WO2012019331A1 - 风力发电机组的功率控制方法 - Google Patents

风力发电机组的功率控制方法 Download PDF

Info

Publication number
WO2012019331A1
WO2012019331A1 PCT/CN2010/001686 CN2010001686W WO2012019331A1 WO 2012019331 A1 WO2012019331 A1 WO 2012019331A1 CN 2010001686 W CN2010001686 W CN 2010001686W WO 2012019331 A1 WO2012019331 A1 WO 2012019331A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
wind turbine
pid
control
control method
Prior art date
Application number
PCT/CN2010/001686
Other languages
English (en)
French (fr)
Inventor
宫玉鹏
辛理夫
李磊
Original Assignee
华锐风电科技(江苏)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华锐风电科技(江苏)有限公司 filed Critical 华锐风电科技(江苏)有限公司
Publication of WO2012019331A1 publication Critical patent/WO2012019331A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/044Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a control method, in particular to a power control method for a wind power generator set. Background technique
  • the object of the present invention is to provide a power control method for a wind power generator set, which can improve the power control system of the wind power generator without changing the existing hardware, and improve the power generation efficiency of the wind power generator and reduce the power generation efficiency of the wind power generator.
  • the flicker of the wind turbine also reduces the damage of the wind turbine hardware equipment caused by the torque ripple.
  • the present invention provides a power control method for a wind power generator comprising a dual PID torque calculation control step and a torque limit step, and when switching between the dual PID torque calculation control steps, the force Into the hysteresis.
  • double PID control is adopted, and the two PID parameters are adjusted proportionally.
  • the power control method of the wind power generator according to the present invention is combined with the operating parameter information of the wind power generator, such as the rotational speed, the power, the torque, the wind speed, on the existing wind turbine hardware.
  • the pitch angle, etc. under the treatment of a new set of control algorithms, the original power fluctuations are large, modified to the wind turbine in the operating wind speed range, the torque and power changes are relatively slow, and the wind turbine is reduced. Flicker size for better control.
  • FIG. 1 is a T-n graph of a wind turbine using the existing PID torque calculation control method
  • FIG. 2 is a T-n graph of a wind turbine using the existing torque given control method
  • FIG. 3 is a T-n graph of a wind power generator using the power control method of the wind power generator according to the present invention. detailed description
  • the invention provides a power control method for a wind power generator set, which optimizes the power control system of the MW stage (double-fed unit and full-power frequency conversion unit) wind power generator, thereby achieving the purpose of reducing the wind generator flicker.
  • the power control system of a wind turbine consists of the following two parts:
  • the main control system of the wind turbine the main function is to calculate the optimal torque of the wind turbine according to the actual operation of the wind turbine;
  • the frequency conversion control system the main function is to apply the optimal torque calculated by the main control system to the generator.
  • the rotation speed is maintained at nl, and the torque of the wind turbine is controlled according to the rotation speed difference (the rotation speed difference is the actual rotation speed minus the set rotation speed nl);
  • the speed difference is the actual rotation speed minus the set rotation speed nl
  • the torque control purpose is achieved by the limit value;
  • the speed is maintained at n2, according to the speed difference (the speed difference is the actual speed minus the set speed n2) to control the torque of the wind turbine; in the DE section, the holding torque is constant, and the speed is controlled by the pitch, thereby The purpose of controlling power is achieved.
  • Torque reference control method As shown in Fig. 2, in the AB section, the rotation speed is maintained between ⁇ and nl, and the torque of the wind turbine is controlled according to the rotation speed difference; in the BC section, the rotation speed is changed from nl to n2. According to the parameters of the wind turbine, the optimal torque range of this section is determined by simulation, and the torque is adjusted according to different speeds; in the CD section, the speed changes between n2 and n3, and the wind speed is controlled according to the speed difference. The torque of the generator; In the DE section, the power is kept constant, and the input power is controlled by the pitch control, thereby achieving the purpose of controlling the torque and the rotational speed. In view of the operating characteristics of the wind turbine power control problem causing excessive flicker, it is necessary to The two schemes are modified and improved to achieve the purpose of controlling the flicker of the wind turbine output.
  • the speed changes from nl to n2. Since the torque is calculated by the speed difference, it is not necessarily the optimal torque, so the CP in the BC section The value may decrease, and the flicker will be too large.
  • the rotation speed is maintained at n2, and the torque of the wind turbine is controlled according to the rotation speed difference (the rotation speed difference is the actual rotation speed minus the set rotation speed n2). In order to maintain the same speed, the torque changes greatly, which will cause the wind turbine to flicker too much.
  • the torque is kept constant, and the speed is controlled by the pitch. If the pitch speed is slow, it cannot be based on the wind speed. Adjusting the blade angle will also cause the wind turbine to flicker too much.
  • the BC segment is generally referred to as the "optimal CP curve tracking curve"
  • the hysteresis method is to prevent the two control strategies from being repeatedly changed at point B; the hysteresis control method is that the speed exceeds ( After nl+40) rpm, the control strategy of the BC segment is used; after the rpm is less than (nl-20) rpm, the control strategy of the AB segment is used.
  • BC segment The method of reducing flicker reduces power fluctuation; using PID control alone will cause large fluctuations in power; single-use torque setting will result in inability to quickly track optimal torque, torque limit
  • the value plus double PID can absorb the advantages of the two control methods and reduce the fluctuation of power.
  • B1C1 and B2C2 in Fig. 3 are the upper limit curve and the lower limit curve of the limit method adopted;
  • PID control small adjustment of rated torque, combined with accelerated pitch control strategy to achieve stable power, thereby reducing flicker.
  • the invention changes the traditional wind turbine power control strategy, and adds hysteresis in the conversion process of the two control strategies;
  • the main function of the first control loop is to reduce the dynamic error
  • the main control function of the second control loop is to reduce the steady-state error

Description

风力发电机组的功率控制方法 技术领域
本发明涉及一种控制方法, 尤其涉及一种风力发电机组的功率控制方法。 背景技术
随着国内外风力发电机组装机容量的增加, 风电所占电网容量的不断增大, 风 电的电能质量问题就逐渐被市场和运营商所重视。 风力发电机组的电能质量问题突 出表现在闪变, 谐波, 电压暂降等几个方面, 而尤为突出是风力发电机的闪变问题, 直接影响到风力发电机并网点的电压稳定性和电力系统的安全性。 发明内容
本发明的目的在于提供一种风力发电机组的功率控制方法, 能够在不改变现有 所用硬件的基础上, 对风力发电机组的功率控制系统进行改进, 同时提高了风力发 电机的发电效率, 减少了风力发电机的闪变, 同时也降低了转矩波动对风力发电机 硬件设备的损伤。 为实现上述目的, 本发明提供了一种风力发电机组的功率控制方法, 其包括双 PID转矩计算控制步骤和转矩限值步骤,并在双 PID转矩计算控制步骤之间转换时, 力口入滞环。
实施时, 在双 PID转矩计算控制步骤中, 采用双 PID控制, 并成比例地调节两 PID参数。
实施时, 在双 PID转矩计算控制步骤中, 风力发电机组的当前转子转矩在一预 定范围内时, 转换为单 PID控制。 与现有技术相比, 本发明所述的风力发电机组的功率控制方法在现有风力发电 机硬件的 出上, 通过结合风力发电机组的运行参数信息, 如转速、 功率、 转矩、 风速、 变桨角度等, 在一套新的控制算法的处理下, 将原来的功率波动较大, 修改 为风力发电机在运行风速范围内, 转矩和功率变化相对较緩, 减小风力发电机的闪 变大小, 可实现更佳的控制效果。 附图说明
图 1是采用现有的 PID转矩计算控制方法的风力发电机组的 T-n曲线图; 图 2是采用现有的转矩给定控制方法的风力发电机组的 T-n曲线图;
图 3是采用本发明所述的风力发电机组的功率控制方法的风力发电机组的 T-n 曲线图。 具体实施方式
本发明提供了一种风力发电机组的功率控制方法, 对 MW级(双馈机组和全功 率变频机组)风力发电机组的功率控制系统进行优化, 从而达到减小风力发电机闪 变的目的。 风力发电机组的功率控制系统包括以下两个部分:
1、 风力发电机的主控系统, 主要作用是根据风力发电机的实际运行情况, 计 算出风力发电机的最优转矩;
2、 变频控制系统, 主要作用是将主控系统计算的最优转矩施加给发电机。 目前, 行业内主要有两种技术方案来实现风力发电机功率控制:
PID转矩计算控制方法:如图 1所示,在 AB段,转速维持在 nl,根据转速差(该 转速差为实际转速减去设定转速 nl )来做控制风力发电机的转矩; 在 BC段, 转速 在 nl到 n2变化, 根据转速差来控制转矩, 为了可以在 BC段保持风力发电机的较 高 CP值, 所以要通过限值的方式达到转矩控制的目的; 在 CD段, 转速维持在 n2, 根据转速差 (该转速差为实际转速减去设定转速 n2 )来做控制风力发电机的转矩; 在 DE段, 保持转矩不变, 通过变桨控制转速, 从而达到控制功率的目的。
转矩给定控制方法: 如图 2所示, 在 AB段, 转速维持在 ηθ到 nl之间变化, 根据转速差来做控制风力发电机的转矩; 在 BC段, 转速在 nl到 n2变化, 根据风 力发电机的参数通过仿真, 确定这个区间最优的转矩范围, 根据不同的转速, 来调 节转矩; 在 CD段, 转速在 n2到 n3之间变化,根据转速差来做控制风力发电机的转 矩; 在 DE段, 保持功率不变, 通过变桨控制输入功率, 从而达到控制转矩和转速 的目的。 针对风力发电机组功率控制问题导致闪变过大的运行特点, 需要对以上所提的 两种方案进行修改和完善, 从而达到控制风力发电机输出闪变的目的。
1.PID转矩计算控制方法有以下缺点:
如图 1所示, 风力发电机在在 BC段运行时, 转速在 nl到 n2变化, 由于转矩 是通过转速差计算出来的, 所以并不一定是最优的转矩, 所以在 BC段 CP值可能 会降低, 另外还会造成闪变过大; 在 CD段, 转速维持在 n2,根据转速差(该转速差 为实际转速减去设定转速 n2 )来做控制风力发电机的转矩。 为了维持转速不变, 转 矩变化较大, 从而会导致风力发电机的闪变过大; 在 DE段, 保持转矩不变, 通过 变桨控制转速, 如果变桨速度较慢, 无法根据风速对叶片角度进行调整, 那么也会 导致风力发电机的闪变过大。
2. 转矩给定控制方法有以下缺点:
如图 2所示, 在 B和 C点附近时, 风力发电机转矩控制策略要发生变化, 即设 定转矩和 PID计算转矩的之间的变化,这样就会导致功率波动过大,引起闪变超标。 本发明所述的控制方法如下所述:
1、 在 AB段, 通过调节风力发电机 PID (包括双 PID )参数, 调节转矩的变化 率, 可以达到减小闪变的目的;
2、 在 B点控制策略发生改变时, 通过加入滞环的方式来平滑控制策略发生改 变时转矩的波动, 从而减小闪变;
3、 在 BC段, 使用 PID (包括双 PID )控制加限值的方式, 不仅保证了转矩的 及时响应, 也减小了转矩的过大波动, 可以有效地降低风力发电机的闪变;
4、 在 C点控制策略发生改变时, 通过加入滞环的方式来平滑控制策略发生改 变时转矩的波动, 从而减小风力发电机的闪变; 。
5、 在 CD段, 通过调节风力发电机 PID (包括双 PID )参数, 调节转矩的变化 率, 可以达到减小闪变的目的;
6、 在 DE段, 通过调节风力发电机 PID (包括双 PID )参数来计算风力发电机 的额定转矩, 并通过加快变桨的响应速度来减小功率的波动, 从而降低风力发电机 的闪变大小。
( 1 ) BC段一般被称为可 "最优 CP曲线跟踪曲线" ;
( 2 )在 AB段, 根据实际转矩的大小, 进行成比例地调节 PID (双 PID )参数, 即调节 PID参数时, 保证两 PID参数的比值一直保持一预定比例, 如果实际转矩与 设定转矩相差很小时, 让其中的一个 PID停止工作; CD段同理;
( 3 )从 AB段到 BC段, 是从双 PID控制变换成双 PID加限值控制; 滞环的方 法目的是防止在 B点两种控制策略反复变换; 滞环的控制方法是转速超过( nl+40 ) rpm以后, 才使用 BC段的控制策略; 转速小于 ( nl-20 ) rpm以后, 才使用 AB段 的控制策略。
( 4 ) BC段: 减小闪变的方法就减小功率波动; 单使用 PID控制, 会造成功率 的大幅波动; 单使用转矩给定会造成无法快速的跟踪最优转矩, 转矩限值加双 PID 可以吸收两种控制方法的优点, 减小功率的波动。
图 3中的 B1C1、 B2C2是采用的限值方法的上限曲线和下限曲线;
( 5 )在 DE段, 其他的控制策略是保持转矩恒定; 本专利的控制策略是通过双
PID控制, 小幅度的调整额定转矩, 并与加快变桨控制策略相结合, 达到稳定功率 的目的, 从而减小闪变。 本发明改变传统的风力发电机功率控制策略, 在两种控制策略转换过程中加入 滞环;
在最优 CP曲线跟踪过程中, 加入了双 PID控制和限幅控制;
在使用 PID转矩控制中, 加入了双 PID的控制策略。
在双 PID进行转矩控制时, 第一个控制环主要作用是减小动态误差, 第二个控 制环主要控制作用是减小稳态误差。 以上说明对发明而言只是说明性的, 而非限制性的,本领域普通技术人员理解, 在不脱离所附权利要求所限定的精神和范围的情况下, 可做出许多修改、 变化或等 效, 但都将落入本发明的保护范围内。

Claims

权利要求
1、 一种风力发电机组的功率控制方法, 其特征在于, 其包括双 PID转矩计算 控制步骤和转矩限值步骤, 并在双 PID转矩计算控制步骤之间转换时, 加入滞环。
2、 根据权利要求 1所述的风力发电机组的功率控制方法, 其特征在于, 在双 PID转矩计算控制步骤中, 采用双 PID控制, 并成比例地调节两 PID参数。
3、 根据权利要求 2 所述的风力发电机组的功率控制方法, 其特征在于, 在双 PID转矩计算控制步骤中, 风力发电机组的当前转子转矩在一预定范围内时, 转换 为单 PID控制。
PCT/CN2010/001686 2010-08-11 2010-10-25 风力发电机组的功率控制方法 WO2012019331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010250626.X 2010-08-11
CN201010250626XA CN102374118B (zh) 2010-08-11 2010-08-11 风力发电机组的功率控制方法

Publications (1)

Publication Number Publication Date
WO2012019331A1 true WO2012019331A1 (zh) 2012-02-16

Family

ID=45567262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001686 WO2012019331A1 (zh) 2010-08-11 2010-10-25 风力发电机组的功率控制方法

Country Status (2)

Country Link
CN (1) CN102374118B (zh)
WO (1) WO2012019331A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748216A (zh) * 2012-07-13 2012-10-24 国电联合动力技术有限公司 一种风电机组有功功率调节方法、系统和装置
CN109301869A (zh) * 2018-10-29 2019-02-01 吴联凯 一种多模式风力机功率控制系统
US11530685B2 (en) 2020-08-20 2022-12-20 General Electric Company System and method for managing output flicker generated by a wind farm

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102996335B (zh) * 2012-10-24 2015-03-11 南车株洲电力机车研究所有限公司 一种大型风电机组变桨距控制与转矩控制的解耦控制方法
CN104329225B (zh) * 2014-08-29 2017-01-11 江苏中航动力控制有限公司 风力发电机组功率控制方法
CN106050558B (zh) * 2016-06-02 2019-05-28 三一重型能源装备有限公司 基于转速控制的风力发电最大输出功率跟踪方法及系统
CN106050561A (zh) * 2016-06-22 2016-10-26 青岛华创风能有限公司 一种稳步调节全场风机出力的算法
CN109611271A (zh) * 2018-12-20 2019-04-12 汕头大学 一种变速变桨距风力发电机转矩控制方法
CN110671266A (zh) * 2019-11-13 2020-01-10 大连理工大学 一种智能变桨距机电控制优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073518A1 (en) * 2000-03-29 2001-10-04 Abb Research Ltd. Wind power plant having fixed-speed and variable-speed windmills
CN101054951A (zh) * 2007-05-24 2007-10-17 上海交通大学 基于最大能量捕获的大型风力机控制方法
CN101483344A (zh) * 2007-12-27 2009-07-15 歌美飒创新技术公司 风力设备及其运行方法
CN101769232A (zh) * 2010-01-19 2010-07-07 南京航空航天大学 一种定桨距变速风力发电机组的全风速功率控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073518A1 (en) * 2000-03-29 2001-10-04 Abb Research Ltd. Wind power plant having fixed-speed and variable-speed windmills
CN101054951A (zh) * 2007-05-24 2007-10-17 上海交通大学 基于最大能量捕获的大型风力机控制方法
CN101483344A (zh) * 2007-12-27 2009-07-15 歌美飒创新技术公司 风力设备及其运行方法
CN101769232A (zh) * 2010-01-19 2010-07-07 南京航空航天大学 一种定桨距变速风力发电机组的全风速功率控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748216A (zh) * 2012-07-13 2012-10-24 国电联合动力技术有限公司 一种风电机组有功功率调节方法、系统和装置
CN109301869A (zh) * 2018-10-29 2019-02-01 吴联凯 一种多模式风力机功率控制系统
US11530685B2 (en) 2020-08-20 2022-12-20 General Electric Company System and method for managing output flicker generated by a wind farm

Also Published As

Publication number Publication date
CN102374118B (zh) 2013-06-12
CN102374118A (zh) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2012019331A1 (zh) 风力发电机组的功率控制方法
Arnalte et al. Direct torque control of a doubly-fed induction generator for variable speed wind turbines
CN109586319B (zh) 一种风电机组参与系统调频方法及系统
US8301311B2 (en) Frequency-responsive wind turbine output control
US8294288B2 (en) Collector anti-wearing and lubrication system for variable speed wind turbine
CA2767998C (en) Bang-bang controller and control method for variable speed wind turbines during abnormal frequency conditions
CN102777320B (zh) 风力发电机组扭矩与变桨解耦控制的方法、控制器及系统
CN108242814A (zh) 变速变频风电机组的一次调频方法和设备
CN103441722B (zh) 一种双馈风电机组的有功控制方法
CN110374807B (zh) 风力发电机组软停机控制方法及风力发电机组
CN107394817B (zh) 一种风电参与电力系统调频的方法及系统
CN107134814B (zh) 一种双馈风机协同有功备用控制方法
CN110429668B (zh) 减载风电机组变速变桨协调优化频率控制方法
CN107706937B (zh) 一种储能型双馈风电机组的协调控制方法
CN112928781A (zh) 双馈风机暂态稳定控制方法、系统、计算机设备和介质
CN112271760A (zh) 适用于直驱风电场交流并网的调频控制方法
CN110513248B (zh) 一种具有主动支撑电网功能的风机桨距角控制方法及装置
CN110417025B (zh) 一种分布式风机电压波动平抑控制方法
KR20130094629A (ko) 풍력 발전기의 블레이드의 피치 제어 방법
Ming et al. Impacts of doubly-fed wind turbine generator operation mode on system voltage stability
CN112865168B (zh) 一种基于虚拟惯性智能控制的风电机组一次调频方法
He et al. Research on primary frequency control strategy based on DFIG
CN109995077B (zh) 一种基于pmsg风机的系统惯性支持级联控制方法
CN114000974B (zh) 一种基于变桨变速风力发电机组的冗余控制方法
CN114421489A (zh) 一种基于虚拟同步技术的风电调频控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855752

Country of ref document: EP

Kind code of ref document: A1