WO2012018296A1 - Heat exchanger plates with anti-fouling properties - Google Patents

Heat exchanger plates with anti-fouling properties Download PDF

Info

Publication number
WO2012018296A1
WO2012018296A1 PCT/SE2011/050654 SE2011050654W WO2012018296A1 WO 2012018296 A1 WO2012018296 A1 WO 2012018296A1 SE 2011050654 W SE2011050654 W SE 2011050654W WO 2012018296 A1 WO2012018296 A1 WO 2012018296A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
coating
plates
heat exchanger
μιτι
Prior art date
Application number
PCT/SE2011/050654
Other languages
French (fr)
Inventor
Jonas Anehamre
Original Assignee
Alfa Laval Corporate Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfa Laval Corporate Ab filed Critical Alfa Laval Corporate Ab
Priority to CN201180025763.6A priority Critical patent/CN102906527B/en
Priority to ES11728966.0T priority patent/ES2650243T3/en
Priority to EP11728966.0A priority patent/EP2577209B1/en
Priority to PL11728966T priority patent/PL2577209T3/en
Priority to SI201131332T priority patent/SI2577209T1/en
Priority to BR112012027928-9A priority patent/BR112012027928B1/en
Priority to NO11728966A priority patent/NO2577209T3/no
Priority to CA2798153A priority patent/CA2798153C/en
Priority to DK11728966.0T priority patent/DK2577209T3/en
Priority to JP2013512577A priority patent/JP2013528276A/en
Publication of WO2012018296A1 publication Critical patent/WO2012018296A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Definitions

  • the present invention relates to a plate for a plate heat exchanger, a plate pack, a plate heat exchanger and a method of producing a plate for a plate heat exchanger for improving anti-fouling properties and facilitating cleaning of plate heat exchangers.
  • PHE Plate heat exchangers in use may over time get fouled which leads to a decreased heat transfer and increased pressure drop, and thus leads to an overall reduced performance of the heat exchanger.
  • heat exchangers which are not permanently joined will eventually need to be opened and cleaned.
  • the cleaning of PHE may both be time consuming and costly.
  • the process to which the PHE normally is connected to may have to be shut down during said cleaning of the PHE.
  • the plates of heat exchangers are made of metal sheets.
  • the base material i.e. metals used, have a high surface free energy that results in most liquids easily wetting the surface of the sheets.
  • WO2009034359 discloses provision of a coating to reduce biofouling of surfaces in aquatic environments wherein the coating is applied by use of
  • US20090123730 discloses a surface of a heat exchanger which is to be soldered by means of a flux, and said surface is in addition to the flux also provided with at least one more layer containing an additive. The additive is reacted in order to modify the surface during soldering.
  • WO20081 19751 discloses production of a hydrophobic coating for condensers wherein the coating comprises sol-gel materials based on e.g. silicon oxide sol.
  • JP2000345355 relates to improving corrosion resistance and discloses a film consisting of 55-99 wt% S1O2 and 45-1 wt% Zr0 2 which film is formed using sol-gel processing.
  • US2006/0196644 discloses a heat exchanger provided with a hydrophilic surface coating comprising a gel produced by sol-gel processing.
  • a problem encountered with presently known antifouling coatings is the poor wear resistance of the coatings in applications with abrasive heat exchanging media, e g sand or other particulate material which enters the PHE with the heat exchanging fluids. Furthermore, cracks in the coating may occur due to torque and tension forces acting on the plate packages in applications under high pressures.
  • Another object is to achieve plates for a PHE having an antifouling surface which are wear resistant in abrasive environments and have high resistance against formation of cracks.
  • sol-gel coated PHE plates of the invention exhibit an excellent wear resistance and have a flexibility that reduces the risk of cracks appearing in the coating.
  • the present invention also relates to a heat exchanger and a plate pack for plate heat exchangers comprising a number of heat transfer plates of the kinds as defined herein.
  • the present invention further relates to a method of producing a heat transfer plate comprising the steps of:
  • Fig. 1 is a schematic drawing of the M20 PHE plate pack with the relative position of the plates used in tests, both plates coated according to the present invention and conventional uncoated plates.
  • Fig. 2 shows pictures of plates according to the present invention and a conventional plate after disassembly after operation for 7 months.
  • Fig. 3 is a schematic cross section of a plate for a plate heat exchanger having an anti fouling coating according to the invention.
  • the coating used according to the present invention may be referred to as a non-stick coating and makes it easy to clean the plates of a fouled heat exchanger.
  • the coated plates according to the present invention show a better heat transfer over time compared to conventional heat exchanger plates since the latter ones gets fouled much quicker and thus decrease the heat transfer performance to a larger extent.
  • the coating of the plates also results in a much more even surface thus resulting in better flow characteristics.
  • the pressure drop is reduced over time for a plate heat exchanger according to the present invention in comparison with conventional plate heat exchangers, since the buildup of impurities, microorganisms and other substances is not as pronounced.
  • coated plates according to the present invention may easily be cleaned just using high pressure washing with water. With a plate according to the present invention there is no need for extensive time consuming mechanical cleaning or cleaning using strong acids, bases or detergents, such as e.g. NaOH and HNO3.
  • a plate for use in a plate heat exchanger is coated with a composition comprising organosilicon compounds using a sol-gel process.
  • the organosilicon compounds are starting materials used in the sol-gel process and are preferably silicon alkoxy compounds.
  • a sol is converted into a gel to produce nano-materials.
  • nano-materials Through hydrolysis and condensation reactions a three-dimensional network of interlayered molecules is produced in a liquid.
  • Thermal processing stages serve to process the gel further into nano-materials or nanostructures resulting in a final coating.
  • the coating comprising said nano-materials or nanostructures mainly comprise silicon oxide, SiO x , having an atomic ratio of O/Si > 1 , preferably an atomic ratio of O/Si > 1 .5-3, and most preferably O/Si > 2-2.5.
  • a preferred silicon oxide is silica, S1O2.
  • the siliconoxide forms a three dimensional network having excellent adhesion to the plates.
  • the coating of the present invention further has a content of carbon such as found in hydrocarbon chains.
  • the carbon content is > 10 atomic%, preferably > 20-60 atomic%, and most preferably > 30-40 atomic%.
  • the hydrocarbons impart flexibility and resilience to the coating which is especially important in gasketed plate heat exchangers since the plates move during operation due to high pressures exerted on the plates in the plate package.
  • the hydrocarbon chains are hydrophobic and oleophobic which results in the non-stick properties of the coating.
  • Fig 3 is shown a schematic drawing of a plate for a plate heat exchanger provided with a siliconoxide sol gel coating. Between the plate itself and the siliconoxide layer is an interface between the coating siloxane and and a metal oxide film of the plate. The coating bulk that follows said interface is the siloxane network with organic linker chains and voids that impart flexibility to the coating. The outermost layer is a functional surface, i e a hydrophobic/oleophobic surface for fouling reduction.
  • a plate for a plate heat exchanger which has excellent non-stick properties and also is wear and crack resistant.
  • the flexibility of the coating is especially important in plate heat exchangers provided with gaskets between the plates since it is a well known problem that the plate package is not rigid resulting in that coatings on the plates tend to crack when the flexible plates move and bend in relation to each other, a phenomenon called "snakeing".
  • At least one sol comprising organosilicon compounds is applied to the surface to be coated.
  • the surface may be wetted/coated with the sol in any suitable way. It is preferable for the surface coating to be applied by spraying, dipping or flooding.
  • At least a part of one side of the heat exchanger plate is to be coated. Alternatively, all surfaces of at least one side of a plate which during use in a PHE would be in contact with a fluid are coated.
  • at least one side of a heat exchanger plate may be entirely coated. Alternatively, both sides of the plate may be coated. If both sides are coated, they may be partly or fully coated, in any combination. Naturally, more surfaces than the surfaces intended to be in contact with fluid may be coated.
  • the gaskets may be coated with the composition according to the present invention.
  • the coating composition is preferably only applied on the surface of gaskets designated to be in contact with at least one fluid when in use in a PHE.
  • the coating composition according to the present invention may be applied to bare PHE plates or PHE plates with gaskets attached to them.
  • surfaces of plates and gaskets in contact with at least one fluid is intended to relate to surfaces in contact with fluid(s) within the heat exchanger.
  • the method comprises a pretreatment of at least the surfaces on the heat exchanger plates to be coated with at least one sol.
  • This pretreatment is also preferably carried out by means of dipping, flooding or spraying.
  • the pretreatment is used to clean the surfaces to be coated in order to obtain increased adhesion of the latter coating to the heat exchanger plate.
  • Examples of such pretreatments are treatment with acetone and/or alkaline solutions, e.g. caustic solution.
  • the method comprises thermal processing stages, e.g. a drying operation may be carried out after a pretreatment and a drying and/or curing operation is often necessary after the actual coating of the plate with said sol.
  • the coating is preferably subjected to heat using conventional heating apparatus, such as e.g. ovens.
  • the composition comprising SiOx is applied to a plate to be used in a plate heat exchanger.
  • the application of the composition is done by means of sol-gel processing.
  • the resulting film of said composition on the plate is preferably between 1 and 30 ⁇ thick.
  • the thickness of the coated film is important for the use of the plate in a not permanently joined heat exchanger. A film thickness below 1 ⁇ is considered being not enough wear resistant since the plates in a plate heat exchanger in use are able to move slightly in relation to each other. This slight movement causes wear on the film and with time the coating will become worn down.
  • the thickness of the film has an upper limit since the application of substances on the heat transfer plates influences the heat transfer and thus the performance of the plate heat exchanger.
  • the upper limit for the applied film is preferably 30 ⁇ .
  • the film thickness of the silicon oxide sol containing composition is 1 -30 ⁇ , preferably 1 .5-25 ⁇ , preferably 2-20 ⁇ , preferably 2-15 ⁇ , preferably 2-10 ⁇ and preferably 3-10
  • the base material for the plates may be chosen from several metals and metal alloys.
  • the base material is chosen from titanium, nickel, copper, any alloys of the before mentioned, stainless steel and/or carbon steel.
  • titanium, any alloys of the before mentioned or stainless steel is preferred.
  • Coat 1 is a silan terminated polymer in butyl acetate and Coat 2 is a polysiloxan-urethan resin in solvent naphtha/butylacetate.
  • the analysis documents the properties of coatings concerning substrate wetting and adhesion, contact angel, coating thickness and stability towards 1 .2 % HNO 3 in H 2 O, 1 % NaOH in H 2 O and crude oil. The results are summarized below in Table 1 .
  • Adhesion was determined by cross-cut/tape test according to DIN EN ISO 2409. Rating is from 0 (excellent) to 5 (terrible). 0 or 1 is acceptable while 2 to 5 is not. First digit indicates rating after cross cut (1 mm grid) and the second digit gives rating after tape has been applied and taken off again. To obtain the best adhesion for Coat 1 and Coat 2 the substrates required pre-treatment.
  • the substrate To obtain the best adhesion of Coat 1 on stainless steel the substrate must be pre-treated.
  • the substrate is submerged in an
  • Both coatings showed good stability under acidic condition.
  • the coatings were stable for 1 1 ⁇ 2 hour at 75 °C and more than 24 hours at room temperature.
  • Coat 1 Under alkaline conditions Coat 1 showed a better result than Coat 2. Coat 1 could withstand the alkaline conditions for 3 hours at 85 °C and Coat 2 for 2 hours at 85 °C. Both coatings showed no decomposition or reduction in oleophobic properties after being submerged for 6 months in crude oil at room temperature.
  • Coat 1 and Coat 2 were applied to a total of 30 titanium M20 heat exchange plates (measuring 175 x 62 cm) used in a crude oil cooler. All plates underwent pre-treatment which consisted of:
  • XPS X-ray Photoelectron Spectroscopy
  • ESCA Electron Spectroscopy for Chemical Analysis
  • composition expressed in atomic% - for the outermost 2-10 nm of surfaces.
  • the measuring principle is that a sample, placed in high vacuum, is irradiated with well defined x-ray energy resulting in the emission of photoelectrons. Only those from the outermost surface layers reach the detector. By analyzing the kinetic energy of these photoelectrons, their binding energy can be calculated, thus giving their origin in relation to the element and the electron shell.
  • XPS provides quantitative data on both the elemental composition and different chemical states of an element (different functional groups, chemical bonding, oxidation state, etc). All elements except hydrogen and helium are detected and the surface chemical composition obtained is expressed in atomic%.
  • XPS spectra were recorded using a Kratos AXIS Ultra DLD x-ray photoelectron spectrometer. The samples were analyzed using a
  • the analysis area was below 1 mm 2 .
  • thermo-imaging After four months of operation an off-shore pre-inspection by thermo-imaging was performed. Thermo-image of the mid region of heat exchanger in operation. The identity of the two coating systems was presumed from the installation, but it was obvious that two sets of PHE plates show increased heat transfer compared to the rest of the PHE unit.
  • the inspection showed an elevation temperature at the coated plates.
  • the non-coated plates showed a lower operating temperature.
  • the difference in temperature is presumed due to reduced fouling, hence a higher crude oil flow in the coated region which produces an elevated temperature.
  • fouling is used to describe the deposits formed on the PHE plates during operation.
  • the fouling are residues and deposits formed by the crude oil and consists of a waxy, organic part and a mineral/inorganic part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention relates to a plate, a plate pack, a plate heat exchanger and a method of producing plate for a plate heat exchanger. The present invention improves anti-fouling properties and facilitates cleaning of plate heat exchangers.

Description

HEAT EXCHANGER PLATES WITH ANTI-FOULING PROPERTIES
Field of the Invention
The present invention relates to a plate for a plate heat exchanger, a plate pack, a plate heat exchanger and a method of producing a plate for a plate heat exchanger for improving anti-fouling properties and facilitating cleaning of plate heat exchangers.
Background
In many industrial processes fouling of heat transfer equipment is of concern. In order to keep a satisfying performance of the equipment regular service and cleaning it is necessary to remove build up of deposits on the heat transfer plates. The deposits arise e.g. from the fluids in the equipment, microbial growth and/or dirt.
Plate heat exchangers (PHE) in use may over time get fouled which leads to a decreased heat transfer and increased pressure drop, and thus leads to an overall reduced performance of the heat exchanger. Thus heat exchangers which are not permanently joined will eventually need to be opened and cleaned. Depending e.g. on the fluids used in the heat exchanger plates may be seriously fouled and difficult to clean, thus requiring strong detergents and/or powerful mechanical cleaning over a substantial time period in order to restore the performance of the heat exchanger. The cleaning of PHE may both be time consuming and costly. Also, the process to which the PHE normally is connected to may have to be shut down during said cleaning of the PHE.
The plates of heat exchangers are made of metal sheets. The base material, i.e. metals used, have a high surface free energy that results in most liquids easily wetting the surface of the sheets.
Also, when heat exchanger plates are produced the forming operation of sheet metal increases the surface roughness which often is associated with faster build up of fouling deposits.
WO2009034359 discloses provision of a coating to reduce biofouling of surfaces in aquatic environments wherein the coating is applied by use of
Plasma Assisted Chemical Vapour Deposition (PACVD). US20090123730 discloses a surface of a heat exchanger which is to be soldered by means of a flux, and said surface is in addition to the flux also provided with at least one more layer containing an additive. The additive is reacted in order to modify the surface during soldering.
WO20081 19751 discloses production of a hydrophobic coating for condensers wherein the coating comprises sol-gel materials based on e.g. silicon oxide sol.
JP2000345355 relates to improving corrosion resistance and discloses a film consisting of 55-99 wt% S1O2 and 45-1 wt% Zr02 which film is formed using sol-gel processing.
US2006/0196644 discloses a heat exchanger provided with a hydrophilic surface coating comprising a gel produced by sol-gel processing.
It would be desirable to find new ways to ensure less fouling of heat exchangers and their plates in order to keep the heat exchangers running for longer time periods as well as more easily cleaned heat exchangers and plates. Also, a reduced shut down time for processes where PHEs are involved would be desirable.
A problem encountered with presently known antifouling coatings is the poor wear resistance of the coatings in applications with abrasive heat exchanging media, e g sand or other particulate material which enters the PHE with the heat exchanging fluids. Furthermore, cracks in the coating may occur due to torque and tension forces acting on the plate packages in applications under high pressures. Summary of the invention
It is an object of the present invention to provide improved plates for a PHE, which show a reduced fouling of the plates when in use in a PHE.
Another object is to achieve plates for a PHE having an antifouling surface which are wear resistant in abrasive environments and have high resistance against formation of cracks.
This object is achieved by plates being coated with a sol-gel composition which results in plates with reduced fouling of the plate when in use in a heat exchanger. By applying a coating composition comprising sol- gel material with organosilicon compounds to the heat exchanger plate both the surface free energy and roughness is lowered, leading to reduction of fouling and easy cleaning of heat exchanger plates. Moreover, the sol-gel coated PHE plates of the invention exhibit an excellent wear resistance and have a flexibility that reduces the risk of cracks appearing in the coating.
The present invention also relates to a heat exchanger and a plate pack for plate heat exchangers comprising a number of heat transfer plates of the kinds as defined herein.
The present invention further relates to a method of producing a heat transfer plate comprising the steps of:
a) forming a plate for a plate heat exchanger from a base material, b) preparing a composition by means of sol-gel processing on at least a part of the plate, which composition comprises organosilicon compounds, c) drying and/or curing said composition to form a coating comprising silicon oxide (SiOx).
Brief Description of the Drawings
Fig. 1 is a schematic drawing of the M20 PHE plate pack with the relative position of the plates used in tests, both plates coated according to the present invention and conventional uncoated plates.
Fig. 2 shows pictures of plates according to the present invention and a conventional plate after disassembly after operation for 7 months.
Fig. 3 is a schematic cross section of a plate for a plate heat exchanger having an anti fouling coating according to the invention.
Detailed description of the invention
The coating used according to the present invention may be referred to as a non-stick coating and makes it easy to clean the plates of a fouled heat exchanger. The coated plates according to the present invention show a better heat transfer over time compared to conventional heat exchanger plates since the latter ones gets fouled much quicker and thus decrease the heat transfer performance to a larger extent. The coating of the plates also results in a much more even surface thus resulting in better flow characteristics. Also the pressure drop is reduced over time for a plate heat exchanger according to the present invention in comparison with conventional plate heat exchangers, since the buildup of impurities, microorganisms and other substances is not as pronounced.
The coated plates according to the present invention may easily be cleaned just using high pressure washing with water. With a plate according to the present invention there is no need for extensive time consuming mechanical cleaning or cleaning using strong acids, bases or detergents, such as e.g. NaOH and HNO3.
According to the present invention a plate for use in a plate heat exchanger is coated with a composition comprising organosilicon compounds using a sol-gel process. The organosilicon compounds are starting materials used in the sol-gel process and are preferably silicon alkoxy compounds. In the sol-gel process a sol is converted into a gel to produce nano-materials. Through hydrolysis and condensation reactions a three-dimensional network of interlayered molecules is produced in a liquid. Thermal processing stages serve to process the gel further into nano-materials or nanostructures resulting in a final coating. The coating comprising said nano-materials or nanostructures mainly comprise silicon oxide, SiOx, having an atomic ratio of O/Si > 1 , preferably an atomic ratio of O/Si > 1 .5-3, and most preferably O/Si > 2-2.5. A preferred silicon oxide is silica, S1O2. The siliconoxide forms a three dimensional network having excellent adhesion to the plates.
The coating of the present invention further has a content of carbon such as found in hydrocarbon chains. The hydrocarbons may or may not have functional groups such as found in hydrocarbon chains or aromatic groups, e g C=O, C-O, C-O-C, C-N, N-C-O, N-C=O, etc. Preferably the carbon content is > 10 atomic%, preferably > 20-60 atomic%, and most preferably > 30-40 atomic%. The hydrocarbons impart flexibility and resilience to the coating which is especially important in gasketed plate heat exchangers since the plates move during operation due to high pressures exerted on the plates in the plate package. The hydrocarbon chains are hydrophobic and oleophobic which results in the non-stick properties of the coating. In Fig 3 is shown a schematic drawing of a plate for a plate heat exchanger provided with a siliconoxide sol gel coating. Between the plate itself and the siliconoxide layer is an interface between the coating siloxane and and a metal oxide film of the plate. The coating bulk that follows said interface is the siloxane network with organic linker chains and voids that impart flexibility to the coating. The outermost layer is a functional surface, i e a hydrophobic/oleophobic surface for fouling reduction.
By the combination of a durable and yet flexible coating, a plate for a plate heat exchanger is achieved which has excellent non-stick properties and also is wear and crack resistant. The flexibility of the coating is especially important in plate heat exchangers provided with gaskets between the plates since it is a well known problem that the plate package is not rigid resulting in that coatings on the plates tend to crack when the flexible plates move and bend in relation to each other, a phenomenon called "snakeing".
In one embodiment of the present invention at least one sol comprising organosilicon compounds is applied to the surface to be coated. The surface may be wetted/coated with the sol in any suitable way. It is preferable for the surface coating to be applied by spraying, dipping or flooding. At least a part of one side of the heat exchanger plate is to be coated. Alternatively, all surfaces of at least one side of a plate which during use in a PHE would be in contact with a fluid are coated. Also, at least one side of a heat exchanger plate may be entirely coated. Alternatively, both sides of the plate may be coated. If both sides are coated, they may be partly or fully coated, in any combination. Naturally, more surfaces than the surfaces intended to be in contact with fluid may be coated. Preferably, all surfaces in contact with a fluid giving rise to fouling are coated. Also the gaskets may be coated with the composition according to the present invention. The coating composition is preferably only applied on the surface of gaskets designated to be in contact with at least one fluid when in use in a PHE. In view of the above the coating composition according to the present invention may be applied to bare PHE plates or PHE plates with gaskets attached to them. When discussed in the present application surfaces of plates and gaskets in contact with at least one fluid is intended to relate to surfaces in contact with fluid(s) within the heat exchanger.
In another embodiment the method comprises a pretreatment of at least the surfaces on the heat exchanger plates to be coated with at least one sol. This pretreatment is also preferably carried out by means of dipping, flooding or spraying. The pretreatment is used to clean the surfaces to be coated in order to obtain increased adhesion of the latter coating to the heat exchanger plate. Examples of such pretreatments are treatment with acetone and/or alkaline solutions, e.g. caustic solution.
In another embodiment the method comprises thermal processing stages, e.g. a drying operation may be carried out after a pretreatment and a drying and/or curing operation is often necessary after the actual coating of the plate with said sol. The coating is preferably subjected to heat using conventional heating apparatus, such as e.g. ovens.
The composition comprising SiOx is applied to a plate to be used in a plate heat exchanger. The application of the composition is done by means of sol-gel processing. The resulting film of said composition on the plate is preferably between 1 and 30 μιτι thick. The thickness of the coated film is important for the use of the plate in a not permanently joined heat exchanger. A film thickness below 1 μιτι is considered being not enough wear resistant since the plates in a plate heat exchanger in use are able to move slightly in relation to each other. This slight movement causes wear on the film and with time the coating will become worn down. Also the thickness of the film has an upper limit since the application of substances on the heat transfer plates influences the heat transfer and thus the performance of the plate heat exchanger. The upper limit for the applied film is preferably 30 μιτι. Thus, the film thickness of the silicon oxide sol containing composition is 1 -30 μιτι, preferably 1 .5-25 μιτι, preferably 2-20 μιτι, preferably 2-15 μιτι, preferably 2-10 μιτι and preferably 3-10 μιτι.
The base material for the plates may be chosen from several metals and metal alloys. Preferably, the base material is chosen from titanium, nickel, copper, any alloys of the before mentioned, stainless steel and/or carbon steel. However, titanium, any alloys of the before mentioned or stainless steel is preferred.
Examples
In the search for prolonged operational time of off-shore equipment, tests were conducted on low surface energy glass ceramic coatings.
Two low surface energy glass ceramic coatings Coat 1 and Coat 2 were tested and the results are presented below. Coat 1 is a silan terminated polymer in butyl acetate and Coat 2 is a polysiloxan-urethan resin in solvent naphtha/butylacetate.
Phase A
The analysis documents the properties of coatings concerning substrate wetting and adhesion, contact angel, coating thickness and stability towards 1 .2 % HNO3 in H2O, 1 % NaOH in H2O and crude oil. The results are summarized below in Table 1 .
Table 1
Figure imgf000009_0001
Both coatings showed excellent wetting when spray coated onto either stainless steel or titanium substrates.
Adhesion was determined by cross-cut/tape test according to DIN EN ISO 2409. Rating is from 0 (excellent) to 5 (terrible). 0 or 1 is acceptable while 2 to 5 is not. First digit indicates rating after cross cut (1 mm grid) and the second digit gives rating after tape has been applied and taken off again. To obtain the best adhesion for Coat 1 and Coat 2 the substrates required pre-treatment.
To obtain the best adhesion of Coat 1 on stainless steel the substrate must be pre-treated. The substrate is submerged in an
alkaline cleaning detergent for 30 minutes. Afterwards the substrate is washed with water and demineralized water and dried before Coat 1 is applied within half an hour to achieve the optimal adhesion. Tests have shown the adhesion is reduced if cleaning of the substrate is only carried out with acetone. Pre-treatment is also necessary for stainless steel substrates coated with Coat 2. This coating displayed unaffected adhesion whether an alkaline detergent or acetone was used as pre-treatment. If the pre-treatment step is neglected or not made correctly it will affect coating adhesion.
Both coatings showed good stability under acidic condition. The coatings were stable for 1 ½ hour at 75 °C and more than 24 hours at room temperature.
Under alkaline conditions Coat 1 showed a better result than Coat 2. Coat 1 could withstand the alkaline conditions for 3 hours at 85 °C and Coat 2 for 2 hours at 85 °C. Both coatings showed no decomposition or reduction in oleophobic properties after being submerged for 6 months in crude oil at room temperature.
Phase B
M3 heat exchanger plates with gaskets were partly coated and then tested. To examine whether the partly coated gaskets would compromise the operation of the PHE, these test included pressure tests. It was concluded that partly coating of gaskets with the coatings did not impact operation. The M3 plates were not operated with crude oil. Phase C
Coating of PHE plates
Coat 1 and Coat 2 were applied to a total of 30 titanium M20 heat exchange plates (measuring 175 x 62 cm) used in a crude oil cooler. All plates underwent pre-treatment which consisted of:
1 . Submerging in liquid nitrogen (- 196 °C) to remove gaskets
2. Treatment with acidic and alkaline solutions to remove fouling
3. High pressure washing of the plates with water
4. Assembly of the PHE stack for pressure testing
5. Disassembly of the PHE stack. Plates left to dry before application
This pre-treatment was completed the day before Coat 1 and Coat 2 were applied to the plates. Consequently, this procedure did not follow the recommended approach as outlined in Phase A. As the plates have been left to dry at ambient temperature, some plates were still wet. 15 plates were treated with Coat 1 and the remaining 15 plates with Coat 2 by spray coating. The heat exchanger plates were coated on both sides and then placed in a rack. As the plates had glued gaskets on them, both the plates and the gaskets were coated. The final film thickness was measured to be 2-4 μιτι and the coating was applied on both sides of the plates. Curing/drying was performed at elevated temperatures of 200 °C or 160 °C respectively for 1 ½ hour in an on-site oven. Upon completion the coated heat exchangers were weighed and coating thickness was measured. It was observed that some plates had some coating imperfections and small defects.
All plates were stamped with a unique number for later identification. The heat exchanger plates were then assembled with the remaining untreated 319 plates. The coated plates were placed respectively in the front, middle and end of the assembled unit and the position of the coated plates in the PHE stack are shown in Fig 1 . The evaluation of the coated plates was performed after more than seven months of operation.
The plates that later, after termination of off-shore operation, were chosen for detailed analysis were positioned at the left (plate no. 3 and 6), middle (plate no. 12 and 17) and the right (plate no 22 and 29) positions in Figure 1 . Phase D
Determination of content in coating by XPS analysis
Three different silicon oxide-coated Ti substrates were analyzed before and after use by means of XPS (X-ray Photoelectron Spectroscopy), also known as ESCA (Electron Spectroscopy for Chemical Analysis). The XPS method provides quantitative chemical information - the chemical
composition expressed in atomic% - for the outermost 2-10 nm of surfaces.
The measuring principle is that a sample, placed in high vacuum, is irradiated with well defined x-ray energy resulting in the emission of photoelectrons. Only those from the outermost surface layers reach the detector. By analyzing the kinetic energy of these photoelectrons, their binding energy can be calculated, thus giving their origin in relation to the element and the electron shell.
XPS provides quantitative data on both the elemental composition and different chemical states of an element (different functional groups, chemical bonding, oxidation state, etc). All elements except hydrogen and helium are detected and the surface chemical composition obtained is expressed in atomic%.
XPS spectra were recorded using a Kratos AXIS UltraDLD x-ray photoelectron spectrometer. The samples were analyzed using a
monochromatic Al x-ray source. The analysis area was below 1 mm2.
In the analysis wide spectra were run to detect elements present in the surface layer. The relative surface compositions were obtained from quantification of detail spectra run for each element.
The following three samples were XPS analyzed:
1 . Siliconoxide (new) on Ti-plate - coating on both sides.
2. Siliconoxide (used) on Ti-plate - coating on one side
3. Siliconoxide on DIN 1 .4401 stainless steel plate, coating on both sides.
The analysis was performed in one position per sample, except for sample 1 , where two positions were analyzed. The results are summarized in Table 2 showing the relative surface composition in atomic% and atomic ratio O/Si. Table 2
Sample O/Si C 0 Si N
1 new (pt 1) 2.25 61 .1 23.5 10.5 4.2
2 new (pt 2) 2.30 61 .0 23.9 10.4 4.1
2 used 2.29 68.0 19.5 8.6 3.1
3 1 .46 41 .9 34.3 23.4 (0.2)*
*weak peak in detail spectra, signal close to noise level As seen in Table 2 mainly C, O and Si were detected on the outermost surfaces, i e 41 .9-68.0 atomic% C, 19.5-34.3 atomic% O and 8.6-23.4 atomic% Si.
Note that in the atomic ratios O/Si, the total amount of oxygen is used. This means that also oxygen in functional groups with carbon is included. Otherwise for silica, from theory is expected a ratio O/Si of 2.0 for the bulk pure silica S1O2.
Inspection during operation
After four months of operation an off-shore pre-inspection by thermo-imaging was performed. Thermo-image of the mid region of heat exchanger in operation. The identity of the two coating systems was presumed from the installation, but it was obvious that two sets of PHE plates show increased heat transfer compared to the rest of the PHE unit.
The inspection showed an elevation temperature at the coated plates. The non-coated plates showed a lower operating temperature. The difference in temperature is presumed due to reduced fouling, hence a higher crude oil flow in the coated region which produces an elevated temperature.
Inspection of plates after operation
The term fouling is used to describe the deposits formed on the PHE plates during operation. The fouling are residues and deposits formed by the crude oil and consists of a waxy, organic part and a mineral/inorganic part.
The visual inspection revealed that the plates with the coating designated Coat 1 was covered with the least amount of fouling on the crude oil facing plate side. Also, the other coating system designated Coat 2 had a reduced amount of fouling on the crude oil facing plate side compared to the bare titanium surface but to a lesser extent then Coat 1 . The bare titanium plates at the end of the plate pack were completely covered in a thick layer of crude oil derived fouling.
Images taken off-shore during the disassembly (Fig 2) showed significant reduction in fouling on both of the coated plates compared to the uncoated plates.
By subtracting the average weight of a clean plate from the weight recorded for the individual fouled plates the average amount of fouling per surface type was calculated (table 3). Note, the weight of the coating was not compensated for and so the real fouling reduction is slightly higher. For a T20-M plate the heat transfer surface is 0.85 m2 so for a plate with a 4 μιτι thick coating on front and back the total volume is around 6.8 cm3. If the coating is estimated to be pure S1O2 (density 2.6 g/cm3) then the amount of coating per plate is about 20 g.
Table 3
Figure imgf000014_0001
For both coating systems the fouling of the plates were more easily removed compared to the fouling adhering to the bare titanium surface, see Table 4. The difference in cleaning requirements was tested by manually wiping of the plates with a tissue and by high pressure water cleaning. Just wiping the plates with a tissue showed that the fouling was very easily removed from the coated plates, contrary to the uncoated plates. By using water jet all fouling except for one or two small patches could be removed from the Coat 1 coated surface. On the Coat 2 coated surface some more fouling was present after water jet cleaning. This fouling had the appearance of slightly burnt oil. Some loss of coating was observed in the contact points but overall the coated surface that had been in contact with the crude oil was in a good condition.
On the sea water facing side both coatings had deteriorated and could be peeled of quite easily.
Table 4
Figure imgf000015_0001
The coating tolerance to immersion in liquid nitrogen for gasket removal was tested. One Coat 1 and one Coat 2 plate were treated in liquid nitrogen, at -196 °C, to remove the rubber gaskets. The coatings did not appear do suffer from the extreme temperature changes. Subsequently the plates were washed by high pressure water, which removed almost all fouling. No coating delimitation or failure was observed for either coating system.

Claims

Claims
1. A plate for a plate heat exchanger, characterised in that said plate has a coating comprising silicon oxide, SiOx, having an atomic ratio of O/Si > 1 , a content of carbon > 10 atomic% and a coating layer thickness of about 1-30 μιτι, which coating was prepared by sol-gel processing and applied to at least a part of the plate.
2. A plate according to claim 1 , wherein the layer thickness of said coating on the plate is 1.5-25 μιτι, preferably 2-20 μιτι, more preferably 2-15 μιτι, even more preferably 2-10 μιτι, and most preferably 3-10 μιτι.
3. A plate according to claim 1 or 2, wherein the coating comprising silicon oxide, SiOx, has an atomic ratio of O/Si > 1.5-3, preferably O/Si > 2-2.5.
4. A plate according to any one of claims 1-3, wherein the composition has a content of carbon > 20-60 atomic%, preferably > 30-40 atomic%.
5. A plate according to any one of claims 1-4, wherein said coating is applied to the surface of a gasket designated to be in contact with at least one fluid when the plate is in a plate heat exchanger in use.
6. A plate according to any one of claims 1 -5, wherein said plate is made of a base material chosen from titanium, nickel, copper, any alloys of the before mentioned, stainless steel and/or carbon steel.
7. A plate pack for a plate heat exchanger, characterised in that it comprises a number of plates of the kinds as defined in any one of claims 1 - 6.
8. A plate heat exchanger, characterised in that it comprises a number of heat plates of the kind as defined in any one of claims 1 -6.
9. Method of producing a plate for a plate heat exchanger according to any one of claims 1 -6, comprising the steps of:
a) forming a plate from a base material,
b) preparing a composition comprising organosilicon compounds by means of sol-gel processing and applying it to at least a part of the plate, c) drying and/or curing said coating, whereafter the coating on the plate comprises silicon dioxide.
PCT/SE2011/050654 2010-05-26 2011-05-26 Heat exchanger plates with anti-fouling properties WO2012018296A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201180025763.6A CN102906527B (en) 2010-05-26 2011-05-26 There is the heat exchanger plate of ant-scaling character
ES11728966.0T ES2650243T3 (en) 2010-05-26 2011-05-26 Heat exchanger plates with anti-dirt properties
EP11728966.0A EP2577209B1 (en) 2010-05-26 2011-05-26 Heat exchanger plates with anti-fouling properties
PL11728966T PL2577209T3 (en) 2010-05-26 2011-05-26 Heat exchanger plates with anti-fouling properties
SI201131332T SI2577209T1 (en) 2010-05-26 2011-05-26 Heat exchanger plates with anti-fouling properties
BR112012027928-9A BR112012027928B1 (en) 2010-05-26 2011-05-26 PLATE SEALED FOR A PLATE HEAT EXCHANGER, PLATE SET, PLATE HEAT EXCHANGER, METHOD FOR PRODUCING A PLATE SEALED FOR A PLATE HEAT EXCHANGER
NO11728966A NO2577209T3 (en) 2010-05-26 2011-05-26
CA2798153A CA2798153C (en) 2010-05-26 2011-05-26 Heat exchanger plates with anti-fouling properties
DK11728966.0T DK2577209T3 (en) 2010-05-26 2011-05-26 HEAT EXCHANGER PLATES WITH ANTI-PROTECTIVE PROPERTIES
JP2013512577A JP2013528276A (en) 2010-05-26 2011-05-26 Heat exchanger plate with antifouling properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1050525 2010-05-26
SE1050525-3 2010-05-26

Publications (1)

Publication Number Publication Date
WO2012018296A1 true WO2012018296A1 (en) 2012-02-09

Family

ID=44627786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2011/050654 WO2012018296A1 (en) 2010-05-26 2011-05-26 Heat exchanger plates with anti-fouling properties

Country Status (14)

Country Link
EP (1) EP2577209B1 (en)
JP (1) JP2013528276A (en)
CN (1) CN102906527B (en)
BR (1) BR112012027928B1 (en)
CA (1) CA2798153C (en)
DK (1) DK2577209T3 (en)
ES (1) ES2650243T3 (en)
HU (1) HUE035903T2 (en)
NO (1) NO2577209T3 (en)
PL (1) PL2577209T3 (en)
PT (1) PT2577209T (en)
SA (1) SA111320468B1 (en)
SI (1) SI2577209T1 (en)
WO (1) WO2012018296A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012100820A1 (en) * 2012-02-01 2013-08-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Separator for heat reservoir device for storage of heat in storage medium, has base body which is provided with protective layer for protecting base body from storage medium or from flow medium
US9029491B2 (en) 2010-12-22 2015-05-12 Teknologisk Institut Repellent coating composition and coating, method for making and uses thereof
EP2884213A1 (en) * 2013-12-13 2015-06-17 Alfa Laval Corporate AB Method for producing a plate heat exchanger
EP3137564B1 (en) 2014-04-25 2019-12-18 Teknologisk Institut Coating composition, method for making the coating and use thereof
CN112240724A (en) * 2019-07-18 2021-01-19 中石化南京化工研究院有限公司 Heat exchange plate and plate heat exchanger
CN115260798A (en) * 2022-06-22 2022-11-01 上海高意匠健康科技有限公司 Terahertz ultra-high temperature sterilization machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399467B1 (en) * 2017-11-21 2018-10-03 パナソニックIpマネジメント株式会社 vending machine
WO2022002392A1 (en) * 2020-07-01 2022-01-06 SiOx ApS An anti-fouling treated heat exchanger and method for producing an anti-fouling treated heat exchanger
CN112431157B (en) * 2020-11-18 2022-08-05 东南大学 Efficient and low-loss airfield pavement glue blackening treatment method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345355A (en) 1999-06-04 2000-12-12 Mitsubishi Materials Corp Zirconium-containing siliceous film, and liquid for forming the film
JP2002107086A (en) * 2000-09-27 2002-04-10 Hisaka Works Ltd Plate-type heat exchanger
WO2003040643A1 (en) * 2001-11-06 2003-05-15 Alfa Laval Corporation Ab Method to increase the service life of gaskets for plate heat exchangers and use of gaskets in a plate heat exchanger
US20060196644A1 (en) 2003-03-31 2006-09-07 Snjezana Boger Heat exchanger and method for treating the surface of said heat exchanger
DE102006012131A1 (en) * 2006-03-16 2007-09-20 Helmut Aaslepp Reducing surface tension, increasing anti-adhesion properties and preventing corrosion on metal heat exchanger walls involves applying an inorganic-organic hydrophobic hybrid polymer
WO2008119751A1 (en) 2007-03-30 2008-10-09 Siemens Aktiengesellschaft Coating for vapor condensers
WO2009034359A1 (en) 2007-09-14 2009-03-19 Teer Coatings Limited Coatings to resist and protect against aquatic biofouling
US20090123730A1 (en) 2005-07-27 2009-05-14 Behr Gmbh & Co. Kg Surface to be soldered
WO2009119689A1 (en) * 2008-03-25 2009-10-01 富士フイルム株式会社 Hydrophilic member, fin member, aluminum fin member, heat exchanger and air conditioner

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178392A (en) * 1995-12-22 1997-07-11 Showa Alum Corp Manufacture of heat exchanger made of aluminum and being excellent in corrosion resistance
JP3696321B2 (en) * 1996-03-08 2005-09-14 株式会社日阪製作所 Plate heat exchanger
JPH1080630A (en) * 1996-09-06 1998-03-31 Tonen Corp Ceramic-coated chemical device
JP2001330394A (en) * 2000-05-22 2001-11-30 Denso Corp Exhaust gas heat exchanger
JP2003004396A (en) * 2001-06-27 2003-01-08 Hitachi Ltd Heat exchanger and refrigerating air conditioner
DE10355833A1 (en) * 2003-11-26 2005-06-23 Behr Gmbh & Co. Kg heat exchangers
JP2007032939A (en) * 2005-07-27 2007-02-08 Pentel Corp Counter electrode unit for heat exchanger
GB2428604B (en) * 2005-08-05 2010-12-08 Visteon Global Tech Inc Anti-Fouling coating
DE102006018491A1 (en) * 2006-04-19 2007-10-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Flexible plasma polymer products, corresponding articles, manufacturing methods and use
US8748008B2 (en) * 2008-06-12 2014-06-10 Exxonmobil Research And Engineering Company High performance coatings and surfaces to mitigate corrosion and fouling in fired heater tubes
JP2010096416A (en) * 2008-10-16 2010-04-30 Furukawa-Sky Aluminum Corp Precoat aluminum fin material for heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345355A (en) 1999-06-04 2000-12-12 Mitsubishi Materials Corp Zirconium-containing siliceous film, and liquid for forming the film
JP2002107086A (en) * 2000-09-27 2002-04-10 Hisaka Works Ltd Plate-type heat exchanger
WO2003040643A1 (en) * 2001-11-06 2003-05-15 Alfa Laval Corporation Ab Method to increase the service life of gaskets for plate heat exchangers and use of gaskets in a plate heat exchanger
US20060196644A1 (en) 2003-03-31 2006-09-07 Snjezana Boger Heat exchanger and method for treating the surface of said heat exchanger
US20090123730A1 (en) 2005-07-27 2009-05-14 Behr Gmbh & Co. Kg Surface to be soldered
DE102006012131A1 (en) * 2006-03-16 2007-09-20 Helmut Aaslepp Reducing surface tension, increasing anti-adhesion properties and preventing corrosion on metal heat exchanger walls involves applying an inorganic-organic hydrophobic hybrid polymer
WO2008119751A1 (en) 2007-03-30 2008-10-09 Siemens Aktiengesellschaft Coating for vapor condensers
WO2009034359A1 (en) 2007-09-14 2009-03-19 Teer Coatings Limited Coatings to resist and protect against aquatic biofouling
WO2009119689A1 (en) * 2008-03-25 2009-10-01 富士フイルム株式会社 Hydrophilic member, fin member, aluminum fin member, heat exchanger and air conditioner
US20110108262A1 (en) * 2008-03-25 2011-05-12 Fujifilm Corporation Hydrophilic member, fin stock, aluminum-made fin stock, heat exchanger and air conditioner

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A BANI KANANEH ET AL: "APPLICATION OF ANTIFOULING SURFACES IN PLATE HEAT EXCHANGER FOR FOOD PRODUCTION", PROCEEDINGS OF INTERNATIONAL CONFERENCE ON HEAT EXCHANGER FOULING AND CLEANING VIII - 2009, 1 January 2009 (2009-01-01), pages 154 - 157, XP055011155 *
MARIO PAGLIARO ET AL: "Silica-based hybrid coatings", JOURNAL OF MATERIALS CHEMISTRY, vol. 19, no. 20, 1 January 2009 (2009-01-01), pages 3116, XP055010962, ISSN: 0959-9428, DOI: 10.1039/b819615j *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029491B2 (en) 2010-12-22 2015-05-12 Teknologisk Institut Repellent coating composition and coating, method for making and uses thereof
DE102012100820A1 (en) * 2012-02-01 2013-08-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Separator for heat reservoir device for storage of heat in storage medium, has base body which is provided with protective layer for protecting base body from storage medium or from flow medium
EP2884213A1 (en) * 2013-12-13 2015-06-17 Alfa Laval Corporate AB Method for producing a plate heat exchanger
EP3137564B1 (en) 2014-04-25 2019-12-18 Teknologisk Institut Coating composition, method for making the coating and use thereof
US10533095B2 (en) 2014-04-25 2020-01-14 Teknologisk Institut Coating composition, method for making the coating and use thereof
CN112240724A (en) * 2019-07-18 2021-01-19 中石化南京化工研究院有限公司 Heat exchange plate and plate heat exchanger
CN112240724B (en) * 2019-07-18 2022-03-15 中石化南京化工研究院有限公司 Heat exchange plate and plate heat exchanger
CN115260798A (en) * 2022-06-22 2022-11-01 上海高意匠健康科技有限公司 Terahertz ultra-high temperature sterilization machine
CN115260798B (en) * 2022-06-22 2023-10-27 上海高意匠健康科技有限公司 Terahertz ultrahigh temperature sterilization machine

Also Published As

Publication number Publication date
NO2577209T3 (en) 2018-03-03
ES2650243T3 (en) 2018-01-17
BR112012027928A2 (en) 2016-08-16
DK2577209T3 (en) 2018-01-02
EP2577209A1 (en) 2013-04-10
CA2798153A1 (en) 2012-02-09
EP2577209B1 (en) 2017-10-04
JP2013528276A (en) 2013-07-08
SI2577209T1 (en) 2017-12-29
PL2577209T3 (en) 2018-01-31
CN102906527B (en) 2016-07-06
BR112012027928B1 (en) 2020-11-17
PT2577209T (en) 2017-12-06
CA2798153C (en) 2016-06-28
CN102906527A (en) 2013-01-30
SA111320468B1 (en) 2015-04-01
HUE035903T2 (en) 2018-05-28

Similar Documents

Publication Publication Date Title
CA2798153C (en) Heat exchanger plates with anti-fouling properties
US20140318748A1 (en) Spiral heat exchanger with anti-fouling properties
EP2597412B1 (en) Block-type plate heat exchanger with anti-fouling properties
DK2785465T3 (en) Centrifugal separator having antifouling properties
US20140338867A1 (en) Shell and tube heat exchanger with improved anti-fouling properties
Butt et al. The preparation of cerium nitrate and attapulgite based superhydrophobic epoxy coatings for the corrosion protection of Q355 mild steel surface
US20130260156A1 (en) Surface coating with perfluorinated compounds as antifouling
EP2597342A1 (en) Seat valve with anti-fouling properties
Hegde et al. Preliminary Evaluation of functional coatings for marine based renewable energy applications
RU2776388C1 (en) Component of a turbomachine with a metal coating

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025763.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11728966

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011728966

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011728966

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2798153

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013512577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012027928

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012027928

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121030