WO2012020634A1 - Process for producing metal nanoparticle composite - Google Patents

Process for producing metal nanoparticle composite Download PDF

Info

Publication number
WO2012020634A1
WO2012020634A1 PCT/JP2011/066706 JP2011066706W WO2012020634A1 WO 2012020634 A1 WO2012020634 A1 WO 2012020634A1 JP 2011066706 W JP2011066706 W JP 2011066706W WO 2012020634 A1 WO2012020634 A1 WO 2012020634A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
fine particles
gold
film
polyimide precursor
Prior art date
Application number
PCT/JP2011/066706
Other languages
French (fr)
Japanese (ja)
Inventor
龍三 新田
松村 康史
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to CN201180038553.0A priority Critical patent/CN103052481B/en
Priority to JP2012528628A priority patent/JP5719847B2/en
Priority to KR1020137002648A priority patent/KR20130098991A/en
Publication of WO2012020634A1 publication Critical patent/WO2012020634A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for producing a metal fine particle composite in which metal fine particles are dispersed in a matrix composed of a polyimide resin.
  • LSPR Local Surface Plasmon Resonance
  • Patent Documents 1 to 4 have been proposed as techniques relating to a method for producing a metal fine particle composite in which metal fine particles are fixed in a matrix such as a resin.
  • Patent Document 1 as a polymer composite material in which particles are small, particle dispersibility and particle-matrix adhesion are good, and thus have a high elastic modulus, particles are compared with thermoplastic or thermosetting polymer matrices.
  • a polymer-metal cluster composite having an improved elastic modulus obtained by uniformly dispersing and filling metal particles having a diameter of 10 to 20 angstroms with a volume fraction of 0.005 to 0.01%.
  • Patent Document 2 for the purpose of obtaining a dispersion of metal fine particles that can be used for forming a novel conductive film that can be used in place of the electroless plating method or a granular magnetic thin film, a resin substrate containing an ion exchange group is used.
  • a method for producing a fine particle dispersion in which reduction is performed in a gas phase after contacting with a solution containing metal ions is disclosed. In this method, since the reaction proceeds while the metal ions diffuse into the resin during hydrogen reduction, the depth from the surface of the resin substrate to several tens of nanometers (80 nm in the example of Patent Document 2). In addition, there are no metal fine particles.
  • Patent Document 3 a polyimide resin film introduced with a carboxyl group by contact with an alkali aqueous solution is brought into contact with a metal ion-containing liquid to dope metal ions into the resin film, and then the reduction temperature of the metal ions or higher in the reducing gas.
  • the first heat treatment is performed to form a layer in which metal nanoparticles are dispersed in the polyimide resin, and the second heat treatment is performed at a temperature different from the first heat treatment temperature.
  • Patent Document 3 describes that the volume filling rate of the metal nanoparticles in the composite film can be controlled by adjusting the thickness of the metal nanoparticle dispersion layer by the second heat treatment.
  • the particle size is a method in which metal ions adsorbed or bonded to ion exchange groups contained in the matrix resin are reduced to form metal fine particles.
  • metal ions are immobilized by ion exchange groups, it is difficult to obtain metal fine particles having a sufficiently large particle diameter.
  • Patent Document 4 in the process of dispersing metal particles in a polymer matrix, a metal precursor is used as a polymer substance in order to solve problems such as compatibility with the polymer matrix, interface defects, and cohesion between particles.
  • a method is disclosed in which a metal precursor is photoreduced by irradiating ultraviolet rays after being dispersed in a matrix at a molecular level.
  • the method of Patent Document 4 deposits metal fine particles by ultraviolet reduction, it is affected by the ultraviolet irradiation surface, and therefore a gradient occurs in the deposition density of the metal fine particles between the surface layer portion and the deep portion of the matrix. That is, the particle diameter and the filling ratio of the metal fine particles tend to decrease continuously as the matrix proceeds from the surface layer to the deep part.
  • the particle size of the metal fine particles obtained by photoreduction is maximum at the surface layer portion of the matrix, which is the ultraviolet irradiation surface, but is at most about a dozen nanometers, and a particle size equal to or larger than this particle size. It was difficult to disperse the metal microparticles having a large depth.
  • a metal fine particle composite in which metal fine particles are dispersed in a matrix is used for applications such as a sensor using localized surface plasmon resonance, it is important that at least the intensity of the absorption spectrum is large. In general, the sharper the absorption spectrum, the higher the sensitivity of detection.
  • the size of the metal fine particles is controlled within a predetermined range; 2) The shape of the metal fine particles is uniform, 3) The metal fine particles are separated from each other in a state of maintaining a certain particle interval from the adjacent metal fine particles, 4) The volume filling ratio of the metal fine particles to the metal fine particle composite is controlled within a certain range. 5) The metal fine particles are present from the surface layer portion of the matrix, and are dispersed evenly while maintaining a predetermined inter-particle distance in the thickness direction. It is necessary for the metal fine particle composite to have structural characteristics such as
  • the present invention has been devised for the above-mentioned problems that could not be solved by the prior art, and is obtained by independently dispersing metal fine particles having a particle diameter within a predetermined range without agglomerating each other. It aims at providing the manufacturing method of a composite_body
  • the present inventors have controlled the amount of metal contained in the polyimide resin and the thickness of the polyimide resin matrix, and obtained by heat treatment at a temperature within a specific range.
  • the present inventors have found that the fine particle composite satisfies the above requirements and completed the present invention.
  • the metal particles having an average particle diameter of 3 nm or more are not in contact with each other in the polyimide resin, and the particle diameter of the metal fine particle having the larger particle diameter in the adjacent metal fine particles
  • a metal fine particle composite is produced by being dispersed independently at the above intervals.
  • the metal fine particle composite production method includes the following steps a and b; a) A coating solution containing a polyimide precursor resin and a metal compound is applied on a substrate so that the content of the metal is 50 ⁇ g / cm 2 or less, dried, and the thickness after drying is Forming a coating film of 1.7 ⁇ m or less, b) The coating film is heat-treated at a temperature in the range of 160 ° C. or more and 450 ° C. or less, thereby reducing the metal ions (or metal salt) in the coating film and precipitating particulate metal that becomes metal fine particles. And a step of dispersing in the coating film and imidizing the polyimide precursor resin in the coating film to form a polyimide resin layer having a thickness of 1 ⁇ m or less and an elastic modulus of 10 GPa or less, It has.
  • the metal fine particle composite has an average particle diameter of the metal fine particles in the range of 3 nm to 25 nm and a volume fraction of the metal fine particles. It may be in the range of 0.05% to 1% with respect to the composite.
  • the metal content in the coating solution in the step a is in the range of 0.5 ⁇ g / cm 2 or more and 10 ⁇ g / cm 2 or less, and the thickness of the coating film after drying is 500 nm or more and 1 It may be within a range of 7 ⁇ m or less.
  • the thickness of the polyimide resin layer in the step b may be in the range of 300 nm to 1 ⁇ m.
  • the metal fine particle composite has an average particle diameter of the metal fine particles in the range of 3 nm or more and 30 nm or less, and the volume fraction thereof is the metal fine particles. It may be within a range of 0.2% to 5% with respect to the composite.
  • the metal content in the coating solution in the step a is in the range of 10 ⁇ g / cm 2 to 50 ⁇ g / cm 2 and the thickness of the coating film after drying is 500 nm to 1.7 ⁇ m. It may be within the following range.
  • the thickness of the polyimide resin layer in the step b may be in the range of 300 nm to 1 ⁇ m and the elastic modulus may be in the range of 3 GPa to 10 GPa.
  • the metal fine particle composite has an average particle diameter of the metal fine particles in the range of 3 nm to 30 nm and a volume fraction of the metal fine particles. It may be within a range of 0.5% or more and 5% or less with respect to the composite.
  • the metal content in the coating solution in the step a is in the range of 5 ⁇ g / cm 2 to 10 ⁇ g / cm 2 and the thickness of the coating film after drying is 150 nm to 500 nm. It may be within the range.
  • the thickness of the polyimide resin layer in the step b may be in the range of 100 nm to 300 nm and the elastic modulus may be in the range of 5 MPa to 10 GPa.
  • the metal fine particle composite has an average particle diameter of the metal fine particles in the range of 5 nm or more and 35 nm or less, and the volume fraction thereof is a metal. It may be in the range of 1% to 15% with respect to the fine particle composite.
  • the metal content in the coating solution in the step a is in the range of 10 ⁇ g / cm 2 to 30 ⁇ g / cm 2 and the thickness of the coating film after drying is 150 nm to 500 nm. It may be within the range.
  • the thickness of the polyimide resin layer in the step b may be in the range of 100 nm to 300 nm and the elastic modulus may be in the range of 0.5 GPa to 10 GPa.
  • the step b may be performed in an inert gas atmosphere.
  • the metal compound may be a precursor of Au.
  • metal fine particles are precipitated by reduction from the state of metal ions (or metal salts) inside the polyimide precursor resin
  • the metal compound is contained in the polyimide precursor resin.
  • the amount can be easily adjusted, and the content of the metal fine particles dispersed in the polyimide resin can be easily adjusted. Therefore, relatively easily, metal fine particles having an average particle diameter of 3 nm or more do not contact each other in the polyimide resin, and are separated from each other at an interval equal to or larger than the particle diameter of the larger metal fine particle in the adjacent metal fine particles. Dispersed metal fine particle composites can be produced.
  • the reduction treatment is by heating, it is possible to disperse the metal fine particles in the matrix resin while maintaining a certain inter-particle distance in the matrix resin by utilizing thermal diffusion of the precipitated metal fine particles, and Metal fine particles dispersed at a certain inter-particle distance are present from the surface layer portion of the matrix resin.
  • the imidization of the polyimide precursor resin can be completed using the heat used in the reduction treatment, so that the production process can be simplified.
  • the metal fine particle composite produced by the method of the present invention has the above-described structural characteristics, it includes fields such as a pressure sensor using a localized surface plasmon effect, and includes, for example, an electromagnetic shielding material and a magnetic noise absorbing material. It can be applied to various industrial fields such as high thermal conductive resin materials.
  • metal fine particles having an average particle diameter of 3 nm or more are not in contact with each other in a polyimide resin, and metal fine particles having a larger particle diameter in adjacent metal fine particles
  • a coating solution containing a polyimide precursor resin and a metal compound is applied on a substrate so that the content of the metal is 50 ⁇ g / cm 2 or less, dried, and the thickness after drying is The process of forming the coating film of 1.7 micrometers or less.
  • the coating film is heat-treated at a temperature in the range of 160 ° C. or more and 450 ° C. or less, thereby reducing the metal ions (or metal salt) in the coating film and precipitating particulate metal that becomes metal fine particles.
  • volume fraction is a value indicating the total volume of the metal fine particles in a certain volume of the metal fine particle composite as a percentage.
  • the metal fine particles having an average particle diameter in the range of 3 nm to 25 nm are not in contact with each other in the polyimide resin.
  • the metal fine particles having the larger particle diameter are dispersed independently of each other (preferably completely independently) at intervals equal to or larger than the particle diameter, and the volume fraction of the metal fine particles is 0.
  • a metal fine particle composite in the range of 05% or more and 1% or less is manufactured, and includes the following steps a and b.
  • the polyimide resin is mainly composed of a polyimide resin imidized by heating and dehydrating and cyclizing the polyimide precursor resin.
  • the polyimide resin is preferably used because it has properties excellent in heat resistance and dimensional stability as compared with other synthetic resins such as thermosetting resins such as epoxy resins, phenol resins, and acrylic resins.
  • the polyimide resin is advantageous in that it has heat resistance at a temperature of at least 160 ° C. because heat treatment is performed in the process of forming the metal fine particles.
  • a coating film is formed by applying a coating liquid containing a polyimide precursor resin and a metal compound onto a substrate and drying.
  • the substrate used in step a is not particularly limited, and may be, for example, a polyimide resin film (sheet), and other examples include a metal foil, a glass plate, a resin film, and ceramics. it can.
  • the metal fine particle composite body manufactured by the manufacturing method of the present embodiment may be peeled off from the base material or may remain in the state where the base material is attached.
  • the substrate should be light transmissive.
  • a glass substrate, a transparent synthetic resin substrate, or the like can be used.
  • the transparent synthetic resin include polyimide resin, PET resin, acrylic resin, MS resin, MBS resin, ABS resin, polycarbonate resin, silicone resin, siloxane resin, and epoxy resin.
  • the polyimide precursor resin which is a polyimide resin precursor
  • a known polyimide precursor resin obtained from a known acid anhydride and diamine can be used.
  • the polyimide precursor resin is prepared by, for example, dissolving tetracarboxylic dianhydride and diamine in an organic solvent in approximately equimolar amounts and stirring them at a temperature in the range of 0 to 100 ° C. for 30 minutes to 24 hours to cause a polymerization reaction. can get.
  • the reaction components are preferably dissolved so that the obtained polyimide precursor resin is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight, in the organic solvent.
  • the organic solvent used in the polymerization reaction it is preferable to use a polar one.
  • the organic polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide (DMAc), N-methyl-2 -Pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme and the like. Two or more of these solvents can be used in combination, and some aromatic hydrocarbons such as xylene and toluene can also be used.
  • the synthesized polyimide precursor resin is used as a solution. Usually, it is advantageous to use as a reaction solvent solution, but if necessary, it can be concentrated, diluted or replaced with another organic solvent. The solution thus prepared can be used as a coating solution by adding a metal compound.
  • the polyimide precursor resin is preferably selected so that the polyimide resin after imidization contains a thermoplastic or low thermal expansion polyimide resin.
  • the heat resistant resin which consists of a polymer which has an imide group in structures, such as a polyimide, a polyamideimide, a polybenzimidazole, a polyimide ester, a polyetherimide, a polysiloxaneimide, can be mentioned, for example.
  • Examples of the diamine that can be suitably used for preparing the polyimide precursor resin include 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 4,4′-diaminodiphenyl ether, and 2′-methoxy- 4,4'-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl ] Propane, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 4,4′-diaminobenzanilide and the like.
  • Diamines include 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, and bis [4- (3-aminophenoxy) phenyl.
  • diamines include, for example, 2,2-bis- [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis- [4- (3-aminophenoxy) phenyl] hexafluoropropane, 4 , 4'-methylenedi-o-toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 4,4'-diaminodiphenylpropane, 3,3 ' -Diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3, 3'-diaminodiphenyl s
  • Particularly preferred diamine components include 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (TFMB), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB), 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane (DANPG), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 1,3-bis (3 -Aminophenoxy) benzene (APB), paraphenylenediamine (p-PDA), 3,4'-diaminodiphenyl ether (DAPE34), one or more diamines selected from 4,4'-diaminodiphenyl ether (DAPE44) .
  • TFMB 2,2′-dimethyl-4,4′-diaminobiphenyl
  • m-TB 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane
  • BAPP
  • Examples of the acid anhydride suitably used for the preparation of the polyimide precursor resin include pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4 Examples include '-diphenylsulfonetetracarboxylic dianhydride and 4,4'-oxydiphthalic anhydride.
  • acid anhydrides include pyromellitic anhydride (PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3', 4,4'-benzophenone tetracarboxylic acid
  • PMDA pyromellitic anhydride
  • BPDA 4,4'-biphenyltetracarboxylic dianhydride
  • DBDA 4,4'-benzophenone tetracarboxylic acid
  • BTDA acid dianhydride
  • ODPA 4,4'-oxydiphthalic acid anhydride
  • DSDA 4,4'-diphenylsulfone tetracarboxylic dianhydride
  • diamine and acid anhydride may be used alone or in combination of two or more.
  • diamines and acid anhydrides other than those described above can be used in combination.
  • thermoplastic polyimide precursor resin solution examples include thermoplastic polyimide precursor resin varnish SPI-200N (trade name), SPI-300N (trade name), and SPI-1000G (manufactured by Nippon Steel Chemical Co., Ltd.). Product name), Toray Industries Co., Ltd. # 3000 (product name), etc. are mentioned.
  • non-thermoplastic polyimide precursor resin solution examples include U-Varnish-A (trade name) and U-Varnish-S (trade name) which are non-thermoplastic polyimide precursor resin varnishes manufactured by Ube Industries, Ltd. ) And the like.
  • the metal fine particle composite body produced in the present embodiment is applied to, for example, an application utilizing localized surface plasmon resonance of a light transmission system, as a polyimide resin exhibiting transparency or colorlessness, the intramolecular, molecular It is preferable to use those that are difficult to form a charge transfer (CT) complex between them, such as aromatic polyimide resins having steric substituents in bulk, alicyclic polyimide resins, fluorine-based polyimide resins, silicon-based polyimide resins, etc. .
  • CT charge transfer
  • Examples of the substituent having a bulky steric structure include a fluorene skeleton and an adamantane skeleton. Such a bulky steric substituent is substituted with either an acid anhydride residue or a diamine residue in the aromatic polyimide resin, or an acid anhydride residue and a diamine residue. Both may be substituted.
  • Examples of the diamine having a bulky steric substituent include 9,9-bis (4-aminophenyl) fluorene.
  • An alicyclic polyimide resin is a resin formed by polymerizing an alicyclic acid anhydride and an alicyclic diamine.
  • the alicyclic polyimide resin can also be obtained by hydrogenating an aromatic polyimide resin.
  • Fluorine-based polyimide resins are, for example, acid anhydrides and / or diamines in which monovalent elements bonded to carbon such as alkyl groups and phenyl groups are substituted with fluorine, perfluoroalkyl groups, perfluoroaryl groups, perfluoroalkoxy groups, perfluorophenoxy groups, etc. Is a resin formed by polymerizing.
  • the fluorine atom any one in which all or part of the monovalent element is substituted can be used, but one in which 20% or more of the monovalent element is substituted with the fluorine atom is preferable.
  • the silicon-based polyimide resin is a resin obtained by polymerizing a silicon-based diamine and an acid anhydride.
  • such a transparent polyimide resin preferably has a light transmittance of 80% or more at a wavelength of 400 nm and a visible light average transmittance of 90% or more at a thickness of 10 ⁇ m.
  • a fluorine-based polyimide resin excellent in transparency is particularly preferable.
  • a polyimide resin having a structural unit represented by the general formula (1) can be used.
  • Ar 1 represents a tetravalent aromatic group represented by Formula (2), Formula (3), or Formula (4)
  • Ar 2 represents Formula (5)
  • Formula ( 6) represents a divalent aromatic group represented by formula (7) or formula (8)
  • p represents the number of repeating structural units.
  • R independently represents a fluorine atom or a perfluoroalkyl group
  • Y represents a divalent group represented by the following structural formula
  • R 1 represents a perfluoroalkylene group
  • n represents a number from 1 to 19. Means.
  • Ar 2 can be referred to as a diamine residue, and Ar 1 can be referred to as an acid anhydride residue.
  • the tetracarboxylic acid, acid chloride, esterified compound and the like (hereinafter referred to as “acid anhydride etc.”) that can be used in the same manner as above will be described.
  • the fluorine-based polyimide resin is not limited to those obtained from the diamine and acid anhydride described herein.
  • any alkyl group excluding an amino group in the molecule, any monovalent element bonded to carbon such as a phenyl ring, etc., having fluorine or a perfluoroalkyl group can be used.
  • Examples of the raw acid anhydride to be Ar 1 include 1,4-difluoropyromellitic acid, 1-trifluoromethyl-4-fluoropyromellitic acid, 1,4-di (trifluoromethyl) pyromellitic acid, 1,4-di (pentafluoroethyl) pyromellitic acid, hexafluoro-3,3 ′, 4,4′-bisphenyltetracarboxylic acid, hexafluoro-3,3 ′, 4,4′-benzophenonetetracarboxylic acid 2,2-bis (3,4-dicarboxytrifluorophenyl) hexafluoropropane, 1,3-bis (3,4'-dicarboxytrifluorophenyl) hexafluoropropane, 1,4-bis (3,4 4-dicarboxytrifluorophenoxy) tetrafluorobenzene, hexafluoro-3,3 ′, 4,
  • any material can be used as long as it can precipitate metal particles (or metal salts) contained in the polyimide precursor resin by heat reduction.
  • metal particles or metal salts contained in the polyimide precursor resin by heat reduction.
  • gold Au
  • silver Ag
  • copper Cu
  • cobalt Co
  • nickel Ni
  • palladium Pd
  • platinum Pt
  • tin Sn
  • rhodium Rh
  • metal compounds containing a precursor such as iridium (Ir).
  • these metal compounds can also be used 1 type or in combination of 2 or more types.
  • the metal compound suitably used in the manufacturing method of the present embodiment is a compound of gold (Au) or silver (Ag).
  • a salt of the metal, an organic carbonyl complex, or the like can be used. Examples of the metal salt include hydrochloride, sulfate, acetate, oxalate, and citrate.
  • organic carbonyl compound capable of forming an organic carbonyl complex with the above metal species examples include ⁇ -diketones such as acetylacetone, benzoylacetone and dibenzoylmethane, and ⁇ -ketocarboxylic acid esters such as ethyl acetoacetate. it can.
  • the metal compound include H [AuCl 4 ], Na [AuCl 4 ], AuI, AuCl, AuCl 3 , AuBr 3 , NH 4 [AuCl 4 ] ⁇ n 2 H 2 O, Ag (CH 3 COO), AgCl , AgClO 4, Ag 2 CO 3 , AgI, Ag 2 SO 4, AgNO 3, Ni (CH 3 COO) 2, Cu (CH 3 COO) 2, CuSO 4, CuSO 4, CuSO 4, CuCl 2, CuSO 4, CuBr 2 , Cu (NH 4 ) 2 Cl 4 , CuI, Cu (NO 3 ) 2 , Cu (CH 3 COCH 2 COCH 3 ) 2 , CoCl 2 , CoCO 3 , CoSO 4 , Co (NO 3 ) 2 , NiSO 4 , NiCO 3, NiCl 2, NiBr 2, Ni (NO 3) 2, NiC 2 O 4, Ni (H 2 PO 2) 2, Ni (CH 3 C CH 2 COCH 3) 2, Pd (CH 3 COO)
  • a metal ion generated by dissociation of a metal compound may cause a three-dimensional cross-linking reaction with the polyimide precursor resin. For this reason, the thickening and gelation of the coating solution proceed with the passage of time, which may make it difficult to use the coating solution.
  • a viscosity modifier as a stabilizer in the coating solution.
  • the viscosity modifier instead of the metal ions in the coating solution forming a chelate complex with the polyimide precursor resin, the viscosity modifier and the metal ions form a chelate complex. As described above, the viscosity modifier blocks the three-dimensional cross-linking between the polyimide precursor resin and the metal ions, and suppresses thickening and gelation.
  • the viscosity modifier it is preferable to select a low molecular organic compound that is highly reactive with metal ions (that is, capable of forming a metal complex).
  • the molecular weight of the low molecular weight organic compound is preferably in the range of 50 to 300.
  • Specific examples of such a viscosity modifier include acetylacetone, ethyl acetoacetate, pyridine, imidazole, picoline and the like.
  • the viscosity modifier is added in an amount of 1 to 50 mol, preferably 2 to 20 mol, per mol of the chelate complex compound that can be formed.
  • the compounding amount of the metal compound in the coating solution is in the range of 3 to 80 parts by weight, preferably in the range of 10 to 60 parts by weight, based on 100 parts by weight of the total solid content of the polyimide precursor resin and the metal compound.
  • the metal compound is less than 3 parts by weight, it is difficult to make the average particle diameter of the metal fine particles 3 nm or more.
  • the amount exceeds 80 parts by weight, a metal salt that cannot be dissolved in the coating solution may precipitate or metal fine particles may easily aggregate.
  • the average particle diameter means an average value (median diameter) of the diameters of the metal fine particles, and is an area average diameter when 100 arbitrary metal fine particles are measured. The average particle diameter can be confirmed by observing metal fine particles with a transmission electron microscope (TEM).
  • a leveling agent, an antifoaming agent, an adhesion-imparting agent, a crosslinking agent, etc. can be blended as optional components other than the above components.
  • the method for applying the coating solution containing the metal compound is not particularly limited, and for example, it can be applied with a coater such as a comma, die, knife, lip, etc. Among them, a coating film is uniformly formed. It is preferable to use a spin coater, gravure coater, or bar coater that can easily control the thickness of the coating film with high accuracy.
  • the coating solution has a metal content derived from the metal compound (hereinafter sometimes abbreviated as “metal content”) in the range of 0.5 ⁇ g / cm 2 to 10 ⁇ g / cm 2 , preferably 3 ⁇ g / cm.
  • the content of the metal in the coating solution is determined in advance, and a method of controlling by the film thickness of the coating film, or the film thickness of the coating film in advance There is a method of determining and controlling by the metal content in the coating solution.
  • the thickness of the coating film is such that the thickness after drying is in the range of 500 nm to 1.7 ⁇ m, preferably in the range of 1 ⁇ m to 1.7 ⁇ m, and the thickness of the polyimide resin layer after imidization is 300 nm to The thickness is in the range of 1 ⁇ m, preferably in the range of 600 nm to 1 ⁇ m. If the thickness of the polyimide resin layer after imidization is less than 300 nm, the metal fine particles tend to agglomerate. On the other hand, if the thickness exceeds 1 ⁇ m, the metal fine particles formed in the polyimide resin layer tend to be small. The average particle diameter of the metal fine particles tends to vary between the surface layer portion and the deep portion of the resin layer.
  • the metal content range (0.5 ⁇ g / cm 2 to 10 ⁇ g / cm 2 ) in the coating film and the polyimide after imidization are used.
  • the coating solution containing the metal compound After applying the coating solution containing the metal compound, it is dried to form a coating film.
  • drying it is preferable to control the temperature so that imidization due to the progress of dehydration and ring closure of the polyimide precursor resin is not completed.
  • the drying method is not particularly limited, and for example, the drying may be performed under a temperature condition in the range of 60 to 200 ° C. and taking a time in the range of 1 to 60 minutes, preferably 60 to 150 ° C. It is preferable to perform drying under temperature conditions within the range.
  • the coating film after drying may have a part of the structure of the polyimide precursor resin imidized, but the imidization rate is 50% or less, more preferably 20% or less, and the structure of the polyimide precursor resin is 50% or more.
  • the imidation ratio of the polyimide precursor resin is determined by measuring the infrared absorption spectrum of the film by a transmission method using a Fourier transform infrared spectrophotometer (commercially available product, for example, FT / IR620 manufactured by JASCO Corporation). with respect to the benzene ring carbon hydrogen bonds of 1,000 cm -1, it is calculated from the absorbance from the imide groups of 1,710cm -1.
  • the coating film may be a single layer or a laminated structure formed from a plurality of coating films.
  • other polyimide precursor resins can be sequentially applied on the polyimide precursor resin layer composed of different components.
  • the polyimide precursor resin layer is composed of three or more layers, the polyimide precursor resin having the same configuration may be used twice or more. Two layers or a single layer, in particular a single layer, having a simple layer structure can be advantageously obtained industrially.
  • a single layer or a plurality of polyimide precursor resin layers are laminated on a sheet-like support member, and once imidized to form a single layer or a plurality of polyimide resin layers, a coating film is further formed thereon. It is also possible to form.
  • the surface of the polyimide resin layer is preferably surface-treated with plasma. By this surface treatment with plasma, the surface of the polyimide resin layer can be roughened or the chemical structure of the surface can be changed. Thereby, the wettability of the surface of the polyimide resin layer is improved, the affinity with the solution of the polyimide precursor resin is increased, and the coating film can be stably held on the surface.
  • Step b Heat treatment step
  • the coating film obtained as described above is heat treated in the range of 160 to 450 ° C., preferably in the range of 200 to 400 ° C., more preferably in the range of 300 to 400 ° C.
  • Ions (or metal salts) are reduced to deposit particulate metal that becomes metal fine particles.
  • the heat treatment temperature is less than 160 ° C., it may be difficult to make the average particle diameter of the metal fine particles obtained by reducing metal ions (or metal salts) equal to or more than the above lower limit.
  • the heat treatment temperature exceeds 450 ° C., the polyimide resin layer is decomposed by heat, and it is difficult to control the particle spacing between the metal fine particles.
  • the heat treatment temperature By setting the heat treatment temperature to 160 ° C. or higher, the heat diffusion inside the polyimide resin layer (or polyimide precursor resin layer) of the metal fine particles deposited by reduction can be sufficiently performed. Imidization can be performed, and the process of imidization by heating can be omitted again.
  • the heating time can be determined according to the target interparticle distance, and further according to the heating temperature and the content of metal ions (or metal salts) contained in the coating film.
  • the heating temperature is 160 ° C., it can be set within a range of 10 to 180 minutes, and when the heating temperature is 450 ° C., it can be set within a range of 1 to 60 minutes.
  • the polyimide precursor resin in the coating film is imidized by this heat treatment, and the content of the metal fine particles is in the range of 0.5 ⁇ g / cm 2 to 10 ⁇ g / cm 2 , preferably 3 ⁇ g / cm 2 to 10 ⁇ g / cm 2.
  • the average particle diameter and interparticle distance of the metal fine particles are determined by i) the heat treatment temperature in the heat treatment step, ii) the content of metal ions (or metal salts) contained in the coating film, and iii) the final formation.
  • the thickness of the polyimide resin layer to be controlled can be controlled. In the case where the heat treatment temperature is constant and the absolute amount of metal ions (or metal salts) contained in the coating film is different, or the absolute amount of metal ions (or metal salts) contained in the coating film is different. In the case where the thickness of the coating film is different even if it is constant, it has been found that the particle diameters of the deposited metal fine particles are different.
  • the average particle diameter and interparticle distance of the metal fine particles can be controlled by controlling the above conditions i) to iii). That is, by controlling the conditions i) to iii), the average particle diameter of the metal fine particles is controlled within the range of 3 nm to 25 nm, and the metal fine particles thus controlled have their respective particle spacings (interparticle distances).
  • L is the particle size of the larger metal particles in neighboring metal fine particles (D L) or higher, i.e., it will be present in relation L ⁇ D L.
  • the deposited metal particles thermal diffusion is facilitated, those over the particle diameter D L of the larger in the metal particles adjacent It will be in the state disperse
  • the interparticle distance L is large, the interparticle distance L in the metal fine particles that are dispersed using thermal diffusion is closely related to the particle diameter D of the metal fine particles and the volume fraction of the metal fine particles. Therefore, the upper limit of the interparticle distance L is preferably controlled by the lower limit value of the volume fraction of the metal fine particles.
  • the volume fraction of the metal fine particles is in the range of 0.05 to 1%, preferably in the range of 0.1 to 1% with respect to the metal fine particle composite.
  • the interparticle distance L of the metal fine particles can be controlled.
  • the volume fraction of the metal fine particles can be adjusted mainly by the content of the metal in the coating solution in step a.
  • the hardness of the polyimide precursor resin / polyimide resin when performing the heat treatment in step b affects the thermal diffusibility of the metal fine particles. That is, the softer the polyimide precursor resin / polyimide resin at the heat treatment temperature, the easier the thermal diffusion of the metal fine particles, whereas the harder the polyimide precursor resin / polyimide resin, the less the thermal diffusion of the metal fine particles.
  • the elastic modulus of the polyimide precursor resin / polyimide resin when performing the heat treatment in step b i.e. It is preferable to adjust the elastic modulus when heated within a temperature range of 160 to 450 ° C.
  • the postscript Example shows the elasticity modulus of the polyimide resin after hardening
  • this elasticity modulus becomes a parameter
  • the elastic modulus of the cured polyimide resin is preferably adjusted within a range of, for example, 1 ⁇ 10 5 or more and 1 ⁇ 10 10 Pa or less.
  • step b for example, it can be performed in an inert gas atmosphere such as Ar or N 2 , in a vacuum of 1 to 5 KPa, or in the air.
  • an inert gas atmosphere such as Ar or N 2
  • a vacuum of 1 to 5 KPa or in the air.
  • gas phase reduction using a reducing gas such as hydrogen or light (ultraviolet) reduction is not suitable.
  • metal fine particles are not formed near the surface of the polyimide resin layer, the thermal decomposition of the polyimide resin is promoted by the reducing gas, and it becomes difficult to control the particle interval of the metal fine particles. Further, in photoreduction, the density of metal fine particles tends to vary in the vicinity of the surface and in the deep part due to the light transmittance derived from the polyimide resin layer, and it is difficult to control the particle diameter D and the interparticle distance L of the metal fine particles. Besides, the reduction efficiency is low.
  • the particulate metal deposited in the process of step b is Au (gold), Ni (nickel) or the like, and the particulate metal itself promotes the decomposition of the polyimide resin (or polyimide precursor resin) in a high temperature atmosphere ( In the case of a metal species having a so-called catalytic function, it is preferably carried out in an inert gas atmosphere such as Ar or N 2 and in a vacuum of 1 to 5 KPa.
  • step b since the imidation of the polyimide precursor resin can be completed using the heat used in the reduction treatment, the steps from the precipitation of the metal fine particles to the imidization can be performed in one pot, and the production process It can be simplified.
  • metal ions (or metal salts) present in the coating film can be reduced, and individual metal fine particles can be precipitated in an independent state by thermal diffusion.
  • the metal fine particles formed in this way are in a state in which the inter-particle distance L is not less than a certain value, and the shape is substantially uniform, and the metal fine particles are not unevenly three-dimensionally from the surface portion of the polyimide resin in the polyimide resin layer. To be distributed.
  • the structural unit of the resin constituting the polyimide resin or by controlling the absolute amount of metal ions (or metal salts) and the volume fraction of the metal fine particles, the average particle diameter of the metal fine particles and the polyimide resin layer It is also possible to control the distribution state of the metal fine particles therein.
  • the coating film is formed so that the content of the metal fine particles in the polyimide resin layer is in the range of 6 ⁇ g / cm 2 to 10 ⁇ g / cm 2 and the thickness of the polyimide resin layer is in the range of 600 nm to 870 nm.
  • a metal fine particle layer in which metal fine particles having an average particle diameter of 13 nm or more are dispersed can be formed.
  • arbitrary processes such as an etching process, can also be performed other than the said process a and process b, for example.
  • metal ions are reduced inside the polyimide precursor resin to precipitate metal fine particles. It is easy to adjust the content of the metal compound, and it is easy to adjust the content of the metal fine particles to be dispersed in the polyimide resin. Accordingly, it is relatively easy to include metal fine particles having an average particle diameter in the range of 3 nm to 25 nm, the volume fraction of the metal fine particles is in the range of 0.05 to 1%, and the thickness is in the range of 300 nm to 1 ⁇ m.
  • the metal fine particle composite can be produced.
  • the metal fine particles can be dispersed in the matrix resin while maintaining a certain inter-particle distance using the thermal diffusion of the deposited metal fine particles. Further, metal fine particles dispersed at a certain inter-particle distance are present from the surface layer portion of the matrix resin.
  • the imidization of the polyimide precursor resin can be completed using the heat used in the reduction treatment, so that the production process can be simplified.
  • the field uses a localized surface plasmon effect such as a pressure sensor, for example, an electromagnetic shielding material or a magnetic noise absorbing material. It can be applied to various industrial fields such as high thermal conductive resin materials.
  • the polyimide resin layer has a sufficient film thickness of 300 nm to 1 ⁇ m, while the average particle diameter of the metal fine particles is 3 nm to 25 nm, which is relative to the film thickness.
  • the volume fraction of the metal fine particles is 0.05 to 1% with respect to the metal fine particle composite, and can be preferably applied to the use of a pressure sensor utilizing localized surface plasmon resonance.
  • the thickness of the polyimide resin layer is sufficiently large with respect to the average particle diameter and interparticle distance of the metal fine particles, it is possible to increase the width of the elastic deformation at the time of pressurization. The moving distance can also be increased. Therefore, it is possible to widen a detection margin as a pressure sensor and to improve detection accuracy.
  • the average particle diameter range of the metal fine particles is as narrow as 3 nm to 25 nm, the dispersion of the particle diameter is small, and at the time of pressurization, sharp absorption is obtained by localized surface plasmon resonance, so that highly sensitive detection is possible. . Therefore, it is expected that the use pressure range as a pressure sensor is wide and high detection sensitivity and measurement accuracy are obtained.
  • the metal fine particles having an average particle diameter in the range of 3 nm to 30 nm are not in contact with each other in the polyimide resin.
  • the metal fine particles having the larger particle diameter are dispersed independently of each other (preferably completely independently) at intervals equal to or larger than the particle diameter, and the volume fraction of the metal fine particles is 0. 0 relative to the metal fine particle composite.
  • a metal fine particle composite in the range of 2% to 5% is manufactured, and includes the following steps a and b.
  • the polyimide resin and the polyimide precursor resin in the method for producing the metal fine particle composite of the present embodiment those described in the first embodiment can be used.
  • Step a Coating film forming step
  • a coating film is formed by applying a coating liquid containing a polyimide precursor resin and a metal compound onto a substrate and drying.
  • Step a in the present embodiment can be performed in the same manner as step a in the first embodiment, except that the metal content in the coating solution for forming the coating film is different.
  • the coating solution used in step a of the present embodiment has a metal content derived from the metal compound in the range of 10 ⁇ g / cm 2 to 50 ⁇ g / cm 2 , preferably in the range of 10 ⁇ g / cm 2 to 40 ⁇ g / cm 2 . Of these, it is preferably applied onto the substrate so as to be in the range of 10 ⁇ g / cm 2 to 30 ⁇ g / cm 2 .
  • the content of the metal in the coating solution is determined in advance, and a method of controlling by the film thickness of the coating film, or the film thickness of the coating film in advance There is a method of determining and controlling by the metal content in the coating solution.
  • the thickness of the coating film is such that the thickness after drying is in the range of 500 nm to 1.7 ⁇ m, preferably in the range of 1 ⁇ m to 1.7 ⁇ m, and the thickness of the polyimide resin layer after imidization is 300 nm. It is set within the range of ⁇ 1 ⁇ m, preferably within the range of 600 nm to 1 ⁇ m. If the thickness of the polyimide resin layer after imidization is less than 300 nm, the metal fine particles tend to agglomerate. On the other hand, if the thickness exceeds 1 ⁇ m, the metal fine particles formed in the polyimide resin layer tend to be small. The average particle diameter of the metal fine particles tends to vary between the surface layer portion and the deep portion of the resin layer.
  • the range of the metal content in the coating film (10 ⁇ g / cm 2 to 50 ⁇ g / cm 2 ) and the polyimide resin layer after imidization In addition, after satisfying the conditions of the thickness range (300 nm to 1 ⁇ m), the content A [ ⁇ g / cm 2 ] of the metal content in the coating film and the thickness B [nm] of the polyimide resin layer after imidization It is more preferable to satisfy the following formula. 2 ⁇ (A / B) ⁇ 100 ⁇ 12 (ii)
  • Step b Heat treatment step
  • the coating film obtained as described above is heat treated in the range of 160 to 450 ° C., preferably in the range of 200 to 400 ° C., more preferably in the range of 300 to 400 ° C. Ions (or metal salts) are reduced to deposit particulate metal that becomes metal fine particles, and dispersed in the coating film.
  • the polyimide precursor resin in the coating film is imidized to form a polyimide resin layer having a thickness in the range of 300 nm to 1 ⁇ m and an elastic modulus in the range of 3 GPa to 10 GPa.
  • Step b in the present embodiment can be performed in the same manner as step b in the first embodiment, except as described below.
  • the heating time can be determined according to the target interparticle distance, and further according to the heating temperature and the content of metal ions (or metal salts) contained in the coating film.
  • the heating temperature is 160 ° C., it can be set within a range of 10 to 180 minutes, and when the heating temperature is 450 ° C., it can be set within a range of 1 to 60 minutes.
  • the modulus of elasticity of the polyimide precursor resin / polyimide resin during the heat treatment in step b affects the thermal diffusivity of the metal fine particles. Therefore, the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process is adjusted for the purpose of appropriately promoting the thermal diffusion of the metal fine particles.
  • the modulus of elasticity of the polyimide precursor resin / polyimide resin is such that the modulus of elasticity of the cured polyimide resin is, for example, in the range of 3 GPa to 10 GPa, preferably in the range of 4 GPa to 10 GPa. Adjust.
  • the elastic modulus of the cured polyimide resin is less than 3 GPa, it becomes difficult to control the dispersion of the metal fine particles during the heat treatment in step b, and the metal fine particles tend to aggregate.
  • the elastic modulus of the cured polyimide resin exceeds 10 GPa, the dispersion of the metal fine particles is remarkably suppressed, so that the generated metal fine particles become excessively small, for example, for applications such as a sensor using localized surface plasmon resonance.
  • the sensitivity tends to decrease, and the toughness of the polyimide resin as the matrix decreases, and the material tends to be extremely brittle.
  • the elastic modulus of the cured polyimide resin is defined, but the elastic modulus is related to the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the heat treatment process. This is because it becomes an index reflecting the elastic modulus. That is, the higher the elastic modulus of the cured polyimide resin, the higher the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the lower the elastic modulus of the cured polyimide resin, the polyimide in the heat treatment process of step b.
  • the elastic modulus of the precursor resin / polyimide resin is low. Therefore, the thermal diffusion of the metal fine particles can be controlled by controlling the elastic modulus of the cured polyimide resin.
  • the polyimide precursor resin in the coating film is imidized by this heat treatment, and the content of the metal fine particles is in the range of 10 ⁇ g / cm 2 to 50 ⁇ g / cm 2 , preferably in the range of 10 ⁇ g / cm 2 to 40 ⁇ g / cm 2 .
  • a polyimide resin layer having a thickness in the range of 10 ⁇ g / cm 2 to 30 ⁇ g / cm 2 and a thickness in the range of 300 nm to 1 ⁇ m, preferably in the range of 600 nm to 1 ⁇ m is formed.
  • the average particle diameter and interparticle distance of the metal fine particles are: i) the heat treatment temperature in the heat treatment step, ii) the content of metal ions (or metal salts) contained in the coating film, and iii) the polyimide resin layer finally formed It can be controlled by the thickness and iv) the elastic modulus of the polyimide precursor resin / polyimide resin during the heat treatment.
  • the heat treatment temperature is constant and the absolute amount of metal ions (or metal salts) contained in the coating film is different, or the absolute amount of metal ions (or metal salts) contained in the coating film is different.
  • the thickness of the coating film is different even if it is constant, it has been found that the particle diameters of the deposited metal fine particles are different.
  • the interparticle distance is reduced. It has also been found that metal fine particles aggregate on the surface of the polyimide resin layer to form islands. Furthermore, the modulus of elasticity of the polyimide precursor resin / polyimide resin during the heat treatment in step b affects the thermal diffusibility of the metal fine particles, and the softer the polyimide precursor resin / polyimide resin at the heat treatment temperature, It has also been found that heat diffusion is more likely to proceed, and conversely, the harder the polyimide precursor resin / polyimide resin, the more difficult the heat diffusion of the metal fine particles.
  • the average particle diameter and the interparticle distance of the metal fine particles can be controlled by controlling the above conditions i) to iv). That is, by controlling the conditions i) to iv), the average particle diameter of the metal fine particles is controlled within the range of 3 nm to 30 nm, and the metal fine particles thus controlled have their respective particle spacings (interparticle distances).
  • L is the particle size of the larger metal particles in neighboring metal fine particles (D L) or higher, i.e., it will be present in relation L ⁇ D L.
  • the deposited metal particles thermal diffusion is facilitated, those over the particle diameter D L of the larger in the metal particles adjacent It will be in the state disperse
  • the interparticle distance L is large, the interparticle distance L in the metal fine particles that are dispersed using thermal diffusion is closely related to the particle diameter D of the metal fine particles and the volume fraction of the metal fine particles. Therefore, the upper limit of the interparticle distance L is preferably controlled by the lower limit value of the volume fraction of the metal fine particles.
  • the volume fraction of the metal fine particles is in the range of 0.2 to 5%, preferably in the range of 0.5 to 3% with respect to the metal fine particle composite.
  • the interparticle distance L of the metal fine particles can be controlled.
  • the volume fraction of the metal fine particles can be adjusted mainly by the content of the metal in the coating solution in step a.
  • arbitrary processes such as an etching process, can also be performed other than the said process a and process b, for example.
  • the metal precursor (or metal salt) is reduced inside the polyimide precursor resin to precipitate the metal fine particles. It is easy to adjust the content of the metal compound therein, and it is easy to adjust the content of the metal fine particles dispersed in the polyimide resin. Accordingly, it is relatively easy to include metal fine particles having an average particle diameter in the range of 3 nm to 30 nm, the volume fraction of the metal fine particles is in the range of 0.2% to 5%, and the thickness is 300 nm to 1 ⁇ m. Metal fine particle composites within the range can be produced.
  • the metal fine particles can be dispersed in the matrix resin while maintaining a certain inter-particle distance using the thermal diffusion of the deposited metal fine particles. Further, metal fine particles dispersed at a certain inter-particle distance are present from the surface layer portion of the matrix resin.
  • the imidization of the polyimide precursor resin can be completed using the heat used in the reduction treatment, so that the production process can be simplified.
  • the field uses a localized surface plasmon effect such as a pressure sensor, for example, an electromagnetic shielding material or a magnetic noise. It can be applied to various industrial fields such as absorbent materials and high thermal conductive resin materials.
  • the polyimide resin layer has a sufficient film thickness of 300 nm to 1 ⁇ m, while the average particle diameter of the metal fine particles is 3 nm to 30 nm, compared with the film thickness.
  • the volume fraction of the metal fine particles is 0.2% or more and 5% or less with respect to the metal fine particle composite, and can be preferably applied to the use of a pressure sensor using localized surface plasmon resonance. .
  • the thickness of the polyimide resin layer is sufficiently large with respect to the average particle diameter and interparticle distance of the metal fine particles, it is possible to increase the width of the elastic deformation at the time of pressurization. The moving distance can also be increased. Therefore, it is possible to widen a detection margin as a pressure sensor and to improve detection accuracy.
  • the average particle diameter range of the metal fine particles is as narrow as 3 nm to 30 nm, the particle diameter variation is small, and at the time of pressurization, sharp absorption is obtained by localized surface plasmon resonance, so that highly sensitive detection is possible. . Therefore, it is expected that the use pressure range as a pressure sensor is wide and high detection sensitivity and measurement accuracy are obtained.
  • metal fine particles having an average particle diameter in the range of 3 nm to 30 nm are not in contact with each other in the polyimide resin.
  • the metal fine particles having the larger particle diameter are dispersed independently of each other (preferably completely independently) at intervals equal to or larger than the particle diameter, and the volume fraction of the metal fine particles is 0. 0 relative to the metal fine particle composite.
  • a metal fine particle composite in the range of 5% or more and 5% or less is manufactured, and includes the following steps a and b.
  • the polyimide resin and the polyimide precursor resin in the method for producing the metal fine particle composite of the present embodiment those described in the first embodiment can be used.
  • Step a Coating film forming step
  • a coating film is formed by applying a coating liquid containing a polyimide precursor resin and a metal compound onto a substrate and drying.
  • Step a in the present embodiment can be performed in the same manner as step a in the first embodiment, except that the metal content in the coating solution for forming the coating film is different.
  • the coating liquid used in step a of the present embodiment has a metal content derived from the metal compound in the range of 5 ⁇ g / cm 2 to 10 ⁇ g / cm 2 , preferably in the range of 5 ⁇ g / cm 2 to 9 ⁇ g / cm 2 . Of these, it is preferably applied onto the substrate so as to be in the range of 5 ⁇ g / cm 2 to 8 ⁇ g / cm 2 .
  • the content of the metal in the coating solution is determined in advance, and a method of controlling by the film thickness of the coating film, or the film thickness of the coating film in advance There is a method of determining and controlling by the metal content in the coating solution.
  • the thickness of the coating film is such that the thickness after drying is in the range of 150 nm to 500 nm, preferably in the range of 200 nm to 500 nm, and the thickness of the polyimide resin layer after imidization is in the range of 100 nm to 300 nm.
  • the thickness is preferably in the range of 150 nm to 300 nm. If the thickness of the polyimide resin layer after imidization is less than 100 nm, the metal fine particles tend to agglomerate. On the other hand, if the thickness exceeds 300 nm, the metal fine particles formed in the polyimide resin layer tend to be small. The average particle diameter of the metal fine particles tends to vary between the surface layer portion and the deep portion of the resin layer.
  • the range of the metal content in the coating film (5 ⁇ g / cm 2 to 10 ⁇ g / cm 2 ) and the polyimide resin layer after imidization
  • the metal content in the coating film A [ ⁇ g / cm 2 ] and the thickness B [nm] of the polyimide resin layer after imidization are satisfied. It is more preferable to satisfy the following formula. 2 ⁇ (A / B) ⁇ 100 ⁇ 8 (iii)
  • Step b Heat treatment step
  • the coating film obtained as described above is heat treated in the range of 160 to 450 ° C., preferably in the range of 200 to 400 ° C., more preferably in the range of 300 to 400 ° C. Ions (or metal salts) are reduced to deposit particulate metal that becomes metal fine particles, and dispersed in the coating film.
  • the polyimide precursor resin in the coating film is imidized to form a polyimide resin layer having a thickness in the range of 100 nm to 300 nm and an elastic modulus in the range of 5 MPa to 10 GPa.
  • Step b in the present embodiment can be performed in the same manner as step b in the first embodiment, except as described below.
  • the heating time can be determined according to the target interparticle distance, and further according to the heating temperature and the content of metal ions (or metal salts) contained in the coating film.
  • the heating temperature is 160 ° C., it can be set within a range of 10 to 180 minutes, and when the heating temperature is 450 ° C., it can be set within a range of 1 to 60 minutes.
  • the modulus of elasticity of the polyimide precursor resin / polyimide resin during the heat treatment in step b affects the thermal diffusivity of the metal fine particles. Therefore, the elastic modulus of the polyimide precursor resin / polyimide resin during the heat treatment is adjusted for the purpose of appropriately promoting the thermal diffusion of the metal fine particles.
  • the modulus of elasticity of the polyimide precursor resin / polyimide resin is such that the modulus of elasticity of the cured polyimide resin is, for example, in the range of 5 MPa to 10 GPa, preferably in the range of 8 MPa to 10 GPa. Adjust.
  • the elastic modulus of the cured polyimide resin When the elastic modulus of the cured polyimide resin is less than 5 MPa, it becomes difficult to control the dispersion of the metal fine particles during the heat treatment in the step b, and the metal fine particles tend to aggregate. On the other hand, when the elastic modulus of the cured polyimide resin exceeds 10 GPa, the dispersion of the metal fine particles is remarkably suppressed, so that the generated metal fine particles become excessively small, for example, for applications such as a sensor using localized surface plasmon resonance. When used, the sensitivity tends to decrease, and the toughness of the polyimide resin as the matrix decreases, and the material tends to be extremely brittle.
  • the elastic modulus of the cured polyimide resin is defined, but the elastic modulus is related to the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the heat treatment process. This is because it becomes an index reflecting the elastic modulus. That is, the higher the elastic modulus of the cured polyimide resin, the higher the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the lower the elastic modulus of the cured polyimide resin, the polyimide in the heat treatment process of step b.
  • the elastic modulus of the precursor resin / polyimide resin is low. Therefore, the thermal diffusion of the metal fine particles can be controlled by controlling the elastic modulus of the cured polyimide resin.
  • the polyimide precursor resin in the coating film is imidized by this heat treatment, and the content of the metal fine particles is in the range of 5 ⁇ g / cm 2 to 10 ⁇ g / cm 2 , preferably in the range of 5 ⁇ g / cm 2 to 9 ⁇ g / cm 2 .
  • a polyimide resin layer having a thickness in the range of 5 ⁇ g / cm 2 to 8 ⁇ g / cm 2 and a thickness in the range of 100 nm to 300 nm, preferably in the range of 150 nm to 300 nm is formed.
  • the average particle diameter and interparticle distance of the metal fine particles are: i) the heat treatment temperature in the heat treatment step, ii) the content of metal ions (or metal salts) contained in the coating film, and iii) the polyimide resin layer finally formed It can be controlled by the thickness and iv) the elastic modulus of the polyimide precursor resin / polyimide resin during the heat treatment.
  • the heat treatment temperature is constant and the absolute amount of metal ions (or metal salts) contained in the coating film is different, or the absolute amount of metal ions (or metal salts) contained in the coating film is different.
  • the thickness of the coating film is different even if it is constant, it has been found that the particle diameters of the deposited metal fine particles are different.
  • the interparticle distance is reduced. It has also been found that metal fine particles aggregate on the surface of the polyimide resin layer to form islands. Furthermore, the modulus of elasticity of the polyimide precursor resin / polyimide resin during the heat treatment in step b affects the thermal diffusibility of the metal fine particles, and the softer the polyimide precursor resin / polyimide resin at the heat treatment temperature, It has also been found that heat diffusion is more likely to proceed, and conversely, the harder the polyimide precursor resin / polyimide resin, the more difficult the heat diffusion of the metal fine particles.
  • the average particle diameter and the interparticle distance of the metal fine particles can be controlled by controlling the above conditions i) to iv). That is, by controlling the conditions i) to iv), the average particle diameter of the metal fine particles is controlled within the range of 3 nm to 30 nm, and the metal fine particles thus controlled have their respective particle spacings (interparticle distances).
  • L is the particle size of the larger metal particles in neighboring metal fine particles (D L) or higher, i.e., it will be present in relation L ⁇ D L.
  • the deposited metal particles thermal diffusion is facilitated, those over the particle diameter D L of the larger in the metal particles adjacent It will be in the state disperse
  • the interparticle distance L is large, the interparticle distance L in the metal fine particles that are dispersed using thermal diffusion is closely related to the particle diameter D of the metal fine particles and the volume fraction of the metal fine particles. Therefore, the upper limit of the interparticle distance L is preferably controlled by the lower limit value of the volume fraction of the metal fine particles.
  • the volume fraction of the metal fine particles is in the range of 0.5 to 5%, preferably in the range of 1 to 3% with respect to the metal fine particle composite.
  • the interparticle distance L of the metal fine particles can be controlled.
  • the volume fraction of the metal fine particles can be adjusted mainly by the content of the metal in the coating solution in step a.
  • arbitrary processes such as an etching process, can also be performed other than the said process a and process b, for example.
  • the metal precursor (or metal salt) is reduced inside the polyimide precursor resin to precipitate the metal fine particles. It is easy to adjust the content of the metal compound therein, and it is easy to adjust the content of the metal fine particles dispersed in the polyimide resin. Accordingly, it is relatively easy to include metal fine particles having an average particle diameter in the range of 3 nm to 30 nm, the volume fraction of the metal fine particles is in the range of 0.5 to 5%, and the thickness is in the range of 100 nm to 300 nm.
  • the metal fine particle composite can be produced.
  • the metal fine particles can be dispersed in the matrix resin while maintaining a certain inter-particle distance using the thermal diffusion of the deposited metal fine particles. Further, metal fine particles dispersed at a certain inter-particle distance are present from the surface layer portion of the matrix resin.
  • the imidization of the polyimide precursor resin can be completed using the heat used in the reduction treatment, so that the production process can be simplified.
  • the field uses a localized surface plasmon effect such as a pressure sensor. It can be applied to various industrial fields such as noise absorbers and high thermal conductive resin materials.
  • the polyimide resin layer has a sufficient film thickness of 100 nm to 300 nm, while the average particle diameter of the metal fine particles is 3 nm to 30 nm, compared with the film thickness.
  • the volume fraction of the metal fine particles is 0.5 to 5% with respect to the metal fine particle composite, so that it can be preferably applied to the use of a pressure sensor utilizing localized surface plasmon resonance.
  • the thickness of the polyimide resin layer is sufficiently large with respect to the average particle diameter and interparticle distance of the metal fine particles, it is possible to increase the width of the elastic deformation at the time of pressurization.
  • the moving distance can also be increased. Therefore, it is possible to widen a detection margin as a pressure sensor and to improve detection accuracy.
  • the average particle diameter range of the metal fine particles is as narrow as 3 nm to 30 nm, the particle diameter variation is small, and at the time of pressurization, sharp absorption is obtained by localized surface plasmon resonance, so that highly sensitive detection is possible. . Therefore, it is expected that the use pressure range as a pressure sensor is wide and high detection sensitivity and measurement accuracy are obtained.
  • the metal fine particle composite obtained by the method of the present embodiment can be thinned to a thickness of 100 nm to 300 nm for the polyimide resin layer, and thus is suitable for applications for sensing subtle changes in the surface layer portion of the metal fine particle composite.
  • Utilizing such properties for example, by etching the surface layer portion of the metal fine particle composite, and exposing a part of the metal fine particles on the surface layer portion of the composite to the surface from the matrix, the change of the external environment can be controlled.
  • Applications such as being able to be used advantageously as a sensor substrate for sensing can be expected.
  • the particle diameters of adjacent metal fine particles are not contacted with each other in the polyimide resin without the metal fine particles having an average particle diameter in the range of 5 nm to 35 nm.
  • the volume fraction of the metal fine particles is 1% or more to the metal fine particle composite.
  • % of the metal fine particle composite in the range of not more than%, and includes the following steps a and b.
  • the polyimide resin and the polyimide precursor resin in the method for producing the metal fine particle composite of the present embodiment those described in the first embodiment can be used.
  • Step a Coating film forming step
  • a coating film is formed by applying a coating liquid containing a polyimide precursor resin and a metal compound onto a substrate and drying.
  • Step a in the present embodiment can be performed in the same manner as step a in the first embodiment, except that the metal content in the coating solution for forming the coating film is different.
  • the range content is 10 ⁇ g / cm 2 ⁇ 30 ⁇ g / cm 2 of metal component derived from the metal compound, ranges preferably from 10 ⁇ g / cm 2 ⁇ 27 ⁇ g / cm 2 Of these, it is preferably applied on the substrate so as to be in the range of 10 ⁇ g / cm 2 to 25 ⁇ g / cm 2 .
  • the content of the metal in the coating solution is determined in advance, and a method of controlling by the film thickness of the coating film, or the film thickness of the coating film in advance There is a method of determining and controlling by the metal content in the coating solution.
  • the thickness of the coating film is such that the thickness after drying is in the range of 150 nm to 500 nm, preferably in the range of 200 nm to 500 nm, and the thickness of the polyimide resin layer after imidization is in the range of 100 nm to 300 nm.
  • the thickness is preferably in the range of 150 nm to 300 nm. If the thickness of the polyimide resin layer after imidization is less than 100 nm, the metal fine particles tend to agglomerate. On the other hand, if the thickness exceeds 300 nm, the metal fine particles formed in the polyimide resin layer tend to be small. The average particle diameter of the metal fine particles tends to vary between the surface layer portion and the deep portion of the resin layer.
  • the content range (10 ⁇ g / cm 2 to 30 ⁇ g / cm 2 ) of the metal content in the coating film and the polyimide resin layer after imidization In addition, the metal content in the coating film A [ ⁇ g / cm 2 ] and the thickness B [nm] of the polyimide resin layer after imidization are satisfied. It is more preferable that the relationship between and satisfies the following formula. 5 ⁇ (A / B) ⁇ 100 ⁇ 25 (iv)
  • Step b Heat treatment step
  • the coating film obtained as described above is heat treated in the range of 160 to 450 ° C., preferably in the range of 200 to 400 ° C., more preferably in the range of 300 to 400 ° C. Ions (or metal salts) are reduced to deposit particulate metal that becomes metal fine particles, and dispersed in the coating film.
  • the polyimide precursor resin in the coating film is imidized to form a polyimide resin layer having a thickness in the range of 100 nm to 300 nm and an elastic modulus in the range of 0.5 GPa to 10 GPa.
  • Step b in the present embodiment can be performed in the same manner as step b in the first embodiment, except as described below.
  • the heating time can be determined according to the target interparticle distance, and further according to the heating temperature and the content of metal ions (or metal salts) contained in the coating film.
  • the heating temperature is 160 ° C., it can be set within a range of 10 to 180 minutes, and when the heating temperature is 450 ° C., it can be set within a range of 1 to 60 minutes.
  • the modulus of elasticity of the polyimide precursor resin / polyimide resin affects the thermal diffusivity of the metal fine particles. Therefore, the elastic modulus of the polyimide precursor resin / polyimide resin during the heat treatment is adjusted for the purpose of appropriately promoting the thermal diffusion of the metal fine particles.
  • the polyimide precursor resin / polyimide is such that the elastic modulus of the cured polyimide resin is, for example, in the range of 0.5 GPa to 10 GPa, preferably in the range of 0.6 GPa to 10 GPa. Adjust the elastic modulus of the resin.
  • the elastic modulus of the cured polyimide resin is less than 0.5 GPa, it becomes difficult to control the dispersion of the metal fine particles during the heat treatment in step b, and the metal fine particles tend to aggregate.
  • the elastic modulus of the cured polyimide resin exceeds 10 GPa, the dispersion of the metal fine particles is remarkably suppressed, so that the generated metal fine particles become excessively small, for example, for applications such as a sensor using localized surface plasmon resonance.
  • the sensitivity tends to decrease, and the toughness of the polyimide resin as the matrix decreases, and the material tends to be extremely brittle.
  • the elastic modulus of the cured polyimide resin is defined, but the elastic modulus is related to the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the heat treatment process. This is because it becomes an index reflecting the elastic modulus. That is, the higher the elastic modulus of the cured polyimide resin, the higher the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the lower the elastic modulus of the cured polyimide resin, the polyimide in the heat treatment process of step b.
  • the elastic modulus of the precursor resin / polyimide resin is low. Therefore, the thermal diffusion of the metal fine particles can be controlled by controlling the elastic modulus of the cured polyimide resin.
  • a polyimide precursor resin in the coating film by the heat treatment in the range content is 10 ⁇ g / cm 2 ⁇ 30 ⁇ g / cm 2 of metal fine particles, ranging preferably from 10 ⁇ g / cm 2 ⁇ 27 ⁇ g / cm 2 Among them, a polyimide resin layer having a thickness in the range of 10 ⁇ g / cm 2 to 25 ⁇ g / cm 2 and a thickness in the range of 100 nm to 300 nm, preferably in the range of 150 nm to 300 nm is formed.
  • the average particle diameter and the interparticle distance of the metal fine particles are i) the heat treatment temperature in the heat treatment step, ii) the content of metal ions (or metal salts) contained in the coating film, and iii) finally formed. It can be controlled by the thickness of the polyimide resin layer and iv) the hardness of the polyimide precursor resin / polyimide resin during the heat treatment. In the case where the heat treatment temperature is constant and the absolute amount of metal ions (or metal salts) contained in the coating film is different, or the absolute amount of metal ions (or metal salts) contained in the coating film is different.
  • the thickness of the coating film is different even if it is constant, it has been found that the particle diameters of the deposited metal fine particles are different.
  • the heat treatment is performed without controlling the heat treatment temperature, the content of metal ions (or metal salts) contained in the coating film, and the thickness of the polyimide resin layer finally formed, the interparticle distance is reduced. It has also been found that metal fine particles aggregate on the surface of the polyimide resin layer to form islands.
  • the modulus of elasticity of the polyimide precursor resin / polyimide resin during the heat treatment in step b affects the thermal diffusibility of the metal fine particles, and the softer the polyimide precursor resin / polyimide resin at the heat treatment temperature, It has also been found that heat diffusion is more likely to proceed, and conversely, the harder the polyimide precursor resin / polyimide resin, the more difficult the heat diffusion of the metal fine particles.
  • the average particle diameter and the interparticle distance of the metal fine particles can be controlled by controlling the above conditions i) to iv). That is, by controlling the conditions i) to iv), the average particle diameter of the metal fine particles is controlled within the range of 5 nm to 35 nm, and the metal fine particles thus controlled have their respective particle spacings (interparticle distances).
  • L is the particle size of the larger metal particles in neighboring metal fine particles (D L) or higher, i.e., it will be present in relation L ⁇ D L.
  • Metal particle composite of the present embodiment due to the provision of the requirements of step a and step b, the deposited metal particles thermal diffusion is facilitated, those over the particle diameter D L of the larger in the metal particles adjacent It will be in the state disperse
  • each interparticle distance L in the metal fine particles that are dispersed by utilizing thermal diffusion is determined based on the particle diameter D of the metal fine particles and the volume fraction of the metal fine particles described later. Therefore, the upper limit of the interparticle distance L is preferably controlled by the lower limit value of the volume fraction of the metal fine particles.
  • the volume fraction of the metal fine particles is in the range of 1 to 15%, preferably in the range of 2 to 10% with respect to the metal fine particle composite.
  • the interparticle distance L of the metal fine particles can be controlled.
  • the volume fraction of the metal fine particles can be adjusted mainly by the content of the metal in the coating solution in step a.
  • arbitrary processes such as an etching process, can also be performed other than the said process a and process b, for example.
  • the metal precursor (or metal salt) is reduced inside the polyimide precursor resin to precipitate the metal fine particles. It is easy to adjust the content of the metal compound therein, and it is easy to adjust the content of the metal fine particles dispersed in the polyimide resin. Accordingly, it is relatively easy to include metal fine particles having an average particle diameter in the range of 5 nm to 35 nm, a volume fraction of the metal fine particles in the range of 1 to 15%, and a thickness in the range of 100 nm to 300 nm. Fine particle composites can be produced.
  • the metal fine particles can be dispersed in the matrix resin while maintaining a certain inter-particle distance using the thermal diffusion of the deposited metal fine particles. Further, metal fine particles dispersed at a certain inter-particle distance are present from the surface layer portion of the matrix resin.
  • the imidization of the polyimide precursor resin can be completed using the heat used in the reduction treatment, so that the production process can be simplified.
  • the field uses a localized surface plasmon effect such as a pressure sensor. It can be applied to various industrial fields such as noise absorbers and high thermal conductive resin materials.
  • the polyimide resin layer has a sufficient film thickness of 100 nm to 300 nm, while the average particle diameter of the metal fine particles is 5 nm to 35 nm, compared with the film thickness.
  • the volume fraction of the metal fine particles is 1 to 15% with respect to the metal fine particle composite, so that it can be preferably applied to the use of a pressure sensor utilizing localized surface plasmon resonance.
  • the thickness of the polyimide resin layer is sufficiently large with respect to the average particle diameter and interparticle distance of the metal fine particles, it is possible to increase the width of the elastic deformation at the time of pressurization.
  • the moving distance can also be increased. Therefore, it is possible to widen a detection margin as a pressure sensor and to improve detection accuracy.
  • the average particle diameter range of the metal fine particles is as narrow as 5 nm to 35 nm, the dispersion of the particle diameter is small, and at the time of pressurization, sharp absorption is obtained by localized surface plasmon resonance, so that highly sensitive detection is possible. . Therefore, it is expected that the use pressure range as a pressure sensor is wide and high detection sensitivity and measurement accuracy are obtained.
  • the metal fine particle composite obtained by the method of the present embodiment can be thinned to a thickness of 100 nm to 300 nm for the polyimide resin layer, and thus is suitable for applications for sensing subtle changes in the surface layer portion of the metal fine particle composite.
  • Utilizing such properties for example, by etching the surface layer portion of the metal fine particle composite, and exposing a part of the metal fine particles on the surface layer portion of the composite to the surface from the matrix, the change of the external environment can be controlled.
  • Applications such as being able to be used advantageously as a sensor substrate for sensing can be expected.
  • the average particle diameter of the metal fine particles was measured by preparing a cross section of the sample using a microtome (produced by Leica Co., Ltd., Ultra Cut UTC Ultra Microtome), and transmitting a transmission electron microscope (TEM; JEOL Co., Ltd., JEM- 2000EX). In addition, since it was difficult to observe the sample produced on the glass substrate by said method, it observed using what was produced on the polyimide film on the same conditions.
  • the average particle diameter of the metal fine particles was the area average diameter.
  • the light transmittance was measured using ultraviolet / visible spectroscopic analysis (manufactured by JASCO Corporation, UV-vis V-550).
  • Synthesis example 1 In a 1000 ml separable flask, 425 g of N, N-dimethylacetamide (DMAc), 31.8 g of 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB) and 4.9 g of 1 , 3-Bis (4-aminophenoxy) benzene (APB) was stirred at room temperature for 30 minutes. Thereafter, 28.6 g of pyromellitic dianhydride (PMDA) and 9.6 g of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA) were added, and 3% at room temperature under a nitrogen atmosphere.
  • DMAc N, N-dimethylacetamide
  • m-TB 2,2′-dimethyl-4,4′-diaminobiphenyl
  • API 3-Bis (4-aminophenoxy) benzene
  • the mixture was subjected to polymerization reaction continued time stirring to obtain a viscous polyimide precursor resin solution S 1.
  • the resulting viscosity of the polyimide precursor resin solution S 1 is, E-type viscometer (manufactured by Brookfield, DV-II + Pro CP type) results as measured by, was 28,000 centipoise (25 ° C.).
  • the resulting polyimide precursor resin solution S 1 was applied on a stainless steel substrate, and dried for 3 minutes at 130 ° C., to complete the over 15 minutes allowed to warm to 360 ° C. imidization, the stainless steel substrate A laminated polyimide film was obtained.
  • the polyimide film was peeled from the stainless steel substrate, to obtain a polyimide film P 1 of 25 ⁇ m thickness.
  • the light transmittances of the film at wavelengths of 400 nm, 500 nm, and 600 nm were 0%, 70.5%, and 82%, respectively.
  • they were 3 GPa, 2 GPa, and 0.6 GPa, respectively.
  • Synthesis example 2 In a 500 ml separable flask, 15.24 g of 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (TFMB) 47.6 mmol was dissolved in 170 g of DMAc with stirring. Next, 14.76 g of 4,4′-oxydiphthalic anhydride (ODPA) 47.6 mmol was added to the solution under a nitrogen stream, and the polymerization reaction was continued at room temperature for 4 hours to obtain a colorless viscous liquid. to obtain a polyimide precursor resin solution S 2.
  • ODPA 4,4′-oxydiphthalic anhydride
  • the resulting viscosity of the polyimide precursor resin solution S 2 is, E-type viscometer (manufactured by Brookfield, DV-II + Pro CP type) results as measured by, was 3251 centipoise (25 ° C.).
  • the resulting polyimide precursor resin solution S 2 coated on the stainless steel substrate, and dried for 3 minutes at 130 ° C., to complete the over 15 minutes allowed to warm to 360 ° C. imidization, the stainless steel substrate A laminated polyimide film was obtained.
  • the polyimide film was peeled from the stainless steel substrate, to obtain a polyimide film P 2 of 10 ⁇ m in thickness.
  • the film had a light transmittance of 95% and a visible light average transmittance of 96% at a wavelength of 400 nm.
  • Synthesis example 3 In a 1000 ml separable flask, 6.4 g of N, N-dimethylacetamide (DMAc) and 36.4 g of 1,3-bis (4-aminophenoxy) benzene (APB) were stirred at room temperature for 30 minutes. Thereafter, 11.1 g of pyromellitic dianhydride (PMDA) and 27.4 g of 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA) were added, and at room temperature under a nitrogen atmosphere. stirred continuously for 3 hours and polymerization was carried out to obtain a viscous polyimide precursor resin solution S 3.
  • PMDA pyromellitic dianhydride
  • DSDA 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride
  • the resulting viscosity of the polyimide precursor resin solution S 3 is, E-type viscometer (manufactured by Brookfield, DV-II + Pro CP type) results as measured by, was 2,500 centipoise (25 ° C.).
  • the polyimide precursor resin solution S 3 obtained was coated on a stainless steel substrate, and dried for 3 minutes at 130 ° C., to complete the over 15 minutes allowed to warm to 360 ° C. imidization, the stainless steel substrate A laminated polyimide film was obtained.
  • the polyimide film was peeled from the stainless steel substrate, to obtain a polyimide film P 3 of 25 ⁇ m thickness.
  • the light transmittances of the film at wavelengths of 400 nm, 500 nm, and 600 nm were 0%, 60%, and 72%, respectively.
  • a test piece of alkali-free glass (Asahi Glass Co., Ltd., AN-100) 10 cm ⁇ 10 cm (thickness 0.7 mm) was treated with a 5N sodium hydroxide aqueous solution at 50 ° C. for 5 minutes.
  • the glass substrate of the test piece was washed with pure water, dried, and then immersed in a 1 wt% aqueous solution of 3-aminopropyltrimethoxysilane (hereinafter abbreviated as “ ⁇ -APS”).
  • ⁇ -APS 3-aminopropyltrimethoxysilane
  • Example 1-1 0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-1 had a content per unit area of 8.19 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-1 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-1 (thickness: 828 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-1 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 10.6 nm, maximum particle size: 18.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-1; 0.5 %, Average value of interparticle distance; 39.4 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-1, an absorption peak having a peak top of 560 nm and a half width of 72 nm was observed.
  • Example 1-2 0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-2 had a gold content per unit area of 8.74 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-2 was heat-treated at 300 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-2 (thickness 884 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-2 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 12.2 nm, maximum particle size: 29.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-2: 0.5 %, Average value of interparticle distance; 45.3 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-2, an absorption peak having a peak top of 564 nm and a half-value width of 92 nm was observed.
  • Example 1-3 0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-3 had a gold content per unit area of 8.55 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-3 was heat-treated at 400 ° C. for 10 minutes in the air to produce a metal gold fine particle-dispersed nanocomposite film 1-3 (thickness: 865 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-3 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 15.0 nm, maximum particle size: 29.0 nm, minimum particle size: 6.0 nm, gold volume fraction in nanocomposite film 1-3: 0.5 %, Average value of interparticle distance; 55.7 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-3, an absorption peak having a peak top of 570 nm and a half-value width of 76 nm was observed.
  • Example 1-4 0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-4 had a content per unit area of gold of 7.98 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-4 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-4 (thickness 827 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-4 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 13.3 nm, maximum particle size; 22.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-4; 0.5 %, Average value of interparticle distance; 49.4 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-4, an absorption peak having a peak top of 560 nm and a half-value width of 80 nm was observed.
  • Example 1-5 0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • a gold complex-containing polyimide precursor resin film 1-5 having a thickness of about 1260 nm on the glass substrate G1.
  • the gold complex-containing polyimide precursor resin film 1-5 had a gold content per unit area of 7.29 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-5 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-5 (thickness: 755 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-5 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 17.4 nm, maximum particle size; 26.0 nm, minimum particle size: 7.0 nm, gold volume fraction in nanocomposite film 1-5; 0.5 %, Average value of interparticle distance; 64.6 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-5, an absorption peak having a peak top of 574 nm and a half-value width of 69 nm was observed.
  • Example 1-6 0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-6 had a gold content per unit area of 7.06 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-6 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-6 (thickness 730 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-6 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 19.8 nm, maximum particle size: 35.0 nm, minimum particle size: 10.0 nm, gold volume fraction in nanocomposite film 1-6; 0.5 %, Average value of interparticle distance; 73.5 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 1-6, an absorption peak having a peak top of 576 nm and a half-value width of 72 nm was observed.
  • Example 1-7 0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • a gold complex-containing polyimide precursor resin film 1-7 having a thickness of about 750 nm on the glass substrate G1.
  • the gold complex-containing polyimide precursor resin film 1-7 had a gold content per unit area of 4.45 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-7 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-7 (thickness 450 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-7 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 8.5 nm, maximum particle size: 11.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-7; 0.5 %, Average value of interparticle distance; 31.6 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-7, an absorption peak having a peak top of 546 nm and a half-value width of 83 nm was observed.
  • Example 1-8 0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-8 had a gold content per unit area of 4.55 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-8 was heat-treated at 300 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-8 (thickness: 460 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-8 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 9.6 nm, maximum particle size: 17.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 1-8; 0.5 %, Average value of interparticle distance; 35.6 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-8, an absorption peak having a peak top of 560 nm and a half-value width of 77 nm was observed.
  • Example 1-9 0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-9 had a gold content per unit area of 4.53 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-9 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-9 (thickness: 458 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-9 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 9.8 nm, maximum particle size: 19.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 1-9; 0.5 %, Average value of interparticle distance; 36.4 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-9, an absorption peak having a peak top of 560 nm and a half width of 69 nm was observed.
  • Example 1-10 0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • a gold complex-containing polyimide precursor resin film 1-10 having a thickness of about 732 nm on the glass substrate G1.
  • the gold complex-containing polyimide precursor resin film 1-10 had a gold content per unit area of 4.24 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-10 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-10 (thickness: 439 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-10 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 9.1 nm, maximum particle size; 14.0 nm, minimum particle size: 7.0 nm, gold volume fraction in nanocomposite film 1-10; 0.5 %, Average value of interparticle distance; 33.8 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-10, an absorption peak having a peak top of 542 nm and a half width of 71 nm was observed.
  • Example 1-11 0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-11 had a gold content per unit area of 4.23 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-11 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-11 (thickness: 438 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-11 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 12.3 nm, maximum particle size: 22.0 nm, minimum particle size: 6.0 nm, gold volume fraction in nanocomposite film 1-11; 0.5 %, Average value of interparticle distance; 45.7 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-11, an absorption peak having a peak top of 550 nm and a half width of 65 nm was observed.
  • Example 1-12 0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-12 had a gold content per unit area of 3.43 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-12 was heat-treated at 400 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-12 (thickness: 355 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-12 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 12.4 nm, maximum particle size: 22.0 nm, minimum particle size: 8.0 nm, gold volume fraction in nanocomposite film 1-12; 0.5 %, Average value of interparticle distance; 46.0 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-12, an absorption peak having a peak top of 552 nm and a half width of 69 nm was observed.
  • Example 1-13 0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • a gold complex-containing polyimide precursor resin film 1-13 having a thickness of about 1430 nm on the glass substrate G1.
  • the gold complex-containing polyimide precursor resin film 1-13 had a gold content per unit area of 1.69 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-13 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-13 (thickness: 857 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-13 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 4.9 nm, maximum particle size: 8.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-13: 0.1%, interparticle distance Mean value; 34.6 nm.
  • Example 1-14 0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-14 had a gold content per unit area of 1.73 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-14 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-14 (thickness 873 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-14 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 6.1 nm, maximum particle size: 9.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-14: 0.1%, interparticle distance Mean value: 43.1 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-14, an absorption peak having a peak top of 558 nm and a half width of 60 nm was observed.
  • Example 1-15 0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-15 had a content of 1.69 ⁇ g / cm 2 per unit area of gold.
  • This gold complex-containing polyimide precursor resin film 1-15 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-15 (thickness 857 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-15 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 6.9 nm, maximum particle size: 9.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 1-15; 0.1%, interparticle distance Average value of 48.7 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-15, an absorption peak having a peak top of 552 nm and a half width of 68 nm was observed.
  • Example 1-16 To 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, 0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-16 had a gold content per unit area of 0.93 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-16 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-16 (thickness: 470 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-16 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 4.8 nm, maximum particle size: 6.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-16: 0.1%, interparticle distance Mean value: 33.9 nm.
  • Example 1-17 To 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, 0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-17 had a gold content per unit area of 0.84 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-17 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-17 (thickness 423 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-17 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 5.5 nm, maximum particle size: 7.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-17: 0.1%, interparticle distance Average value of 38.8 nm.
  • shape almost spherical, average particle size: 5.5 nm, maximum particle size: 7.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-17: 0.1%, interparticle distance Average value of 38.8 nm.
  • an absorption peak having a peak top of 544 nm and a half width of 57 nm was observed.
  • Example 1-18 To 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, 0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-18 had a gold content per unit area of 0.82 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-18 was heat-treated at 400 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-18 (thickness 414 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-18 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 6.6 nm, maximum particle size: 8.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-18; 0.1%, interparticle distance Average value of 46.6 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 1-18, an absorption peak having a peak top of 546 nm and a half-value width of 63 nm was observed.
  • Example 1-19 0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-19 had a gold content per unit area of 1.75 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-19 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-19 (thickness 905 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-19 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 5.6 nm, maximum particle size: 7.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-19: 0.1%, interparticle distance Mean value: 39.5 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 1-19, an absorption peak having a peak top of 544 nm and a half width of 56 nm was observed.
  • Example 1-20 0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 1-20 had a gold content per unit area of 1.37 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-20 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-20 (thickness 708 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-20 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 6.2 nm, maximum particle size: 8.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-20; 0.1%, interparticle distance Mean value: 43.8 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-20, an absorption peak having a peak top of 530 nm and a half width of 72 nm was observed.
  • Example 1-21 0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • a gold complex-containing polyimide precursor resin film 1-21 having a film thickness of about 1310 nm on the glass substrate G1.
  • the gold complex-containing polyimide precursor resin 1-21 had a gold content per unit area of 1.52 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-21 was heat-treated at 400 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-21 (thickness 788 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-21 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 7.2 nm, maximum particle size: 10.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-21; 0.1%, interparticle distance Average value: 50.8 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-21, an absorption peak having a peak top of 538 nm and a half width of 72 nm was observed.
  • Example 1-22 0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin 1-22 had a gold content per unit area of 0.79 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-22 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-22 (thickness 410 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-22 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 5.2 nm, maximum particle size: 7.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-22: 0.1%, interparticle distance Average value of 36.7 nm.
  • Example 1-23 0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin 1-23 had a gold content per unit area of 0.78 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-23 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-23 (thickness 406 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-23 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 5.8 nm, maximum particle size: 8.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-23: 0.1%, interparticle distance Average value: 40.9 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-23, an absorption peak having a peak top of 542 nm and a half width of 77 nm was observed.
  • Example 1-24 0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin 1-24 had a gold content per unit area of 0.68 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-24 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-24 (thickness 350 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 1-24 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 6.6 nm, maximum particle size: 9.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-24: 0.1%, interparticle distance Average value of 46.6 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-24, an absorption peak having a peak top of 538 nm and a half width of 84 nm was observed.
  • a silver complex was obtained by adding 0.118 g of silver nitrate dissolved in 13.33 g of DMAc to 6.67 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and stirring the mixture at room temperature for 15 minutes in a nitrogen atmosphere.
  • a contained polyimide precursor resin solution was prepared.
  • the obtained silver complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 The film was dried at a temperature of 10 ° C.
  • the silver complex-containing polyimide precursor resin 1-25 had a silver content of 3.78 ⁇ g / cm 2 per unit area.
  • the silver complex-containing polyimide precursor resin film 1-25 was heat-treated at 300 ° C. for 10 minutes under vacuum to produce yellow-colored metallic silver fine particle dispersed nanocomposite film 1-25 (thickness 402 nm).
  • the metallic silver fine particles formed in the nanocomposite film 1-25 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metallic silver fine particles.
  • the metallic silver fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal silver fine particles formed in the film were as follows. Shape: almost spherical, average particle size: 7.9 nm, maximum particle size: 10.5 nm, minimum particle size: 5.2 nm, volume fraction of silver in nanocomposite film 1-25; 0.9%, interparticle distance Average value of 18.8 nm.
  • Shape almost spherical, average particle size: 7.9 nm, maximum particle size: 10.5 nm, minimum particle size: 5.2 nm, volume fraction of silver in nanocomposite film 1-25; 0.9%, interparticle distance Average value of 18.8 nm.
  • an absorption peak having a peak top of 442 nm and a half width of 76 nm was observed.
  • the gold complex-containing polyimide precursor resin film 1-25 had a gold content per unit area of 20.48 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-25 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-25 (thickness: 765 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-25 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-25 Shape: Polyhedral and spherical particles are mixed, average particle size: about 11.5 nm, minimum particle size: about 8.0 nm, maximum particle size: about 28.0 nm.
  • the gold complex-containing polyimide precursor resin film 1-26 had a gold content per unit area of 20.29 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-26 was heat-treated at 400 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-26 (thickness: 758 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-26 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-26 Shape: Polyhedral and spherical particles are mixed, average particle size: about 12.6 nm, minimum particle size: about 8.0 nm, maximum particle size: about 28.0 nm.
  • the gold volume fraction in the nanocomposite film 1-26 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 1-27 had a gold content per unit area of 17.83 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-27 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-27 (thickness 682 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-27 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region in the thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-27 Shape: Polyhedral and spherical particles are mixed, average particle size: about 17.0 nm, minimum particle size: about 12.0 nm, maximum particle size: about 27.0 nm.
  • the gold volume fraction in the nanocomposite film 1-27 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 1-28 had a gold content per unit area of 18.04 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-28 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-28 (thickness: 690 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-28 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-28 Shape: Polyhedral and spherical particles are mixed, average particle size: about 20.2 nm, minimum particle size: about 13.0 nm, maximum particle size: about 29.0 nm.
  • the gold complex-containing polyimide precursor resin film 1-29 had a gold content per unit area of 17.52 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-29 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-29 (thickness: 670 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-29 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-29 Shape: Polyhedral and spherical particles are mixed, average particle size: about 23.0 nm, minimum particle size: about 15.0 nm, maximum particle size: about 30.0 nm.
  • the gold volume fraction in the nanocomposite film 1-29 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 1-30 had a gold content per unit area of 12.05 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-30 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-30 (thickness 450 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-30 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-30 Shape: Polyhedral and spherical particles are mixed, average particle size: about 7.1 nm, minimum particle size: about 4.0 nm, maximum particle size: about 13.0 nm.
  • the gold volume fraction in the nanocomposite film 1-30 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 1-31 had a gold content per unit area of 10.28 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 1-31 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a purple-colored metal gold fine particle-dispersed nanocomposite film 1-31 (thickness: 384 nm). It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-31 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-31 Shape: Polyhedral and spherical particles are mixed, average particle size: about 10.0 nm, minimum particle size: about 5.0 nm, maximum particle size: about 16.0 nm.
  • the gold volume fraction in the nanocomposite film 1-31 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 1-32 had a gold content of 12.52 ⁇ g / cm 2 per unit area.
  • This gold complex-containing polyimide precursor resin film 1-32 was heat-treated in the atmosphere at 200 ° C. for 10 minutes to produce a purple-colored metal gold fine particle-dispersed nanocomposite film 1-32 (thickness: 479 nm). It was confirmed that the metal gold fine particles formed on the nanocomposite film 1-32 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • the gold volume fraction in the nanocomposite film 1-32 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 1-33 had a gold content per unit area of 10.59 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-33 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-33 (thickness: 405 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-33 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • the gold volume fraction in the nanocomposite film 1-33 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 1-34 had a gold content per unit area of 10.20 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 1-34 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-34 (thickness 390 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-34 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-34 Shape: Polyhedral and spherical particles are mixed, average particle size: about 16.4 nm, minimum particle size: about 14.0 nm, maximum particle size: about 26.0 nm.
  • the gold volume fraction in the nanocomposite film 1-34 was 1.35%.
  • Example 2-1 To 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, 0.522 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 2-1 had a content of 20.40 ⁇ g / cm 2 per unit area of gold.
  • the gold complex-containing polyimide precursor resin film 2-1 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 2-1 (thickness: 762 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 2-1 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. 1) Area within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-1: Shape: Polyhedral and spherical particles are mixed, average particle diameter: about 10.2 nm, minimum particle diameter: about 4.0 nm, maximum particle diameter: about 38.0 nm. 2) Region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 2-1: Shape: Polyhedral and spherical particles are mixed, average particle size: about 20.7 nm, minimum particle size: about 4.0 nm, maximum particle size: about 51.0 nm.
  • the gold volume fraction in the nanocomposite film 2-1 was 1.35%. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 2-1, an absorption peak having a peak top of 570 nm and a half-value width of 115 nm was observed.
  • Example 2-2 To 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, 0.522 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 2-2 had a gold content per unit area of 11.64 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 2-2 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 2-2 (thickness: 435 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 2-2 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. 1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-2: Shape: Polyhedral and spherical particles are mixed, average particle size: about 6.5 nm, minimum particle size: about 3.0 nm, maximum particle size: about 12.0 nm.
  • a region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 2-2 (however, when the thickness is less than 600 nm, the upper limit is the film thickness): Shape: Polyhedral and spherical particles are mixed, average particle size: about 11.6 nm, minimum particle size: about 4.0 nm, maximum particle size: about 25.0 nm.
  • the gold volume fraction in the nanocomposite film 2-2 was 1.35%. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 2-2, an absorption peak having a peak top of 568 nm and a half-value width of 89 nm was observed.
  • the gold complex-containing polyimide precursor resin film 2-3 had a gold content per unit area of 20.48 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 2-3 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 2-3 (thickness: 765 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 2-3 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-3 Shape: Polyhedral and spherical particles are mixed, average particle size: about 11.5 nm, minimum particle size: about 8.0 nm, maximum particle size: about 28.0 nm.
  • the gold volume fraction in the nanocomposite film 2-3 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 2-4 had a gold content of 20.29 ⁇ g / cm 2 per unit area.
  • the gold complex-containing polyimide precursor resin film 2-4 was heat-treated in the atmosphere at 400 ° C. for 10 minutes to produce a purple-colored metal gold fine particle dispersed nanocomposite film 2-4 (thickness: 758 nm). It was confirmed that the metal gold fine particles formed in the nanocomposite film 2-4 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-4 Shape: Polyhedral and spherical particles are mixed, average particle size: about 12.6 nm, minimum particle size: about 8.0 nm, maximum particle size: about 28.0 nm.
  • the gold volume fraction in the nanocomposite film 2-4 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 2-5 had a gold content per unit area of 12.05 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 2-5 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 2-5 (thickness 450 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 2-5 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-5 Shape: Polyhedral and spherical particles are mixed, average particle size: about 7.1 nm, minimum particle size: about 4.0 nm, maximum particle size: about 13.0 nm.
  • a region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 2-5 (however, when the thickness is less than 600 nm, the upper limit is the film thickness): Shape: polyhedral, average particle size: about 17.6 nm, minimum particle size: about 4.0 nm, maximum particle size: about 36.0 nm.
  • the gold volume fraction in the nanocomposite film 2-5 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 2-6 had a gold content of 10.28 ⁇ g / cm 2 per unit area.
  • This gold complex-containing polyimide precursor resin film 2-6 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 2-6 (thickness 384 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 2-6 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-6 Shape: Polyhedral and spherical particles are mixed, average particle size: about 10.0 nm, minimum particle size: about 5.0 nm, maximum particle size: about 16.0 nm.
  • a region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 2-6 (however, when the thickness is less than 600 nm, the upper limit is the film thickness): Shape: polyhedral, average particle size: about 20.8 nm, minimum particle size: about 5.0 nm, maximum particle size: about 48.0 nm.
  • the gold volume fraction in the nanocomposite film 2-6 was 1.35%.
  • Example 3-1 0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 3-1 had a gold content per unit area of 6.05 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 3-1 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 3-1 (thickness: 226 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 3-1 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 8.7 nm, maximum particle size: 20.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 3-1: 1.35 %, Average value of interparticle distance; 20.8 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 3-1, an absorption peak having a peak top of 550 nm and a half width of 80 nm was observed.
  • Example 3-2 0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • a gold complex-containing polyimide precursor resin film 3-2 having a film thickness of about 315 nm on the glass substrate G1.
  • the gold complex-containing polyimide precursor resin film 3-2 had a gold content per unit area of 5.06 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 3-2 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 3-2 (thickness 189 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 3-2 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 10.2 nm, maximum particle size: 21.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 3-2; 1.35 %, Average value of interparticle distance; 24.3 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 3-2, an absorption peak having a peak top of 564 nm and a half-value width of 76 nm was observed.
  • Example 3-3 0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • a gold complex-containing polyimide precursor resin film 3-3 having a thickness of about 367 nm on the glass substrate G1.
  • the gold complex-containing polyimide precursor resin film 3-3 had a gold content per unit area of 5.89 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 3-3 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 3-3 (thickness 220 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 3-3 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 13.8 nm, maximum particle size: 21.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 3-3: 1.35 %, Average value of interparticle distance; 32.8 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 3-3, an absorption peak having a peak top of 564 nm and a half-value width of 87 nm was observed.
  • Example 3-4 0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 3 obtained in Synthesis Example 3, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 3-4 had a gold content per unit area of 5.33 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 3-4 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 3-4 (thickness: 203 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 3-4 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 12.4 nm, maximum particle size: 30.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 3-4: 1.35 %, Average value of interparticle distance; 29.6 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 3-4, an absorption peak having a peak top of 556 nm and a half width of 112 nm was observed.
  • Example 3-5 0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 3 obtained in Synthesis Example 3, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 3-5 had a gold content per unit area of 5.22 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 3-5 was heat-treated in the atmosphere at 300 ° C. for 10 minutes to produce a metal gold fine particle dispersed nanocomposite film 3-5 (thickness: 199 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 3-5 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 14.2 nm, maximum particle size: 30.0 nm, minimum particle size: 6.0 nm, gold volume fraction in nanocomposite film 3-5; 1.35 %, Average value of interparticle distance; 33.8 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 3-5, an absorption peak having a peak top of 564 nm and a half-value width of 111 nm was observed.
  • Example 3-6 0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 3 obtained in Synthesis Example 3, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • a gold complex-containing polyimide precursor resin film 3-6 having a film thickness of about 413 nm on the glass substrate G1.
  • the gold complex-containing polyimide precursor resin film 3-6 had a gold content per unit area of 6.51 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 3-6 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 3-6 (thickness 248 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 3-6 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 19.4 nm, maximum particle size; 49.0 nm, minimum particle size: 6.0 nm, gold volume fraction in nanocomposite film 3-6; 1.35 %, Average value of interparticle distance; 46.2 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 3-6, an absorption peak having a peak top of 570 nm and a half width of 94 nm was observed.
  • Example 3-7 0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • a gold complex-containing polyimide precursor resin film 3-7 having a thickness of about 337 nm on the glass substrate G1.
  • the gold complex-containing polyimide precursor resin film 3-7 had a gold content per unit area of 5.28 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 3-7 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 3-7 (thickness: 202 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 3-7 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 12.3 nm, maximum particle size: 16.0 nm, minimum particle size: 7.0 nm, gold volume fraction in nanocomposite film 3-7: 1.35 %, Average value of interparticle distance; 29.2 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 3-7, an absorption peak having a peak top of 548 nm and a half width of 78 nm was observed.
  • Example 3-8 0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 3-8 had a gold content per unit area of 5.46 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 3-8 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 3-8 (thickness 209 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 3-8 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 16.5 nm, maximum particle size; 23.0 nm, minimum particle size: 11.0 nm, gold volume fraction in nanocomposite film 3-8; 1.35 %, Average value of interparticle distance; 39.4 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 3-8, an absorption peak having a peak top of 562 nm and a half width of 76 nm was observed.
  • the gold complex-containing polyimide precursor resin film 3-9 had a gold content of 12.05 ⁇ g / cm 2 per unit area.
  • This gold complex-containing polyimide precursor resin film 3-9 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 3-9 (thickness 450 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 3-9 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Area within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 3-9 Shape: Polyhedral and spherical particles are mixed, average particle size: about 7.1 nm, minimum particle size: about 4.0 nm, maximum particle size: about 13.0 nm.
  • the gold volume fraction in the nanocomposite film 3-9 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 3-10 had a gold content per unit area of 10.28 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 3-10 was heat-treated in the atmosphere at 400 ° C. for 10 minutes to produce a metal gold fine particle dispersed nanocomposite film 3-10 (thickness 384 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 3-10 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 3-10 Shape: Polyhedral and spherical particles are mixed, average particle size: about 10.0 nm, minimum particle size: about 5.0 nm, maximum particle size: about 16.0 nm.
  • the gold volume fraction in the nanocomposite film 3-10 was 1.35%.
  • the gold complex-containing polyimide precursor resin film 3-11 had a gold content per unit area of 16.58 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 3-11 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a purple-colored metal gold fine particle dispersed nanocomposite film 3-11 (thickness: 217 nm). It was confirmed that the metal gold fine particles formed in the nanocomposite film 3-11 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Shape Polyhedral and spherical particles are mixed, average particle size: 41.7 nm, maximum particle size: 68.0 nm, minimum particle size: 22.0 nm.
  • the gold volume fraction in the nanocomposite film 3-11 was 3.96%.
  • absorption peaks having peak tops of 570 nm and 640 nm and a half-value width of 171 nm were observed.
  • the gold complex-containing polyimide precursor resin film 3-12 had a gold content per unit area of 5.15 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 3-12 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 3-12 (thickness 197 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 3-12 were confirmed to be agglomerated in a very small portion.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Shape Polyhedral and spherical particles are mixed, average particle size: 23.5 nm, maximum particle size: 34.0 nm, minimum particle size: 16.0 nm.
  • the gold volume fraction in the nanocomposite film 3-12 was 1.35%.
  • absorption peaks having peak tops of 574 nm and 620 nm and a half-value width of 92 nm were observed.
  • the gold complex-containing polyimide precursor resin film 3-13 had a gold content per unit area of 5.42 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 3-13 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 3-13 (thickness 71 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 3-13 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Shape Polyhedral and spherical particles are mixed, average particle size: 32.0 nm, maximum particle size: 56.0 nm, minimum particle size: 12.0 nm.
  • the gold volume fraction in the nanocomposite film 3-13 was 3.96%. Further, in the absorption spectrum of localized surface plasmon resonance due to the metal gold fine particles of the nanocomposite film 3-13, absorption peaks having peak tops of 554 nm and 640 nm and a half-value width of 158 nm were observed.
  • Example 4-1 0.726 g of chloroauric acid tetrahydrate dissolved in 7.33 g of DMAc was added to 2.67 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 4-1 had a gold content per unit area of 19.15 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 4-1 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 4-1 (thickness 179 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 4-1 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 17.0 nm, maximum particle size; 54.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 4-1, 5.54 %, Average value of interparticle distance; 18.9 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 4-1, an absorption peak having a peak top of 572 nm and a half width of 103 nm was observed.
  • Example 4-2 0.726 g of chloroauric acid tetrahydrate dissolved in 7.33 g of DMAc was added to 2.67 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • the gold complex-containing polyimide precursor resin film 4-2 had a gold content per unit area of 21.61 ⁇ g / cm 2 .
  • the gold complex-containing polyimide precursor resin film 4-2 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 4-2 (thickness: 202 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 4-2 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: Mixed polyhedral and spherical particles, average particle size: 22.4 nm, maximum particle size; 68.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 4-2; 5.54 %, Average value of interparticle distance; 24.9 nm. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 4-2, an absorption peak having a peak top of 570 nm and a half width of 103 nm was observed.
  • Example 4-3 0.726 g of chloroauric acid tetrahydrate dissolved in 7.33 g of DMAc was added to 2.67 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C.
  • a spin coater manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2
  • a gold complex-containing polyimide precursor resin film 4-3 having a thickness of about 282 nm on the glass substrate G1.
  • the gold complex-containing polyimide precursor resin film 4-3 had a gold content per unit area of 18.01 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 4-3 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 4-3 (thickness 169 nm) colored red.
  • the metal gold fine particles formed in the nanocomposite film 4-3 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles.
  • Metallic gold fine particles were present from the surface layer portion of the matrix resin.
  • the characteristics of the metal gold fine particles formed in the film were as follows. Shape: mixed polyhedral and spherical particles, average particle size: 24.5 nm, maximum particle size: 71.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 4-3; 5.54 %, Average value of interparticle distance; 27.3 nm. Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 4-3, an absorption peak having a peak top of 576 nm and a half-value width of 101 nm was observed.
  • the gold complex-containing polyimide precursor resin film 4-4 had a content of 10.07 ⁇ g / cm 2 per unit area of gold.
  • This gold complex-containing polyimide precursor resin film 4-4 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 4-4 (thickness 195 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 4-4 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Shape Polyhedral and spherical particles are mixed, average particle size: 19.8 nm, maximum particle size: 30.0 nm, minimum particle size: 11.0 nm.
  • the gold volume fraction in the nanocomposite film 4-4 was 2.67%. Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 4-4, an absorption peak having peak tops of 554 nm and 622 nm and a half width of 109 nm was observed.
  • the gold complex-containing polyimide precursor resin film 4-5 had a content per gold unit area of 16.58 ⁇ g / cm 2 .
  • This gold complex-containing polyimide precursor resin film 4-5 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 4-5 (thickness: 217 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 4-5 were partially aggregated.
  • the characteristics of the metal gold fine particles formed in the film were as follows.
  • Shape Polyhedral and spherical particles are mixed, average particle size: 41.7 nm, maximum particle size: 68.0 nm, minimum particle size: 22.0 nm.
  • the gold volume fraction in the nanocomposite film 4-5 was 3.96%.
  • absorption peaks having peak tops of 570 nm and 640 nm and a half width of 171 nm were observed.

Abstract

A process for producing a metal nanoparticle composite wherein metal nanoparticles having a mean particle diameter of 3nm or more are each independently dispersed in a polyimide resin in such a manner that the metal nanoparticles are not in contact with each other and that adjacent nanoparticles are present with a space therebetween, said space being equal to or larger than the larger of the particle diameters of the adjacent metal nanoparticles. The process includes: (a) a step of applying a coating fluid which comprises both a polyimide precursor resin and a metal compound to a substrate so as to give a metal content of 50μg/cm2 or less, and drying the resulting coating to form a coating film which has a dry film thickness of 1.7μm or less; and (b) a step of heat-treating the coating film at a temperature of 160 to 450°C not only to reduce the metal ions (or metal salt) contained in the coating film and make the resulting particulate metal (which acts as the metal nanoparticles) deposited and dispersed in the coating film but also to convert the polyimide precursor resin into a polyimide resin and thus form a polyimide resin layer which has a thickness of 1μm or less and an elastic modulus of 10GPa or less.

Description

金属微粒子複合体の製造方法Method for producing metal fine particle composite
 本発明は、ポリイミド樹脂で構成されるマトリックス中に金属微粒子が分散した金属微粒子複合体の製造方法に関する。 The present invention relates to a method for producing a metal fine particle composite in which metal fine particles are dispersed in a matrix composed of a polyimide resin.
 局在型表面プラズモン共鳴(Local Surface Plasmon Resonance; LSPR)は、数nm~100nm程度のサイズの金属微粒子や金属微細構造中の電子が、特定の波長の光と相互作用を生じて共鳴する現象である。局在型表面プラズモン共鳴は、ガラスの内部に金属微粒子を混合することによって鮮やかな発色を呈するステンドガラスに古くから利用されている。近年では、例えば光強度を増強させる効果を利用した高出力な発光レーザの開発や、分子が結合すると共鳴状態が変化する性質を利用したバイオセンサーなどへの応用が研究されている。 Local Surface Plasmon Resonance (LSPR) is a phenomenon in which fine metal particles with a size of several nanometers to 100 nm or electrons in a metal microstructure resonate by interacting with light of a specific wavelength. is there. Localized surface plasmon resonance has long been used for stained glass that produces vivid colors by mixing fine metal particles inside the glass. In recent years, for example, development of a high-power light emitting laser using the effect of enhancing the light intensity and application to a biosensor using the property that the resonance state changes when molecules are combined are studied.
 このような金属微粒子の局在型表面プラズモン共鳴をセンサーなどに応用するためには、合成樹脂などのマトリックス中に金属微粒子を安定的に固定することが必要である。しかし、金属微粒子は、ナノメートルサイズになると凝集分散特性が変化し、例えば、静電反発作用による分散安定化が困難になって凝集が生じやすくなる。従って、局在型表面プラズモン共鳴を利用するプラズモニックデバイスでは、マトリックス中の金属微粒子をいかに均一な状態で分散させ得るか、が重要になる。 In order to apply such localized surface plasmon resonance of metal fine particles to a sensor or the like, it is necessary to stably fix the metal fine particles in a matrix such as a synthetic resin. However, when the metal fine particles have a nanometer size, the aggregation and dispersion characteristics change, and for example, dispersion stabilization due to electrostatic repulsion becomes difficult and aggregation tends to occur. Therefore, in a plasmonic device using localized surface plasmon resonance, it is important how the metal fine particles in the matrix can be dispersed in a uniform state.
 樹脂などのマトリックス中に金属微粒子を固定した金属微粒子複合体の製造方法に関する技術として、例えば以下の特許文献1~4が提案されている。特許文献1では、粒子が小さく、粒子の分散性及び粒子とマトリックスの接着性が良く、そのために高弾性率となる高分子複合材料として、熱可塑性又は熱硬化性重合体マトリックスに対して、粒子径10~20オングストロームの金属粒子を体積分率0.005~0.01%で均一に分散、充填してなる、弾性率の向上した高分子-金属クラスター複合体が開示されている。しかし、特許文献1の製造方法では、粒子径が数十ナノメートルレベル以上の金属微粒子の複合体とすることは困難であった。 For example, the following Patent Documents 1 to 4 have been proposed as techniques relating to a method for producing a metal fine particle composite in which metal fine particles are fixed in a matrix such as a resin. In Patent Document 1, as a polymer composite material in which particles are small, particle dispersibility and particle-matrix adhesion are good, and thus have a high elastic modulus, particles are compared with thermoplastic or thermosetting polymer matrices. There is disclosed a polymer-metal cluster composite having an improved elastic modulus obtained by uniformly dispersing and filling metal particles having a diameter of 10 to 20 angstroms with a volume fraction of 0.005 to 0.01%. However, with the production method of Patent Document 1, it was difficult to form a composite of metal fine particles having a particle size of several tens of nanometers or more.
 特許文献2では、無電解めっき法に代わり得る新規な導電性皮膜の形成や、グラニュラー磁性薄膜への利用が可能な金属微粒子の分散体を得る目的で、イオン交換基を含む樹脂基材を、金属イオンを含有する溶液に接触させた後、気相中において還元を行う微粒子分散体の製造方法が開示されている。この方法では、水素還元の際に、金属イオンが樹脂の内部に拡散しながら反応が進行するために、樹脂基材の表面から数十ナノメートル(特許文献2の実施例では80nm)までの深さには、金属微粒子が存在しない。また、特許文献2が開示する製造方法では、イオン交換基を含む樹脂基材を、金属イオンを含有する溶液に接触させることによって、マトリックス樹脂中に含まれるイオン交換基に吸着乃至結合させるものであるので、金属イオンの含有量が制限されるとともに、イオン交換基によって金属イオンが固定化されているため、十分な大きさの粒子径を有する金属微粒子とすることも困難であった。 In Patent Document 2, for the purpose of obtaining a dispersion of metal fine particles that can be used for forming a novel conductive film that can be used in place of the electroless plating method or a granular magnetic thin film, a resin substrate containing an ion exchange group is used. A method for producing a fine particle dispersion in which reduction is performed in a gas phase after contacting with a solution containing metal ions is disclosed. In this method, since the reaction proceeds while the metal ions diffuse into the resin during hydrogen reduction, the depth from the surface of the resin substrate to several tens of nanometers (80 nm in the example of Patent Document 2). In addition, there are no metal fine particles. In addition, in the production method disclosed in Patent Document 2, a resin base material containing an ion exchange group is adsorbed or bonded to an ion exchange group contained in a matrix resin by contacting a solution containing metal ions. As a result, the metal ion content is limited and the metal ions are immobilized by the ion exchange groups, so that it is difficult to obtain metal fine particles having a sufficiently large particle diameter.
 特許文献3では、アルカリ水溶液で処理してカルボキシル基を導入したポリイミド樹脂膜を金属イオン含有液と接触させて樹脂膜中に金属イオンをドープした後に、還元性ガス中で金属イオンの還元温度以上で1回目の熱処理を行ってポリイミド樹脂中に金属ナノ粒子が分散した層を形成させ、さらに1回目の熱処理温度とは異なる温度で2回目の熱処理を行う方法が開示されている。特許文献3では、2回目の熱処理により、金属ナノ粒子分散層の厚さを調整して、コンポジット膜中の金属ナノ粒子の体積充填率を制御できると記載されている。しかしながら、特許文献2と同様に、粒子径については、マトリックス樹脂中に含まれるイオン交換基に吸着乃至結合させた金属イオンを還元して金属微粒子を形成する方式であるため、金属イオンの含有量が制限されるとともに、イオン交換基によって金属イオンが固定化されているため、十分な大きさの粒子径を有する金属微粒子とすることが困難であった。 In Patent Document 3, a polyimide resin film introduced with a carboxyl group by contact with an alkali aqueous solution is brought into contact with a metal ion-containing liquid to dope metal ions into the resin film, and then the reduction temperature of the metal ions or higher in the reducing gas. The first heat treatment is performed to form a layer in which metal nanoparticles are dispersed in the polyimide resin, and the second heat treatment is performed at a temperature different from the first heat treatment temperature. Patent Document 3 describes that the volume filling rate of the metal nanoparticles in the composite film can be controlled by adjusting the thickness of the metal nanoparticle dispersion layer by the second heat treatment. However, as in Patent Document 2, the particle size is a method in which metal ions adsorbed or bonded to ion exchange groups contained in the matrix resin are reduced to form metal fine particles. In addition, since metal ions are immobilized by ion exchange groups, it is difficult to obtain metal fine particles having a sufficiently large particle diameter.
 特許文献4は、金属粒子を高分子マトリックス内に分散させる過程において、高分子マトリックスとの相溶性、界面欠陥、粒子間の凝集性などの問題を解決するため、金属前駆体を高分子物質のマトリックスに分子水準で分散させた後、紫外線を照射して金属前駆体を光還元する方法が開示されている。しかし、特許文献4の方法は、紫外線還元によって金属微粒子を析出させているため、紫外線照射面の影響を受けるので、マトリックスの表層部と深部で金属微粒子の析出密度に勾配が生じる。すなわち、マトリックスの表層部から深部へ進む程、金属微粒子の粒子径及び充填割合が連続的に減少する傾向となる。また、光還元によって得られる金属微粒子の粒子径は、紫外線照射面であるマトリックスの表層部で最大となるが、せいぜい十数ナノメートル程度であり、しかもこの粒子径と同等又はそれ以上の粒子径を有する金属微粒子を深部に亘って分散させることは困難であった。 In Patent Document 4, in the process of dispersing metal particles in a polymer matrix, a metal precursor is used as a polymer substance in order to solve problems such as compatibility with the polymer matrix, interface defects, and cohesion between particles. A method is disclosed in which a metal precursor is photoreduced by irradiating ultraviolet rays after being dispersed in a matrix at a molecular level. However, since the method of Patent Document 4 deposits metal fine particles by ultraviolet reduction, it is affected by the ultraviolet irradiation surface, and therefore a gradient occurs in the deposition density of the metal fine particles between the surface layer portion and the deep portion of the matrix. That is, the particle diameter and the filling ratio of the metal fine particles tend to decrease continuously as the matrix proceeds from the surface layer to the deep part. In addition, the particle size of the metal fine particles obtained by photoreduction is maximum at the surface layer portion of the matrix, which is the ultraviolet irradiation surface, but is at most about a dozen nanometers, and a particle size equal to or larger than this particle size. It was difficult to disperse the metal microparticles having a large depth.
特公平8-16177号公報Japanese Patent Publication No. 8-16177 特許第3846331号公報Japanese Patent No. 3846331 特許第4280221号公報Japanese Patent No. 4280221 特開2002-179931号公報JP 2002-179931 A
 マトリックス内に金属微粒子が分散した金属微粒子複合体を、局在型表面プラズモン共鳴によるセンサー等の用途に利用する場合、少なくとも、吸収スペクトルの強度が大きいことが重要である。また、一般に吸収スペクトルがシャープである程、高感度な検出が可能になる。強度が大きくシャープな吸収スペクトルを得るには、例えば、
1)金属微粒子の大きさが所定の範囲内に制御されていること、
2)金属微粒子の形状が均一であること、
3)金属微粒子が隣り合う金属微粒子とある一定以上の粒子間隔を保った状態でお互いが離れていること、
4)金属微粒子複合体に対する金属微粒子の体積充填割合がある一定の範囲で制御されていること、
5)金属微粒子がマトリックスの表層部から存在するとともに、その厚さ方向にも所定の粒子間距離を保ちながら偏りなく分散していること、
などの構造的特性を金属微粒子複合体が備えていることが必要である。
When a metal fine particle composite in which metal fine particles are dispersed in a matrix is used for applications such as a sensor using localized surface plasmon resonance, it is important that at least the intensity of the absorption spectrum is large. In general, the sharper the absorption spectrum, the higher the sensitivity of detection. To obtain a sharp and strong absorption spectrum, for example,
1) The size of the metal fine particles is controlled within a predetermined range;
2) The shape of the metal fine particles is uniform,
3) The metal fine particles are separated from each other in a state of maintaining a certain particle interval from the adjacent metal fine particles,
4) The volume filling ratio of the metal fine particles to the metal fine particle composite is controlled within a certain range.
5) The metal fine particles are present from the surface layer portion of the matrix, and are dispersed evenly while maintaining a predetermined inter-particle distance in the thickness direction.
It is necessary for the metal fine particle composite to have structural characteristics such as
 本発明は、従来技術では解決できなかった前記課題に対し案出されたものであり、所定の範囲内にある粒子径を有する金属微粒子が互いに凝集することなく独立して分散してなる金属微粒子複合体の製造方法を提供することを目的とする。 The present invention has been devised for the above-mentioned problems that could not be solved by the prior art, and is obtained by independently dispersing metal fine particles having a particle diameter within a predetermined range without agglomerating each other. It aims at providing the manufacturing method of a composite_body | complex.
 本発明者らは、上記実情に鑑み鋭意研究を行った結果、ポリイミド樹脂中に含有する金属量及びポリイミド樹脂マトリックスの厚みを制御し、特定の範囲内の温度で熱処理を行うことによって得られる金属微粒子複合体は、上記要求を満たすものであることを見出し、本発明を完成した。 As a result of intensive studies in view of the above circumstances, the present inventors have controlled the amount of metal contained in the polyimide resin and the thickness of the polyimide resin matrix, and obtained by heat treatment at a temperature within a specific range. The present inventors have found that the fine particle composite satisfies the above requirements and completed the present invention.
 すなわち、本発明の金属微粒子複合体の製造方法は、ポリイミド樹脂中に、平均粒子径が3nm以上の金属微粒子が互いに接することなく、隣り合う金属微粒子における粒子径の大きい方の金属微粒子の粒子径以上の間隔で互いに独立して分散してなる金属微粒子複合体を製造するものである。この金属微粒子複合体の製造方法は、以下の工程a及びb;
 a)ポリイミド前駆体樹脂と、金属化合物とを含有する塗布液を、金属分の含有量として50μg/cm以下となるように基材上に塗布し、乾燥して、乾燥後の厚さが1.7μm以下の塗布膜を形成する工程、
 b)前記塗布膜を、160℃以上450℃以下の範囲内の温度で熱処理することにより、前記塗布膜中の金属イオン(又は金属塩)を還元して金属微粒子となる粒子状金属を析出させ、塗布膜中に分散させるとともに、前記塗布膜中の前記ポリイミド前駆体樹脂をイミド化して厚みが1μm以下であり、かつ弾性率が10GPa以下のポリイミド樹脂層を形成する工程、
を備えている。
That is, in the method for producing a metal fine particle composite of the present invention, the metal particles having an average particle diameter of 3 nm or more are not in contact with each other in the polyimide resin, and the particle diameter of the metal fine particle having the larger particle diameter in the adjacent metal fine particles A metal fine particle composite is produced by being dispersed independently at the above intervals. The metal fine particle composite production method includes the following steps a and b;
a) A coating solution containing a polyimide precursor resin and a metal compound is applied on a substrate so that the content of the metal is 50 μg / cm 2 or less, dried, and the thickness after drying is Forming a coating film of 1.7 μm or less,
b) The coating film is heat-treated at a temperature in the range of 160 ° C. or more and 450 ° C. or less, thereby reducing the metal ions (or metal salt) in the coating film and precipitating particulate metal that becomes metal fine particles. And a step of dispersing in the coating film and imidizing the polyimide precursor resin in the coating film to form a polyimide resin layer having a thickness of 1 μm or less and an elastic modulus of 10 GPa or less,
It has.
 本発明の金属微粒子複合体の製造方法の第1の好ましい態様において、前記金属微粒子複合体は、前記金属微粒子の平均粒子径が3nm以上25nm以下の範囲内、かつ、その体積分率が金属微粒子複合体に対して0.05%以上1%以下の範囲内であってもよい。この場合、前記工程aにおける前記塗布液中の金属分の含有量が0.5μg/cm以上10μg/cm以下の範囲内で、かつ、乾燥後の前記塗布膜の厚さが500nm以上1.7μm以下の範囲内であってもよい。さらに、前記工程bにおける前記ポリイミド樹脂層の厚みが300nm以上1μm以下の範囲内であってもよい。 In a first preferred embodiment of the method for producing a metal fine particle composite of the present invention, the metal fine particle composite has an average particle diameter of the metal fine particles in the range of 3 nm to 25 nm and a volume fraction of the metal fine particles. It may be in the range of 0.05% to 1% with respect to the composite. In this case, the metal content in the coating solution in the step a is in the range of 0.5 μg / cm 2 or more and 10 μg / cm 2 or less, and the thickness of the coating film after drying is 500 nm or more and 1 It may be within a range of 7 μm or less. Furthermore, the thickness of the polyimide resin layer in the step b may be in the range of 300 nm to 1 μm.
 本発明の金属微粒子複合体の製造方法の第2の好ましい態様において、前記金属微粒子複合体は、前記金属微粒子の平均粒子径が3nm以上30nm以下の範囲内、かつ、その体積分率が金属微粒子複合体に対して0.2%以上5%以下の範囲内であってもよい。この場合、前記工程aにおける前記塗布液中の金属分の含有量が10μg/cm以上50μg/cm以下の範囲内で、かつ、乾燥後の前記塗布膜の厚さが500nm以上1.7μm以下の範囲内であってもよい。さらに、前記工程bにおける前記ポリイミド樹脂層の厚みが300nm以上1μm以下の範囲内、かつ、その弾性率が3GPa以上10GPa以下の範囲内であってもよい。 In a second preferred embodiment of the method for producing a metal fine particle composite of the present invention, the metal fine particle composite has an average particle diameter of the metal fine particles in the range of 3 nm or more and 30 nm or less, and the volume fraction thereof is the metal fine particles. It may be within a range of 0.2% to 5% with respect to the composite. In this case, the metal content in the coating solution in the step a is in the range of 10 μg / cm 2 to 50 μg / cm 2 and the thickness of the coating film after drying is 500 nm to 1.7 μm. It may be within the following range. Furthermore, the thickness of the polyimide resin layer in the step b may be in the range of 300 nm to 1 μm and the elastic modulus may be in the range of 3 GPa to 10 GPa.
 本発明の金属微粒子複合体の製造方法の第3の好ましい態様において、前記金属微粒子複合体は、前記金属微粒子の平均粒子径が3nm以上30nm以下の範囲内、かつ、その体積分率が金属微粒子複合体に対して0.5%以上5%以下の範囲内であってもよい。この場合、前記工程aにおける前記塗布液中の金属分の含有量が5μg/cm以上10μg/cm以下の範囲内で、かつ、乾燥後の前記塗布膜の厚さが150nm以上500nm以下の範囲内であってもよい。さらに、前記工程bにおける前記ポリイミド樹脂層の厚みが100nm以上300nm以下の範囲内、かつ、その弾性率が5MPa以上10GPa以下の範囲内であってもよい。 In a third preferred embodiment of the method for producing a metal fine particle composite of the present invention, the metal fine particle composite has an average particle diameter of the metal fine particles in the range of 3 nm to 30 nm and a volume fraction of the metal fine particles. It may be within a range of 0.5% or more and 5% or less with respect to the composite. In this case, the metal content in the coating solution in the step a is in the range of 5 μg / cm 2 to 10 μg / cm 2 and the thickness of the coating film after drying is 150 nm to 500 nm. It may be within the range. Furthermore, the thickness of the polyimide resin layer in the step b may be in the range of 100 nm to 300 nm and the elastic modulus may be in the range of 5 MPa to 10 GPa.
 本発明の金属微粒子複合体の製造方法の第4の好ましい態様において、前記金属微粒子複合体は、前記金属微粒子の平均粒子径が5nm以上35nm以下の範囲内、かつ、その体積分率が、金属微粒子複合体に対して1%以上15%以下の範囲内にあってもよい。この場合、前記工程aにおける前記塗布液中の金属分の含有量が10μg/cm以上30μg/cm以下の範囲内で、かつ、乾燥後の前記塗布膜の厚さが150nm以上500nm以下の範囲内であってもよい。さらに、前記工程bにおける前記ポリイミド樹脂層の厚みが100nm以上300nm以下の範囲内、かつ、その弾性率が0.5GPa以上10GPa以下の範囲内であってもよい。 In a fourth preferred embodiment of the method for producing a metal fine particle composite of the present invention, the metal fine particle composite has an average particle diameter of the metal fine particles in the range of 5 nm or more and 35 nm or less, and the volume fraction thereof is a metal. It may be in the range of 1% to 15% with respect to the fine particle composite. In this case, the metal content in the coating solution in the step a is in the range of 10 μg / cm 2 to 30 μg / cm 2 and the thickness of the coating film after drying is 150 nm to 500 nm. It may be within the range. Furthermore, the thickness of the polyimide resin layer in the step b may be in the range of 100 nm to 300 nm and the elastic modulus may be in the range of 0.5 GPa to 10 GPa.
 また、本発明の金属微粒子複合体の製造方法において、前記工程bが、不活性ガス雰囲気中で行われるものであってもよい。 Further, in the method for producing a metal fine particle composite according to the present invention, the step b may be performed in an inert gas atmosphere.
 また、本発明の金属微粒子複合体の製造方法において、前記金属化合物が、Auの前駆体であってもよい。 In the method for producing a metal fine particle composite according to the present invention, the metal compound may be a precursor of Au.
 本発明の金属微粒子複合体の製造方法は、ポリイミド前駆体樹脂の内部で金属イオン(又は金属塩)の状態から還元して金属微粒子を析出させるため、ポリイミド前駆体樹脂中での金属化合物の含有量の調整が容易であり、ポリイミド樹脂中に分散させる金属微粒子の含有量を調整しやすい。従って、比較的容易に、ポリイミド樹脂中に平均粒子径が3nm以上の金属微粒子が互いに接することなく、隣り合う金属微粒子における粒子径の大きい方の金属微粒子の粒子径以上の間隔で互いに独立して分散してなる金属微粒子複合体を製造することができる。しかも、その還元処理が加熱によるものなので、析出した金属微粒子の熱拡散を利用して金属微粒子をマトリックス樹脂内で一定以上の粒子間距離を保った状態で分散させることが可能であり、かつ、一定以上の粒子間距離で分散した金属微粒子がマトリックス樹脂の表層部から存在するようになる。 In the method for producing a metal fine particle composite of the present invention, since metal fine particles are precipitated by reduction from the state of metal ions (or metal salts) inside the polyimide precursor resin, the metal compound is contained in the polyimide precursor resin. The amount can be easily adjusted, and the content of the metal fine particles dispersed in the polyimide resin can be easily adjusted. Therefore, relatively easily, metal fine particles having an average particle diameter of 3 nm or more do not contact each other in the polyimide resin, and are separated from each other at an interval equal to or larger than the particle diameter of the larger metal fine particle in the adjacent metal fine particles. Dispersed metal fine particle composites can be produced. Moreover, since the reduction treatment is by heating, it is possible to disperse the metal fine particles in the matrix resin while maintaining a certain inter-particle distance in the matrix resin by utilizing thermal diffusion of the precipitated metal fine particles, and Metal fine particles dispersed at a certain inter-particle distance are present from the surface layer portion of the matrix resin.
 また、本発明の金属微粒子複合体の製造方法では、還元処理で使用する熱を利用してポリイミド前駆体樹脂のイミド化も完結させることができるので、生産工程を簡略化できる。 Further, in the method for producing a metal fine particle composite according to the present invention, the imidization of the polyimide precursor resin can be completed using the heat used in the reduction treatment, so that the production process can be simplified.
 本発明方法により製造される金属微粒子複合体は、上記の構造的特性を備えているため、局在型表面プラズモン効果を利用する圧力センサー等の分野をはじめ、例えば電磁波シールド材や磁気ノイズ吸収材、高熱伝導樹脂材など、様々な産業分野に応用できるものである。 Since the metal fine particle composite produced by the method of the present invention has the above-described structural characteristics, it includes fields such as a pressure sensor using a localized surface plasmon effect, and includes, for example, an electromagnetic shielding material and a magnetic noise absorbing material. It can be applied to various industrial fields such as high thermal conductive resin materials.
 次に、本発明の実施の形態について詳細に説明する。本発明の実施の形態にかかる金属微粒子複合体の製造方法は、ポリイミド樹脂中に、平均粒子径が3nm以上の金属微粒子が互いに接することなく、隣り合う金属微粒子における粒子径の大きい方の金属微粒子の粒子径以上の間隔で互いに独立して分散してなる金属微粒子複合体を製造する金属微粒子複合体の製造方法である。この方法は、以下の工程a及びbを備えている。
 a)ポリイミド前駆体樹脂と、金属化合物とを含有する塗布液を、金属分の含有量として50μg/cm以下となるように基材上に塗布し、乾燥して、乾燥後の厚さが1.7μm以下の塗布膜を形成する工程。
 b)前記塗布膜を、160℃以上450℃以下の範囲内の温度で熱処理することにより、前記塗布膜中の金属イオン(又は金属塩)を還元して金属微粒子となる粒子状金属を析出させ、塗布膜中に分散させるとともに、前記塗布膜中の前記ポリイミド前駆体樹脂をイミド化して厚みが1μm以下であり、かつ弾性率が10GPa以下のポリイミド樹脂層を形成する工程。
Next, embodiments of the present invention will be described in detail. In the method for producing a metal fine particle composite according to an embodiment of the present invention, metal fine particles having an average particle diameter of 3 nm or more are not in contact with each other in a polyimide resin, and metal fine particles having a larger particle diameter in adjacent metal fine particles This is a method for producing a metal fine particle composite that produces a metal fine particle composite that is dispersed independently of each other at an interval equal to or larger than the particle diameter. This method includes the following steps a and b.
a) A coating solution containing a polyimide precursor resin and a metal compound is applied on a substrate so that the content of the metal is 50 μg / cm 2 or less, dried, and the thickness after drying is The process of forming the coating film of 1.7 micrometers or less.
b) The coating film is heat-treated at a temperature in the range of 160 ° C. or more and 450 ° C. or less, thereby reducing the metal ions (or metal salt) in the coating film and precipitating particulate metal that becomes metal fine particles. The step of dispersing in the coating film and imidizing the polyimide precursor resin in the coating film to form a polyimide resin layer having a thickness of 1 μm or less and an elastic modulus of 10 GPa or less.
 以下、金属微粒子の平均粒子径と体積分率を基準にして、好ましい実施の形態に分けて本発明方法を説明する。なお、「体積分率」とは、金属微粒子複合体の一定体積あたりに占める金属微粒子の合計の体積を百分率で示した値である。 Hereinafter, the method of the present invention will be described by dividing it into preferred embodiments based on the average particle diameter and volume fraction of metal fine particles. The “volume fraction” is a value indicating the total volume of the metal fine particles in a certain volume of the metal fine particle composite as a percentage.
[第1の実施の形態]
 本発明の第1の実施の形態に係る金属微粒子複合体の製造方法は、ポリイミド樹脂中に、平均粒子径が3nm~25nmの範囲内にある金属微粒子が互いに接することなく、隣り合う金属微粒子における粒子径の大きい方の金属微粒子の粒子径以上の間隔で互いに独立して(好ましくは完全に独立して)分散してなり、かつ金属微粒子の体積分率が金属微粒子複合体に対して0.05%以上1%以下の範囲内にある金属微粒子複合体を製造するものであり、以下の工程a及び工程bを備えている。ここで、ポリイミド樹脂は、ポリイミド前駆体樹脂を加熱して脱水・環化反応させてイミド化したポリイミド樹脂を主体とするものである。ポリイミド樹脂は、他の合成樹脂例えばエポキシ樹脂、フェノール樹脂、アクリル樹脂などの熱硬化性樹脂に比べて、耐熱性および寸法安定性に優れた性質を有しているため好ましく用いられる。また、ポリイミド樹脂は、金属微粒子を形成する過程で熱処理を行うために、少なくとも160℃の温度での耐熱性を有する点でも有利である。
[First Embodiment]
In the method for producing the metal fine particle composite according to the first embodiment of the present invention, the metal fine particles having an average particle diameter in the range of 3 nm to 25 nm are not in contact with each other in the polyimide resin. The metal fine particles having the larger particle diameter are dispersed independently of each other (preferably completely independently) at intervals equal to or larger than the particle diameter, and the volume fraction of the metal fine particles is 0. A metal fine particle composite in the range of 05% or more and 1% or less is manufactured, and includes the following steps a and b. Here, the polyimide resin is mainly composed of a polyimide resin imidized by heating and dehydrating and cyclizing the polyimide precursor resin. The polyimide resin is preferably used because it has properties excellent in heat resistance and dimensional stability as compared with other synthetic resins such as thermosetting resins such as epoxy resins, phenol resins, and acrylic resins. In addition, the polyimide resin is advantageous in that it has heat resistance at a temperature of at least 160 ° C. because heat treatment is performed in the process of forming the metal fine particles.
[工程a;塗布膜形成工程]
 本実施の形態の金属微粒子複合体の製造方法では、ポリイミド前駆体樹脂と、金属化合物とを含有する塗布液を、基材上に塗布し、乾燥することによって、塗布膜を形成する。
[Step a: Coating film forming step]
In the method for producing a metal fine particle composite of the present embodiment, a coating film is formed by applying a coating liquid containing a polyimide precursor resin and a metal compound onto a substrate and drying.
 工程aで用いる基材としては、特に限定されるものではなく、例えばポリイミド樹脂のフィルム(シート)であってもよいし、それ以外に金属箔、ガラス板、樹脂フィルム、セラミックス等を挙げることができる。本実施の形態の製造方法によって製造される金属微粒子複合体は基材から剥離してもよいし、基材を付けたままの状態でもよい。例えば、本実施の形態で製造される金属微粒子複合体を基材が付いたままの状態で光透過系の局在型表面プラズモン共鳴を利用する場合は、基材は、光透過性であることが好ましく、例えばガラス基板、透明な合成樹脂製基板等を用いることができる。透明な合成樹脂としては、例えば、ポリイミド樹脂、PET樹脂、アクリル樹脂、MS樹脂、MBS樹脂、ABS樹脂、ポリカーボネート樹脂、シリコーン樹脂、シロキサン樹脂、エポキシ樹脂などを挙げることができる。 The substrate used in step a is not particularly limited, and may be, for example, a polyimide resin film (sheet), and other examples include a metal foil, a glass plate, a resin film, and ceramics. it can. The metal fine particle composite body manufactured by the manufacturing method of the present embodiment may be peeled off from the base material or may remain in the state where the base material is attached. For example, when utilizing the localized surface plasmon resonance of the light transmission system with the metal fine particle composite manufactured in the present embodiment attached to the substrate, the substrate should be light transmissive. For example, a glass substrate, a transparent synthetic resin substrate, or the like can be used. Examples of the transparent synthetic resin include polyimide resin, PET resin, acrylic resin, MS resin, MBS resin, ABS resin, polycarbonate resin, silicone resin, siloxane resin, and epoxy resin.
 ポリイミド樹脂の前駆体であるポリイミド前駆体樹脂としては、公知の酸無水物とジアミンから得られる公知のポリイミド前駆体樹脂を使用できる。ポリイミド前駆体樹脂は、例えばテトラカルボン酸二無水物とジアミンをほぼ等モルで有機溶媒中に溶解させて、0~100℃の範囲内の温度で30分~24時間撹拌し重合反応させることで得られる。反応にあたっては、得られるポリイミド前駆体樹脂が有機溶媒中に5~30重量%の範囲内、好ましくは10~20重量%の範囲内となるように反応成分を溶解することがよい。重合反応に用いる有機溶媒については、極性を有するものを使用することがよく、有機極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン、2-ブタノン、ジメチルスホキシド、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の一部使用も可能である。 As the polyimide precursor resin which is a polyimide resin precursor, a known polyimide precursor resin obtained from a known acid anhydride and diamine can be used. The polyimide precursor resin is prepared by, for example, dissolving tetracarboxylic dianhydride and diamine in an organic solvent in approximately equimolar amounts and stirring them at a temperature in the range of 0 to 100 ° C. for 30 minutes to 24 hours to cause a polymerization reaction. can get. In the reaction, the reaction components are preferably dissolved so that the obtained polyimide precursor resin is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight, in the organic solvent. As the organic solvent used in the polymerization reaction, it is preferable to use a polar one. Examples of the organic polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide (DMAc), N-methyl-2 -Pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme and the like. Two or more of these solvents can be used in combination, and some aromatic hydrocarbons such as xylene and toluene can also be used.
 合成されたポリイミド前駆体樹脂は溶液とされて使用される。通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。このように調製した溶液は、金属化合物を添加することにより、塗布液として利用することができる。 The synthesized polyimide precursor resin is used as a solution. Usually, it is advantageous to use as a reaction solvent solution, but if necessary, it can be concentrated, diluted or replaced with another organic solvent. The solution thus prepared can be used as a coating solution by adding a metal compound.
 ポリイミド前駆体樹脂は、イミド化後のポリイミド樹脂が熱可塑性又は低熱膨張性のポリイミド樹脂を含むように選定することが好ましい。なお、ポリイミド樹脂としては、例えばポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリイミドエステル、ポリエーテルイミド、ポリシロキサンイミド等の構造中にイミド基を有するポリマーからなる耐熱性樹脂を挙げることができる。 The polyimide precursor resin is preferably selected so that the polyimide resin after imidization contains a thermoplastic or low thermal expansion polyimide resin. In addition, as a polyimide resin, the heat resistant resin which consists of a polymer which has an imide group in structures, such as a polyimide, a polyamideimide, a polybenzimidazole, a polyimide ester, a polyetherimide, a polysiloxaneimide, can be mentioned, for example.
 ポリイミド前駆体樹脂の調製に好適に用いられるジアミンとしては、例えば、2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、2’-メトキシ-4,4’-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、4,4’-ジアミノベンズアニリド等が挙げられる。また、ジアミンとしては、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(4-アミノフェノキシ)]ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)]ベンゾフェノン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4'-(4-アミノフェノキシ)]ベンズアニリド、ビス[4,4'-(3-アミノフェノキシ)]ベンズアニリド、9,9-ビス[4-(4-アミノフェノキシ)フェニル]フルオレン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン等が好ましく例示される。 Examples of the diamine that can be suitably used for preparing the polyimide precursor resin include 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 4,4′-diaminodiphenyl ether, and 2′-methoxy- 4,4'-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl ] Propane, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 4,4′-diaminobenzanilide and the like. Diamines include 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, and bis [4- (3-aminophenoxy) phenyl. ] Sulfone, bis [4- (4-aminophenoxy)] biphenyl, bis [4- (3-aminophenoxy) biphenyl, bis [1- (4-aminophenoxy)] biphenyl, bis [1- (3-aminophenoxy) )] Biphenyl, bis [4- (4-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy)] benzophenone, bis [4- (3-aminophenoxy)] benzophenone, bis [4,4 '-(4-aminophenoxy)] Ben Anilide, bis [4,4 '-(3-aminophenoxy)] benzanilide, 9,9-bis [4- (4-aminophenoxy) phenyl] fluorene, 9,9-bis [4- (3-aminophenoxy) Preferred examples include phenyl] fluorene and the like.
 その他のジアミンとして、例えば、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、ベンジジン、3,3’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、4,4''-ジアミノ-p-テルフェニル、3,3''-ジアミノ-p-テルフェニル、m-フェニレンジアミン、p-フェニレンジアミン、2,6-ジアミノピリジン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4'-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4'-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン等が挙げられる。 Other diamines include, for example, 2,2-bis- [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis- [4- (3-aminophenoxy) phenyl] hexafluoropropane, 4 , 4'-methylenedi-o-toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 4,4'-diaminodiphenylpropane, 3,3 ' -Diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3, 3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl Ether, benzidine, 3,3'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 4,4 ''-diamino-p-terphenyl, 3, 3 ''-diamino-p-terphenyl, m-phenylenediamine, p-phenylenediamine, 2,6-diaminopyridine, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-amino) Phenoxy) benzene, 4,4 '-[1,4-phenylenebis (1-methylethylidene)] bisaniline, 4,4'-[1,3-phenylenebis (1-methylethylidene)] bisaniline, bis (p- Aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphtha 2,4-bis (β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine , P-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine and the like.
 特に好ましいジアミン成分としては、2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル(TFMB)、2,2'-ジメチル-4,4'-ジアミノビフェニル(m-TB)、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン(DANPG)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、パラフェニレンジアミン(p-PDA)、3,4’-ジアミノジフェニルエーテル(DAPE34)、4,4’-ジアミノジフェニルエーテル(DAPE44)から選ばれる1種以上のジアミンが挙げられる。 Particularly preferred diamine components include 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (TFMB), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB), 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane (DANPG), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 1,3-bis (3 -Aminophenoxy) benzene (APB), paraphenylenediamine (p-PDA), 3,4'-diaminodiphenyl ether (DAPE34), one or more diamines selected from 4,4'-diaminodiphenyl ether (DAPE44) .
 ポリイミド前駆体樹脂の調製に好適に用いられる酸無水物としては、例えば、無水ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物が挙げられる。また、酸無水物として、2,2',3,3'-、2,3,3',4'-又は3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,3',3,4’-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3',3,4'-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物等も好ましく例示される。さらに、酸無水物として、3,3'',4,4''-、2,3,3'',4''-又は2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物等も好ましく例示される。 Examples of the acid anhydride suitably used for the preparation of the polyimide precursor resin include pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4 Examples include '-diphenylsulfonetetracarboxylic dianhydride and 4,4'-oxydiphthalic anhydride. Moreover, 2,2 ', 3,3'-, 2,3,3', 4'- or 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 2,3 ', 3,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,3 ', 3,4'-diphenyl ether tetracarboxylic dianhydride Bis (2,3-dicarboxyphenyl) ether dianhydride and the like are also preferred. In addition, 3,3``, 4,4 ''-, 2,3,3 '', 4 ''-or 2,2 '', 3,3 ''-p-terphenyltetra Carboxylic dianhydride, 2,2-bis (2,3- or 3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3- or 3.4-dicarboxyphenyl) methane dianhydride, bis Preferred examples include (2,3- or 3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3- or 3,4-dicarboxyphenyl) ethane dianhydride and the like.
 特に好ましい酸無水物としては、無水ピロメリット酸(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、4,4’-オキシジフタル酸無水物 (ODPA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)から選ばれる1種以上の酸無水物が挙げられる。 Particularly preferred acid anhydrides include pyromellitic anhydride (PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3', 4,4'-benzophenone tetracarboxylic acid One or more acids selected from acid dianhydride (BTDA), 4,4'-oxydiphthalic acid anhydride (ODPA), 3,3 ', 4,4'-diphenylsulfone tetracarboxylic dianhydride (DSDA) Anhydrides are mentioned.
 ジアミン、酸無水物はそれぞれ、その1種のみを使用してもよく2種以上を併用して使用することもできる。また、上記以外のジアミン及び酸無水物を併用することもできる。 Each of diamine and acid anhydride may be used alone or in combination of two or more. In addition, diamines and acid anhydrides other than those described above can be used in combination.
 本実施の形態では、ポリイミド前駆体樹脂溶液を調製するために、ポリイミド前駆体樹脂を含有する溶液として市販品も好適に使用可能である。熱可塑性のポリイミド前駆体樹脂溶液としては、例えば、新日鐵化学株式会社製の熱可塑性ポリイミド前駆体樹脂ワニスSPI-200N(商品名)、同SPI-300N(商品名)、同SPI-1000G(商品名)、東レ株式会社製のトレニース#3000(商品名)等が挙げられる。また、非熱可塑性のポリイミド前駆体樹脂溶液としては、例えば宇部興産株式会社製の非熱可塑性ポリイミド前駆体樹脂ワニスであるU-ワニス-A(商品名)、同U-ワニス-S(商品名)等が挙げられる。 In this embodiment, in order to prepare a polyimide precursor resin solution, a commercially available product can also be suitably used as a solution containing a polyimide precursor resin. Examples of the thermoplastic polyimide precursor resin solution include thermoplastic polyimide precursor resin varnish SPI-200N (trade name), SPI-300N (trade name), and SPI-1000G (manufactured by Nippon Steel Chemical Co., Ltd.). Product name), Toray Industries Co., Ltd. # 3000 (product name), etc. are mentioned. Examples of the non-thermoplastic polyimide precursor resin solution include U-Varnish-A (trade name) and U-Varnish-S (trade name) which are non-thermoplastic polyimide precursor resin varnishes manufactured by Ube Industries, Ltd. ) And the like.
 本実施の形態で製造される金属微粒子複合体が、例えば光透過系の局在型表面プラズモン共鳴を利用する用途に適用される場合には、透明または無色を呈するポリイミド樹脂として、分子内、分子間の電荷移動(CT)錯体を形成しにくいもの、例えば嵩高い立体構造の置換基を有する芳香族ポリイミド樹脂、脂環式ポリイミド樹脂、フッ素系ポリイミド樹脂、ケイ素系ポリイミド樹脂等を用いることが好ましい。 When the metal fine particle composite body produced in the present embodiment is applied to, for example, an application utilizing localized surface plasmon resonance of a light transmission system, as a polyimide resin exhibiting transparency or colorlessness, the intramolecular, molecular It is preferable to use those that are difficult to form a charge transfer (CT) complex between them, such as aromatic polyimide resins having steric substituents in bulk, alicyclic polyimide resins, fluorine-based polyimide resins, silicon-based polyimide resins, etc. .
 上記の嵩高い立体構造の置換基としては、例えばフルオレン骨格やアダマンタン骨格などが挙げられる。このような嵩高い立体構造の置換基は、芳香族ポリイミド樹脂における酸無水物の残基又はジアミン残基のいずれか一方に置換しているか、あるいは酸無水物の残基及びジアミンの残基の両方に置換していてもよい。嵩高い立体構造の置換基を有するジアミンとしては、例えば9,9-ビス(4-アミノフェニル)フルオレンなどを挙げることができる。 Examples of the substituent having a bulky steric structure include a fluorene skeleton and an adamantane skeleton. Such a bulky steric substituent is substituted with either an acid anhydride residue or a diamine residue in the aromatic polyimide resin, or an acid anhydride residue and a diamine residue. Both may be substituted. Examples of the diamine having a bulky steric substituent include 9,9-bis (4-aminophenyl) fluorene.
 脂環式ポリイミド樹脂とは、脂環式酸無水物および脂環式ジアミンを重合して形成される樹脂である。また、脂環式ポリイミド樹脂は、芳香族ポリイミド樹脂を水素化することによっても得られる。 An alicyclic polyimide resin is a resin formed by polymerizing an alicyclic acid anhydride and an alicyclic diamine. The alicyclic polyimide resin can also be obtained by hydrogenating an aromatic polyimide resin.
 フッ素系ポリイミド樹脂は、例えばアルキル基、フェニル基等の炭素に結合する一価元素をフッ素、ペルフルオロアルキル基、ペルフルオロアリール基、ペルフルオロアルコキシ基、ペルフルオロフェノキシ基等に置換した酸無水物および/またはジアミンを重合して形成される樹脂である。フッ素原子は、一価元素全部もしくは一部が置換したものいずれも用いることができるが、20%以上の一価元素がフッ素原子に置換したものが好ましい。 Fluorine-based polyimide resins are, for example, acid anhydrides and / or diamines in which monovalent elements bonded to carbon such as alkyl groups and phenyl groups are substituted with fluorine, perfluoroalkyl groups, perfluoroaryl groups, perfluoroalkoxy groups, perfluorophenoxy groups, etc. Is a resin formed by polymerizing. As the fluorine atom, any one in which all or part of the monovalent element is substituted can be used, but one in which 20% or more of the monovalent element is substituted with the fluorine atom is preferable.
 ケイ素系ポリイミド樹脂とは、ケイ素系ジアミンと酸無水物を重合してから得られる樹脂である。 The silicon-based polyimide resin is a resin obtained by polymerizing a silicon-based diamine and an acid anhydride.
 このような透明ポリイミド樹脂は、例えば10μmの厚さにおいて、波長400nmでの光透過率が80%以上であり、可視光平均透過率が90%以上であることが好ましい。 For example, such a transparent polyimide resin preferably has a light transmittance of 80% or more at a wavelength of 400 nm and a visible light average transmittance of 90% or more at a thickness of 10 μm.
 上記ポリイミド樹脂の中でも、特に透明性に優れたフッ素系ポリイミド樹脂が好ましい。フッ素系ポリイミド樹脂としては、一般式(1)で現される構造単位を有するポリイミド樹脂を用いることができる。ここで、一般式(1)中、Arは式(2)、式(3)または式(4)で表される4価の芳香族基を示し、Arは式(5)、式(6)、式(7)または式(8)で表される2価の芳香族基を示し、pは構成単位の繰り返し数を意味する。 Among the polyimide resins, a fluorine-based polyimide resin excellent in transparency is particularly preferable. As the fluorine-based polyimide resin, a polyimide resin having a structural unit represented by the general formula (1) can be used. Here, in General Formula (1), Ar 1 represents a tetravalent aromatic group represented by Formula (2), Formula (3), or Formula (4), and Ar 2 represents Formula (5), Formula ( 6) represents a divalent aromatic group represented by formula (7) or formula (8), and p represents the number of repeating structural units.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、Rは、独立にフッ素原子またはパーフルオロアルキル基を示し、Yは下記構造式で表される2価の基を示し、Rはパーフルオロアルキレン基を示し、nは1~19の数を意味する。 R independently represents a fluorine atom or a perfluoroalkyl group, Y represents a divalent group represented by the following structural formula, R 1 represents a perfluoroalkylene group, and n represents a number from 1 to 19. Means.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(1)において、Arはジアミンの残基ということができ、Arは酸無水物の残基ということができるので、好ましいフッ素系ポリイミド樹脂を、ジアミンと、酸無水物若しくはこれと同等に利用可能なテトラカルボン酸、酸塩化物、エステル化物等(以下、「酸無水物等」と記す)とを挙げて説明する。但し、フッ素系ポリイミド樹脂は、ここで説明するジアミンと酸無水物等とから得られるものに限定されることはない。 In the above general formula (1), Ar 2 can be referred to as a diamine residue, and Ar 1 can be referred to as an acid anhydride residue. The tetracarboxylic acid, acid chloride, esterified compound and the like (hereinafter referred to as “acid anhydride etc.”) that can be used in the same manner as above will be described. However, the fluorine-based polyimide resin is not limited to those obtained from the diamine and acid anhydride described herein.
 Arとなる原料のジアミンとしては、分子内のアミノ基を除くアルキル基、フェニル環等の炭素に結合するすべての1価元素をフッ素またはパーフルオロアルキル基としたものであれば、どのようなものでもよく、例えば、3,4,5,6,-テトラフルオロ-1,2-フェニレンジアミン、2,4,5,6-テトラフルオロ-1,3-フェニレンジアミン、2,3,5,6-テトラフルオロ-1,4-フェニレンジアミン、4,4’-ジアミノオクタフルオロビフェニル、ビス(2,3,5,6-テトラフルオロ-4-アミノフェニル)エーテル、ビス(2,3,5,6-テトラフルオロ-4-アミノフェニル)スルフォン、ヘキサフルオロ-2,2’-ビストリフルオロメチル-4,4’-ジアミノビフェニル、2,2-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル等を挙げることができる。 As a raw material diamine to be Ar 2 , any alkyl group excluding an amino group in the molecule, any monovalent element bonded to carbon such as a phenyl ring, etc., having fluorine or a perfluoroalkyl group can be used. For example, 3,4,5,6, -tetrafluoro-1,2-phenylenediamine, 2,4,5,6-tetrafluoro-1,3-phenylenediamine, 2,3,5,6 -Tetrafluoro-1,4-phenylenediamine, 4,4'-diaminooctafluorobiphenyl, bis (2,3,5,6-tetrafluoro-4-aminophenyl) ether, bis (2,3,5,6) -Tetrafluoro-4-aminophenyl) sulfone, hexafluoro-2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl, 2,2-bis (trifluoro) May be mentioned methyl) -4,4'-diaminobiphenyl and the like.
 Arとなる原料の酸無水物等としては、例えば1,4-ジフルオロピロメリット酸、1-トリフルオロメチル-4-フルオロピロメリット酸、1,4-ジ(トリフルオロメチル)ピロメリット酸、1,4-ジ(ペンタフルオロエチル)ピロメリット酸、ヘキサフルオロ-3,3’,4,4’-ビスフェニルテトラカルボン酸、ヘキサフルオロ-3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシトリフルオロフェニル)ヘキサフルオロプロパン、1,3-ビス(3,4’-ジカルボキシトリフルオロフェニル)ヘキサフルオロプロパン、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン、ヘキサフルオロ-3,3’,4,4’-オキシビスフタル酸、4,4’―(ヘキサフルオロイソプロピリデン)ジフタル酸等が挙げられる。 Examples of the raw acid anhydride to be Ar 1 include 1,4-difluoropyromellitic acid, 1-trifluoromethyl-4-fluoropyromellitic acid, 1,4-di (trifluoromethyl) pyromellitic acid, 1,4-di (pentafluoroethyl) pyromellitic acid, hexafluoro-3,3 ′, 4,4′-bisphenyltetracarboxylic acid, hexafluoro-3,3 ′, 4,4′-benzophenonetetracarboxylic acid 2,2-bis (3,4-dicarboxytrifluorophenyl) hexafluoropropane, 1,3-bis (3,4'-dicarboxytrifluorophenyl) hexafluoropropane, 1,4-bis (3,4 4-dicarboxytrifluorophenoxy) tetrafluorobenzene, hexafluoro-3,3 ′, 4,4′-oxybisphthalic acid, 4,4 ′-(he Such sub-fluoro isopropylidene) diphthalic acid.
 ポリイミド前駆体樹脂とともに塗布液中に含有される金属化合物としては、ポリイミド前駆体樹脂中に含まれる金属イオン(又は金属塩)を加熱還元して粒子状金属を析出できるものであればその材質に特に制限はないが、例えば、金(Au)、銀(Ag)、銅(Cu)、コバルト(Co)、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)、錫(Sn)、ロジウム(Rh)、イリジウム(Ir)等の前駆体を含む金属化合物が挙げられる。また、これらの金属化合物は1種又は2種以上を併用して用いることもできる。例えば、局在型表面プラズモン共鳴を奏する金属種として好適に利用できるものは、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)、白金(Pt)、錫(Sn)、ロジウム(Rh)、イリジウム(Ir)が挙げられ、特に本実施の形態の製造方法に好適に使用される金属化合物は、金(Au)又は銀(Ag)の化合物である。金属化合物としては、前記金属の塩や有機カルボニル錯体などを用いることができる。金属の塩としては、例えば塩酸塩、硫酸塩、酢酸塩、シュウ酸塩、クエン酸塩などを挙げることができる。また、上記金属種と有機カルボニル錯体を形成し得る有機カルボニル化合物としては、例えばアセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタン等のβ-ジケトン類、アセト酢酸エチル等のβ-ケトカルボン酸エステルなどを挙げることができる。 As the metal compound contained in the coating liquid together with the polyimide precursor resin, any material can be used as long as it can precipitate metal particles (or metal salts) contained in the polyimide precursor resin by heat reduction. Although there is no particular limitation, for example, gold (Au), silver (Ag), copper (Cu), cobalt (Co), nickel (Ni), palladium (Pd), platinum (Pt), tin (Sn), rhodium ( Rh), metal compounds containing a precursor such as iridium (Ir). Moreover, these metal compounds can also be used 1 type or in combination of 2 or more types. For example, gold (Au), silver (Ag), copper (Cu), palladium (Pd), platinum (Pt), tin (Sn), which can be suitably used as the metal species exhibiting localized surface plasmon resonance, Examples thereof include rhodium (Rh) and iridium (Ir). Particularly, the metal compound suitably used in the manufacturing method of the present embodiment is a compound of gold (Au) or silver (Ag). As the metal compound, a salt of the metal, an organic carbonyl complex, or the like can be used. Examples of the metal salt include hydrochloride, sulfate, acetate, oxalate, and citrate. Examples of the organic carbonyl compound capable of forming an organic carbonyl complex with the above metal species include β-diketones such as acetylacetone, benzoylacetone and dibenzoylmethane, and β-ketocarboxylic acid esters such as ethyl acetoacetate. it can.
 金属化合物の好ましい具体例としては、H[AuCl]、Na[AuCl]、AuI、AuCl、AuCl、AuBr、NH[AuCl]・n2HO、Ag(CHCOO)、AgCl、AgClO、AgCO、AgI、AgSO、AgNO、Ni(CHCOO)、Cu(CHCOO)、CuSO、CuSO、CuSO、CuCl、CuSO、CuBr、Cu(NH)Cl、CuI、Cu(NO)、Cu(CHCOCHCOCH)、CoCl、CoCO、CoSO、Co(NO)、NiSO、NiCO、NiCl、NiBr、Ni(NO)、NiC、Ni(HPO)、Ni(CHCOCHCOCH)、Pd(CHCOO)、PdSO、PdCO、PdCl、PdBr、Pd(NO)、Pd(CHCOCHCOCH)、SnCl、IrCl、RhClなどを挙げることができる。 Preferable specific examples of the metal compound include H [AuCl 4 ], Na [AuCl 4 ], AuI, AuCl, AuCl 3 , AuBr 3 , NH 4 [AuCl 4 ] · n 2 H 2 O, Ag (CH 3 COO), AgCl , AgClO 4, Ag 2 CO 3 , AgI, Ag 2 SO 4, AgNO 3, Ni (CH 3 COO) 2, Cu (CH 3 COO) 2, CuSO 4, CuSO 4, CuSO 4, CuCl 2, CuSO 4, CuBr 2 , Cu (NH 4 ) 2 Cl 4 , CuI, Cu (NO 3 ) 2 , Cu (CH 3 COCH 2 COCH 3 ) 2 , CoCl 2 , CoCO 3 , CoSO 4 , Co (NO 3 ) 2 , NiSO 4 , NiCO 3, NiCl 2, NiBr 2, Ni (NO 3) 2, NiC 2 O 4, Ni (H 2 PO 2) 2, Ni (CH 3 C CH 2 COCH 3) 2, Pd (CH 3 COO) 2, PdSO 4, PdCO 3, PdCl 2, PdBr 2, Pd (NO 3) 2, Pd (CH 3 COCH 2 COCH 3) 2, SnCl 2, IrCl 3 , RhCl 3 and the like.
 金属種によっては、金属化合物が解離して生じた金属イオンが、ポリイミド前駆体樹脂との間で3次元の架橋形成反応が生じることがある。このため、時間の経過とともに塗布液の増粘・ゲル化が進行し、塗布液としての使用が困難となる場合がある。このような増粘、ゲル化を防ぐため、塗布液中に安定剤として粘度調整剤を添加することが好ましい。粘度調整剤の添加によって、塗布液中の金属イオンがポリイミド前駆体樹脂とキレート錯体を形成する代わりに、粘度調整剤と金属イオンがキレート錯体を形成する。このように、粘度調整剤によってポリイミド前駆体樹脂と金属イオンとの3次元の架橋形成がブロックされ、増粘・ゲル化が抑制される。 Depending on the metal species, a metal ion generated by dissociation of a metal compound may cause a three-dimensional cross-linking reaction with the polyimide precursor resin. For this reason, the thickening and gelation of the coating solution proceed with the passage of time, which may make it difficult to use the coating solution. In order to prevent such thickening and gelation, it is preferable to add a viscosity modifier as a stabilizer in the coating solution. By the addition of the viscosity modifier, instead of the metal ions in the coating solution forming a chelate complex with the polyimide precursor resin, the viscosity modifier and the metal ions form a chelate complex. As described above, the viscosity modifier blocks the three-dimensional cross-linking between the polyimide precursor resin and the metal ions, and suppresses thickening and gelation.
 粘度調整剤としては、金属イオンと反応性の高い(つまり、金属錯体を形成しうる)低分子有機化合物を選定することが好ましい。低分子有機化合物の分子量は50~300の範囲内が好ましい。このような粘度調整剤の具体例としては、例えばアセチルアセトン、アセト酢酸エチル、ピリジン、イミダゾール、ピコリンなどを挙げることができる。また、粘度調整剤の添加量は、形成しうるキレート錯体化合物1モルに対して1~50モルの範囲内、好ましくは2~20モルの範囲内で添加することが好ましい。 As the viscosity modifier, it is preferable to select a low molecular organic compound that is highly reactive with metal ions (that is, capable of forming a metal complex). The molecular weight of the low molecular weight organic compound is preferably in the range of 50 to 300. Specific examples of such a viscosity modifier include acetylacetone, ethyl acetoacetate, pyridine, imidazole, picoline and the like. The viscosity modifier is added in an amount of 1 to 50 mol, preferably 2 to 20 mol, per mol of the chelate complex compound that can be formed.
 塗布液中の金属化合物の配合量は、ポリイミド前駆体樹脂の固形分および金属化合物の合計の重量部100に対して、3~80重量部の範囲内、好ましくは10~60重量部の範囲内となるようにする。この場合、金属化合物が3重量部未満では、金属微粒子の平均粒子径を3nm以上とすることが困難となる。80重量部を超えると塗布液中に溶解できない金属塩が沈殿したり、金属微粒子が凝集しやすくなることがある。ここで平均粒子径とは、金属微粒子の直径の平均値(メディアン径)を意味し、任意100粒の金属微粒子を測定したときの面積平均径とする。平均粒子径は、透過型電子顕微鏡(TEM)により金属微粒子を観察することにより確認できる。 The compounding amount of the metal compound in the coating solution is in the range of 3 to 80 parts by weight, preferably in the range of 10 to 60 parts by weight, based on 100 parts by weight of the total solid content of the polyimide precursor resin and the metal compound. To be. In this case, if the metal compound is less than 3 parts by weight, it is difficult to make the average particle diameter of the metal fine particles 3 nm or more. When the amount exceeds 80 parts by weight, a metal salt that cannot be dissolved in the coating solution may precipitate or metal fine particles may easily aggregate. Here, the average particle diameter means an average value (median diameter) of the diameters of the metal fine particles, and is an area average diameter when 100 arbitrary metal fine particles are measured. The average particle diameter can be confirmed by observing metal fine particles with a transmission electron microscope (TEM).
 なお、塗布液には、上記成分以外の任意成分として、例えばレベリング剤、消泡剤、密着性付与剤、架橋剤などを配合することができる。 In the coating liquid, for example, a leveling agent, an antifoaming agent, an adhesion-imparting agent, a crosslinking agent, etc. can be blended as optional components other than the above components.
 金属化合物を含有する塗布液を塗布する方法は、特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能であるが、これらの中でも、塗布膜を均一に形成することが可能で、塗布膜の厚みを高精度に制御しやすいスピンコーター、グラビアコーター、バーコーターを用いることが好ましい。塗布液は、金属化合物に由来する金属分(以下、「金属分」と略することもある。)の含有量が0.5μg/cm~10μg/cmの範囲内、好ましくは3μg/cm~10μg/cmの範囲内、より好ましくは6μg/cm~10μg/cmの範囲内となるように基材上に塗布される。塗布して得られる塗布膜の単位面積あたりの金属量は、予め塗布液中の金属分の含有量を決定しておき、塗布膜の膜厚で制御する方法や、予め塗布膜の膜厚を決定しておき、塗布液中の金属分の含有量で制御する方法がある。塗布膜の膜厚は、乾燥後の厚さが500nm以上1.7μm以下の範囲内、好ましくは1μm以上1.7μmの範囲内となるようにし、イミド化後のポリイミド樹脂層の厚みが300nm~1μmの範囲内、好ましくは600nm~1μmの範囲内となるようにする。イミド化後のポリイミド樹脂層の厚みが300nm未満では金属微粒子同士の凝集が生じやすい傾向になり、一方、1μmを超えるとポリイミド樹脂層中に形成される金属微粒子が小さくなる傾向になり、またポリイミド樹脂層の表層部と深部とでの金属微粒子の平均粒子径がばらつく傾向になる。 The method for applying the coating solution containing the metal compound is not particularly limited, and for example, it can be applied with a coater such as a comma, die, knife, lip, etc. Among them, a coating film is uniformly formed. It is preferable to use a spin coater, gravure coater, or bar coater that can easily control the thickness of the coating film with high accuracy. The coating solution has a metal content derived from the metal compound (hereinafter sometimes abbreviated as “metal content”) in the range of 0.5 μg / cm 2 to 10 μg / cm 2 , preferably 3 μg / cm. in the range of 2 ~ 10μg / cm 2, more preferably is applied onto a substrate so as to be in the range of 6μg / cm 2 ~ 10μg / cm 2. For the amount of metal per unit area of the coating film obtained by coating, the content of the metal in the coating solution is determined in advance, and a method of controlling by the film thickness of the coating film, or the film thickness of the coating film in advance There is a method of determining and controlling by the metal content in the coating solution. The thickness of the coating film is such that the thickness after drying is in the range of 500 nm to 1.7 μm, preferably in the range of 1 μm to 1.7 μm, and the thickness of the polyimide resin layer after imidization is 300 nm to The thickness is in the range of 1 μm, preferably in the range of 600 nm to 1 μm. If the thickness of the polyimide resin layer after imidization is less than 300 nm, the metal fine particles tend to agglomerate. On the other hand, if the thickness exceeds 1 μm, the metal fine particles formed in the polyimide resin layer tend to be small. The average particle diameter of the metal fine particles tends to vary between the surface layer portion and the deep portion of the resin layer.
 また、金属微粒子の平均粒子径及び粒子間距離を制御するためには、上記塗布膜中の金属分の含有量の範囲(0.5μg/cm~10μg/cm)とイミド化後のポリイミド樹脂層の厚みの範囲(300nm~1μm)の条件を満たした上で、さらに、塗布膜中の金属分の含有量A[μg/cm]と、イミド化後のポリイミド樹脂層の厚みB[nm]との関係が下式を満たすようにすることがより好ましい。
  0.1≦(A/B)×100≦2.0 ・・・(i)
In addition, in order to control the average particle diameter and the interparticle distance of the metal fine particles, the metal content range (0.5 μg / cm 2 to 10 μg / cm 2 ) in the coating film and the polyimide after imidization are used. After satisfying the conditions of the resin layer thickness range (300 nm to 1 μm), the content A [μg / cm 2 ] of the metal content in the coating film and the thickness B [ More preferably, the relationship with nm] satisfies the following formula.
0.1 ≦ (A / B) × 100 ≦ 2.0 (i)
 金属化合物を含有する塗布液を塗布した後は、乾燥させて塗布膜を形成する。乾燥においては、ポリイミド前駆体樹脂の脱水閉環の進行によるイミド化を完結させないように温度を制御することが好ましい。乾燥させる方法としては、特に制限されず、例えば、60~200℃の範囲内の温度条件で1~60分間の範囲内の時間をかけて行うことがよいが、好ましくは、60~150℃の範囲内の温度条件で乾燥を行うことがよい。乾燥後の塗布膜はポリイミド前駆体樹脂の構造の一部がイミド化していても差し支えないが、イミド化率は50%以下、より好ましくは20%以下としてポリイミド前駆体樹脂の構造を50%以上残すことがよい。なお、ポリイミド前駆体樹脂のイミド化率は、フーリエ変換赤外分光光度計(市販品として、例えば日本分光製FT/IR620)を用い、透過法にて膜の赤外線吸収スペクトルを測定することによって、1,000cm-1のベンゼン環炭素水素結合を基準とし、1,710cm-1のイミド基由来の吸光度から算出される。 After applying the coating solution containing the metal compound, it is dried to form a coating film. In drying, it is preferable to control the temperature so that imidization due to the progress of dehydration and ring closure of the polyimide precursor resin is not completed. The drying method is not particularly limited, and for example, the drying may be performed under a temperature condition in the range of 60 to 200 ° C. and taking a time in the range of 1 to 60 minutes, preferably 60 to 150 ° C. It is preferable to perform drying under temperature conditions within the range. The coating film after drying may have a part of the structure of the polyimide precursor resin imidized, but the imidization rate is 50% or less, more preferably 20% or less, and the structure of the polyimide precursor resin is 50% or more. It is good to leave. The imidation ratio of the polyimide precursor resin is determined by measuring the infrared absorption spectrum of the film by a transmission method using a Fourier transform infrared spectrophotometer (commercially available product, for example, FT / IR620 manufactured by JASCO Corporation). with respect to the benzene ring carbon hydrogen bonds of 1,000 cm -1, it is calculated from the absorbance from the imide groups of 1,710cm -1.
 塗布膜は、単層でもよく、また複数の塗布膜から形成される積層構造のものでもよい。複数層とする場合、異なる構成成分からなるポリイミド前駆体樹脂の層の上に他のポリイミド前駆体樹脂を順次塗布して形成することができる。ポリイミド前駆体樹脂の層が3層以上からなる場合、同一の構成のポリイミド前駆体樹脂を2回以上使用してもよい。層構造が簡単である2層又は単層、特に単層は、工業的に有利に得ることができる。 The coating film may be a single layer or a laminated structure formed from a plurality of coating films. In the case of a plurality of layers, other polyimide precursor resins can be sequentially applied on the polyimide precursor resin layer composed of different components. When the polyimide precursor resin layer is composed of three or more layers, the polyimide precursor resin having the same configuration may be used twice or more. Two layers or a single layer, in particular a single layer, having a simple layer structure can be advantageously obtained industrially.
 また、シート状支持部材の上に、単層又は複数層のポリイミド前駆体樹脂の層を積層し、一旦イミド化して単層又は複数層のポリイミド樹脂層とした後に、更にその上に塗布膜を形成することも可能である。この場合、ポリイミド樹脂層と塗布膜の層との密着性を向上させるため、ポリイミド樹脂層の表面をプラズマにより表面処理することが好ましい。このプラズマによる表面処理によって、ポリイミド樹脂層の表面を粗化させるか、又は表面の化学構造を変化させることができる。これによって、ポリイミド樹脂層の表面の濡れ性が向上し、ポリイミド前駆体樹脂の溶液との親和性が高まり、該表面上に塗布膜を安定的に保持できるようになる。 In addition, a single layer or a plurality of polyimide precursor resin layers are laminated on a sheet-like support member, and once imidized to form a single layer or a plurality of polyimide resin layers, a coating film is further formed thereon. It is also possible to form. In this case, in order to improve the adhesion between the polyimide resin layer and the coating film layer, the surface of the polyimide resin layer is preferably surface-treated with plasma. By this surface treatment with plasma, the surface of the polyimide resin layer can be roughened or the chemical structure of the surface can be changed. Thereby, the wettability of the surface of the polyimide resin layer is improved, the affinity with the solution of the polyimide precursor resin is increased, and the coating film can be stably held on the surface.
[工程b;熱処理工程]
 工程bでは、上記のようにして得られた塗布膜を、160~450℃の範囲内、好ましくは200~400℃の範囲内、より好ましくは300~400℃の範囲内で熱処理することにより金属イオン(又は金属塩)を還元して金属微粒子となる粒子状金属を析出させる。熱処理温度が160℃未満では、金属イオン(又は金属塩)を還元して得られる金属微粒子の平均粒子径を前述の下限以上にすることが困難となる場合がある。一方、熱処理温度が450℃を超えると、ポリイミド樹脂層が熱により分解し、金属微粒子同士の粒子間隔を制御しにくい。熱処理温度を160℃以上とすることによって、還元によって析出した金属微粒子のポリイミド樹脂層(又はポリイミド前駆体樹脂層)の内部での熱拡散を十分に行うことができ、さらに、ポリイミド前駆体樹脂のイミド化を行うことができ、再度加熱によるイミド化の工程を省略できる。
[Step b: Heat treatment step]
In step b, the coating film obtained as described above is heat treated in the range of 160 to 450 ° C., preferably in the range of 200 to 400 ° C., more preferably in the range of 300 to 400 ° C. Ions (or metal salts) are reduced to deposit particulate metal that becomes metal fine particles. When the heat treatment temperature is less than 160 ° C., it may be difficult to make the average particle diameter of the metal fine particles obtained by reducing metal ions (or metal salts) equal to or more than the above lower limit. On the other hand, when the heat treatment temperature exceeds 450 ° C., the polyimide resin layer is decomposed by heat, and it is difficult to control the particle spacing between the metal fine particles. By setting the heat treatment temperature to 160 ° C. or higher, the heat diffusion inside the polyimide resin layer (or polyimide precursor resin layer) of the metal fine particles deposited by reduction can be sufficiently performed. Imidization can be performed, and the process of imidization by heating can be omitted again.
 加熱時間は、後述するように、目標とする粒子間距離に応じて、さらに加熱温度や、塗布膜に含まれる金属イオン(又は金属塩)の含有量に応じて決定することができるが、例えば加熱温度が160℃では10~180分の範囲内、加熱温度が450℃では1~60分の範囲内に設定することができる。 As will be described later, the heating time can be determined according to the target interparticle distance, and further according to the heating temperature and the content of metal ions (or metal salts) contained in the coating film. When the heating temperature is 160 ° C., it can be set within a range of 10 to 180 minutes, and when the heating temperature is 450 ° C., it can be set within a range of 1 to 60 minutes.
 また、この熱処理によって塗布膜中のポリイミド前駆体樹脂をイミド化して、金属微粒子の含有量が0.5μg/cm~10μg/cmの範囲内、好ましくは3μg/cm~10μg/cmの範囲内、より好ましくは6μg/cm~10μg/cmの範囲内にあり、且つ厚みが300nm~1μmの範囲内、好ましくは600nm~1μmの範囲内にあるポリイミド樹脂層を形成する。 In addition, the polyimide precursor resin in the coating film is imidized by this heat treatment, and the content of the metal fine particles is in the range of 0.5 μg / cm 2 to 10 μg / cm 2 , preferably 3 μg / cm 2 to 10 μg / cm 2. A polyimide resin layer having a thickness in the range of 6 μg / cm 2 to 10 μg / cm 2 and a thickness in the range of 300 nm to 1 μm, preferably in the range of 600 nm to 1 μm is formed.
 上記のように、金属微粒子の平均粒子径及び粒子間距離は、i)熱処理工程における熱処理温度、ii)塗布膜に含まれる金属イオン(又は金属塩)の含有量、及びiii)最終的に形成されるポリイミド樹脂層の厚み、によって制御できる。本発明者らは、熱処理温度が一定であって、塗布膜に含有する金属イオン(又は金属塩)の絶対量が異なる場合や、塗布膜に含有する金属イオン(又は金属塩)の絶対量が一定でも塗布膜の厚みが異なる場合には、析出する金属微粒子の粒子径が異なるという知見を得ていた。また、熱処理温度、塗布膜に含まれる金属イオン(又は金属塩)の含有量及び最終的に形成されるポリイミド樹脂層の厚みの制御なしに熱処理を行った場合には、粒子間距離が小さくなることがあることや、ポリイミド樹脂層の表面に金属微粒子が凝集して島状となることがあるという知見も得ていた。 As described above, the average particle diameter and interparticle distance of the metal fine particles are determined by i) the heat treatment temperature in the heat treatment step, ii) the content of metal ions (or metal salts) contained in the coating film, and iii) the final formation. The thickness of the polyimide resin layer to be controlled can be controlled. In the case where the heat treatment temperature is constant and the absolute amount of metal ions (or metal salts) contained in the coating film is different, or the absolute amount of metal ions (or metal salts) contained in the coating film is different. In the case where the thickness of the coating film is different even if it is constant, it has been found that the particle diameters of the deposited metal fine particles are different. In addition, when the heat treatment is performed without controlling the heat treatment temperature, the content of metal ions (or metal salts) contained in the coating film, and the thickness of the polyimide resin layer finally formed, the interparticle distance is reduced. It has also been found that metal fine particles aggregate on the surface of the polyimide resin layer to form islands.
 以上のような知見を生かし、上記のi)~iii)の条件を制御することによって金属微粒子の平均粒子径及び粒子間距離が制御できることを見出した。すなわち、i)~iii)の条件の制御によって、金属微粒子の平均粒子径を3nm~25nmの範囲内に制御するとともに、このように制御された金属微粒子が、それぞれの粒子間隔(粒子間距離)Lが、隣り合う金属微粒子における大きい方の金属微粒子の粒子径(D)以上、すなわち、L≧Dの関係で存在するようになる。本実施の形態の金属微粒子複合体は、工程a及び工程bの要件を備えていることにより、析出した金属微粒子の熱拡散が容易となり、隣り合う金属微粒子における大きい方の粒子径D以上の粒子間距離Lでポリイミド樹脂内に分散した状態となる。粒子間距離Lは大きくても特に問題はないが、熱拡散を利用して分散状態になる金属微粒子における各々の粒子間距離Lは、金属微粒子の粒子径Dと金属微粒子の体積分率と密接な関係があるので、粒子間距離Lの上限は、金属微粒子の体積分率の下限値によって制御することが好ましい。 Based on the above knowledge, it has been found that the average particle diameter and interparticle distance of the metal fine particles can be controlled by controlling the above conditions i) to iii). That is, by controlling the conditions i) to iii), the average particle diameter of the metal fine particles is controlled within the range of 3 nm to 25 nm, and the metal fine particles thus controlled have their respective particle spacings (interparticle distances). L is the particle size of the larger metal particles in neighboring metal fine particles (D L) or higher, i.e., it will be present in relation L ≧ D L. Metal particle composite of the present embodiment, due to the provision of the requirements of step a and step b, the deposited metal particles thermal diffusion is facilitated, those over the particle diameter D L of the larger in the metal particles adjacent It will be in the state disperse | distributed in the polyimide resin by the distance L between particles. Although there is no particular problem even if the interparticle distance L is large, the interparticle distance L in the metal fine particles that are dispersed using thermal diffusion is closely related to the particle diameter D of the metal fine particles and the volume fraction of the metal fine particles. Therefore, the upper limit of the interparticle distance L is preferably controlled by the lower limit value of the volume fraction of the metal fine particles.
 本実施の形態では、金属微粒子の体積分率を、金属微粒子複合体に対して0.05~1%の範囲内、好ましくは0.1~1%の範囲内とする。体積分率を上記範囲内とすることによって、金属微粒子の粒子間距離Lを制御することができる。金属微粒子の体積分率は、主として、工程aにおける塗布液中の金属分の含有量により調整できる。 In the present embodiment, the volume fraction of the metal fine particles is in the range of 0.05 to 1%, preferably in the range of 0.1 to 1% with respect to the metal fine particle composite. By setting the volume fraction within the above range, the interparticle distance L of the metal fine particles can be controlled. The volume fraction of the metal fine particles can be adjusted mainly by the content of the metal in the coating solution in step a.
 また、工程bの熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の硬さは、金属微粒子の熱拡散性に影響を与える。つまり、熱処理温度におけるポリイミド前駆体樹脂/ポリイミド樹脂が柔らかいほど、金属微粒子の熱拡散が進行しやすく、逆にポリイミド前駆体樹脂/ポリイミド樹脂が硬いほど、金属微粒子の熱拡散が進行しにくい。このような観点から、L≧Dの関係を満たすように制御された金属微粒子複合体を形成するためには、工程bの熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率(つまり、温度160~450℃の範囲内に加熱されたときの弾性率)を調整することが好ましい。なお、後記実施例では、硬化後のポリイミド樹脂の弾性率を示しているが、該弾性率は工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率を反映する指標となる。すなわち、硬化後のポリイミド樹脂の弾性率が高いほど工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は高く、硬化後のポリイミド樹脂の弾性率が低いほど工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は低くなるため、硬化後のポリイミド樹脂の弾性率を制御することで、金属微粒子の熱拡散を制御することができる。硬化後のポリイミド樹脂の弾性率は、例えば1×10以上1×1010Pa以下の範囲内に調節しておくことが好ましい。 Further, the hardness of the polyimide precursor resin / polyimide resin when performing the heat treatment in step b affects the thermal diffusibility of the metal fine particles. That is, the softer the polyimide precursor resin / polyimide resin at the heat treatment temperature, the easier the thermal diffusion of the metal fine particles, whereas the harder the polyimide precursor resin / polyimide resin, the less the thermal diffusion of the metal fine particles. From this point of view, in order to form a controlled metal particle composite so as to satisfy the relationship of L ≧ D L, the elastic modulus of the polyimide precursor resin / polyimide resin when performing the heat treatment in step b (i.e. It is preferable to adjust the elastic modulus when heated within a temperature range of 160 to 450 ° C. In addition, although the postscript Example shows the elasticity modulus of the polyimide resin after hardening, this elasticity modulus becomes a parameter | index reflecting the elasticity modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of the process b. That is, the higher the elastic modulus of the cured polyimide resin, the higher the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the lower the elastic modulus of the cured polyimide resin, the polyimide in the heat treatment process of step b. Since the elastic modulus of the precursor resin / polyimide resin becomes low, the thermal diffusion of the metal fine particles can be controlled by controlling the elastic modulus of the cured polyimide resin. The elastic modulus of the cured polyimide resin is preferably adjusted within a range of, for example, 1 × 10 5 or more and 1 × 10 10 Pa or less.
 本実施の形態の製造方法の特長は、ラボスケールから生産スケールに至るまで特に制限なく簡便な設備で対応でき、また枚葉式のみならず連続式にも特段の工夫なくとも対応できることなど、工業的に有利な点が挙げられることにある。また、工程bでは、例えば、Ar、Nなどの不活性ガス雰囲気中、1~5KPaの真空中、又は大気中で行うことができる。粒子状金属を析出させる方法(還元処理方法)として、水素などの還元性ガスを用いる気相還元や光(紫外線)還元は不適である。気相還元では、ポリイミド樹脂層の表面付近に金属微粒子が形成されず、還元性ガスによってポリイミド樹脂の熱分解が促進され、金属微粒子の粒子間隔を制御することが困難となる。また、光還元では、ポリイミド樹脂層に由来する光透過度によって表面付近と深部での金属微粒子の密度のバラつきが生じやすく、金属微粒子の粒子径D及び粒子間距離Lを制御することが困難である上に還元効率も低い。また、工程bの過程で析出する粒子状金属がAu(金)やNi(ニッケル)など、粒子状金属そのものが高温雰囲気下でポリイミド樹脂(又はポリイミド前駆体樹脂)の分解を促進するような(いわゆる触媒機能を有する)金属種である場合には、Ar、Nなどの不活性ガス雰囲気中、1~5KPaの真空中で行うことが好ましい。 The features of the manufacturing method of the present embodiment are that it can be handled with simple equipment without any restriction from lab scale to production scale, and that it can handle not only single wafer type but also continuous type without special ingenuity. Is advantageous. Further, in step b, for example, it can be performed in an inert gas atmosphere such as Ar or N 2 , in a vacuum of 1 to 5 KPa, or in the air. As a method for depositing the particulate metal (reduction treatment method), gas phase reduction using a reducing gas such as hydrogen or light (ultraviolet) reduction is not suitable. In the gas phase reduction, metal fine particles are not formed near the surface of the polyimide resin layer, the thermal decomposition of the polyimide resin is promoted by the reducing gas, and it becomes difficult to control the particle interval of the metal fine particles. Further, in photoreduction, the density of metal fine particles tends to vary in the vicinity of the surface and in the deep part due to the light transmittance derived from the polyimide resin layer, and it is difficult to control the particle diameter D and the interparticle distance L of the metal fine particles. Besides, the reduction efficiency is low. In addition, the particulate metal deposited in the process of step b is Au (gold), Ni (nickel) or the like, and the particulate metal itself promotes the decomposition of the polyimide resin (or polyimide precursor resin) in a high temperature atmosphere ( In the case of a metal species having a so-called catalytic function, it is preferably carried out in an inert gas atmosphere such as Ar or N 2 and in a vacuum of 1 to 5 KPa.
 工程bでは、還元処理で使用する熱を利用してポリイミド前駆体樹脂のイミド化も完結させることができるので、金属微粒子の析出からイミド化までの工程をワンポットで行うことができ、生産工程を簡略化できる。 In step b, since the imidation of the polyimide precursor resin can be completed using the heat used in the reduction treatment, the steps from the precipitation of the metal fine particles to the imidization can be performed in one pot, and the production process It can be simplified.
 また、熱処理による還元では、塗布膜中に存在する金属イオン(又は金属塩)を還元し、熱拡散によって個々の金属微粒子が独立した状態で析出させることができる。このように形成された金属微粒子は、一定以上の粒子間距離Lを保った状態でしかも形状が略均一であり、ポリイミド樹脂層中で金属微粒子がポリイミド樹脂の表層部から三次元的に偏りなく分散するようになる。また、ポリイミド樹脂を構成する樹脂の構造単位を制御することや、金属イオン(又は金属塩)の絶対量及び金属微粒子の体積分率を制御することで、金属微粒子の平均粒子径とポリイミド樹脂層中での金属微粒子の分布状態を制御することもできる。 In the reduction by heat treatment, metal ions (or metal salts) present in the coating film can be reduced, and individual metal fine particles can be precipitated in an independent state by thermal diffusion. The metal fine particles formed in this way are in a state in which the inter-particle distance L is not less than a certain value, and the shape is substantially uniform, and the metal fine particles are not unevenly three-dimensionally from the surface portion of the polyimide resin in the polyimide resin layer. To be distributed. In addition, by controlling the structural unit of the resin constituting the polyimide resin, or by controlling the absolute amount of metal ions (or metal salts) and the volume fraction of the metal fine particles, the average particle diameter of the metal fine particles and the polyimide resin layer It is also possible to control the distribution state of the metal fine particles therein.
 さらに、ポリイミド樹脂層中の金属微粒子の含有量が6μg/cm~10μg/cmの範囲内となるようにし、またポリイミド樹脂層の厚みが600nm~870nmの範囲内になるように塗布膜を形成することによって、平均粒子径が13nm以上の金属微粒子が分散した金属微粒子層を形成することができる。 Further, the coating film is formed so that the content of the metal fine particles in the polyimide resin layer is in the range of 6 μg / cm 2 to 10 μg / cm 2 and the thickness of the polyimide resin layer is in the range of 600 nm to 870 nm. By forming, a metal fine particle layer in which metal fine particles having an average particle diameter of 13 nm or more are dispersed can be formed.
 なお、本実施の製造方法においては、上記工程a及び工程b以外に、例えばエッチング工程などの任意工程を行うこともできる。 In addition, in this manufacturing method, arbitrary processes, such as an etching process, can also be performed other than the said process a and process b, for example.
 以上のように、本発明の金属微粒子複合体の製造方法によれば、ポリイミド前駆体樹脂の内部で金属イオン(又は金属塩)を還元して金属微粒子を析出させるため、ポリイミド前駆体樹脂中での金属化合物の含有量の調整が容易であり、ポリイミド樹脂中に分散させる金属微粒子の含有量を調整しやすい。従って、比較的容易に、平均粒子径が3nm~25nmの範囲内の金属微粒子を含み、金属微粒子の体積分率が0.05~1%の範囲内であり、厚みが300nm~1μmの範囲内の金属微粒子複合体を製造することができる。しかも、その還元処理が加熱によるものなので、析出した金属微粒子の熱拡散を利用して金属微粒子をマトリックス樹脂内で一定以上の粒子間距離を保った状態で分散させることができる。また、一定以上の粒子間距離で分散した金属微粒子がマトリックス樹脂の表層部から存在するようになる。 As described above, according to the method for producing a metal fine particle composite of the present invention, metal ions (or metal salts) are reduced inside the polyimide precursor resin to precipitate metal fine particles. It is easy to adjust the content of the metal compound, and it is easy to adjust the content of the metal fine particles to be dispersed in the polyimide resin. Accordingly, it is relatively easy to include metal fine particles having an average particle diameter in the range of 3 nm to 25 nm, the volume fraction of the metal fine particles is in the range of 0.05 to 1%, and the thickness is in the range of 300 nm to 1 μm. The metal fine particle composite can be produced. In addition, since the reduction treatment is performed by heating, the metal fine particles can be dispersed in the matrix resin while maintaining a certain inter-particle distance using the thermal diffusion of the deposited metal fine particles. Further, metal fine particles dispersed at a certain inter-particle distance are present from the surface layer portion of the matrix resin.
 また、本発明の金属微粒子複合体の製造方法では、還元処理で使用する熱を利用してポリイミド前駆体樹脂のイミド化も完結させることができるので、生産工程を簡略化できる。 Further, in the method for producing a metal fine particle composite according to the present invention, the imidization of the polyimide precursor resin can be completed using the heat used in the reduction treatment, so that the production process can be simplified.
 本発明方法により製造される金属微粒子複合体は、上記の構造的特性を備えているため、圧力センサーなどの局在型表面プラズモン効果を利用する分野をはじめ、例えば電磁波シールド材や磁気ノイズ吸収材、高熱伝導樹脂材など、様々な産業分野に応用できる。特に、本発明方法により得られる金属微粒子複合体は、ポリイミド樹脂層が300nm~1μmの充分な膜厚を有する一方で、金属微粒子の平均粒子径が3nm~25nmと前記膜厚に比べて相対的に小さく、かつ金属微粒子の体積分率が金属微粒子複合体に対して0.05~1%であるため、局在型表面プラズモン共鳴を利用する圧力センサーの用途に好ましく適用できる。つまり、ポリイミド樹脂層の厚みが金属微粒子の平均粒子径及び粒子間距離に対して充分に大きいため、加圧時の弾性変形の幅を大きくとることが可能であり、弾性変形時に内部の金属微粒子の移動距離も大きくすることができる。従って、圧力センサーとしての検出マージンを広くとることができるとともに、検出精度を高めることができる。しかも、金属微粒子の平均粒子径の範囲が3nm~25nmと狭いために粒子径のばらつきが小さく、加圧時には局在型表面プラズモン共鳴によってシャープな吸収が得られるため高感度の検出が可能になる。従って、圧力センサーとしての利用圧力範囲が広く、かつ高い検出感度と測定精度を得ることが期待される。 Since the metal fine particle composite produced by the method of the present invention has the above-mentioned structural characteristics, the field uses a localized surface plasmon effect such as a pressure sensor, for example, an electromagnetic shielding material or a magnetic noise absorbing material. It can be applied to various industrial fields such as high thermal conductive resin materials. In particular, in the metal fine particle composite obtained by the method of the present invention, the polyimide resin layer has a sufficient film thickness of 300 nm to 1 μm, while the average particle diameter of the metal fine particles is 3 nm to 25 nm, which is relative to the film thickness. And the volume fraction of the metal fine particles is 0.05 to 1% with respect to the metal fine particle composite, and can be preferably applied to the use of a pressure sensor utilizing localized surface plasmon resonance. In other words, since the thickness of the polyimide resin layer is sufficiently large with respect to the average particle diameter and interparticle distance of the metal fine particles, it is possible to increase the width of the elastic deformation at the time of pressurization. The moving distance can also be increased. Therefore, it is possible to widen a detection margin as a pressure sensor and to improve detection accuracy. In addition, since the average particle diameter range of the metal fine particles is as narrow as 3 nm to 25 nm, the dispersion of the particle diameter is small, and at the time of pressurization, sharp absorption is obtained by localized surface plasmon resonance, so that highly sensitive detection is possible. . Therefore, it is expected that the use pressure range as a pressure sensor is wide and high detection sensitivity and measurement accuracy are obtained.
[第2の実施の形態]
 次に、本発明の第2の実施の形態について詳細に説明する。なお、以下では、第1の実施の形態との相違点を中心に説明する。本発明の第2の実施の形態に係る金属微粒子複合体の製造方法は、ポリイミド樹脂中に、平均粒子径が3nm~30nmの範囲内にある金属微粒子が互いに接することなく、隣り合う金属微粒子における粒子径の大きい方の金属微粒子の粒子径以上の間隔で互いに独立して(好ましくは完全に独立して)分散してなり、かつ金属微粒子の体積分率が金属微粒子複合体に対して0.2%以上5%以下の範囲内にある金属微粒子複合体を製造するものであり、以下の工程a及び工程bを備えている。本実施の形態の金属微粒子複合体の製造方法におけるポリイミド樹脂、及びポリイミド前駆体樹脂は、第1の実施の形態で説明したものを使用できる。
[Second Embodiment]
Next, a second embodiment of the present invention will be described in detail. In the following description, differences from the first embodiment will be mainly described. In the method for producing the metal fine particle composite according to the second embodiment of the present invention, the metal fine particles having an average particle diameter in the range of 3 nm to 30 nm are not in contact with each other in the polyimide resin. The metal fine particles having the larger particle diameter are dispersed independently of each other (preferably completely independently) at intervals equal to or larger than the particle diameter, and the volume fraction of the metal fine particles is 0. 0 relative to the metal fine particle composite. A metal fine particle composite in the range of 2% to 5% is manufactured, and includes the following steps a and b. As the polyimide resin and the polyimide precursor resin in the method for producing the metal fine particle composite of the present embodiment, those described in the first embodiment can be used.
[工程a;塗布膜形成工程]
 本実施の形態の金属微粒子複合体の製造方法では、ポリイミド前駆体樹脂と、金属化合物とを含有する塗布液を、基材上に塗布し、乾燥することによって、塗布膜を形成する。本実施の形態における工程aは、塗布膜を形成するための塗布液中の金属分の含有量が異なる点を除き、第1の実施の形態の工程aと同様に実施できる。
[Step a: Coating film forming step]
In the method for producing a metal fine particle composite of the present embodiment, a coating film is formed by applying a coating liquid containing a polyimide precursor resin and a metal compound onto a substrate and drying. Step a in the present embodiment can be performed in the same manner as step a in the first embodiment, except that the metal content in the coating solution for forming the coating film is different.
 本実施の形態の工程aで用いる塗布液は、金属化合物に由来する金属分の含有量が10μg/cm~50μg/cmの範囲内、好ましくは10μg/cm~40μg/cmの範囲内、より好ましくは10μg/cm~30μg/cmの範囲内となるように基材上に塗布される。塗布して得られる塗布膜の単位面積あたりの金属量は、予め塗布液中の金属分の含有量を決定しておき、塗布膜の膜厚で制御する方法や、予め塗布膜の膜厚を決定しておき、塗布液中の金属分の含有量で制御する方法がある。塗布膜の膜厚は、乾燥後の厚さが500nm以上1.7μm以下の範囲内、好ましくは1μm以上1.7μm以下の範囲内となるようにし、イミド化後のポリイミド樹脂層の厚みが300nm~1μmの範囲内、好ましくは600nm~1μmの範囲内となるようにする。イミド化後のポリイミド樹脂層の厚みが300nm未満では金属微粒子同士の凝集が生じやすい傾向になり、一方、1μmを超えるとポリイミド樹脂層中に形成される金属微粒子が小さくなる傾向になり、またポリイミド樹脂層の表層部と深部とでの金属微粒子の平均粒子径がばらつく傾向になる。 The coating solution used in step a of the present embodiment has a metal content derived from the metal compound in the range of 10 μg / cm 2 to 50 μg / cm 2 , preferably in the range of 10 μg / cm 2 to 40 μg / cm 2 . Of these, it is preferably applied onto the substrate so as to be in the range of 10 μg / cm 2 to 30 μg / cm 2 . For the amount of metal per unit area of the coating film obtained by coating, the content of the metal in the coating solution is determined in advance, and a method of controlling by the film thickness of the coating film, or the film thickness of the coating film in advance There is a method of determining and controlling by the metal content in the coating solution. The thickness of the coating film is such that the thickness after drying is in the range of 500 nm to 1.7 μm, preferably in the range of 1 μm to 1.7 μm, and the thickness of the polyimide resin layer after imidization is 300 nm. It is set within the range of ˜1 μm, preferably within the range of 600 nm to 1 μm. If the thickness of the polyimide resin layer after imidization is less than 300 nm, the metal fine particles tend to agglomerate. On the other hand, if the thickness exceeds 1 μm, the metal fine particles formed in the polyimide resin layer tend to be small. The average particle diameter of the metal fine particles tends to vary between the surface layer portion and the deep portion of the resin layer.
 また、金属微粒子の平均粒子径及び粒子間距離を制御するためには、上記塗布膜中の金属分の含有量の範囲(10μg/cm~50μg/cm)とイミド化後のポリイミド樹脂層の厚みの範囲(300nm~1μm)の条件を満たした上で、さらに、塗布膜中の金属分の含有量A[μg/cm]と、イミド化後のポリイミド樹脂層の厚みB[nm]との関係が下式を満たすようにすることがより好ましい。
  2≦(A/B)×100≦12・・・(ii)
In addition, in order to control the average particle diameter and the interparticle distance of the metal fine particles, the range of the metal content in the coating film (10 μg / cm 2 to 50 μg / cm 2 ) and the polyimide resin layer after imidization In addition, after satisfying the conditions of the thickness range (300 nm to 1 μm), the content A [μg / cm 2 ] of the metal content in the coating film and the thickness B [nm] of the polyimide resin layer after imidization It is more preferable to satisfy the following formula.
2 ≦ (A / B) × 100 ≦ 12 (ii)
[工程b;熱処理工程]
 工程bでは、上記のようにして得られた塗布膜を、160~450℃の範囲内、好ましくは200~400℃の範囲内、より好ましくは300~400℃の範囲内で熱処理することにより金属イオン(又は金属塩)を還元して金属微粒子となる粒子状金属を析出させ、塗布膜中に分散させる。また、この熱処理により、塗布膜中のポリイミド前駆体樹脂をイミド化して厚みが300nm~1μmの範囲内にあり、かつ弾性率が3GPa~10GPaの範囲内のポリイミド樹脂層を形成する。本実施の形態における工程bは、以下に説明する点を除き、第1の実施の形態の工程bと同様に実施できる。
[Step b: Heat treatment step]
In step b, the coating film obtained as described above is heat treated in the range of 160 to 450 ° C., preferably in the range of 200 to 400 ° C., more preferably in the range of 300 to 400 ° C. Ions (or metal salts) are reduced to deposit particulate metal that becomes metal fine particles, and dispersed in the coating film. Also, by this heat treatment, the polyimide precursor resin in the coating film is imidized to form a polyimide resin layer having a thickness in the range of 300 nm to 1 μm and an elastic modulus in the range of 3 GPa to 10 GPa. Step b in the present embodiment can be performed in the same manner as step b in the first embodiment, except as described below.
 加熱時間は、後述するように、目標とする粒子間距離に応じて、さらに加熱温度や、塗布膜に含まれる金属イオン(又は金属塩)の含有量に応じて決定することができるが、例えば加熱温度が160℃では10~180分の範囲内、加熱温度が450℃では1~60分の範囲内に設定することができる。 As will be described later, the heating time can be determined according to the target interparticle distance, and further according to the heating temperature and the content of metal ions (or metal salts) contained in the coating film. When the heating temperature is 160 ° C., it can be set within a range of 10 to 180 minutes, and when the heating temperature is 450 ° C., it can be set within a range of 1 to 60 minutes.
 工程bの熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率(つまり、温度160~450℃の範囲内に加熱されたときの弾性率)は、金属微粒子の熱拡散性に影響を与えるので、金属微粒子の熱拡散を適度に進行させる目的で熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率を調節する。本実施の形態の方法では、硬化後のポリイミド樹脂の弾性率が、例えば3GPa以上10GPa以下の範囲内、好ましくは4GPa以上10GPa以下の範囲内になるようにポリイミド前駆体樹脂/ポリイミド樹脂の弾性率を調節する。硬化後のポリイミド樹脂の弾性率が3GPa未満では、工程bにおける熱処理の際に、金属微粒子の分散を制御することが困難となり、金属微粒子の凝集が生じる傾向となる。一方、硬化後のポリイミド樹脂の弾性率が10GPaを超えると、金属微粒子の分散が著しく抑制されるため、生成する金属微粒子が過度に小さくなり、例えば局在型表面プラズモン共鳴によるセンサー等の用途に利用する場合の感度が低下する傾向になり、また、マトリックスであるポリイミド樹脂の靭性が低下し、著しく脆い材料となる傾向になる。 The modulus of elasticity of the polyimide precursor resin / polyimide resin during the heat treatment in step b (that is, the modulus of elasticity when heated within the range of 160 to 450 ° C.) affects the thermal diffusivity of the metal fine particles. Therefore, the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process is adjusted for the purpose of appropriately promoting the thermal diffusion of the metal fine particles. In the method of this embodiment, the modulus of elasticity of the polyimide precursor resin / polyimide resin is such that the modulus of elasticity of the cured polyimide resin is, for example, in the range of 3 GPa to 10 GPa, preferably in the range of 4 GPa to 10 GPa. Adjust. If the elastic modulus of the cured polyimide resin is less than 3 GPa, it becomes difficult to control the dispersion of the metal fine particles during the heat treatment in step b, and the metal fine particles tend to aggregate. On the other hand, when the elastic modulus of the cured polyimide resin exceeds 10 GPa, the dispersion of the metal fine particles is remarkably suppressed, so that the generated metal fine particles become excessively small, for example, for applications such as a sensor using localized surface plasmon resonance. When used, the sensitivity tends to decrease, and the toughness of the polyimide resin as the matrix decreases, and the material tends to be extremely brittle.
 なお、本実施の形態では、硬化後のポリイミド樹脂の弾性率を規定しているが、該弾性率は工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率と関係があり、熱処理過程での弾性率を反映する指標となるためである。すなわち、硬化後のポリイミド樹脂の弾性率が高いほど工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は高く、硬化後のポリイミド樹脂の弾性率が低いほど工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は低くなる。そのため、硬化後のポリイミド樹脂の弾性率を制御することで、金属微粒子の熱拡散を制御することができる。 In the present embodiment, the elastic modulus of the cured polyimide resin is defined, but the elastic modulus is related to the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the heat treatment process. This is because it becomes an index reflecting the elastic modulus. That is, the higher the elastic modulus of the cured polyimide resin, the higher the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the lower the elastic modulus of the cured polyimide resin, the polyimide in the heat treatment process of step b. The elastic modulus of the precursor resin / polyimide resin is low. Therefore, the thermal diffusion of the metal fine particles can be controlled by controlling the elastic modulus of the cured polyimide resin.
 また、この熱処理によって塗布膜中のポリイミド前駆体樹脂をイミド化して、金属微粒子の含有量が10μg/cm~50μg/cmの範囲内、好ましくは10μg/cm~40μg/cmの範囲内、より好ましくは10μg/cm~30μg/cmの範囲内にあり、且つ厚みが300nm~1μmの範囲内、好ましくは600nm~1μmの範囲内にあるポリイミド樹脂層を形成する。 Also, the polyimide precursor resin in the coating film is imidized by this heat treatment, and the content of the metal fine particles is in the range of 10 μg / cm 2 to 50 μg / cm 2 , preferably in the range of 10 μg / cm 2 to 40 μg / cm 2 . Among them, a polyimide resin layer having a thickness in the range of 10 μg / cm 2 to 30 μg / cm 2 and a thickness in the range of 300 nm to 1 μm, preferably in the range of 600 nm to 1 μm is formed.
 金属微粒子の平均粒子径及び粒子間距離は、i)熱処理工程における熱処理温度、ii)塗布膜に含まれる金属イオン(又は金属塩)の含有量、iii)最終的に形成されるポリイミド樹脂層の厚み、及び、iv)熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率、によって制御できる。本発明者らは、熱処理温度が一定であって、塗布膜に含有する金属イオン(又は金属塩)の絶対量が異なる場合や、塗布膜に含有する金属イオン(又は金属塩)の絶対量が一定でも塗布膜の厚みが異なる場合には、析出する金属微粒子の粒子径が異なるという知見を得ていた。また、熱処理温度、塗布膜に含まれる金属イオン(又は金属塩)の含有量及び最終的に形成されるポリイミド樹脂層の厚みの制御なしに熱処理を行った場合には、粒子間距離が小さくなることがあることや、ポリイミド樹脂層の表面に金属微粒子が凝集して島状となることがあるという知見も得ていた。さらに、工程bの熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は、金属微粒子の熱拡散性に影響を与え、熱処理温度においてポリイミド前駆体樹脂/ポリイミド樹脂が柔らかいほど、金属微粒子の熱拡散が進行しやすく、逆にポリイミド前駆体樹脂/ポリイミド樹脂が硬いほど、金属微粒子の熱拡散が進行しにくい、という知見も得ていた。 The average particle diameter and interparticle distance of the metal fine particles are: i) the heat treatment temperature in the heat treatment step, ii) the content of metal ions (or metal salts) contained in the coating film, and iii) the polyimide resin layer finally formed It can be controlled by the thickness and iv) the elastic modulus of the polyimide precursor resin / polyimide resin during the heat treatment. In the case where the heat treatment temperature is constant and the absolute amount of metal ions (or metal salts) contained in the coating film is different, or the absolute amount of metal ions (or metal salts) contained in the coating film is different. In the case where the thickness of the coating film is different even if it is constant, it has been found that the particle diameters of the deposited metal fine particles are different. In addition, when the heat treatment is performed without controlling the heat treatment temperature, the content of metal ions (or metal salts) contained in the coating film, and the thickness of the polyimide resin layer finally formed, the interparticle distance is reduced. It has also been found that metal fine particles aggregate on the surface of the polyimide resin layer to form islands. Furthermore, the modulus of elasticity of the polyimide precursor resin / polyimide resin during the heat treatment in step b affects the thermal diffusibility of the metal fine particles, and the softer the polyimide precursor resin / polyimide resin at the heat treatment temperature, It has also been found that heat diffusion is more likely to proceed, and conversely, the harder the polyimide precursor resin / polyimide resin, the more difficult the heat diffusion of the metal fine particles.
 以上のような知見を生かし、上記のi)~iv)の条件を制御することによって金属微粒子の平均粒子径及び粒子間距離が制御できることを見出した。すなわち、i)~iv)の条件の制御によって、金属微粒子の平均粒子径を3nm~30nmの範囲内に制御するとともに、このように制御された金属微粒子が、それぞれの粒子間隔(粒子間距離)Lが、隣り合う金属微粒子における大きい方の金属微粒子の粒子径(D)以上、すなわち、L≧Dの関係で存在するようになる。本実施の形態の金属微粒子複合体は、工程a及び工程bの要件を備えていることにより、析出した金属微粒子の熱拡散が容易となり、隣り合う金属微粒子における大きい方の粒子径D以上の粒子間距離Lでポリイミド樹脂内に分散した状態となる。粒子間距離Lは大きくても特に問題はないが、熱拡散を利用して分散状態になる金属微粒子における各々の粒子間距離Lは、金属微粒子の粒子径Dと金属微粒子の体積分率と密接な関係があるので、粒子間距離Lの上限は、金属微粒子の体積分率の下限値によって制御することが好ましい。 Based on the above knowledge, it has been found that the average particle diameter and the interparticle distance of the metal fine particles can be controlled by controlling the above conditions i) to iv). That is, by controlling the conditions i) to iv), the average particle diameter of the metal fine particles is controlled within the range of 3 nm to 30 nm, and the metal fine particles thus controlled have their respective particle spacings (interparticle distances). L is the particle size of the larger metal particles in neighboring metal fine particles (D L) or higher, i.e., it will be present in relation L ≧ D L. Metal particle composite of the present embodiment, due to the provision of the requirements of step a and step b, the deposited metal particles thermal diffusion is facilitated, those over the particle diameter D L of the larger in the metal particles adjacent It will be in the state disperse | distributed in the polyimide resin by the distance L between particles. Although there is no particular problem even if the interparticle distance L is large, the interparticle distance L in the metal fine particles that are dispersed using thermal diffusion is closely related to the particle diameter D of the metal fine particles and the volume fraction of the metal fine particles. Therefore, the upper limit of the interparticle distance L is preferably controlled by the lower limit value of the volume fraction of the metal fine particles.
 本実施の形態では、金属微粒子の体積分率を、金属微粒子複合体に対して0.2~5%の範囲内、好ましくは0.5~3%の範囲内とする。体積分率を上記範囲内とすることによって、金属微粒子の粒子間距離Lを制御することができる。金属微粒子の体積分率は、主として、工程aにおける塗布液中の金属分の含有量により調整できる。 In the present embodiment, the volume fraction of the metal fine particles is in the range of 0.2 to 5%, preferably in the range of 0.5 to 3% with respect to the metal fine particle composite. By setting the volume fraction within the above range, the interparticle distance L of the metal fine particles can be controlled. The volume fraction of the metal fine particles can be adjusted mainly by the content of the metal in the coating solution in step a.
 なお、本実施の形態の製造方法においては、上記工程a及び工程b以外に、例えばエッチング工程などの任意工程を行うこともできる。 In addition, in the manufacturing method of this Embodiment, arbitrary processes, such as an etching process, can also be performed other than the said process a and process b, for example.
 以上のように、本実施の形態の金属微粒子複合体の製造方法によれば、ポリイミド前駆体樹脂の内部で金属イオン(又は金属塩)を還元して金属微粒子を析出させるため、ポリイミド前駆体樹脂中での金属化合物の含有量の調整が容易であり、ポリイミド樹脂中に分散させる金属微粒子の含有量を調整しやすい。従って、比較的容易に、平均粒子径が3nm~30nmの範囲内の金属微粒子を含み、金属微粒子の体積分率が0.2%以上5%以下の範囲内であり、厚みが300nm~1μmの範囲内の金属微粒子複合体を製造することができる。しかも、その還元処理が加熱によるものなので、析出した金属微粒子の熱拡散を利用して金属微粒子をマトリックス樹脂内で一定以上の粒子間距離を保った状態で分散させることができる。また、一定以上の粒子間距離で分散した金属微粒子がマトリックス樹脂の表層部から存在するようになる。 As described above, according to the method for producing the metal fine particle composite of the present embodiment, the metal precursor (or metal salt) is reduced inside the polyimide precursor resin to precipitate the metal fine particles. It is easy to adjust the content of the metal compound therein, and it is easy to adjust the content of the metal fine particles dispersed in the polyimide resin. Accordingly, it is relatively easy to include metal fine particles having an average particle diameter in the range of 3 nm to 30 nm, the volume fraction of the metal fine particles is in the range of 0.2% to 5%, and the thickness is 300 nm to 1 μm. Metal fine particle composites within the range can be produced. In addition, since the reduction treatment is performed by heating, the metal fine particles can be dispersed in the matrix resin while maintaining a certain inter-particle distance using the thermal diffusion of the deposited metal fine particles. Further, metal fine particles dispersed at a certain inter-particle distance are present from the surface layer portion of the matrix resin.
 また、本実施の形態の金属微粒子複合体の製造方法では、還元処理で使用する熱を利用してポリイミド前駆体樹脂のイミド化も完結させることができるので、生産工程を簡略化できる。 Moreover, in the method for producing a metal fine particle composite according to the present embodiment, the imidization of the polyimide precursor resin can be completed using the heat used in the reduction treatment, so that the production process can be simplified.
 本実施の形態方法により製造される金属微粒子複合体は、上記の構造的特性を備えているため、圧力センサーなどの局在型表面プラズモン効果を利用する分野をはじめ、例えば電磁波シールド材や磁気ノイズ吸収材、高熱伝導樹脂材など、様々な産業分野に応用できる。特に、本実施の形態の方法により得られる金属微粒子複合体は、ポリイミド樹脂層が300nm~1μmの充分な膜厚を有する一方で、金属微粒子の平均粒子径が3nm~30nmと前記膜厚に比べて相対的に小さく、かつ金属微粒子の体積分率が金属微粒子複合体に対して0.2%以上5%以下であるため、局在型表面プラズモン共鳴を利用する圧力センサーの用途に好ましく適用できる。つまり、ポリイミド樹脂層の厚みが金属微粒子の平均粒子径及び粒子間距離に対して充分に大きいため、加圧時の弾性変形の幅を大きくとることが可能であり、弾性変形時に内部の金属微粒子の移動距離も大きくすることができる。従って、圧力センサーとしての検出マージンを広くとることができるとともに、検出精度を高めることができる。しかも、金属微粒子の平均粒子径の範囲が3nm~30nmと狭いために粒子径のばらつきが小さく、加圧時には局在型表面プラズモン共鳴によってシャープな吸収が得られるため高感度の検出が可能になる。従って、圧力センサーとしての利用圧力範囲が広く、かつ高い検出感度と測定精度を得ることが期待される。 Since the metal fine particle composite produced by the method of the present embodiment has the structural characteristics described above, the field uses a localized surface plasmon effect such as a pressure sensor, for example, an electromagnetic shielding material or a magnetic noise. It can be applied to various industrial fields such as absorbent materials and high thermal conductive resin materials. In particular, in the metal fine particle composite obtained by the method of the present embodiment, the polyimide resin layer has a sufficient film thickness of 300 nm to 1 μm, while the average particle diameter of the metal fine particles is 3 nm to 30 nm, compared with the film thickness. And the volume fraction of the metal fine particles is 0.2% or more and 5% or less with respect to the metal fine particle composite, and can be preferably applied to the use of a pressure sensor using localized surface plasmon resonance. . In other words, since the thickness of the polyimide resin layer is sufficiently large with respect to the average particle diameter and interparticle distance of the metal fine particles, it is possible to increase the width of the elastic deformation at the time of pressurization. The moving distance can also be increased. Therefore, it is possible to widen a detection margin as a pressure sensor and to improve detection accuracy. In addition, since the average particle diameter range of the metal fine particles is as narrow as 3 nm to 30 nm, the particle diameter variation is small, and at the time of pressurization, sharp absorption is obtained by localized surface plasmon resonance, so that highly sensitive detection is possible. . Therefore, it is expected that the use pressure range as a pressure sensor is wide and high detection sensitivity and measurement accuracy are obtained.
 本実施の形態の金属微粒子複合体の製造方法における他の構成及び効果は、第1の実施の形態と同様である。 Other configurations and effects in the manufacturing method of the metal fine particle composite of the present embodiment are the same as those of the first embodiment.
[第3の実施の形態]
 次に、本発明の実施の形態について詳細に説明する。なお、以下では、第1の実施の形態との相違点を中心に説明する。本発明の第3の実施の形態に係る金属微粒子複合体の製造方法は、ポリイミド樹脂中に、平均粒子径が3nm~30nmの範囲内にある金属微粒子が互いに接することなく、隣り合う金属微粒子における粒子径の大きい方の金属微粒子の粒子径以上の間隔で互いに独立して(好ましくは完全に独立して)分散してなり、かつ金属微粒子の体積分率が金属微粒子複合体に対して0.5%以上5%以下の範囲内にある金属微粒子複合体を製造するものであり、以下の工程a及び工程bを備えている。本実施の形態の金属微粒子複合体の製造方法におけるポリイミド樹脂、及びポリイミド前駆体樹脂は、第1の実施の形態で説明したものを使用できる。
[Third Embodiment]
Next, embodiments of the present invention will be described in detail. In the following description, differences from the first embodiment will be mainly described. In the method for producing a metal fine particle composite according to the third embodiment of the present invention, metal fine particles having an average particle diameter in the range of 3 nm to 30 nm are not in contact with each other in the polyimide resin. The metal fine particles having the larger particle diameter are dispersed independently of each other (preferably completely independently) at intervals equal to or larger than the particle diameter, and the volume fraction of the metal fine particles is 0. 0 relative to the metal fine particle composite. A metal fine particle composite in the range of 5% or more and 5% or less is manufactured, and includes the following steps a and b. As the polyimide resin and the polyimide precursor resin in the method for producing the metal fine particle composite of the present embodiment, those described in the first embodiment can be used.
[工程a;塗布膜形成工程]
 本実施の形態の金属微粒子複合体の製造方法では、ポリイミド前駆体樹脂と、金属化合物とを含有する塗布液を、基材上に塗布し、乾燥することによって、塗布膜を形成する。本実施の形態における工程aは、塗布膜を形成するための塗布液中の金属分の含有量が異なる点を除き、第1の実施の形態の工程aと同様に実施できる。
[Step a: Coating film forming step]
In the method for producing a metal fine particle composite of the present embodiment, a coating film is formed by applying a coating liquid containing a polyimide precursor resin and a metal compound onto a substrate and drying. Step a in the present embodiment can be performed in the same manner as step a in the first embodiment, except that the metal content in the coating solution for forming the coating film is different.
 本実施の形態の工程aで用いる塗布液は、金属化合物に由来する金属分の含有量が5μg/cm~10μg/cmの範囲内、好ましくは5μg/cm~9μg/cmの範囲内、より好ましくは5μg/cm~8μg/cmの範囲内となるように基材上に塗布される。塗布して得られる塗布膜の単位面積あたりの金属量は、予め塗布液中の金属分の含有量を決定しておき、塗布膜の膜厚で制御する方法や、予め塗布膜の膜厚を決定しておき、塗布液中の金属分の含有量で制御する方法がある。塗布膜の膜厚は、乾燥後の厚さが150nm~500nmの範囲内、好ましくは200nm~500nmの範囲内となるようにし、イミド化後のポリイミド樹脂層の厚みが100nm~300nmの範囲内、好ましくは150nm~300nmの範囲内となるようにする。イミド化後のポリイミド樹脂層の厚みが100nm未満では金属微粒子同士の凝集が生じやすい傾向になり、一方、300nmを超えるとポリイミド樹脂層中に形成される金属微粒子が小さくなる傾向になり、またポリイミド樹脂層の表層部と深部とでの金属微粒子の平均粒子径がばらつく傾向になる。 The coating liquid used in step a of the present embodiment has a metal content derived from the metal compound in the range of 5 μg / cm 2 to 10 μg / cm 2 , preferably in the range of 5 μg / cm 2 to 9 μg / cm 2 . Of these, it is preferably applied onto the substrate so as to be in the range of 5 μg / cm 2 to 8 μg / cm 2 . For the amount of metal per unit area of the coating film obtained by coating, the content of the metal in the coating solution is determined in advance, and a method of controlling by the film thickness of the coating film, or the film thickness of the coating film in advance There is a method of determining and controlling by the metal content in the coating solution. The thickness of the coating film is such that the thickness after drying is in the range of 150 nm to 500 nm, preferably in the range of 200 nm to 500 nm, and the thickness of the polyimide resin layer after imidization is in the range of 100 nm to 300 nm. The thickness is preferably in the range of 150 nm to 300 nm. If the thickness of the polyimide resin layer after imidization is less than 100 nm, the metal fine particles tend to agglomerate. On the other hand, if the thickness exceeds 300 nm, the metal fine particles formed in the polyimide resin layer tend to be small. The average particle diameter of the metal fine particles tends to vary between the surface layer portion and the deep portion of the resin layer.
 また、金属微粒子の平均粒子径及び粒子間距離を制御するためには、上記塗布膜中の金属分の含有量の範囲(5μg/cm~10μg/cm)とイミド化後のポリイミド樹脂層の厚みの範囲(100nm~300nm)の条件を満たした上で、さらに、塗布膜中の金属分の含有量A[μg/cm]と、イミド化後のポリイミド樹脂層の厚みB[nm]との関係が下式を満たすようにすることがより好ましい。
  2≦(A/B)×100≦8・・・(iii)
In addition, in order to control the average particle size and the interparticle distance of the metal fine particles, the range of the metal content in the coating film (5 μg / cm 2 to 10 μg / cm 2 ) and the polyimide resin layer after imidization In addition, the metal content in the coating film A [μg / cm 2 ] and the thickness B [nm] of the polyimide resin layer after imidization are satisfied. It is more preferable to satisfy the following formula.
2 ≦ (A / B) × 100 ≦ 8 (iii)
[工程b;熱処理工程]
 工程bでは、上記のようにして得られた塗布膜を、160~450℃の範囲内、好ましくは200~400℃の範囲内、より好ましくは300~400℃の範囲内で熱処理することにより金属イオン(又は金属塩)を還元して金属微粒子となる粒子状金属を析出させ、塗布膜中に分散させる。また、この熱処理により、塗布膜中のポリイミド前駆体樹脂をイミド化して厚みが100nm~300nmの範囲内にあり、かつ弾性率が5MPa~10GPaの範囲内のポリイミド樹脂層を形成する。本実施の形態における工程bは、以下に説明する点を除き、第1の実施の形態の工程bと同様に実施できる。
[Step b: Heat treatment step]
In step b, the coating film obtained as described above is heat treated in the range of 160 to 450 ° C., preferably in the range of 200 to 400 ° C., more preferably in the range of 300 to 400 ° C. Ions (or metal salts) are reduced to deposit particulate metal that becomes metal fine particles, and dispersed in the coating film. Also, by this heat treatment, the polyimide precursor resin in the coating film is imidized to form a polyimide resin layer having a thickness in the range of 100 nm to 300 nm and an elastic modulus in the range of 5 MPa to 10 GPa. Step b in the present embodiment can be performed in the same manner as step b in the first embodiment, except as described below.
 加熱時間は、後述するように、目標とする粒子間距離に応じて、さらに加熱温度や、塗布膜に含まれる金属イオン(又は金属塩)の含有量に応じて決定することができるが、例えば加熱温度が160℃では10~180分の範囲内、加熱温度が450℃では1~60分の範囲内に設定することができる。 As will be described later, the heating time can be determined according to the target interparticle distance, and further according to the heating temperature and the content of metal ions (or metal salts) contained in the coating film. When the heating temperature is 160 ° C., it can be set within a range of 10 to 180 minutes, and when the heating temperature is 450 ° C., it can be set within a range of 1 to 60 minutes.
 工程bの熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率(つまり、温度160~450℃の範囲内に加熱されたときの弾性率)は、金属微粒子の熱拡散性に影響を与えるので、金属微粒子の熱拡散を適度に進行させる目的で、熱処理時のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率を調節する。本実施の形態の方法では、硬化後のポリイミド樹脂の弾性率が、例えば5MPa以上10GPa以下の範囲内、好ましくは8MPa以上10GPa以下の範囲内になるようにポリイミド前駆体樹脂/ポリイミド樹脂の弾性率を調節する。硬化後のポリイミド樹脂の弾性率が5MPa未満では、工程bにおける熱処理の際に、金属微粒子の分散を制御することが困難となり、金属微粒子の凝集が生じる傾向となる。一方、硬化後のポリイミド樹脂の弾性率が10GPaを超えると、金属微粒子の分散が著しく抑制されるため、生成する金属微粒子が過度に小さくなり、例えば局在型表面プラズモン共鳴によるセンサー等の用途に利用する場合の感度が低下する傾向になり、また、マトリックスであるポリイミド樹脂の靭性が低下し、著しく脆い材料となる傾向になる。 The modulus of elasticity of the polyimide precursor resin / polyimide resin during the heat treatment in step b (that is, the modulus of elasticity when heated within the range of 160 to 450 ° C.) affects the thermal diffusivity of the metal fine particles. Therefore, the elastic modulus of the polyimide precursor resin / polyimide resin during the heat treatment is adjusted for the purpose of appropriately promoting the thermal diffusion of the metal fine particles. In the method of the present embodiment, the modulus of elasticity of the polyimide precursor resin / polyimide resin is such that the modulus of elasticity of the cured polyimide resin is, for example, in the range of 5 MPa to 10 GPa, preferably in the range of 8 MPa to 10 GPa. Adjust. When the elastic modulus of the cured polyimide resin is less than 5 MPa, it becomes difficult to control the dispersion of the metal fine particles during the heat treatment in the step b, and the metal fine particles tend to aggregate. On the other hand, when the elastic modulus of the cured polyimide resin exceeds 10 GPa, the dispersion of the metal fine particles is remarkably suppressed, so that the generated metal fine particles become excessively small, for example, for applications such as a sensor using localized surface plasmon resonance. When used, the sensitivity tends to decrease, and the toughness of the polyimide resin as the matrix decreases, and the material tends to be extremely brittle.
 なお、本実施の形態では、硬化後のポリイミド樹脂の弾性率を規定しているが、該弾性率は工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率と関係があり、熱処理過程での弾性率を反映する指標となるためである。すなわち、硬化後のポリイミド樹脂の弾性率が高いほど工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は高く、硬化後のポリイミド樹脂の弾性率が低いほど工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は低くなる。そのため、硬化後のポリイミド樹脂の弾性率を制御することで、金属微粒子の熱拡散を制御することができる。 In the present embodiment, the elastic modulus of the cured polyimide resin is defined, but the elastic modulus is related to the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the heat treatment process. This is because it becomes an index reflecting the elastic modulus. That is, the higher the elastic modulus of the cured polyimide resin, the higher the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the lower the elastic modulus of the cured polyimide resin, the polyimide in the heat treatment process of step b. The elastic modulus of the precursor resin / polyimide resin is low. Therefore, the thermal diffusion of the metal fine particles can be controlled by controlling the elastic modulus of the cured polyimide resin.
 また、この熱処理によって塗布膜中のポリイミド前駆体樹脂をイミド化して、金属微粒子の含有量が5μg/cm~10μg/cmの範囲内、好ましくは5μg/cm~9μg/cmの範囲内、より好ましくは5μg/cm~8μg/cmの範囲内にあり、且つ厚みが100nm~300nmの範囲内、好ましくは150nm~300nmの範囲内にあるポリイミド樹脂層を形成する。 Also, the polyimide precursor resin in the coating film is imidized by this heat treatment, and the content of the metal fine particles is in the range of 5 μg / cm 2 to 10 μg / cm 2 , preferably in the range of 5 μg / cm 2 to 9 μg / cm 2 . Among them, a polyimide resin layer having a thickness in the range of 5 μg / cm 2 to 8 μg / cm 2 and a thickness in the range of 100 nm to 300 nm, preferably in the range of 150 nm to 300 nm is formed.
 金属微粒子の平均粒子径及び粒子間距離は、i)熱処理工程における熱処理温度、ii)塗布膜に含まれる金属イオン(又は金属塩)の含有量、iii)最終的に形成されるポリイミド樹脂層の厚み、及び、iv)熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率によって制御できる。本発明者らは、熱処理温度が一定であって、塗布膜に含有する金属イオン(又は金属塩)の絶対量が異なる場合や、塗布膜に含有する金属イオン(又は金属塩)の絶対量が一定でも塗布膜の厚みが異なる場合には、析出する金属微粒子の粒子径が異なるという知見を得ていた。また、熱処理温度、塗布膜に含まれる金属イオン(又は金属塩)の含有量及び最終的に形成されるポリイミド樹脂層の厚みの制御なしに熱処理を行った場合には、粒子間距離が小さくなることがあることや、ポリイミド樹脂層の表面に金属微粒子が凝集して島状となることがあるという知見も得ていた。さらに、工程bの熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は、金属微粒子の熱拡散性に影響を与え、熱処理温度においてポリイミド前駆体樹脂/ポリイミド樹脂が柔らかいほど、金属微粒子の熱拡散が進行しやすく、逆にポリイミド前駆体樹脂/ポリイミド樹脂が硬いほど、金属微粒子の熱拡散が進行しにくい、という知見も得ていた。 The average particle diameter and interparticle distance of the metal fine particles are: i) the heat treatment temperature in the heat treatment step, ii) the content of metal ions (or metal salts) contained in the coating film, and iii) the polyimide resin layer finally formed It can be controlled by the thickness and iv) the elastic modulus of the polyimide precursor resin / polyimide resin during the heat treatment. In the case where the heat treatment temperature is constant and the absolute amount of metal ions (or metal salts) contained in the coating film is different, or the absolute amount of metal ions (or metal salts) contained in the coating film is different. In the case where the thickness of the coating film is different even if it is constant, it has been found that the particle diameters of the deposited metal fine particles are different. In addition, when the heat treatment is performed without controlling the heat treatment temperature, the content of metal ions (or metal salts) contained in the coating film, and the thickness of the polyimide resin layer finally formed, the interparticle distance is reduced. It has also been found that metal fine particles aggregate on the surface of the polyimide resin layer to form islands. Furthermore, the modulus of elasticity of the polyimide precursor resin / polyimide resin during the heat treatment in step b affects the thermal diffusibility of the metal fine particles, and the softer the polyimide precursor resin / polyimide resin at the heat treatment temperature, It has also been found that heat diffusion is more likely to proceed, and conversely, the harder the polyimide precursor resin / polyimide resin, the more difficult the heat diffusion of the metal fine particles.
 以上のような知見を生かし、上記のi)~iv)の条件を制御することによって金属微粒子の平均粒子径及び粒子間距離が制御できることを見出した。すなわち、i)~iv)の条件の制御によって、金属微粒子の平均粒子径を3nm~30nmの範囲内に制御するとともに、このように制御された金属微粒子が、それぞれの粒子間隔(粒子間距離)Lが、隣り合う金属微粒子における大きい方の金属微粒子の粒子径(D)以上、すなわち、L≧Dの関係で存在するようになる。本実施の形態の金属微粒子複合体は、工程a及び工程bの要件を備えていることにより、析出した金属微粒子の熱拡散が容易となり、隣り合う金属微粒子における大きい方の粒子径D以上の粒子間距離Lでポリイミド樹脂内に分散した状態となる。粒子間距離Lは大きくても特に問題はないが、熱拡散を利用して分散状態になる金属微粒子における各々の粒子間距離Lは、金属微粒子の粒子径Dと金属微粒子の体積分率と密接な関係があるので、粒子間距離Lの上限は、金属微粒子の体積分率の下限値によって制御することが好ましい。 Based on the above knowledge, it has been found that the average particle diameter and the interparticle distance of the metal fine particles can be controlled by controlling the above conditions i) to iv). That is, by controlling the conditions i) to iv), the average particle diameter of the metal fine particles is controlled within the range of 3 nm to 30 nm, and the metal fine particles thus controlled have their respective particle spacings (interparticle distances). L is the particle size of the larger metal particles in neighboring metal fine particles (D L) or higher, i.e., it will be present in relation L ≧ D L. Metal particle composite of the present embodiment, due to the provision of the requirements of step a and step b, the deposited metal particles thermal diffusion is facilitated, those over the particle diameter D L of the larger in the metal particles adjacent It will be in the state disperse | distributed in the polyimide resin by the distance L between particles. Although there is no particular problem even if the interparticle distance L is large, the interparticle distance L in the metal fine particles that are dispersed using thermal diffusion is closely related to the particle diameter D of the metal fine particles and the volume fraction of the metal fine particles. Therefore, the upper limit of the interparticle distance L is preferably controlled by the lower limit value of the volume fraction of the metal fine particles.
 本実施の形態では、金属微粒子の体積分率を、金属微粒子複合体に対して0.5~5%の範囲内、好ましくは1~3%の範囲内とする。体積分率を上記範囲内とすることによって、金属微粒子の粒子間距離Lを制御することができる。金属微粒子の体積分率は、主として、工程aにおける塗布液中の金属分の含有量により調整できる。 In the present embodiment, the volume fraction of the metal fine particles is in the range of 0.5 to 5%, preferably in the range of 1 to 3% with respect to the metal fine particle composite. By setting the volume fraction within the above range, the interparticle distance L of the metal fine particles can be controlled. The volume fraction of the metal fine particles can be adjusted mainly by the content of the metal in the coating solution in step a.
 なお、本実施の形態の製造方法においては、上記工程a及び工程b以外に、例えばエッチング工程などの任意工程を行うこともできる。 In addition, in the manufacturing method of this Embodiment, arbitrary processes, such as an etching process, can also be performed other than the said process a and process b, for example.
 以上のように、本実施の形態の金属微粒子複合体の製造方法によれば、ポリイミド前駆体樹脂の内部で金属イオン(又は金属塩)を還元して金属微粒子を析出させるため、ポリイミド前駆体樹脂中での金属化合物の含有量の調整が容易であり、ポリイミド樹脂中に分散させる金属微粒子の含有量を調整しやすい。従って、比較的容易に、平均粒子径が3nm~30nmの範囲内の金属微粒子を含み、金属微粒子の体積分率が0.5~5%の範囲内であり、厚みが100nm~300nmの範囲内の金属微粒子複合体を製造することができる。しかも、その還元処理が加熱によるものなので、析出した金属微粒子の熱拡散を利用して金属微粒子をマトリックス樹脂内で一定以上の粒子間距離を保った状態で分散させることができる。また、一定以上の粒子間距離で分散した金属微粒子がマトリックス樹脂の表層部から存在するようになる。 As described above, according to the method for producing the metal fine particle composite of the present embodiment, the metal precursor (or metal salt) is reduced inside the polyimide precursor resin to precipitate the metal fine particles. It is easy to adjust the content of the metal compound therein, and it is easy to adjust the content of the metal fine particles dispersed in the polyimide resin. Accordingly, it is relatively easy to include metal fine particles having an average particle diameter in the range of 3 nm to 30 nm, the volume fraction of the metal fine particles is in the range of 0.5 to 5%, and the thickness is in the range of 100 nm to 300 nm. The metal fine particle composite can be produced. In addition, since the reduction treatment is performed by heating, the metal fine particles can be dispersed in the matrix resin while maintaining a certain inter-particle distance using the thermal diffusion of the deposited metal fine particles. Further, metal fine particles dispersed at a certain inter-particle distance are present from the surface layer portion of the matrix resin.
 また、本実施の形態の金属微粒子複合体の製造方法では、還元処理で使用する熱を利用してポリイミド前駆体樹脂のイミド化も完結させることができるので、生産工程を簡略化できる。 Moreover, in the method for producing a metal fine particle composite according to the present embodiment, the imidization of the polyimide precursor resin can be completed using the heat used in the reduction treatment, so that the production process can be simplified.
 本実施の形態の方法により製造される金属微粒子複合体は、上記の構造的特性を備えているため、圧力センサーなどの局在型表面プラズモン効果を利用する分野をはじめ、例えば電磁波シールド材や磁気ノイズ吸収材、高熱伝導樹脂材など、様々な産業分野に応用できる。特に、本実施の形態の方法により得られる金属微粒子複合体は、ポリイミド樹脂層が100nm~300nmの充分な膜厚を有する一方で、金属微粒子の平均粒子径が3nm~30nmと前記膜厚に比べて相対的に小さく、かつ金属微粒子の体積分率が金属微粒子複合体に対して0.5~5%であるため、局在型表面プラズモン共鳴を利用する圧力センサーの用途に好ましく適用できる。つまり、ポリイミド樹脂層の厚みが金属微粒子の平均粒子径及び粒子間距離に対して充分に大きいため、加圧時の弾性変形の幅を大きくとることが可能であり、弾性変形時に内部の金属微粒子の移動距離も大きくすることができる。従って、圧力センサーとしての検出マージンを広くとることができるとともに、検出精度を高めることができる。しかも、金属微粒子の平均粒子径の範囲が3nm~30nmと狭いために粒子径のばらつきが小さく、加圧時には局在型表面プラズモン共鳴によってシャープな吸収が得られるため高感度の検出が可能になる。従って、圧力センサーとしての利用圧力範囲が広く、かつ高い検出感度と測定精度を得ることが期待される。また、本実施の形態の方法により得られる金属微粒子複合体は、ポリイミド樹脂層を100nm~300nmと薄膜化できるため、金属微粒子複合体の表層部の微妙な変化をセンシングする用途に適している。このような性質を利用し、例えば、金属微粒子複合体の表層部をエッチング加工し、該複合体の表層部にある金属微粒子の一部をマトリックスから表面に露出させることにより、外部環境の変化をセンシングするセンサー基板として有利に利用できることなど、その応用が期待できる。 Since the metal fine particle composite produced by the method of the present embodiment has the structural characteristics described above, the field uses a localized surface plasmon effect such as a pressure sensor. It can be applied to various industrial fields such as noise absorbers and high thermal conductive resin materials. In particular, in the metal fine particle composite obtained by the method of the present embodiment, the polyimide resin layer has a sufficient film thickness of 100 nm to 300 nm, while the average particle diameter of the metal fine particles is 3 nm to 30 nm, compared with the film thickness. And the volume fraction of the metal fine particles is 0.5 to 5% with respect to the metal fine particle composite, so that it can be preferably applied to the use of a pressure sensor utilizing localized surface plasmon resonance. In other words, since the thickness of the polyimide resin layer is sufficiently large with respect to the average particle diameter and interparticle distance of the metal fine particles, it is possible to increase the width of the elastic deformation at the time of pressurization. The moving distance can also be increased. Therefore, it is possible to widen a detection margin as a pressure sensor and to improve detection accuracy. In addition, since the average particle diameter range of the metal fine particles is as narrow as 3 nm to 30 nm, the particle diameter variation is small, and at the time of pressurization, sharp absorption is obtained by localized surface plasmon resonance, so that highly sensitive detection is possible. . Therefore, it is expected that the use pressure range as a pressure sensor is wide and high detection sensitivity and measurement accuracy are obtained. In addition, the metal fine particle composite obtained by the method of the present embodiment can be thinned to a thickness of 100 nm to 300 nm for the polyimide resin layer, and thus is suitable for applications for sensing subtle changes in the surface layer portion of the metal fine particle composite. Utilizing such properties, for example, by etching the surface layer portion of the metal fine particle composite, and exposing a part of the metal fine particles on the surface layer portion of the composite to the surface from the matrix, the change of the external environment can be controlled. Applications such as being able to be used advantageously as a sensor substrate for sensing can be expected.
 本実施の形態の金属微粒子複合体の製造方法における他の構成及び効果は、第1の実施の形態と同様である。 Other configurations and effects in the manufacturing method of the metal fine particle composite of the present embodiment are the same as those of the first embodiment.
[第4の実施の形態]
 次に、本発明の実施の形態について詳細に説明する。なお、以下では、第1の実施の形態との相違点を中心に説明する。本発明の一実施の形態に係る金属微粒子複合体の製造方法は、ポリイミド樹脂中に、平均粒子径が5nm~35nmの範囲内にある金属微粒子が互いに接することなく、隣り合う金属微粒子における粒子径の大きい方の金属微粒子の粒子径以上の間隔で互いに独立して(好ましくは完全に独立して)分散してなり、かつ金属微粒子の体積分率が金属微粒子複合体に対して1%以上15%以下の範囲内にある金属微粒子複合体を製造するものであり、以下の工程a及び工程bを備えている。本実施の形態の金属微粒子複合体の製造方法におけるポリイミド樹脂、及びポリイミド前駆体樹脂は、第1の実施の形態で説明したものを使用できる。
[Fourth Embodiment]
Next, embodiments of the present invention will be described in detail. In the following description, differences from the first embodiment will be mainly described. In the method for producing a metal fine particle composite according to one embodiment of the present invention, the particle diameters of adjacent metal fine particles are not contacted with each other in the polyimide resin without the metal fine particles having an average particle diameter in the range of 5 nm to 35 nm. Are dispersed independently of each other (preferably completely independently) at intervals equal to or larger than the particle diameter of the larger metal fine particles, and the volume fraction of the metal fine particles is 1% or more to the metal fine particle composite. % Of the metal fine particle composite in the range of not more than%, and includes the following steps a and b. As the polyimide resin and the polyimide precursor resin in the method for producing the metal fine particle composite of the present embodiment, those described in the first embodiment can be used.
[工程a;塗布膜形成工程]
 本実施の形態の金属微粒子複合体の製造方法では、ポリイミド前駆体樹脂と、金属化合物とを含有する塗布液を、基材上に塗布し、乾燥することによって、塗布膜を形成する。本実施の形態における工程aは、塗布膜を形成するための塗布液中の金属分の含有量が異なる点を除き、第1の実施の形態の工程aと同様に実施できる。
[Step a: Coating film forming step]
In the method for producing a metal fine particle composite of the present embodiment, a coating film is formed by applying a coating liquid containing a polyimide precursor resin and a metal compound onto a substrate and drying. Step a in the present embodiment can be performed in the same manner as step a in the first embodiment, except that the metal content in the coating solution for forming the coating film is different.
 本実施の形態の工程aで用いる塗布液は、金属化合物に由来する金属分の含有量が10μg/cm~30μg/cmの範囲内、好ましくは10μg/cm~27μg/cmの範囲内、より好ましくは10μg/cm~25μg/cmの範囲内となるように基材上に塗布される。塗布して得られる塗布膜の単位面積あたりの金属量は、予め塗布液中の金属分の含有量を決定しておき、塗布膜の膜厚で制御する方法や、予め塗布膜の膜厚を決定しておき、塗布液中の金属分の含有量で制御する方法がある。塗布膜の膜厚は、乾燥後の厚さが150nm~500nmの範囲内、好ましくは200nm~500nmの範囲内となるようにし、イミド化後のポリイミド樹脂層の厚みが100nm~300nmの範囲内、好ましくは150nm~300nmの範囲内となるようにする。イミド化後のポリイミド樹脂層の厚みが100nm未満では金属微粒子同士の凝集が生じやすい傾向になり、一方、300nmを超えるとポリイミド樹脂層中に形成される金属微粒子が小さくなる傾向になり、またポリイミド樹脂層の表層部と深部とでの金属微粒子の平均粒子径がばらつく傾向になる。 Coating liquid used in step a of the present embodiment, the range content is 10μg / cm 2 ~ 30μg / cm 2 of metal component derived from the metal compound, ranges preferably from 10μg / cm 2 ~ 27μg / cm 2 Of these, it is preferably applied on the substrate so as to be in the range of 10 μg / cm 2 to 25 μg / cm 2 . For the amount of metal per unit area of the coating film obtained by coating, the content of the metal in the coating solution is determined in advance, and a method of controlling by the film thickness of the coating film, or the film thickness of the coating film in advance There is a method of determining and controlling by the metal content in the coating solution. The thickness of the coating film is such that the thickness after drying is in the range of 150 nm to 500 nm, preferably in the range of 200 nm to 500 nm, and the thickness of the polyimide resin layer after imidization is in the range of 100 nm to 300 nm. The thickness is preferably in the range of 150 nm to 300 nm. If the thickness of the polyimide resin layer after imidization is less than 100 nm, the metal fine particles tend to agglomerate. On the other hand, if the thickness exceeds 300 nm, the metal fine particles formed in the polyimide resin layer tend to be small. The average particle diameter of the metal fine particles tends to vary between the surface layer portion and the deep portion of the resin layer.
 また、金属微粒子の平均粒子径及び粒子間距離を制御するためには、上記塗布膜中の金属分の含有量の範囲(10μg/cm~30μg/cm)とイミド化後のポリイミド樹脂層の厚みの範囲(100nm~300nm)の条件を満たした上で、さらに、塗布膜中の金属分の含有量A[μg/cm]と、イミド化後のポリイミド樹脂層の厚みB[nm]との関係が下式を満たすようにすることがより好ましい。
  5≦(A/B)×100≦25・・・(iv)
In addition, in order to control the average particle size and the interparticle distance of the metal fine particles, the content range (10 μg / cm 2 to 30 μg / cm 2 ) of the metal content in the coating film and the polyimide resin layer after imidization In addition, the metal content in the coating film A [μg / cm 2 ] and the thickness B [nm] of the polyimide resin layer after imidization are satisfied. It is more preferable that the relationship between and satisfies the following formula.
5 ≦ (A / B) × 100 ≦ 25 (iv)
[工程b;熱処理工程]
 工程bでは、上記のようにして得られた塗布膜を、160~450℃の範囲内、好ましくは200~400℃の範囲内、より好ましくは300~400℃の範囲内で熱処理することにより金属イオン(又は金属塩)を還元して金属微粒子となる粒子状金属を析出させ、塗布膜中に分散させる。また、この熱処理により、塗布膜中のポリイミド前駆体樹脂をイミド化して厚みが100nm~300nmの範囲内にあり、かつ弾性率が0.5GPa~10GPaの範囲内のポリイミド樹脂層を形成する。本実施の形態における工程bは、以下に説明する点を除き、第1の実施の形態の工程bと同様に実施できる。
[Step b: Heat treatment step]
In step b, the coating film obtained as described above is heat treated in the range of 160 to 450 ° C., preferably in the range of 200 to 400 ° C., more preferably in the range of 300 to 400 ° C. Ions (or metal salts) are reduced to deposit particulate metal that becomes metal fine particles, and dispersed in the coating film. Also, by this heat treatment, the polyimide precursor resin in the coating film is imidized to form a polyimide resin layer having a thickness in the range of 100 nm to 300 nm and an elastic modulus in the range of 0.5 GPa to 10 GPa. Step b in the present embodiment can be performed in the same manner as step b in the first embodiment, except as described below.
 加熱時間は、後述するように、目標とする粒子間距離に応じて、さらに加熱温度や、塗布膜に含まれる金属イオン(又は金属塩)の含有量に応じて決定することができるが、例えば加熱温度が160℃では10~180分の範囲内、加熱温度が450℃では1~60分の範囲内に設定することができる。 As will be described later, the heating time can be determined according to the target interparticle distance, and further according to the heating temperature and the content of metal ions (or metal salts) contained in the coating film. When the heating temperature is 160 ° C., it can be set within a range of 10 to 180 minutes, and when the heating temperature is 450 ° C., it can be set within a range of 1 to 60 minutes.
 また、工程bの熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率(つまり、温度160~450℃の範囲内に加熱されたときの弾性率)は、金属微粒子の熱拡散性に影響を与えるので、金属微粒子の熱拡散を適度に進行させる目的で、熱処理時のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率を調節する。本実施の形態の方法では、硬化後のポリイミド樹脂の弾性率が、例えば0.5GPa以上10GPa以下の範囲内、好ましくは0.6GPa以上10GPa以下の範囲内になるようにポリイミド前駆体樹脂/ポリイミド樹脂の弾性率を調節する。硬化後のポリイミド樹脂の弾性率が0.5GPa未満では、工程bにおける熱処理の際に、金属微粒子の分散を制御することが困難となり、金属微粒子の凝集が生じる傾向となる。一方、硬化後のポリイミド樹脂の弾性率が10GPaを超えると、金属微粒子の分散が著しく抑制されるため、生成する金属微粒子が過度に小さくなり、例えば局在型表面プラズモン共鳴によるセンサー等の用途に利用する場合の感度が低下する傾向になり、また、マトリックスであるポリイミド樹脂の靭性が低下し、著しく脆い材料となる傾向になる。 Further, the modulus of elasticity of the polyimide precursor resin / polyimide resin (that is, the modulus of elasticity when heated within the range of 160 to 450 ° C.) during the heat treatment in step b affects the thermal diffusivity of the metal fine particles. Therefore, the elastic modulus of the polyimide precursor resin / polyimide resin during the heat treatment is adjusted for the purpose of appropriately promoting the thermal diffusion of the metal fine particles. In the method of the present embodiment, the polyimide precursor resin / polyimide is such that the elastic modulus of the cured polyimide resin is, for example, in the range of 0.5 GPa to 10 GPa, preferably in the range of 0.6 GPa to 10 GPa. Adjust the elastic modulus of the resin. If the elastic modulus of the cured polyimide resin is less than 0.5 GPa, it becomes difficult to control the dispersion of the metal fine particles during the heat treatment in step b, and the metal fine particles tend to aggregate. On the other hand, when the elastic modulus of the cured polyimide resin exceeds 10 GPa, the dispersion of the metal fine particles is remarkably suppressed, so that the generated metal fine particles become excessively small, for example, for applications such as a sensor using localized surface plasmon resonance. When used, the sensitivity tends to decrease, and the toughness of the polyimide resin as the matrix decreases, and the material tends to be extremely brittle.
 なお、本実施の形態では、硬化後のポリイミド樹脂の弾性率を規定しているが、該弾性率は工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率と関係があり、熱処理過程での弾性率を反映する指標となるためである。すなわち、硬化後のポリイミド樹脂の弾性率が高いほど工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は高く、硬化後のポリイミド樹脂の弾性率が低いほど工程bの熱処理過程におけるポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は低くなる。そのため、硬化後のポリイミド樹脂の弾性率を制御することで、金属微粒子の熱拡散を制御することができる。 In the present embodiment, the elastic modulus of the cured polyimide resin is defined, but the elastic modulus is related to the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the heat treatment process. This is because it becomes an index reflecting the elastic modulus. That is, the higher the elastic modulus of the cured polyimide resin, the higher the elastic modulus of the polyimide precursor resin / polyimide resin in the heat treatment process of step b, and the lower the elastic modulus of the cured polyimide resin, the polyimide in the heat treatment process of step b. The elastic modulus of the precursor resin / polyimide resin is low. Therefore, the thermal diffusion of the metal fine particles can be controlled by controlling the elastic modulus of the cured polyimide resin.
 また、この熱処理によって塗布膜中のポリイミド前駆体樹脂をイミド化して、金属微粒子の含有量が10μg/cm~30μg/cmの範囲内、好ましくは10μg/cm~27μg/cmの範囲内、より好ましくは10μg/cm~25μg/cmの範囲内にあり、且つ厚みが100nm~300nmの範囲内、好ましくは150nm~300nmの範囲内にあるポリイミド樹脂層を形成する。 Further, by imidizing a polyimide precursor resin in the coating film by the heat treatment in the range content is 10μg / cm 2 ~ 30μg / cm 2 of metal fine particles, ranging preferably from 10μg / cm 2 ~ 27μg / cm 2 Among them, a polyimide resin layer having a thickness in the range of 10 μg / cm 2 to 25 μg / cm 2 and a thickness in the range of 100 nm to 300 nm, preferably in the range of 150 nm to 300 nm is formed.
 上記のように、金属微粒子の平均粒子径及び粒子間距離は、i)熱処理工程における熱処理温度、ii)塗布膜に含まれる金属イオン(又は金属塩)の含有量、iii)最終的に形成されるポリイミド樹脂層の厚み、及び、iv)熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の硬さ、によって制御できる。本発明者らは、熱処理温度が一定であって、塗布膜に含有する金属イオン(又は金属塩)の絶対量が異なる場合や、塗布膜に含有する金属イオン(又は金属塩)の絶対量が一定でも塗布膜の厚みが異なる場合には、析出する金属微粒子の粒子径が異なるという知見を得ていた。また、熱処理温度、塗布膜に含まれる金属イオン(又は金属塩)の含有量及び最終的に形成されるポリイミド樹脂層の厚みの制御なしに熱処理を行った場合には、粒子間距離が小さくなることがあることや、ポリイミド樹脂層の表面に金属微粒子が凝集して島状となることがあるという知見も得ていた。さらに、工程bの熱処理を行う際のポリイミド前駆体樹脂/ポリイミド樹脂の弾性率は、金属微粒子の熱拡散性に影響を与え、熱処理温度においてポリイミド前駆体樹脂/ポリイミド樹脂が柔らかいほど、金属微粒子の熱拡散が進行しやすく、逆にポリイミド前駆体樹脂/ポリイミド樹脂が硬いほど、金属微粒子の熱拡散が進行しにくい、という知見も得ていた。 As described above, the average particle diameter and the interparticle distance of the metal fine particles are i) the heat treatment temperature in the heat treatment step, ii) the content of metal ions (or metal salts) contained in the coating film, and iii) finally formed. It can be controlled by the thickness of the polyimide resin layer and iv) the hardness of the polyimide precursor resin / polyimide resin during the heat treatment. In the case where the heat treatment temperature is constant and the absolute amount of metal ions (or metal salts) contained in the coating film is different, or the absolute amount of metal ions (or metal salts) contained in the coating film is different. In the case where the thickness of the coating film is different even if it is constant, it has been found that the particle diameters of the deposited metal fine particles are different. In addition, when the heat treatment is performed without controlling the heat treatment temperature, the content of metal ions (or metal salts) contained in the coating film, and the thickness of the polyimide resin layer finally formed, the interparticle distance is reduced. It has also been found that metal fine particles aggregate on the surface of the polyimide resin layer to form islands. Furthermore, the modulus of elasticity of the polyimide precursor resin / polyimide resin during the heat treatment in step b affects the thermal diffusibility of the metal fine particles, and the softer the polyimide precursor resin / polyimide resin at the heat treatment temperature, It has also been found that heat diffusion is more likely to proceed, and conversely, the harder the polyimide precursor resin / polyimide resin, the more difficult the heat diffusion of the metal fine particles.
 以上のような知見を生かし、上記のi)~iv)の条件を制御することによって金属微粒子の平均粒子径及び粒子間距離が制御できることを見出した。すなわち、i)~iv)の条件の制御によって、金属微粒子の平均粒子径を5nm~35nmの範囲内に制御するとともに、このように制御された金属微粒子が、それぞれの粒子間隔(粒子間距離)Lが、隣り合う金属微粒子における大きい方の金属微粒子の粒子径(D)以上、すなわち、L≧Dの関係で存在するようになる。本実施の形態の金属微粒子複合体は、工程a及び工程bの要件を備えていることにより、析出した金属微粒子の熱拡散が容易となり、隣り合う金属微粒子における大きい方の粒子径D以上の粒子間距離Lでポリイミド樹脂内に分散した状態となる。粒子間距離Lは大きくても特に問題はないが、熱拡散を利用して分散状態になる金属微粒子における各々の粒子間距離Lは、金属微粒子の粒子径Dと後述する金属微粒子の体積分率と密接な関係があるので、粒子間距離Lの上限は、金属微粒子の体積分率の下限値によって制御することが好ましい。 Based on the above knowledge, it has been found that the average particle diameter and the interparticle distance of the metal fine particles can be controlled by controlling the above conditions i) to iv). That is, by controlling the conditions i) to iv), the average particle diameter of the metal fine particles is controlled within the range of 5 nm to 35 nm, and the metal fine particles thus controlled have their respective particle spacings (interparticle distances). L is the particle size of the larger metal particles in neighboring metal fine particles (D L) or higher, i.e., it will be present in relation L ≧ D L. Metal particle composite of the present embodiment, due to the provision of the requirements of step a and step b, the deposited metal particles thermal diffusion is facilitated, those over the particle diameter D L of the larger in the metal particles adjacent It will be in the state disperse | distributed in the polyimide resin by the distance L between particles. Although there is no particular problem even if the interparticle distance L is large, each interparticle distance L in the metal fine particles that are dispersed by utilizing thermal diffusion is determined based on the particle diameter D of the metal fine particles and the volume fraction of the metal fine particles described later. Therefore, the upper limit of the interparticle distance L is preferably controlled by the lower limit value of the volume fraction of the metal fine particles.
 本実施の形態では、金属微粒子の体積分率を、金属微粒子複合体に対して1~15%の範囲内、好ましくは2~10%の範囲内とする。体積分率を上記範囲内とすることによって、金属微粒子の粒子間距離Lを制御することができる。金属微粒子の体積分率は、主として、工程aにおける塗布液中の金属分の含有量により調整できる。 In the present embodiment, the volume fraction of the metal fine particles is in the range of 1 to 15%, preferably in the range of 2 to 10% with respect to the metal fine particle composite. By setting the volume fraction within the above range, the interparticle distance L of the metal fine particles can be controlled. The volume fraction of the metal fine particles can be adjusted mainly by the content of the metal in the coating solution in step a.
 なお、本実施の形態の製造方法においては、上記工程a及び工程b以外に、例えばエッチング工程などの任意工程を行うこともできる。 In addition, in the manufacturing method of this Embodiment, arbitrary processes, such as an etching process, can also be performed other than the said process a and process b, for example.
 以上のように、本実施の形態の金属微粒子複合体の製造方法によれば、ポリイミド前駆体樹脂の内部で金属イオン(又は金属塩)を還元して金属微粒子を析出させるため、ポリイミド前駆体樹脂中での金属化合物の含有量の調整が容易であり、ポリイミド樹脂中に分散させる金属微粒子の含有量を調整しやすい。従って、比較的容易に、平均粒子径が5nm~35nmの範囲内の金属微粒子を含み、金属微粒子の体積分率が1~15%の範囲内であり、厚みが100nm~300nmの範囲内の金属微粒子複合体を製造することができる。しかも、その還元処理が加熱によるものなので、析出した金属微粒子の熱拡散を利用して金属微粒子をマトリックス樹脂内で一定以上の粒子間距離を保った状態で分散させることができる。また、一定以上の粒子間距離で分散した金属微粒子がマトリックス樹脂の表層部から存在するようになる。 As described above, according to the method for producing the metal fine particle composite of the present embodiment, the metal precursor (or metal salt) is reduced inside the polyimide precursor resin to precipitate the metal fine particles. It is easy to adjust the content of the metal compound therein, and it is easy to adjust the content of the metal fine particles dispersed in the polyimide resin. Accordingly, it is relatively easy to include metal fine particles having an average particle diameter in the range of 5 nm to 35 nm, a volume fraction of the metal fine particles in the range of 1 to 15%, and a thickness in the range of 100 nm to 300 nm. Fine particle composites can be produced. In addition, since the reduction treatment is performed by heating, the metal fine particles can be dispersed in the matrix resin while maintaining a certain inter-particle distance using the thermal diffusion of the deposited metal fine particles. Further, metal fine particles dispersed at a certain inter-particle distance are present from the surface layer portion of the matrix resin.
 また、本実施の形態の金属微粒子複合体の製造方法では、還元処理で使用する熱を利用してポリイミド前駆体樹脂のイミド化も完結させることができるので、生産工程を簡略化できる。 Moreover, in the method for producing a metal fine particle composite according to the present embodiment, the imidization of the polyimide precursor resin can be completed using the heat used in the reduction treatment, so that the production process can be simplified.
 本実施の形態の方法により製造される金属微粒子複合体は、上記の構造的特性を備えているため、圧力センサーなどの局在型表面プラズモン効果を利用する分野をはじめ、例えば電磁波シールド材や磁気ノイズ吸収材、高熱伝導樹脂材など、様々な産業分野に応用できる。特に、本実施の形態の方法により得られる金属微粒子複合体は、ポリイミド樹脂層が100nm~300nmの充分な膜厚を有する一方で、金属微粒子の平均粒子径が5nm~35nmと前記膜厚に比べて相対的に小さく、かつ金属微粒子の体積分率が金属微粒子複合体に対して1~15%であるため、局在型表面プラズモン共鳴を利用する圧力センサーの用途に好ましく適用できる。つまり、ポリイミド樹脂層の厚みが金属微粒子の平均粒子径及び粒子間距離に対して充分に大きいため、加圧時の弾性変形の幅を大きくとることが可能であり、弾性変形時に内部の金属微粒子の移動距離も大きくすることができる。従って、圧力センサーとしての検出マージンを広くとることができるとともに、検出精度を高めることができる。しかも、金属微粒子の平均粒子径の範囲が5nm~35nmと狭いために粒子径のばらつきが小さく、加圧時には局在型表面プラズモン共鳴によってシャープな吸収が得られるため高感度の検出が可能になる。従って、圧力センサーとしての利用圧力範囲が広く、かつ高い検出感度と測定精度を得ることが期待される。また、本実施の形態の方法により得られる金属微粒子複合体は、ポリイミド樹脂層を100nm~300nmと薄膜化できるため、金属微粒子複合体の表層部の微妙な変化をセンシングする用途に適している。このような性質を利用し、例えば、金属微粒子複合体の表層部をエッチング加工し、該複合体の表層部にある金属微粒子の一部をマトリックスから表面に露出させることにより、外部環境の変化をセンシングするセンサー基板として有利に利用できることなど、その応用が期待できる。 Since the metal fine particle composite produced by the method of the present embodiment has the structural characteristics described above, the field uses a localized surface plasmon effect such as a pressure sensor. It can be applied to various industrial fields such as noise absorbers and high thermal conductive resin materials. In particular, in the metal fine particle composite obtained by the method of the present embodiment, the polyimide resin layer has a sufficient film thickness of 100 nm to 300 nm, while the average particle diameter of the metal fine particles is 5 nm to 35 nm, compared with the film thickness. And the volume fraction of the metal fine particles is 1 to 15% with respect to the metal fine particle composite, so that it can be preferably applied to the use of a pressure sensor utilizing localized surface plasmon resonance. In other words, since the thickness of the polyimide resin layer is sufficiently large with respect to the average particle diameter and interparticle distance of the metal fine particles, it is possible to increase the width of the elastic deformation at the time of pressurization. The moving distance can also be increased. Therefore, it is possible to widen a detection margin as a pressure sensor and to improve detection accuracy. Moreover, since the average particle diameter range of the metal fine particles is as narrow as 5 nm to 35 nm, the dispersion of the particle diameter is small, and at the time of pressurization, sharp absorption is obtained by localized surface plasmon resonance, so that highly sensitive detection is possible. . Therefore, it is expected that the use pressure range as a pressure sensor is wide and high detection sensitivity and measurement accuracy are obtained. In addition, the metal fine particle composite obtained by the method of the present embodiment can be thinned to a thickness of 100 nm to 300 nm for the polyimide resin layer, and thus is suitable for applications for sensing subtle changes in the surface layer portion of the metal fine particle composite. Utilizing such properties, for example, by etching the surface layer portion of the metal fine particle composite, and exposing a part of the metal fine particles on the surface layer portion of the composite to the surface from the matrix, the change of the external environment can be controlled. Applications such as being able to be used advantageously as a sensor substrate for sensing can be expected.
 本実施の形態の金属微粒子複合体の製造方法における他の構成及び効果は、第1の実施の形態と同様である。 Other configurations and effects in the manufacturing method of the metal fine particle composite of the present embodiment are the same as those of the first embodiment.
 次に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、本発明の実施例において特にことわりのない限り、各種測定、評価は下記によるものである。 Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In the examples of the present invention, various measurements and evaluations are as follows unless otherwise specified.
[金属微粒子の平均粒子径の測定]
 金属微粒子の平均粒子径の測定は、試料の断面をミクロトーム(ライカ社製、ウルトラカットUTCウルトラミクロトーム)を用いて超薄切片を作製し、透過型電子顕微鏡(TEM;日本電子社製、JEM-2000EX)により観測した。尚、ガラス基板上に作製した試料を上記の方法で観測することは困難であるため、ポリイミドフィルム上に同条件で作製したものを用い観測した。また、金属微粒子の平均粒子径は面積平均径とした。
[Measurement of average particle diameter of metal fine particles]
The average particle diameter of the metal fine particles was measured by preparing a cross section of the sample using a microtome (produced by Leica Co., Ltd., Ultra Cut UTC Ultra Microtome), and transmitting a transmission electron microscope (TEM; JEOL Co., Ltd., JEM- 2000EX). In addition, since it was difficult to observe the sample produced on the glass substrate by said method, it observed using what was produced on the polyimide film on the same conditions. The average particle diameter of the metal fine particles was the area average diameter.
[試料の吸収スペクトル測定]
作製した試料の吸収スペクトルは、紫外・可視・近赤外分光法(日本分光社製、UV-vis U-4000)により観測した。
[Measurement of absorption spectrum of sample]
The absorption spectrum of the prepared sample was observed by ultraviolet / visible / near infrared spectroscopy (manufactured by JASCO Corporation, UV-vis U-4000).
[光透過率の測定]
 光透過率は、紫外・可視分光分析(日本分光社製、UV-vis V-550)を用いて測定した。
[Measurement of light transmittance]
The light transmittance was measured using ultraviolet / visible spectroscopic analysis (manufactured by JASCO Corporation, UV-vis V-550).
[弾性率の測定]
 レオメトリックス社製のRSA IIを用いて、昇温速度10℃/min、温度範囲40℃から450℃、周波数1Hz、歪み0.001の条件で、5×33mmのサイズにカットしたポリイミドフィルムについて動的粘弾性特性を測定し、各温度におけるポリイミドの弾性率を求めた。
[Measurement of elastic modulus]
Using a rheometrics RSA II, a polyimide film cut to a size of 5 × 33 mm under the conditions of a heating rate of 10 ° C./min, a temperature range of 40 ° C. to 450 ° C., a frequency of 1 Hz, and a strain of 0.001 The viscoelastic properties were measured, and the elastic modulus of polyimide at each temperature was determined.
合成例1
 1000mlのセパラブルフラスコ内において、425gのN,N-ジメチルアセトアミド(DMAc)に、31.8gの2,2'-ジメチル-4,4'-ジアミノビフェニル(m-TB)及び4.9gの1,3-ビス(4-アミノフェノキシ)ベンゼン(APB)を室温で30分撹拌した。その後、28.6gのピロメリット酸二無水物(PMDA)及び9.6gの3,4,3',4'-ビフェニルテトラカルボン酸二無水物(BPDA)を加え、窒素雰囲気下、室温で3時間撹拌を続けて重合反応を行い、粘調なポリイミド前駆体樹脂溶液Sを得た。得られたポリイミド前駆体樹脂溶液Sの粘度は、E型粘度計(ブルックフィールド社製、DV-II +Pro CP型)により測定した結果、28,000センチポイズ(25℃)であった。
Synthesis example 1
In a 1000 ml separable flask, 425 g of N, N-dimethylacetamide (DMAc), 31.8 g of 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB) and 4.9 g of 1 , 3-Bis (4-aminophenoxy) benzene (APB) was stirred at room temperature for 30 minutes. Thereafter, 28.6 g of pyromellitic dianhydride (PMDA) and 9.6 g of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA) were added, and 3% at room temperature under a nitrogen atmosphere. the mixture was subjected to polymerization reaction continued time stirring to obtain a viscous polyimide precursor resin solution S 1. The resulting viscosity of the polyimide precursor resin solution S 1 is, E-type viscometer (manufactured by Brookfield, DV-II + Pro CP type) results as measured by, was 28,000 centipoise (25 ° C.).
 得られたポリイミド前駆体樹脂溶液Sを、ステンレス基材の上に塗布し、130℃で3分間乾燥し、15分かけて360℃まで昇温させてイミド化を完了させ、ステンレス基材に積層されたポリイミドフィルムを得た。このポリイミドフィルムをステンレス基材から剥離し、25μmの厚みのポリイミドフィルムPを得た。このフィルムの波長400nm、500nm及び600nmでの光透過率は、それぞれ0%、70.5%、及び82%であった。また、このフィルムについて、温度200℃、300℃、及び400℃における弾性率を測定した結果、それぞれ3GPa、2GPa、及び0.6GPaであった。 The resulting polyimide precursor resin solution S 1 was applied on a stainless steel substrate, and dried for 3 minutes at 130 ° C., to complete the over 15 minutes allowed to warm to 360 ° C. imidization, the stainless steel substrate A laminated polyimide film was obtained. The polyimide film was peeled from the stainless steel substrate, to obtain a polyimide film P 1 of 25μm thickness. The light transmittances of the film at wavelengths of 400 nm, 500 nm, and 600 nm were 0%, 70.5%, and 82%, respectively. Moreover, as a result of measuring the elasticity modulus in temperature 200 degreeC, 300 degreeC, and 400 degreeC about this film, they were 3 GPa, 2 GPa, and 0.6 GPa, respectively.
合成例2
 500mlのセパラブルフラスコ内において、撹拌しながら、15.24gの2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル(TFMB)47.6mmolを170gのDMAcに溶解させた。次に、その溶液に窒素気流下で14.76gの4,4’-オキシジフタル酸無水物(ODPA)47.6mmolを加え、室温で4時間攪拌を続けて重合反応を行い、無色の粘調なポリイミド前駆体樹脂溶液Sを得た。得られたポリイミド前駆体樹脂溶液Sの粘度は、E型粘度計(ブルックフィールド社製、DV-II +Pro CP型)により測定した結果、3251センチポイズ (25℃)であった。重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC;東ソー株式会社製、HLC-8220GPC)により測定し、Mw=163,900であった。
Synthesis example 2
In a 500 ml separable flask, 15.24 g of 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (TFMB) 47.6 mmol was dissolved in 170 g of DMAc with stirring. Next, 14.76 g of 4,4′-oxydiphthalic anhydride (ODPA) 47.6 mmol was added to the solution under a nitrogen stream, and the polymerization reaction was continued at room temperature for 4 hours to obtain a colorless viscous liquid. to obtain a polyimide precursor resin solution S 2. The resulting viscosity of the polyimide precursor resin solution S 2 is, E-type viscometer (manufactured by Brookfield, DV-II + Pro CP type) results as measured by, was 3251 centipoise (25 ° C.). The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC; manufactured by Tosoh Corporation, HLC-8220 GPC), and was Mw = 163,900.
 得られたポリイミド前駆体樹脂溶液Sを、ステンレス基材の上に塗布し、130℃で3分間乾燥し、15分かけて360℃まで昇温させてイミド化を完了させ、ステンレス基材に積層されたポリイミドフィルムを得た。このポリイミドフィルムをステンレス基材から剥離し、10μmの厚みのポリイミドフィルムPを得た。このフィルムの波長400nmでの光透過率は95%、可視光平均透過率は96%であった。また、このフィルムについて、温度200℃、300℃、及び400℃における弾性率を測定した結果、それぞれ0.2GPa、0.01GPa、及び0.001GPaであった。 The resulting polyimide precursor resin solution S 2, coated on the stainless steel substrate, and dried for 3 minutes at 130 ° C., to complete the over 15 minutes allowed to warm to 360 ° C. imidization, the stainless steel substrate A laminated polyimide film was obtained. The polyimide film was peeled from the stainless steel substrate, to obtain a polyimide film P 2 of 10μm in thickness. The film had a light transmittance of 95% and a visible light average transmittance of 96% at a wavelength of 400 nm. Moreover, as a result of measuring the elasticity modulus in temperature 200 degreeC, 300 degreeC, and 400 degreeC about this film, they were 0.2 GPa, 0.01 GPa, and 0.001 GPa, respectively.
合成例3
 1000mlのセパラブルフラスコ内において、425gのN,N-ジメチルアセトアミド(DMAc)に、36.4gの1,3-ビス(4-アミノフェノキシ)ベンゼン(APB)を室温で30分撹拌した。その後、11.1gのピロメリット酸二無水物(PMDA)及び27.4gの3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)を加え、窒素雰囲気下、室温で3時間撹拌を続けて重合反応を行い、粘調なポリイミド前駆体樹脂溶液Sを得た。得られたポリイミド前駆体樹脂溶液Sの粘度は、E型粘度計(ブルックフィールド社製、DV-II +Pro CP型)により測定した結果、2,500センチポイズ(25℃)であった。
Synthesis example 3
In a 1000 ml separable flask, 6.4 g of N, N-dimethylacetamide (DMAc) and 36.4 g of 1,3-bis (4-aminophenoxy) benzene (APB) were stirred at room temperature for 30 minutes. Thereafter, 11.1 g of pyromellitic dianhydride (PMDA) and 27.4 g of 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA) were added, and at room temperature under a nitrogen atmosphere. stirred continuously for 3 hours and polymerization was carried out to obtain a viscous polyimide precursor resin solution S 3. The resulting viscosity of the polyimide precursor resin solution S 3 is, E-type viscometer (manufactured by Brookfield, DV-II + Pro CP type) results as measured by, was 2,500 centipoise (25 ° C.).
 得られたポリイミド前駆体樹脂溶液Sを、ステンレス基材の上に塗布し、130℃で3分間乾燥し、15分かけて360℃まで昇温させてイミド化を完了させ、ステンレス基材に積層されたポリイミドフィルムを得た。このポリイミドフィルムをステンレス基材から剥離し、25μmの厚みのポリイミドフィルムPを得た。このフィルムの波長400nm、500nm及び600nmでの光透過率は、それぞれ0%、60%、及び72%であった。また、このフィルムについて、温度200℃、300℃、及び400℃における弾性率を測定した結果、それぞれ1GPa、0.08GPa、及び0.008GPaであった。 The polyimide precursor resin solution S 3 obtained was coated on a stainless steel substrate, and dried for 3 minutes at 130 ° C., to complete the over 15 minutes allowed to warm to 360 ° C. imidization, the stainless steel substrate A laminated polyimide film was obtained. The polyimide film was peeled from the stainless steel substrate, to obtain a polyimide film P 3 of 25μm thickness. The light transmittances of the film at wavelengths of 400 nm, 500 nm, and 600 nm were 0%, 60%, and 72%, respectively. Moreover, as a result of measuring the elasticity modulus in temperature 200 degreeC, 300 degreeC, and 400 degreeC about this film, they were 1 GPa, 0.08 GPa, and 0.008 GPa, respectively.
作製例1
 無アルカリガラス(旭硝子株式会社製、AN-100)の試験片10cm×10cm(厚み0.7mm)を50℃の5N水酸化ナトリウム水溶液により5分間処理した。次に、試験片のガラス基板を、純水で洗浄し、乾燥した後、1重量%の3-アミノプロピルトリメトキシシラン(以下、「γ-APS」と略す)水溶液に浸漬させた。このガラス基板を、γ-APS水溶液から取り出した後乾燥し、110℃で5分間加熱して、ガラス基板G1を作製した。
Production Example 1
A test piece of alkali-free glass (Asahi Glass Co., Ltd., AN-100) 10 cm × 10 cm (thickness 0.7 mm) was treated with a 5N sodium hydroxide aqueous solution at 50 ° C. for 5 minutes. Next, the glass substrate of the test piece was washed with pure water, dried, and then immersed in a 1 wt% aqueous solution of 3-aminopropyltrimethoxysilane (hereinafter abbreviated as “γ-APS”). The glass substrate was taken out from the γ-APS aqueous solution, dried, and heated at 110 ° C. for 5 minutes to produce a glass substrate G1.
[実施例1-1]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.191gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1380nmの金錯体含有ポリイミド前駆体樹脂膜1-1を形成した。金錯体含有ポリイミド前駆体樹脂膜1-1は、金の単位面積当たりの含有量が8.19μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-1を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-1(厚さ828nm)を作製した。ナノコンポジットフィルム1-1中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;10.6nm、最大粒子径;18.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム1-1における金の体積分率;0.5%、粒子間距離の平均値;39.4nm。
 また、ナノコンポジットフィルム1-1の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが560nm、半値幅が72nmの吸収ピークが観測された。
[Example 1-1]
0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-1 having a thickness of about 1380 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-1 had a content per unit area of 8.19 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-1 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-1 (thickness: 828 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-1 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 10.6 nm, maximum particle size: 18.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-1; 0.5 %, Average value of interparticle distance; 39.4 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-1, an absorption peak having a peak top of 560 nm and a half width of 72 nm was observed.
[実施例1-2]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.191gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1473nmの金錯体含有ポリイミド前駆体樹脂膜1-2を形成した。金錯体含有ポリイミド前駆体樹脂膜1-2は、金の単位面積当たりの含有量が8.74μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-2を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-2(厚さ884nm)を作製した。ナノコンポジットフィルム1-2中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;12.2nm、最大粒子径;29.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム1-2における金の体積分率;0.5%、粒子間距離の平均値;45.3nm。
 また、ナノコンポジットフィルム1-2の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが564nm、半値幅が92nmの吸収ピークが観測された。
[Example 1-2]
0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-2 having a thickness of about 1473 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-2 had a gold content per unit area of 8.74 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-2 was heat-treated at 300 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-2 (thickness 884 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-2 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 12.2 nm, maximum particle size: 29.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-2: 0.5 %, Average value of interparticle distance; 45.3 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-2, an absorption peak having a peak top of 564 nm and a half-value width of 92 nm was observed.
[実施例1-3]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.191gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1440nmの金錯体含有ポリイミド前駆体樹脂膜1-3を形成した。金錯体含有ポリイミド前駆体樹脂膜1-3は、金の単位面積当たりの含有量が8.55μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-3を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-3(厚さ865nm)を作製した。ナノコンポジットフィルム1-3中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;15.0nm、最大粒子径;29.0nm、最小粒子径;6.0nm、ナノコンポジットフィルム1-3における金の体積分率;0.5%、粒子間距離の平均値;55.7nm。
 また、ナノコンポジットフィルム1-3の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが570nm、半値幅が76nmの吸収ピークが観測された。
[Example 1-3]
0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-3 having a thickness of about 1440 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-3 had a gold content per unit area of 8.55 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-3 was heat-treated at 400 ° C. for 10 minutes in the air to produce a metal gold fine particle-dispersed nanocomposite film 1-3 (thickness: 865 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-3 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 15.0 nm, maximum particle size: 29.0 nm, minimum particle size: 6.0 nm, gold volume fraction in nanocomposite film 1-3: 0.5 %, Average value of interparticle distance; 55.7 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-3, an absorption peak having a peak top of 570 nm and a half-value width of 76 nm was observed.
[実施例1-4]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.191gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1370nmの金錯体含有ポリイミド前駆体樹脂膜1-4を形成した。金錯体含有ポリイミド前駆体樹脂膜1-4は、金の単位面積当たりの含有量が7.98μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-4を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-4(厚さ827nm)を作製した。ナノコンポジットフィルム1-4中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;13.3nm、最大粒子径;22.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム1-4における金の体積分率;0.5%、粒子間距離の平均値;49.4nm。
 また、ナノコンポジットフィルム1-4の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが560nm、半値幅が80nmの吸収ピークが観測された。
[Example 1-4]
0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-4 having a thickness of about 1370 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-4 had a content per unit area of gold of 7.98 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-4 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-4 (thickness 827 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-4 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 13.3 nm, maximum particle size; 22.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-4; 0.5 %, Average value of interparticle distance; 49.4 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-4, an absorption peak having a peak top of 560 nm and a half-value width of 80 nm was observed.
[実施例1-5]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.191gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1260nmの金錯体含有ポリイミド前駆体樹脂膜1-5を形成した。金錯体含有ポリイミド前駆体樹脂膜1-5は、金の単位面積当たりの含有量が7.29μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-5を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-5(厚さ755nm)を作製した。ナノコンポジットフィルム1-5中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;17.4nm、最大粒子径;26.0nm、最小粒子径;7.0nm、ナノコンポジットフィルム1-5における金の体積分率;0.5%、粒子間距離の平均値;64.6nm。
 また、ナノコンポジットフィルム1-5の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが574nm、半値幅が69nmの吸収ピークが観測された。
[Example 1-5]
0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-5 having a thickness of about 1260 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-5 had a gold content per unit area of 7.29 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-5 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-5 (thickness: 755 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-5 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 17.4 nm, maximum particle size; 26.0 nm, minimum particle size: 7.0 nm, gold volume fraction in nanocomposite film 1-5; 0.5 %, Average value of interparticle distance; 64.6 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-5, an absorption peak having a peak top of 574 nm and a half-value width of 69 nm was observed.
[実施例1-6]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.191gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1220nmの金錯体含有ポリイミド前駆体樹脂膜1-6を形成した。金錯体含有ポリイミド前駆体樹脂膜1-6は、金の単位面積当たりの含有量が7.06μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-6を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-6(厚さ730nm)を作製した。ナノコンポジットフィルム1-6中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;19.8nm、最大粒子径;35.0nm、最小粒子径;10.0nm、ナノコンポジットフィルム1-6における金の体積分率;0.5%、粒子間距離の平均値;73.5nm。
 また、ナノコンポジットフィルム1-6の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが576nm、半値幅が72nmの吸収ピークが観測された。
[Example 1-6]
0.191 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-6 having a thickness of about 1220 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-6 had a gold content per unit area of 7.06 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-6 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-6 (thickness 730 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-6 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 19.8 nm, maximum particle size: 35.0 nm, minimum particle size: 10.0 nm, gold volume fraction in nanocomposite film 1-6; 0.5 %, Average value of interparticle distance; 73.5 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 1-6, an absorption peak having a peak top of 576 nm and a half-value width of 72 nm was observed.
[実施例1-7]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.127gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約750nmの金錯体含有ポリイミド前駆体樹脂膜1-7を形成した。金錯体含有ポリイミド前駆体樹脂膜1-7は、金の単位面積当たりの含有量が4.45μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-7を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-7(厚さ450nm)を作製した。ナノコンポジットフィルム1-7中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;8.5nm、最大粒子径;11.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム1-7における金の体積分率;0.5%、粒子間距離の平均値;31.6nm。
 また、ナノコンポジットフィルム1-7の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが546nm、半値幅が83nmの吸収ピークが観測された。
[Example 1-7]
0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-7 having a thickness of about 750 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-7 had a gold content per unit area of 4.45 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-7 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-7 (thickness 450 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-7 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 8.5 nm, maximum particle size: 11.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-7; 0.5 %, Average value of interparticle distance; 31.6 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-7, an absorption peak having a peak top of 546 nm and a half-value width of 83 nm was observed.
[実施例1-8]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.127gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約770nmの金錯体含有ポリイミド前駆体樹脂膜1-8を形成した。金錯体含有ポリイミド前駆体樹脂膜1-8は、金の単位面積当たりの含有量が4.55μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-8を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-8(厚さ460nm)を作製した。ナノコンポジットフィルム1-8中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;9.6nm、最大粒子径;17.0nm、最小粒子径;5.0nm、ナノコンポジットフィルム1-8における金の体積分率;0.5%、粒子間距離の平均値;35.6nm。
 また、ナノコンポジットフィルム1-8の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが560nm、半値幅が77nmの吸収ピークが観測された。
[Example 1-8]
0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-8 having a thickness of about 770 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-8 had a gold content per unit area of 4.55 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-8 was heat-treated at 300 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-8 (thickness: 460 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-8 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 9.6 nm, maximum particle size: 17.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 1-8; 0.5 %, Average value of interparticle distance; 35.6 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-8, an absorption peak having a peak top of 560 nm and a half-value width of 77 nm was observed.
[実施例1-9]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.127gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約760nmの金錯体含有ポリイミド前駆体樹脂膜1-9を形成した。金錯体含有ポリイミド前駆体樹脂膜1-9は、金の単位面積当たりの含有量が4.53μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-9を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-9(厚さ458nm)を作製した。ナノコンポジットフィルム1-9中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;9.8nm、最大粒子径;19.0nm、最小粒子径;5.0nm、ナノコンポジットフィルム1-9における金の体積分率;0.5%、粒子間距離の平均値;36.4nm。
 また、ナノコンポジットフィルム1-9の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが560nm、半値幅が69nmの吸収ピークが観測された。
[Example 1-9]
0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-9 having a thickness of about 760 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-9 had a gold content per unit area of 4.53 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-9 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-9 (thickness: 458 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-9 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 9.8 nm, maximum particle size: 19.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 1-9; 0.5 %, Average value of interparticle distance; 36.4 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-9, an absorption peak having a peak top of 560 nm and a half width of 69 nm was observed.
[実施例1-10]
 合成例2で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.127gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約732nmの金錯体含有ポリイミド前駆体樹脂膜1-10を形成した。金錯体含有ポリイミド前駆体樹脂膜1-10は、金の単位面積当たりの含有量が4.24μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-10を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-10(厚さ439nm)を作製した。ナノコンポジットフィルム1-10中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;9.1nm、最大粒子径;14.0nm、最小粒子径;7.0nm、ナノコンポジットフィルム1-10における金の体積分率;0.5%、粒子間距離の平均値;33.8nm。
 また、ナノコンポジットフィルム1-10の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが542nm、半値幅が71nmの吸収ピークが観測された。
[Example 1-10]
0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-10 having a thickness of about 732 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-10 had a gold content per unit area of 4.24 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-10 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-10 (thickness: 439 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-10 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 9.1 nm, maximum particle size; 14.0 nm, minimum particle size: 7.0 nm, gold volume fraction in nanocomposite film 1-10; 0.5 %, Average value of interparticle distance; 33.8 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-10, an absorption peak having a peak top of 542 nm and a half width of 71 nm was observed.
[実施例1-11]
 合成例2で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.127gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約730nmの金錯体含有ポリイミド前駆体樹脂膜1-11を形成した。金錯体含有ポリイミド前駆体樹脂膜1-11は、金の単位面積当たりの含有量が4.23μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-11を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-11(厚さ438nm)を作製した。ナノコンポジットフィルム1-11中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;12.3nm、最大粒子径;22.0nm、最小粒子径;6.0nm、ナノコンポジットフィルム1-11における金の体積分率;0.5%、粒子間距離の平均値;45.7nm。
 また、ナノコンポジットフィルム1-11の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが550nm、半値幅が65nmの吸収ピークが観測された。
[Example 1-11]
0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-11 having a thickness of about 730 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-11 had a gold content per unit area of 4.23 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-11 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-11 (thickness: 438 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-11 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 12.3 nm, maximum particle size: 22.0 nm, minimum particle size: 6.0 nm, gold volume fraction in nanocomposite film 1-11; 0.5 %, Average value of interparticle distance; 45.7 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-11, an absorption peak having a peak top of 550 nm and a half width of 65 nm was observed.
[実施例1-12]
 合成例2で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.127gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約592nmの金錯体含有ポリイミド前駆体樹脂膜1-12を形成した。金錯体含有ポリイミド前駆体樹脂膜1-12は、金の単位面積当たりの含有量が3.43μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-12を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-12(厚さ355nm)を作製した。ナノコンポジットフィルム1-12中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;12.4nm、最大粒子径;22.0nm、最小粒子径;8.0nm、ナノコンポジットフィルム1-12における金の体積分率;0.5%、粒子間距離の平均値;46.0nm。
 また、ナノコンポジットフィルム1-12の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが552nm、半値幅が69nmの吸収ピークが観測された。
[Example 1-12]
0.127 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-12 having a film thickness of about 592 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-12 had a gold content per unit area of 3.43 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-12 was heat-treated at 400 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-12 (thickness: 355 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-12 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 12.4 nm, maximum particle size: 22.0 nm, minimum particle size: 8.0 nm, gold volume fraction in nanocomposite film 1-12; 0.5 %, Average value of interparticle distance; 46.0 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-12, an absorption peak having a peak top of 552 nm and a half width of 69 nm was observed.
[実施例1-13]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.038gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1430nmの金錯体含有ポリイミド前駆体樹脂膜1-13を形成した。金錯体含有ポリイミド前駆体樹脂膜1-13は、金の単位面積当たりの含有量が1.69μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-13を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-13(厚さ857nm)を作製した。ナノコンポジットフィルム1-13中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;4.9nm、最大粒子径;8.0nm、最小粒子径;3.0nm、ナノコンポジットフィルム1-13における金の体積分率;0.1%、粒子間距離の平均値;34.6nm。
[Example 1-13]
0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-13 having a thickness of about 1430 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-13 had a gold content per unit area of 1.69 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-13 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-13 (thickness: 857 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-13 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 4.9 nm, maximum particle size: 8.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-13: 0.1%, interparticle distance Mean value; 34.6 nm.
[実施例1-14]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.038gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1455nmの金錯体含有ポリイミド前駆体樹脂膜1-14を形成した。金錯体含有ポリイミド前駆体樹脂膜1-14は、金の単位面積当たりの含有量が1.73μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-14を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-14(厚さ873nm)を作製した。ナノコンポジットフィルム1-14中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;6.1nm、最大粒子径;9.0nm、最小粒子径;3.0nm、ナノコンポジットフィルム1-14における金の体積分率;0.1%、粒子間距離の平均値;43.1nm。
 また、ナノコンポジットフィルム1-14の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが558nm、半値幅が60nmの吸収ピークが観測された。
[Example 1-14]
0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-14 having a thickness of about 1455 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-14 had a gold content per unit area of 1.73 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-14 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-14 (thickness 873 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-14 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 6.1 nm, maximum particle size: 9.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-14: 0.1%, interparticle distance Mean value: 43.1 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-14, an absorption peak having a peak top of 558 nm and a half width of 60 nm was observed.
[実施例1-15]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.038gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1430nmの金錯体含有ポリイミド前駆体樹脂膜1-15を形成した。金錯体含有ポリイミド前駆体樹脂膜1-15は、金の単位面積当たりの含有量が1.69μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-15を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-15(厚さ857nm)を作製した。ナノコンポジットフィルム1-15中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;6.9nm、最大粒子径;9.0nm、最小粒子径;5.0nm、ナノコンポジットフィルム1-15における金の体積分率;0.1%、粒子間距離の平均値;48.7nm。
 また、ナノコンポジットフィルム1-15の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが552nm、半値幅が68nmの吸収ピークが観測された。
[Example 1-15]
0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-15 having a thickness of about 1430 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-15 had a content of 1.69 μg / cm 2 per unit area of gold. This gold complex-containing polyimide precursor resin film 1-15 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-15 (thickness 857 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-15 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 6.9 nm, maximum particle size: 9.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 1-15; 0.1%, interparticle distance Average value of 48.7 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-15, an absorption peak having a peak top of 552 nm and a half width of 68 nm was observed.
[実施例1-16]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.025gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約780nmの金錯体含有ポリイミド前駆体樹脂膜1-16を形成した。金錯体含有ポリイミド前駆体樹脂膜1-16は、金の単位面積当たりの含有量が0.93μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-16を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-16(厚さ470nm)を作製した。ナノコンポジットフィルム1-16中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;4.8nm、最大粒子径;6.0nm、最小粒子径;3.0nm、ナノコンポジットフィルム1-16における金の体積分率;0.1%、粒子間距離の平均値;33.9nm。
[Example 1-16]
To 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, 0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-16 having a thickness of about 780 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-16 had a gold content per unit area of 0.93 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-16 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-16 (thickness: 470 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-16 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 4.8 nm, maximum particle size: 6.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-16: 0.1%, interparticle distance Mean value: 33.9 nm.
[実施例1-17]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.025gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約705nmの金錯体含有ポリイミド前駆体樹脂膜1-17を形成した。金錯体含有ポリイミド前駆体樹脂膜1-17は、金の単位面積当たりの含有量が0.84μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-17を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-17(厚さ423nm)を作製した。ナノコンポジットフィルム1-17中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;5.5nm、最大粒子径;7.0nm、最小粒子径;3.0nm、ナノコンポジットフィルム1-17における金の体積分率;0.1%、粒子間距離の平均値;38.8nm。
 また、ナノコンポジットフィルム1-17の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが544nm、半値幅が57nmの吸収ピークが観測された。
[Example 1-17]
To 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, 0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-17 having a thickness of about 705 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-17 had a gold content per unit area of 0.84 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-17 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-17 (thickness 423 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-17 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 5.5 nm, maximum particle size: 7.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-17: 0.1%, interparticle distance Average value of 38.8 nm.
In addition, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 1-17, an absorption peak having a peak top of 544 nm and a half width of 57 nm was observed.
[実施例1-18]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.025gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約690nmの金錯体含有ポリイミド前駆体樹脂膜1-18を形成した。金錯体含有ポリイミド前駆体樹脂膜1-18は、金の単位面積当たりの含有量が0.82μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-18を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-18(厚さ414nm)を作製した。ナノコンポジットフィルム1-18中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;6.6nm、最大粒子径;8.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム1-18における金の体積分率;0.1%、粒子間距離の平均値;46.6nm。
 また、ナノコンポジットフィルム1-18の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが546nm、半値幅が63nmの吸収ピークが観測された。
[Example 1-18]
To 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, 0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-18 having a thickness of about 690 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-18 had a gold content per unit area of 0.82 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-18 was heat-treated at 400 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-18 (thickness 414 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-18 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 6.6 nm, maximum particle size: 8.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-18; 0.1%, interparticle distance Average value of 46.6 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 1-18, an absorption peak having a peak top of 546 nm and a half-value width of 63 nm was observed.
[実施例1-19]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.038gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1510nmの金錯体含有ポリイミド前駆体樹脂膜1-19を形成した。金錯体含有ポリイミド前駆体樹脂膜1-19は、金の単位面積当たりの含有量が1.75μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-19を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-19(厚さ905nm)を作製した。ナノコンポジットフィルム1-19中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;5.6nm、最大粒子径;7.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム1-19における金の体積分率;0.1%、粒子間距離の平均値;39.5nm。
 また、ナノコンポジットフィルム1-19の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが544nm、半値幅が56nmの吸収ピークが観測された。
[Example 1-19]
0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-19 having a thickness of about 1510 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-19 had a gold content per unit area of 1.75 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-19 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-19 (thickness 905 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-19 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 5.6 nm, maximum particle size: 7.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-19: 0.1%, interparticle distance Mean value: 39.5 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 1-19, an absorption peak having a peak top of 544 nm and a half width of 56 nm was observed.
[実施例1-20]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.038gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1180nmの金錯体含有ポリイミド前駆体樹脂膜1-20を形成した。金錯体含有ポリイミド前駆体樹脂膜1-20は、金の単位面積当たりの含有量が1.37μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-20を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-20(厚さ708nm)を作製した。ナノコンポジットフィルム1-20中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;6.2nm、最大粒子径;8.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム1-20における金の体積分率;0.1%、粒子間距離の平均値;43.8nm。
 また、ナノコンポジットフィルム1-20の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが530nm、半値幅が72nmの吸収ピークが観測された。
[Example 1-20]
0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-20 having a thickness of about 1180 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-20 had a gold content per unit area of 1.37 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-20 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-20 (thickness 708 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-20 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 6.2 nm, maximum particle size: 8.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-20; 0.1%, interparticle distance Mean value: 43.8 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-20, an absorption peak having a peak top of 530 nm and a half width of 72 nm was observed.
[実施例1-21]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.038gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1310nmの金錯体含有ポリイミド前駆体樹脂膜1-21を形成した。金錯体含有ポリイミド前駆体樹脂1-21は、金の単位面積当たりの含有量が1.52μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-21を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-21(厚さ788nm)を作製した。ナノコンポジットフィルム1-21中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;7.2nm、最大粒子径;10.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム1-21における金の体積分率;0.1%、粒子間距離の平均値;50.8nm。
 また、ナノコンポジットフィルム1-21の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが538nm、半値幅が72nmの吸収ピークが観測された。
[Example 1-21]
0.038 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-21 having a film thickness of about 1310 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin 1-21 had a gold content per unit area of 1.52 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-21 was heat-treated at 400 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-21 (thickness 788 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-21 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 7.2 nm, maximum particle size: 10.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-21; 0.1%, interparticle distance Average value: 50.8 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-21, an absorption peak having a peak top of 538 nm and a half width of 72 nm was observed.
[実施例1-22]
 合成例2で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.025gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約680nmの金錯体含有ポリイミド前駆体樹脂膜1-22を形成した。金錯体含有ポリイミド前駆体樹脂1-22は、金の単位面積当たりの含有量が0.79μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-22を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-22(厚さ410nm)を作製した。ナノコンポジットフィルム1-22中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;5.2nm、最大粒子径;7.0nm、最小粒子径;3.0nm、ナノコンポジットフィルム1-22における金の体積分率;0.1%、粒子間距離の平均値;36.7nm。
[Example 1-22]
0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-22 having a thickness of about 680 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin 1-22 had a gold content per unit area of 0.79 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-22 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-22 (thickness 410 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-22 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 5.2 nm, maximum particle size: 7.0 nm, minimum particle size: 3.0 nm, gold volume fraction in nanocomposite film 1-22: 0.1%, interparticle distance Average value of 36.7 nm.
[実施例1-23]
 合成例2で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.025gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約680nmの金錯体含有ポリイミド前駆体樹脂膜1-23を形成した。金錯体含有ポリイミド前駆体樹脂1-23は、金の単位面積当たりの含有量が0.78μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-23を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-23(厚さ406nm)を作製した。ナノコンポジットフィルム1-23中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;5.8nm、最大粒子径;8.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム1-23における金の体積分率;0.1%、粒子間距離の平均値;40.9nm。
 また、ナノコンポジットフィルム1-23の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが542nm、半値幅が77nmの吸収ピークが観測された。
[Example 1-23]
0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-23 having a thickness of about 680 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin 1-23 had a gold content per unit area of 0.78 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-23 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-23 (thickness 406 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-23 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 5.8 nm, maximum particle size: 8.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-23: 0.1%, interparticle distance Average value: 40.9 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-23, an absorption peak having a peak top of 542 nm and a half width of 77 nm was observed.
[実施例1-24]
 合成例2で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.025gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約580nmの金錯体含有ポリイミド前駆体樹脂膜1-24を形成した。金錯体含有ポリイミド前駆体樹脂1-24は、金の単位面積当たりの含有量が0.68μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-24を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム1-24(厚さ350nm)を作製した。ナノコンポジットフィルム1-24中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;6.6nm、最大粒子径;9.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム1-24における金の体積分率;0.1%、粒子間距離の平均値;46.6nm。
 また、ナノコンポジットフィルム1-24の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが538nm、半値幅が84nmの吸収ピークが観測された。
[Example 1-24]
0.025 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-24 having a thickness of about 580 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin 1-24 had a gold content per unit area of 0.68 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-24 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-24 (thickness 350 nm) colored red. The metal gold fine particles formed in the nanocomposite film 1-24 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 6.6 nm, maximum particle size: 9.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 1-24: 0.1%, interparticle distance Average value of 46.6 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-24, an absorption peak having a peak top of 538 nm and a half width of 84 nm was observed.
[実施例1-25]
 合成例2で得られたポリイミド前駆体樹脂溶液S6.67gに、13.33gのDMAcに溶解した0.118gの硝酸銀を加え、窒素雰囲気下、室温で15分間攪拌することにより、銀錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた銀錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約667nmの銀錯体含有ポリイミド前駆体樹脂膜1-25を形成した。銀錯体含有ポリイミド前駆体樹脂1-25は、銀の単位面積当たりの含有量が3.78μg/cmであった。この銀錯体含有ポリイミド前駆体樹脂膜1-25を真空下において300℃、10分間加熱処理することによって黄色に呈色した金属銀微粒子分散ナノコンポジットフィルム1-25(厚さ402nm)を作製した。ナノコンポジットフィルム1-25中に形成した金属銀微粒子は、各々が完全に独立し、隣り合う金属銀微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属銀微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属銀微粒子の特徴は、次のとおりであった。
 形状;ほぼ球状、平均粒子径;7.9nm、最大粒子径;10.5nm、最小粒子径;5.2nm、ナノコンポジットフィルム1-25における銀の体積分率;0.9%、粒子間距離の平均値;18.8nm。
 また、ナノコンポジットフィルム1-25の金属銀微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが442nm、半値幅が76nmの吸収ピークが観測された。
[Example 1-25]
A silver complex was obtained by adding 0.118 g of silver nitrate dissolved in 13.33 g of DMAc to 6.67 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and stirring the mixture at room temperature for 15 minutes in a nitrogen atmosphere. A contained polyimide precursor resin solution was prepared. The obtained silver complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 The film was dried at a temperature of 10 ° C. for 10 minutes to form a silver complex-containing polyimide precursor resin film 1-25 having a thickness of about 667 nm on the glass substrate G1. The silver complex-containing polyimide precursor resin 1-25 had a silver content of 3.78 μg / cm 2 per unit area. The silver complex-containing polyimide precursor resin film 1-25 was heat-treated at 300 ° C. for 10 minutes under vacuum to produce yellow-colored metallic silver fine particle dispersed nanocomposite film 1-25 (thickness 402 nm). The metallic silver fine particles formed in the nanocomposite film 1-25 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metallic silver fine particles. The metallic silver fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal silver fine particles formed in the film were as follows.
Shape: almost spherical, average particle size: 7.9 nm, maximum particle size: 10.5 nm, minimum particle size: 5.2 nm, volume fraction of silver in nanocomposite film 1-25; 0.9%, interparticle distance Average value of 18.8 nm.
In addition, in the absorption spectrum of localized surface plasmon resonance by the metal silver fine particles of the nanocomposite film 1-25, an absorption peak having a peak top of 442 nm and a half width of 76 nm was observed.
[比較例1-1]
 合成例1で得られたポリイミド前駆体樹脂溶液S7.50gに、7.50gのDMAcに溶解した0.489gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1275nmの金錯体含有ポリイミド前駆体樹脂膜1-25を形成した。金錯体含有ポリイミド前駆体樹脂膜1-25は、金の単位面積当たりの含有量が20.48μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-25を大気下において300℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム1-25(厚さ765nm)を作製した。ナノコンポジットフィルム1-25中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム1-25の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約11.5nm、最小粒子径;約8.0nm、最大粒子径;約28.0nm。
2)ナノコンポジットフィルム1-25の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約23.0nm、最小粒子径;約8.0nm、最大粒子径;約84.0nm。
 なお、ナノコンポジットフィルム1-25における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム1-25の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが576nmおよび690nm、半値幅が133nmの吸収ピークが観測された。
[Comparative Example 1-1]
0.489 g of chloroauric acid tetrahydrate dissolved in 7.50 g of DMAc was added to 7.50 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-25 having a thickness of about 1275 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-25 had a gold content per unit area of 20.48 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-25 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-25 (thickness: 765 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-25 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-25:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 11.5 nm, minimum particle size: about 8.0 nm, maximum particle size: about 28.0 nm.
2) Region within the thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 1-25:
Shape: polyhedral, average particle size: about 23.0 nm, minimum particle size: about 8.0 nm, maximum particle size: about 84.0 nm.
Note that the volume fraction of gold in the nanocomposite film 1-25 was 1.35%.
In addition, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-25, absorption peaks having peak tops of 576 nm and 690 nm and a half-value width of 133 nm were observed.
[比較例1-2]
 合成例1で得られたポリイミド前駆体樹脂溶液S7.50gに、7.50gのDMAcに溶解した0.489gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1260nmの金錯体含有ポリイミド前駆体樹脂膜1-26を形成した。金錯体含有ポリイミド前駆体樹脂膜1-26は、金の単位面積当たりの含有量が20.29μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-26を大気下において400℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム1-26(厚さ758nm)を作製した。ナノコンポジットフィルム1-26中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム1-26の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約12.6nm、最小粒子径;約8.0nm、最大粒子径;約28.0nm。
2)ナノコンポジットフィルム1-26の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約25.5nm、最小粒子径;約8.0nm、最大粒子径;約85.0nm。
 なお、ナノコンポジットフィルム1-26における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム1-26の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが580nmおよび682nm、半値幅が147nmの吸収ピークが観測された。
[Comparative Example 1-2]
0.489 g of chloroauric acid tetrahydrate dissolved in 7.50 g of DMAc was added to 7.50 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-26 having a thickness of about 1260 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-26 had a gold content per unit area of 20.29 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-26 was heat-treated at 400 ° C. for 10 minutes in the air to produce a metal gold fine particle dispersed nanocomposite film 1-26 (thickness: 758 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-26 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-26:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 12.6 nm, minimum particle size: about 8.0 nm, maximum particle size: about 28.0 nm.
2) Region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 1-26:
Shape: polyhedron, average particle size: about 25.5 nm, minimum particle size: about 8.0 nm, maximum particle size: about 85.0 nm.
The gold volume fraction in the nanocomposite film 1-26 was 1.35%.
In addition, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-26, absorption peaks having peak tops of 580 nm and 682 nm and a half-value width of 147 nm were observed.
[比較例1-3]
 合成例2で得られたポリイミド前駆体樹脂溶液S7.50gに、7.50gのDMAcに溶解した0.489gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1137nmの金錯体含有ポリイミド前駆体樹脂膜1-27を形成した。金錯体含有ポリイミド前駆体樹脂膜1-27は、金の単位面積当たりの含有量が17.83μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-27を大気下において200℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム1-27(厚さ682nm)を作製した。ナノコンポジットフィルム1-27中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム1-27の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約17.0nm、最小粒子径;約12.0nm、最大粒子径;約27.0nm。
2)ナノコンポジットフィルム1-27の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約66.8nm、最小粒子径;約49.0nm、最大粒子径;約83.0nm。
 なお、ナノコンポジットフィルム1-27における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム1-27の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが572nmおよび688nm、半値幅が189nmの吸収ピークが観測された。
[Comparative Example 1-3]
0.489 g of chloroauric acid tetrahydrate dissolved in 7.50 g of DMAc was added to 7.50 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-27 having a thickness of about 1137 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-27 had a gold content per unit area of 17.83 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-27 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-27 (thickness 682 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-27 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region in the thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-27:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 17.0 nm, minimum particle size: about 12.0 nm, maximum particle size: about 27.0 nm.
2) Region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 1-27:
Shape: polyhedral, average particle size: about 66.8 nm, minimum particle size: about 49.0 nm, maximum particle size: about 83.0 nm.
The gold volume fraction in the nanocomposite film 1-27 was 1.35%.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-27, an absorption peak having peak tops of 572 nm and 688 nm and a half width of 189 nm was observed.
[比較例1-4]
 合成例2で得られたポリイミド前駆体樹脂溶液S7.50gに、7.50gのDMAcに溶解した0.489gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1150nmの金錯体含有ポリイミド前駆体樹脂膜1-28を形成した。金錯体含有ポリイミド前駆体樹脂膜1-28は、金の単位面積当たりの含有量が18.04μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-28を大気下において300℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム1-28(厚さ690nm)を作製した。ナノコンポジットフィルム1-28中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム1-28の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約20.2nm、最小粒子径;約13.0nm、最大粒子径;約29.0nm。
2)ナノコンポジットフィルム1-28の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約65.1nm、最小粒子径;約50.0nm、最大粒子径;約87.0nm。
 なお、ナノコンポジットフィルム1-28における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム1-28の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが620nmおよび698nm、半値幅が216nmの吸収ピークが観測された。
[Comparative Example 1-4]
0.489 g of chloroauric acid tetrahydrate dissolved in 7.50 g of DMAc was added to 7.50 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-28 having a thickness of about 1150 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-28 had a gold content per unit area of 18.04 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-28 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-28 (thickness: 690 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-28 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-28:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 20.2 nm, minimum particle size: about 13.0 nm, maximum particle size: about 29.0 nm.
2) Region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 1-28:
Shape: polyhedral, average particle size: about 65.1 nm, minimum particle size: about 50.0 nm, maximum particle size: about 87.0 nm.
Note that the volume fraction of gold in the nanocomposite film 1-28 was 1.35%.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-28, an absorption peak having peak tops of 620 nm and 698 nm and a half-value width of 216 nm was observed.
[比較例1-5]
 合成例2で得られたポリイミド前駆体樹脂溶液S7.50gに、7.50gのDMAcに溶解した0.489gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1117nmの金錯体含有ポリイミド前駆体樹脂膜1-29を形成した。金錯体含有ポリイミド前駆体樹脂膜1-29は、金の単位面積当たりの含有量が17.52μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-29を大気下において400℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム1-29(厚さ670nm)を作製した。ナノコンポジットフィルム1-29中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム1-29の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約23.0nm、最小粒子径;約15.0nm、最大粒子径;約30.0nm。
2)ナノコンポジットフィルム1-29の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約70.0nm、最小粒子径;約52.0nm、最大粒子径;約90.0nm。
 なお、ナノコンポジットフィルム1-29における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム1-29の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが630nmおよび698nm、半値幅が200nmの吸収ピークが観測された。
[Comparative Example 1-5]
0.489 g of chloroauric acid tetrahydrate dissolved in 7.50 g of DMAc was added to 7.50 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-29 having a thickness of about 1117 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-29 had a gold content per unit area of 17.52 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-29 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-29 (thickness: 670 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-29 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-29:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 23.0 nm, minimum particle size: about 15.0 nm, maximum particle size: about 30.0 nm.
2) A region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 1-29:
Shape: polyhedral, average particle size: about 70.0 nm, minimum particle size: about 52.0 nm, maximum particle size: about 90.0 nm.
The gold volume fraction in the nanocomposite film 1-29 was 1.35%.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-29, an absorption peak having peak tops of 630 nm and 698 nm and a half width of 200 nm was observed.
[比較例1-6]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.348gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約750nmの金錯体含有ポリイミド前駆体樹脂膜1-30を形成した。金錯体含有ポリイミド前駆体樹脂膜1-30は、金の単位面積当たりの含有量が12.05μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-30を大気下において300℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム1-30(厚さ450nm)を作製した。ナノコンポジットフィルム1-30中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム1-30の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約7.1nm、最小粒子径;約4.0nm、最大粒子径;約13.0nm。
2)ナノコンポジットフィルム1-30の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約17.6nm、最小粒子径;約4.0nm、最大粒子径;約36.0nm。
 なお、ナノコンポジットフィルム1-30における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム1-30の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが592nmおよび650nm、半値幅が120nmの吸収ピークが観測された。
[Comparative Example 1-6]
0.348 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-30 having a thickness of about 750 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-30 had a gold content per unit area of 12.05 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-30 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-30 (thickness 450 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-30 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-30:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 7.1 nm, minimum particle size: about 4.0 nm, maximum particle size: about 13.0 nm.
2) Region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 1-30:
Shape: polyhedral, average particle size: about 17.6 nm, minimum particle size: about 4.0 nm, maximum particle size: about 36.0 nm.
The gold volume fraction in the nanocomposite film 1-30 was 1.35%.
In addition, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-30, absorption peaks having peak tops of 592 nm and 650 nm and a half width of 120 nm were observed.
[比較例1-7]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.348gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約640nmの金錯体含有ポリイミド前駆体樹脂膜1-31を形成した。金錯体含有ポリイミド前駆体樹脂膜1-31は、金の単位面積当たりの含有量が10.28μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-31を大気下において400℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム1-31(厚さ384nm)を作製した。ナノコンポジットフィルム1-31中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム1-31の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約10.0nm、最小粒子径;約5.0nm、最大粒子径;約16.0nm。
2)ナノコンポジットフィルム1-31の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約20.8nm、最小粒子径;約5.0nm、最大粒子径;約48.0nm。
 なお、ナノコンポジットフィルム1-31における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム1-31の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが590nmおよび650nm、半値幅が102nmの吸収ピークが観測された。
[Comparative Example 1-7]
0.348 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-31 having a film thickness of about 640 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-31 had a gold content per unit area of 10.28 μg / cm 2 . This gold complex-containing polyimide precursor resin film 1-31 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a purple-colored metal gold fine particle-dispersed nanocomposite film 1-31 (thickness: 384 nm). It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-31 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-31:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 10.0 nm, minimum particle size: about 5.0 nm, maximum particle size: about 16.0 nm.
2) Area within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 1-31:
Shape: polyhedral, average particle size: about 20.8 nm, minimum particle size: about 5.0 nm, maximum particle size: about 48.0 nm.
The gold volume fraction in the nanocomposite film 1-31 was 1.35%.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-31, absorption peaks having peak tops of 590 nm and 650 nm and a half-value width of 102 nm were observed.
[比較例1-8]
 合成例2で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.348gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約798nmの金錯体含有ポリイミド前駆体樹脂膜1-32を形成した。金錯体含有ポリイミド前駆体樹脂膜1-32は、金の単位面積当たりの含有量が12.52μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-32を大気下において200℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム1-32(厚さ479nm)を作製した。ナノコンポジットフィルム1-32に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム1-32の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約9.0nm、最小粒子径;約7.0nm、最大粒子径;約12.0nm。
2)ナノコンポジットフィルム1-32の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約26.0nm、最小粒子径;約12.0nm、最大粒子径;約39.0nm。
 なお、ナノコンポジットフィルム1-32における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム1-32の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが574nmおよび642nm、半値幅が102nmの吸収ピークが観測された。
[Comparative Example 1-8]
0.348 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-32 having a film thickness of about 798 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-32 had a gold content of 12.52 μg / cm 2 per unit area. This gold complex-containing polyimide precursor resin film 1-32 was heat-treated in the atmosphere at 200 ° C. for 10 minutes to produce a purple-colored metal gold fine particle-dispersed nanocomposite film 1-32 (thickness: 479 nm). It was confirmed that the metal gold fine particles formed on the nanocomposite film 1-32 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface side of the nanocomposite film 1-32:
Shape: mixed polyhedral and spherical particles, average particle size: about 9.0 nm, minimum particle size: about 7.0 nm, maximum particle size: about 12.0 nm.
2) A region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 1-32:
Shape: polyhedral, average particle size: about 26.0 nm, minimum particle size: about 12.0 nm, maximum particle size: about 39.0 nm.
The gold volume fraction in the nanocomposite film 1-32 was 1.35%.
In addition, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-32, absorption peaks having peak tops of 574 nm and 642 nm and a half width of 102 nm were observed.
[比較例1-9]
 合成例2で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.348gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約675nmの金錯体含有ポリイミド前駆体樹脂膜1-33を形成した。金錯体含有ポリイミド前駆体樹脂膜1-33は、金の単位面積当たりの含有量が10.59μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-33を大気下において300℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム1-33(厚さ405nm)を作製した。ナノコンポジットフィルム1-33中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム1-33の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約13.6nm、最小粒子径;約10.0nm、最大粒子径;約21.0nm。
2)ナノコンポジットフィルム1-33の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約34.6nm、最小粒子径;約25.0nm、最大粒子径;約50.0nm。
 なお、ナノコンポジットフィルム1-33における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム1-33の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが588nmおよび652nm、半値幅が107nmの吸収ピークが観測された。
[Comparative Example 1-9]
0.348 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-33 having a film thickness of about 675 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-33 had a gold content per unit area of 10.59 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-33 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 1-33 (thickness: 405 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-33 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-33:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 13.6 nm, minimum particle size: about 10.0 nm, maximum particle size: about 21.0 nm.
2) A region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 1-33:
Shape: polyhedral, average particle size: about 34.6 nm, minimum particle size: about 25.0 nm, maximum particle size: about 50.0 nm.
The gold volume fraction in the nanocomposite film 1-33 was 1.35%.
In addition, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-33, absorption peaks having peak tops of 588 nm and 652 nm and a half-value width of 107 nm were observed.
[比較例1-10]
 合成例2で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.348gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約650nmの金錯体含有ポリイミド前駆体樹脂膜1-34を形成した。金錯体含有ポリイミド前駆体樹脂膜1-34は、金の単位面積当たりの含有量が10.20μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜1-34を大気下において400℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム1-34(厚さ390nm)を作製した。ナノコンポジットフィルム1-34中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム1-34の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約16.4nm、最小粒子径;約14.0nm、最大粒子径;約26.0nm。
2)ナノコンポジットフィルム1-34の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約41.1nm、最小粒子径;約35.0nm、最大粒子径;約47.6nm。
 なお、ナノコンポジットフィルム1-34における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム1-34の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが592nmおよび654nm、半値幅が134nmの吸収ピークが観測された。
[Comparative Example 1-10]
0.348 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 1-34 having a film thickness of about 650 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 1-34 had a gold content per unit area of 10.20 μg / cm 2 . The gold complex-containing polyimide precursor resin film 1-34 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 1-34 (thickness 390 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 1-34 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 1-34:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 16.4 nm, minimum particle size: about 14.0 nm, maximum particle size: about 26.0 nm.
2) A region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 1-34:
Shape: polyhedral, average particle size: about 41.1 nm, minimum particle size: about 35.0 nm, maximum particle size: about 47.6 nm.
The gold volume fraction in the nanocomposite film 1-34 was 1.35%.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 1-34, absorption peaks having peak tops of 592 nm and 654 nm and a half width of 134 nm were observed.
[実施例2-1]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1270nmの金錯体含有ポリイミド前駆体樹脂膜2-1を形成した。金錯体含有ポリイミド前駆体樹脂膜2-1は、金の単位面積当たりの含有量が20.40μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜2-1を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム2-1(厚さ762nm)を作製した。ナノコンポジットフィルム2-1中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 1)ナノコンポジットフィルム2-1の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約10.2nm、最小粒子径;約4.0nm、最大粒子径;約38.0nm。
2)ナノコンポジットフィルム2-1の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約20.7nm、最小粒子径;約4.0nm、最大粒子径;約51.0nm。
 なお、ナノコンポジットフィルム2-1における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム2-1の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが570nm、半値幅が115nmの吸収ピークが観測された。
[Example 2-1]
To 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, 0.522 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 2-1 having a thickness of about 1270 nm on the glass substrate G 1. The gold complex-containing polyimide precursor resin film 2-1 had a content of 20.40 μg / cm 2 per unit area of gold. The gold complex-containing polyimide precursor resin film 2-1 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 2-1 (thickness: 762 nm) colored red. The metal gold fine particles formed in the nanocomposite film 2-1 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
1) Area within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-1:
Shape: Polyhedral and spherical particles are mixed, average particle diameter: about 10.2 nm, minimum particle diameter: about 4.0 nm, maximum particle diameter: about 38.0 nm.
2) Region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 2-1:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 20.7 nm, minimum particle size: about 4.0 nm, maximum particle size: about 51.0 nm.
The gold volume fraction in the nanocomposite film 2-1 was 1.35%.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 2-1, an absorption peak having a peak top of 570 nm and a half-value width of 115 nm was observed.
[実施例2-2]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、8.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約725nmの金錯体含有ポリイミド前駆体樹脂膜2-2を形成した。金錯体含有ポリイミド前駆体樹脂膜2-2は、金の単位面積当たりの含有量が11.64μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜2-2を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム2-2(厚さ435nm)を作製した。ナノコンポジットフィルム2-2中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 1)ナノコンポジットフィルム2-2の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約6.5nm、最小粒子径;約3.0nm、最大粒子径;約12.0nm。
2)ナノコンポジットフィルム2-2の表面側の面から100nm~600nmの厚さ範囲内の領域(ただし、厚さが600nm未満の場合は、膜厚を上限とする):
 形状;多面体状および球状粒子が混在、平均粒子径;約11.6nm、最小粒子径;約4.0nm、最大粒子径;約25.0nm。
 なお、ナノコンポジットフィルム2-2における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム2-2の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが568nm、半値幅が89nmの吸収ピークが観測された。
[Example 2-2]
To 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, 0.522 g of chloroauric acid tetrahydrate dissolved in 8.00 g of DMAc was added, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 2-2 having a film thickness of about 725 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 2-2 had a gold content per unit area of 11.64 μg / cm 2 . The gold complex-containing polyimide precursor resin film 2-2 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 2-2 (thickness: 435 nm) colored red. The metal gold fine particles formed in the nanocomposite film 2-2 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-2:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 6.5 nm, minimum particle size: about 3.0 nm, maximum particle size: about 12.0 nm.
2) A region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 2-2 (however, when the thickness is less than 600 nm, the upper limit is the film thickness):
Shape: Polyhedral and spherical particles are mixed, average particle size: about 11.6 nm, minimum particle size: about 4.0 nm, maximum particle size: about 25.0 nm.
The gold volume fraction in the nanocomposite film 2-2 was 1.35%.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 2-2, an absorption peak having a peak top of 568 nm and a half-value width of 89 nm was observed.
[比較例2-1]
 合成例1で得られたポリイミド前駆体樹脂溶液S7.50gに、7.50gのDMAcに溶解した0.489gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1275nmの金錯体含有ポリイミド前駆体樹脂膜2-3を形成した。金錯体含有ポリイミド前駆体樹脂膜2-3は、金の単位面積当たりの含有量が20.48μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜2-3を大気下において300℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム2-3(厚さ765nm)を作製した。ナノコンポジットフィルム2-3中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム2-3の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約11.5nm、最小粒子径;約8.0nm、最大粒子径;約28.0nm。
2)ナノコンポジットフィルム2-3の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約23.0nm、最小粒子径;約8.0nm、最大粒子径;約84.0nm。
 なお、ナノコンポジットフィルム2-3における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム2-3の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが576nmおよび690nm、半値幅が133nmの吸収ピークが観測された。
[Comparative Example 2-1]
0.489 g of chloroauric acid tetrahydrate dissolved in 7.50 g of DMAc was added to 7.50 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 2-3 having a thickness of about 1275 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 2-3 had a gold content per unit area of 20.48 μg / cm 2 . The gold complex-containing polyimide precursor resin film 2-3 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 2-3 (thickness: 765 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 2-3 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-3:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 11.5 nm, minimum particle size: about 8.0 nm, maximum particle size: about 28.0 nm.
2) A region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 2-3:
Shape: polyhedral, average particle size: about 23.0 nm, minimum particle size: about 8.0 nm, maximum particle size: about 84.0 nm.
The gold volume fraction in the nanocomposite film 2-3 was 1.35%.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 2-3, an absorption peak having a peak top of 576 nm and 690 nm and a half width of 133 nm was observed.
[比較例2-2]
 合成例1で得られたポリイミド前駆体樹脂溶液S7.50gに、7.50gのDMAcに溶解した0.489gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約1260nmの金錯体含有ポリイミド前駆体樹脂膜2-4を形成した。金錯体含有ポリイミド前駆体樹脂膜2-4は、金の単位面積当たりの含有量が20.29μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜2-4を大気下において400℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム2-4(厚さ758nm)を作製した。ナノコンポジットフィルム2-4中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム2-4の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約12.6nm、最小粒子径;約8.0nm、最大粒子径;約28.0nm。
2)ナノコンポジットフィルム2-4の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約25.5nm、最小粒子径;約8.0nm、最大粒子径;約85.0nm。
 なお、ナノコンポジットフィルム2-4における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム2-4の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが580nmおよび682nm、半値幅が147nmの吸収ピークが観測された。
[Comparative Example 2-2]
0.489 g of chloroauric acid tetrahydrate dissolved in 7.50 g of DMAc was added to 7.50 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 2-4 having a thickness of about 1260 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 2-4 had a gold content of 20.29 μg / cm 2 per unit area. The gold complex-containing polyimide precursor resin film 2-4 was heat-treated in the atmosphere at 400 ° C. for 10 minutes to produce a purple-colored metal gold fine particle dispersed nanocomposite film 2-4 (thickness: 758 nm). It was confirmed that the metal gold fine particles formed in the nanocomposite film 2-4 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-4:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 12.6 nm, minimum particle size: about 8.0 nm, maximum particle size: about 28.0 nm.
2) Area within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 2-4:
Shape: polyhedron, average particle size: about 25.5 nm, minimum particle size: about 8.0 nm, maximum particle size: about 85.0 nm.
The gold volume fraction in the nanocomposite film 2-4 was 1.35%.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 2-4, absorption peaks having peak tops of 580 nm and 682 nm and a half-value width of 147 nm were observed.
[比較例2-3]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.348gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約750nmの金錯体含有ポリイミド前駆体樹脂膜2-5を形成した。金錯体含有ポリイミド前駆体樹脂膜2-5は、金の単位面積当たりの含有量が12.05μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜2-5を大気下において300℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム2-5(厚さ450nm)を作製した。ナノコンポジットフィルム2-5中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム2-5の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約7.1nm、最小粒子径;約4.0nm、最大粒子径;約13.0nm。
2)ナノコンポジットフィルム2-5の表面側の面から100nm~600nmの厚さ範囲内の領域(ただし、厚さが600nm未満の場合は、膜厚を上限とする):
 形状;多面体状、平均粒子径;約17.6nm、最小粒子径;約4.0nm、最大粒子径;約36.0nm。
 なお、ナノコンポジットフィルム2-5における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム2-5の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが592nmおよび650nm、半値幅が120nmの吸収ピークが観測された。
[Comparative Example 2-3]
0.348 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 2-5 having a thickness of about 750 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 2-5 had a gold content per unit area of 12.05 μg / cm 2 . This gold complex-containing polyimide precursor resin film 2-5 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 2-5 (thickness 450 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 2-5 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-5:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 7.1 nm, minimum particle size: about 4.0 nm, maximum particle size: about 13.0 nm.
2) A region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 2-5 (however, when the thickness is less than 600 nm, the upper limit is the film thickness):
Shape: polyhedral, average particle size: about 17.6 nm, minimum particle size: about 4.0 nm, maximum particle size: about 36.0 nm.
The gold volume fraction in the nanocomposite film 2-5 was 1.35%.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 2-5, absorption peaks having peak tops of 592 nm and 650 nm and a half width of 120 nm were observed.
[比較例2-4]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.348gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約640nmの金錯体含有ポリイミド前駆体樹脂膜2-6を形成した。金錯体含有ポリイミド前駆体樹脂膜2-6は、金の単位面積当たりの含有量が10.28μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜2-6を大気下において400℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム2-6(厚さ384nm)を作製した。ナノコンポジットフィルム2-6中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム2-6の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約10.0nm、最小粒子径;約5.0nm、最大粒子径;約16.0nm。
2)ナノコンポジットフィルム2-6の表面側の面から100nm~600nmの厚さ範囲内の領域(ただし、厚さが600nm未満の場合は、膜厚を上限とする):
 形状;多面体状、平均粒子径;約20.8nm、最小粒子径;約5.0nm、最大粒子径;約48.0nm。
 なお、ナノコンポジットフィルム2-6における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム2-6の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが590nmおよび650nm、半値幅が102nmの吸収ピークが観測された。
[Comparative Example 2-4]
0.348 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 2-6 having a thickness of about 640 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 2-6 had a gold content of 10.28 μg / cm 2 per unit area. This gold complex-containing polyimide precursor resin film 2-6 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 2-6 (thickness 384 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 2-6 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 2-6:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 10.0 nm, minimum particle size: about 5.0 nm, maximum particle size: about 16.0 nm.
2) A region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 2-6 (however, when the thickness is less than 600 nm, the upper limit is the film thickness):
Shape: polyhedral, average particle size: about 20.8 nm, minimum particle size: about 5.0 nm, maximum particle size: about 48.0 nm.
The gold volume fraction in the nanocomposite film 2-6 was 1.35%.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 2-6, an absorption peak having a peak top of 590 nm and 650 nm and a half width of 102 nm was observed.
[実施例3-1]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約377nmの金錯体含有ポリイミド前駆体樹脂膜3-1を形成した。金錯体含有ポリイミド前駆体樹脂膜3-1は、金の単位面積当たりの含有量が6.05μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-1を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム3-1(厚さ226nm)を作製した。ナノコンポジットフィルム3-1中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;8.7nm、最大粒子径;20.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム3-1における金の体積分率;1.35%、粒子間距離の平均値;20.8nm。
 また、ナノコンポジットフィルム3-1の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが550nm、半値幅が80nmの吸収ピークが観測された。
[Example 3-1]
0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-1 having a film thickness of about 377 nm on the glass substrate G 1. The gold complex-containing polyimide precursor resin film 3-1 had a gold content per unit area of 6.05 μg / cm 2 . The gold complex-containing polyimide precursor resin film 3-1 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 3-1 (thickness: 226 nm) colored red. The metal gold fine particles formed in the nanocomposite film 3-1 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 8.7 nm, maximum particle size: 20.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 3-1: 1.35 %, Average value of interparticle distance; 20.8 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 3-1, an absorption peak having a peak top of 550 nm and a half width of 80 nm was observed.
[実施例3-2]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約315nmの金錯体含有ポリイミド前駆体樹脂膜3-2を形成した。金錯体含有ポリイミド前駆体樹脂膜3-2は、金の単位面積当たりの含有量が5.06μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-2を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム3-2(厚さ189nm)を作製した。ナノコンポジットフィルム3-2中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;10.2nm、最大粒子径;21.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム3-2における金の体積分率;1.35%、粒子間距離の平均値;24.3nm。
 また、ナノコンポジットフィルム3-2の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが564nm、半値幅が76nmの吸収ピークが観測された。
[Example 3-2]
0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-2 having a film thickness of about 315 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-2 had a gold content per unit area of 5.06 μg / cm 2 . This gold complex-containing polyimide precursor resin film 3-2 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 3-2 (thickness 189 nm) colored red. The metal gold fine particles formed in the nanocomposite film 3-2 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 10.2 nm, maximum particle size: 21.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 3-2; 1.35 %, Average value of interparticle distance; 24.3 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 3-2, an absorption peak having a peak top of 564 nm and a half-value width of 76 nm was observed.
[実施例3-3]
 合成例1で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約367nmの金錯体含有ポリイミド前駆体樹脂膜3-3を形成した。金錯体含有ポリイミド前駆体樹脂膜3-3は、金の単位面積当たりの含有量が5.89μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-3を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム3-3(厚さ220nm)を作製した。ナノコンポジットフィルム3-3中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;13.8nm、最大粒子径;21.0nm、最小粒子径;4.0nm、ナノコンポジットフィルム3-3における金の体積分率;1.35%、粒子間距離の平均値;32.8nm。
 また、ナノコンポジットフィルム3-3の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが564nm、半値幅が87nmの吸収ピークが観測された。
[Example 3-3]
0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-3 having a thickness of about 367 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-3 had a gold content per unit area of 5.89 μg / cm 2 . This gold complex-containing polyimide precursor resin film 3-3 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 3-3 (thickness 220 nm) colored red. The metal gold fine particles formed in the nanocomposite film 3-3 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 13.8 nm, maximum particle size: 21.0 nm, minimum particle size: 4.0 nm, gold volume fraction in nanocomposite film 3-3: 1.35 %, Average value of interparticle distance; 32.8 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 3-3, an absorption peak having a peak top of 564 nm and a half-value width of 87 nm was observed.
[実施例3-4]
 合成例3で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約338nmの金錯体含有ポリイミド前駆体樹脂膜3-4を形成した。金錯体含有ポリイミド前駆体樹脂膜3-4は、金の単位面積当たりの含有量が5.33μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-4を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム3-4(厚さ203nm)を作製した。ナノコンポジットフィルム3-4中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;12.4nm、最大粒子径;30.0nm、最小粒子径;5.0nm、ナノコンポジットフィルム3-4における金の体積分率;1.35%、粒子間距離の平均値;29.6nm。
 また、ナノコンポジットフィルム3-4の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが556nm、半値幅が112nmの吸収ピークが観測された。
[Example 3-4]
0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 3 obtained in Synthesis Example 3, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-4 having a thickness of about 338 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-4 had a gold content per unit area of 5.33 μg / cm 2 . The gold complex-containing polyimide precursor resin film 3-4 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 3-4 (thickness: 203 nm) colored red. The metal gold fine particles formed in the nanocomposite film 3-4 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 12.4 nm, maximum particle size: 30.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 3-4: 1.35 %, Average value of interparticle distance; 29.6 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 3-4, an absorption peak having a peak top of 556 nm and a half width of 112 nm was observed.
[実施例3-5]
 合成例3で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約332nmの金錯体含有ポリイミド前駆体樹脂膜3-5を形成した。金錯体含有ポリイミド前駆体樹脂膜3-5は、金の単位面積当たりの含有量が5.22μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-5を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム3-5(厚さ199nm)を作製した。ナノコンポジットフィルム3-5中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;14.2nm、最大粒子径;30.0nm、最小粒子径;6.0nm、ナノコンポジットフィルム3-5における金の体積分率;1.35%、粒子間距離の平均値;33.8nm。
 また、ナノコンポジットフィルム3-5の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが564nm、半値幅が111nmの吸収ピークが観測された。
[Example 3-5]
0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 3 obtained in Synthesis Example 3, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-5 having a film thickness of about 332 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-5 had a gold content per unit area of 5.22 μg / cm 2 . The gold complex-containing polyimide precursor resin film 3-5 was heat-treated in the atmosphere at 300 ° C. for 10 minutes to produce a metal gold fine particle dispersed nanocomposite film 3-5 (thickness: 199 nm) colored red. The metal gold fine particles formed in the nanocomposite film 3-5 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 14.2 nm, maximum particle size: 30.0 nm, minimum particle size: 6.0 nm, gold volume fraction in nanocomposite film 3-5; 1.35 %, Average value of interparticle distance; 33.8 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 3-5, an absorption peak having a peak top of 564 nm and a half-value width of 111 nm was observed.
[実施例3-6]
 合成例3で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約413nmの金錯体含有ポリイミド前駆体樹脂膜3-6を形成した。金錯体含有ポリイミド前駆体樹脂膜3-6は、金の単位面積当たりの含有量が6.51μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-6を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム3-6(厚さ248nm)を作製した。ナノコンポジットフィルム3-6中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;19.4nm、最大粒子径;49.0nm、最小粒子径;6.0nm、ナノコンポジットフィルム3-6における金の体積分率;1.35%、粒子間距離の平均値;46.2nm。
 また、ナノコンポジットフィルム3-6の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが570nm、半値幅が94nmの吸収ピークが観測された。
[Example 3-6]
0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 3 obtained in Synthesis Example 3, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-6 having a film thickness of about 413 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-6 had a gold content per unit area of 6.51 μg / cm 2 . This gold complex-containing polyimide precursor resin film 3-6 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 3-6 (thickness 248 nm) colored red. The metal gold fine particles formed in the nanocomposite film 3-6 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 19.4 nm, maximum particle size; 49.0 nm, minimum particle size: 6.0 nm, gold volume fraction in nanocomposite film 3-6; 1.35 %, Average value of interparticle distance; 46.2 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 3-6, an absorption peak having a peak top of 570 nm and a half width of 94 nm was observed.
[実施例3-7]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約337nmの金錯体含有ポリイミド前駆体樹脂膜3-7を形成した。金錯体含有ポリイミド前駆体樹脂膜3-7は、金の単位面積当たりの含有量が5.28μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-7を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム3-7(厚さ202nm)を作製した。ナノコンポジットフィルム3-7中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;12.3nm、最大粒子径;16.0nm、最小粒子径;7.0nm、ナノコンポジットフィルム3-7における金の体積分率;1.35%、粒子間距離の平均値;29.2nm。
 また、ナノコンポジットフィルム3-7の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが548nm、半値幅が78nmの吸収ピークが観測された。
[Example 3-7]
0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-7 having a thickness of about 337 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-7 had a gold content per unit area of 5.28 μg / cm 2 . This gold complex-containing polyimide precursor resin film 3-7 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 3-7 (thickness: 202 nm) colored red. The metal gold fine particles formed in the nanocomposite film 3-7 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 12.3 nm, maximum particle size: 16.0 nm, minimum particle size: 7.0 nm, gold volume fraction in nanocomposite film 3-7: 1.35 %, Average value of interparticle distance; 29.2 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 3-7, an absorption peak having a peak top of 548 nm and a half width of 78 nm was observed.
[実施例3-8]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約348nmの金錯体含有ポリイミド前駆体樹脂膜3-8を形成した。金錯体含有ポリイミド前駆体樹脂膜3-8は、金の単位面積当たりの含有量が5.46μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-8を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム3-8(厚さ209nm)を作製した。ナノコンポジットフィルム3-8中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;16.5nm、最大粒子径;23.0nm、最小粒子径;11.0nm、ナノコンポジットフィルム3-8における金の体積分率;1.35%、粒子間距離の平均値;39.4nm。
 また、ナノコンポジットフィルム3-8の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが562nm、半値幅が76nmの吸収ピークが観測された。
[Example 3-8]
0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-8 having a thickness of about 348 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-8 had a gold content per unit area of 5.46 μg / cm 2 . The gold complex-containing polyimide precursor resin film 3-8 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 3-8 (thickness 209 nm) colored red. The metal gold fine particles formed in the nanocomposite film 3-8 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 16.5 nm, maximum particle size; 23.0 nm, minimum particle size: 11.0 nm, gold volume fraction in nanocomposite film 3-8; 1.35 %, Average value of interparticle distance; 39.4 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 3-8, an absorption peak having a peak top of 562 nm and a half width of 76 nm was observed.
[比較例3-1]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.348gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約750nmの金錯体含有ポリイミド前駆体樹脂膜3-9を形成した。金錯体含有ポリイミド前駆体樹脂膜3-9は、金の単位面積当たりの含有量が12.05μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-9を大気下において300℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム3-9(厚さ450nm)を作製した。ナノコンポジットフィルム3-9中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム3-9の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約7.1nm、最小粒子径;約4.0nm、最大粒子径;約13.0nm。
2)ナノコンポジットフィルム3-9の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約17.6nm、最小粒子径;約4.0nm、最大粒子径;約36.0nm。
 なお、ナノコンポジットフィルム3-9における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム3-9の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが592nmおよび650nm、半値幅が120nmの吸収ピークが観測された。
[Comparative Example 3-1]
0.348 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-9 having a thickness of about 750 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-9 had a gold content of 12.05 μg / cm 2 per unit area. This gold complex-containing polyimide precursor resin film 3-9 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 3-9 (thickness 450 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 3-9 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Area within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 3-9:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 7.1 nm, minimum particle size: about 4.0 nm, maximum particle size: about 13.0 nm.
2) Area within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 3-9:
Shape: polyhedral, average particle size: about 17.6 nm, minimum particle size: about 4.0 nm, maximum particle size: about 36.0 nm.
The gold volume fraction in the nanocomposite film 3-9 was 1.35%.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 3-9, absorption peaks having peak tops of 592 nm and 650 nm and a half width of 120 nm were observed.
[比較例3-2]
 合成例1で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.348gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約640nmの金錯体含有ポリイミド前駆体樹脂膜3-10を形成した。金錯体含有ポリイミド前駆体樹脂膜3-10は、金の単位面積当たりの含有量が10.28μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-10を大気下において400℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム3-10(厚さ384nm)を作製した。ナノコンポジットフィルム3-10中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
1)ナノコンポジットフィルム3-10の表面側の面から0nm~100nmの厚さ範囲内の領域:
 形状;多面体状および球状粒子が混在、平均粒子径;約10.0nm、最小粒子径;約5.0nm、最大粒子径;約16.0nm。
2)ナノコンポジットフィルム3-10の表面側の面から100nm~600nmの厚さ範囲内の領域:
 形状;多面体状、平均粒子径;約20.8nm、最小粒子径;約5.0nm、最大粒子径;約48.0nm。
 なお、ナノコンポジットフィルム3-10における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム3-10の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが590nmおよび650nm、半値幅が102nmの吸収ピークが観測された。
[Comparative Example 3-2]
0.348 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-10 having a thickness of about 640 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-10 had a gold content per unit area of 10.28 μg / cm 2 . This gold complex-containing polyimide precursor resin film 3-10 was heat-treated in the atmosphere at 400 ° C. for 10 minutes to produce a metal gold fine particle dispersed nanocomposite film 3-10 (thickness 384 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 3-10 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
1) Region within a thickness range of 0 nm to 100 nm from the surface of the nanocomposite film 3-10:
Shape: Polyhedral and spherical particles are mixed, average particle size: about 10.0 nm, minimum particle size: about 5.0 nm, maximum particle size: about 16.0 nm.
2) Region within a thickness range of 100 nm to 600 nm from the surface of the nanocomposite film 3-10:
Shape: polyhedral, average particle size: about 20.8 nm, minimum particle size: about 5.0 nm, maximum particle size: about 48.0 nm.
The gold volume fraction in the nanocomposite film 3-10 was 1.35%.
In addition, as for the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 3-10, an absorption peak having a peak top of 590 nm and 650 nm and a half width of 102 nm was observed.
[比較例3-3]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した1.566gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約362nmの金錯体含有ポリイミド前駆体樹脂膜3-11を形成した。金錯体含有ポリイミド前駆体樹脂膜3-11は、金の単位面積当たりの含有量が16.58μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-11を大気下において400℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム3-11(厚さ217nm)を作製した。ナノコンポジットフィルム3-11中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;41.7nm、最大粒子径;68.0nm、最小粒子径;22.0nm。なお、ナノコンポジットフィルム3-11における金の体積分率は、3.96%であった。
 また、ナノコンポジットフィルム3-11の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが570nmおよび640nm、半値幅が171nmの吸収ピークが観測された。
[Comparative Example 3-3]
To 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, 1.566 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-11 having a thickness of about 362 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-11 had a gold content per unit area of 16.58 μg / cm 2 . This gold complex-containing polyimide precursor resin film 3-11 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a purple-colored metal gold fine particle dispersed nanocomposite film 3-11 (thickness: 217 nm). It was confirmed that the metal gold fine particles formed in the nanocomposite film 3-11 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: Polyhedral and spherical particles are mixed, average particle size: 41.7 nm, maximum particle size: 68.0 nm, minimum particle size: 22.0 nm. The gold volume fraction in the nanocomposite film 3-11 was 3.96%.
In addition, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 3-11, absorption peaks having peak tops of 570 nm and 640 nm and a half-value width of 171 nm were observed.
[比較例3-4]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した0.522gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約328nmの金錯体含有ポリイミド前駆体樹脂膜3-12を形成した。金錯体含有ポリイミド前駆体樹脂膜3-12は、金の単位面積当たりの含有量が5.15μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-12を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム3-12(厚さ197nm)を作製した。ナノコンポジットフィルム3-12中に形成した金属金微粒子は、ごく僅かな部分で凝集している箇所が確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;23.5nm、最大粒子径;34.0nm、最小粒子径;16.0nm。なお、ナノコンポジットフィルム3-12における金の体積分率は、1.35%であった。
 また、ナノコンポジットフィルム3-12の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが574nmおよび620nm、半値幅が92nmの吸収ピークが観測された。
[Comparative Example 3-4]
0.522 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-12 having a thickness of about 328 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-12 had a gold content per unit area of 5.15 μg / cm 2 . The gold complex-containing polyimide precursor resin film 3-12 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 3-12 (thickness 197 nm) colored red. The metal gold fine particles formed in the nanocomposite film 3-12 were confirmed to be agglomerated in a very small portion. The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: Polyhedral and spherical particles are mixed, average particle size: 23.5 nm, maximum particle size: 34.0 nm, minimum particle size: 16.0 nm. The gold volume fraction in the nanocomposite film 3-12 was 1.35%.
In addition, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 3-12, absorption peaks having peak tops of 574 nm and 620 nm and a half-value width of 92 nm were observed.
[比較例3-5]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、52.00gのDMAcに溶解した1.566gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約118nmの金錯体含有ポリイミド前駆体樹脂膜3-13を形成した。金錯体含有ポリイミド前駆体樹脂膜3-13は、金の単位面積当たりの含有量が5.42μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜3-13を大気下において400℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム3-13(厚さ71nm)を作製した。ナノコンポジットフィルム3-13中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;32.0nm、最大粒子径;56.0nm、最小粒子径;12.0nm。なお、ナノコンポジットフィルム3-13における金の体積分率は、3.96%であった。
 また、ナノコンポジットフィルム3-13の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが554nmおよび640nm、半値幅が158nmの吸収ピークが観測された。
[Comparative Example 3-5]
1.566 g of chloroauric acid tetrahydrate dissolved in 52.00 g of DMAc was added to 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 3-13 having a film thickness of about 118 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 3-13 had a gold content per unit area of 5.42 μg / cm 2 . The gold complex-containing polyimide precursor resin film 3-13 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 3-13 (thickness 71 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 3-13 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: Polyhedral and spherical particles are mixed, average particle size: 32.0 nm, maximum particle size: 56.0 nm, minimum particle size: 12.0 nm. The gold volume fraction in the nanocomposite film 3-13 was 3.96%.
Further, in the absorption spectrum of localized surface plasmon resonance due to the metal gold fine particles of the nanocomposite film 3-13, absorption peaks having peak tops of 554 nm and 640 nm and a half-value width of 158 nm were observed.
[実施例4-1]
 合成例1で得られたポリイミド前駆体樹脂溶液S2.67gに、7.33gのDMAcに溶解した0.726gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約298nmの金錯体含有ポリイミド前駆体樹脂膜4-1を形成した。金錯体含有ポリイミド前駆体樹脂膜4-1は、金の単位面積当たりの含有量が19.15μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜4-1を大気下において200℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム4-1(厚さ179nm)を作製した。ナノコンポジットフィルム4-1中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;17.0nm、最大粒子径;54.0nm、最小粒子径;5.0nm、ナノコンポジットフィルム4-1における金の体積分率;5.54%、粒子間距離の平均値;18.9nm。
 また、ナノコンポジットフィルム4-1の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが572nm、半値幅が103nmの吸収ピークが観測された。
[Example 4-1]
0.726 g of chloroauric acid tetrahydrate dissolved in 7.33 g of DMAc was added to 2.67 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 4-1 having a film thickness of about 298 nm on the glass substrate G 1. The gold complex-containing polyimide precursor resin film 4-1 had a gold content per unit area of 19.15 μg / cm 2 . This gold complex-containing polyimide precursor resin film 4-1 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 4-1 (thickness 179 nm) colored red. The metal gold fine particles formed in the nanocomposite film 4-1 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 17.0 nm, maximum particle size; 54.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 4-1, 5.54 %, Average value of interparticle distance; 18.9 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 4-1, an absorption peak having a peak top of 572 nm and a half width of 103 nm was observed.
[実施例4-2]
 合成例1で得られたポリイミド前駆体樹脂溶液S2.67gに、7.33gのDMAcに溶解した0.726gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約337nmの金錯体含有ポリイミド前駆体樹脂膜4-2を形成した。金錯体含有ポリイミド前駆体樹脂膜4-2は、金の単位面積当たりの含有量が21.61μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜4-2を大気下において300℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム4-2(厚さ202nm)を作製した。ナノコンポジットフィルム4-2中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;22.4nm、最大粒子径;68.0nm、最小粒子径;5.0nm、ナノコンポジットフィルム4-2における金の体積分率;5.54%、粒子間距離の平均値;24.9nm。
 また、ナノコンポジットフィルム4-2の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが570nm、半値幅が103nmの吸収ピークが観測された。
[Example 4-2]
0.726 g of chloroauric acid tetrahydrate dissolved in 7.33 g of DMAc was added to 2.67 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 4-2 having a thickness of about 337 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 4-2 had a gold content per unit area of 21.61 μg / cm 2 . The gold complex-containing polyimide precursor resin film 4-2 was heat-treated at 300 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle-dispersed nanocomposite film 4-2 (thickness: 202 nm) colored red. The metal gold fine particles formed in the nanocomposite film 4-2 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: Mixed polyhedral and spherical particles, average particle size: 22.4 nm, maximum particle size; 68.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 4-2; 5.54 %, Average value of interparticle distance; 24.9 nm.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 4-2, an absorption peak having a peak top of 570 nm and a half width of 103 nm was observed.
[実施例4-3]
 合成例1で得られたポリイミド前駆体樹脂溶液S2.67gに、7.33gのDMAcに溶解した0.726gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約282nmの金錯体含有ポリイミド前駆体樹脂膜4-3を形成した。金錯体含有ポリイミド前駆体樹脂膜4-3は、金の単位面積当たりの含有量が18.01μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜4-3を大気下において400℃、10分間加熱処理することによって赤色に呈色した金属金微粒子分散ナノコンポジットフィルム4-3(厚さ169nm)を作製した。ナノコンポジットフィルム4-3中に形成した金属金微粒子は、各々が完全に独立し、隣り合う金属金微粒子における大きい方の粒子径以上の間隔で分散していた。また、金属金微粒子はマトリックス樹脂の表層部から存在していた。
 また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;24.5nm、最大粒子径;71.0nm、最小粒子径;5.0nm、ナノコンポジットフィルム4-3における金の体積分率;5.54%、粒子間距離の平均値;27.3nm。
 また、ナノコンポジットフィルム4-3の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが576nm、半値幅が101nmの吸収ピークが観測された。
[Example 4-3]
0.726 g of chloroauric acid tetrahydrate dissolved in 7.33 g of DMAc was added to 2.67 g of the polyimide precursor resin solution S 1 obtained in Synthesis Example 1, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Preparation Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 4-3 having a thickness of about 282 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 4-3 had a gold content per unit area of 18.01 μg / cm 2 . This gold complex-containing polyimide precursor resin film 4-3 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 4-3 (thickness 169 nm) colored red. The metal gold fine particles formed in the nanocomposite film 4-3 were completely independent of each other, and were dispersed at intervals equal to or larger than the larger particle diameter of the adjacent metal gold fine particles. Metallic gold fine particles were present from the surface layer portion of the matrix resin.
The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: mixed polyhedral and spherical particles, average particle size: 24.5 nm, maximum particle size: 71.0 nm, minimum particle size: 5.0 nm, gold volume fraction in nanocomposite film 4-3; 5.54 %, Average value of interparticle distance; 27.3 nm.
Further, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 4-3, an absorption peak having a peak top of 576 nm and a half-value width of 101 nm was observed.
[比較例4-1]
 合成例2で得られたポリイミド前駆体樹脂溶液S5.33gに、10.67gのDMAcに溶解した0.696gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約325nmの金錯体含有ポリイミド前駆体樹脂膜4-4を形成した。金錯体含有ポリイミド前駆体樹脂膜4-4は、金の単位面積当たりの含有量が10.07μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜4-4を大気下において200℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム4-4(厚さ195nm)を作製した。ナノコンポジットフィルム4-4中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;19.8nm、最大粒子径;30.0nm、最小粒子径;11.0nm。なお、ナノコンポジットフィルム4-4における金の体積分率は、2.67%であった。
 また、ナノコンポジットフィルム4-4の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが554nmおよび622nm、半値幅が109nmの吸収ピークが観測された。
[Comparative Example 4-1]
0.696 g of chloroauric acid tetrahydrate dissolved in 10.67 g of DMAc was added to 5.33 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, and the mixture was added at room temperature for 15 minutes under a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 4-4 having a film thickness of about 325 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 4-4 had a content of 10.07 μg / cm 2 per unit area of gold. This gold complex-containing polyimide precursor resin film 4-4 was heat-treated at 200 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 4-4 (thickness 195 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 4-4 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: Polyhedral and spherical particles are mixed, average particle size: 19.8 nm, maximum particle size: 30.0 nm, minimum particle size: 11.0 nm. The gold volume fraction in the nanocomposite film 4-4 was 2.67%.
Further, in the absorption spectrum of the localized surface plasmon resonance by the metal gold fine particles of the nanocomposite film 4-4, an absorption peak having peak tops of 554 nm and 622 nm and a half width of 109 nm was observed.
[比較例4-2]
 合成例2で得られたポリイミド前駆体樹脂溶液S8.00gに、16.00gのDMAcに溶解した1.566gの塩化金酸・四水和物を加え、窒素雰囲気下、室温で15分間攪拌することにより、金錯体含有ポリイミド前駆体樹脂溶液を調製した。得られた金錯体含有ポリイミド前駆体樹脂溶液をスピンコーター(ミカサ株式会社製、SPINCOATER 1H-DX2)を用いて、作製例1のガラス基板G1の上に塗布した後、70℃で3分間及び130℃で10分間乾燥して、ガラス基板G1上に、膜厚が約362nmの金錯体含有ポリイミド前駆体樹脂膜4-5を形成した。金錯体含有ポリイミド前駆体樹脂膜4-5は、金の単位面積当たりの含有量が16.58μg/cmであった。この金錯体含有ポリイミド前駆体樹脂膜4-5を大気下において400℃、10分間加熱処理することによって紫色に呈色した金属金微粒子分散ナノコンポジットフィルム4-5(厚さ217nm)を作製した。ナノコンポジットフィルム4-5中に形成した金属金微粒子は、部分的に凝集していることが確認された。また、該フィルム中に形成した金属金微粒子の特徴は、次のとおりであった。
 形状;多面体状および球状粒子が混在、平均粒子径;41.7nm、最大粒子径;68.0nm、最小粒子径;22.0nm。なお、ナノコンポジットフィルム4-5における金の体積分率は、3.96%であった。
 また、ナノコンポジットフィルム4-5の金属金微粒子による局在型表面プラズモン共鳴の吸収スペクトルは、ピークトップが570nmおよび640nm、半値幅が171nmの吸収ピークが観測された。
[Comparative Example 4-2]
To 8.00 g of the polyimide precursor resin solution S 2 obtained in Synthesis Example 2, 1.566 g of chloroauric acid tetrahydrate dissolved in 16.00 g of DMAc was added, and the mixture was added for 15 minutes at room temperature in a nitrogen atmosphere. By stirring, a gold complex-containing polyimide precursor resin solution was prepared. The obtained gold complex-containing polyimide precursor resin solution was applied onto the glass substrate G1 of Production Example 1 using a spin coater (manufactured by Mikasa Co., Ltd., SPINCOATER 1H-DX2), then at 70 ° C. for 3 minutes and 130 Drying was performed at a temperature of 10 ° C. for 10 minutes to form a gold complex-containing polyimide precursor resin film 4-5 having a thickness of about 362 nm on the glass substrate G1. The gold complex-containing polyimide precursor resin film 4-5 had a content per gold unit area of 16.58 μg / cm 2 . This gold complex-containing polyimide precursor resin film 4-5 was heat-treated at 400 ° C. for 10 minutes in the atmosphere to produce a metal gold fine particle dispersed nanocomposite film 4-5 (thickness: 217 nm) colored purple. It was confirmed that the metal gold fine particles formed in the nanocomposite film 4-5 were partially aggregated. The characteristics of the metal gold fine particles formed in the film were as follows.
Shape: Polyhedral and spherical particles are mixed, average particle size: 41.7 nm, maximum particle size: 68.0 nm, minimum particle size: 22.0 nm. The gold volume fraction in the nanocomposite film 4-5 was 3.96%.
In addition, in the absorption spectrum of localized surface plasmon resonance by the metal gold fine particles in the nanocomposite film 4-5, absorption peaks having peak tops of 570 nm and 640 nm and a half width of 171 nm were observed.
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。なお、本国際出願は、2010年8月9日に出願された日本国特許出願2010-178634号、並びに、2010年9月28日に出願された日本国特許出願2010-217173号、同2010-217174号及び同2010-217175号、に基づく優先権を主張するものであり、その全内容をここに援用する。
 
 
 
As mentioned above, although embodiment of this invention was described in detail for the purpose of illustration, this invention is not restrict | limited to the said embodiment, A various deformation | transformation is possible. This international application includes Japanese Patent Application No. 2010-178634 filed on August 9, 2010, and Japanese Patent Application Nos. 2010-217173, 2010-2010 filed on Sep. 28, 2010. 217174 and 2010-217175, and claims the priority, the entire contents of which are incorporated herein.


Claims (7)

  1.  ポリイミド樹脂中に、平均粒子径が3nm以上の金属微粒子が互いに接することなく、隣り合う金属微粒子における粒子径の大きい方の金属微粒子の粒子径以上の間隔で互いに独立して分散してなる金属微粒子複合体を製造する金属微粒子複合体の製造方法であって、
     以下の工程a及びb;
     a)ポリイミド前駆体樹脂と、金属化合物とを含有する塗布液を、金属分の含有量として50μg/cm以下となるように基材上に塗布し、乾燥して、乾燥後の厚さが1.7μm以下の塗布膜を形成する工程、
     b)前記塗布膜を、160℃以上450℃以下の範囲内の温度で熱処理することにより、前記塗布膜中の金属イオン(又は金属塩)を還元して金属微粒子となる粒子状金属を析出させ、塗布膜中に分散させるとともに、前記塗布膜中の前記ポリイミド前駆体樹脂をイミド化して厚みが1μm以下であり、かつ弾性率が10GPa以下のポリイミド樹脂層を形成する工程、
    を備えたことを特徴とする金属微粒子複合体の製造方法。
    Metal fine particles in which metal fine particles having an average particle diameter of 3 nm or more are dispersed in the polyimide resin independently from each other at intervals equal to or larger than the particle diameters of the metal fine particles having larger particle diameters in adjacent metal fine particles. A method for producing a metal fine particle composite for producing a composite,
    The following steps a and b;
    a) A coating solution containing a polyimide precursor resin and a metal compound is applied on a substrate so that the content of the metal is 50 μg / cm 2 or less, dried, and the thickness after drying is Forming a coating film of 1.7 μm or less,
    b) The coating film is heat-treated at a temperature in the range of 160 ° C. or more and 450 ° C. or less, thereby reducing the metal ions (or metal salt) in the coating film and precipitating particulate metal that becomes metal fine particles. And a step of dispersing in the coating film and imidizing the polyimide precursor resin in the coating film to form a polyimide resin layer having a thickness of 1 μm or less and an elastic modulus of 10 GPa or less,
    A method for producing a metal fine particle composite comprising:
  2.  前記金属微粒子複合体は、前記金属微粒子の平均粒子径が3nm以上25nm以下の範囲内、かつ、その体積分率が金属微粒子複合体に対して0.05%以上1%以下の範囲内であり、
     前記工程aにおける前記塗布液中の金属分の含有量が0.5μg/cm以上10μg/cm以下の範囲内であり、かつ、乾燥後の前記塗布膜の厚さが500nm以上1.7μm以下の範囲内であり、
     前記工程bにおける前記ポリイミド樹脂層の厚みが300nm以上1μm以下の範囲内であることを特徴とする請求項1に記載の金属微粒子複合体の製造方法。
    In the metal fine particle composite, the average particle diameter of the metal fine particles is in the range of 3 nm to 25 nm, and the volume fraction is in the range of 0.05% to 1% with respect to the metal fine particle composite. ,
    The metal content in the coating solution in the step a is in the range of 0.5 μg / cm 2 to 10 μg / cm 2 , and the thickness of the coating film after drying is 500 nm to 1.7 μm. Within the following range:
    2. The method for producing a metal fine particle composite according to claim 1, wherein the thickness of the polyimide resin layer in the step b is in the range of 300 nm to 1 μm.
  3.  前記金属微粒子複合体は、前記金属微粒子の平均粒子径が3nm以上30nm以下の範囲内、かつ、その体積分率が金属微粒子複合体に対して0.2%以上5%以下の範囲内であり、
     前記工程aにおける前記塗布液中の金属分の含有量が10μg/cm以上50μg/cm以下の範囲内であり、かつ、乾燥後の前記塗布膜の厚さが500nm以上1.7μm以下の範囲内であり、
     前記工程bにおける前記ポリイミド樹脂層の厚みが300nm以上1μm以下の範囲内、かつ、その弾性率が3GPa以上10GPa以下の範囲内であることを特徴とする請求項1に記載の金属微粒子複合体の製造方法。
    The metal fine particle composite has an average particle diameter of the metal fine particles in the range of 3 nm to 30 nm and a volume fraction in the range of 0.2% to 5% with respect to the metal fine particle composite. ,
    The metal content in the coating solution in the step a is in the range of 10 μg / cm 2 to 50 μg / cm 2 and the thickness of the coating film after drying is 500 nm to 1.7 μm. Is in range,
    2. The metal fine particle composite according to claim 1, wherein the thickness of the polyimide resin layer in the step b is in the range of 300 nm to 1 μm and the elastic modulus is in the range of 3 GPa to 10 GPa. Production method.
  4.  前記金属微粒子複合体は、前記金属微粒子の平均粒子径が3nm以上30nm以下の範囲内、かつ、その体積分率が金属微粒子複合体に対して0.5%以上5%以下の範囲内であり、
     前記工程aにおける前記塗布液中の金属分の含有量が5μg/cm以上10μg/cm以下の範囲内であり、かつ、乾燥後の前記塗布膜の厚さが150nm以上500nm以下の範囲内であり、
     前記工程bにおける前記ポリイミド樹脂層の厚みが100nm以上300nm以下の範囲内、かつ、その弾性率が5MPa以上10GPa以下の範囲内であることを特徴とする請求項1に記載の金属微粒子複合体の製造方法。
    The metal fine particle composite has an average particle diameter of the metal fine particles in the range of 3 nm to 30 nm and a volume fraction in the range of 0.5% to 5% with respect to the metal fine particle composite. ,
    The metal content in the coating solution in the step a is in the range of 5 μg / cm 2 to 10 μg / cm 2 and the thickness of the coating film after drying is in the range of 150 nm to 500 nm. And
    2. The metal fine particle composite according to claim 1, wherein the thickness of the polyimide resin layer in the step b is in the range of 100 nm to 300 nm and the elastic modulus is in the range of 5 MPa to 10 GPa. Production method.
  5.  前記金属微粒子複合体は、前記金属微粒子の平均粒子径が5nm以上35nm以下の範囲内、かつ、その体積分率が、金属微粒子複合体に対して1%以上15%以下の範囲内にあり、
     前記工程aにおける前記塗布液中の金属分の含有量が10μg/cm以上30μg/cm以下の範囲内であり、かつ、乾燥後の前記塗布膜の厚さが150nm以上500nm以下の範囲内であり、
     前記工程bにおける前記ポリイミド樹脂層の厚みが100nm以上300nm以下の範囲内、かつ、その弾性率が0.5GPa以上10GPa以下の範囲内であることを特徴とする請求項1に記載の金属微粒子複合体の製造方法。
    The metal fine particle composite has an average particle diameter of the metal fine particles in the range of 5 nm or more and 35 nm or less, and the volume fraction thereof is in the range of 1% or more and 15% or less with respect to the metal fine particle composite,
    The metal content in the coating solution in the step a is in the range of 10 μg / cm 2 to 30 μg / cm 2 and the thickness of the coating film after drying is in the range of 150 nm to 500 nm. And
    2. The metal fine particle composite according to claim 1, wherein the thickness of the polyimide resin layer in the step b is in the range of 100 nm to 300 nm and the elastic modulus is in the range of 0.5 GPa to 10 GPa. Body manufacturing method.
  6. 前記工程bが、不活性ガス雰囲気中で行われることを特徴とする請求項1から5のいずれか1項に記載の金属微粒子複合体の製造方法。 The method for producing a metal fine particle composite according to any one of claims 1 to 5, wherein the step b is performed in an inert gas atmosphere.
  7. 前記金属化合物が、Auの前駆体であることを特徴とする請求項1から6のいずれか1項に記載の金属微粒子複合体の製造方法。
     
    The method for producing a metal fine particle composite according to any one of claims 1 to 6, wherein the metal compound is a precursor of Au.
PCT/JP2011/066706 2010-08-09 2011-07-22 Process for producing metal nanoparticle composite WO2012020634A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180038553.0A CN103052481B (en) 2010-08-09 2011-07-22 Process for producing metal nanoparticle composite
JP2012528628A JP5719847B2 (en) 2010-08-09 2011-07-22 Method for producing metal fine particle composite
KR1020137002648A KR20130098991A (en) 2010-08-09 2011-07-22 Process for producing metal nanoparticle composite

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010178634 2010-08-09
JP2010-178634 2010-08-09
JP2010217175 2010-09-28
JP2010-217174 2010-09-28
JP2010-217175 2010-09-28
JP2010-217173 2010-09-28
JP2010217174 2010-09-28
JP2010217173 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012020634A1 true WO2012020634A1 (en) 2012-02-16

Family

ID=45567603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066706 WO2012020634A1 (en) 2010-08-09 2011-07-22 Process for producing metal nanoparticle composite

Country Status (5)

Country Link
JP (1) JP5719847B2 (en)
KR (1) KR20130098991A (en)
CN (2) CN105017562A (en)
TW (1) TWI518111B (en)
WO (1) WO2012020634A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519753A (en) * 2017-05-12 2020-07-02 インヒビット コーティングズ リミテッド Composite resin containing silver nanoparticles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195431A (en) * 2017-07-26 2017-09-22 南通壹选工业设计有限公司 A kind of transformer with heat conducting coating and a kind of preparation method of heat conducting coating
CN110387040A (en) * 2019-07-17 2019-10-29 中国科学院上海硅酸盐研究所 A kind of black polyamide film
WO2023123067A1 (en) * 2021-12-29 2023-07-06 陆一平 Method and combined structure for forming and adjusting surface plasma pattern of material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179931A (en) * 2000-12-04 2002-06-26 Korea Inst Of Science & Technology Polymer composite material containing metal particle of nanometer-order size and its manufacturing method
JP2005169775A (en) * 2003-12-10 2005-06-30 Mitsui Chemicals Inc Multilayered sheet
JP2006184624A (en) * 2004-12-28 2006-07-13 Tokyo Institute Of Technology Thin film polarizer, its manufacturing method and optical device using same
JP2010065064A (en) * 2008-09-08 2010-03-25 Tokyo Institute Of Technology Thermally conductive material, thermally conductive sheet, inter-laminar insulation film, and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212496A1 (en) * 2003-10-14 2007-09-13 Satoshi Tomita Process for Producing Metal Nonoparticle Composite Film
WO2009034940A1 (en) * 2007-09-11 2009-03-19 Nippon Steel Chemical Co., Ltd. Method for formation of conductive layer, method for production of circuit board, method for production of conductive microparticle, and composition for formation of conductive layer
CN101736329B (en) * 2008-11-21 2012-02-22 比亚迪股份有限公司 Polyimide film activation solution and method for metalizing polyimide film
JP5129171B2 (en) * 2009-01-23 2013-01-23 新日鉄住金化学株式会社 Method for manufacturing circuit wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179931A (en) * 2000-12-04 2002-06-26 Korea Inst Of Science & Technology Polymer composite material containing metal particle of nanometer-order size and its manufacturing method
JP2005169775A (en) * 2003-12-10 2005-06-30 Mitsui Chemicals Inc Multilayered sheet
JP2006184624A (en) * 2004-12-28 2006-07-13 Tokyo Institute Of Technology Thin film polarizer, its manufacturing method and optical device using same
JP2010065064A (en) * 2008-09-08 2010-03-25 Tokyo Institute Of Technology Thermally conductive material, thermally conductive sheet, inter-laminar insulation film, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519753A (en) * 2017-05-12 2020-07-02 インヒビット コーティングズ リミテッド Composite resin containing silver nanoparticles

Also Published As

Publication number Publication date
TWI518111B (en) 2016-01-21
JP5719847B2 (en) 2015-05-20
TW201211110A (en) 2012-03-16
KR20130098991A (en) 2013-09-05
JPWO2012020634A1 (en) 2013-10-28
CN103052481B (en) 2015-06-17
CN103052481A (en) 2013-04-17
CN105017562A (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5586682B2 (en) Metal fine particle composite and method for producing the same
JP5627137B2 (en) Metal fine particle composite
JP5728006B2 (en) Metal fine particle composite and method for producing the same
TWI438224B (en) Polyamic acid and polyimide film, method for fabricating the same, composition and utilization thereof
WO2014051050A1 (en) Polyimide resin composition
JP5773484B2 (en) Metal fine particle composite and method for producing the same
JP5719847B2 (en) Method for producing metal fine particle composite
Qi et al. Double-surface-silvered polyimide films prepared via a direct ion-exchange self-metallization process
Liu et al. A versatile platform of catechol-functionalized polysiloxanes for hybrid nanoassembly and in situ surface enhanced Raman scattering applications
Qi et al. Highly reflective and conductive double-surface-silvered polyimide films prepared from silver fluoride and BTDA/4, 4 ‘-ODA
JP2014072219A (en) Photodiode and manufacturing method of the same
JP5756346B2 (en) Condensation sensor, condensation detection method using the same, and dew point measurement device
Liaw et al. The preparation of Ni-plated polystyrene microspheres using 3-(trimethoxysilyl) propyl methacrylate as a bridging agent

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038553.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012528628

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137002648

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816300

Country of ref document: EP

Kind code of ref document: A1