor 110. FIG.
 図6を参照して、流量調整装置10において、弁体41により流路21の開度を小さくする動作について説明する。ステッピングモータ110の駆動軸111の駆動は、上記コントローラによって制御される。 With reference to FIG. 6, the operation | movement which makes the opening degree of the flow path 21 small by the valve body 41 in the flow volume adjustment apparatus 10 is demonstrated. The driving of the drive shaft 111 of the stepping motor 110 is controlled by the controller.
 駆動軸111を図の矢印方向(図5の逆方向)へ回転させることにより、第1係合部90から第2係合部80へ回転力が伝達される。この場合には、第2係合部80の雄ねじ部82を回転させることにより、雌ねじ部64が弁座部24に近付く方向へねじ送りされ、第2係合部80の頭部81とロッド60の第2ロッド部62とが離れることとなる。これにより、ロッド60が図の矢印方向(図5の逆方向)へ移動させられ、それに伴って弁体41が弁座部24に近付く方向へ移動する。このため、弁座部24と弁体41との距離、すなわち流路21の開度が調節され、流路23へ流出する液体の流量が調整される。 Rotational force is transmitted from the first engaging portion 90 to the second engaging portion 80 by rotating the drive shaft 111 in the direction of the arrow in the figure (the reverse direction of FIG. 5). In this case, by rotating the male screw portion 82 of the second engagement portion 80, the female screw portion 64 is screw-fed in a direction approaching the valve seat portion 24, and the head 81 and the rod 60 of the second engagement portion 80 are rotated. The 2nd rod part 62 of this will leave | separate. As a result, the rod 60 is moved in the direction of the arrow in the figure (the reverse direction in FIG. 5), and accordingly, the valve body 41 is moved in a direction approaching the valve seat portion 24. For this reason, the distance between the valve seat portion 24 and the valve body 41, that is, the opening degree of the flow path 21 is adjusted, and the flow rate of the liquid flowing out to the flow path 23 is adjusted.
 そして、ロッド60の第2ロッド部62がシム75に当たり、シム75及び第1シリンダ30によりロッド60の移動が規制されると、弁体41は弁座部24に最も近付いた状態となる。この状態から更に駆動軸111を回転させると、第2係合部80の頭部81とロッド60の第2ロッド部62とが離れる方向へ相対的にねじ送りされる。ここで、第1係合部90と第2係合部80とは駆動軸111の軸線方向に相対移動可能となっており、ロッド60の弁座部24方向への移動は規制されている。このため、駆動軸111及び第2係合部80の回転により、頭部81がスラストワッシャ76及び張出部51から離れる方向、すなわち図の矢印方向へ第2係合部80が移動させられる。 When the second rod portion 62 of the rod 60 hits the shim 75 and the movement of the rod 60 is restricted by the shim 75 and the first cylinder 30, the valve body 41 is brought closest to the valve seat portion 24. When the drive shaft 111 is further rotated from this state, the head 81 of the second engaging portion 80 and the second rod portion 62 of the rod 60 are relatively screw-fed. Here, the first engaging portion 90 and the second engaging portion 80 are relatively movable in the axial direction of the drive shaft 111, and movement of the rod 60 in the direction of the valve seat portion 24 is restricted. For this reason, by the rotation of the drive shaft 111 and the second engaging portion 80, the second engaging portion 80 is moved in the direction in which the head 81 moves away from the thrust washer 76 and the overhanging portion 51, that is, in the direction of the arrow in the figure.
 したがって、ロッド60の移動が規制され、弁体41が弁座部24に最も近付いた状態となっても、第2係合部80及び駆動軸111の回転が規制されない。このため、モータ110に過大な負荷が掛かることを抑制することができ、モータ110が脱調することを抑制することができる。ここで、第1係合部90の底部と溝部83の底部との間には空間が設けられているため、ロッド60の移動が規制された状態で駆動軸111が回転させられたとしても、第2係合部80をモータ110の方向へ十分に逃がすことができる。 Therefore, even if the movement of the rod 60 is restricted and the valve body 41 is closest to the valve seat part 24, the rotation of the second engagement part 80 and the drive shaft 111 is not restricted. For this reason, it can suppress that an excessive load is applied to the motor 110, and can suppress the motor 110 from stepping out. Here, since a space is provided between the bottom portion of the first engaging portion 90 and the bottom portion of the groove portion 83, even if the drive shaft 111 is rotated in a state where the movement of the rod 60 is restricted, The second engagement portion 80 can be sufficiently released in the direction of the motor 110.
 なお、図1に示すように、流量調整装置10からハウジング120及びモータ110を取り外すことにより、第2係合部80を露出させることができる。このため、第2係合部80を手動で容易に回転させることができ、弁体41の位置を手動で調節することが可能となる。このため、流量調整装置10のメンテナンス性を向上させることができる。 In addition, as shown in FIG. 1, the 2nd engaging part 80 can be exposed by removing the housing 120 and the motor 110 from the flow volume adjustment apparatus 10. FIG. For this reason, the 2nd engaging part 80 can be easily rotated manually, and it becomes possible to adjust the position of the valve body 41 manually. For this reason, the maintainability of the flow control device 10 can be improved.
 以上詳述した本実施形態は以下の利点を有する。 The embodiment described above has the following advantages.
 ・第1係合部90と第2係合部80とは、駆動軸111の軸線方向に相対移動可能となっている。このため、ロッド60の移動が規制された場合には、第2係合部80が回転させられることにより、第2係合部80の頭部81がロッド60の第2ロッド部62から離れる方向、すなわち第2係合部80の頭部81が張出部51から離れる方向へねじ送りされる。したがって、ロッド60の移動が規制された状態から更にモータ110が駆動されたとしても、モータ110に過大な負荷が掛かることを抑制することができる。その結果、モータ110が脱調することを抑制することができ、弁体41の位置調節精度が低下することを抑制することができる。また、モータ110の損傷等を抑制することができる。 The first engaging portion 90 and the second engaging portion 80 are relatively movable in the axial direction of the drive shaft 111. For this reason, when the movement of the rod 60 is restricted, the direction in which the head 81 of the second engagement portion 80 moves away from the second rod portion 62 of the rod 60 by rotating the second engagement portion 80. That is, the head 81 of the second engagement portion 80 is screwed in a direction away from the overhanging portion 51. Therefore, even if the motor 110 is further driven from the state in which the movement of the rod 60 is restricted, it is possible to prevent an excessive load from being applied to the motor 110. As a result, the motor 110 can be prevented from stepping out, and the position adjustment accuracy of the valve body 41 can be prevented from decreasing. Further, damage or the like of the motor 110 can be suppressed.
 さらに、第1係合部90と第2係合部80とは互いに回転力を伝達する一方、第1係合部90と第2係合部80とは駆動軸111の軸線方向に相対移動可能となっている。このため、ロッド60を軸線方向にねじ送りする力の反作用や、第2係合部80の頭部81を張出部51から離れる方向にねじ送りする力の反作用が、モータ110の駆動軸111に対して軸線方向に働くことを抑制することができる。その結果、モータ110の回転負荷が増大することを抑制することができ、モータ110の耐久性が低下することやモータ110の大型化を抑制することができる。 Further, the first engagement portion 90 and the second engagement portion 80 transmit rotational force to each other, while the first engagement portion 90 and the second engagement portion 80 are relatively movable in the axial direction of the drive shaft 111. It has become. For this reason, the reaction of the force of screw feeding the rod 60 in the axial direction and the reaction of the force of screw feeding the head 81 of the second engagement portion 80 away from the overhanging portion 51 are the drive shaft 111 of the motor 110. Can be prevented from acting in the axial direction. As a result, an increase in the rotational load of the motor 110 can be suppressed, and the durability of the motor 110 can be reduced and the increase in size of the motor 110 can be suppressed.
 ・ロッド60が第2規制位置よりも弁座部24側へ移動することを規制する第1シリンダ30の上面部において、シム75により第2規制位置が調節される。このため、弁体41を弁座部24に最も近づけた状態について、弁座部24と弁体41との間隔、すなわち液体の流通状態を精密に制御することができる。さらに、第1シリンダ30の上面部によりロッド60の移動が規制された状態において、弁座部24と弁体41との間に隙間が設けられているため、弁体41が弁座部24に当たることを避けることができる。その結果、弁体41が弁座部24に強く押し付けられることや、弁体41及び弁座部24からパーティクルが発生すること、弁体41や弁座部24が変形や損傷することを効果的に抑制することができる。 The second restricting position is adjusted by the shim 75 on the upper surface portion of the first cylinder 30 that restricts the movement of the rod 60 toward the valve seat 24 from the second restricting position. For this reason, the distance between the valve seat portion 24 and the valve body 41, that is, the flow state of the liquid can be precisely controlled in the state where the valve body 41 is closest to the valve seat portion 24. Further, since the clearance is provided between the valve seat portion 24 and the valve body 41 in a state where the movement of the rod 60 is restricted by the upper surface portion of the first cylinder 30, the valve body 41 hits the valve seat portion 24. You can avoid that. As a result, it is effective that the valve body 41 is strongly pressed against the valve seat portion 24, particles are generated from the valve body 41 and the valve seat portion 24, and the valve body 41 and the valve seat portion 24 are deformed or damaged. Can be suppressed.
 ・ロッド60の軸線方向への移動が、第1シリンダ30及び第2シリンダ50により案内される。そして、第1シリンダ30の外部から、挿入口56を通じてシム75を挿入することができる。このため、流量調整装置10を組み立てた後に、シム75により弁座部24と弁体41との間隔を精密に調整することができる。したがって、バルブ本体20や第1シリンダ30、ロッド60等に高い寸法精度を要求する必要がなく、コストを抑制しつつ液体の制御精度を維持することができる。 · The movement of the rod 60 in the axial direction is guided by the first cylinder 30 and the second cylinder 50. The shim 75 can be inserted from the outside of the first cylinder 30 through the insertion port 56. For this reason, after assembling the flow rate adjusting device 10, the interval between the valve seat portion 24 and the valve body 41 can be precisely adjusted by the shim 75. Therefore, it is not necessary to require high dimensional accuracy for the valve body 20, the first cylinder 30, the rod 60, and the like, and it is possible to maintain the liquid control accuracy while suppressing costs.
 ・駆動軸111の軸線方向において、第1係合部90が備える直方体状の挿入部を、第2係合部80が備える溝部83に挿入することができる。そして、第1係合部90の互いに平行な外側面90aと溝部83の内側面80aとが、隙間のある状態で嵌合している。したがって、簡易な構成により、第1係合部90及び第2係合部80の機能を実現することができる。 In the axial direction of the drive shaft 111, the rectangular parallelepiped insertion portion provided in the first engagement portion 90 can be inserted into the groove portion 83 provided in the second engagement portion 80. And the mutually parallel outer side surface 90a of the 1st engaging part 90 and the inner side surface 80a of the groove part 83 are fitted in the state with a clearance gap. Therefore, the functions of the first engaging portion 90 and the second engaging portion 80 can be realized with a simple configuration.
 上記実施形態に限定されず、例えば次のように実施することもできる。 The present invention is not limited to the above embodiment, and can be implemented as follows, for example.
 ・上記実施形態では、第1係合部90に挿入部を設けるとともに、第2係合部80に溝部83(凹部)を設けるようにしたが、第1係合部90に溝部(凹部)を設けるとともに、第2係合部80に挿入部を設けるようにしてもよい。 In the above embodiment, the insertion portion is provided in the first engagement portion 90 and the groove portion 83 (recess portion) is provided in the second engagement portion 80. However, the groove portion (recess portion) is provided in the first engagement portion 90. In addition to the provision, an insertion portion may be provided in the second engagement portion 80.
 ・また、第1係合部90と第2係合部80とは、モータ110の駆動軸111の軸線方向に相対移動可能であるとともに、互いに回転力を伝達可能なものであれば、それらの形状を任意に変更することができる。 The first engaging portion 90 and the second engaging portion 80 can be moved relative to each other in the axial direction of the drive shaft 111 of the motor 110 and can transmit rotational force to each other. The shape can be arbitrarily changed.
 ・上記実施形態では、第2係合部80に雄ねじ部82を設けるとともに、ロッド60に雌ねじ部64を設けるようにしたが、第2係合部80に雌ねじ部を設けるとともに、ロッド60に雄ねじ部を設けるようにしてもよい。 In the above-described embodiment, the male thread portion 82 is provided in the second engaging portion 80 and the female screw portion 64 is provided in the rod 60. However, the female screw portion 64 is provided in the second engaging portion 80 and the male screw is provided in the rod 60. A portion may be provided.
 ・弁体41を弁座部24に最も近付けた状態において、弁体41が弁座部24に接触する構成を採用することもできる。こうした構成であっても、第2係合部80をモータ110の方向へ逃がすことにより、弁体41が弁座部24に強く押し付けられることや、モータ110に過大な負荷が掛かることを抑制することができる。 A configuration in which the valve body 41 contacts the valve seat portion 24 in a state where the valve body 41 is closest to the valve seat portion 24 may be employed. Even in such a configuration, the valve element 41 is strongly pressed against the valve seat portion 24 and an excessive load is applied to the motor 110 by releasing the second engaging portion 80 in the direction of the motor 110. be able to.
 ・スプリング71に限らず、ゴム材料等の弾性部材、磁石による反発力を利用する構成等を採用してもよい。 · Not limited to the spring 71, an elastic member such as a rubber material, a configuration using a repulsive force by a magnet, or the like may be adopted.
 ・ステッピングモータ110以外のモータ、例えばサーボモータやDCモータを採用することもできる。 A motor other than the stepping motor 110, such as a servo motor or a DC motor, may be employed.
 ・流量調整装置10に限らず、流体の圧力を調整する圧力調整装置として具体化することもできる。また、流体として、液体に限らず、気体を用いることもできる。 · Not limited to the flow rate adjusting device 10, it can be embodied as a pressure adjusting device for adjusting the pressure of the fluid. Further, the fluid is not limited to liquid, and gas can also be used.
 10…流量調整装置、20…バルブ本体、21,23…流路、22…弁室、24…弁座部、30…第1シリンダ、41…弁体、50…第2シリンダ、51…張出部、60…ロッド、64…雌ねじ部、80…第2係合部、82…雄ねじ部、90…第1係合部、110…ステッピングモータ、111…駆動軸。 DESCRIPTION OF SYMBOLS 10 ... Flow control apparatus, 20 ... Valve body, 21, 23 ... Flow path, 22 ... Valve chamber, 24 ... Valve seat part, 30 ... 1st cylinder, 41 ... Valve body, 50 ... 2nd cylinder, 51 ... Overhang , 60... Rod, 64... Female threaded portion, 80... Second engaging portion, 82... Male threaded portion, 90.

Claims (5)

  1.  駆動軸を有するモータと、
     前記駆動軸に設けられた第1係合部と、
     前記駆動軸の軸線方向に沿って前記第1係合部に対して相対的に移動し、前記第1係合部から回転力を受ける第2係合部と、
     流体の流路及び弁座部が設けられたバルブ本体と、
     前記弁座部に対向して設けられ前記流路の開度を調節する弁体と、
     前記弁体に連結されるとともに、前記軸線方向の移動が許容され、前記軸線回りの回転が規制された移動部材と、
     前記弁体を前記弁座部に近付ける方向へ前記移動部材に力を作用させる弾性部材と、
     前記第2係合部が第1規制位置よりも前記弁座部側へ移動することを規制する第1規制部と、
     前記移動部材が第2規制位置よりも前記弁座部側へ移動することを規制する第2規制部と、
    を備え、
     前記第2係合部及び前記移動部材は、相互に螺合されていることによって、相対的な回転で前記移動部材と前記第2係合部とを前記軸線方向に沿って相対的に移動させることを特徴とする流体制御装置。
    A motor having a drive shaft;
    A first engagement portion provided on the drive shaft;
    A second engagement portion that moves relative to the first engagement portion along the axial direction of the drive shaft and receives a rotational force from the first engagement portion;
    A valve body provided with a fluid flow path and a valve seat; and
    A valve body that is provided to face the valve seat portion and adjusts the opening of the flow path;
    A moving member coupled to the valve body, allowed to move in the axial direction, and restricted from rotating about the axis;
    An elastic member that applies a force to the moving member in a direction in which the valve body approaches the valve seat portion;
    A first restricting portion that restricts movement of the second engaging portion toward the valve seat portion from a first restricting position;
    A second restricting portion for restricting the movement member from moving to the valve seat portion side from a second restricting position;
    With
    The second engaging portion and the moving member are screwed to each other, thereby relatively moving the moving member and the second engaging portion along the axial direction by relative rotation. A fluid control device.
  2.  前記第2規制部には、前記第2規制位置を調節するスペーサが設けられており、
     前記第2規制部により前記移動部材の移動が規制された状態において、前記弁座部と前記弁体との間に隙間が設けられていることを特徴とする請求項1に記載の流体制御装置。
    The second restriction portion is provided with a spacer for adjusting the second restriction position,
    2. The fluid control device according to claim 1, wherein a gap is provided between the valve seat portion and the valve body in a state where movement of the moving member is restricted by the second restricting portion. .
  3.  前記移動部材の前記軸線方向への移動を案内するシリンダを備え、
     前記シリンダには、外部から前記スペーサを挿入可能とする挿入口が設けられていることを特徴とする請求項2に記載の流体制御装置。
    A cylinder for guiding the movement of the moving member in the axial direction;
    The fluid control device according to claim 2, wherein the cylinder is provided with an insertion port through which the spacer can be inserted from the outside.
  4.  前記第1係合部及び前記第2係合部の一方は直方体状の挿入部を備えており、他方は前記挿入部を前記軸線方向に挿入可能な凹部を備えており、前記挿入部の互いに平行な外側面と前記凹部の内側面とが隙間のある状態で嵌合していることを特徴とする請求項1~3のいずれか1項に記載の流体制御装置。 One of the first engagement portion and the second engagement portion includes a rectangular parallelepiped insertion portion, and the other includes a recess that allows the insertion portion to be inserted in the axial direction. The fluid control device according to any one of claims 1 to 3, wherein the parallel outer surface and the inner surface of the recess are fitted with a gap.
  5.  前記モータは、パルス電力に同期して回転するステッピングモータであることを特徴とする請求項1~4のいずれか1項に記載の流体制御装置。 The fluid control device according to any one of claims 1 to 4, wherein the motor is a stepping motor that rotates in synchronization with pulse power.
PCT/JP2011/064309 2010-08-20 2011-06-22 Fluid control device WO2012023342A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012529516A JP5150009B2 (en) 2010-08-20 2011-06-22 Fluid control device
CN2011800377873A CN103097789A (en) 2010-08-20 2011-06-22 Fluid control device
KR1020127032803A KR101250654B1 (en) 2010-08-20 2011-06-22 Fluid control device
US13/756,361 US20130142675A1 (en) 2010-08-20 2013-01-31 Fluid control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010184850 2010-08-20
JP2010-184850 2010-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/756,361 Continuation US20130142675A1 (en) 2010-08-20 2013-01-31 Fluid control device

Publications (1)

Publication Number Publication Date
WO2012023342A1 true WO2012023342A1 (en) 2012-02-23

Family

ID=45605003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064309 WO2012023342A1 (en) 2010-08-20 2011-06-22 Fluid control device

Country Status (6)

Country Link
US (1) US20130142675A1 (en)
JP (1) JP5150009B2 (en)
KR (1) KR101250654B1 (en)
CN (1) CN103097789A (en)
TW (1) TWI427230B (en)
WO (1) WO2012023342A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635583A (en) * 2012-03-27 2012-08-15 西安交通大学 Combined type flow valve for liquid of high-pressure large-flow alternating current servo direct-drive machine
CN103291678A (en) * 2012-03-05 2013-09-11 杨世祥 Motor-driven plug-in mounting flow servo valve
JP2015183813A (en) * 2014-03-25 2015-10-22 株式会社ショーワ hydraulic shock absorber
JP2017040294A (en) * 2015-08-19 2017-02-23 アドバンス電気工業株式会社 Small-sized electric motor valve
JP2021099145A (en) * 2019-12-23 2021-07-01 アドバンス電気工業株式会社 Electric flow regulating valve
US11680658B2 (en) 2015-12-08 2023-06-20 Danfoss A/S Linear actuator with a coupling

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014003092B4 (en) * 2013-07-02 2023-06-07 Aisan Kogyo Kabushiki Kaisha Flow rate control valve and fuel vapor processing device comprising the same
CN103790882A (en) * 2014-01-22 2014-05-14 南通爱慕希机械有限公司 Electric hydraulic filter throttling valve
JP6134287B2 (en) * 2014-03-31 2017-05-24 株式会社コガネイ Throttle valve
JP6491877B2 (en) * 2014-12-25 2019-03-27 株式会社フジキン Fluid controller
JP6491878B2 (en) * 2014-12-25 2019-03-27 株式会社フジキン Fluid controller
EP3179144A1 (en) * 2015-12-08 2017-06-14 Danfoss A/S A linear actuator with a coupling
CN106090388A (en) * 2016-08-26 2016-11-09 湖北益健堂科技股份有限公司 Electrical adjustment flow valve
US9958083B1 (en) * 2016-10-27 2018-05-01 National Enviornmental Products, Ltd. Force limited valve actuator and method therefor
CN107441618A (en) * 2017-09-15 2017-12-08 佛山市康宇达医疗器械有限公司 Control the colon disease therapeutic divice of the proportioning valve and application of the fluid flow proportioning valve
JP7189631B2 (en) * 2018-07-09 2022-12-14 株式会社フジキン Fluid control equipment
US10935153B2 (en) * 2019-01-28 2021-03-02 Mac Valves, Inc. Proportional flow control valve poppet with flow control needle
JP7453134B2 (en) 2020-12-16 2024-03-19 Ckd株式会社 flow control valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860060U (en) * 1981-10-19 1983-04-22 株式会社鷺宮製作所 valve device
JP2001012632A (en) * 1999-04-30 2001-01-16 Tokyo Keiso Co Ltd Flow rate regulation valve and flow rate regulation system
US6321776B1 (en) * 2000-04-24 2001-11-27 Wayne L. Pratt Double diaphragm precision throttling valve
JP2005127339A (en) * 2003-10-21 2005-05-19 Ckd Corp Motor drive type proportional valve
JP2006112522A (en) * 2004-10-14 2006-04-27 Saginomiya Seisakusho Inc Motor-operated valve
JP2006153262A (en) * 2004-10-29 2006-06-15 Surpass Kogyo Kk Flow rate control valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764580B1 (en) * 1999-11-22 2007-10-09 가부시키가이샤 제이텍트 Positioning mechanism
JP4082458B2 (en) * 2002-06-26 2008-04-30 千代田空調機器株式会社 Motorized valve
JP2007139016A (en) * 2005-11-16 2007-06-07 Saginomiya Seisakusho Inc Electric motor-driven type control valve and refrigerating cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860060U (en) * 1981-10-19 1983-04-22 株式会社鷺宮製作所 valve device
JP2001012632A (en) * 1999-04-30 2001-01-16 Tokyo Keiso Co Ltd Flow rate regulation valve and flow rate regulation system
US6321776B1 (en) * 2000-04-24 2001-11-27 Wayne L. Pratt Double diaphragm precision throttling valve
JP2005127339A (en) * 2003-10-21 2005-05-19 Ckd Corp Motor drive type proportional valve
JP2006112522A (en) * 2004-10-14 2006-04-27 Saginomiya Seisakusho Inc Motor-operated valve
JP2006153262A (en) * 2004-10-29 2006-06-15 Surpass Kogyo Kk Flow rate control valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291678A (en) * 2012-03-05 2013-09-11 杨世祥 Motor-driven plug-in mounting flow servo valve
CN102635583A (en) * 2012-03-27 2012-08-15 西安交通大学 Combined type flow valve for liquid of high-pressure large-flow alternating current servo direct-drive machine
CN102635583B (en) * 2012-03-27 2014-12-24 西安交通大学 Combined type flow valve for liquid of high-pressure large-flow alternating current servo direct-drive machine
JP2015183813A (en) * 2014-03-25 2015-10-22 株式会社ショーワ hydraulic shock absorber
JP2017040294A (en) * 2015-08-19 2017-02-23 アドバンス電気工業株式会社 Small-sized electric motor valve
US11680658B2 (en) 2015-12-08 2023-06-20 Danfoss A/S Linear actuator with a coupling
JP2021099145A (en) * 2019-12-23 2021-07-01 アドバンス電気工業株式会社 Electric flow regulating valve

Also Published As

Publication number Publication date
KR101250654B1 (en) 2013-04-03
CN103097789A (en) 2013-05-08
JPWO2012023342A1 (en) 2013-10-28
US20130142675A1 (en) 2013-06-06
KR20130021404A (en) 2013-03-05
TW201211431A (en) 2012-03-16
TWI427230B (en) 2014-02-21
JP5150009B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5150009B2 (en) Fluid control device
KR101282925B1 (en) Flow control valve
US6889706B2 (en) Flow rate control apparatus
US10865889B2 (en) Poppet switch valve device and method for manufacturing poppet switch valve device
JP5973197B2 (en) Piston-type working fluid pressure actuator and control valve
US7264223B2 (en) Flow rate control apparatus
KR102069391B1 (en) Flow rate adjusting device
JP6640510B2 (en) Flow control valve
JP2012031966A (en) Three-way valve
CN212536667U (en) Flow control valve
US11415240B2 (en) Poppet-type flow control valve
JP2006194298A (en) Diaphragm valve
KR101864058B1 (en) Throttle valve
CN211667172U (en) Electric valve
JP2009036346A (en) Flow control valve
JP4143761B2 (en) Fluid controller
JP2009097622A (en) Solenoid valve structure
JP2006170361A (en) Valve device
US20150316154A1 (en) Valve structure
KR101609851B1 (en) Flow control valve
KR20210074377A (en) Valve device and gas supply system
JP5936029B2 (en) Flow control valve
JP2007182951A (en) Flow control device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037787.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529516

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127032803

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11817989

Country of ref document: EP

Kind code of ref document: A1