WO2012018935A1 - Control system for an ice maker - Google Patents
Control system for an ice maker Download PDFInfo
- Publication number
- WO2012018935A1 WO2012018935A1 PCT/US2011/046456 US2011046456W WO2012018935A1 WO 2012018935 A1 WO2012018935 A1 WO 2012018935A1 US 2011046456 W US2011046456 W US 2011046456W WO 2012018935 A1 WO2012018935 A1 WO 2012018935A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- water level
- sensor
- ice
- curtain
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C5/00—Working or handling ice
- F25C5/02—Apparatus for disintegrating, removing or harvesting ice
- F25C5/04—Apparatus for disintegrating, removing or harvesting ice without the use of saws
- F25C5/08—Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
- F25C5/10—Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice using hot refrigerant; using fluid heated by refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/12—Producing ice by freezing water on cooled surfaces, e.g. to form slabs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2400/00—Auxiliary features or devices for producing, working or handling ice
- F25C2400/14—Water supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2600/00—Control issues
- F25C2600/04—Control means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2700/00—Sensing or detecting of parameters; Sensors therefor
- F25C2700/04—Level of water
Definitions
- the present disclosure relates to a control system for an ice maker. More particularly, the present disclosure relates a control system for an ice maker that only requires a water level sensor and a curtain sensor.
- the present disclosure provides for a control system for an ice maker including a water level sensor and a curtain sensor for providing simple, low cost and efficient ice production.
- the water level sensor initiates/terminates the freeze cycle and initiates the harvest cycle and the curtain sensor terminates the harvest cycle.
- the ice maker provides for low water usage and adjustability of the ice thickness by the user.
- the present disclosure provides a system for ice making.
- the system for ice making includes a controller, a compressor, a condenser, an
- a water level sensor disposed in the water sump.
- the water sensor detects a high water level and signals the controller to initiate an ice making cycle
- the sensor further detects a low water level in the sump and signals the controller to terminate the ice making cycle and initiates a harvest cycle.
- the system further includes a curtain sensor disposed about the curtain that detects when a harvest cycle has ended and sends a signal to a controller to fill the sump with water.
- the present disclosure also provides a method for ice making.
- the method includes filling a water sump with water, the water having a water level, the filling moves a water level indicator toward a first position according to the water level, draining the water from the water sump after the water level indicator achieves the first position, the draining moves the water level indicator to a second position according to the water level.
- the method further includes filling the water sump with the water, the filling continues until the water level indicator achieves the first position.
- the method includes freezing the water thereby creating ice; and harvesting the ice by dropping the ice from an evaporator into a container, the container has a curtain sensor that is activated by ice impact when the ice drops from the evaporator into the container.
- FIG. 1 is a diagram of a refrigerant system
- FIG. 2 is a front view of an ice maker of the present disclosure.
- FIG. 3 is front view of the ice maker shown in FIG. 1 , with a water sump removed.
- FIG. 4 is a front view of the ice maker shown in FIG. 1 , with the curtain removed.
- FIG. 5 is a rear view of the icemaker shown in FIG. 1.
- FIG. 6 is a rear view of the ice maker shown in FIG. 1 , with an air
- FIG. 7 is the same view shown in FIG. 6, with a fan motor removed.
- FIG. 8a is a water level sensor of the present disclosure.
- FIG. 8b is an internal circuit of the water level sensor of FIG. 8a.
- FIG. 9 is flow chart illustrating a control system for an ice maker of the present disclosure.
- System 1 1 for cooling a fluid (e.g., air or water) is shown.
- System 1 1 includes a condenser 41 , an evaporator 16, an expansion device 45, and a compressor 40 in fluid communication with one another.
- Compressor 40 is operative to circulate a refrigerant between condenser 41 and evaporator 16 and to compress the vapor refrigerant before it enters condenser 41.
- Condenser 41 which in the illustrated embodiment is in heat exchange relationship with outdoor ambient air, and is operative to substantially condense the vapor refrigerant.
- Evaporator 16 which is in heat exchange relationship with the indoor air to be cooled, is operative to substantially evaporate the refrigerant.
- Expansion device 45 facilitates evaporation of the refrigerant by reducing the pressure thereof before the refrigerant enters evaporator 16.
- the heat absorbed by the refrigerant during evaporation cools the air passing through evaporator 16.
- the cooled air is supplied to an indoor conditioned space via an air supply duct (not shown).
- condenser 41 has a fan 46 operatively associated therewith.
- Fan 46 moves air (typically outdoor ambient air) across condenser 41 to cool the refrigerant in condenser 41 and facilitate condensation thereof.
- evaporator 16 has a fan (not shown) operatively associated therewith for moving indoor air to be cooled across evaporator 16.
- FIGS. 2-7 there is shown an ice maker 10 according to the present disclosure.
- FIG. 2 is a front view of an ice maker 10 having a curtain 15 with a
- curtain sensor 17 a water sump 20 and a control system 25.
- FIG. 3 is a front view of the ice maker 10 with a water sump 15 removed from ice maker 10 to show a water pump 30 and a water level sensor 35.
- FIG. 4 is a front view of the ice maker 10 with the curtain 15 removed to show an evaporator 16, a dump valve, and a water inlet valve 43.
- FIG. 5 is a rear view of ice maker 10 showing an air condenser 41 , a compressor 40 and water valve 43.
- FIG. 6 is a rear view of the ice maker 10, with an air condenser
- FIG. 7 illustrates the same view of ice maker 10 shown in FIG. 6, with fan motor 46 removed to show an expansion valve 45.
- FIG. 8a shows water level sensor 35 having a water level 36.
- Water level 36 can be any type of water level, including but not limited to, a magnetic float ball.
- FIG. 8b shows the internal circuit of water level sensor 35 having a first sensor position 37 (S1 ) and a second sensor position 39 (S2) to provide and receive signals with control system 25.
- Water level sensor 35 can be any type of sensor, including a ring type magnet disposed within a float ball.
- Water level sensor 25 triggers a reed switch from on/off depending on the water level, i.e., the volume of water in water sump 20.
- Ice maker 10 with control system 25 is a low cost, simple system containing only 2 sensors. Ice maker 10 preferably has a water level sensor and a curtain sensor, compared to a large number of sensors contained in conventional ice makers. In addition, ice maker 10 does not require a water temperature sensor, liquid line thermistor or discharge line thermistor. Thus, ice maker 10 has a simpler design, as a result providing lower fail rates for components and a lower cost to the consumer. Ice maker 10 further provides low water usage and prevents overfill, thus is more efficient.
- ice maker 10 has a toggle switch 5 with three positions: ICE, OFF and CLEAN.
- ice maker 10 may have LED lights to indicate status and/or alert issues that may arise.
- ice maker 10 may include a notification system, such as a buzzer, for indication when a fault or problem occurs.
- FIG. 9 provides a flow chart, i.e., flow chart 400, which illustrates operation of ice maker 10 controlled by control system 25 according to the present disclosure.
- FIG. 9 illustrates five (5) processes carried out by ice maker 0 under the control of control of control system 25.
- the 5 processes include, but are not limited to: (i) initial water fill and purge, (ii) water fill and refrigerant start and pre-chill, (iii) freeze cycle, (iv) harvest cycle, and (v) automatic shut down sequence.
- Flow chart 400 begins with "initial start”, when toggle switch 5 is moved to "ICE” position to activate ice maker 10. See FIG. 1 , Toggle Switch 5.
- control system 25 checks the status of sensor position (S1 ) 37 of water level indicator 35.
- step 410 If sensor position (S1 ) 37 is determined to be in the opened position, flow chart 400 progresses to step 410. If sensor position (S1) is determined to be in the closed position, flow chart 400 progresses to step 415.
- a water inlet valve receives a signal to activate and to fill ice maker 10 with water.
- water level indicator 35 eventually keeps sensor position (S1 ) 37 in the closed position for two (2) seconds.
- the water inlet valve 43 receives a signal to deactivate and to stop the flow of water.
- Flow chart 400 then returns to step 405.
- ice machine 10 receives a signal to begin a dump procedure with the water pump and water dump energized while the water intake valve is de-energized.
- Step 417 monitors sensor position (S2) 39 to determine if it is open or closed during the dump procedure of step 415. If S2 is open, flow diagram 400 is returned to step 415. Once sensor position (S2) 39 is closed by water level indicator 36 flow diagram progresses to step 420.
- sensor position (S2) 39 is closed for two (2) seconds. Thereafter, the water pump and dump valve receive a signal to activate and to fill ice maker 10 with water.
- ice machine 10 prepares for refrigeration and a pre-chill phase.
- a water pump valve i.e., water pump valve 30 of FIG. 2, receives a signal to activate and to drain the water, preferably at one second intervals.
- flow chart 400 transitions into (ii) water fill and refrigerant start and pre-chill process.
- the (ii) water fill and refrigerant start and pre-chill process cools down the machine first which, in turn, shortens a subsequent freeze time, thereby providing for an increased efficiency for refrigeration.
- step 420 the water inlet valve (WTV) 43 and a hot gas valve 42 are energized and the water pump and water dump valve 44 are de-energized.
- steps 425, 435,440, 445 and 450 are run. While these steps are performed, steps 430 is run in parallel with step 433 performed after step 433 is performed. All of these steps are discussed below.
- the hot gas valve (HGV) and the water inlet valve (WTV) receive a signal to activate at one second intervals.
- Step 425 provides a wait period of 45 seconds for refrigerant system balance. After 45 seconds elapses, flow chart 400 progresses to step 435.
- a contactor located in control box 25, receives a signal to activate, and for refrigeration to begin.
- flow chart 400 progresses to step 440.
- Step 440 provides a wait period for 5 seconds for refrigerant system hot balance. After the wait period of 5 seconds, flow chart 400 progresses to step 445.
- step 445 the HGV is de-energized. That is, the hot gas valve receives a signal to deactivate and to shut down. This causes ice machine 10 to enter into a pre-chill phase.
- flow chart 400 progresses to step 450.
- Step 450 provides a 30 second wait period is provided to cool and pre- chill the ice maker 10, before entering the (iii) freeze cycle process described below.
- step 400 also evaluates if the water inlet valve is de-energized in step 433.
- the water inlet valve receives a signal to deactivate and to stop the flow of water into ice maker 10. Thereafter, flow diagram 400 progresses to step 450 to determine if the pre-chill phase continues for at least 30 seconds. If step 450 is valid, i.e., Y, the water pump is activated and ice machine 10 receives a signal to enter into a freeze cycle.
- ice formation increases as the water level reduces to keep second sensor position (S2) 39 open.
- the water level reduces as water becomes ice in the water trough.
- a controller in control system 25 reads a freeze time adjustment setting and, based on this setting, the controller signals ice machine 10 to either extend or shorten the 2 minute freeze cycle.
- the 2 minute timing of the freezing cycle is adjustable for preferred ice thickness of a user.
- ice machine 10 enters the (iv) harvest cycle starting at step 465 described- below.
- ice machine 10 enters the harvest cycle.
- the HGV, water pump valve and water dump valve become energized or activated. That is, the HGV, water pump valve, and the water dump valve receive a signal to activate and to harvest the ice and drain the water.
- the HGV, water pump valve and the water dump valve harvest the ice and drain the water at one second intervals, i.e., step 470.
- the water pump and the water dump valves receive a signal to deactivate and to shut down, while the water inlet valve receives a signal to activate and to fill ice maker 0 with water in preparation for the next freeze cycle. Draining and re-filling the water during the harvest cycle provides for a cleaner and more sanitary ice maker 10.
- step 480 the formed ice drops from the evaporator 16 and engages curtain sensor 17.
- ice machine 10 receives a signal to end the harvest cycle and deactive the hot gas valve. Then, ice machine 10 enters a pre-chill phase for the next freeze cycle.
- step 485 ice full, ice maker 10 initiates another pre-chill phase.
- the ice is harvested, it is pushed out onto water curtain 15, which opens curtain sensor 17.
- curtain sensor 17 is opened and then and closes before 7 seconds have elapsed, a signal is sent to initiate another pre- chill phase.
- curtain sensor 17 remains opened for more than 7 seconds, then the controller receives a signal to initiate an automatic shut down. If ice machine 10 enters a harvest cycle with curtain sensor 17 open, the harvesting occurs for a maximum of 3.5 minutes.
- steps 480 and 485 also perform an automatic shut down sequence.
- curtain sensor 17 Once curtain sensor 17 is opened for more than 7 seconds during a harvest cycle, ice machine 10 receives a signal to go into automatic shutdown. Ice machine 10 receives a signal to restart the initial water fill and purge and/or prechill once curtain sensor 17 closes again.
- ice machine 10 remains off for at least 3 minutes before it can automatically restart, the 3 minutes begin at the time of automatic shutdown. Ice machine 10 can restart after the at least 3 minutes has elapsed and curtain sensor 17 recloses. If curtain sensor 17 closes prior to the at least 3 minutes has elapsed, ice machine 10 restarts as soon as the 3 minutes have elapsed. Ice machine 10 restarts by following the initial start-up sequence.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Production, Working, Storing, Or Distribution Of Ice (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112013002192A BR112013002192A2 (en) | 2010-08-06 | 2011-08-03 | control system for an ice making machine |
EP11815275.0A EP2601461A1 (en) | 2010-08-06 | 2011-08-03 | Control system for an ice maker |
CN2011800388986A CN103429976A (en) | 2010-08-06 | 2011-08-03 | Control system for ice maker |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37157510P | 2010-08-06 | 2010-08-06 | |
US61/371,575 | 2010-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012018935A1 true WO2012018935A1 (en) | 2012-02-09 |
Family
ID=45555059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/046456 WO2012018935A1 (en) | 2010-08-06 | 2011-08-03 | Control system for an ice maker |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120031126A1 (en) |
EP (1) | EP2601461A1 (en) |
CN (1) | CN103429976A (en) |
BR (1) | BR112013002192A2 (en) |
WO (1) | WO2012018935A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI828166B (en) * | 2022-05-27 | 2024-01-01 | 富臨國際開發有限公司 | Ice machine circulation cooling system |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9032744B2 (en) * | 2013-01-14 | 2015-05-19 | General Electric Company | Ice maker for a refrigerator appliance and a method for operating the same |
US9644879B2 (en) * | 2013-01-29 | 2017-05-09 | True Manufacturing Company, Inc. | Apparatus and method for sensing ice thickness and detecting failure modes of an ice maker |
KR102279393B1 (en) * | 2014-08-22 | 2021-07-21 | 삼성전자주식회사 | Refrigerator |
CN106662387B (en) | 2014-08-22 | 2019-12-06 | 真实制造有限公司 | draining a sump of an ice maker to prevent growth of harmful biological material |
CN105485993A (en) * | 2015-03-19 | 2016-04-13 | 斯科茨曼制冰系统(上海)有限公司 | Ice making machine and ice making method using same |
CN105423670A (en) * | 2015-12-15 | 2016-03-23 | 陈雄 | Small ice maker |
US10401071B2 (en) * | 2016-06-23 | 2019-09-03 | True Manufacturing Co., Inc. | Ice maker with capacitive water level sensing |
CN111207537A (en) * | 2020-01-16 | 2020-05-29 | 六安索伊电器制造有限公司 | Quick ice making system of ice making machine |
US11802727B2 (en) | 2020-01-18 | 2023-10-31 | True Manufacturing Co., Inc. | Ice maker |
CN116928953A (en) * | 2022-04-07 | 2023-10-24 | 青岛海尔电冰箱有限公司 | Door body ice making assembly and refrigerator with same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1038571A (en) * | 1963-01-09 | 1966-08-10 | Borg Warner | Ice makers |
US5477694A (en) * | 1994-05-18 | 1995-12-26 | Scotsman Group, Inc. | Method for controlling an ice making machine and apparatus therefor |
US20060026984A1 (en) * | 2004-08-05 | 2006-02-09 | Funk Howard G | Ice-making machine with contoured water curtain |
US20060277937A1 (en) * | 2005-06-10 | 2006-12-14 | Manitowoc Foodservice Companies.Inc. | Ice making machine and method of controlling an ice making machine |
US20080016900A1 (en) * | 2006-07-18 | 2008-01-24 | Melissa Marie Bippus | Ice Maker with Water Quantity Sensing |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3430452A (en) * | 1966-12-05 | 1969-03-04 | Manitowoc Co | Ice cube making apparatus |
US3877242A (en) * | 1973-10-11 | 1975-04-15 | Int Refrigeration Engineers | Harvest control unit for an ice-making machine |
US3964269A (en) * | 1974-11-21 | 1976-06-22 | Whirlpool Corporation | Sensing arm water fill shut off for ice maker |
US4938030A (en) * | 1986-12-04 | 1990-07-03 | Schneider Metal Manufacturing Co. | Ice cube maker with new freeze and harvest control |
US6907744B2 (en) * | 2002-03-18 | 2005-06-21 | Manitowoc Foodservice Companies, Inc. | Ice-making machine with improved water curtain |
-
2011
- 2011-08-03 US US13/197,607 patent/US20120031126A1/en not_active Abandoned
- 2011-08-03 CN CN2011800388986A patent/CN103429976A/en active Pending
- 2011-08-03 WO PCT/US2011/046456 patent/WO2012018935A1/en active Application Filing
- 2011-08-03 EP EP11815275.0A patent/EP2601461A1/en not_active Withdrawn
- 2011-08-03 BR BR112013002192A patent/BR112013002192A2/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1038571A (en) * | 1963-01-09 | 1966-08-10 | Borg Warner | Ice makers |
US5477694A (en) * | 1994-05-18 | 1995-12-26 | Scotsman Group, Inc. | Method for controlling an ice making machine and apparatus therefor |
US20060026984A1 (en) * | 2004-08-05 | 2006-02-09 | Funk Howard G | Ice-making machine with contoured water curtain |
US20060277937A1 (en) * | 2005-06-10 | 2006-12-14 | Manitowoc Foodservice Companies.Inc. | Ice making machine and method of controlling an ice making machine |
US20080016900A1 (en) * | 2006-07-18 | 2008-01-24 | Melissa Marie Bippus | Ice Maker with Water Quantity Sensing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI828166B (en) * | 2022-05-27 | 2024-01-01 | 富臨國際開發有限公司 | Ice machine circulation cooling system |
Also Published As
Publication number | Publication date |
---|---|
EP2601461A1 (en) | 2013-06-12 |
US20120031126A1 (en) | 2012-02-09 |
BR112013002192A2 (en) | 2016-05-31 |
CN103429976A (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120031126A1 (en) | Control system for an ice maker | |
US20240142152A1 (en) | Ice maker with push notification to indicate when maintenance is required | |
US11543161B2 (en) | Ice maker with reversing condenser fan motor to maintain clean condenser | |
US6725675B2 (en) | Flaked ice making machine | |
JPH0842950A (en) | Ice making method,ice cube production machine and operation method thereof | |
CN101688718A (en) | Method of operating ice making machine | |
US5829257A (en) | Methods and systems for harvesting ice in an ice making apparatus | |
US20070157636A1 (en) | Icemaker control system | |
RU2571025C2 (en) | Single-circuit chilling machine | |
JP2009121768A (en) | Automatic ice making machine and control method for it | |
CN114383372A (en) | Control method of ice maker of refrigerator and refrigerator | |
KR101507037B1 (en) | Ice dispenser Housing for use of ice maker | |
JP2000258009A (en) | Automatic ice maker | |
KR100389417B1 (en) | Control device for ICE maker apparatus | |
JPH10281607A (en) | Control device for ice making machine | |
JPH08338675A (en) | Method and device for preventing imperfect ice generation in water circulation type ice making machine | |
US3054274A (en) | Ice maker controls | |
KR20060003397A (en) | Water supplying control apparutus for a ice maker and control method thereof | |
JP2004278991A (en) | Ice making machine | |
CN221802145U (en) | Ice making system | |
US11686519B2 (en) | Ice maker with pulsed fill routine | |
JP2000329433A (en) | Ice maker | |
CN116294408A (en) | Control method for multifunctional refrigerator | |
CN117870239A (en) | Ice making system and control method thereof | |
KR20220121198A (en) | Ice maker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11815275 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011815275 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013002192 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013002192 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130129 |