WO2012018018A1 - 高感度磁気検出装置 - Google Patents

高感度磁気検出装置 Download PDF

Info

Publication number
WO2012018018A1
WO2012018018A1 PCT/JP2011/067686 JP2011067686W WO2012018018A1 WO 2012018018 A1 WO2012018018 A1 WO 2012018018A1 JP 2011067686 W JP2011067686 W JP 2011067686W WO 2012018018 A1 WO2012018018 A1 WO 2012018018A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
detection device
coil
magnetic detection
frequency
Prior art date
Application number
PCT/JP2011/067686
Other languages
English (en)
French (fr)
Inventor
敬二 圓福
神鳥 明彦
緒方 邦臣
龍三 川畑
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012018018A1 publication Critical patent/WO2012018018A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/445MR involving a non-standard magnetic field B0, e.g. of low magnitude as in the earth's magnetic field or in nanoTesla spectroscopy, comprising a polarizing magnetic field for pre-polarisation, B0 with a temporal variation of its magnitude or direction such as field cycling of B0 or rotation of the direction of B0, or spatially inhomogeneous B0 like in fringe-field MR or in stray-field imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3621NMR receivers or demodulators, e.g. preamplifiers, means for frequency modulation of the MR signal using a digital down converter, means for analog to digital conversion [ADC] or for filtering or processing of the MR signal such as bandpass filtering, resampling, decimation or interpolation

Definitions

  • the present invention is an ultra-low magnetic field magnetic resonance imaging apparatus that detects and images a nuclear magnetic resonance signal (hereinafter referred to as NMR) of several kHz to several hundred kHz mainly under a low magnetic field (for example, several mT or less).
  • NMR nuclear magnetic resonance signal
  • MRI Magnetic Resonance Imaging
  • the present invention relates to a technique that can be applied to a detection coil of a non-destructive inspection apparatus (food, metal foreign object inspection, etc.) that requires high-sensitivity magnetic detection in addition to an MRI apparatus and an NMR apparatus.
  • a litz wire has been used for a coil for passing a high-frequency high current (see, for example, Patent Document 1 and Patent Document 2).
  • This is a technique that has been performed to avoid a heat generation due to an increase in resistance value caused by a skin effect due to a high-frequency current, and to allow a large current to flow by reducing the resistance value.
  • a detection coil technique having a resonance circuit in a detection coil of a single copper wire (element wire) is used.
  • a detection coil configuration has been proposed in which two or more wires having paramagnetic and diamagnetic magnetic properties are contradicted as NMR signal detection (for example, see Patent Document 3).
  • Non-Patent Document 1 A technique for detecting a magnetic resonance signal under a low magnetic field (several mT or less) with an ultrasensitive magnetic sensor such as SQUID (Superconducting Quantum Interference Device) has been developed (see Non-Patent Document 1).
  • SQUID Superconducting Quantum Interference Device
  • an object of the present invention is to propose a detection coil structure that reduces the increase in AC resistance due to a high frequency in a detection coil that detects a resonance frequency of about several kHz to several MHz in a low magnetic field as described above. It is to provide a sensitive high-frequency magnetic detection technique.
  • the number n of detection coil layers and the measurement frequency f are determined as follows. (1) When the measurement frequency f is determined (for example, when the magnetic field strength of MRI or NMR is determined), the value is smaller than the number n of layers determined by the equation (10) described later. Or it is set to about twice the number of layers n determined by the equation (10). (2) When the number n of layers is determined as the overall size of the detection coil, the measurement frequency f is used with a value lower than the frequency f determined by the equation (11) using the equation (11) described later. Or it is set to about twice the frequency f determined by the equation (11).
  • a litz wire (stranded wire) having a wire diameter as small as possible is used for the detection coil.
  • the AC resistance component increases in proportion to the square of the diameter (or radius) of the strand of the litz wire (stranded wire).
  • a detection coil that detects a resonance frequency of several kHz to several MHz in a low magnetic field of several mT or less, an increase in AC resistance due to a high frequency is reduced, and high-sensitivity magnetic detection is performed. Make it possible.
  • FIG. The figure explaining the eddy current loss inside the conductor used for a wire.
  • MRI nuclear magnetic resonance imaging
  • FIG. 1A and 1B show a detection coil and circuit configuration for detecting a weak magnetic field.
  • a common configuration in both the voltage detection type in FIG. 1A (a) and the current detection type in FIG. 1B (a) is a detection coil shape.
  • the detection coil 102 is configured by winding a wire made of a conductor such as a copper wire around a detection coil bobbin 101 (made of a resin material such as a nonmagnetic material or a nonmetallic material). Although this detection coil has one layer winding in the figure, the detection coil 102 is actually constituted by one layer or multilayer winding.
  • the detection coil 102 is composed of a multi-core wire of litz wire (stranded wire), thereby reducing the AC resistance component that increases in proportion to the square of the diameter (or radius) of the strand of the litz wire (stranded wire).
  • FIG. 1A (b) shows an example of a cross section of a wire rod when a litz wire is used as the wire rod used in the detection coil shown in FIG. 1A (a).
  • the litz wire cross section 103 is composed of seven strands 110.
  • a resonance capacitor 109 is connected in parallel to both ends of the detection coil 102, and the resonance of the measurement frequency is generated by the inductance of the detection coil 102 and the resonance capacitor 109. It has become.
  • the resonance capacitor By connecting both ends of the resonance capacitor to the low noise amplifier 104, magnetic measurement with high sensitivity can be realized with respect to the measurement frequency.
  • the voltage generated by the amount of change in magnetic flux linked to the detection coil 102 (the amount of magnetic flux obtained by first-order time differentiation) is amplified, and the output voltage 105 associated with the amount of change in magnetic flux is Obtained at the terminal of the low noise amplifier 104.
  • a magnetic flux transmission unit (coil) 108 is connected in series to both ends of the detection coil 102, and the magnetic flux transmission unit (coil) 108 and the detection coil 102 are connected in series. Is a closed loop. In this closed loop, a current due to a voltage generated at both ends of the detection coil 102 flows along with the amount of change in the interlinked magnetic flux (the amount of magnetic flux obtained by first-order differentiation). The current in the closed loop flows through the magnetic flux transmission unit (coil) 108 to create the magnetic flux 107, and the magnetic flux-voltage conversion unit 106 converts the magnetic flux into a voltage. The converted voltage is amplified by the low noise amplifier 104 to obtain the output voltage 105.
  • the magnetic flux-voltage conversion unit 106 uses a high-sensitivity magnetic sensor such as a SQUID (superconducting quantum interference element), a GMR element (giant magnetoresistive element), or a TMR element (tunnel magnetoresistive element), and generates a magnetic flux with high sensitivity. Convert to voltage.
  • a high-sensitivity magnetic sensor such as a SQUID (superconducting quantum interference element), a GMR element (giant magnetoresistive element), or a TMR element (tunnel magnetoresistive element)
  • the magnetic flux-voltage conversion unit 106 and the magnetic flux transmission unit (coil) 108 are disposed in a superconducting cryogenic temperature (for example, liquid helium temperature 4.2 K, liquid nitrogen temperature 77 K), and the detection coil 102. Can be placed at cryogenic temperature or at room temperature.
  • a superconducting cryogenic temperature for example, liquid helium temperature 4.2 K, liquid nitrogen temperature 77 K
  • the voltage of the output voltage 105 in FIGS. 1A (a) and 1B (a) is a voltage obtained by time-differentiating the magnetic flux linked to the detection coil, this output voltage 105 is passed through the integration circuit to the detection coil. It is also possible to convert the interlinked magnetic flux itself (the magnetic flux amount itself, not the primary time-differentiated magnetic flux amount).
  • a litz wire is used for the detection coil, but a conductive wire made of a single element wire may be used.
  • the effect of the present invention can be further exhibited by using a litz wire.
  • FIG. 2 shows a cross-sectional structure of the detection coil 102 shown in FIG.
  • a detection coil is formed by winding a conducting wire around the outer periphery of the detection coil bobbin 203.
  • the case where the coil wound in contact with the outer periphery of the detection coil bobbin is the first layer, the second layer, the third layer,...
  • Each layer is laminated from the top to the bottom of the bobbin to form a 15-turn coil.
  • the case where the detection coil of 15 turns for 1 layer is wound by n layers is shown, and the bobbin diameter D is 40 mm (0.04 m).
  • a self magnetic field B self is generated. Due to the self magnetic field B self , an eddy current is generated in each coil part of the detection coil 201 inside the coil part conductor.
  • the resistance component per unit length due to the AC loss generated by the eddy current is r ac
  • the resistance component determined only by the resistivity of the normal conductor is r dc .
  • FIG. 3 shows an example of a wire used for the detection coil.
  • an AC magnetic field B [[f]] with a frequency f [Hz] and an amplitude B 0 [T] is applied to a conductor plate having a resistivity ⁇ [ ⁇ ] and a width d [m] (which corresponds to the diameter of a strand for a litz wire).
  • the eddy current loss W [W / m 3 ] per unit volume when T] is applied is given by the following equation (see FIG. 3).
  • [] described after each physical quantity indicates a unit, and so on.
  • d indicates the diameter of the strand.
  • Io [A] indicates the amplitude of the alternating current flowing through the wire.
  • g is a shape factor
  • ⁇ 0 is a vacuum permeability [H / m].
  • d [m] is the diameter of the strand. Therefore, as d is smaller, the value of K is smaller, so the value of r ac is also smaller. That the use litz wire (twisted wire), because of the effect of the r ac can be reduced, the detection coil at a high frequency is more effective to use a litz wire.
  • the AC resistance component referred to in the present embodiment means a value determined by the number n of coil layers, the frequency f, the resistivity ⁇ , and the like defined by the equations (5) and (6).
  • the total number of turns N of the coil is calculated as 15 turns, but may be generalized as T as the number of turns. In that case, 15 in the formula may be replaced with T.
  • FIG. 4 shows the actual measurement results for r ac and r dc expressed by equations (5) and (7).
  • the number n of layers in which r ac and r dc are equal is expressed as follows.
  • the optimum detection coil shape can be summarized as follows.
  • (1) When the measurement frequency is determined (for example, when the magnetic field intensity of MRI or NMR is determined), the value is smaller than the number n of layers determined by the equation (10). As the ratio of r ac and r dc becomes larger than 1, the number n of layers determined by the equation (10) becomes a large value. As the limit of the number n of layers, if the ratio of r ac and r dc is up to 2, the magnetic noise Bn increases only about 1.5 times, which is acceptable. Therefore, up to about twice the number n of layers determined by the equation (10) is allowed. (2) When the number n of layers is determined by the size of the entire detection coil, the measurement frequency is used with a value lower than the frequency f determined by the equation (11) using the equation (11). Or it is set to about twice the frequency f determined by the equation (11).
  • FIGS. 5 and 6 Due to the temperature difference between 77K and 300K, the resistivity decreases to about 1/6 when cooled to 77K versus 300K. Due to this decrease in resistivity, the r dc component decreases according to the relational expression shown in Equation (7), and the rac component increases according to the relational expression shown in Equation (5) due to the decrease in resistivity.
  • FIG. 5 in the case of 300 K (room temperature)
  • FIG. 6 show changes in the magnetic noise Bn caused by the decrease in the r dc component and the increase in the r ac component due to the above temperature change (value calculated by the equation (8)).
  • FIG. 5 and FIG. 6 use litz wires made of 60 strands having a diameter of 0.1 mm.
  • the frequency calculated in Expression (11) is near 10 5 Hz, there is almost no increase in r ac and the magnetic noise is determined only by a constant value of the r dc component.
  • the resistance value decreases as the number of layers increases.
  • FIG. 7 shows the frequency f dependence of the AC resistance component rac .
  • the DC resistance component is subtracted from the resistance value obtained in FIG. 4 to obtain the AC resistance component.
  • the vertical axis represents r ac ⁇ / n 2 and the horizontal axis represents frequency f. .
  • an increase of r ac is proportional to the square.
  • the increase in resistance due to the skin effect is the 1/2 power of the frequency f. From this, it can be said that the increase in rac shown in this example is not caused by the skin effect.
  • the skin effect is also examined.
  • the skin effect is a phenomenon in which, when a high-frequency current flows, the current density is high on the conductor surface and decreases as the distance from the conductor surface increases. It is known that the resistance value increases because the current concentrates on the conductor surface as the frequency increases.
  • the skin depth d s can be expressed as:
  • is the magnetic permeability of the conductor.
  • the skin depth d s when calculated with copper wire is as follows.
  • or 3) show the case where the ambient temperature is 300K and 77K, respectively, at frequencies of 60 Hz, 10 KHz, and 100 kHz.
  • the wire of the coil used in FIGS. 5 and 6 has a radius of 0.1 mm, which is shorter than the length of the skin depth described above.
  • FIG. 8 shows an example in which the detection coil shown in FIGS. 1 and 2 is applied to an MRI apparatus.
  • This embodiment shows an embodiment using a detection coil 414 (corresponding to 102 in FIG. 1 and 201 in FIG. 2) for detecting a nuclear magnetic resonance (NMR) signal.
  • NMR nuclear magnetic resonance
  • An NMR signal is detected by bringing the detection coil 414 closer to the inspection object 404 in the static magnetic field generating magnet 401, the gradient magnetic field generating coil 407, and the high frequency magnetic field generating coil 403.
  • the shim power source 406 and the gradient magnetic field power source 408 connected to the shim coil 405 that corrects the distortion of the static magnetic field are controlled by the sequence 415 to detect signals of each cross-sectional MR image.
  • the sequence 415 is controlled based on the sequence stored in the storage medium 411.
  • the output of the MR signal of the low noise amplifier 413 (in the case of FIG. 1A, the magnetic flux-voltage converter 412 is not required) is recorded by the computer 410, and the MR image of each cross section is displayed on the display 409.
  • the increase in the AC resistance due to the high frequency can be reduced, and a highly sensitive MRI apparatus can be realized.
  • inspection object 405 ... shim coil, 406 ... shim power supply, 407 ... gradient magnetic field generating coil, 408 ... gradient magnetic field power supply, 409 ... display, 410 ... computer, 411 Recording medium, 412 Magnetic flux-voltage converter, 413 Low noise amplifier, 414 Detection coil, 415 Sequencer.

Abstract

 検出コイルの多層巻きによって発生する交流抵抗成分の増加を最小限にする検出コイル形状および高感度磁気検出装置を提供する。検出コイルに式(10)で計算される層数nの2倍より小さい層数とする検出コイル形状とし、この検出コイルに素線径がなるべく小さいリッツ線を使用する。この検出コイルで得られる電圧を電圧増幅または電流増幅を行い高感度磁気検出装置を実現する。

Description

高感度磁気検出装置
 本発明は、主に低磁場下(例えば、数mT以下)での数kHzから数100kHz程度の核磁気共鳴信号(以下、NMRと称する)を検出して画像化する超低磁場磁気共鳴イメージング装置(磁気共鳴イメージングを、以下にMRIと称する)、または超低磁場NMR計測装置の検出コイル技術に関するものである。また、MRI装置やNMR装置以外においても高感度磁気検出が必要な非破壊検査装置(食品、金属異物検査など)などの検出コイルにも適応可能な技術に関する。
 従来、電磁誘導加熱を目的として、高周波の大電流を流すコイルにリッツ線が使用されていた(例えば、特許文献1、特許文献2を参照)。これは、高周波電流による表皮効果が原因で生じる抵抗値上昇による発熱を避け、抵抗値を落とすことによって大電流を流すことを可能とするために行われてきた手法である。 
 一方、高周波(1kHz以上)の磁気信号を検出する手法として、例えば、MRIやNMR信号検出では、銅線の単線(素線)の検出コイルに共振回路を有する検出コイル手法が利用されている。またNMR信号検出として常磁性と反磁性の相反する磁気特性を持つ2つ以上の線材を撚り合わせる検出コイル構成が提案されている(例えば、特許文献3を参照)。
 しかし素線径での磁気雑音の効果などは全く知られていない。一方、通常の1T程度のMRI装置では生体雑音が大きくなるため、検出コイルの高感度化について検討は行われていなかった。
特開2007-227035号公報 特開2008-60432号公報 特開2007-132725号公報
J. Magn. Reson. 194, pp.115-120
 近年、低磁場MRI装置の開発が急速に進んできている。これは低磁場下(数mT以下)での磁気共鳴信号をSQUID(Superconducting Quantum Interference Device)などの超高感度の磁気センサで検出技術が開発されてきている(非特許文献1を参照)。この低磁場MRI装置では共鳴周波数が数kHzから数MHz程度の周波数で検出を行うため、生体雑音より磁気センサーノイズの方が大きく、磁気センサーノイズを小さくすることが課題であった。
 高周波(ここで、数kHzから数MHzの帯域を指し、高磁場MRIの周波数数MHz以上の超高周波でない帯域とする。)でさらに高感度に磁気検出を行う場合、検出コイルの多層巻きによって、誘起された交流電流自らも自己磁場を発生させてしまい、自己磁場によって抵抗成分が増加するという現象を我々は発見した。この現象は次のようなメカニズムである。
(1)多層巻きの検出コイルには、自己磁場によって検出コイル内に渦電流損失が現れる。
(2)渦電流損失によって抵抗(以下に、交流抵抗と呼ぶ)が増加する。
(3)交流抵抗成分の上昇によって検出コイルの磁気雑音が増加し、検出感度を低下させる。なお、この交流抵抗成分は周波数の2乗によって増加する成分のため、周波数が高いほど交流抵抗成分は増加する。
 そこで、本発明の目的は、以上のような低磁場で数kHz乃至数MHz程度の共鳴周波数の検出を行う検出コイルにおいて、交流抵抗の高周波による増加分を少なくする検出コイル構造を提案し、高感度な高周波磁気検出手法を提供することである。
 交流抵抗を減少させるため、検出コイルの層数nや測定周波数fは以下のように決定する。
(1)測定周波数fが決まっている場合(例えば、MRIやNMRの磁場強度が決まっている場合)は、後述する式(10)で決定される層数nより小さい値にする。または式(10)で決定される層数nの2倍程度までとする。
(2)層数nが検出コイル全体の大きさの決定される場合は、後述する式(11)を用いて測定周波数fを式(11)で決定される周波数fより低い値と使用する。または式(11)で決定される周波数fの2倍程度までとする。
(3)さらに、(1)と(2)の手法と合わせて、検出コイルに素線径のなるべく小さいリッツ線(撚り線)を使用する。その理由は、交流抵抗成分はリッツ線(撚り線)の素線の直径(または半径)の2乗に比例して増加するためである。
 以上の(1)乃至(3)の手法により高感度な磁気検出が可能となる。
 本発明によれば、数mT以下の低磁場で数kHz乃至数MHz程度の共鳴周波数の検出を行う検出コイルにおいて、高周波に起因する交流抵抗の増加分を低減させ、高感度な磁気の検出を可能とする。
本実施の形態の基本構成(電圧検出型)を示す図。 本実施の形態の基本構成(電流検出型)を示す図。 図1A、Bに示した検出コイルの断面図を示す図。 線材に用いる導体内部の渦電流損失を説明する図。 検出コイルの層数と単位長さ当たりの交流抵抗成分(rac)と直流抵抗成分 (rdc)との比率との関係を示す図。 温度300Kにおける層数をパラメータとした磁気雑音Bnの周波数特性を示す図。 温度77Kにおける層数をパラメータとした磁気雑音Bnの周波数特性を示す図。 交流抵抗成分の周波数依存性を示す図。 本発明の検出コイルを適用した核磁気共鳴イメージング(MRI)装置の装置構成を示す図。
 図1A及び1Bを用いて、微弱磁場を検出する検出コイルおよび回路構成を示す。検出コイルおよび回路構成として電圧検出型(図1A(a))と電流検出型(図1B(a))とがある。図1A(a)の電圧検出型および図1B(a)の電流検出型のどちらにおいても共通の構成は、検出コイル形状である。この検出コイル102は検出コイルボビン101(非磁性材料・非金属材料の樹脂材などで構成)に銅線などの導体からなる線材が巻きつけられて構成されている。この検出コイルは図中では1層巻きになっているが、実際には1層または多層巻きによって検出コイル102は構成されている。また検出コイル102はリッツ線(撚り線)の多芯線によって構成することにより、リッツ線(撚り線)の素線の直径(または半径)の2乗に比例して増加する交流抵抗成分を減少させることができる(式(3)参照)。図1A(b)は、図1A(a)で示す検出コイルに用いられている線材としてリッツ線を用いた場合の線材の断面の一例を示す。本例では、リッツ線断面103は7本の素線110で構成されている。
 図1A(a)の電圧検出型回路の構成では、検出コイル102の両端に共振用コンデンサ109を並列接続し、検出コイル102のインダクタンスと共振用コンデンサ109とで測定周波数の共振を生じさせる構成となっている。この共振用コンデンサの両端を低雑音増幅器104に接続することで測定周波数について高感度に磁気計測が実現される。図1A(a)のような回路構成により、検出コイル102に鎖交した磁束の変化量(1次の時間微分した磁束量)によって生ずる電圧が増幅され、磁束の変化量に伴う出力電圧105が低雑音増幅器104の端子に得られる。
 また、図1B(a)の電流検出型回路の構成では、検出コイル102の両端に、磁束伝達部(コイル)108を直列接続とし、この磁束伝達部(コイル)108と検出コイル102は直列接続の閉ループとする。この閉ループ内には鎖交した磁束の変化量(1次の時間微分した磁束量)に伴って検出コイル102の両端に発生する電圧による電流が流れる。この閉ループ内の電流が、磁束伝達部(コイル)108に流れ、磁束107を作り、磁束―電圧変換部106によって磁束が電圧に変換される。そしてこの変換された電圧が低雑音増幅器104によって増幅され、出力電圧105を得る構成としている。
 ここで、図1B(a)で示す検出コイル102に用いられているリッツ線の断面は、図1B(b)に示すように、図1A(a)の場合と同様な構成となっている。また、磁束―電圧変換部106はSQUID(超電導量子干渉素子)やGMR素子(巨大磁気抵抗素子)やTMR素子(トンネル磁気抵抗効果素子)などの高感度磁気センサを使用し、高感度に磁束を電圧に変換する。SQUIDを用いる場合は、磁束―電圧変換部106と磁束伝達部(コイル)108は超電導状態の極低温温度(例えば、液体ヘリウム温度4.2K、液体窒素温度77K)内に配置され、検出コイル102は極低温部でも常温でも配置することができる。
 図1A(a)および図1B(a)の出力電圧105の電圧は、検出コイルに鎖交した磁束を時間微分した電圧であるため、この出力電圧105を、積分回路を通すことによって検出コイルに鎖交した磁束そのもの(1次の時間微分した磁束量ではなく、磁束量そのもの)に変換することも可能である。
 また、本例では、検出コイルにリッツ線を用いたが、単素線からなる導線でも構わない。ただし、リッツ線を用いた方が、本発明の効果をより発揮することができる。
 図2に、図1に示す検出コイル102の断面構造を検出コイル201として示している。ここでは、検出コイルボビン203の外周部に導線を巻いて検出コイルを構成する。検出コイルボビン外周部に接して巻かれているコイルを第1層とし、順次外側へ第2層、第3層・・・と積層し、n層まで巻いて1ターンとした場合を示す。ボビン上端から下端へ各層が積層され、15ターンのコイルを形成している。1層を15ターンの検出コイルをn層巻きにしている場合を示しており、ボビン直径Dを40mm(0.04m)としている。コイルの全巻き数は、n層と15ターンを掛け合わせて、N=15nとなる。検出コイル201のコイル部(例えば202)に電流が流れることによって、自己磁場Bselfが発生する。自己磁場Bselfによって検出コイル201の各コイル部には渦電流がコイル部導体内部に発生する。
 次にこの渦電流によって発生する損失について説明する。ここで渦電流によって発生する交流損失に伴う単位長さ当たりの抵抗成分をracとし、通常導体の抵抗率のみで決まる抵抗成分をrdcとする。
 図3に検出コイルに用いる線材の一例を示す。本図において、抵抗率ρ[Ω]、幅d[m](これはリッツ線では素線の直径に対応)の導体板に周波数f[Hz]、振幅B[T]の交流磁界B[T]を印加した時の単位体積当たりの渦電流損W[W/m]は次式で与えられる(図3参照)。なお、各物理量の後に記載する[ ]内は、単位を示し、以下同様とする。
Figure JPOXMLDOC01-appb-M000001
ここで、dは素線の直径を示す。
 リッツ線(銅線)の断面積をA[m]、長さをl[m]とし、渦電流による単位長さ当たり交流抵抗をracと置いた時のコイル全体の損失を考えると、以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000002
ここで、Io[A]は、線材を流れる交流電流の振幅を示す。
 従って、渦電流による交流抵抗(単位長さ当たり)rac[Ω]は、
Figure JPOXMLDOC01-appb-M000003
である。
 ここで、磁界Bo[T]は電流によって発生するコイルの自己磁界であるから、コイルの高さをh[m]、全巻き数をN=15nとすれば、アンペアの法則より
Figure JPOXMLDOC01-appb-M000004
となる。ここでgは形状ファクター、μは真空の透磁率[H/m]とする。
 従って、
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
となる。ここでd[m]は素線の直径である。したがって、dが小さいほどKの値は小さくなるため、racの値も小さくなる。つまりリッツ線(撚り線)を用いると、racを小さくできるという効果があるため、高周波での検出コイルにはリッツ線を用いるとより効果的である。
 ここで、本実施例で云う交流抵抗成分とは式(5)および(6)で定義されるコイルの層数nと周波数fと抵抗率ρなどで決定される値のことをいう。なお、式(5)、(6)では、コイルの全巻き数Nは、15ターンとして計算しているが、ターン数をTとして一般化しても良い。その場合は、式中の15をTに置き換えればよい。
 一方、直流抵抗(単位長さ当たり)rdc[Ω]の表式は、
Figure JPOXMLDOC01-appb-M000007
となる。
  ここで磁気雑音Bn[T/Hz1/2]は以下のように計算できる。
Figure JPOXMLDOC01-appb-M000008
  ここで抵抗値R[Ω]は、コイルの全長ltotal[m]がltotal=15n・π・Ave(D)になることを考慮すると以下のように表される。なお、Ave(D)[m]は、1ターン当りのコイル長さの平均値を示し、Ave(D)=D+(n-1)dとなる。
Figure JPOXMLDOC01-appb-M000009
 図4に式(5)と式(7)で表現されるracとrdcについて、実測した結果を示している。横軸が図1に示した検出コイルの層数nであり、縦軸がracとrdcの比率を示している。測定周波数が30kHzでは、層数n=2でも急激にracの値が大きくなっているのが分かる。一方、周波数が低い6kHzでは層数n=8でもracとrdcがほぼ同じ値であることが分かる。
 このようにracとrdcが等しくなる条件に近い層数を計算することで抵抗値の小さい最適な層数を選択可能である。racとrdcが等しくなる層数nは以下のように表わされる。
Figure JPOXMLDOC01-appb-M000010
 また(10)式を変形してnが固定の場合、racとrdcが等しくなる最適な周波数fは以下となる。
Figure JPOXMLDOC01-appb-M000011
 したがって、式(10)と式(11)に表わされるように、最適な検出コイル形状は以下のように纏めることができる。
(1)測定周波数が決まっている場合(例えば、MRIやNMRの磁場強度が決まっている場合)は、式(10)で決定される層数nより小さい値にする。racとrdcの比率が1より大きくなっていくと、式(10)で決定される層数nは大きな値となっていく。層数nの制限として、racとrdcの比率が2の場合までなら磁気雑音Bnが1.5倍程度しか増加しないため、許容することができる。そのため、式(10)で決定される層数nの2倍程度までを許容する。
(2)層数nが検出コイル全体の大きさで決定される場合は、式(11)を用いて測定周波数を式(11)で決定される周波数fより低い値と使用する。または式(11)で決定される周波数fの2倍程度までとする。
 次に、図5および図6を用いて、検出コイルの測定温度を変化させた場合を考える。77Kと300Kの温度の違いによって、抵抗率は300Kに対して77Kに冷却されると約1/6の抵抗率まで減少する。この抵抗率の減少によってrdc成分は式(7)に示す関係式によって減少し、rac成分は抵抗率の減少によって式(5)に示す関係式によって増加する。以上の温度の変化によるrdc成分の減少とrac成分の増加によって生じる磁気雑音Bnの変化(式(8)で計算される値)を、図5(300K(室温)の場合)と図6(77K(液体窒素中)の場合)に示す。ここで図5と図6は、直径0.1mmの素線60本で作成されたリッツ線を用いている。図5(300Kの場合)では、式(11)で計算される周波数が10Hz近傍のため、ほとんどracの増加分がなく、rdc成分が一定値のみによって磁気雑音が決まるため、式(8)に示すように層数が多いほど抵抗値が下がっていく。
 一方、図6(77Kの場合)では、抵抗率ρが温度300Kの場合より小さくなるため、(10)式または(11)式で計算される層数nも周波数fも小さな値となる。そのため、10kHz以上の帯域で、層数nが小さいほど感度が良くなる。これは式(5)で示されるrac成分が周波数の2乗と層数の2乗で上昇していくため、式(8)および(9)で計算される磁気雑音Bnも高周波(ここでは10kHz以上)で層数が多いほど磁気雑音Bnは上昇していくことを示している。
 このように高感度な磁気検出装置を作成する場合、周波数が高いとコイル層数を多く出来ないという低周波での考え(コイル層数を多くれば感度が上昇する)と全く反対の全く新しい思想である。この層数を多くすると感度が落ちていく(磁気雑音が増加していく)ということは、冷却して使用する検出コイルでは抵抗率が減少するため比較的低周波でも生じるため、高感度な磁気検出の実現には必須の技術内容である。
  以上のように式(11)で計算される周波数fより高い高周波領域での高感度磁気検出には、式(10)で計算される層数nより小さい層数とする必要がある。
 図7は、交流抵抗成分racの周波数f依存性を示す。この図は、図4で求めた抵抗値から直流抵抗成分を差し引いて交流抵抗成分を求めた図で、縦軸はracρ/nを取り、横軸に周波数fを取ったものである。図で示すように、racの増加は2乗に比例している。ところで、表皮効果による抵抗の増加は、周波数fの1/2乗となることが知られている。このことから、本例で示すracの増加は表皮効果が起因するものではないと言える。
 ここで、表皮効果についても検討を行う。表皮効果とは高周波電流が流れる時、電流密度の導体表面で高く、導体表面から遠ざかると低くなる現象のことである。周波数が高くなると電流が導体表面に集中するため、抵抗値が上がることが知られている。表皮深さ(skin depth)dは次のように表わすことができる。
Figure JPOXMLDOC01-appb-M000012
 ここでμは、導体の透磁率である。
銅線で試算した時の表皮深さdは、以下のようになる。なお、1)乃至3)は、それぞれ60Hz、10KHz、100kHzの周波数で、周囲温度が300Kと77Kの場合を示す。
  1)60Hz:8.6mm(300K)、3.8mm(77K)
  2)10kHz:0.7mm(300K)、0.3mm(77K)
  3)100kHz:0.2mm(300K)、0.1mm(77K)
 図5と図6で使用したコイルの素線は半径が0.1mmであり、上記の表皮深さの長さより短い。
 このことから、表皮深さdsは、周波数f=100kHzで素線の線径と同程度となることが分かる。したがって、f=数kHz当りでは、線径が表皮深さdsに比べて小さいので、表皮効果は無視できる。つまり100kHzまでの周波数では表皮効果による抵抗の増加分はないと考えられる。したがって、本発明の渦電流による交流抵抗成分の増加は全く新しい考え方である。
 図8は、図1、図2に示した検出コイルを、MRI装置に適用した一例を示す。本実施例は、核磁気共鳴(NMR)信号を検出する、検出コイル414(図1の102と図2の201に対応)を用いた実施例を示す。静磁場発生マグネット401と傾斜磁場発生コイル407と高周波磁場発生コイル403の中に入った検査対象404に検出コイル414を近づけNMR信号を検出する。静磁場の歪みを補正するシムコイル405に接続されたシム電源406や傾斜磁場電源408はシーケンス415によって制御され、各断面MR画像の信号を検出していく。シーケンス415は記憶媒体411に記憶されているシーケンスに基づいて制御が行われる。低雑音増幅器413(図1(a)の場合は、磁束―電圧変換器412は不要)のMR信号の出力は計算機410によって記録され、各断面のMR画像はディスプレイ409上に表示される。
 本発明の検出コイルを用いることにより、交流抵抗の高周波による増加分を少なくすることができ、高感度なMRI装置を実現できる。
 101…検出コイルボビン、102…検出コイル、103…検出コイルのコイル部断面、104…低雑音増幅器、105…出力電圧、106…磁束―電圧変換器、107…磁束、108…磁束伝達部(コイル)、109…共振用コンデンサ、110…素線、201…検出コイル、202…検出コイルのコイル部、203…検出コイルボビン、301…導体部、302…導体部の断面、401…静磁場発生マグネット、402…高周波磁場発生器、403…高周波磁場発生用コイル、404…検査対象、405…シムコイル、406…シム電源、407…傾斜磁場発生コイル、408…傾斜磁場電源、409…ディスプレイ、410…計算機、411…記録媒体、412…磁束―電圧変換器、413…低雑音増幅器、414…検出コイル、415…シーケンサ。

Claims (12)

  1.  微弱な磁気を検出する高感度磁気検出装置において、
     線材をボビンに複数層に巻き回してなる検出コイルと、
     前記微弱な磁気の変化に応じて、前記検出コイルから発生する電気的情報を検出する検出部と、を有し、
     前記線材に印加される周波数が固定されている時、前記検出コイル部を構成する線材の巻き数が、下記式(1)で算出される巻き数nの2倍より少ない巻き数であることを特徴とする高感度磁気検出装置。
       n=ρ/f・√(1/AK)・・・(1)
    (ここで、n=層数、ρ=抵抗率[Ω]、f=周波数[Hz]、A=線材の断面積[m2]、K=πA/6(gμTd/h)、g=形状ファクタ、μ=真空の透磁率[H/m]、d=線材
    幅(又素線の直径)[m]、h=検出コイル高さ[m]、T=1層当たりのターン数である。)
  2.  請求項1に記載の高感度磁気検出装置において、
     前記検出コイル部を構成する線材の巻き数が、前記式(1)で算出される層数nより少ない巻き数であることを特徴とする高感度磁気検出装置。
  3.  請求項1に記載の高感度磁気検出装置において、
     前記検出部は、コンデンサと低雑音増幅器から構成された電圧検出手段であることを特徴とする高感度磁気検出装置。
  4.  請求項1に記載の高感度磁気検出装置において、
     前記検出部は、コイルと該コイルから誘導される磁気を感知する磁気検出手段から構成された電流検出手段であることを特徴とする高感度磁気検出装置。
  5.  請求項4に記載の高感度磁気検出装置において、
     前記磁気検出手段は、SQUID(超電導量子干渉素子)またはTMR素子(トンネル磁気抵抗効果素子)またはGMR素子(巨大磁気抵抗素子)で構成されていることを特徴とする高感度磁気検出装置。
  6.  請求項1に記載の高感度磁気検出装置において、
     前記線材に、リッツ線を用いることを特徴とする高感度磁気検出装置。
  7.  請求項1に記載の高感度磁気検出装置において、
     前記検出コイル部を構成するコイル中の渦電流損失に伴う交流抵抗成分が、前記検出コイル部が有する直流抵抗成分より小さいことを特徴とする高感度磁気検出装置。
  8.  微弱な磁気を検出する高感度磁気検出装置において、
     線材をボビンに複数層に巻き回してなる検出コイルと、
     前記微弱な磁気の変化に応じて、前記検出コイルから発生する電気的情報を検出する検出部と、を有し、
     前記検出コイルにおけるコイルの巻き数が一定の時、前記線材に印加される周波数が、下記式(1)で算出される周波数fの2倍より小さいことを特徴とする高感度磁気検出装置。
       f=ρ/n・√(1/AK)・・・(1)
    (ここで、n=層数、ρ=抵抗率[Ω]、f=周波数[Hz]、A=線材の断面積[m2]、K=πA/6(gμTd/h)、g=形状ファクタ、μ=真空の透磁率[H/m]、d=線材幅(又素線の直径)[m]、h=検出コイル高さ[m]、T=1層当たりのターン数である。)
  9.  請求項8に記載の高感度磁気検出装置において、
     前記検出コイル部に印加される周波数が、前記式(1)で算出される周波数fより小さいことを特徴とする高感度磁気検出装置。
  10.  微弱な磁気を検出する高感度磁気検出装置において、
     線材をボビンに複数層に巻き回してなる検出コイルと、
     前記微弱な磁気の変化に応じて、前記検出コイルから発生する電気的情報を検出する検出部と、を有し、
     前記線材を流れる電流に対する抵抗成分が、渦電流損失を起因とする所定の周波数における交流抵抗成分racと、線材の抵抗率によって決定される直流抵抗成分rdcとからなるとき、
     前記検出コイル部を構成する線材の巻き数が、前記所定の周波数における前記交流抵抗成分と前記直流抵抗成分との比、rac/rdcの値に基づいて決定されることを特徴とする高感度磁気検出装置。
  11.  請求項10に記載の高感度磁気検出装置において、
     前記rac/rdc比が1より大きい時の前記線材の巻き数が、前記rac/rdc比が1より小さい時の前記線材の巻き数より多くなるように設定されていることを特徴とする高感度磁気検出装置。
  12.  請求項10に記載の高感度磁気検出装置において、
     基準とする周波数に対して前記所定の周波数が大きい時の前記線材の巻き数が、前記所定の周波数が小さい時の前記線材の巻き数より少なくなるように設定されていることを特徴とする高感度磁気検出装置。
PCT/JP2011/067686 2010-08-02 2011-08-02 高感度磁気検出装置 WO2012018018A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010173467A JP5166491B2 (ja) 2010-08-02 2010-08-02 高感度磁気検出装置
JP2010-173467 2010-08-02

Publications (1)

Publication Number Publication Date
WO2012018018A1 true WO2012018018A1 (ja) 2012-02-09

Family

ID=45559515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067686 WO2012018018A1 (ja) 2010-08-02 2011-08-02 高感度磁気検出装置

Country Status (2)

Country Link
JP (1) JP5166491B2 (ja)
WO (1) WO2012018018A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105408757B (zh) 2013-12-13 2018-01-05 奥林巴斯株式会社 磁场检测装置
US11337619B2 (en) 2016-08-02 2022-05-24 Koninklije Philips N.V. Detection of metal artifacts in patients eyes prior to MRI examinations

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064930A (ja) * 2005-09-02 2007-03-15 National Institute For Materials Science 超伝導量子干渉素子用電子回路及びそれを用いた装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064930A (ja) * 2005-09-02 2007-03-15 National Institute For Materials Science 超伝導量子干渉素子用電子回路及びそれを用いた装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUSUKE TSUJI ET AL.: "Performance of SQUID Coupled to HTS Pickup Coil", CHO DENDO SYSTEM KAGAKU KENKYU CENTER HOKOKU, vol. 7, 8 April 2010 (2010-04-08), pages 43 - 47 *

Also Published As

Publication number Publication date
JP2012029972A (ja) 2012-02-16
JP5166491B2 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
Prance et al. Compact room-temperature induction magnetometer with superconducting quantum interference device level field sensitivity
Can et al. Design of ring core fluxgate magnetometer as attitude control sensor for low and high orbit satellites
Matlashov et al. SQUIDs vs. induction coils for ultra-low field nuclear magnetic resonance: experimental and simulation comparison
Hsu et al. Effect of magnetostriction on the core loss, noise, and vibration of fluxgate sensor composed of amorphous materials
US7196514B2 (en) Multi-conductive ferromagnetic core, variable permeability field sensor and method
Pannetier-Lecoeur et al. Magnetoresistive-superconducting mixed sensors for biomagnetic applications
Coillot et al. Principle and performance of a dual-band search coil magnetometer: A new instrument to investigate fluctuating magnetic fields in space
CN104849679A (zh) 磁探头和包括该磁探头的磁场传感器
Ripka et al. Sensitivity and noise of wire-core transverse fluxgate
JP5166491B2 (ja) 高感度磁気検出装置
Hrakova et al. Sensitivity and noise of parallel fluxgate sensor with amorphous wire cores
JP6844075B1 (ja) 磁気微粒子イメージング装置
US20130207651A1 (en) Fluxgate sensor
Morishige et al. Highly sensitive magnetic nanoparticle imaging using cooled-Cu/HTS-superconductor pickup coils
Li et al. Multi-core orthogonal fluxgate sensor
Herreros et al. Very low field magnetic resonance imaging with spintronic sensors
Li et al. A design of orthogonal fluxgate sensor
Oida et al. Direct detection of magnetic resonance signals in ultra-low field MRI using optically pumped atomic magnetometer with ferrite shields: magnetic field analysis and simulation studies
US20030151405A1 (en) Variable permeability magnetic field sensor and method
Kang et al. Application of the double relaxation oscillation superconducting quantum interference device sensor to micro-tesla 1H nuclear magnetic resonance experiments
Butta et al. Orthogonal fluxgate gradiometer with multiple coil pairs
Oida et al. Optimization of flux transformer for optically pumped atomic magnetometer in ultra-low field MRI systems
Durdaut et al. Low-Frequency Magnetic Noise in Statically-Driven Solenoid for Biasing Magnetic Field Sensors
Tashiro Optimal design of an air-core induction magnetometer for detecting low-frequency fields of less than 1 pT
JP2019023582A (ja) 磁気センサ及び磁気測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814643

Country of ref document: EP

Kind code of ref document: A1