JP2007182951A - Flow control device - Google Patents

Flow control device Download PDF

Info

Publication number
JP2007182951A
JP2007182951A JP2006002290A JP2006002290A JP2007182951A JP 2007182951 A JP2007182951 A JP 2007182951A JP 2006002290 A JP2006002290 A JP 2006002290A JP 2006002290 A JP2006002290 A JP 2006002290A JP 2007182951 A JP2007182951 A JP 2007182951A
Authority
JP
Japan
Prior art keywords
opening
closing operation
annular
elastic body
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006002290A
Other languages
Japanese (ja)
Inventor
Toshimasa Takagi
利昌 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECTORIA KK
Original Assignee
TECTORIA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECTORIA KK filed Critical TECTORIA KK
Priority to JP2006002290A priority Critical patent/JP2007182951A/en
Publication of JP2007182951A publication Critical patent/JP2007182951A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Flow Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive flow control device for reducing a fluid pressure loss when opening a flow passage, while enabling remote control without particularly requiring a mechanical driving device. <P>SOLUTION: An opening-closing operation space part 3 is composed of a first cylindrical surface 4 having respectively a first diameter, a second cylindrical surface 5 coaxial with this first cylindrical surface 4 and having a second diameter smaller than the first diameter and an annular groove 6 having the predetermined depth and opening on the second cylindrical surface 5, and is formed in a space 2 in a housing 1. An annular elastic body 10 arranged by airtightly abutting on a side surface of the annular groove 6 and having an outer diameter changing by a pressure change in a control fluid introduced from a bottom surface of the annular groove 6, and an annular spring 11 arranged in the annular elastic body 10, are provided in this opening-closing operation space part 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体や気体の流量を調節制御する流量制御装置に関し、特に、遠隔操作が簡単に行え、流路開放時における流体圧力損失の低減が可能な流量制御装置に関するものである。   The present invention relates to a flow rate control device that adjusts and controls the flow rate of liquid or gas, and more particularly to a flow rate control device that can be easily operated remotely and can reduce fluid pressure loss when a flow path is opened.

例えば、水処理場や各種化学プラント等では、各種の液体、気体の供給、流量を制御するため、各種の流量制御弁が大量に使用される。特に、流路開放時の流体圧力損失が低いことを要求される流量制御弁は、一般に、開位置と閉位置との間の弁の駆動変位が大きく、これを遠隔操作で実現するためには、電動機や電磁弁等の機械的駆動装置を備えたものが必要とされる。   For example, in water treatment plants and various chemical plants, various flow rate control valves are used in large quantities to control the supply and flow rate of various liquids and gases. In particular, a flow control valve required to have a low fluid pressure loss when the flow path is opened generally has a large valve displacement between the open position and the closed position. Those equipped with mechanical drive devices such as electric motors and electromagnetic valves are required.

以上のように、遠隔操作式であって、しかも、流路開放時の流体圧力損失が低いことを要求される流量制御弁は、電動機や電磁弁等の機械的駆動装置を備えたものが必要とされ、コストが高くなると共に、これら駆動装置の保守にも費用が掛かり、全体として経済性に改善の余地があった。
この発明は以上のような要請に応えるもので、機械的駆動装置を特に必要とすることなく遠隔操作が可能で、従って安価であり、しかも流路開放時の流体圧力損失が低い流量制御装置を得ることを目的とする。
また、流路開放時の流体圧力損失が低く、温度の異常で自動的に流路を遮断できる流量制御装置を得ることを目的とする。
As described above, the flow control valve that is remote-controlled and requires low fluid pressure loss when the flow path is open needs to be equipped with a mechanical drive device such as an electric motor or electromagnetic valve. As a result, the cost is increased, and the maintenance of these drive units is also expensive, and there is room for improvement in the overall economy.
The present invention meets the above demands, and is a flow control device that can be operated remotely without requiring a mechanical drive device, is inexpensive, and has low fluid pressure loss when the flow path is opened. The purpose is to obtain.
It is another object of the present invention to provide a flow control device that has a low fluid pressure loss when the flow path is open and can automatically shut off the flow path due to a temperature abnormality.

この発明に係る流量制御装置は、内部に空間を有するハウジング、このハウジングに形成され空間の一端に連通する被制御流体導入口、ハウジングに形成され空間の他端に連通する被制御流体導出口、ハウジングに形成され制御流体を導入する制御流体導入口、空間内の一端と他端との間に形成された開閉動作空間部、およびこの開閉動作空間部に設けられ、制御流体導入口からの制御流体の圧力に応じて開閉動作空間部における被制御流体の通路断面を制御する開閉制御体を備えた流量制御装置であって、
開閉動作空間部は、空間内面を形成する、それぞれ第1の径を有する第1の円筒面とこの第1の円筒面と同軸で第1の径より小さい第2の径を有する第2の円筒面、および所定の深さを有し第2の円筒面に開口する環状溝で形成されており、
開閉制御体は、開閉動作空間部内に環状溝の側面と気密に当接して配設され、環状溝の底面から導入する制御流体の圧力変化によりその外径が変化する環状弾性体からなるものである。
A flow control device according to the present invention includes a housing having a space therein, a controlled fluid introduction port formed in the housing and communicating with one end of the space, a controlled fluid outlet port formed in the housing and communicated with the other end of the space, A control fluid introduction port formed in the housing for introducing the control fluid, an opening / closing operation space formed between one end and the other end of the space, and a control from the control fluid introduction port provided in the opening / closing operation space A flow control device comprising an opening / closing control body for controlling a passage cross section of a controlled fluid in an opening / closing operation space according to a fluid pressure,
The opening / closing operation space includes a first cylindrical surface having a first diameter and a second cylinder having a second diameter smaller than the first diameter and coaxial with the first cylindrical surface. And an annular groove having a predetermined depth and opening in the second cylindrical surface,
The opening / closing control body is arranged in the opening / closing operation space portion in airtight contact with the side surface of the annular groove, and is composed of an annular elastic body whose outer diameter changes due to a change in pressure of the control fluid introduced from the bottom surface of the annular groove. is there.

また、この発明に係る流量制御装置は、内部に空間を有するハウジング、このハウジングに形成され空間の一端に連通する被制御流体導入口、ハウジングに形成され空間の他端に連通する被制御流体導出口、空間内の一端と他端との間に形成された開閉動作空間部、およびこの開閉動作空間部に設けられ、開閉動作空間部における被制御流体の通路断面を制御する開閉制御体を備えた流量制御装置であって、
開閉動作空間部は、空間内面を形成する、それぞれ第1の径を有する第1の円筒面とこの第1の円筒面と同軸で第1の径より小さい第2の径を有する第2の円筒面、および所定の深さを有し第2の円筒面に開口する環状溝で形成されており、
開閉制御体は、開閉動作空間部内に環状溝の側面と気密に当接して配設された環状弾性体、および温度によって環状弾性体の外径が変化するよう、温度によって異なる形状を取るよう記憶され環状弾性体と一体に構成された形状記憶合金を備えたものである。
The flow control device according to the present invention includes a housing having a space therein, a controlled fluid introduction port formed in the housing and communicating with one end of the space, and a controlled fluid guide formed in the housing and communicating with the other end of the space. An outlet, an opening / closing operation space formed between one end and the other end of the space, and an opening / closing control body provided in the opening / closing operation space for controlling a passage cross section of the controlled fluid in the opening / closing operation space A flow control device,
The opening / closing operation space includes a first cylindrical surface having a first diameter and a second cylinder having a second diameter smaller than the first diameter and coaxial with the first cylindrical surface. And an annular groove having a predetermined depth and opening in the second cylindrical surface,
The opening / closing control body stores an annular elastic body disposed in airtight contact with the side surface of the annular groove in the opening / closing operation space, and a shape that varies depending on the temperature so that the outer diameter of the annular elastic body changes depending on the temperature. And a shape memory alloy integrally formed with the annular elastic body.

この発明に係る流量制御装置は、以上のように、例えば、閉路状態にある場合、制御流体の圧力を下げるのみで、環状弾性体の外径が減少し、これによって、空間の第1の円筒面との間に隙間が発生し、この隙間の寸法に第1の円筒面の周長をかけた面積の大きな流路断面が確保され、低圧力損失での流路開放が実現する。   As described above, in the flow rate control device according to the present invention, for example, when the circuit is in a closed state, the outer diameter of the annular elastic body is reduced only by lowering the pressure of the control fluid, thereby the first cylinder of the space. A gap is generated between the surface and a large channel cross-section obtained by multiplying the size of the gap by the circumference of the first cylindrical surface to secure a channel opening with low pressure loss.

また、この発明に係る流量制御装置は、以上のように、例えば、低圧力損失での流路開放中に、温度が所定以上上昇すると、形状記憶合金の形状が高温時の記憶形状に変形し、これに伴い環状弾性体の外径が増大して第1の円筒面と当接し自動的に流路を遮断することができる。   In addition, as described above, the flow control device according to the present invention, for example, when the temperature rises more than a predetermined value while opening the flow path with low pressure loss, the shape of the shape memory alloy is deformed to the memory shape at the time of high temperature. As a result, the outer diameter of the annular elastic body is increased to abut against the first cylindrical surface and the flow path can be automatically shut off.

実施の形態1.
図1および図2は、この発明の実施の形態1における流量制御装置の構成、動作を説明するための断面図で、図1は、開路状態、図2は、閉路状態を示す。図において、全体は、外径が円筒形のハウジング1に組み込まれている。ハウジング1は、例えば、アルミニゥムや鉄の鋳物に一部機械加工を施して製作され、上段部1A、下段部1B、そして中段部1Cから構成されている。詳細な図示は省略しているが、上段部1Aの軸中心位置に下方に突出して形成された雄ねじ部を、中段部1Cの軸中心位置に形成された雌ねじ部に螺合することで、上段部1Aと中段部1Cとが一体に結合されている。上段部1Aと下段部1Bとは、下段部1Bの上部周縁部に一定間隔で形成された雌ねじ部に上段部1Aから雄ねじを螺合することにより一体に結合されている。
Embodiment 1 FIG.
1 and 2 are cross-sectional views for explaining the configuration and operation of the flow control device according to Embodiment 1 of the present invention. FIG. 1 shows an open circuit state and FIG. 2 shows a closed circuit state. In the figure, the entirety is incorporated in a housing 1 having an outer diameter of a cylindrical shape. The housing 1 is manufactured, for example, by partially machining an aluminum or iron casting, and includes an upper step portion 1A, a lower step portion 1B, and a middle step portion 1C. Although not shown in detail, the upper threaded portion formed by projecting downward from the axial center position of the upper step portion 1A is screwed into the female thread portion formed at the axial center position of the middle step portion 1C, thereby Part 1A and middle part 1C are integrally coupled. The upper step portion 1A and the lower step portion 1B are integrally coupled by screwing a male screw from the upper step portion 1A to a female screw portion formed at a constant interval on the upper peripheral portion of the lower step portion 1B.

ハウジング1の内部には空間2が形成されており、流量制御の対象流体である被制御流体を導入する導入口7は、上段部1Aに設けられており、空間2の一端7Aに連通する構造となっている。被制御流体を導出するための導出口8は、下段部1Bに設けられており、空間2の他端8Aに連通する構造となっている。
下段部1Bの内面円筒部分は、第1の径を有する第1の円筒面4に仕上げられている。上段部1Aと中段部1Cとの内面円筒部分は、第1の径より小さい第2の径を有する第2の円筒面5に仕上げられている。
更に、上段部1Aと中段部1Cとの組み合わせ体には、所定の深さの第2の円筒面5に開口する、後述する環状弾性体10を挿入する環状溝6が形成されている。環状溝6の両側面は、挿入される環状弾性体10との滑りが良くなるようフッ素樹脂加工がなされている。そして、この第1の円筒面4と第2の円筒面5と環状溝6とで形成される空間を開閉動作空間部3と称するものとする。
被制御流体の流量を制御するための制御流体を導入する制御流体導入口9が上段部1Aに設けられており、開孔9Aを介して環状溝6の底面に連通する構造となっている。
A space 2 is formed inside the housing 1, and an introduction port 7 for introducing a controlled fluid that is a fluid subject to flow control is provided in the upper stage 1 </ b> A and communicates with one end 7 </ b> A of the space 2. It has become. The outlet 8 for leading out the controlled fluid is provided in the lower stage portion 1B and has a structure communicating with the other end 8A of the space 2.
The inner cylindrical portion of the lower step portion 1B is finished to a first cylindrical surface 4 having a first diameter. The inner cylindrical portions of the upper step portion 1A and the middle step portion 1C are finished into a second cylindrical surface 5 having a second diameter smaller than the first diameter.
Further, the combined body of the upper step portion 1A and the middle step portion 1C is formed with an annular groove 6 that opens into the second cylindrical surface 5 having a predetermined depth and into which an annular elastic body 10 described later is inserted. Both side surfaces of the annular groove 6 are processed with fluororesin so that the sliding with the annular elastic body 10 to be inserted is improved. A space formed by the first cylindrical surface 4, the second cylindrical surface 5, and the annular groove 6 is referred to as an opening / closing operation space portion 3.
A control fluid introduction port 9 for introducing a control fluid for controlling the flow rate of the fluid to be controlled is provided in the upper stage portion 1A, and communicates with the bottom surface of the annular groove 6 through the opening 9A.

環状弾性体10は、図示のように、断面が中空でその内径中央で分離された略C字状の形状に成形されており、その上下両外表面が環状溝6の側面と気密に当接するようになっている。また、制御流体導入口9からの制御流体が、環状弾性体10の中空内に導入される構造となっている。更に、この環状弾性体10の中空内には、環状バネ11が挿入されており、その蓄勢力により、環状弾性体10の外径を低減させる方向に作用するようになっている。
この発明では、環状弾性体10と環状バネ11とにより開閉制御体を構成する。
なお、環状弾性体10の材料としては、主として、被制御流体の種別や温度等の使用条件を考慮して、フッ素ゴム、シリコンゴム、ニトリルゴム等を適宜選択して使用する。
As shown in the figure, the annular elastic body 10 is formed in a substantially C-shaped shape having a hollow cross section and separated at the center of its inner diameter, and its upper and lower outer surfaces abut against the side surface of the annular groove 6 in an airtight manner. It is like that. In addition, the control fluid from the control fluid introduction port 9 is introduced into the hollow of the annular elastic body 10. Further, an annular spring 11 is inserted into the hollow of the annular elastic body 10, and acts in a direction to reduce the outer diameter of the annular elastic body 10 due to its stored energy.
In the present invention, the annular elastic body 10 and the annular spring 11 constitute an opening / closing control body.
The material of the annular elastic body 10 is selected from fluorine rubber, silicon rubber, nitrile rubber, and the like as appropriate mainly in consideration of usage conditions such as the type of controlled fluid and temperature.

次に、開閉操作の要領について説明する。図1は、流路開路位置に操作した場合を示し、制御流体の圧力P1は、例えば、P1=0Mpa(ゲージ圧)に操作している。環状弾性体10は、最も外径を小さくした形状で環状溝6内に収まっており、開閉動作空間部3においては、第1の径の第1の円筒面4と環状弾性体10の外径との間に所定の間隙が生じ、この間隙の寸法と第1の円筒面4の周長を掛けた面積の流路断面が確保される。従って、その流路断面の形態から流体圧力損失は極めて小さい値となり、例えば、大きな流量Q1の被制御流体を導入口7から導入して導出口8から導出することができる。   Next, the point of the opening / closing operation will be described. FIG. 1 shows a case where the operation is performed at the flow path opening position, and the pressure P1 of the control fluid is operated, for example, to P1 = 0 Mpa (gauge pressure). The annular elastic body 10 has a shape with the smallest outer diameter and is accommodated in the annular groove 6. In the opening / closing operation space portion 3, the first cylindrical surface 4 having the first diameter and the outer diameter of the annular elastic body 10. A predetermined gap is formed between the two and the flow path cross section having an area obtained by multiplying the dimension of the gap and the circumference of the first cylindrical surface 4 is secured. Accordingly, the fluid pressure loss is extremely small due to the shape of the flow path cross section, and for example, a controlled fluid having a large flow rate Q1 can be introduced from the inlet 7 and led out from the outlet 8.

図2は、流路閉路位置に操作した場合を示す。制御流体の圧力P2は、例えば、P2=1.0Mpaに操作しており、この圧力を受けて環状弾性体10は、環状バネ11の収縮力に抗して伸張しその一部先端が環状溝6からはみ出し、第1の円筒面4に当接して開閉動作空間部3における流路断面を完全に閉塞して被制御流体の流量Q2は0となっている。
なお、閉路操作時の制御流体の圧力P2は、被制御流体の圧力より高い範囲で、環状弾性体10と環状バネ11の弾性力を考慮して設定する必要がある。
FIG. 2 shows a case where the operation is performed to the channel closing position. The pressure P2 of the control fluid is operated to, for example, P2 = 1.0 Mpa. Upon receiving this pressure, the annular elastic body 10 expands against the contracting force of the annular spring 11, and a part of the tip thereof is an annular groove. 6, abuts against the first cylindrical surface 4, completely closes the cross section of the flow path in the opening / closing operation space 3, and the flow rate Q2 of the controlled fluid is zero.
Note that the pressure P2 of the control fluid during the closing operation needs to be set in consideration of the elastic force of the annular elastic body 10 and the annular spring 11 in a range higher than the pressure of the controlled fluid.

再度、流路開路位置に操作する場合は、制御流体の圧力を下げて環状弾性体10を収縮させればよいが、例えば、閉路操作期間が長期間となった場合や、流量制御装置としての使用期間が長年月にわたり環状弾性体10の材質の経年劣化による弾性力の低下等による収縮力不足を考慮して、環状弾性体10の中空内に環状バネ11を挿入している。即ち、環状バネ11は常に収縮する方向に蓄勢されているので、流路開路操作に向けた環状弾性体10の収縮動作をこの環状バネ11の蓄勢力が補助し、確実な流路開路操作がなされる。   When operating again to the flow path opening position, the pressure of the control fluid may be reduced to cause the annular elastic body 10 to contract. For example, when the closing operation period becomes long, or as a flow control device The annular spring 11 is inserted into the hollow of the annular elastic body 10 in consideration of insufficient contraction force due to a decrease in elastic force due to aging deterioration of the material of the annular elastic body 10 over a long period of use. That is, since the annular spring 11 is always stored in the contracting direction, the storing force of the annular spring 11 assists the contracting operation of the annular elastic body 10 toward the channel opening operation, and the reliable channel opening is achieved. An operation is made.

以上のように、この発明の実施の形態1の流量制御装置においては、制御流体の圧力を調整することで流路開閉操作が可能となるので、特別の機械的駆動装置を必要とせず、安価な装置で遠隔開閉操作が実現する。かつ、流体開路操作時は、リング状の大きな流路断面が確保できるので、開路時の流体圧力損失を低くできる。
なお、環状弾性体10を断面中実のものとし、開閉制御体をこの環状弾性体10のみで構成するようにしてもよい。
As described above, in the flow rate control apparatus according to Embodiment 1 of the present invention, the flow path opening / closing operation can be performed by adjusting the pressure of the control fluid, so that a special mechanical drive device is not required and is inexpensive. Remote opening and closing operation is realized with a simple device. And at the time of fluid opening operation, since a ring-shaped large channel section can be secured, fluid pressure loss at the time of opening can be reduced.
The annular elastic body 10 may be solid in cross section, and the opening / closing control body may be constituted only by the annular elastic body 10.

実施の形態2.
図3は、この発明の実施の形態2における流量制御装置で使用する環状弾性体10aおよび環状バネ11aを示す。特に、環状弾性体10aは、図に示すように、そのC字状断面の、下端から上方に突出して形成された舌片の先端が、上端に設けられた溝に嵌合し、断面内部に環状バネ11aを囲む袋状となる。
従って、特に、流路閉路位置から流路開路位置に操作する場合、環状バネ11aの収縮力が環状弾性体10aに確実に伝達され開路操作がより確実になされる。
Embodiment 2. FIG.
FIG. 3 shows an annular elastic body 10a and an annular spring 11a used in the flow rate control apparatus according to Embodiment 2 of the present invention. In particular, as shown in the figure, the annular elastic body 10a has a C-shaped cross-section with a tip of a tongue piece formed so as to protrude upward from the lower end into a groove provided at the upper end, and inside the cross-section. It becomes a bag shape surrounding the annular spring 11a.
Therefore, especially when operating from the flow path closing position to the flow path opening position, the contraction force of the annular spring 11a is reliably transmitted to the annular elastic body 10a, and the opening operation is more reliably performed.

実施の形態3.
図4は、この発明の実施の形態3における流量制御装置の構成を示す断面図で、ここでは、開路位置操作状態を示している。先の実施の形態1での図1と異なるのは、開閉動作空間部3における、環状溝の形状のみである。即ち、この実施の形態3の図4の環状溝6aは、その溝幅(図の縦方向の寸法)が、径が大きくなるにつれて減少するように、その上下に位置する両側面が径方向にテーパ状に形成されている。
従って、特に、流路閉路位置から図4に示す流路開路位置に操作する場合、このテーパ面の効果により環状バネ11が収縮して図4に示す元の外形に復帰し易くなり、結果として開閉操作の信頼性が向上する。
Embodiment 3 FIG.
FIG. 4 is a cross-sectional view showing the configuration of the flow rate control apparatus according to Embodiment 3 of the present invention, and here shows an open circuit position operating state. The only difference from FIG. 1 in the first embodiment is the shape of the annular groove in the opening / closing operation space 3. That is, the annular groove 6a in FIG. 4 of the third embodiment has both the upper and lower side surfaces in the radial direction so that the groove width (vertical dimension in the figure) decreases as the diameter increases. It is formed in a taper shape.
Therefore, in particular, when operating from the flow path closing position to the flow path opening position shown in FIG. 4, the effect of this taper surface makes the annular spring 11 contract and easily return to the original outer shape shown in FIG. The reliability of the opening / closing operation is improved.

実施の形態4.
図5は、この発明の実施の形態4における流量制御装置の構成を示す断面図である。流路開路位置における流体圧力損失を小さくする点は、先の各実施の形態と同一の構成を採用しているが、開閉の動作原理が異なる。即ち、ここでは、制御流体は使用せず、開閉制御体は、環状溝6内に収められた環状弾性体12とこの環状弾性体12内に一体に埋め込まれた形状記憶合金13とから構成されている。そして、形状記憶合金13は、所定の温度範囲内では、図5に示すように、比較的小さい径の形状を記憶しているが、上記範囲を越えて温度が上昇すると、予め記憶している、大きな径の形状に自ら変形し、一体に形成された環状弾性体12を変形させてその外径を増大させ開閉動作空間部3における流路断面を閉塞して被制御流体の導出を阻止する。
Embodiment 4 FIG.
FIG. 5 is a cross-sectional view showing the configuration of the flow rate control apparatus according to Embodiment 4 of the present invention. Although the same configuration as the previous embodiments is adopted to reduce the fluid pressure loss at the flow path opening position, the operation principle of opening and closing is different. That is, here, no control fluid is used, and the open / close control body is composed of an annular elastic body 12 housed in the annular groove 6 and a shape memory alloy 13 embedded integrally in the annular elastic body 12. ing. The shape memory alloy 13 stores a shape having a relatively small diameter within a predetermined temperature range as shown in FIG. 5, but stores it in advance when the temperature rises beyond the above range. , By deforming itself into a large-diameter shape, deforming the integrally formed annular elastic body 12 to increase its outer diameter and closing the flow path cross section in the open / close operation space 3 to prevent the controlled fluid from being led out. .

この実施の形態4の流量制御装置は、各種設備プラントにおいて要求され得る、温度の異常上昇時、被制御流体の導出を自動的に遮断する流量制御装置として利用することができる。外部からの制御手段を必要とすることなく、自ら自動的に上述した保護動作を実行するので、装置が簡便安価となり、また、被制御流体を導出する正常時に、その流路圧力損失が小さいので、特に、常時、大流量の流体を扱う用途に利用するとメリットが大きい。   The flow control device according to the fourth embodiment can be used as a flow control device that can be required in various equipment plants and automatically shuts off the controlled fluid when the temperature rises abnormally. Since the protection operation described above is automatically executed without requiring external control means, the apparatus becomes simple and inexpensive, and the flow path pressure loss is small when the controlled fluid is derived normally. In particular, there is a great merit when it is used for applications that always handle a large flow rate of fluid.

以上では、流量制御装置として動作する独立した装置として説明したが、この発明は、例えば、図1における、ハウジングの下段部1Bに近い形状に製作されたシリンダの漏れ試験等にも利用することができる。即ち、この場合は、ハウジングの上段部1Aおよび中段部1Cの部分を漏れ試験用の治具とし、この治具を上記シリンダに取り付けた状態で制御流体の圧力を高めて環状弾性体10により開閉動作空間部3における流路断面を閉塞し、導入口7から所定の試験圧力の流体を供給して漏れ試験を行うことができる。シリンダを含む機械装置の組み立て工程の途中で当該シリンダのみの漏れ試験が要求される場合等に有用である。   In the above description, the device is described as an independent device that operates as a flow rate control device. However, the present invention can be used for, for example, a leakage test of a cylinder manufactured in a shape close to the lower step portion 1B of the housing in FIG. it can. That is, in this case, the upper stage portion 1A and the middle step portion 1C of the housing are used as a jig for a leak test, and the pressure of the control fluid is increased and opened and closed by the annular elastic body 10 with the jig attached to the cylinder. It is possible to perform a leak test by closing the cross section of the flow path in the operation space 3 and supplying a fluid having a predetermined test pressure from the introduction port 7. This is useful when a leakage test of only the cylinder is required during the assembly process of the mechanical device including the cylinder.

この発明の実施の形態1における流量制御装置の流路開路位置操作状態を示す断面図である。It is sectional drawing which shows the flow-path opening position operation state of the flow control apparatus in Embodiment 1 of this invention. 同じく、流量制御装置の流路閉路位置操作状態を示す断面図である。Similarly, it is sectional drawing which shows the flow-path closing position operation state of a flow control apparatus. この発明の実施の形態2における流量制御装置で使用する環状弾性体10aおよび環状バネ11aを示す図である。It is a figure which shows the cyclic | annular elastic body 10a and cyclic | annular spring 11a which are used with the flow control apparatus in Embodiment 2 of this invention. この発明の実施の形態3における流量制御装置の構成を示す断面図である。It is sectional drawing which shows the structure of the flow control apparatus in Embodiment 3 of this invention. この発明の実施の形態4における流量制御装置の構成を示す断面図である。It is sectional drawing which shows the structure of the flow control apparatus in Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 ハウジング、2 空間、3 開閉動作空間部、4 第1の円筒面、
5 第2の円筒面、6,6a 環状溝、7 導入口、8 導出口、9 制御流体導入口、10,10a,12 環状弾性体、11,11a 環状バネ、13 形状記憶合金。
1 housing, 2 space, 3 opening / closing operation space, 4 first cylindrical surface,
5 Second cylindrical surface, 6, 6a annular groove, 7 inlet, 8 outlet, 9 control fluid inlet, 10, 10a, 12 annular elastic body, 11, 11a annular spring, 13 shape memory alloy.

Claims (5)

内部に空間を有するハウジング、このハウジングに形成され上記空間の一端に連通する被制御流体導入口、上記ハウジングに形成され上記空間の他端に連通する被制御流体導出口、上記ハウジングに形成され制御流体を導入する制御流体導入口、上記空間内の上記一端と他端との間に形成された開閉動作空間部、およびこの開閉動作空間部に設けられ、上記制御流体導入口からの制御流体の圧力に応じて上記開閉動作空間部における上記被制御流体の通路断面を制御する開閉制御体を備えた流量制御装置であって、
上記開閉動作空間部は、上記空間内面を形成する、それぞれ第1の径を有する第1の円筒面とこの第1の円筒面と同軸で上記第1の径より小さい第2の径を有する第2の円筒面、および所定の深さを有し上記第2の円筒面に開口する環状溝で形成されており、
上記開閉制御体は、上記開閉動作空間部内に上記環状溝の側面と気密に当接して配設され、上記環状溝の底面から導入する上記制御流体の圧力変化によりその外径が変化する環状弾性体からなることを特徴とする流量制御装置。
A housing having a space inside, a controlled fluid introduction port formed in the housing and communicating with one end of the space, a controlled fluid outlet port formed in the housing and communicating with the other end of the space, and a control formed in the housing A control fluid introduction port for introducing a fluid, an opening / closing operation space formed between the one end and the other end in the space, and an opening / closing operation space provided in the opening / closing operation space. A flow control device comprising an opening / closing control body for controlling a passage cross section of the controlled fluid in the opening / closing operation space according to pressure,
The opening / closing operation space includes a first cylindrical surface having a first diameter and a second diameter smaller than the first diameter and coaxial with the first cylindrical surface. 2 cylindrical surfaces, and an annular groove having a predetermined depth and opening to the second cylindrical surface,
The opening / closing control body is disposed in the opening / closing operation space in contact with the side surface of the annular groove in an airtight manner, and has an annular elasticity whose outer diameter changes due to a pressure change of the control fluid introduced from the bottom surface of the annular groove. A flow control device comprising a body.
上記環状弾性体は、断面が中空のパイプ状に形成され、上記環状弾性体の外径を低減させる方向に蓄勢された環状バネを上記中空内に配設したことを特徴とする請求項1記載の流量制御装置。 The annular elastic body is formed in a pipe shape having a hollow cross section, and an annular spring stored in a direction to reduce the outer diameter of the annular elastic body is disposed in the hollow. The flow control device described. 上記環状弾性体は、断面が中空でその内径中央で分離された略C字状で上記制御流体が上記中空内に導入されるように形成され、上記環状弾性体の外径を低減させる方向に蓄勢された環状バネを上記中空内に配設したことを特徴とする請求項1記載の流量制御装置。 The annular elastic body is formed in a substantially C shape having a hollow cross section and separated at the center of the inner diameter so that the control fluid is introduced into the hollow, and in a direction to reduce the outer diameter of the annular elastic body. The flow rate control device according to claim 1, wherein a stored annular spring is disposed in the hollow. 上記環状溝は、その溝幅が、径が大きくなるにつれて減少するように、その両側面が径方向にテーパ状に形成されていることを特徴とする請求項1ないし3のいずれかに記載の流量制御装置。 4. The annular groove according to claim 1, wherein both side surfaces of the annular groove are tapered in a radial direction so that the groove width decreases as the diameter increases. Flow control device. 内部に空間を有するハウジング、このハウジングに形成され上記空間の一端に連通する被制御流体導入口、上記ハウジングに形成され上記空間の他端に連通する被制御流体導出口、上記空間内の上記一端と他端との間に形成された開閉動作空間部、およびこの開閉動作空間部に設けられ、上記開閉動作空間部における上記被制御流体の通路断面を制御する開閉制御体を備えた流量制御装置であって、
上記開閉動作空間部は、上記空間内面を形成する、それぞれ第1の径を有する第1の円筒面とこの第1の円筒面と同軸で上記第1の径より小さい第2の径を有する第2の円筒面、および所定の深さを有し上記第2の円筒面に開口する環状溝で形成されており、
上記開閉制御体は、上記開閉動作空間部内に上記環状溝の側面と気密に当接して配設された環状弾性体、および温度によって上記環状弾性体の外径が変化するよう、上記温度によって異なる形状を取るよう記憶され上記環状弾性体と一体に構成された形状記憶合金を備えたことを特徴とする流量制御装置。
A housing having a space inside, a controlled fluid introduction port formed in the housing and communicating with one end of the space, a controlled fluid outlet port formed in the housing and communicating with the other end of the space, and the one end in the space Flow control device provided with an opening / closing operation space portion formed between the other end and the opening / closing operation space portion, and an opening / closing control body that is provided in the opening / closing operation space portion and controls the passage cross section of the controlled fluid in the opening / closing operation space portion Because
The opening / closing operation space includes a first cylindrical surface having a first diameter and a second diameter smaller than the first diameter and coaxial with the first cylindrical surface. 2 cylindrical surfaces, and an annular groove having a predetermined depth and opening to the second cylindrical surface,
The opening / closing control body varies depending on the temperature so that the outer diameter of the annular elastic body changes depending on the temperature and the annular elastic body disposed in airtight contact with the side surface of the annular groove in the opening / closing operation space. A flow rate control device comprising a shape memory alloy memorized so as to take a shape and configured integrally with the annular elastic body.
JP2006002290A 2006-01-10 2006-01-10 Flow control device Pending JP2007182951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002290A JP2007182951A (en) 2006-01-10 2006-01-10 Flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002290A JP2007182951A (en) 2006-01-10 2006-01-10 Flow control device

Publications (1)

Publication Number Publication Date
JP2007182951A true JP2007182951A (en) 2007-07-19

Family

ID=38339218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002290A Pending JP2007182951A (en) 2006-01-10 2006-01-10 Flow control device

Country Status (1)

Country Link
JP (1) JP2007182951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605242A (en) * 2016-01-20 2016-05-25 浙江理工大学 Novel valve allowing flow characteristics to be adjusted

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605242A (en) * 2016-01-20 2016-05-25 浙江理工大学 Novel valve allowing flow characteristics to be adjusted

Similar Documents

Publication Publication Date Title
KR102342755B1 (en) Valve device
JP5144880B2 (en) Flow control valve
JP4196293B2 (en) Vacuum pressure control valve
JP6450499B2 (en) Electronic expansion valve
US20090288723A1 (en) Valve device
EP3108167B1 (en) Actuator apparatus having integral yoke tubing
US8733399B2 (en) Flow adjusting valve
JP6122541B1 (en) Two-way valve for flow control and temperature control device using the same
JP2004162918A (en) Valve having pressure balancing piston, and method related to it
JP3861206B2 (en) Fluid controller
TWI421426B (en) Electric needle valve
JP6640510B2 (en) Flow control valve
CN111883465B (en) Pressure control device for process chamber
CN103821981B (en) Pressure type modulating valve in self-powering type
US20180094740A1 (en) Mounting structure of solenoid valve for operation, and fluid control valve
WO2016015620A1 (en) Actuator of regulator and fluid regulator
CN203757110U (en) Self-operated internal pressure tapping type adjusting valve
US10041598B2 (en) Coaxially designed, pressure-compensated, directly controlled valve with low pressure losses
JP2007182951A (en) Flow control device
EP2999907B1 (en) Spring controlled valve
JP4982802B2 (en) Bellows valve for high temperature and pressure
CN219035578U (en) Electronic expansion valve
JP2006266403A (en) Mixing valve
JP5989950B2 (en) On-off valve with detector
KR20200014812A (en) Actuators, valves, fluid supply systems, and semiconductor manufacturing equipment