WO2012017965A1 - Aromatic copolymer with sulfonic acid groups and uses thereof - Google Patents

Aromatic copolymer with sulfonic acid groups and uses thereof Download PDF

Info

Publication number
WO2012017965A1
WO2012017965A1 PCT/JP2011/067525 JP2011067525W WO2012017965A1 WO 2012017965 A1 WO2012017965 A1 WO 2012017965A1 JP 2011067525 W JP2011067525 W JP 2011067525W WO 2012017965 A1 WO2012017965 A1 WO 2012017965A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
integer
formula
mol
mmol
Prior art date
Application number
PCT/JP2011/067525
Other languages
French (fr)
Japanese (ja)
Inventor
芳孝 山川
敏明 門田
拓也 村上
ロジャンスキー イーゴリ
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012527725A priority Critical patent/JPWO2012017965A1/en
Publication of WO2012017965A1 publication Critical patent/WO2012017965A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/147Side-chains with other heteroatoms in the side-chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • C08G2261/3444Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • C08J2365/02Polyphenylenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an aromatic copolymer having a novel sulfonic acid group, a solid polymer electrolyte comprising the aromatic copolymer having the sulfonic acid group, and use thereof.
  • Electrolytes are usually used in an aqueous solution.
  • the first reason is, for example, the ease of processing when applied to electrical / electronic materials, and the second reason is the shift to light, thin, small, and power saving.
  • inorganic compounds are known as proton conductive materials.
  • examples of inorganic compounds include uranyl phosphate, which is a hydrated compound.
  • uranyl phosphate which is a hydrated compound.
  • a conductive layer is formed on the substrate or electrode. Many problems arise.
  • organic compounds include sulfonated products of vinyl polymers such as polystyrene sulfonic acid, perfluoroalkyl sulfonic acid polymers represented by Nafion (trade name, manufactured by DuPont), and perfluoroalkyl carboxylic acid polymers.
  • vinyl polymers such as polystyrene sulfonic acid, perfluoroalkyl sulfonic acid polymers represented by Nafion (trade name, manufactured by DuPont), and perfluoroalkyl carboxylic acid polymers.
  • examples include polymers belonging to so-called cation exchange resins, or organic polymers such as polymers in which a sulfonic acid group or a phosphoric acid group is introduced into a heat-resistant polymer such as polybenzimidazole or polyether ether ketone.
  • an electrode-membrane assembly is usually obtained by sandwiching an electrolyte membrane made of the perfluoroalkylsulfonic acid polymer between both electrodes and performing a heat treatment such as hot pressing.
  • a fluorine-based film such as this perfluoroalkyl sulfonic acid polymer has a relatively low heat deformation temperature of about 80 ° C., and can be easily joined.
  • the temperature may be 80 ° C. or higher due to the reaction heat, so that the electrolyte membrane softens and a creep phenomenon occurs, which causes a problem that both electrodes are short-circuited and power generation becomes impossible.
  • the fuel cell is designed so that the thickness of the electrolyte membrane is increased to some extent or the temperature during power generation is 80 ° C. or less, but the maximum output of power generation is It will decline.
  • Patent Document 1 discloses a solid polymer electrolyte made of sulfonated rigid polyphenylene.
  • This polymer is mainly composed of a polymer obtained by polymerizing an aromatic compound comprising a phenylene chain, and this is reacted with a sulfonating agent to introduce a sulfonic acid group.
  • the electrolyte membrane made of this polymer has a heat distortion temperature of 180 ° C. or higher and is excellent in creep resistance at high temperatures.
  • the problem to be solved by the present invention is to provide an aromatic copolymer having a sulfonic acid group having high radical resistance without impairing proton conductivity at low humidity.
  • the present inventors have intensively studied to solve the above problems. As a result, it has been found that the above problems can be solved by an aromatic copolymer having a specific structural unit, and the present invention has been completed.
  • each R 1 is independently a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • a represents an integer of 0 to 3
  • k represents an integer of 1 to 4.
  • a + k ⁇ 4 and a plurality of R 1 may be the same or different.
  • each E is independently at least one selected from the group consisting of —CO—, —SO 2 —, —SO—, —CONH—, —NHCO—, and —COO— groups.
  • Ar 31 , Ar 32 , and Ar 33 each independently represents at least one structure selected from the group consisting of a benzene ring, a naphthalene ring, and a nitrogen-containing heterocyclic ring, each of which may be substituted with a fluorine atom. Indicates.
  • R 31 is at least one selected from the group consisting of a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p —, and — (CF 2 ) p —.
  • P represents an integer of 1 to 12).
  • e represents an integer of 0 to 10
  • f represents an integer of 1 to 5
  • g represents an integer of 0 to 4.
  • [2] The aromatic copolymer of [1], wherein at least two structural units represented by the formula (1) are continuous. [3] The number ratio of phosphonic acid groups and sulfonic acid groups contained in the aromatic copolymer is in the range of 0.001 to 0.5 (phosphonic acid group / (phosphonic acid group + sulfonic acid group)). Aromatic copolymer of [1] or [2]. [4] A polymer electrolyte comprising the aromatic copolymer of [1] to [3]. [5] A solid polymer electrolyte membrane comprising the aromatic copolymer of [1] to [4].
  • a membrane-electrode assembly comprising the polymer electrolyte membrane according to [5] above and a catalyst layer and a gas diffusion layer in contact with both sides of the polymer electrolyte membrane.
  • a polymer electrolyte fuel cell having the membrane-electrode assembly according to [6].
  • the aromatic copolymer having a sulfonic acid group according to the present invention has a specific structural unit, it has high radical resistance without impairing proton conductivity at low humidity. Further, when combined with a specific aromatic structural unit, a solid polymer electrolyte and a proton conductive membrane having high dimensional stability and high mechanical strength can be obtained.
  • the aromatic block copolymer having a sulfonic acid group according to the present invention can be suitably used for a proton conductive membrane for a fuel cell.
  • the aromatic copolymer of the present invention has a structural unit having a sulfonic acid group and a structural unit having a phosphonic acid group.
  • the structure of the copolymer is not particularly limited, and may be a random copolymer or a block copolymer, or a mixture thereof.
  • a block copolymer is preferable.
  • the structural unit having a sulfonic acid group of the present invention is represented by the following formula (1).
  • each R 1 is independently a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, Represents an integer of 0 to 3, and k represents an integer of 1 to 4. It is an integer of a + k ⁇ 4.
  • the plurality of R 1 may be the same or different.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a tetramethylbutyl group, an amyl group, C1-C20 alkyl groups such as pentyl and hexyl groups; C3-C20 cycloalkyl groups such as cyclopentyl and cyclohexyl groups; C6-C20 aromatics such as phenyl, naphthyl and biphenyl groups Group hydrocarbon group; alkenyl groups having 2 to 20 carbon atoms such as vinyl group and allyl group.
  • Examples of the monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms in R 1 include a halogenated alkyl group having 1 to 20 carbon atoms, a halogenated cycloalkyl group having 3 to 20 carbon atoms, and 6 to 20 carbon atoms. And halogenated aromatic hydrocarbon groups.
  • Examples of the halogenated alkyl group include a trichloromethyl group, a trifluoromethyl group, a tribromomethyl group, a pentachloroethyl group, a pentafluoroethyl group, and a pentabromoethyl group; and the halogenated aromatic hydrocarbon group.
  • Examples thereof include a chlorophenyl group and a chloronaphthyl group.
  • a is preferably 0 or 1, more preferably 0, from the viewpoint of increasing the density of sulfonic acid groups per unit weight of the structural unit.
  • k is preferably 1 from the viewpoint of reducing the polymerization reactivity of the main chain phenylene moiety due to steric hindrance due to the presence of a plurality of sulfonic acid groups.
  • each E is independently from a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, —CONH—, —NHCO— or —COO—.
  • 1 shows at least one structure selected from the group consisting of Of these, —CO— and —SO 2 — are preferable.
  • Ar 31 , Ar 32 , Ar 33 may be the same or different, and may be substituted with a fluorine atom, and at least one structure selected from the group consisting of a benzene ring, a naphthalene ring, and a nitrogen-containing heterocyclic ring Indicates.
  • the nitrogen-containing heterocycle includes pyrrole, 2H-pyrrole, imidazole, pyrazole, isothiazole, isoxazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, 3H-indole, indole, 1H-indazole, purine.
  • R 31 is at least one selected from the group consisting of a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p —, and — (CF 2 ) p —.
  • P represents an integer of 1 to 12
  • e represents an integer of 0 to 10, preferably 0 to 5, more preferably 0 to 2.
  • f represents an integer of 1 to 5, preferably 1 to 4, more preferably 1 to 3.
  • g represents an integer of 0 to 4, preferably 0 to 3, more preferably 0 to 2.
  • h represents an integer of 0 or 1.
  • the structural unit having a phosphonic acid group is preferably represented by the following formula (4 ′).
  • the polyarylene copolymer of the present invention contains a structural unit having a phosphonic acid group, durability can be improved while maintaining high proton conductivity, hot water resistance, and mechanical strength. It is assumed that the durability is improved because radical resistance to peroxide is improved by introducing a phosphonic acid group.
  • the phosphonic acid group is not introduced into the structural unit having an aromatic structure described later. Because it does not affect hydrophobicity, it is easy to maintain hot water resistance and mechanical strength.
  • hydrogen peroxide is generated and decomposed due to side reactions during power generation to generate hydroxy radicals.
  • This peroxide radical is believed to cause oxidative degradation of the electrolyte polymer in the membrane, causing breakage of the membrane and the like.
  • a phosphoric acid compound such as a phosphonic acid group has an antioxidant ability and is effective in preventing deterioration of the electrolyte membrane in the fuel cell.
  • the phosphonic acid group functions to trap and inactivate Fe 2+ ions and Cu 2+ ions that promote the decomposition of hydrogen peroxide into hydroxy radicals.
  • the phosphate compound has a chain initiation inhibiting function, a chain inhibiting function, and a peroxide decomposing function, and is used as an antioxidant.
  • h 1, and E is a —CO—, —SO 2 —, —SO—, —CONH—, —COO— group.
  • the phosphonic acid group is directly bonded to the benzene ring.
  • the polyarylene-based copolymer has high radical resistance to peroxide and can maintain higher proton conductivity.
  • the proton conductivity is greatly reduced by introduction like a non-conductive phosphonic acid ester group.
  • the conductivity can be maintained without doing so.
  • the polyarylene polymer of the present invention includes a structural unit represented by the above formula (1) and a structural unit represented by the above formula (4) from the viewpoint of mechanical strength and hot water resistance of the obtained electrolyte membrane. It is desirable that at least one structural unit selected from the group is preferably at least 2 consecutive units, more preferably at least 3 consecutive units, more preferably at least 5 consecutive units, and at least 10 consecutive units. It is particularly desirable. Usually, when calculated from the composition ratio, two or more structural units (1) and (4) are continuous. The continuity of such structural units can be proved by NMR or the like.
  • the number ratio of the phosphonic acid group and the sulfonic acid group contained in the aromatic copolymer may be in the range of 0.001 to 0.5 in terms of (phosphonic acid group / (phosphonic acid group + sulfonic acid group)). Preferably, it is in the range of 0.005 to 0.2, more preferably in the range of 0.01 to 0.1, and still more preferably in the range of more than 0.03 and less than 0.07.
  • phosphonic acid groups are contained in such a ratio, there is no significant decrease in conductivity, and radical resistance can be increased.
  • (phosphonic acid group / (phosphonic acid group + sulfonic acid group)) is less than 0.07, weight retention in the Fenton test is improved while maintaining proton conduction.
  • the aromatic copolymer of the present invention has a structural unit represented by the above formula (1) and a structural unit represented by the above formula (4) from the viewpoint of mechanical strength and hot water resistance of the obtained film. Are preferably directly bonded to each other.
  • a structural unit having an aromatic structure and a structural unit having a divalent heterocyclic group containing nitrogen may be included as necessary.
  • the aromatic copolymer of the present invention is represented by the following formula (3) as a structural unit having an aromatic structure in addition to the structural unit represented by the above formula (1) and the structural unit represented by the above formula (4). Structural units can be included.
  • the structural unit having an aromatic structure is represented by the following formula (3).
  • Ar 21 , Ar 22 , Ar 23 and Ar 24 each independently represent a divalent group having a benzene ring, condensed aromatic ring (such as a naphthalene ring) or a nitrogen-containing heterocyclic ring structure. .
  • some or all of the hydrogen atoms may be fluorine-substituted, nitro group, nitrile groups, or some or all of the hydrogen atoms may be halogen-substituted. It may be substituted with at least one atom or group selected from the group consisting of an alkyl group, an allyl group or an aryl group.
  • a and D are each independently a direct bond or —CO—, —COO—, —CONH—, —SO 2 —, —SO—, — (CF 2 ) 1 — (l is an integer of 1 to 10 A), — (CH 2 ) l — (l is an integer of 1 to 10), —CR ′ 2 — (R ′ represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group and a halogenated hydrocarbon group) ), A cyclohexylidene group, a fluorenylidene group, —O— or S—, B is an oxygen atom or a sulfur atom, s and t each independently represent an integer of 0 to 4, and r is 0 Or an integer greater than or equal to 1 is shown.
  • the structural unit having an aromatic structure is preferably one represented by the following formula (3-1).
  • a and D are independently a direct bond, or —CO—, —SO 2 —, —SO—, —COO—, —CONH—, — (CF 2 ) l — (l is 1 is an integer of 1 to 10), — (CH 2 ) 1 — (l is an integer of 1 to 10), —CR ′ 2 — (R ′ is an aliphatic hydrocarbon group, aromatic hydrocarbon group and halogen Represents at least one structure selected from the group consisting of a cyclohexylidene group, a fluorenylidene group, —O—, and —S—, and B is independently an oxygen atom or a sulfur atom, R 1 to R 16 may be the same or different from each other, and may be a hydrogen atom, a fluorine atom, a nitro group, a nitrile group, an alkyl group, an allyl group or At least one atom selected from the group consisting of
  • the hydrophobicity of the copolymer is remarkably improved. For this reason, the outstanding hot water tolerance can be provided, providing the proton conductivity similar to the past. Moreover, what contains a nitrile group in the said structural unit can manufacture the copolymer with a small shrinkage
  • Ar 1 represents a divalent organic group having a heterocyclic structure containing nitrogen, preferably an organic group having 3 to 30 carbon atoms having a heterocyclic structure containing nitrogen, And a divalent heterocyclic group containing nitrogen and a group represented by the following formula (2-1).
  • R h represents a monovalent heterocyclic group containing nitrogen
  • Ar 2 represents a trivalent aromatic group
  • R s represents a divalent fatty acid having 1 to 20 carbon atoms.
  • Examples of the monovalent heterocyclic group containing nitrogen represented by R h include nitrogen-containing 5-membered and 6-membered ring structures. Further, the number of nitrogen atoms in the heterocycle is not particularly limited as long as it is 1 or more, and the heterocycle may contain oxygen or sulfur in addition to nitrogen. Specific examples of the monovalent heterocyclic group containing nitrogen constituting R h include pyrrole, thiazole, isothiazole, oxazole, isoxazole, pyridine, imidazole, imidazoline, pyrazole, 1,3,5-triazine, and pyrimidine.
  • substituents examples include alkyl groups such as a methyl group, an ethyl group, and a propyl group, and aryl groups such as a phenyl group, a toluyl group, and a naphthyl group.
  • alkyl groups such as a methyl group, an ethyl group, and a propyl group
  • aryl groups such as a phenyl group, a toluyl group, and a naphthyl group.
  • Examples of the trivalent aromatic group represented by Ar 2 include a trivalent monocyclic aromatic group derived from a phenyl group, a trivalent condensed ring aromatic group derived from a naphthyl group, pyridine, quinoxaline, and thiophene. And trivalent aromatic heterocyclic groups derived from the above. Of these, a monocyclic aromatic group is preferable.
  • Examples of the divalent aromatic group represented by R s include divalent monocyclic aromatic groups such as 1,3-phenylene group and 1,4-phenylene group, 1,3-naphthalenediyl group, 1,4 -Divalent condensation of naphthalenediyl group, 1,5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, etc.
  • Examples thereof include a divalent aromatic heterocyclic group such as a ring aromatic group, a pyridinediyl group, a quinoxalinediyl group, and a thiophenediyl group.
  • Examples of the divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms and the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R s include a methylene group, an ethylene group, and a cyclohexylene group. Is mentioned.
  • R s is preferably a divalent monocyclic aromatic group.
  • the divalent to trivalent binding sites are not particularly limited.
  • divalent heterocyclic group containing nitrogen represented by Ar 1 examples include a pyrrole diyl group, a 2H-pyrrole diyl group, an imidazole diyl group, a pyrazole diyl group, an isothiazole diyl group, an isoxazole diyl group, and a pyridinediyl group.
  • Examples of the divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by R s include a methylene group, a propylene group, and a butylene group.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R s include a cyclopentylene group, a cyclohexylene group, and a cycloheptylene group.
  • R s is preferably a divalent monocyclic aromatic group.
  • the amount of each structural unit is determined according to desired properties such as ion exchange capacity and molecular weight.
  • the polymer of the present invention contains the structural units represented by the formulas (1) and (2) in the ratio of 0.5 to 99.9 mol%, preferably 10 to 99.5 mol% in the formula (3). It is desirable that the structural unit represented is 0.1 to 99.5 mol%, preferably 0.5 to 89.5 mol%.
  • the structural unit represented by the formula (2) when included, it may be 0.01 mol% or more, preferably 20 mol% or less of all the structural units.
  • the molecular weight of the aromatic copolymer of the present invention is 10,000 to 1,000,000, preferably 20,000 to 800,000, more preferably 50,000 to 30 in terms of polystyrene-equivalent weight average molecular weight by gel permeation chromatography (GPC). Ten thousand.
  • the ion exchange capacity of the aromatic copolymer according to the present invention is usually 0.3 to 6 meq / g, preferably 0.5 to 4 meq / g, more preferably 0.8 to 3.5 meq / g.
  • the ion exchange capacity is within this range, proton conductivity is high, power generation performance can be enhanced, and sufficiently high water resistance can be provided.
  • the above-mentioned ion exchange capacity can be adjusted by changing the type, usage ratio, and combination of each structural unit. Therefore, it can be adjusted by changing the charge amount ratio and type of the precursor (monomer / oligomer) that induces the structural unit during polymerization.
  • the aromatic copolymer of the present invention is obtained, for example, by the method described in JP-A No. 2004-137444, the compound (A) from which the structural unit represented by the above formula (1) is derived, and the above formula (4).
  • the compound derived from the structural unit represented by (B) and, if necessary, the compound derived from the other structural unit are copolymerized to convert the sulfonic acid ester group into a sulfonic acid group, or phosphonic acid ester It can be synthesized by converting a group or a phosphonic acid group into a phosphonic acid group.
  • Compound (A) from which the structural unit represented by the above formula (1) is derived (hereinafter also referred to as “Compound A”)
  • the structural unit represented by the above formula (1) can be introduced by using, for example, a compound represented by the following formula (1-1) as a polymerization raw material for the aromatic copolymer.
  • Z 1 is a halogen atom, a nitro group, an atom or group selected from —SO 2 CH 3 and —SO 2 CF 3
  • R a is a group represented by —OR b
  • R b Represents a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms.
  • R b may be the same or different and represents a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrocarbon group having 4 to 20 carbon atoms.
  • tert-butyl group iso-butyl group, n-butyl group, sec-butyl group, neopentyl group, cyclopentyl group, hexyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, adamantylmethyl group, adamantylmethyl group 2-ethylhexyl group, bicyclo [2.2.1] heptyl group, bicyclo [2.2.1] heptylmethyl group, tetrahydrofurfuryl group, 2-methylbutyl group, 3,3-dimethyl-2,4-dioxolane
  • Examples include a straight chain hydrocarbon group such as a methyl group, a branched hydrocarbon group, an alicyclic hydrocarbon group
  • n-butyl group, neopentyl group, tetrahydrofurfuryl group, cyclopentylmethyl group, cyclopentyl group, cyclohexyl group, cyclohexylmethyl group, adamantyl from the viewpoints of availability, solubility of other compounds, and polymerization reactivity
  • a methyl group and a bicyclo [2,2,1] heptylmethyl group are preferred, and a neopentyl group is most preferred.
  • a phosphonic acid compound derived from a structural unit having a phosphonic acid group (hereinafter sometimes referred to as compound (B))
  • the structural unit having a phosphonic acid group is introduced by using, for example, an aromatic compound represented by the following general formula (4-1) or (4-2) as a polymerization raw material for an aromatic copolymer. be able to.
  • R 31 is at least one selected from the group consisting of a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p —, and — (CF 2 ) p —.
  • P represents an integer of 1 to 12).
  • R 32 represents an alkyl group, a fluorine-substituted alkyl group, an aryl group, a metal ion, an onium ion, or hydrogen.
  • alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an amyl group, a hexyl group, a cyclohexyl group, and an octyl group.
  • Examples of the fluorine-substituted alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group.
  • Examples of the allyl group include a propenyl group
  • examples of the aryl group include a phenyl group and a pentafluorophenyl group.
  • a methyl group, an ethyl group, a propyl group, an isopropyl group, and a phenyl group are preferable.
  • metal ion examples include alkali metal sodium ion, potassium ion, lithium ion, alkaline earth metal magnesium and calcium. Of these, sodium ion, potassium ion, and lithium ion are particularly preferable.
  • onium ions include ammonium, phosphonium, oxonium, sulfonium and the like.
  • X represents an atom or group selected from halogen atoms excluding fluorine (chlorine, bromine, iodine) and —OSO 2 Rb (where Rb represents an alkyl group, a fluorine-substituted alkyl group or an aryl group). Of these, chlorine and bromine are preferred.
  • Examples of the compound represented by the formula (4-1) include the structures shown below.
  • R 33 is represented by- (CR 34 R 35 ) h1- (CR 36 R 37 ) h2- (CR 38 R 39 ) h3- (CR 40 R 41 ) h4- Indicates a valent group.
  • R 33 is an alkylene group which may be branched.
  • R 34 to R 41 may be the same as or different from each other, and each represents a group selected from a hydrogen atom, a fluorine atom, an alkyl group, a fluorine-substituted alkyl group, an allyl group, and an aryl group.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an amyl group, a hexyl group, a cyclohexyl group, and an octyl group.
  • Examples of the fluorine-substituted alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group.
  • Examples of the allyl group include a propenyl group
  • examples of the aryl group include a phenyl group and a pentafluorophenyl group.
  • a methyl group, an ethyl group, a propyl group, an isopropyl group, and a phenyl group are preferable.
  • h1, h2, h3, and h4 may be the same as or different from each other, and are 0 or 1, and h1 + h2 + h3 + h4 is 2 or more.
  • Specific examples of the compound represented by the formula (4-2) include the structures shown below.
  • the above compound can be prepared by a substitution reaction with a precursor in which a bromine atom is introduced in advance at a substitution site where a phosphonic acid group is introduced, and a phosphonic acid ester, phosphonate, or phosphonic acid.
  • a phosphonate neutralization may be performed after introducing phosphonic acid.
  • Compound (C) derived from the structural unit represented by the above formula (3) (hereinafter also referred to as “compound C”) A structural unit having an aromatic structure, derived from a monomer having the following formula (3-2).
  • Ar 21 , Ar 22 , Ar 23 , and Ar 24 are at least one structure selected from the group consisting of a benzene ring, a condensed aromatic ring (such as a naphthalene ring), and a nitrogen-containing heterocyclic ring.
  • Ar 21 , Ar 22 , Ar 23 , and Ar 24 are each a hydrogen atom, a fluorine atom, an alkyl group, a halogenated alkyl group in which part or all of them are fluorine-substituted, an allyl group, an aryl group, It may be substituted with a nitro group or a nitrile group.
  • X represents at least one structure selected from the group consisting of chlorine, bromine, iodine, methanesulfonyl group, trifluoromethanesulfonyl group, benzenesulfonyl group, and toluenesulfonyl group.
  • a and D are independently a direct bond, or —CO—, —COO—, —CONH—, —SO 2 —, —SO—, — (CF 2 ) 1 — (l is an integer of 1 to 10), — (CH 2 ) 1 — (wherein 1 is an integer of 1 to 10), —CR ′ 2 — (R ′ represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group and a halogenated hydrocarbon group), cyclohexene Represents at least one structure selected from the group consisting of a silidene group, a fluorenylidene group, —O—, and —S—, B is independently an oxygen atom or a sulfur atom, and s and t are 0-4 An integer is shown, and r is 0 or an integer of 1 or more. )
  • the structural unit having an aromatic structure can be obtained by using, for example, an oligomer represented by the following general formula (3-3) as a polymerization
  • X represents at least one structure selected from the group consisting of chlorine, bromine, iodine, methanesulfonyl group, trifluoromethanesulfonyl group, and benzenesulfonyl group.
  • a and D are independently a direct bond, or —CO—, —SO 2 —, —SO—, — (CF 2 ) l — (l is an integer of 1 to 10), — (CH 2 ) l — ( l is an integer of 1 to 10), —CR ′ 2 — (R ′ represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group and a halogenated hydrocarbon group), a cyclohexylidene group, a fluorenylidene group, — At least one structure selected from the group consisting of O— and —S—, wherein B is independently an oxygen atom or a sulfur atom; R 1 to R 16 may be the same as or different from each other, and are a hydrogen atom, a fluorine atom, an alkyl group, a halogenated alkyl group in which a part or all of them are halogenated, an allyl group, an aryl group, a nitro group, a
  • the oligomers represented by the above formulas (3-2) and (3-3) can be produced, for example, by copolymerizing the following monomers.
  • These compounds include compounds in which chlorine atoms are replaced by bromine atoms or iodine atoms.
  • r 1, for example, compounds described in JP-A No. 2003-113136 can be exemplified.
  • Compound (D) derived from a structural unit having a nitrogen-containing heterocyclic group (hereinafter also referred to as “compound D”)
  • the structural unit having a nitrogen-containing heterocyclic group represented by the above formula (2) is obtained by using, for example, an aromatic group by using a compound represented by the following formula (2-2) as a raw material for an aromatic copolymer. It can be introduced into the polymer.
  • Ar 1 has the same meaning as Ar 1 in the formula (2), and Z 3 is an atom selected from a halogen atom, a nitro group, a —SO 3 CH 3 group, and SO 3 CF 3. Or a group.
  • Ar 1 is a divalent heterocyclic group containing nitrogen
  • specific examples of the compound represented by the above formula (2-2) include 1-methyl-2,5-dichloropyrrole, 1- Hexyl-2,5-dibromopyrrole, 1-octyl-2,5-dichloropyrrole, 2,5-dichloropyridine, 3,5-dichloropyridine, 2,5-dibromopyridine, 3-methyl-2,5-dichloro Pyridine, 3-hexyl-2,5-dichloropyridine, 5,5′-dichloro-2,2′-bipyridine, 3,3′-dimethyl-5,5′-dichloro-2,2′-bipyridine, 3, 3'-dioctyl-5,5'-dibromo-2,2'-bipyridine, 2,5-dichloropyrimidine, 2,5-dibromopyrimidine, 5,8-dichloroquinoline, 5,8-dibro
  • R h , R s , Ar 2 , Q 1 , Q 2 , n 1 are R h , R s , Ar 2 , Q 1 , Q 2 , It is synonymous with n, and Z 3 represents an atom or group selected from a halogen atom, a nitro group, a —SO 3 CH 3 group, and SO 3 CF 3 .
  • the above-mentioned various compounds are copolymerized to obtain a precursor.
  • This copolymerization is carried out in the presence of a catalyst, and the catalyst used in this case is a catalyst system containing a transition metal compound.
  • This catalyst system is (1) a transition metal salt and a ligand.
  • a compound hereinafter referred to as “ligand component” or a transition metal complex coordinated with a ligand (including a copper salt) and (2) a reducing agent as essential components, and further increase the polymerization rate. Therefore, salts other than transition metal salts may be added.
  • transition metal salts include nickel compounds such as nickel chloride, nickel bromide, nickel iodide, nickel acetylacetonate, palladium compounds such as palladium chloride, palladium bromide, palladium iodide, iron chloride, iron bromide And iron compounds such as iron iodide and cobalt compounds such as cobalt chloride, cobalt bromide and cobalt iodide.
  • nickel chloride, nickel bromide and the like are particularly preferable.
  • Examples of the ligand include triphenylphosphine, tri (2-methyl) phenylphosphine, tri (3-methyl) phenylphosphine, tri (4-methyl) phenylphosphine, 2,2′-bipyridine, 1,5- Examples thereof include cyclooctadiene and 1,3-bis (diphenylphosphino) propane. Triphenylphosphine, tri (2-methyl) phenylphosphine, and 2,2′-bipyridine are preferable.
  • the said ligand can be used individually by 1 type or in combination of 2 or more types.
  • transition metal (salt) in which the ligand is coordinated in advance for example, nickel chloride bis (triphenylphosphine), nickel chloride bis (tri (2-methyl) phenylphosphine), nickel bromide bis (triphenyl) Phosphine), nickel iodide bis (triphenylphosphine), nickel nitrate bis (triphenylphosphine), nickel chloride (2,2′bipyridine), nickel bromide (2,2′bipyridine), nickel iodide (2,2) 'Bipyridine), nickel nitrate (2,2'bipyridine), bis (1,5-cyclooctadiene) nickel, tetrakis (triphenylphosphine) nickel, tetrakis (triphenylphosphite) nickel, tetrakis (triphenylphosphine) palladium Nickel chloride bis (Triphenylphosphine), nickel chloride bis (tri (2-methyl) phen
  • Examples of the reducing agent that can be used in the catalyst system of the present invention include iron, zinc, manganese, aluminum, magnesium, sodium, and calcium, and zinc, magnesium, and manganese are preferable. These reducing agents can be used after being more activated by bringing them into contact with an acid such as an organic acid.
  • salts other than transition metal salts that can be used in the catalyst system of the present invention include sodium compounds such as sodium fluoride, sodium chloride, sodium bromide, lithium bromide, sodium iodide, sodium sulfate, and fluorides.
  • Examples include potassium compounds such as potassium, potassium chloride, potassium bromide, potassium iodide, and potassium sulfate, and ammonium compounds such as tetraethylammonium fluoride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, and tetraethylammonium sulfate.
  • lithium bromide, sodium bromide, sodium iodide, potassium bromide, tetraethylammonium bromide and tetraethylammonium iodide are preferred.
  • the proportion of each component in the catalyst system is such that the transition metal salt or the transition metal (salt) coordinated with the ligand can be a structural unit represented by the above general formula (1) and the above general formula.
  • the amount is generally 0.0001 to 10 mol, preferably 0.01 to 0.5 mol, based on 1 mol in total with the compound B that can be the structural unit represented by (4). Within this range, the polymerization reaction proceeds sufficiently, and the catalytic activity is high and the molecular weight can be increased. When the amount is less than the above range, the polymerization reaction does not proceed sufficiently. On the other hand, when the amount is too large, the molecular weight is lowered.
  • the amount of the ligand used is usually 0.1 to 100 mol, preferably 1 to 10 mol, per 1 mol of the transition metal salt. Within this range, a catalyst having a high catalytic activity and a high molecular weight can be obtained.
  • the ratio of the reducing agent used in the catalyst system is 1 in total of the compound A that can be the structural unit represented by the general formula (1) and the compound B that can be the structural unit represented by the general formula (4).
  • the amount is usually 0.1 to 100 mol, preferably 1 to 10 mol, relative to mol. If it exists in this range, superposition
  • the use ratio thereof is a compound A that can be a structural unit represented by the general formula (1) and a structure represented by the general formula (4).
  • the amount is generally 0.001 to 100 mol, preferably 0.01 to 1 mol, relative to a total of 1 mol with compound B which can be a unit. Within this range, the effect of increasing the polymerization rate is high, and purification of the polymer that removes these is easy.
  • the polymerization solvent that can be used in the present invention include tetrahydrofuran, cyclohexanone, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ - Examples include butyrolactam, and tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, and 1-methyl-2-pyrrolidone are preferable. These polymerization solvents are preferably used after sufficiently dried.
  • the concentration of the compound A that can be the structural unit represented by the general formula (1) and the compound B that can be the structural unit represented by the general formula (4) in the polymerization solvent is usually 1 to 90% by weight, Preferably, it is 5 to 40% by weight.
  • the compound C or a monomer corresponding to the other structural unit is added when reacting the compound A and B, or Any one of compounds A and B may be reacted in advance with compound C and the like, and then reacted with the one of compounds A or B that has not yet been reacted.
  • the reaction conditions may be based on the above conditions.
  • the reaction of compounds A, B, C, etc. corresponds to the composition of each structural unit with the charged amount as it is.
  • the polymerization temperature for polymerizing the polymer of the present invention is usually 0 to 200 ° C., preferably 50 to 80 ° C.
  • the polymerization time is usually 0.5 to 100 hours, preferably 1 to 40 hours.
  • the sulfonic acid ester group or phosphonic acid ester group contained in the obtained copolymer is deprotected and converted to a sulfonic acid group or phosphonic acid group.
  • (2) The aromatic copolymer is 80 in trifluoroacetic acid. Method of reacting at a temperature of about 120 ° C.
  • the aromatic copolymer of the present invention includes a proton conducting membrane, an electrolyte for a primary battery, an electrolyte for a secondary battery, a solid polymer electrolyte for a fuel cell, a display element, various sensors, a signal transmission medium, a solid capacitor, and an ion exchange membrane.
  • the membrane state, the solution state, and the powder state may be used.
  • the membrane state and the solution state are preferable (hereinafter, the membrane state is referred to as a polymer electrolyte membrane).
  • the solid polymer electrolyte membrane according to the present invention contains the above aromatic copolymer.
  • the dry film thickness of the solid polymer electrolyte membrane according to the present invention is usually 10 to 100 ⁇ m, preferably 20 to 80 ⁇ m.
  • the solid polymer electrolyte membrane according to the present invention can also contain a metal compound or a metal ion.
  • Other metal compounds or metal ions include aluminum (Al), manganese (Mn), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W) iron, iron (Fe), Ruthenium (Ru), nickel (Ni), tin (Sn), palladium (Pd), platinum (Pt), silver (Ag), cerium (Ce), vanadium (V), neodymium (Nd), praseodymium (Pr), Metal compounds containing metal atoms such as samarium (Sm), cobalt (Co), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), and erbium (Er), or these metal ions Can be mentioned.
  • the solid polymer electrolyte membrane according to the present invention can also contain a fluorine-containing polymer.
  • a fluorine-containing polymer a solvent-soluble compound is preferably used because the fluorine-containing polymer can be uniformly dispersed in the pores of the electrolyte membrane or the porous substrate.
  • the fluorine-containing polymer is not particularly limited, and examples thereof include vinylidene fluoride homo (co) polymers, fluoroolefin / hydrocarbon olefin copolymers, fluoroacrylate copolymers, fluoroepoxy compounds and the like. Can be used.
  • Such a polymer electrolyte membrane according to the present invention preferably has a weight retention by a Fenton test described later of preferably 50% or more, and more preferably 95% or more.
  • the ion exchange capacity retention is preferably 50% or more, and more preferably 95% or more.
  • Those having such weight retention and ion exchange capacity retention have high radical resistance as electrolyte membrane materials, and can sufficiently exhibit effects such as mechanical strength and dimensional stability.
  • the polymer electrolyte membrane of the present invention is produced by, for example, a casting method in which the aromatic copolymer is mixed in an organic solvent and cast onto a substrate to form a film. can do.
  • the substrate is not particularly limited as long as it is a substrate used in a normal solution casting method.
  • a substrate made of plastic, metal, or the like is used, and preferably a heat treatment such as a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • a substrate made of a plastic resin is used.
  • the solvent for mixing the aromatic copolymer may be a solvent that dissolves the copolymer or a solvent that swells, such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, ⁇ -butyrolactone.
  • N, N-dimethylacetamide, dimethylsulfoxide, dimethylurea, dimethylimidazolidinone, acetonitrile, and other aprotic polar solvents dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene and other chlorinated solvents, methanol Alcohols such as ethanol, propanol, iso-propyl alcohol, sec-butyl alcohol, tert-butyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl Alkylene glycol monoalkyl ethers such as ether, acetone, methyl ethyl ketone, cyclohexanone, ketones such as ⁇ - butyrolactone, tetrahydrofuran, solvents such as ethers 1,3-dioxane and the like.
  • solvents can be used alone or in combination of
  • the composition of the mixture is 95-25% by weight of the aprotic polar solvent, preferably 90-25% by weight
  • the solvent is 5 to 75% by weight, preferably 10 to 75% by weight (however, the total is 100% by weight).
  • the amount of the other solvent is within the above range, the effect of lowering the solution viscosity is excellent.
  • the combination of the aprotic polar solvent and the other solvent is preferably NMP as the aprotic polar solvent and methanol having an effect of lowering the solution viscosity in a wide composition range as the other solvent.
  • the polymer concentration of the solution in which the copolymer and the additive are dissolved depends on the molecular weight of the sulfonic acid-containing aromatic copolymer, but is usually 5 to 40% by weight, preferably 7 to 25% by weight. is there. If the polymer concentration is within the above range, a film having a desired film thickness can be formed, no pinholes are generated, and film formation is easy in terms of solution viscosity. Is excellent.
  • the solution viscosity is usually 2,000 to 100,000 mPa ⁇ s, preferably 3,000 to 50, although depending on the molecular weight of the aromatic copolymer, the polymer concentration, and the concentration of the additive. 000 mPa ⁇ s. If the viscosity is within this range, the solution stays well during film formation, does not flow from the substrate, and is low in viscosity, so it can be easily extruded from a die and can be easily formed into a film by the casting method. It becomes.
  • the organic solvent in the undried film can be replaced with water, and the amount of residual solvent in the resulting polymer electrolyte membrane is reduced. can do.
  • the undried film may be preliminarily dried before the undried film is immersed in water.
  • the preliminary drying is performed by holding the undried film at a temperature of usually 50 to 150 ° C. for 0.1 to 10 hours.
  • the undried film When the undried film is immersed in water and dried as described above, a film with a reduced amount of residual solvent is obtained.
  • the residual solvent amount of the film thus obtained is usually 5% by weight or less. Further, depending on the dipping conditions, the amount of residual solvent in the obtained film can be set to 1% by weight or less.
  • the amount of water used is 50 parts by weight or more with respect to 1 part by weight of the undried film
  • the temperature of the water during immersion is 10 to 60 ° C.
  • the immersion time is 10 minutes to 10 hours. is there.
  • the film After immersing the undried film in water as described above, the film is dried at 30-100 ° C., preferably 50-80 ° C., for 10-180 minutes, preferably 15-60 minutes, and then at 50-150 ° C.
  • the film can be obtained by vacuum drying under reduced pressure of 500 mmHg to 0.1 mmHg for 0.5 to 24 hours.
  • the polymer electrolyte membrane obtained by the method of the present invention has a dry film thickness of usually 10 to 100 ⁇ m, preferably 20 to 80 ⁇ m.
  • the aromatic copolymer having the sulfonic acid ester group or the alkali metal salt of sulfonic acid is formed into a film by the method described above, it is subjected to appropriate post-treatment such as hydrolysis and acid treatment.
  • the polymer electrolyte membrane according to the present invention can also be produced. Specifically, an aromatic copolymer having a sulfonic acid ester group or an alkali metal salt of sulfonic acid is formed into a film by the above-described method, and then the membrane is hydrolyzed or acid-treated for hydrolysis. A polymer electrolyte membrane made of a group copolymer can be produced.
  • inorganic acids such as sulfuric acid and phosphoric acid, phosphate glass, tungstic acid, phosphate hydrate, ⁇ -alumina proton substitution product
  • Inorganic proton conductor particles such as proton-introduced oxides, organic acids containing carboxylic acids, organic acids containing sulfonic acids, organic acids containing phosphonic acids, and appropriate amounts of water may be used in combination.
  • a reinforced solid polymer electrolyte membrane can also be produced by using a porous substrate or a sheet-like fibrous material.
  • a method for producing a reinforced solid polymer electrolyte membrane for example, a liquid composition is impregnated into a porous base material or a sheet-like fibrous material, and the aromatic copolymer is used as a porous base material or A method of filling the pores inside the sheet-like fibrous material, the liquid composition is applied to a porous substrate or a sheet-like fibrous material, and the aromatic copolymer is added to the porous substrate or A method of filling the pores inside the sheet-like fibrous substance, and after forming a film from the liquid composition, the film is laminated on a porous substrate or a sheet-like fibrous substance and hot pressed, Examples thereof include a method of filling the aromatic copolymer into the pores of a porous substrate or a sheet-like fibrous material.
  • a die coat, spray coat, knife coat, roll coat, spin coat, gravure is further applied to the surface of the solid polymer electrolyte membrane obtained by the above-described methods.
  • the composition containing the aromatic copolymer is applied by a known method such as coating, and dried as necessary, or a film formed from the composition containing the aromatic copolymer is described above.
  • the film obtained by the above method may be hot-pressed on the film.
  • the thickness of the polymer layer may be adjusted by adjusting the coating amount. For example, one polymer layer may be thick and the other thin.
  • the porous substrate is not particularly limited as long as it has a large number of pores or voids penetrating in the thickness direction.
  • organic porous substrates made of various resins, glass, alumina Inorganic porous base materials composed of metal oxides and metals themselves.
  • the porous substrate may have a large number of through holes penetrating in a direction substantially parallel to the thickness direction.
  • JP 2008-119662 A, JP 2007-154153 A, JP 8-20660 A, JP 8-20660 A, JP 2006-120368 A Those disclosed in Japanese Patent Application Laid-Open Nos. 2004-171994 and 2009-64777 can be used.
  • an organic porous substrate is preferable, and specifically, polyolefins such as polytetrafluoroethylene, high molecular weight polyethylene, cross-linked polyethylene, polyethylene and polypropylene, polyimide, polyacrylo What consists of 1 or more types chosen from the group which consists of tolyl, polyamideimide, polyetherimide, polyethersulfone, and glass is preferable.
  • the polyolefin is preferably high molecular weight polyethylene, cross-linked polyethylene, polyethylene or the like.
  • the membrane-electrode assembly is a membrane-electrode assembly comprising the solid polymer electrolyte membrane, a catalyst layer, and a gas diffusion layer.
  • a catalyst layer for the cathode electrode is provided on one side of the solid polymer electrolyte membrane
  • a catalyst layer for the anode electrode is provided on the other side, and each of the catalyst layers on the cathode side and the anode side is further provided.
  • Gas diffusion layers are provided on the cathode side and the anode side, respectively, in contact with the side opposite to the solid polymer electrolyte membrane.
  • the gas diffusion layer is composed of a porous substrate or a laminated structure of a porous substrate and a microporous layer.
  • the microporous layer is provided in contact with the catalyst layer.
  • the gas diffusion layers on the cathode side and the anode side preferably contain a fluoropolymer in order to impart water repellency.
  • the catalyst layer is composed of a catalyst and an ion exchange resin electrolyte.
  • a noble metal catalyst such as platinum, palladium, gold, ruthenium or iridium is preferably used.
  • the noble metal catalyst may contain two or more elements such as an alloy or a mixture. As such noble metal catalyst, one supported on high specific surface area carbon fine particles can be used.
  • the ion exchange resin electrolyte functions as a binder component for binding the carbon carrying the catalyst, and at the anode electrode, efficiently supplies ions generated by the reaction on the catalyst to the solid polymer electrolyte membrane. Then, ions supplied from the solid polymer electrolyte membrane are efficiently supplied to the catalyst.
  • a polymer having a proton exchange group is preferable in order to improve proton conductivity in the catalyst layer.
  • Proton exchange groups contained in such polymers include sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups, but are not particularly limited.
  • such a polymer having a proton exchange group is also selected without any particular limitation, but a polymer having a proton exchange group composed of a fluoroalkyl ether side chain and a fluoroalkyl main chain, a sulfonic acid group
  • An aromatic hydrocarbon polymer having the same is preferably used.
  • an aromatic hydrocarbon polymer having a sulfonic acid group constituting the solid polymer electrolyte membrane may be used as an ion-exchange resin, and a polymer containing a fluorine atom having a proton exchange group or ethylene Or other polymers obtained from styrene or the like, copolymers or blends thereof.
  • an ion exchange resin electrolyte a known one can be used without any particular limitation, and for example, Nafion (DuPont, registered trademark), an aromatic hydrocarbon polymer having a sulfonic acid group, or the like can be used without any particular limitation. .
  • the catalyst layer used in the present invention may further include a resin having no carbon fiber or ion exchange group.
  • resins are preferably resins with high water repellency.
  • fluorine-containing copolymers, silane coupling agents, silicone resins, waxes, polyphosphazenes and the like can be mentioned, and fluorine-containing copolymers are preferred.
  • the polymer electrolyte fuel cell according to the present invention is characterized by including the membrane-electrode assembly. Specifically, at least one electricity generating part including at least one membrane-electrode assembly and separators located on both sides thereof; a fuel supply part for supplying fuel to the electricity generating part; and an oxidant for the electricity A fuel cell comprising an oxidant supply section for supplying to a generation section, wherein the membrane-electrode assembly is as described above.
  • separator used in the battery of the present invention those used in ordinary fuel cells can be used. Specifically, carbon type or metal type can be used.
  • a known member can be used without any particular limitation.
  • the battery of the present invention can be used as a single cell or as a stack in which a plurality of single cells are connected in series.
  • a stacking method a known method can be used. Specifically, planar stacking in which single cells are arranged in a plane and bipolar stacking in which single cells are stacked via separators each having a fuel or oxidant flow path formed on the back surface of the separator can be used. .
  • NMP buffer solution N-methylpyrrolidone buffer solution
  • GPC gel permeation chromatography
  • Mn polystyrene-equivalent number average molecular weight
  • Mw weight average molecular weight
  • a chemical impedance measurement system manufactured by NF Circuit Design Block Co., Ltd. was used as the resistance measurement device, and JW241 manufactured by Yamato Scientific Co., Ltd. was used as the constant temperature and humidity device.
  • Fenton reagent was prepared so that iron sulfate heptahydrate and iron ion concentration were 2.5 ppm in 3% by weight of hydrogen peroxide.
  • 50 g of Fenton reagent was collected in a 50 ml glass sample tube, a polymer electrolyte membrane cut to 2 cm ⁇ 3 cm was added, and after sealing, immersed in a constant temperature water bath at 45 ° C., a 24-hour Fenton test was performed. After the Fenton test, the film was taken out, washed with ion-exchanged water, allowed to stand at 25 ° C. and a relative humidity of 50% for 12 hours, and various physical properties were measured. The weight retention rate in the Fenton test was calculated by the following mathematical formula.
  • the elastic modulus was calculated with the distance between marked lines as the distance between chucks.
  • the condition of the sample was adjusted for 48 hours under conditions of a temperature of 23 ⁇ 2 ° C. and a relative humidity of 50 ⁇ 5%.
  • the No. 7 dumbbell described in JIS K6251 was used for punching the sample.
  • the reaction solution was allowed to cool and then diluted by adding 250 mL of toluene.
  • Inorganic salts insoluble in the reaction solution were filtered, and the filtrate was poured into 8 L of methanol to precipitate the product.
  • the precipitated product was filtered and dried, then dissolved in 500 mL of tetrahydrofuran, and poured into 5 L of methanol for reprecipitation.
  • the precipitated white powder was filtered and dried to obtain 258 g of the desired product.
  • Mn measured by GPC was 8,200. It was confirmed that the obtained compound was an oligomer represented by formula (40-1).
  • u is 18.4 (where u is an average value calculated from the number average molecular weight (Mn)).
  • the reaction solution was heated to reflux at 150 ° C. in an oil bath. Water produced by the reaction was trapped in a Dean-stark tube. After 3 hours, when almost no water was observed, toluene was removed from the Dean-stark tube out of the system. The reaction temperature was gradually raised from 180 to 190 ° C., and stirring was continued for 3 hours. Then, 24.6 g (0.14 mol) of 2,6-dichlorobenzonitrile was added, and the reaction was further continued for 5 hours.
  • the reaction solution was allowed to cool and then coagulated in 2401 mL of a methanol / 4 wt% (5/1 (volume ratio)) sulfuric acid solution.
  • the precipitated product was filtered and stirred in 2401 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was again stirred in 2401 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was stirred in methanol (2401 mL) at 55 ° C. for 1 hour, filtered, and again stirred in methanol (2401 mL) at 55 ° C. for 1 hour and filtered. After air drying, it was vacuum-dried at 80 ° C. to obtain 125 g (yield 90%) of the desired product.
  • Mn measured by GPC was 7,000. It was confirmed that the obtained compound was an oligomer represented by formula (40-2).
  • q is 6.1 and r is 18.3 (where q and r are average values calculated from the number average molecular weight (Mn)).
  • the Mn measured by GPC was 7,200.
  • s is 5.8, t is 14.0, u is 3.4 (where s, t, and u are average values calculated from the number average molecular weight (Mn)). .
  • the reaction solution was allowed to cool and then coagulated in 2400 mL of a methanol / 4 wt% (5/1 (volume ratio)) sulfuric acid solution.
  • the precipitated product was filtered and stirred in 2400 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was again stirred in 2400 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was stirred in methanol (2401 mL) at 55 ° C. for 1 hour, filtered, and again stirred in methanol (2400 mL) at 55 ° C. for 1 hour and filtered. After air drying, it was vacuum dried at 80 ° C. to obtain 187.6 g (yield 80%) of the target product.
  • Example 1 28.18 g (94.8 mmol) of the compound represented by (30-1) above, 1.09 g (2.93 mmol) of the compound represented by (30-4) above, and (40-1) above Of 18.45 g (2.25 mmol) of the compound to be obtained, 1.96 g (3.0 mmol) of bis (triphenylphosphine) nickel dichloride, 2.36 g (9.0 mmol) of triphenylphosphine, 11.77 g (180 mmol) of zinc 160 mL of dry dimethylacetamide (DMAc) was added under nitrogen.
  • DMAc dry dimethylacetamide
  • the reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 330 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • the obtained polymer was represented by the following general formula (50-1).
  • x, y, and z each represent a composition ratio, x is 94.8 mol%, y is 2.9 mol%, z is 2.3 mol%, and u is 18. 4.
  • Example 3 28.08 g (94.5 mmol) of the compound represented by the above (30-1) is 28.08 g (94.5 mmol), and 1.09 g (2.93 mmol) of the compound represented by the above (30-4) is 1 0.08 g (2.92 mmol), 18.45 g (2.25 mmol) of the compound represented by (40-1) above, 18.20 g (2.60 mmol) of the compound represented by (40-2) above, bromide
  • the following general formula (50-3) was obtained in the same manner as in Example 1 except that 39.4 g (453.1 mmol) of lithium was changed to 39.2 g (451.4 mmol).
  • x, y, and z each represent a composition ratio
  • x is 94.5 mol%
  • y is 2.9 mol%
  • z is 2.6 mol%
  • r is 18. 3
  • q is 6.1.
  • Y and z each represent a composition ratio
  • x is 94.5 mol%
  • y is 2.9 mol%
  • z is 2.6 mol%
  • s is 5.8,
  • t is 14.0
  • Example 5 The same as Example 1 except that 28.18 g (94.8 mmol) of the compound represented by the above (30-1) was changed to 28.18 g (94.8 mmol) of the compound represented by the above (30-2).
  • the following general formula (50-5) was obtained.
  • x, y, and z each represent a composition ratio, x is 94.8 mol%, y is 2.9 mol%, z is 2.3 mol%, and u is 18. 4.
  • the ion exchange capacity is shown in Table 1.
  • Example 6 The same as Example 2 except that 27.31 g (91.9 mmol) of the compound represented by (30-1) was changed to 27.31 g (91.9 mmol) of the compound represented by (30-2).
  • the following general formula (50-6) was obtained.
  • x, y, and z each represent a composition ratio, x is 91.9 mol%, y is 5.9 mol%, z is 2.3 mol%, and u is 18. 4.
  • the ion exchange capacity is shown in Table 1.
  • Example 7 The same as Example 3 except that 28.08 g (94.5 mmol) of the compound represented by (30-1) was changed to 28.08 g (94.5 mmol) of the compound represented by (30-2). Thus, the following general formula (50-7) was obtained.
  • x, y, and z each represent a composition ratio
  • x is 94.5 mol%
  • y is 2.9 mol%
  • z is 2.6 mol%
  • r 18. 3
  • q is 6.1.
  • Example 8 The same as Example 4 except that 28.08 g (94.5 mmol) of the compound represented by the above (30-1) was changed to 28.08 g (94.5 mmol) of the compound represented by the above (30-2). Thus, the following general formula (50-8) was obtained.
  • x, y and z each represent a composition ratio
  • x is 94.5 mol%
  • y is 2.9 mol%
  • z is 2.6 mol%
  • s is 5.
  • t 14.0
  • u 3.4.
  • Table 1 As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
  • Example 9 Except for changing 18.45 g (2.25 mmol) of the compound represented by (40-1) to 19.13 g (2.25 mmol) of the compound represented by (40-4), Example 1 and Similarly, the following general formula (50-9) was obtained.
  • x, y, and z each represent a composition ratio, x is 94.8 mol%, y is 2.9 mol%, z is 2.3 mol%, and u is 35. 5.
  • the ion exchange capacity is shown in Table 1.
  • Example 10 The same as Example 9 except that 28.18 g (94.8 mmol) of the compound represented by the above (30-1) was changed to 28.18 g (94.8 mmol) of the compound represented by the above (30-2).
  • the following general formula (50-10) was obtained.
  • x, y, and z each represent a composition ratio, x is 94.8 mol%, y is 2.9 mol%, z is 2.3 mol%, and u is 35. 5.
  • the ion exchange capacity is shown in Table 1.
  • the reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 240 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • the obtained polymer was a polymer having a structure represented by the following formula (50-11).
  • x, y, and z each represent a composition ratio, x is 92.2 mol%, y is 4.9 mol%, z is 3.0 mol%, and r is 18. 3, q is 6.1.
  • Example 12 27.53 g (92.64 mmol) of the compound represented by (30-2) above, 1.30 g (4.88 mmol) of the compound represented by (30-5) above, represented by (40-4) above
  • a polymer represented by the following formula (50-12) was obtained in the same manner as in Example 1, except that the compound was changed to 21.08 g (2.48 mmol) and lithium bromide 40.02 g (461 mmol).
  • x, y and z each represent a composition ratio, x is 92.6 mol%, y is 4.9 mol%, z is 2.5 mol%, and u is 35. 5.
  • the ion exchange capacity is shown in Table 1.
  • Example 13 27.47 g (92.44 mmol) of the compound represented by (30-1) above, 1.30 g (4.87 mmol) of the compound represented by (30-6) above, represented by (40-1) above
  • a polymer represented by the following formula (50-13) was obtained in the same manner as in Example 1 except that the compound was changed to 21.06 g (2.70 mmol) and lithium bromide 39.93 g (460 mmol).
  • x, y and z each represent a composition ratio, x is 92.4 mol%, y is 4.9 mol%, z is 2.7 mol%, and u is 18. 4.
  • the ion exchange capacity is shown in Table 1.
  • Example 14 27.53 g (92.64 mmol) of the compound represented by (30-2) above, 1.30 g (4.88 mmol) of the compound represented by (30-6) above, represented by (40-4) above
  • a polymer represented by the following formula (50-14) was obtained in the same manner as in Example 1 except that the compound was changed to 21.08 g (2.48 mmol) and lithium bromide 40.02 g (461 mmol).
  • x, y and z each represent a composition ratio, x is 92.6 mol%, y is 4.9 mol%, z is 2.5 mol%, and u is 35. 5.
  • the ion exchange capacity is shown in Table 1.
  • Example 15 21.62 g (72.75 mmol) of the compound represented by the above (30-1), 6.48 g (24.25 mmol) of the compound represented by the above (30-5), 47.39 g (546 mmol) of lithium bromide
  • x, y and z each represent a composition ratio, x is 72.8 mol%, y is 24.3 mol%, z is 3.0 mol%, and r is 18. 3, q is 6.1.
  • the ion exchange capacity is shown in Table 1.
  • the reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 330 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • Lithium bromide (25.5 g, 293.3 mmol) was added to the filtrate, and the mixture was reacted at an internal temperature of 120 ° C. for 7 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4.3 L of water and solidified. The coagulum was immersed in acetone, filtered and washed. The washed product was washed while being stirred with 6500 g of 1N sulfuric acid. After filtration, the product was washed with ion exchanged water until the pH of the washing solution became 5 or higher. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
  • the obtained polymer was represented by the following general formula (60-1). In formula (60-1), x and z each represent a composition ratio, x is 97.8 mol%, z is 2.3 mol%, and u is 18.4.
  • the reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 330 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • Lithium bromide (25.4 g, 292.2 mmol) was added to the filtrate, and the mixture was reacted at an internal temperature of 120 ° C. for 7 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4.3 L of water and solidified. The coagulum was immersed in acetone, filtered and washed. The washed product was washed while being stirred with 6500 g of 1N sulfuric acid. After filtration, the product was washed with ion exchanged water until the pH of the washing solution became 5 or higher. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
  • the obtained polymer was represented by the following general formula (60-2).
  • x and z each represent a composition ratio, x is 97.4 mol%, z is 2.6 mol%, r is 18.3, and q is 6.1.
  • the reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 330 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • Lithium bromide (25.4 g, 292.2 mmol) was added to the filtrate, and the mixture was reacted at an internal temperature of 120 ° C. for 7 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4.3 L of water and solidified. The coagulum was immersed in acetone, filtered and washed. The washed product was washed while being stirred with 6500 g of 1N sulfuric acid. After filtration, the product was washed with ion exchanged water until the pH of the washing solution became 5 or higher. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
  • the obtained polymer was represented by the following general formula (60-3).
  • x and z each represent a composition ratio, x is 97.4 mol%, z is 2.6 mol%, s is 5.8, t is 14.0, u is 3.4.
  • the reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 330 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • Lithium bromide (25.5 g, 293.3 mmol) was added to the filtrate, and the mixture was reacted at an internal temperature of 120 ° C. for 7 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4.3 L of water and solidified. The coagulum was immersed in acetone, filtered and washed. The washed product was washed while being stirred with 6500 g of 1N sulfuric acid. After filtration, the product was washed with ion exchanged water until the pH of the washing solution became 5 or higher. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
  • the obtained polymer was represented by the following general formula (60-4). In the formula (60-3), x and z each represent a composition ratio, x is 97.8 mol%, z is 2.3 mol%, and u is 35.5.
  • radical resistance could be improved without impairing proton conductivity by simultaneously using a structural unit having a specific sulfonic acid group and a structural unit having a phosphonic acid group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is an aromatic copolymer with sulfonic acid groups that has high proton conductivity, low swelling in hot water and low shrinkage during drying. The aromatic copolymer comprises polymer segments (A) containing structural units represented by formula (1) and polymer segments (B) containing structural units represented by formula (4). (1) (4) (In formula (1), each R1 independently represents a halogen atom, a C1-20 monovalent hydrocarbon group, or a C1-20 monovalent halogenated hydrocarbon group; a represents an integer of 0 to 3; and k represents an integer 1 to 4 with a+k being an integer of 4 or less. The multiple R1s can be the same or different.) (In formula (4), each E independently represents at least one structure selected from the group consisting of -CO-, -SO2-, -SO-, -CONH-, and -COO- groups; and Ar31, Ar32 and Ar33 each independently represent divalent or trivalent organic groups having benzene rings, naphthalene rings or nitrogen-containing heterocyclic rings or said organic groups wherein some or all of the hydrogen atoms have been substituted with fluorine atoms. R31 represents at least one structure selected from the group consisting of direct bonds, -O(CH2)p-, -O(CF2)p-, -(CH2)p-, and -(CF2)p- (p represents an integer of 1 to 12). e represents an integer of 0 to 10, f represents an integer of 1 to 5 and g represents an integer of 0 to 4.)

Description

スルホン酸基を有する芳香族系共重合体、ならびにその用途Aromatic copolymer having sulfonic acid group and use thereof
 本発明は、新規なスルホン酸基を有する芳香族系共重合体、ならびに該スルホン酸基を有する芳香族系共重合体からなる固体高分子電解質およびその用途に関する。 The present invention relates to an aromatic copolymer having a novel sulfonic acid group, a solid polymer electrolyte comprising the aromatic copolymer having the sulfonic acid group, and use thereof.
 電解質は、通常、水溶液などで用いられることが多い。しかし、近年、この電解質を固体系に置き替えていく傾向が高まってきている。その第1の理由として、例えば、電気・電子材料に応用する場合のプロセッシングの容易さが挙げられ、第2の理由として、軽薄短小・省電力化への移行が挙げられる。 Electrolytes are usually used in an aqueous solution. However, in recent years, there is an increasing tendency to replace the electrolyte with a solid system. The first reason is, for example, the ease of processing when applied to electrical / electronic materials, and the second reason is the shift to light, thin, small, and power saving.
 従来より、プロトン伝導性材料として、無機化合物、有機化合物の双方が知られている。無機化合物の例としては、例えば水和化合物であるリン酸ウラニルが挙げられるが、これらの無機化合物は基板または電極との界面での接触が十分でないため、伝導層を基板または電極上に形成する際に多くの問題が生じる。 Conventionally, both inorganic compounds and organic compounds are known as proton conductive materials. Examples of inorganic compounds include uranyl phosphate, which is a hydrated compound. However, since these inorganic compounds do not have sufficient contact at the interface with the substrate or electrode, a conductive layer is formed on the substrate or electrode. Many problems arise.
 一方、有機化合物の例としては、例えばポリスチレンスルホン酸などのビニル系ポリマーのスルホン化物、ナフィオン(商品名、デュポン社製)を代表とするパーフルオロアルキルスルホン酸ポリマー、パーフルオロアルキルカルボン酸ポリマーなどのいわゆる陽イオン交換樹脂に属するポリマー、あるいはポリベンズイミダゾールまたはポリエーテルエーテルケトンなどの耐熱性高分子にスルホン酸基またはリン酸基を導入したポリマーなどの有機系ポリマーなどが挙げられる。 On the other hand, examples of organic compounds include sulfonated products of vinyl polymers such as polystyrene sulfonic acid, perfluoroalkyl sulfonic acid polymers represented by Nafion (trade name, manufactured by DuPont), and perfluoroalkyl carboxylic acid polymers. Examples include polymers belonging to so-called cation exchange resins, or organic polymers such as polymers in which a sulfonic acid group or a phosphoric acid group is introduced into a heat-resistant polymer such as polybenzimidazole or polyether ether ketone.
 燃料電池を作製する際、通常、両電極間に前記パーフルオロアルキルスルホン酸系ポリマーからなる電解質膜を挟み、ホットプレス等の熱処理加工により、電極―膜接合体を得ている。このパーフルオロアルキルスルホン系酸ポリマーのようなフッ素系膜は、熱変形温度が80℃程度と比較的低く、容易に接合加工が可能である。しかし、燃料電池発電時には、その反応熱により80℃以上の温度となる場合があるため、電解質膜が軟化してクリープ現象が生じることにより、両極が短絡して発電不能となる問題が起こる。 When producing a fuel cell, an electrode-membrane assembly is usually obtained by sandwiching an electrolyte membrane made of the perfluoroalkylsulfonic acid polymer between both electrodes and performing a heat treatment such as hot pressing. A fluorine-based film such as this perfluoroalkyl sulfonic acid polymer has a relatively low heat deformation temperature of about 80 ° C., and can be easily joined. However, at the time of fuel cell power generation, the temperature may be 80 ° C. or higher due to the reaction heat, so that the electrolyte membrane softens and a creep phenomenon occurs, which causes a problem that both electrodes are short-circuited and power generation becomes impossible.
 このような問題を回避するために、現状では、電解質膜の膜厚をある程度厚くしたり、発電時の温度が80℃以下になるように燃料電池を設計しているが、発電の最高出力が低下してしまう。 In order to avoid such problems, currently the fuel cell is designed so that the thickness of the electrolyte membrane is increased to some extent or the temperature during power generation is 80 ° C. or less, but the maximum output of power generation is It will decline.
 ところで、パーフルオロアルキルスルホン酸系ポリマーの熱変形温度が低いことによって、該ポリマーからなる電解質の高温での機械特性が乏しくなることを解決するために、近年エンジニアプラスチック等に用いられる芳香族系ポリマーを用いた固体高分子電解質膜が開発されている。 By the way, in order to solve the problem that the mechanical property at high temperature of the electrolyte made of the perfluoroalkylsulfonic acid polymer is low due to the low thermal deformation temperature, an aromatic polymer used in engineer plastics and the like in recent years. A solid polymer electrolyte membrane using sapphire has been developed.
 例えば、米国特許第5,403,675号公報(特許文献1)には、スルホン化された剛直ポリフェニレンからなる固体高分子電解質が開示されている。このポリマーは、フェニレン連鎖からなる芳香族化合物を重合して得られるポリマーを主成分とし、これをスルホン化剤と反応させてスルホン酸基を導入している。このポリマーからなる電解質膜は、熱変形温度が180℃以上であり、高温でのクリープ耐性に優れる。 For example, US Pat. No. 5,403,675 (Patent Document 1) discloses a solid polymer electrolyte made of sulfonated rigid polyphenylene. This polymer is mainly composed of a polymer obtained by polymerizing an aromatic compound comprising a phenylene chain, and this is reacted with a sulfonating agent to introduce a sulfonic acid group. The electrolyte membrane made of this polymer has a heat distortion temperature of 180 ° C. or higher and is excellent in creep resistance at high temperatures.
米国特許第5,403,675号公報US Pat. No. 5,403,675
 本発明が解決しようとする課題は、低湿度でのプロトン伝導度を損なうことなく、高いラジカル耐性を有する、スルホン酸基を有する芳香族系共重合体を提供することである。 The problem to be solved by the present invention is to provide an aromatic copolymer having a sulfonic acid group having high radical resistance without impairing proton conductivity at low humidity.
 本発明者らは、上記の問題点を解決すべく、鋭意研究した。その結果、特定の構造単位を有する芳香族系共重合体によって、上記課題を解決できることを見出し、本発明を完成させるに至った。 The present inventors have intensively studied to solve the above problems. As a result, it has been found that the above problems can be solved by an aromatic copolymer having a specific structural unit, and the present invention has been completed.
 本発明の態様は、以下[1]~[7]に示される。
[1]下記式(1)で表される構造単位と、下記式(4)で表わされる構造単位と、を含む芳香族系共重合体。
Aspects of the present invention are shown in [1] to [7] below.
[1] An aromatic copolymer containing a structural unit represented by the following formula (1) and a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000003
(上記式(1)中、R1は、各々独立に、ハロゲン原子、炭素数1~20の1価の炭化水素基、または炭素数1~20の1価のハロゲン化炭化水素基であり、aは0~3の整数、kは1~4の整数を表わす。ただし、a+k≦4の整数である。なお、複数のR1は、同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000003
(In the above formula (1), each R 1 is independently a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a represents an integer of 0 to 3, and k represents an integer of 1 to 4. However, a + k ≦ 4, and a plurality of R 1 may be the same or different.
Figure JPOXMLDOC01-appb-C000004
(式(4)中、Eは、それぞれ独立に、-CO-、-SO2-、-SO-、-CONH-、-NHCO-、-COO-基からなる群より選ばれた少なくとも1種の構造を示し、Ar31、Ar32、Ar33は、それぞれ独立に、フッ素原子で置換されていてもよい、ベンゼン環、ナフタレン環、含窒素複素環からなる群より選ばれた少なくとも1種の構造を示す。
Figure JPOXMLDOC01-appb-C000004
(In the formula (4), each E is independently at least one selected from the group consisting of —CO—, —SO 2 —, —SO—, —CONH—, —NHCO—, and —COO— groups. Ar 31 , Ar 32 , and Ar 33 each independently represents at least one structure selected from the group consisting of a benzene ring, a naphthalene ring, and a nitrogen-containing heterocyclic ring, each of which may be substituted with a fluorine atom. Indicates.
 R31は、直接結合、-O(CH2p-、-O(CF2p-、-(CH2p-、-(CF2p-からなる群より選ばれた少なくとも1種の構造を示す(pは、1~12の整数を示す)。eは0~10の整数を示し、fは1~5の整数を示し、gは0~4の整数を示す。) R 31 is at least one selected from the group consisting of a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p —, and — (CF 2 ) p —. (P represents an integer of 1 to 12). e represents an integer of 0 to 10, f represents an integer of 1 to 5, and g represents an integer of 0 to 4. )
[2]上記式(1)で表される構造単位が少なくとも2個連続している、[1]の芳香族系共重合体。
[3]芳香族系共重合体に含まれるホスホン酸基と、スルホン酸基の数比が(ホスホン酸基/(ホスホン酸基+スルホン酸基)で0.001~0.5の範囲にある[1]または[2]の芳香族系共重合体。
[4]前記[1]~[3]の芳香族系共重合体からなる高分子電解質。
[5]前記[1]~[4]の芳香族系共重合体からなる固体高分子電解質膜。
[6]前記[5]の高分子電解質膜と、該高分子電解質膜の両側に接して、触媒層とガス拡散層とを有することを特徴とする膜-電極接合体。
[7]前記[6]の膜-電極接合体を有する固体高分子型燃料電池。
[2] The aromatic copolymer of [1], wherein at least two structural units represented by the formula (1) are continuous.
[3] The number ratio of phosphonic acid groups and sulfonic acid groups contained in the aromatic copolymer is in the range of 0.001 to 0.5 (phosphonic acid group / (phosphonic acid group + sulfonic acid group)). Aromatic copolymer of [1] or [2].
[4] A polymer electrolyte comprising the aromatic copolymer of [1] to [3].
[5] A solid polymer electrolyte membrane comprising the aromatic copolymer of [1] to [4].
[6] A membrane-electrode assembly comprising the polymer electrolyte membrane according to [5] above and a catalyst layer and a gas diffusion layer in contact with both sides of the polymer electrolyte membrane.
[7] A polymer electrolyte fuel cell having the membrane-electrode assembly according to [6].
 本発明に係るスルホン酸基を有する芳香族系共重合体は、特定の構造単位を有しているので、低湿度でのプロトン伝導度を損なうことなく、高いラジカル耐性を有している。また、特定の芳香族構造単位と組合わせると、寸法安定性が高く、機械的強度も高い固体高分子電解質およびプロトン伝導膜を得ることができる。 Since the aromatic copolymer having a sulfonic acid group according to the present invention has a specific structural unit, it has high radical resistance without impairing proton conductivity at low humidity. Further, when combined with a specific aromatic structural unit, a solid polymer electrolyte and a proton conductive membrane having high dimensional stability and high mechanical strength can be obtained.
 また、熱水中での膨潤および乾燥時の収縮が小さいことから、耐熱性、耐久性も高く、発電後の膜の分子量の変化も低く、スルホン酸保持率も高い。このため、本発明に係るスルホン酸基を有する芳香族系ブロック共重合体は燃料電池用のプロトン伝導膜に好適に使用できる。 Also, since the swelling in hot water and the shrinkage during drying are small, the heat resistance and durability are high, the change in the molecular weight of the membrane after power generation is low, and the sulfonic acid retention is high. Therefore, the aromatic block copolymer having a sulfonic acid group according to the present invention can be suitably used for a proton conductive membrane for a fuel cell.
 以下、本発明に係る芳香族系ブロック共重合体、固体高分子電解質、およびプロトン伝導膜について詳細に説明する。 Hereinafter, the aromatic block copolymer, the solid polymer electrolyte, and the proton conductive membrane according to the present invention will be described in detail.
 [芳香族系共重合体]
 本発明の芳香族系共重合体は、スルホン酸基を有する構造単位と、ホスホン酸基を構造単位とを有する。共重合体としては、これらのセグメントを有するかぎり、その構造は特に制限なく、ランダム共重合体、ブロック共重合体のいずれであってもよく、またこれらの混合物であってもよい。とくに本発明では、ブロック共重合体が好ましい。
[Aromatic copolymer]
The aromatic copolymer of the present invention has a structural unit having a sulfonic acid group and a structural unit having a phosphonic acid group. As long as it has these segments, the structure of the copolymer is not particularly limited, and may be a random copolymer or a block copolymer, or a mixture thereof. In particular, in the present invention, a block copolymer is preferable.
 (スルホン酸基を有する構造単位)
 本発明のスルホン酸基を有する構造単位は、下記式(1)で表される。
(Structural unit having a sulfonic acid group)
The structural unit having a sulfonic acid group of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
 上記式(1)中、R1は、各々独立に、ハロゲン原子、炭素数1~20の1価の炭化水素基、または炭素数1~20の1価のハロゲン化炭化水素基であり、aは0~3の整数、kは1~4の整数を表わす。a+k≦4の整数である。なお、複数のR1は、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000005
In the above formula (1), each R 1 is independently a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, Represents an integer of 0 to 3, and k represents an integer of 1 to 4. It is an integer of a + k ≦ 4. The plurality of R 1 may be the same or different.
 上記R1における炭素数1~20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、テトラメチルブチル基、アミル基、ペンチル基およびヘキシル基などの炭素数1~20のアルキル基;シクロペンチル基およびシクロヘキシル基などの炭素数3~20のシクロアルキル基;フェニル基、ナフチル基およびビフェニル基などの炭素数6~20の芳香族炭化水素基;ビニル基およびアリル基などの炭素数2~20のアルケニル基などが挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a tetramethylbutyl group, an amyl group, C1-C20 alkyl groups such as pentyl and hexyl groups; C3-C20 cycloalkyl groups such as cyclopentyl and cyclohexyl groups; C6-C20 aromatics such as phenyl, naphthyl and biphenyl groups Group hydrocarbon group; alkenyl groups having 2 to 20 carbon atoms such as vinyl group and allyl group.
 上記R1における炭素数1~20の1価のハロゲン化炭化水素基としては、炭素数1~20のハロゲン化アルキル基、炭素数3~20のハロゲン化シクロアルキル基および炭素数6~20のハロゲン化芳香族炭化水素基などが挙げられる。前記ハロゲン化アルキル基としては、トリクロロメチル基、トリフルオロメチル基、トリブロモメチル基、ペンタクロロエチル基、ペンタフルオロエチル基およびペンタブロモエチル基などが挙げられ;前記ハロゲン化芳香族炭化水素基としては、クロロフェニル基およびクロロナフチル基などが挙げられる。
 aとしては、構造単位重量当りのスルホン酸基の密度を高める観点から、0または1であることが好ましく、0であることがより好ましい。
 kとしては、複数のスルホン酸基が存在することによる立体障害により主鎖フェニレン部の重合反応性が低下する観点から1であることが好ましい。
Examples of the monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms in R 1 include a halogenated alkyl group having 1 to 20 carbon atoms, a halogenated cycloalkyl group having 3 to 20 carbon atoms, and 6 to 20 carbon atoms. And halogenated aromatic hydrocarbon groups. Examples of the halogenated alkyl group include a trichloromethyl group, a trifluoromethyl group, a tribromomethyl group, a pentachloroethyl group, a pentafluoroethyl group, and a pentabromoethyl group; and the halogenated aromatic hydrocarbon group. Examples thereof include a chlorophenyl group and a chloronaphthyl group.
a is preferably 0 or 1, more preferably 0, from the viewpoint of increasing the density of sulfonic acid groups per unit weight of the structural unit.
k is preferably 1 from the viewpoint of reducing the polymerization reactivity of the main chain phenylene moiety due to steric hindrance due to the presence of a plurality of sulfonic acid groups.
 [ホスホン酸基を有する構造単位]
 ホスホン酸基を有する構造単位は、下記式(4)で表される。
[Structural unit having phosphonic acid group]
The structural unit having a phosphonic acid group is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000006
 式(4)中、Eは、それぞれ個別に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-NHCO-、-COO-基からなる群より選ばれた少なくとも1種の構造を示す。このうち、-CO-、-SO2-が好ましい。
Figure JPOXMLDOC01-appb-C000006
In formula (4), each E is independently from a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, —CONH—, —NHCO— or —COO—. 1 shows at least one structure selected from the group consisting of Of these, —CO— and —SO 2 — are preferable.
 Ar31、Ar32、Ar33は同一でも、異なっていてもよく、フッ素原子で置換されていてもよい、ベンゼン環、ナフタレン環、含窒素複素環からなる群より選ばれた少なくとも1種の構造を示す。なお、含窒素複素環としては、ピロール、2H-ピロール、イミダゾール、ピラゾール、イソチアゾール、イソオキサゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、インドリジン、イソインドール、3H-インドール、インドール、1H-インダゾール、プリン、4H-キノリジン、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、カルバゾール、カルボリン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、フェノチアジン、フラザン、フェノキサジン、ピロリジン、ピロリン、イミダゾリン、イミダゾリジン、ピラゾリジン、ピラゾリン、ピペリジン、ピペラジン、インドリン、イソインドリン、キヌクリジン、オキサゾール、ベンゾオキサゾール、1,3,5-トリアジン、プリン、テトラゾール、テトラジン、トリアゾール、フェナルサジン、ベンゾイミダゾール、ベンゾトリアゾール、チアゾール、ベンゾチアゾール、ベンゾチアジアゾールが挙げられ、この内、イミダゾール、ピリジン、1,3,5-トリアジン、トリアゾールが好ましい。 Ar 31 , Ar 32 , Ar 33 may be the same or different, and may be substituted with a fluorine atom, and at least one structure selected from the group consisting of a benzene ring, a naphthalene ring, and a nitrogen-containing heterocyclic ring Indicates. The nitrogen-containing heterocycle includes pyrrole, 2H-pyrrole, imidazole, pyrazole, isothiazole, isoxazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, 3H-indole, indole, 1H-indazole, purine. 4H-quinolidine, quinoline, isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, perimidine, phenanthroline, phenazine, phenothiazine, furazane, phenoxazine, pyrrolidine, pyrroline, imidazoline, Imidazolidine, pyrazolidine, pyrazoline, piperidine, piperazine, indoline, isoindoline, quinuclidine, oxazole, ben Examples include oxazole, 1,3,5-triazine, purine, tetrazole, tetrazine, triazole, phenalsazine, benzimidazole, benzotriazole, thiazole, benzothiazole, and benzothiadiazole, including imidazole, pyridine, 1,3,5- Triazine and triazole are preferred.
 R31は、直接結合、-O(CH2)p-、-O(CF2)p-、-(CH2)p-、-(CF2)p-からなる群より選ばれた少なくとも1種の構造を示す(pは、1~12の整数を示す)。
 eは0~10の整数を示し、好ましくは0~5、より好ましくは0~2を示す。
R 31 is at least one selected from the group consisting of a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p —, and — (CF 2 ) p —. (P represents an integer of 1 to 12).
e represents an integer of 0 to 10, preferably 0 to 5, more preferably 0 to 2.
 fは1~5の整数を示し、好ましくは1~4、より好ましくは1~3を示す。
 gは0~4の整数を示し、好ましくは0~3、より好ましくは0~2を示す。
 hは0または1の整数を示す。
 また、ホスホン酸基を有する構造単位は、好ましくは下記式(4')で表される。
f represents an integer of 1 to 5, preferably 1 to 4, more preferably 1 to 3.
g represents an integer of 0 to 4, preferably 0 to 3, more preferably 0 to 2.
h represents an integer of 0 or 1.
The structural unit having a phosphonic acid group is preferably represented by the following formula (4 ′).
Figure JPOXMLDOC01-appb-C000007
(式(4')中、E、R31、e、f、g、hは前記式(4)と同様である。)
 ホスホン酸基を有する構造単位の具体的構造としては、下記を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
(In the formula (4 ′), E, R 31 , e, f, g and h are the same as those in the formula (4).)
Specific examples of the structural unit having a phosphonic acid group include the following.
Figure JPOXMLDOC01-appb-C000008
 本発明のポリアリーレン系共重合体は、ホスホン酸基を有する構造単位を含むことで高いプロトン伝導度、熱水耐性、機械的強度を保持しつつ、耐久性を向上させることができる。耐久性が向上する理由としては、ホスホン酸基を導入することで過酸化物に対するラジカル耐性を向上するためと推察される。また、特に、ホスホン酸基を有する構造単位となるモノマーを用いて芳香族系共重合体を合成した場合には、後述する芳香族構造を有する構造単位にホスホン酸基が導入されることがなく、疎水性に影響を与えにくいため、熱水耐性、機械的強度を保持しやすい。なお、固体高分子型燃料電池においては、発電時の副反応により、過酸化水素が生成、分解して、ヒドロキシラジカルが生じる。この過酸化物ラジカルが、膜中の電解質ポリマーを酸化劣化させ、膜の破断等を生じさせると考えられている。
 この劣化反応を抑制するには、過酸化水素等に対する酸化防止能を付与すればよく、このために、電解質中にホスホン酸基を導入することが好ましい。また、具体的なメカニズムは明らかになっていないが、ホスホン酸基のようなリン酸化合物は、酸化防止能を有し、燃料電池中の電解質膜の劣化防止に効果的である。
 ホスホン酸基は、過酸化水素のヒドロキシラジカルへの分解を促進するFe2+イオンやCu2+イオンをトラップ、不活性化する働きがある。
 なお、リン酸化合物は、連鎖開始阻害機能、連鎖禁止機能や過酸化物分解機能を有しており、酸化防止剤として用いられている。*参考文献 特開2004-134294号公報
 また、特に、上記式(1)においてh=1であり、Eが-CO-、-SO2-、-SO-、-CONH-、-COO-基からなる場合には、すなわち電子密度の低い芳香族環にホスホン酸基が導入されることを意味し、このようなポリアリーレン系共重合体は、過酸化物に対するラジカル耐性が高く、かつ、プロトン伝導度をより高く保持できる。また、h=0、R31が直接結合の場合、ホスホン酸基がベンゼン環に直接結合したものにとなる。この場合も同様に、ポリアリーレン系共重合体は、過酸化物に対するラジカル耐性が高く、かつ、プロトン伝導度をより高く保持できる。
Figure JPOXMLDOC01-appb-C000008
Since the polyarylene copolymer of the present invention contains a structural unit having a phosphonic acid group, durability can be improved while maintaining high proton conductivity, hot water resistance, and mechanical strength. It is assumed that the durability is improved because radical resistance to peroxide is improved by introducing a phosphonic acid group. In particular, when an aromatic copolymer is synthesized using a monomer that is a structural unit having a phosphonic acid group, the phosphonic acid group is not introduced into the structural unit having an aromatic structure described later. Because it does not affect hydrophobicity, it is easy to maintain hot water resistance and mechanical strength. In a polymer electrolyte fuel cell, hydrogen peroxide is generated and decomposed due to side reactions during power generation to generate hydroxy radicals. This peroxide radical is believed to cause oxidative degradation of the electrolyte polymer in the membrane, causing breakage of the membrane and the like.
In order to suppress this deterioration reaction, it is only necessary to impart an antioxidant ability to hydrogen peroxide or the like. For this purpose, it is preferable to introduce a phosphonic acid group into the electrolyte. Moreover, although the specific mechanism is not clarified, a phosphoric acid compound such as a phosphonic acid group has an antioxidant ability and is effective in preventing deterioration of the electrolyte membrane in the fuel cell.
The phosphonic acid group functions to trap and inactivate Fe 2+ ions and Cu 2+ ions that promote the decomposition of hydrogen peroxide into hydroxy radicals.
The phosphate compound has a chain initiation inhibiting function, a chain inhibiting function, and a peroxide decomposing function, and is used as an antioxidant. * Reference Document JP 2004-134294 A In particular, in the above formula (1), h = 1, and E is a —CO—, —SO 2 —, —SO—, —CONH—, —COO— group. In other words, this means that a phosphonic acid group is introduced into an aromatic ring having a low electron density, and such a polyarylene-based copolymer has high radical resistance to peroxide and proton conduction. The degree can be kept higher. When h = 0 and R 31 is a direct bond, the phosphonic acid group is directly bonded to the benzene ring. In this case as well, the polyarylene-based copolymer has high radical resistance to peroxide and can maintain higher proton conductivity.
 さらにまた、本発明では、ホスホン酸エステル基では無く、脱保護されたホスホン酸基の状態で導入されているため、伝導性の無いホスホン酸エステル基のように導入によってプロトン伝導性が大幅に低下することなく、伝導性を保持できる。 Furthermore, in the present invention, since it is introduced in the state of a deprotected phosphonic acid group instead of a phosphonic acid ester group, the proton conductivity is greatly reduced by introduction like a non-conductive phosphonic acid ester group. The conductivity can be maintained without doing so.
 また、本発明のポリアリーレン系重合体は、得られる電解質膜の機械的強度や熱水耐性の観点から上記式(1)で表される構造単位および上記式(4)で表される構造単位から選ばれる少なくとも一種の構造単位が、少なくとも2個連続していることが望ましく、少なくとも3個連続していることがより望ましく、少なくとも5個連続していることがさらに望ましく、少なくとも10個連続していることが特に望ましい。
 通常、組成比から計算すると、構造単位(1)および(4)は、2個以上連続している。なお、かかる構造単位の連続は、NMR等での証明することも可能である。
In addition, the polyarylene polymer of the present invention includes a structural unit represented by the above formula (1) and a structural unit represented by the above formula (4) from the viewpoint of mechanical strength and hot water resistance of the obtained electrolyte membrane. It is desirable that at least one structural unit selected from the group is preferably at least 2 consecutive units, more preferably at least 3 consecutive units, more preferably at least 5 consecutive units, and at least 10 consecutive units. It is particularly desirable.
Usually, when calculated from the composition ratio, two or more structural units (1) and (4) are continuous. The continuity of such structural units can be proved by NMR or the like.
 芳香族系共重合体に含まれるホスホン酸基と、スルホン酸基の数比が(ホスホン酸基/(ホスホン酸基+スルホン酸基))で0.001~0.5の範囲にあることが好ましく、0.005~0.2の範囲にあることがより好ましく、0.01~0.1の範囲、さらには、0.03を越えて0.07未満の範囲にあることがさらに好ましい。このような比率でホスホン酸基が含まれていると、著しい伝導度の低下が無く、かつラジカル耐性を高くすることが出来る。
 とくに、(ホスホン酸基/(ホスホン酸基+スルホン酸基))が0.07未満であると、プロトン伝導を維持しつつ、フェントン試験における重量保持率が良好となる。また、(ホスホン酸基/(ホスホン酸基+スルホン酸基))が0.03を越え、0.07未満であると、プロトン伝導を維持しつつ、フェントン試験における重量保持率とイオン交換容量保持率を両立させることが出来る。
The number ratio of the phosphonic acid group and the sulfonic acid group contained in the aromatic copolymer may be in the range of 0.001 to 0.5 in terms of (phosphonic acid group / (phosphonic acid group + sulfonic acid group)). Preferably, it is in the range of 0.005 to 0.2, more preferably in the range of 0.01 to 0.1, and still more preferably in the range of more than 0.03 and less than 0.07. When phosphonic acid groups are contained in such a ratio, there is no significant decrease in conductivity, and radical resistance can be increased.
In particular, when (phosphonic acid group / (phosphonic acid group + sulfonic acid group)) is less than 0.07, weight retention in the Fenton test is improved while maintaining proton conduction. Further, when (phosphonic acid group / (phosphonic acid group + sulfonic acid group)) exceeds 0.03 and less than 0.07, weight retention and ion exchange capacity retention in the Fenton test are maintained while maintaining proton conduction. Both rates can be achieved.
 また、本発明の芳香族系共重合体は、得られた膜の機械的強度、熱水耐性の観点から、上記式(1)で表わされる構造単位と上記式(4)で表わされる構造単位とが直接結合していることが好ましい。
 本発明では、上記以外に、必要に応じて、芳香族構造を有する構造単位および窒素を含む2価の複素環基を有する構造単位を含んでいてもよい。
In addition, the aromatic copolymer of the present invention has a structural unit represented by the above formula (1) and a structural unit represented by the above formula (4) from the viewpoint of mechanical strength and hot water resistance of the obtained film. Are preferably directly bonded to each other.
In the present invention, in addition to the above, a structural unit having an aromatic structure and a structural unit having a divalent heterocyclic group containing nitrogen may be included as necessary.
 (芳香族構造を有する構造単位)
 本発明の芳香族系共重合体は、上記式(1)で表わされる構造単位および上記式(4)で表わされる構造単位以外に、芳香族構造を有する構造単位として下記式(3)で表される構造単位を含むことができる。
 芳香族構造を有する構造単位は、下記式(3)で表される。
(Structural unit having aromatic structure)
The aromatic copolymer of the present invention is represented by the following formula (3) as a structural unit having an aromatic structure in addition to the structural unit represented by the above formula (1) and the structural unit represented by the above formula (4). Structural units can be included.
The structural unit having an aromatic structure is represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000009
 上記式(3)中、Ar21、Ar22、Ar23、Ar24は、それぞれ独立に、ベンゼン環、縮合芳香環(ナフタレン環など)または含窒素複素環の構造を有する2価の基を示す。
Figure JPOXMLDOC01-appb-C000009
In the above formula (3), Ar 21 , Ar 22 , Ar 23 and Ar 24 each independently represent a divalent group having a benzene ring, condensed aromatic ring (such as a naphthalene ring) or a nitrogen-containing heterocyclic ring structure. .
 ただし、Ar21、Ar22、Ar23、Ar24は、その水素原子の一部またはすべてが、フッ素原子、ニトロ基、ニトリル基、または水素原子の一部またはすべてがハロゲン置換されていてもよいアルキル基、アリル基若しくはアリール基からなる群より選ばれた少なくとも1種の原子または基で置換されていてもよい。 However, in Ar 21 , Ar 22 , Ar 23 , Ar 24 , some or all of the hydrogen atoms may be fluorine-substituted, nitro group, nitrile groups, or some or all of the hydrogen atoms may be halogen-substituted. It may be substituted with at least one atom or group selected from the group consisting of an alkyl group, an allyl group or an aryl group.
 A、Dは、それぞれ独立に、直接結合または、-CO-、-COO-、-CONH-、-SO2-、-SO-、-(CF2l-(lは1~10の整数である)、-(CH2l-(lは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、-O-またはS-を示し、Bは酸素原子または硫黄原子であり、s、tは、それぞれ独立に、0~4の整数を示し、rは、0または1以上の整数を示す。 A and D are each independently a direct bond or —CO—, —COO—, —CONH—, —SO 2 —, —SO—, — (CF 2 ) 1 — (l is an integer of 1 to 10 A), — (CH 2 ) l — (l is an integer of 1 to 10), —CR ′ 2 — (R ′ represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group and a halogenated hydrocarbon group) ), A cyclohexylidene group, a fluorenylidene group, —O— or S—, B is an oxygen atom or a sulfur atom, s and t each independently represent an integer of 0 to 4, and r is 0 Or an integer greater than or equal to 1 is shown.
 前記芳香族構造を有する構造単位は、さらに、下記式(3-1)で表されるものが好ましい。 The structural unit having an aromatic structure is preferably one represented by the following formula (3-1).
Figure JPOXMLDOC01-appb-C000010
[式(3-1)中、A、Dは独立に直接結合または、-CO-、-SO2-、-SO-、-COO-、-CONH-、-(CF2l-(lは1~10の整数である)、-(CH2l-(lは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、-O-、-S-からなる群より選ばれた少なくとも1種の構造を示し、Bは独立に酸素原子または硫黄原子であり、R1~R16は、互いに同一でも異なっていてもよく、水素原子、フッ素原子、ニトロ基、ニトリル基、又は水素原子の一部またはすべてがフッ素置換されていてもよいアルキル基、アリル基若しくはアリール基からなる群より選ばれた少なくとも1種の原子または基を示す。s、tは0~4の整数(0,1,2)を示し、rは、0または1以上の整数を示す。]
 このような構造単位として具体的には、以下のものが例示される。
Figure JPOXMLDOC01-appb-C000010
[In the formula (3-1), A and D are independently a direct bond, or —CO—, —SO 2 —, —SO—, —COO—, —CONH—, — (CF 2 ) l — (l is 1 is an integer of 1 to 10), — (CH 2 ) 1 — (l is an integer of 1 to 10), —CR ′ 2 — (R ′ is an aliphatic hydrocarbon group, aromatic hydrocarbon group and halogen Represents at least one structure selected from the group consisting of a cyclohexylidene group, a fluorenylidene group, —O—, and —S—, and B is independently an oxygen atom or a sulfur atom, R 1 to R 16 may be the same or different from each other, and may be a hydrogen atom, a fluorine atom, a nitro group, a nitrile group, an alkyl group, an allyl group or At least one atom selected from the group consisting of aryl groups; A group. s and t represent integers of 0 to 4 (0, 1, 2), and r represents 0 or an integer of 1 or more. ]
Specific examples of such a structural unit include the following.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 以上のような芳香族環構造単位を含有していると、共重合体の疎水性が著しく向上する。このため、従来と同様のプロトン伝導性を具備しながら、優れた熱水耐性を付与することができる。また、上記構造単位にニトリル基を含むものは、熱水中での膨潤および乾燥時の収縮が小さい共重合体を製造できる。
Figure JPOXMLDOC01-appb-C000012
When the aromatic ring structural unit as described above is contained, the hydrophobicity of the copolymer is remarkably improved. For this reason, the outstanding hot water tolerance can be provided, providing the proton conductivity similar to the past. Moreover, what contains a nitrile group in the said structural unit can manufacture the copolymer with a small shrinkage | contraction at the time of swelling in hot water and drying.
 (窒素を含む2価の複素環基を有する構造単位)
 さらに、本発明では、上記式(1)で表わされる構造単位および上記式(4)で表わされる構造単位以外に、下記式(2)で表わされる窒素を含む2価の複素環基を有する構造単位を含んでいてもよい。
(Structural unit having a divalent heterocyclic group containing nitrogen)
Furthermore, in the present invention, in addition to the structural unit represented by the above formula (1) and the structural unit represented by the above formula (4), a structure having a divalent heterocyclic group containing nitrogen represented by the following formula (2) Units may be included.
Figure JPOXMLDOC01-appb-C000013
 上記式(2)中、Ar1は、窒素を含む複素環構造を有する2価の有機基を示し、好ましくは、窒素を含む複素環構造を有する炭素数3~30の有機基であり、例えば、窒素を含む2価の複素環基および下記式(2-1)で表わされる基を挙げることができる。
Figure JPOXMLDOC01-appb-C000013
In the above formula (2), Ar 1 represents a divalent organic group having a heterocyclic structure containing nitrogen, preferably an organic group having 3 to 30 carbon atoms having a heterocyclic structure containing nitrogen, And a divalent heterocyclic group containing nitrogen and a group represented by the following formula (2-1).
Figure JPOXMLDOC01-appb-C000014
 上記式(2-1)中、Rhは、窒素を含む1価の複素環基を示し、Ar2は3価の芳香族基を示し、Rsは炭素数1~20の2価の脂肪族炭化水素基、炭素数3~20の2価の脂環式炭化水素基、または2価の芳香族基を示し、Q1、Q2は、各々独立に、直接結合、-O-、-S-、-CO-、-SO2-又は-SO-からなる群より選ばれた少なくとも1種の構造を示し、n1は0~2の整数を示す。
Figure JPOXMLDOC01-appb-C000014
In the above formula (2-1), R h represents a monovalent heterocyclic group containing nitrogen, Ar 2 represents a trivalent aromatic group, and R s represents a divalent fatty acid having 1 to 20 carbon atoms. An aromatic hydrocarbon group, a divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or a divalent aromatic group, wherein Q 1 and Q 2 are each independently a direct bond, —O—, — It represents at least one structure selected from the group consisting of S—, —CO—, —SO 2 — or —SO—, and n1 represents an integer of 0-2.
 Rhで示される窒素を含む1価の複素環基としては、窒素を含む5員環、6員環構造が挙げられる。また、複素環内の窒素原子の数は、1個以上あれば特に制限されない、また複素環内には、窒素以外に、酸素や硫黄を含んでいても良い。Rhを構成する窒素を含む1価の複素環基として、具体的には、ピロール、チアゾール、イソチアゾール、オキサゾール、イソオキサゾール、ピリジン、イミダゾール、イミダゾリン、ピラゾール、1,3,5-トリアジン、ピリミジン、ピリタジン、ピラジン、インドール、キノリン、イソキノリン、プリン、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、テトラゾール、テトラジン、トリアゾール、カルバゾール、アクリジン、キノキサリン、キナゾリンからなる含窒素複素環化合物およびこれらの誘導体の炭素または窒素に結合する水素原子が引き抜かれてなる構造の基である。これらの含窒素複素環基は、置換基を有していてもよく、置換基としては、例えば、メチル基、エチル基、プロピル基などのアルキル基、フェニル基、トルイル基、ナフチル基等のアリール基、シアノ基、フッ素原子などがあげられる。 Examples of the monovalent heterocyclic group containing nitrogen represented by R h include nitrogen-containing 5-membered and 6-membered ring structures. Further, the number of nitrogen atoms in the heterocycle is not particularly limited as long as it is 1 or more, and the heterocycle may contain oxygen or sulfur in addition to nitrogen. Specific examples of the monovalent heterocyclic group containing nitrogen constituting R h include pyrrole, thiazole, isothiazole, oxazole, isoxazole, pyridine, imidazole, imidazoline, pyrazole, 1,3,5-triazine, and pyrimidine. , Pyritazine, pyrazine, indole, quinoline, isoquinoline, purine, benzimidazole, benzoxazole, benzthiazole, tetrazole, tetrazine, triazole, carbazole, acridine, quinoxaline, quinazoline and their derivatives carbon or nitrogen Is a group having a structure in which a hydrogen atom bonded to is pulled out. These nitrogen-containing heterocyclic groups may have a substituent. Examples of the substituent include alkyl groups such as a methyl group, an ethyl group, and a propyl group, and aryl groups such as a phenyl group, a toluyl group, and a naphthyl group. Group, cyano group, fluorine atom and the like.
 Ar2で示される3価の芳香族基としては、フェニル基に由来する3価の単環性芳香族基、ナフチル基に由来する3価の縮環系芳香族基、ピリジン、キノキサリン、チオフェン等に由来する3価の芳香族複素環基等が挙げられる。このうち好ましくは単環性芳香族基である。
 Rsで示される2価の芳香族基としては、1,3-フェニレン基、1,4-フェニレン基等の2価の単環性芳香族基、1,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、1,6-ナフタレンジイル基、1,7-ナフタレンジイル基、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基等の2価の縮環系芳香族基、ピリジンジイル基、キノキサリンジイル基、チオフェンジイル基等の2価の芳香族複素環基等が挙げられる。また、Rsで示される炭素数1~20の2価の脂肪族炭化水素基、炭素数3~20の2価の脂環式炭化水素基としては、メチレン基、エチレン基、シクロヘキシレン基などが挙げられる。本発明ではRsとしては、2価の単環性芳香族基が好ましい。
 2価ないし3価の結合部位は特に制限されない。
Examples of the trivalent aromatic group represented by Ar 2 include a trivalent monocyclic aromatic group derived from a phenyl group, a trivalent condensed ring aromatic group derived from a naphthyl group, pyridine, quinoxaline, and thiophene. And trivalent aromatic heterocyclic groups derived from the above. Of these, a monocyclic aromatic group is preferable.
Examples of the divalent aromatic group represented by R s include divalent monocyclic aromatic groups such as 1,3-phenylene group and 1,4-phenylene group, 1,3-naphthalenediyl group, 1,4 -Divalent condensation of naphthalenediyl group, 1,5-naphthalenediyl group, 1,6-naphthalenediyl group, 1,7-naphthalenediyl group, 2,6-naphthalenediyl group, 2,7-naphthalenediyl group, etc. Examples thereof include a divalent aromatic heterocyclic group such as a ring aromatic group, a pyridinediyl group, a quinoxalinediyl group, and a thiophenediyl group. Examples of the divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms and the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R s include a methylene group, an ethylene group, and a cyclohexylene group. Is mentioned. In the present invention, R s is preferably a divalent monocyclic aromatic group.
The divalent to trivalent binding sites are not particularly limited.
 Ar1で示される窒素を含む2価の複素環基としては、具体的には、ピロールジイル基、2H-ピロールジイル基、イミダゾールジイル基、ピラゾールジイル基、イソチアゾールジイル基、イソオキサゾールジイル基、ピリジンジイル基、ピラジンジイル基、ピリミジンジイル基、ピリダジンジイル基、インドリジンジイル基、イソインドールジイル基、3H-インドールジイル基、インドールジイル基、1H-インダゾールジイル基、プリンジイル基、4H-キノリジンジイル基、キノリンジイル基、イソキノリンジイル基、フタラジンジイル基、ナフチリジンジイル基、キノキサリンジイル基、キナゾリンジイル基、シンノリンジイル基、プテリジンジイル基、カルバゾールジイル基、カルボリンジイル基、フェナントリジンジイル基、アクリジンジイル基、ペリミジンジイル基、フェナントロリンジイル基、フェナジンジイル基、フェノチアジンジイル基、フラザンジイル基、フェノキサジンジイル基、ピロリジンジイル基、ピロリンジイル基、イミダゾリンジイル基、イミダゾリジンジイル基、ピラゾリジンジイル基、ピラゾリンジイル基、ピペリジンジイル基、ピペラジンジイル基、インドリンジイル基、イソインドリンジイル基、キヌクリジンジイル基、オキサゾールジイル基、ベンゾオキサゾールジイル基、1,3,5-トリアジンジイル基、プリンジイル基、テトラゾールジイル基、テトラジンジイル基、トリアゾールジイル基、フェナルサジンジイル基、ベンゾイミダゾールジイル基、ベンゾトリアゾールジイル基、チアゾールジイル基、ベンゾチアゾールジイル基、ベンゾチアジアゾールジイル基からなる群より選ばれる少なくとも1種に由来する構造か、下記式で表される構造からなる群より選ばれる少なくとも1種の構造を挙げることができる。 Specific examples of the divalent heterocyclic group containing nitrogen represented by Ar 1 include a pyrrole diyl group, a 2H-pyrrole diyl group, an imidazole diyl group, a pyrazole diyl group, an isothiazole diyl group, an isoxazole diyl group, and a pyridinediyl group. Group, pyrazinediyl group, pyrimidinediyl group, pyridazinediyl group, indolizinediyl group, isoindolediyl group, 3H-indolediyl group, indolediyl group, 1H-indazolediyl group, purinediyl group, 4H-quinolidinediyl group, quinolinediyl group, Isoquinolinediyl group, phthalazinediyl group, naphthyridinediyl group, quinoxalinediyl group, quinazolinediyl group, cinnolinediyl group, pteridinediyl group, carbazolediyl group, carbolinediyl group, phenanthridinediyl group, Clidinediyl group, perimidinediyl group, phenanthrolinediyl group, phenazinediyl group, phenothiazinediyl group, furazanediyl group, phenoxazinediyl group, pyrrolidinediyl group, pyrrolindiyl group, imidazolinediyl group, imidazolidinediyl group, pyrazolidinediyl group, pyrazolinediyl Group, piperidinediyl group, piperazinediyl group, indolinediyl group, isoindolinediyl group, quinuclidinediyl group, oxazolediyl group, benzoxazolediyl group, 1,3,5-triazinediyl group, purinediyl group, tetrazolediyl group , Tetrazinediyl group, triazolediyl group, phenalsazinediyl group, benzimidazolediyl group, benzotriazolediyl group, thiazolediyl group, benzothiazolediyl And a structure derived from at least one selected from the group consisting of a group and a benzothiadiazolediyl group, or at least one structure selected from the group consisting of a structure represented by the following formula.
Figure JPOXMLDOC01-appb-C000015
[上記式において、構造単位の端部における単線のうち、一方に置換基が表示されていないものは隣り合う構造単位との接続を意味する。]
Figure JPOXMLDOC01-appb-C000015
[In the above formula, among the single wires at the ends of the structural units, those on which one or more substituents are not displayed mean connection with adjacent structural units. ]
 Rsで示される炭素数1~20の2価の脂肪族炭化水素基としては、メチレン基、プロピレン基、ブチレン基などを挙げることができる。
 また、Rsで示される炭素数3~20の2価の脂環式炭化水素基としては、シクロペンチレン基、シクロへキシレン基、シクロヘプチレン基などを挙げることができる。本発明では、Rsとしては、2価の単環性芳香族基が好ましい。
Examples of the divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by R s include a methylene group, a propylene group, and a butylene group.
Examples of the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R s include a cyclopentylene group, a cyclohexylene group, and a cycloheptylene group. In the present invention, R s is preferably a divalent monocyclic aromatic group.
 以上のような、含窒素複素環基を有する構造単位を含むことにより、塩基性が付与され、プロトン伝導性を損なうことなく、高温下で高いスルホン酸の安定性を有する固体高分子電解質膜を得ることができる。 By including a structural unit having a nitrogen-containing heterocyclic group as described above, a solid polymer electrolyte membrane having high sulfonic acid stability at high temperatures without imparting basicity and impairing proton conductivity is obtained. Obtainable.
 本発明にかかる共重合体は、イオン交換容量、分子量などの所望の性状に応じて、各構成単位の量が決定される。
 本発明の重合体は、式(1)および(2)で表される構造単位を0.5~99.9モル%、好ましくは10~99.5モル%の割合で、式(3)で表される構造単位を0.1~99.5モル%、好ましくは0.5~89.5モル%を含有していることが望ましい。
In the copolymer according to the present invention, the amount of each structural unit is determined according to desired properties such as ion exchange capacity and molecular weight.
The polymer of the present invention contains the structural units represented by the formulas (1) and (2) in the ratio of 0.5 to 99.9 mol%, preferably 10 to 99.5 mol% in the formula (3). It is desirable that the structural unit represented is 0.1 to 99.5 mol%, preferably 0.5 to 89.5 mol%.
 また、式(2)で表される構造単位を含む場合、全構造単位の0.01モル%以上であればよく、好ましくは20モル%以下の割合で含まれていることが望ましい。
 本発明の芳香族系共重合体の分子量は、ゲルパーミエションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量で、1万~100万、好ましくは2万~80万、さらに好ましくは5万~30万である。
Further, when the structural unit represented by the formula (2) is included, it may be 0.01 mol% or more, preferably 20 mol% or less of all the structural units.
The molecular weight of the aromatic copolymer of the present invention is 10,000 to 1,000,000, preferably 20,000 to 800,000, more preferably 50,000 to 30 in terms of polystyrene-equivalent weight average molecular weight by gel permeation chromatography (GPC). Ten thousand.
 本発明に係る芳香族系共重合体のイオン交換容量は通常0.3~6meq/g、好ましくは0.5~4meq/g、さらに好ましくは0.8~3.5meq/gである。イオン交換容量が、この範囲にあれば、プロトン伝導度が高く、かつ発電性能を高くすることができ、しかも、充分に高い耐水性を具備できる。 The ion exchange capacity of the aromatic copolymer according to the present invention is usually 0.3 to 6 meq / g, preferably 0.5 to 4 meq / g, more preferably 0.8 to 3.5 meq / g. When the ion exchange capacity is within this range, proton conductivity is high, power generation performance can be enhanced, and sufficiently high water resistance can be provided.
 上記のイオン交換容量は、各構造単位の種類、使用割合、組み合わせを変えることにより、調整することができる。したがって重合時に構造単位を誘導する前駆体(モノマー・オリゴマー)の仕込み量比、種類を変えれば調整することができる。 The above-mentioned ion exchange capacity can be adjusted by changing the type, usage ratio, and combination of each structural unit. Therefore, it can be adjusted by changing the charge amount ratio and type of the precursor (monomer / oligomer) that induces the structural unit during polymerization.
 概してスルホン酸基およびホスホン酸基を含む構造単位が多くなるとイオン交換容量が増え、プロトン伝導性が高くなるが、耐水性が低下する傾向にあり、一方、これらの構造単位が少なくなると、イオン交換容量が小さくなり、耐水性が高まるが、プロトン伝導性が低下する傾向にある。 In general, as the number of structural units containing sulfonic acid groups and phosphonic acid groups increases, the ion exchange capacity increases and proton conductivity increases, but the water resistance tends to decrease. On the other hand, when these structural units decrease, ion exchange increases. The capacity decreases and the water resistance increases, but the proton conductivity tends to decrease.
 [芳香族系共重合体の製造方法]
 本発明の芳香族系共重合体は、例えば、特開2004-137444号公報に記載の方法で、上記式(1)で表わされる構造単位の由来となる化合物(A)、上記式(4)で表わされる構造単位の由来となる化合物(B)、および必要に応じて、その他の構造単位の由来となる化合物を共重合させ、スルホン酸エステル基をスルホン酸基に変換したり、ホスホン酸エステル基やホスホン酸塩基をホスホン酸基に変換したりすることにより合成することができる。
[Method for producing aromatic copolymer]
The aromatic copolymer of the present invention is obtained, for example, by the method described in JP-A No. 2004-137444, the compound (A) from which the structural unit represented by the above formula (1) is derived, and the above formula (4). The compound derived from the structural unit represented by (B) and, if necessary, the compound derived from the other structural unit are copolymerized to convert the sulfonic acid ester group into a sulfonic acid group, or phosphonic acid ester It can be synthesized by converting a group or a phosphonic acid group into a phosphonic acid group.
 上記式(1)で表わされる構造単位の由来となる化合物(A)(以下、「化合物A」ともいう。)
 上記式(1)で表わされる構造単位は、芳香族系共重合体の重合原料として、例えば、下記式(1-1)で示される化合物を使用することにより導入することができる。
Compound (A) from which the structural unit represented by the above formula (1) is derived (hereinafter also referred to as “Compound A”)
The structural unit represented by the above formula (1) can be introduced by using, for example, a compound represented by the following formula (1-1) as a polymerization raw material for the aromatic copolymer.
Figure JPOXMLDOC01-appb-C000016
 上記式(1-1)中、Z1はハロゲン原子、ニトロ基、-SO2CH3および-SO2CF3から選ばれる原子または基、Raは、-ORbで表わされる基(Rbは、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基を示す。)、炭素数1~20の炭化水素基および炭素数1~20の炭化水素基から選ばれる少なくとも一種の基で置換されたアミノ基を示し、R1、a、kは、上記式(1)中のR1、a、kと同義である。
Figure JPOXMLDOC01-appb-C000016
In the above formula (1-1), Z 1 is a halogen atom, a nitro group, an atom or group selected from —SO 2 CH 3 and —SO 2 CF 3 , and R a is a group represented by —OR b (R b Represents a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms.), A hydrocarbon group having 1 to 20 carbon atoms, and a 1 to 20 carbon atom substituted with at least one group selected from hydrocarbon groups which showed amino group, R 1, a, k is R 1, a, synonymous with k in the formula (1).
 Rbは同一でも異なっていてもよく、炭素数1~20の炭化水素基を示し、好ましくは炭素数4~20の炭化水素基である。具体的にはtert-ブチル基、iso-ブチル基、n-ブチル基、sec-ブチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、シクロペンチルメチル基、シクロヘキシルメチル基、アダマンチル基、アダマンチルメチル基、2-エチルヘキシル基、ビシクロ[2.2.1]ヘプチル基、ビシクロ[2.2.1]ヘプチルメチル基、テトラヒドロフルフリル基、2-メチルブチル基、3,3-ジメチル-2,4-ジオキソランメチル基などの直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、5員複素環を有する炭化水素基などが挙げられる。これらのうち、入手容易性、他の化合物の溶解性、重合反応性の観点から、n-ブチル基、ネオペンチル基、テトラヒドロフルフリル基、シクロペンチルメチル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、アダマンチルメチル基およびビシクロ[2、2、1]ヘプチルメチル基が好ましく、ネオペンチル基が最も好ましい。 R b may be the same or different and represents a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrocarbon group having 4 to 20 carbon atoms. Specifically, tert-butyl group, iso-butyl group, n-butyl group, sec-butyl group, neopentyl group, cyclopentyl group, hexyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, adamantylmethyl group, adamantylmethyl group 2-ethylhexyl group, bicyclo [2.2.1] heptyl group, bicyclo [2.2.1] heptylmethyl group, tetrahydrofurfuryl group, 2-methylbutyl group, 3,3-dimethyl-2,4-dioxolane Examples include a straight chain hydrocarbon group such as a methyl group, a branched hydrocarbon group, an alicyclic hydrocarbon group, and a hydrocarbon group having a 5-membered heterocycle. Of these, n-butyl group, neopentyl group, tetrahydrofurfuryl group, cyclopentylmethyl group, cyclopentyl group, cyclohexyl group, cyclohexylmethyl group, adamantyl, from the viewpoints of availability, solubility of other compounds, and polymerization reactivity A methyl group and a bicyclo [2,2,1] heptylmethyl group are preferred, and a neopentyl group is most preferred.
 ホスホン酸基を有する構造単位の由来となるホスホン酸化合物(以下、化合物(B)ということもある)
 ホスホン酸基を有する構造単位は、芳香族系共重合体の重合原料として、例えば、下記一般式(4-1)あるいは(4-2)で表される芳香族化合物を使用することにより導入することができる。
A phosphonic acid compound derived from a structural unit having a phosphonic acid group (hereinafter sometimes referred to as compound (B))
The structural unit having a phosphonic acid group is introduced by using, for example, an aromatic compound represented by the following general formula (4-1) or (4-2) as a polymerization raw material for an aromatic copolymer. be able to.
Figure JPOXMLDOC01-appb-C000017
 式(4-1)、(4-2)中、E、Ar31、Ar32、Ar33、e、f、h、gは前記式(4)と同様である。
Figure JPOXMLDOC01-appb-C000017
In the formulas (4-1) and (4-2), E, Ar 31 , Ar 32 , Ar 33 , e, f, h, and g are the same as in the above formula (4).
 R31は、直接結合、-O(CH2p-、-O(CF2p-、-(CH2p-、-(CF2p-からなる群より選ばれた少なくとも1種の構造を示す(pは、1~12の整数を示す)。 R 31 is at least one selected from the group consisting of a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p —, and — (CF 2 ) p —. (P represents an integer of 1 to 12).
 R32は、アルキル基、フッ素置換アルキル基、アリール基、金属イオン、オニウムイオン、水素を示す。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、アミル基、ヘキシル基、シクロヘキシル基、オクチル基などが挙げられる。フッ素置換アルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基などが挙げられる。アリル基としては、プロペニル基などが挙げられ、アリール基としては、フェニル基、ペンタフルオロフェニル基などが挙げられる。このうち、メチル基、エチル基、プロピル基、イソプロピル基、フェニル基が好ましい。 R 32 represents an alkyl group, a fluorine-substituted alkyl group, an aryl group, a metal ion, an onium ion, or hydrogen. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an amyl group, a hexyl group, a cyclohexyl group, and an octyl group. Examples of the fluorine-substituted alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group. Examples of the allyl group include a propenyl group, and examples of the aryl group include a phenyl group and a pentafluorophenyl group. Among these, a methyl group, an ethyl group, a propyl group, an isopropyl group, and a phenyl group are preferable.
 金属イオンとしては、アルカリ金属系のナトリウムイオン、カリウムイオン、リチウムイオン、アルカリ土類金属系のマグネシウム、カルシウムなどが挙げられる。このうちナトリウムイオン、カリウムイオン、リチウムイオンが特に好ましい。 Examples of the metal ion include alkali metal sodium ion, potassium ion, lithium ion, alkaline earth metal magnesium and calcium. Of these, sodium ion, potassium ion, and lithium ion are particularly preferable.
 オニウムイオンとしては、アンモニウム、ホスホニウム、オキソニウム、スルホニウムなどが挙げられる。
 Xはフッ素を除くハロゲン原子(塩素、臭素、ヨウ素)、-OSO2Rb(ここで、Rbはアルキル基、フッ素置換アルキル基またはアリール基を示す)から選ばれる原子または基を示す。このうち、塩素、臭素が好ましい。
Examples of onium ions include ammonium, phosphonium, oxonium, sulfonium and the like.
X represents an atom or group selected from halogen atoms excluding fluorine (chlorine, bromine, iodine) and —OSO 2 Rb (where Rb represents an alkyl group, a fluorine-substituted alkyl group or an aryl group). Of these, chlorine and bromine are preferred.
 式(4-1)で表される化合物としては、下記に示されるような構造が挙げられる。 Examples of the compound represented by the formula (4-1) include the structures shown below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 さらに、塩素原子が臭素原子に置き換わった化合物、塩素原子や臭素原子の結合位置の異なる異性体を挙げることができる。また-CO-結合が、-SO2-結合、-SO-結合、-COO-結合、-OCO-結合、-CONH-結合、-NHCO-結合に置き換わった化合物を挙げることができる。また、ホスホン酸基の結合位置は、特に限定されるものではなく、o位、m位であってもp位であってもよい。
Figure JPOXMLDOC01-appb-C000019
Furthermore, compounds in which a chlorine atom is replaced with a bromine atom, and isomers having different bonding positions of chlorine and bromine atoms can be exemplified. Further, compounds in which —CO— bond is replaced with —SO 2 — bond, —SO— bond, —COO— bond, —OCO— bond, —CONH— bond, —NHCO— bond can be exemplified. Further, the bonding position of the phosphonic acid group is not particularly limited, and may be o-position, m-position or p-position.
 式(4-2)における、R33は、-(CR3435h1-(CR3637h2-(CR3839h3-(CR4041h4-で表される2価の基を示す。好ましくは、R33は、分岐していてもよいアルキレン基である。 In the formula (4-2), R 33 is represented by- (CR 34 R 35 ) h1- (CR 36 R 37 ) h2- (CR 38 R 39 ) h3- (CR 40 R 41 ) h4- Indicates a valent group. Preferably, R 33 is an alkylene group which may be branched.
 R34~R41は互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、フッ素置換アルキル基、アリル基およびアリール基から選ばれる基を示す。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、アミル基、ヘキシル基、シクロヘキシル基、オクチル基などが挙げられる。フッ素置換アルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基などが挙げられる。アリル基としては、プロペニル基などが挙げられ、アリール基としては、フェニル基、ペンタフルオロフェニル基などが挙げられる。このうち、メチル基、エチル基、プロピル基、イソプロピル基、フェニル基が好ましい。 R 34 to R 41 may be the same as or different from each other, and each represents a group selected from a hydrogen atom, a fluorine atom, an alkyl group, a fluorine-substituted alkyl group, an allyl group, and an aryl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an amyl group, a hexyl group, a cyclohexyl group, and an octyl group. Examples of the fluorine-substituted alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group. Examples of the allyl group include a propenyl group, and examples of the aryl group include a phenyl group and a pentafluorophenyl group. Among these, a methyl group, an ethyl group, a propyl group, an isopropyl group, and a phenyl group are preferable.
 h1、h2、h3、およびh4は互いに同一でも異なっていてもよく、0または1であり、h1+h2+h3+h4は2以上である。
 式(4-2)で表される化合物の具体例としては、下記に示される構造が挙げられる。
h1, h2, h3, and h4 may be the same as or different from each other, and are 0 or 1, and h1 + h2 + h3 + h4 is 2 or more.
Specific examples of the compound represented by the formula (4-2) include the structures shown below.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 さらに、塩素原子が臭素原子に置き換わった化合物、塩素原子や臭素原子の結合位置の異なる異性体を挙げることができる。また-CO-結合が、-SO2-結合、-SO-結合、-COO-結合、-OCO-結合、-CONH-結合、-NHCO-結合に置き換わった化合物を挙げることができる。ホスホン酸基の結合位置は、特に限定されるものではなく、o位やm位であってもp位であってもよい。
Figure JPOXMLDOC01-appb-C000021
Furthermore, compounds in which a chlorine atom is replaced with a bromine atom, and isomers having different bonding positions of chlorine and bromine atoms can be exemplified. Further, compounds in which —CO— bond is replaced with —SO 2 — bond, —SO— bond, —COO— bond, —OCO— bond, —CONH— bond, —NHCO— bond can be exemplified. The bonding position of the phosphonic acid group is not particularly limited, and may be o-position, m-position or p-position.
 また、上記一般式(4-1)および(4-2)で表される本発明に係る芳香族化合物の誘導体として、上記化合物において塩素原子が臭素原子に置き換わった化合物、上記化合物において-CO-が-SO2-に置き換わった化合物、上記化合物において塩素原子が臭素原子に置き換わり、かつ-CO-が-SO2-に置き換わった化合物なども挙げられる。 In addition, as a derivative of the aromatic compound according to the present invention represented by the above general formulas (4-1) and (4-2), a compound in which a chlorine atom is replaced with a bromine atom in the above compound, There -SO 2 - compound replaced by a chlorine atom in the compound is replaced with a bromine atom, and -CO- is -SO 2 - can also be mentioned such compounds replaced.
 上記化合物は、ホスホン酸基が導入される置換部位に予め臭素原子を導入した前駆体と、ホスホン酸エステル、ホスホン酸塩、ホスホン酸と置換反応させることで調製可能である。ホスホン酸塩の場合、ホスホン酸を導入した後、中和してもよい。 The above compound can be prepared by a substitution reaction with a precursor in which a bromine atom is introduced in advance at a substitution site where a phosphonic acid group is introduced, and a phosphonic acid ester, phosphonate, or phosphonic acid. In the case of a phosphonate, neutralization may be performed after introducing phosphonic acid.
 上記式(3)で表わされる構造単位の由来となる化合物(C)(以下、「化合物C」ともいう。)
 芳香族構造を有する構造単位、下記式(3-2)からなるモノマーから誘導される。
Compound (C) derived from the structural unit represented by the above formula (3) (hereinafter also referred to as “compound C”)
A structural unit having an aromatic structure, derived from a monomer having the following formula (3-2).
Figure JPOXMLDOC01-appb-C000022
(式(3-2)中、Ar21、Ar22、Ar23、Ar24は、ベンゼン環、縮合芳香環(ナフタレン環など)、含窒素複素環からなる群より選ばれた少なくとも1種の構造を示す。ただし、Ar21、Ar22、Ar23、Ar24は、それぞれの水素原子が、フッ素原子、アルキル基、一部またはすべてがフッ素置換されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000022
(In the formula (3-2), Ar 21 , Ar 22 , Ar 23 , and Ar 24 are at least one structure selected from the group consisting of a benzene ring, a condensed aromatic ring (such as a naphthalene ring), and a nitrogen-containing heterocyclic ring. However, Ar 21 , Ar 22 , Ar 23 , and Ar 24 are each a hydrogen atom, a fluorine atom, an alkyl group, a halogenated alkyl group in which part or all of them are fluorine-substituted, an allyl group, an aryl group, It may be substituted with a nitro group or a nitrile group.
 Xは、塩素、臭素、ヨウ素、メタンスルホニル基、トリフルオロメタンスルホニル基、ベンゼンスルホニル基、トルエンスルホニル基からなる群より選ばれた少なくとも1種の構造を示す。 X represents at least one structure selected from the group consisting of chlorine, bromine, iodine, methanesulfonyl group, trifluoromethanesulfonyl group, benzenesulfonyl group, and toluenesulfonyl group.
 A、Dは独立に直接結合または、-CO-、-COO-、-CONH-、-SO2-、-SO-、-(CF2l-(lは1~10の整数である)、-(CH2l-(lは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、-O-、-S-からなる群より選ばれた少なくとも1種の構造を示し、Bは独立に酸素原子または硫黄原子であり、s、tは、0~4の整数を示し、rは、0または1以上の整数を示す。)
 芳香族構造を有する構造単位は、ポリアリーレン系共重合体の重合原料として、例えば、下記一般式(3-3)で表されるオリゴマーを使用することにより得られる。
A and D are independently a direct bond, or —CO—, —COO—, —CONH—, —SO 2 —, —SO—, — (CF 2 ) 1 — (l is an integer of 1 to 10), — (CH 2 ) 1 — (wherein 1 is an integer of 1 to 10), —CR ′ 2 — (R ′ represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group and a halogenated hydrocarbon group), cyclohexene Represents at least one structure selected from the group consisting of a silidene group, a fluorenylidene group, —O—, and —S—, B is independently an oxygen atom or a sulfur atom, and s and t are 0-4 An integer is shown, and r is 0 or an integer of 1 or more. )
The structural unit having an aromatic structure can be obtained by using, for example, an oligomer represented by the following general formula (3-3) as a polymerization raw material for a polyarylene-based copolymer.
Figure JPOXMLDOC01-appb-C000023
[上記式(3-3)中、Xは、塩素、臭素、ヨウ素、メタンスルホニル基、トリフルオロメタンスルホニル基、ベンゼンスルホニル基からなる群より選ばれた少なくとも1種の構造を示す。A、Dは独立に直接結合または、-CO-、-SO2-、-SO-、-(CF2l-(lは1~10の整数である)、-(CH2l-(lは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、-O-、-S-からなる群より選ばれた少なくとも1種の構造を示し、Bは独立に酸素原子または硫黄原子であり、
 R1~R16は、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。
 s、tは0~4の整数を示し、rは0または1以上の整数を示す。]
 上記式(3-3)で表されるオリゴマーの具体的な例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000023
[In the above formula (3-3), X represents at least one structure selected from the group consisting of chlorine, bromine, iodine, methanesulfonyl group, trifluoromethanesulfonyl group, and benzenesulfonyl group. A and D are independently a direct bond, or —CO—, —SO 2 —, —SO—, — (CF 2 ) l — (l is an integer of 1 to 10), — (CH 2 ) l — ( l is an integer of 1 to 10), —CR ′ 2 — (R ′ represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group and a halogenated hydrocarbon group), a cyclohexylidene group, a fluorenylidene group, — At least one structure selected from the group consisting of O— and —S—, wherein B is independently an oxygen atom or a sulfur atom;
R 1 to R 16 may be the same as or different from each other, and are a hydrogen atom, a fluorine atom, an alkyl group, a halogenated alkyl group in which a part or all of them are halogenated, an allyl group, an aryl group, a nitro group, a nitrile group. At least one atom or group selected from the group consisting of
s and t are integers of 0 to 4, and r is 0 or an integer of 1 or more. ]
Specific examples of the oligomer represented by the above formula (3-3) include the following.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 また、上記化合物において塩素原子が臭素原子に置き換わった化合物なども挙げられる。また、塩素原子や臭素原子の結合位置の異なる異性体も挙げることができる。
Figure JPOXMLDOC01-appb-C000025
Moreover, the compound etc. which the chlorine atom replaced the bromine atom in the said compound are mentioned. In addition, isomers having different bonding positions of chlorine atoms and bromine atoms can also be mentioned.
 上記式(3-2)および(3-3)で表されるオリゴマーは、例えば、以下のモノマーを共重合することにより製造することができる。式(3-2)および(3-3)でr=0の場合、例えば4,4'-ジクロロベンゾフェノン、4,4'-ジクロロベンズアニリド、2,2-ビス(4-クロロフェニル)ジフルオロメタン、2,2-ビス(4-クロロフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、4-クロロ安息香酸-4-クロロフェニルエステル、ビス(4-クロロフェニル)スルホキシド、ビス(4-クロロフェニル)スルホン、2,6-ジクロロベンゾニトリルが挙げられる。 The oligomers represented by the above formulas (3-2) and (3-3) can be produced, for example, by copolymerizing the following monomers. When r = 0 in the formulas (3-2) and (3-3), for example, 4,4′-dichlorobenzophenone, 4,4′-dichlorobenzanilide, 2,2-bis (4-chlorophenyl) difluoromethane, 2,2-bis (4-chlorophenyl) -1,1,1,3,3,3-hexafluoropropane, 4-chlorobenzoic acid-4-chlorophenyl ester, bis (4-chlorophenyl) sulfoxide, bis (4- Chlorophenyl) sulfone and 2,6-dichlorobenzonitrile.
 これらの化合物において塩素原子が臭素原子またはヨウ素原子に置き換わった化合物などが挙げられる。r=1の場合、例えば特開2003-113136号公報に記載の化合物を挙げることができる。 These compounds include compounds in which chlorine atoms are replaced by bromine atoms or iodine atoms. In the case of r = 1, for example, compounds described in JP-A No. 2003-113136 can be exemplified.
 r≧2の場合、例えば特開2004-137444号公報、特開2004-244517号公報、特願2003-143914号(特開2004-346164号公報)、特願2003-348523号(特開2005-112985号公報)、特願2003-348524号、特願2004-211739号(特開2006-28414号公報)、特願2004-211740号(特開2006-28415号公報)に記載の化合物を挙げることができる。 In the case of r ≧ 2, for example, Japanese Patent Application Laid-Open No. 2004-137444, Japanese Patent Application Laid-Open No. 2004-244517, Japanese Patent Application No. 2003-143914 (Japanese Patent Application Laid-Open No. 2004-346164), Japanese Patent Application No. 2003-348523 (Japanese Patent Application Laid-Open No. No. 112985), Japanese Patent Application No. 2003-348524, Japanese Patent Application No. 2004-211739 (Japanese Patent Laid-Open No. 2006-28414), Japanese Patent Application No. 2004-21740 (Japanese Patent Laid-Open No. 2006-28415), and the like. Can do.
 含窒素複素環基を有する構造単位の由来となる化合物(D)(以下、「化合物D」ともいう。)
 上記式(2)で表わされる含窒素複素環基を有する構造単位は、芳香族系共重合体の原料として、例えば、下記式(2-2)で示される化合物を使用することにより芳香族系重合体に導入することができる。
Compound (D) derived from a structural unit having a nitrogen-containing heterocyclic group (hereinafter also referred to as “compound D”)
The structural unit having a nitrogen-containing heterocyclic group represented by the above formula (2) is obtained by using, for example, an aromatic group by using a compound represented by the following formula (2-2) as a raw material for an aromatic copolymer. It can be introduced into the polymer.
Figure JPOXMLDOC01-appb-C000026
 上記式(2-2)中、Ar1は上記式(2)中のAr1と同義であり、Z3はハロゲン原子、ニトロ基、-SO3CH3基およびSO3CF3から選ばれる原子または基を示す。
Figure JPOXMLDOC01-appb-C000026
In the formula (2-2), Ar 1 has the same meaning as Ar 1 in the formula (2), and Z 3 is an atom selected from a halogen atom, a nitro group, a —SO 3 CH 3 group, and SO 3 CF 3. Or a group.
 Ar1が窒素を含む2価の複素環基である場合には、上記式(2-2)で示される化合物としては、具体的には、1-メチル-2,5-ジクロロピロール、1-ヘキシル-2,5-ジブロモピロール、1-オクチル-2,5-ジクロロピロール、2,5-ジクロロピリジン、3,5-ジクロロピリジン、2,5-ジブロモピリジン、3-メチル-2,5-ジクロロピリジン、3-ヘキシル-2,5-ジクロロピリジン、5,5'-ジクロロ-2,2'-ビピリジン、3,3'-ジメチル-5,5'-ジクロロ-2,2'-ビピリジン、3,3'-ジオクチル-5,5'-ジブロモ-2,2'-ビピリジン、2,5-ジクロロピリミジン、2,5-ジブロモピリミジン、5,8-ジクロロキノリン、5,8-ジブロモキノリン、2,6-ジクロロキノリン、1,4-ジクロロイソキノリン、5,8-ジブロモイソキノリン、4,7-ジブロモ-2,1,3-ベンゾチアジアゾール、4,7-ジクロロベンゾイミダゾール、5,8-ジクロロキノキサリン、5,8-ジクロロ-2,3-ジフェニルキノキサリン、2,6-ジブロモキノキサリンなどを挙げることができる。 When Ar 1 is a divalent heterocyclic group containing nitrogen, specific examples of the compound represented by the above formula (2-2) include 1-methyl-2,5-dichloropyrrole, 1- Hexyl-2,5-dibromopyrrole, 1-octyl-2,5-dichloropyrrole, 2,5-dichloropyridine, 3,5-dichloropyridine, 2,5-dibromopyridine, 3-methyl-2,5-dichloro Pyridine, 3-hexyl-2,5-dichloropyridine, 5,5′-dichloro-2,2′-bipyridine, 3,3′-dimethyl-5,5′-dichloro-2,2′-bipyridine, 3, 3'-dioctyl-5,5'-dibromo-2,2'-bipyridine, 2,5-dichloropyrimidine, 2,5-dibromopyrimidine, 5,8-dichloroquinoline, 5,8-dibromoquinoline, 2,6 -Dichloroquinoline, 1,4-dichloroisoquinoline, 5,8-dibromoisoquinoline, 4,7-dibromo-2,1,3-benzothiadiazole, 4,7-dichlorobenzimidazole, 5,8-dichloroquinoxaline, 5,8-dichloro- Examples include 2,3-diphenylquinoxaline and 2,6-dibromoquinoxaline.
 Ar2が上記式(2-1)で表わされる基である場合には、上記式(2-2)で示される化合物としては、具体的には、下記式(2-3)で示される化合物を挙げることができる。 In the case where Ar 2 is a group represented by the above formula (2-1), the compound represented by the above formula (2-2) is specifically a compound represented by the following formula (2-3) Can be mentioned.
 上記式(2-3)中、Rh、Rs、Ar2、Q1、Q2、n1は、式(2-1)中のRh、Rs、Ar2、Q1、Q2、nと同義であり、Z3はハロゲン原子、ニトロ基、-SO3CH3基およびSO3CF3から選ばれる原子または基を示す。 In the above formula (2-3), R h , R s , Ar 2 , Q 1 , Q 2 , n 1 are R h , R s , Ar 2 , Q 1 , Q 2 , It is synonymous with n, and Z 3 represents an atom or group selected from a halogen atom, a nitro group, a —SO 3 CH 3 group, and SO 3 CF 3 .
 上記式(2-3)で示される化合物の具体例として、下記の化合物を挙げることができる。 Specific examples of the compound represented by the above formula (2-3) include the following compounds.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 さらに、塩素原子が臭素原子に置き換わった化合物、塩素原子や臭素原子の結合位置の異なる異性体を挙げることができる。また-CO-結合が、-SO2-結合に置き換わった化合物を挙げることができる。これらの化合物は、単独で用いてもよく、2種類以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000029
Furthermore, compounds in which a chlorine atom is replaced with a bromine atom, and isomers having different bonding positions of chlorine and bromine atoms can be exemplified. Further, a compound in which the —CO— bond is replaced with a —SO 2 — bond can be exemplified. These compounds may be used alone or in combination of two or more.
 重合方法
 目的の芳香族系共重合体を得るためは、まず、上記各種化合物を共重合させ前駆体を得る。この共重合は、触媒の存在下に行われるが、この際使用される触媒は、遷移金属化合物を含む触媒系であり、この触媒系としては、(1)遷移金属塩および配位子となる化合物(以下、「配位子成分」という。)、または配位子が配位された遷移金属錯体(銅塩を含む)、ならびに(2)還元剤を必須成分とし、さらに、重合速度を上げるために、遷移金属塩以外の塩を添加してもよい。
In order to obtain an aromatic copolymer for the purpose of the polymerization method , first, the above-mentioned various compounds are copolymerized to obtain a precursor. This copolymerization is carried out in the presence of a catalyst, and the catalyst used in this case is a catalyst system containing a transition metal compound. This catalyst system is (1) a transition metal salt and a ligand. A compound (hereinafter referred to as “ligand component”) or a transition metal complex coordinated with a ligand (including a copper salt) and (2) a reducing agent as essential components, and further increase the polymerization rate. Therefore, salts other than transition metal salts may be added.
 ここで、遷移金属塩としては、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、ニッケルアセチルアセトナートなどのニッケル化合物、塩化パラジウム、臭化パラジウム、ヨウ化パラジウムなどのパラジウム化合物、塩化鉄、臭化鉄、ヨウ化鉄などの鉄化合物、塩化コバルト、臭化コバルト、ヨウ化コバルトなどのコバルト化合物などが挙げられる。これらのうち特に、塩化ニッケル、臭化ニッケルなどが好ましい。また、配位子としては、トリフェニルホスフィン、トリ(2-メチル)フェニルホスフィン、トリ(3-メチル)フェニルホスフィン、トリ(4-メチル)フェニルホスフィン、2,2'-ビピリジン、1,5-シクロオクタジエン、1,3-ビス(ジフェニルホスフィノ)プロパンなどが挙げられるが、トリフェニルホスフィン、トリ(2-メチル)フェニルホスフィン、2,2'-ビピリジンが好ましい。上記配位子は、1種単独で、あるいは2種以上を併用することができる。 Here, transition metal salts include nickel compounds such as nickel chloride, nickel bromide, nickel iodide, nickel acetylacetonate, palladium compounds such as palladium chloride, palladium bromide, palladium iodide, iron chloride, iron bromide And iron compounds such as iron iodide and cobalt compounds such as cobalt chloride, cobalt bromide and cobalt iodide. Of these, nickel chloride, nickel bromide and the like are particularly preferable. Examples of the ligand include triphenylphosphine, tri (2-methyl) phenylphosphine, tri (3-methyl) phenylphosphine, tri (4-methyl) phenylphosphine, 2,2′-bipyridine, 1,5- Examples thereof include cyclooctadiene and 1,3-bis (diphenylphosphino) propane. Triphenylphosphine, tri (2-methyl) phenylphosphine, and 2,2′-bipyridine are preferable. The said ligand can be used individually by 1 type or in combination of 2 or more types.
 さらに、あらかじめ配位子が配位された遷移金属(塩)としては、例えば、塩化ニッケルビス(トリフェニルホスフィン)、塩化ニッケルビス(トリ(2ーメチル)フェニルホスフィン)、臭化ニッケルビス(トリフェニルホスフィン)、ヨウ化ニッケルビス(トリフェニルホスフィン)、硝酸ニッケルビス(トリフェニルホスフィン)、塩化ニッケル(2,2'ビピリジン)、臭化ニッケル(2,2'ビピリジン)、ヨウ化ニッケル(2,2'ビピリジン)、硝酸ニッケル(2,2'ビピリジン)、ビス(1,5-シクロオクタジエン)ニッケル、テトラキス(トリフェニルホスフィン)ニッケル、テトラキス(トリフェニルホスファイト)ニッケル、テトラキス(トリフェニルホスフィン)パラジウムなどが挙げられるが、塩化ニッケルビス(トリフェニルホスフィン)、塩化ニッケルビス(トリ(2ーメチル)フェニルホスフィン)、塩化ニッケル(2,2'ビピリジン)が好ましい。 Furthermore, as the transition metal (salt) in which the ligand is coordinated in advance, for example, nickel chloride bis (triphenylphosphine), nickel chloride bis (tri (2-methyl) phenylphosphine), nickel bromide bis (triphenyl) Phosphine), nickel iodide bis (triphenylphosphine), nickel nitrate bis (triphenylphosphine), nickel chloride (2,2′bipyridine), nickel bromide (2,2′bipyridine), nickel iodide (2,2) 'Bipyridine), nickel nitrate (2,2'bipyridine), bis (1,5-cyclooctadiene) nickel, tetrakis (triphenylphosphine) nickel, tetrakis (triphenylphosphite) nickel, tetrakis (triphenylphosphine) palladium Nickel chloride bis (Triphenylphosphine), nickel chloride bis (tri (2-methyl) phenylphosphine), and nickel chloride (2,2′bipyridine) are preferred.
 本発明の触媒系において使用することができる上記還元剤としては、例えば、鉄、亜鉛、マンガン、アルミニウム、マグネシウム、ナトリウム、カルシウムなどを挙げることできるが、亜鉛、マグネシウム、マンガンが好ましい。これらの還元剤は、有機酸などの酸に接触させることにより、より活性化して用いることができる。 Examples of the reducing agent that can be used in the catalyst system of the present invention include iron, zinc, manganese, aluminum, magnesium, sodium, and calcium, and zinc, magnesium, and manganese are preferable. These reducing agents can be used after being more activated by bringing them into contact with an acid such as an organic acid.
 また、本発明の触媒系において使用することのできる遷移金属塩以外の塩としては、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、臭化リチウム、ヨウ化ナトリウム、硫酸ナトリウムなどのナトリウム化合物、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、硫酸カリウムなどのカリウム化合物、フッ化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、硫酸テトラエチルアンモニウムなどのアンモニウム化合物などが挙げられるが、臭化リチウム、臭化ナトリウム、ヨウ化ナトリウム、臭化カリウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウムが好ましい。 Examples of salts other than transition metal salts that can be used in the catalyst system of the present invention include sodium compounds such as sodium fluoride, sodium chloride, sodium bromide, lithium bromide, sodium iodide, sodium sulfate, and fluorides. Examples include potassium compounds such as potassium, potassium chloride, potassium bromide, potassium iodide, and potassium sulfate, and ammonium compounds such as tetraethylammonium fluoride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, and tetraethylammonium sulfate. However, lithium bromide, sodium bromide, sodium iodide, potassium bromide, tetraethylammonium bromide and tetraethylammonium iodide are preferred.
 触媒系における各成分の使用割合は、遷移金属塩または配位子が配位された遷移金属(塩)が、上記一般式(1)で表される構造単位となりうる化合物Aと、上記一般式(4)で表される構造単位となりうる化合物Bとの総計1モルに対し、通常、0.0001~10モル、好ましくは0.01~0.5モルである。この範囲にあれば重合反応が充分に進行し、しかも触媒活性が高く、分子量を高くすることも可能となる。前記範囲よりも少ないと、重合反応が充分に進行せず、一方、多すぎても、分子量が低下するという問題がある。触媒系において、遷移金属塩および配位子を用いる場合、この配位子の使用割合は、遷移金属塩1モルに対し、通常、0.1~100モル、好ましくは1~10モルである。この範囲にあれば触媒活性が高く、分子量の高いものを得ることができる。 The proportion of each component in the catalyst system is such that the transition metal salt or the transition metal (salt) coordinated with the ligand can be a structural unit represented by the above general formula (1) and the above general formula. The amount is generally 0.0001 to 10 mol, preferably 0.01 to 0.5 mol, based on 1 mol in total with the compound B that can be the structural unit represented by (4). Within this range, the polymerization reaction proceeds sufficiently, and the catalytic activity is high and the molecular weight can be increased. When the amount is less than the above range, the polymerization reaction does not proceed sufficiently. On the other hand, when the amount is too large, the molecular weight is lowered. When a transition metal salt and a ligand are used in the catalyst system, the amount of the ligand used is usually 0.1 to 100 mol, preferably 1 to 10 mol, per 1 mol of the transition metal salt. Within this range, a catalyst having a high catalytic activity and a high molecular weight can be obtained.
 また、触媒系における還元剤の使用割合は、上記一般式(1)で表される構造単位となりうる化合物Aと、上記一般式(4)で表される構造単位となりうる化合物Bとの総計1モルに対し、通常、0.1~100モル、好ましくは1~10モルである。この範囲にあれば、重合が充分に進行し、高収率で重合体を得ることができる。また前記範囲の下限満では、重合が充分進行せず、一方、上限を超えると、得られる重合体の精製が困難になるという問題がある。 The ratio of the reducing agent used in the catalyst system is 1 in total of the compound A that can be the structural unit represented by the general formula (1) and the compound B that can be the structural unit represented by the general formula (4). The amount is usually 0.1 to 100 mol, preferably 1 to 10 mol, relative to mol. If it exists in this range, superposition | polymerization will fully advance and a polymer can be obtained with a high yield. Further, when the lower limit of the above range is satisfied, the polymerization does not proceed sufficiently. On the other hand, when the upper limit is exceeded, there is a problem that it is difficult to purify the resulting polymer.
 さらに、触媒系に遷移金属塩以外の塩を使用する場合、その使用割合は、上記一般式(1)で表される構造単位となりうる化合物Aと、上記一般式(4)で表される構造単位となりうる化合物Bとの総計1モルに対し、通常、0.001~100モル、好ましくは0.01~1モルである。この範囲にあれば、重合速度を上げる効果が高く、また、これらを除去する重合体の精製も容易である。 Further, when a salt other than a transition metal salt is used in the catalyst system, the use ratio thereof is a compound A that can be a structural unit represented by the general formula (1) and a structure represented by the general formula (4). The amount is generally 0.001 to 100 mol, preferably 0.01 to 1 mol, relative to a total of 1 mol with compound B which can be a unit. Within this range, the effect of increasing the polymerization rate is high, and purification of the polymer that removes these is easy.
 なお、ほかに化合物CおよびDを含む場合、これらの合計量に対する触媒量となる。
 本発明で使用することのできる重合溶媒としては、例えば、テトラヒドロフラン、シクロヘキサノン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、γ-ブチロラクトン、γ-ブチロラクタムなどが挙げられ、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドンが好ましい。これらの重合溶媒は、充分に乾燥してから用いることが好ましい。重合溶媒中における上記一般式(1)で表される構造単位となりうる化合物Aと、上記一般式(4)で表される構造単位となりうる化合物Bの濃度は、通常、1~90重量%、好ましくは5~40重量%である。
In addition, when it contains other compounds C and D, it becomes the catalyst amount with respect to these total amounts.
Examples of the polymerization solvent that can be used in the present invention include tetrahydrofuran, cyclohexanone, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, γ-butyrolactone, γ- Examples include butyrolactam, and tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, and 1-methyl-2-pyrrolidone are preferable. These polymerization solvents are preferably used after sufficiently dried. The concentration of the compound A that can be the structural unit represented by the general formula (1) and the compound B that can be the structural unit represented by the general formula (4) in the polymerization solvent is usually 1 to 90% by weight, Preferably, it is 5 to 40% by weight.
 なお、含窒素複素環基を有する構造単位やその他の構造単位を導入する場合、上記化合物AとBとを反応させる際に化合物Cや、その他の構造単位に相当するモノマーを添加したり、あるいは、化合物AないしBのどちらかと化合物Cなどを予め反応させておき、ついで、化合物AないしBのまだ反応させていない方と反応させればよい。反応条件は上記した条件に準拠すればよい。 When introducing a structural unit having a nitrogen-containing heterocyclic group or other structural unit, the compound C or a monomer corresponding to the other structural unit is added when reacting the compound A and B, or Any one of compounds A and B may be reacted in advance with compound C and the like, and then reacted with the one of compounds A or B that has not yet been reacted. The reaction conditions may be based on the above conditions.
 化合物A、B、Cなどの反応は仕込み量がそのまま、各構造単位の組成に相当する。
 また、本発明の重合体を重合する際の重合温度は、通常、0~200℃、好ましくは50~80℃である。また、重合時間は、通常、0.5~100時間、好ましくは1~40時間である。
The reaction of compounds A, B, C, etc. corresponds to the composition of each structural unit with the charged amount as it is.
The polymerization temperature for polymerizing the polymer of the present invention is usually 0 to 200 ° C., preferably 50 to 80 ° C. The polymerization time is usually 0.5 to 100 hours, preferably 1 to 40 hours.
 以上の製造方法では、得られた共重合体に含まれる、スルホン酸エステル基やホスホン酸エステル基を、脱保護して、スルホン酸基、ホスホン酸基に転換する。
 具体的には、
(1)少量の塩酸を含む過剰量の水またはアルコールに、上記芳香族系共重合体を投入し、5分間以上撹拌する方法
(2)トリフルオロ酢酸中で上記芳香族系共重合体を80~120℃程度の温度で5~10時間程度反応させる方法
(3)芳香族系共重合体中のスルホン酸エステル基(-SO3R)1モルに対して1~9倍モルのリチウムブロマイドを含む溶液、例えばN-メチルピロリドンなどの溶液中で上記芳香族系共重合体を80~150℃程度の温度で3~10時間程度反応させた後、塩酸を添加する方法
などを挙げることができる。
In the above production method, the sulfonic acid ester group or phosphonic acid ester group contained in the obtained copolymer is deprotected and converted to a sulfonic acid group or phosphonic acid group.
In particular,
(1) A method in which the aromatic copolymer is added to an excess amount of water or alcohol containing a small amount of hydrochloric acid and stirred for 5 minutes or more. (2) The aromatic copolymer is 80 in trifluoroacetic acid. Method of reacting at a temperature of about 120 ° C. for about 5 to 10 hours (3) 1 to 9 times moles of lithium bromide per mole of sulfonate group (—SO 3 R) in the aromatic copolymer And a method of reacting the aromatic copolymer in a solution such as N-methylpyrrolidone at a temperature of about 80 to 150 ° C. for about 3 to 10 hours and then adding hydrochloric acid. .
 なお、スルホン酸金属塩ないしホスホン酸金属塩となっている場合、イオン交換などの方法で水素置換すればよい。 In addition, when it is a sulfonic acid metal salt or a phosphonic acid metal salt, it may be replaced with hydrogen by a method such as ion exchange.
 [高分子電解質膜]
 本発明の芳香族系共重合体は、プロトン伝導膜、一次電池用電解質、二次電池用電解質、燃料電池用高分子固体電解質、表示素子、各種センサー、信号伝達媒体、固体コンデンサー、イオン交換膜などに用いる場合、膜状態、溶液状態、粉体状態で用いることが考えられるが、このうち膜状態、溶液状態が好ましい(以下、膜状態のことを高分子電解質膜と呼ぶ)。
[Polymer electrolyte membrane]
The aromatic copolymer of the present invention includes a proton conducting membrane, an electrolyte for a primary battery, an electrolyte for a secondary battery, a solid polymer electrolyte for a fuel cell, a display element, various sensors, a signal transmission medium, a solid capacitor, and an ion exchange membrane. For example, the membrane state, the solution state, and the powder state may be used. Of these, the membrane state and the solution state are preferable (hereinafter, the membrane state is referred to as a polymer electrolyte membrane).
 本発明にかかる固体高分子電解質膜は、上記芳香族系共重合体を含有する。本発明にかかる固体高分子電解質膜の乾燥膜厚は、通常10~100μm、好ましくは20~80μmである。 The solid polymer electrolyte membrane according to the present invention contains the above aromatic copolymer. The dry film thickness of the solid polymer electrolyte membrane according to the present invention is usually 10 to 100 μm, preferably 20 to 80 μm.
 また、本発明にかかる固体高分子電解質膜は、金属化合物または金属イオンを含むこともできる。他の金属化合物または金属イオンとしては、アルミニウム(Al)、マンガン(Mn)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、モリブデン(Mo)、タングステン(W) 、鉄(Fe)、ルテニウム(Ru)、ニッケル(Ni)、スズ(Sn)、パラジウム(Pd)、白金(Pt)、銀(Ag)、セリウム(Ce)、バナジウム(V)、ネオジウム(Nd)、プラセオジウム(Pr)、サマリウム(Sm)、コバルト(Co)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、及び、エルビウム(Er)等の金属原子を含む金属化合物またはこれらの金属イオンが挙げられる。 The solid polymer electrolyte membrane according to the present invention can also contain a metal compound or a metal ion. Other metal compounds or metal ions include aluminum (Al), manganese (Mn), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W) iron, iron (Fe), Ruthenium (Ru), nickel (Ni), tin (Sn), palladium (Pd), platinum (Pt), silver (Ag), cerium (Ce), vanadium (V), neodymium (Nd), praseodymium (Pr), Metal compounds containing metal atoms such as samarium (Sm), cobalt (Co), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), and erbium (Er), or these metal ions Can be mentioned.
 また、本発明にかかる固体高分子電解質膜は、含フッ素ポリマーを含むこともできる。含フッ素ポリマーとしては、電解質膜または多孔質基材の孔内に含フッ素ポリマーを均一に分散することができるため、溶剤可溶性の化合物を用いることが好ましい。含フッ素ポリマーとしては、特に制限されるものではないが、例えば、フッ化ビニリデン系単独(共)重合体、フルオロオレフィン/炭化水素系オレフィン共重合体、フルオロアクリレート共重合体、フルオロエポキシ化合物などを使用することができる。
 このような本発明に係る高分子電解質膜は、後述するフェントン試験による重量保持率が、好適には50%以上であり、さらに好適には、95%以上にあるものが望ましい。またイオン交換容量保持率としては、好適には50%以上であり、さらに好適には95%以上にあるものが望ましい。このような重量保持率、イオン交換容量保持率を有するものは、電解質膜材料として、ラジカル耐性が高く、機械的強度、寸法安定性などの効果を十分に発揮できる。
The solid polymer electrolyte membrane according to the present invention can also contain a fluorine-containing polymer. As the fluorine-containing polymer, a solvent-soluble compound is preferably used because the fluorine-containing polymer can be uniformly dispersed in the pores of the electrolyte membrane or the porous substrate. The fluorine-containing polymer is not particularly limited, and examples thereof include vinylidene fluoride homo (co) polymers, fluoroolefin / hydrocarbon olefin copolymers, fluoroacrylate copolymers, fluoroepoxy compounds and the like. Can be used.
Such a polymer electrolyte membrane according to the present invention preferably has a weight retention by a Fenton test described later of preferably 50% or more, and more preferably 95% or more. The ion exchange capacity retention is preferably 50% or more, and more preferably 95% or more. Those having such weight retention and ion exchange capacity retention have high radical resistance as electrolyte membrane materials, and can sufficiently exhibit effects such as mechanical strength and dimensional stability.
 高分子電解質膜の製造方法
 本発明の高分子電解質膜は、上記芳香族系共重合体を有機溶剤中で混合させ、それを基体上に流延してフィルム状に成形するキャスティング法などにより製造することができる。ここで、上記基体としては、通常の溶液キャスティング法に用いられる基体であれば特に限定されず、たとえばプラスチック製、金属製などの基体が用いられ、好ましくは、ポリエチレンテレフタレート(PET)フィルムなどの熱可塑性樹脂からなる基体が用いられる。
Production method of polymer electrolyte membrane The polymer electrolyte membrane of the present invention is produced by, for example, a casting method in which the aromatic copolymer is mixed in an organic solvent and cast onto a substrate to form a film. can do. Here, the substrate is not particularly limited as long as it is a substrate used in a normal solution casting method. For example, a substrate made of plastic, metal, or the like is used, and preferably a heat treatment such as a polyethylene terephthalate (PET) film. A substrate made of a plastic resin is used.
 上記芳香族系共重合体を混合させる溶媒としては、共重合体を溶解する溶媒や膨潤させる溶媒であれば良く、たとえば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、γ-ブチロラクトン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジメチル尿素、ジメチルイミダゾリジノン、アセトニトリルなどの非プロトン系極性溶剤や、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶剤、メタノール、エタノール、プロパノール、iso-プロピルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル類、アセトン、メチルエチルケトン、シクロヘキサノン、γ-ブチルラクトン等のケトン類、テトラヒドロフラン、1,3-ジオキサン等のエーテル類などの溶剤が挙げられる。これらの溶剤は、1種単独で、または2種以上を組み合わせて用いることができる。特に溶解性、溶液粘度の面から、N-メチル-2-ピロリドン(以下「NMP」ともいう。)が好ましい。 The solvent for mixing the aromatic copolymer may be a solvent that dissolves the copolymer or a solvent that swells, such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, γ-butyrolactone. , N, N-dimethylacetamide, dimethylsulfoxide, dimethylurea, dimethylimidazolidinone, acetonitrile, and other aprotic polar solvents, dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene and other chlorinated solvents, methanol Alcohols such as ethanol, propanol, iso-propyl alcohol, sec-butyl alcohol, tert-butyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl Alkylene glycol monoalkyl ethers such as ether, acetone, methyl ethyl ketone, cyclohexanone, ketones such as γ- butyrolactone, tetrahydrofuran, solvents such as ethers 1,3-dioxane and the like. These solvents can be used alone or in combination of two or more. In particular, from the viewpoint of solubility and solution viscosity, N-methyl-2-pyrrolidone (hereinafter also referred to as “NMP”) is preferable.
 また、上記溶媒として、非プロトン系極性溶剤と他の溶剤との混合物を用いる場合、該混合物の組成は、非プロトン系極性溶剤が95~25重量%、好ましくは90~25重量%、他の溶剤が5~75重量%、好ましくは10~75重量%(但し、合計は100重量%)である。他の溶剤の量が上記範囲内にあると、溶液粘度を下げる効果に優れる。この場合の非プロトン系極性溶剤と他の溶剤との組み合わせとしては、非プロトン系極性溶剤としてNMP、他の溶剤として幅広い組成範囲で溶液粘度を下げる効果があるメタノールが好ましい。 When a mixture of an aprotic polar solvent and another solvent is used as the solvent, the composition of the mixture is 95-25% by weight of the aprotic polar solvent, preferably 90-25% by weight, The solvent is 5 to 75% by weight, preferably 10 to 75% by weight (however, the total is 100% by weight). When the amount of the other solvent is within the above range, the effect of lowering the solution viscosity is excellent. In this case, the combination of the aprotic polar solvent and the other solvent is preferably NMP as the aprotic polar solvent and methanol having an effect of lowering the solution viscosity in a wide composition range as the other solvent.
 上記共重合体と添加剤を溶解させた溶液のポリマー濃度は、上記スルホン酸含有芳香族系共重合体の分子量にもよるが、通常、5~40重量%、好ましくは7~25重量%である。ポリマー濃度が前記範囲にあれば所望の膜厚のものを形成できるとともに、ピンホールなどを生じることもなく、また、溶液粘度の点でもフィルム化が容易であり、得られたフィルムも表面平滑性に優れている。 The polymer concentration of the solution in which the copolymer and the additive are dissolved depends on the molecular weight of the sulfonic acid-containing aromatic copolymer, but is usually 5 to 40% by weight, preferably 7 to 25% by weight. is there. If the polymer concentration is within the above range, a film having a desired film thickness can be formed, no pinholes are generated, and film formation is easy in terms of solution viscosity. Is excellent.
 なお、溶液粘度は、上記芳香族系共重合体の分子量や、ポリマー濃度や、添加剤の濃度にもよるが、通常、2,000~100,000mPa・s、好ましくは3,000~50,000mPa・sである。この範囲の粘度であれば、成膜中の溶液の滞留性が良く、基体から流れてしまうこともなく、粘度が低いので、ダイからの押し出しも容易であり、流延法によるフィルム化が容易となる。 The solution viscosity is usually 2,000 to 100,000 mPa · s, preferably 3,000 to 50, although depending on the molecular weight of the aromatic copolymer, the polymer concentration, and the concentration of the additive. 000 mPa · s. If the viscosity is within this range, the solution stays well during film formation, does not flow from the substrate, and is low in viscosity, so it can be easily extruded from a die and can be easily formed into a film by the casting method. It becomes.
 上記のようにして成膜した後、得られた未乾燥フィルムを水に浸漬すると、未乾燥フィルム中の有機溶剤を水と置換することができ、得られる高分子電解質膜の残留溶媒量を低減することができる。 After film formation as described above, when the obtained undried film is immersed in water, the organic solvent in the undried film can be replaced with water, and the amount of residual solvent in the resulting polymer electrolyte membrane is reduced. can do.
 なお、成膜後、未乾燥フィルムを水に浸漬する前に、未乾燥フィルムを予備乾燥してもよい。予備乾燥は、未乾燥フィルムを通常50~150℃の温度で、0.1~10時間保持することにより行われる。 Note that after the film formation, the undried film may be preliminarily dried before the undried film is immersed in water. The preliminary drying is performed by holding the undried film at a temperature of usually 50 to 150 ° C. for 0.1 to 10 hours.
 上記のように未乾燥フィルムを水に浸漬した後乾燥すると、残存溶媒量が低減された膜が得られるが、このようにして得られる膜の残存溶媒量は、通常5重量%以下である。また、浸漬条件によっては、得られる膜の残存溶媒量を1重量%以下とすることができる。このような条件としては、たとえば、未乾燥フィルム1重量部に対する水の使用量が50重量部以上であり、浸漬する際の水の温度が10~60℃、浸漬時間が10分~10時間である。 When the undried film is immersed in water and dried as described above, a film with a reduced amount of residual solvent is obtained. The residual solvent amount of the film thus obtained is usually 5% by weight or less. Further, depending on the dipping conditions, the amount of residual solvent in the obtained film can be set to 1% by weight or less. As such conditions, for example, the amount of water used is 50 parts by weight or more with respect to 1 part by weight of the undried film, the temperature of the water during immersion is 10 to 60 ° C., and the immersion time is 10 minutes to 10 hours. is there.
 上記のように未乾燥フィルムを水に浸漬した後、フィルムを30~100℃、好ましくは50~80℃で、10~180分、好ましくは15~60分乾燥し、次いで、50~150℃で、好ましくは500mmHg~0.1mmHgの減圧下、0.5~24時間、真空乾燥することにより、膜を得ることができる。 After immersing the undried film in water as described above, the film is dried at 30-100 ° C., preferably 50-80 ° C., for 10-180 minutes, preferably 15-60 minutes, and then at 50-150 ° C. The film can be obtained by vacuum drying under reduced pressure of 500 mmHg to 0.1 mmHg for 0.5 to 24 hours.
 本発明の方法により得られる高分子電解質膜は、その乾燥膜厚が、通常10~100μm、好ましくは20~80μmである。また、上記スルホン酸エステル基ないしスルホン酸のアルカリ金属塩を有する芳香族系共重合体を上述したような方法でフィルム状に成形した後、加水分解や酸処理等の適切な後処理することにより本発明に係る高分子電解質膜を製造することもできる。具体的には、スルホン酸エステル基ないしスルホン酸のアルカリ金属塩を有する芳香族系共重合体を上述したような方法でフィルム状に成形した後、その膜を加水分解あるいは酸処理することにより芳香族系共重合体からなる高分子電解質膜を製造することができる。 The polymer electrolyte membrane obtained by the method of the present invention has a dry film thickness of usually 10 to 100 μm, preferably 20 to 80 μm. In addition, after the aromatic copolymer having the sulfonic acid ester group or the alkali metal salt of sulfonic acid is formed into a film by the method described above, it is subjected to appropriate post-treatment such as hydrolysis and acid treatment. The polymer electrolyte membrane according to the present invention can also be produced. Specifically, an aromatic copolymer having a sulfonic acid ester group or an alkali metal salt of sulfonic acid is formed into a film by the above-described method, and then the membrane is hydrolyzed or acid-treated for hydrolysis. A polymer electrolyte membrane made of a group copolymer can be produced.
 また、高分子電解質膜を製造する際に、上記芳香族系共重合体以外に、硫酸、リン酸などの無機酸、リン酸ガラス、タングステン酸、リン酸塩水和物、β-アルミナプロトン置換体、プロトン導入酸化物等の無機プロトン伝導体粒子、カルボン酸を含む有機酸、スルホン酸を含む有機酸、ホスホン酸を含む有機酸、適量の水などを併用しても良い。 Further, when producing the polymer electrolyte membrane, in addition to the above aromatic copolymers, inorganic acids such as sulfuric acid and phosphoric acid, phosphate glass, tungstic acid, phosphate hydrate, β-alumina proton substitution product Inorganic proton conductor particles such as proton-introduced oxides, organic acids containing carboxylic acids, organic acids containing sulfonic acids, organic acids containing phosphonic acids, and appropriate amounts of water may be used in combination.
 また、高分子電解質膜を製造する際に、別に多孔質基材やシート状の繊維質物質を用いることで、補強された固体高分子電解質膜を製造することもできる。
 補強された固体高分子電解質膜を製造する方法としては、たとえば、液状組成物を多孔質基材やシート状の繊維質物質に含浸して、上記芳香族系共重合体を多孔質基材やシート状の繊維質物質の内部の細孔に充填させる方法、上記液状組成物を多孔質基材やシート状の繊維質物質に塗布して、上記芳香族系共重合体を多孔質基材やシート状の繊維質物質の内部の細孔に充填させる方法、ならびに、上記液状組成物から膜を形成した後、多孔質基材やシート状の繊維質物質に前記膜を重ねて熱プレスし、上記芳香族系共重合体を多孔質基材やシート状の繊維質物質の細孔に充填させる方法などを挙げることができる。
Further, when the polymer electrolyte membrane is produced, a reinforced solid polymer electrolyte membrane can also be produced by using a porous substrate or a sheet-like fibrous material.
As a method for producing a reinforced solid polymer electrolyte membrane, for example, a liquid composition is impregnated into a porous base material or a sheet-like fibrous material, and the aromatic copolymer is used as a porous base material or A method of filling the pores inside the sheet-like fibrous material, the liquid composition is applied to a porous substrate or a sheet-like fibrous material, and the aromatic copolymer is added to the porous substrate or A method of filling the pores inside the sheet-like fibrous substance, and after forming a film from the liquid composition, the film is laminated on a porous substrate or a sheet-like fibrous substance and hot pressed, Examples thereof include a method of filling the aromatic copolymer into the pores of a porous substrate or a sheet-like fibrous material.
 また、多層構造の固体高分子電解質膜を形成する場合には、上述の各方法などによって得られた固体高分子電解質膜表面に、さらにダイコート、スプレーコート、ナイフコート、ロールコート、スピンコート、グラビアコートなどの公知の方法で、上記芳香族系共重合体を含む組成物を塗布し、必要に応じて乾燥する、あるいは、上記芳香族系共重合体を含む組成物から形成された膜を上述の方法で得られた膜に重ねて熱プレスすることなどが挙げられる。なお、塗布量を調節して、ポリマー層の厚さを調製してもよく、例えば一方のポリマー層を厚く、他方を薄くしてもよい。 Further, when forming a solid polymer electrolyte membrane having a multilayer structure, a die coat, spray coat, knife coat, roll coat, spin coat, gravure is further applied to the surface of the solid polymer electrolyte membrane obtained by the above-described methods. The composition containing the aromatic copolymer is applied by a known method such as coating, and dried as necessary, or a film formed from the composition containing the aromatic copolymer is described above. For example, the film obtained by the above method may be hot-pressed on the film. The thickness of the polymer layer may be adjusted by adjusting the coating amount. For example, one polymer layer may be thick and the other thin.
 多孔質基材としては、厚さ方向に対して貫通する多数の細孔又は空隙を有するものであれば特に制限されるものではなく、例えば、各種樹脂からなる有機多孔質基材、ガラス、アルミナなど金属酸化物や金属自体から構成される無機多孔質基材等が挙げられる。 The porous substrate is not particularly limited as long as it has a large number of pores or voids penetrating in the thickness direction. For example, organic porous substrates made of various resins, glass, alumina Inorganic porous base materials composed of metal oxides and metals themselves.
 多孔質基材としては、厚さ方向に対してほぼ平行な方向に貫通している貫通孔を多数個有するものであってもよい。
 このような、多孔質基材として、特開2008-119662号公報、特開2007-154153号公報、特開平8-20660号公報、特開平8-20660号公報、特開2006-120368号公報、特開2004-171994号公報、特開2009-64777号公報に開示されたものを使用することができる。
The porous substrate may have a large number of through holes penetrating in a direction substantially parallel to the thickness direction.
As such a porous substrate, JP 2008-119662 A, JP 2007-154153 A, JP 8-20660 A, JP 8-20660 A, JP 2006-120368 A, Those disclosed in Japanese Patent Application Laid-Open Nos. 2004-171994 and 2009-64777 can be used.
 本発明で使用される多孔質基材としては、有機多孔質基材が好ましく、具体的には、ポリテトラフルオロエチレン、高分子量ポリエチレン、架橋型ポリエチレン、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリイミド、ポリアクリロトリル、ポリアミドイミド、ポリエーテルイミド、ポリエーテルサルホン、ガラスからなる群から選ばれる1種以上からなるものが好ましい。なお、ポリオレフィンとしては、高分子量ポリエチレン、架橋型ポリエチレン、ポリエチレンなどが望ましい。 As the porous substrate used in the present invention, an organic porous substrate is preferable, and specifically, polyolefins such as polytetrafluoroethylene, high molecular weight polyethylene, cross-linked polyethylene, polyethylene and polypropylene, polyimide, polyacrylo What consists of 1 or more types chosen from the group which consists of tolyl, polyamideimide, polyetherimide, polyethersulfone, and glass is preferable. The polyolefin is preferably high molecular weight polyethylene, cross-linked polyethylene, polyethylene or the like.
 [膜-電極接合体]
 本発明にかかる膜-電極接合体は、前記固体高分子電解質膜と、触媒層と、ガス拡散層とを備えた膜-電極接合体である。典型的には、前記固体高分子電解質膜を挟んで一方にはカソード電極用の触媒層と他方にはアノード電極用の触媒層が設けられており、さらにカソード側およびアノード側の各触媒層の固体高分子電解質膜と反対側に接して、カソード側およびアノード側にそれぞれガス拡散層が設けられている。
[Membrane-electrode assembly]
The membrane-electrode assembly according to the present invention is a membrane-electrode assembly comprising the solid polymer electrolyte membrane, a catalyst layer, and a gas diffusion layer. Typically, a catalyst layer for the cathode electrode is provided on one side of the solid polymer electrolyte membrane, and a catalyst layer for the anode electrode is provided on the other side, and each of the catalyst layers on the cathode side and the anode side is further provided. Gas diffusion layers are provided on the cathode side and the anode side, respectively, in contact with the side opposite to the solid polymer electrolyte membrane.
 ガス拡散層、触媒層として、公知のものを特に制限なく使用可能である。
 具体的にガス拡散層は、多孔性基材又は多孔性基材と微多孔層の積層構造体からなる。ガス拡散層が多孔性基材と微多孔層の積層構造体からなる場合には、微多孔層が触媒層に接して設けられる。カソード側およびアノード側のガス拡散層は、撥水性を付与するために含フッ素重合体を含んでいることが好ましい。
Known gas diffusion layers and catalyst layers can be used without particular limitation.
Specifically, the gas diffusion layer is composed of a porous substrate or a laminated structure of a porous substrate and a microporous layer. When the gas diffusion layer is composed of a laminated structure of a porous substrate and a microporous layer, the microporous layer is provided in contact with the catalyst layer. The gas diffusion layers on the cathode side and the anode side preferably contain a fluoropolymer in order to impart water repellency.
 触媒層は、触媒、イオン交換樹脂電解質から構成される。触媒としては、白金、パラジウム、金、ルテニウム、イリジウムなどの貴金属触媒が好ましく用いられる。また、貴金属触媒は、合金や混合物などのように、2種以上の元素が含まれるものであってもよい。このような貴金属触媒は、通常、高比表面積カーボン微粒子に担持したものを用いることができる。 The catalyst layer is composed of a catalyst and an ion exchange resin electrolyte. As the catalyst, a noble metal catalyst such as platinum, palladium, gold, ruthenium or iridium is preferably used. The noble metal catalyst may contain two or more elements such as an alloy or a mixture. As such noble metal catalyst, one supported on high specific surface area carbon fine particles can be used.
 イオン交換樹脂電解質は、前記触媒を担持したカーボンを結着させるバインダー成分として働くとともに、アノード極では触媒上の反応によって発生したイオンを固体高分子電解質膜へ効率的に供給し、また、カソード極では固体高分子電解質膜から供給されたイオンを触媒へ効率的に供給する。 The ion exchange resin electrolyte functions as a binder component for binding the carbon carrying the catalyst, and at the anode electrode, efficiently supplies ions generated by the reaction on the catalyst to the solid polymer electrolyte membrane. Then, ions supplied from the solid polymer electrolyte membrane are efficiently supplied to the catalyst.
 本発明で用いられる触媒層のイオン交換樹脂としては、触媒層内のプロトン伝導性を向上させるためにプロトン交換基を有するポリマーが好ましい。このようなポリマーに含まれるプロトン交換基としては、スルホン酸基、カルボン酸基、リン酸基などがあるが特に限定されるものではない。また、このようなプロトン交換基を有するポリマーも、特に限定されることなく選ばれるが、フルオロアルキルエーテル側鎖とフルオロアルキル主鎖とから構成されるプロトン交換基を有するポリマーや、スルホン酸基を有する芳香族炭化水素系重合体などが好ましく用いられる。また、上記の固体高分子電解質膜を構成するスルホン酸基を有する芳香族炭化水素系重合体をイオン交換性樹脂として使用してもよく、さらにプロトン交換基を有するフッ素原子を含むポリマーや、エチレンやスチレンなどから得られる他のポリマー、これらの共重合体やブレンドであっても構わない。このようなイオン交換樹脂電解質は、公知のものを特に制限なく使用可能であり、たとえばNafion(DuPont社、登録商標)やスルホン酸基を有する芳香族炭化水素系重合体等を特に制限なく使用できる。 As the ion exchange resin of the catalyst layer used in the present invention, a polymer having a proton exchange group is preferable in order to improve proton conductivity in the catalyst layer. Proton exchange groups contained in such polymers include sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups, but are not particularly limited. Further, such a polymer having a proton exchange group is also selected without any particular limitation, but a polymer having a proton exchange group composed of a fluoroalkyl ether side chain and a fluoroalkyl main chain, a sulfonic acid group An aromatic hydrocarbon polymer having the same is preferably used. In addition, an aromatic hydrocarbon polymer having a sulfonic acid group constituting the solid polymer electrolyte membrane may be used as an ion-exchange resin, and a polymer containing a fluorine atom having a proton exchange group or ethylene Or other polymers obtained from styrene or the like, copolymers or blends thereof. As such an ion exchange resin electrolyte, a known one can be used without any particular limitation, and for example, Nafion (DuPont, registered trademark), an aromatic hydrocarbon polymer having a sulfonic acid group, or the like can be used without any particular limitation. .
 本発明で用いられる触媒層に必要に応じてさらに、炭素繊維、イオン交換基を有しない樹脂を用いてもよい。これらの樹脂としては撥水性の高い樹脂であることが好ましい。例えば含フッ素共重合体、シランカップリング剤、シリコーン樹脂、ワックス、ポリホスファゼンなどを挙げることができるが、好ましくは含フッ素共重合体である。 If necessary, the catalyst layer used in the present invention may further include a resin having no carbon fiber or ion exchange group. These resins are preferably resins with high water repellency. For example, fluorine-containing copolymers, silane coupling agents, silicone resins, waxes, polyphosphazenes and the like can be mentioned, and fluorine-containing copolymers are preferred.
 [燃料電池]
 本発明に係る固体高分子型燃料電池は、前記膜-電極接合体を含むことを特徴としている。具体的には、少なくとも一つ以上の膜-電極接合体及びその両側に位置するセパレータを含む少なくとも一つの電気発生部;燃料を前記電気発生部に供給する燃料供給部;及び酸化剤を前記電気発生部に供給する酸化剤供給部を含む型燃料電池であって、膜-電極接合体が上記記載のものであることを特徴とする。
[Fuel cell]
The polymer electrolyte fuel cell according to the present invention is characterized by including the membrane-electrode assembly. Specifically, at least one electricity generating part including at least one membrane-electrode assembly and separators located on both sides thereof; a fuel supply part for supplying fuel to the electricity generating part; and an oxidant for the electricity A fuel cell comprising an oxidant supply section for supplying to a generation section, wherein the membrane-electrode assembly is as described above.
 本発明の電池に用いられるセパレータとしては、通常の燃料電池に用いられるものを用いることができる。具体的にはカーボンタイプのもの、金属タイプのものなどを用いることができる。 As the separator used in the battery of the present invention, those used in ordinary fuel cells can be used. Specifically, carbon type or metal type can be used.
 また、燃料電池を構成する部材としては、公知のものを特に制限なく使用することが可能である。本発明の電池は単セルで用いることもできるし、複数の単セルを直列に繋いだスタックとして用いることもできる。スタックの方法としては公知のものを用いることができる。具体的には単セルを平面状に並べた平面スタッキング、及び燃料または酸化剤の流路がセパレータの裏表面にそれぞれ形成されているセパレータを介して単セルを積み重ねるバイポーラースタッキングを用いることができる。 Moreover, as a member constituting the fuel cell, a known member can be used without any particular limitation. The battery of the present invention can be used as a single cell or as a stack in which a plurality of single cells are connected in series. As a stacking method, a known method can be used. Specifically, planar stacking in which single cells are arranged in a plane and bipolar stacking in which single cells are stacked via separators each having a fuel or oxidant flow path formed on the back surface of the separator can be used. .
 以下、実施例を挙げ本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、実施例において、「%」とは特に断りのない限り「重量%」を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples. In Examples, “%” means “% by weight” unless otherwise specified.
 [評価用電解質膜の調製]
 各実施例・比較例で得られた共重合体をN-メチルピロリドン/メタノール溶液に溶解させた後、アプリケーターを用いてPET基板上にキャスティングし、オーブンを用いて60℃×30分、80℃×40分、120℃×60分乾燥させた。乾燥した膜を脱イオン水に浸漬した。浸漬後、50℃で45分乾燥させることにより評価用の膜を得た。
[Preparation of electrolyte membrane for evaluation]
The copolymer obtained in each Example / Comparative Example was dissolved in an N-methylpyrrolidone / methanol solution, then cast on a PET substrate using an applicator, and 60 ° C. × 30 minutes, 80 ° C. using an oven. × 40 minutes, 120 ° C. × 60 minutes. The dried membrane was immersed in deionized water. After immersion, a film for evaluation was obtained by drying at 50 ° C. for 45 minutes.
 [分子量]
 各実施例・比較例で得られた共重合体をN-メチルピロリドン緩衝溶液(以下、NMP緩衝溶液という。)に溶解し、ゲルパーミエーションクロマトグラフィー(GPC、東ソー(株)製TSK-GELカラム 、ALPHA-M型)によって、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mw)を求めた。NMP緩衝溶液は、NMP(3L)/リン酸(3.3mL)/臭化リチウム(7.83g)の比率で調整した。
[Molecular weight]
The copolymer obtained in each Example / Comparative Example was dissolved in N-methylpyrrolidone buffer solution (hereinafter referred to as NMP buffer solution), and gel permeation chromatography (GPC, TSK-GEL column manufactured by Tosoh Corporation). ALPHA-M type), polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw) were determined. The NMP buffer solution was adjusted at a ratio of NMP (3 L) / phosphoric acid (3.3 mL) / lithium bromide (7.83 g).
 [ホスホン酸基およびスルホン酸基の量の比率]
 スルホン化ポリマーの重合反応に使用した原料全体の中に存在するホスホン酸基とスルホン酸基の量の比率である。
[Ratio of the amount of phosphonic acid groups and sulfonic acid groups]
It is the ratio of the amount of phosphonic acid groups and sulfonic acid groups present in the entire raw material used in the polymerization reaction of the sulfonated polymer.
 [イオン交換容量]
 得られたスルホン化ポリマーの水洗水が中性になるまで蒸留水で洗浄して、フリーの残存している酸を除去した後、乾燥させた。この後、所定量を秤量し、THF/水の混合溶剤に溶解させ、フェノールフタレインを指示薬として、NaOHの標準液にて滴定し、中和点から、イオン交換容量(meq/g)を求めた。
[Ion exchange capacity]
The resulting sulfonated polymer was washed with distilled water until the washing water became neutral to remove free remaining acid, and then dried. Thereafter, a predetermined amount is weighed and dissolved in a THF / water mixed solvent, titrated with a standard solution of NaOH using phenolphthalein as an indicator, and the ion exchange capacity (meq / g) is obtained from the neutralization point. It was.
 [プロトン伝導度の測定]
 交流抵抗は、5mm幅の短冊状の試料膜の表面に、白金線(f=0.5mm)を押し当て、恒温恒湿装置中に試料を保持し、白金線間の交流インピーダンス測定から求めた。すなわち、85℃、相対湿度90%の環境下で交流10kHzにおけるインピーダンスを測定した。抵抗測定装置として、(株)NF回路設計ブロック製のケミカルインピーダンス測定システムを用い、恒温恒湿装置には、(株)ヤマト科学製のJW241を使用した。白金線は、5mm間隔に5本押し当てて、線間距離を5~20mmに変化させ、交流抵抗を測定した。線間距離と抵抗の勾配から、膜の比抵抗を算出し、比抵抗の逆数からプロトン伝導度を算出した。
 比抵抗R(Ω・cm)=0.5(cm)×膜厚(cm)×抵抗線間勾配(Ω/cm)
[Measurement of proton conductivity]
The AC resistance was obtained by pressing a platinum wire (f = 0.5 mm) on the surface of a strip-shaped sample film having a width of 5 mm, holding the sample in a constant temperature and humidity device, and measuring AC impedance between the platinum wires. . That is, the impedance at AC 10 kHz was measured in an environment of 85 ° C. and relative humidity 90%. A chemical impedance measurement system manufactured by NF Circuit Design Block Co., Ltd. was used as the resistance measurement device, and JW241 manufactured by Yamato Scientific Co., Ltd. was used as the constant temperature and humidity device. Five platinum wires were pressed at intervals of 5 mm, the distance between the wires was changed to 5 to 20 mm, and the AC resistance was measured. The specific resistance of the membrane was calculated from the line-to-line distance and the resistance gradient, and the proton conductivity was calculated from the reciprocal of the specific resistance.
Specific resistance R (Ω · cm) = 0.5 (cm) × film thickness (cm) × resistance-to-resistance gradient (Ω / cm)
 [フェントン試験]
 3重量%の過酸化水素に硫酸鉄・七水和物を鉄イオンの濃度が2.5ppmになるようにフェントン試薬を調製した。50mlのガラス製サンプル管に50gのフェントン試薬を採取し、2cm×3cmに切削した高分子電解膜を投入後、密栓後、45℃の恒温水槽に浸漬させ、24時間のフェントン試験を行った。フェントン試験後、フィルムを取り出し、イオン交換水にて水洗後、25℃・相対湿度50%で12時間放置し、各種物性測定を行った。フェントン試験における重量保持率は、下記の数式により算出した。
フェントン試験における重量保持率(%)=フェントン試験後のフィルム重量/フェントン試験前のフィルム重量×100
評価基準:
重量保持率95%以上…○、
重量保持率50%を超えて95%未満…△、
重量保持率50%以下…×
フェントン試験におけるイオン交換容量保持率(%)=フェントン試験後のイオン交換容量/フェントン試験前のイオン交換容量×100
評価基準:
イオン交換容量95%以上…○、
イオン交換容量50%を超えて95%未満…△、
イオン交換容量50%以下…×
[Fenton test]
A Fenton reagent was prepared so that iron sulfate heptahydrate and iron ion concentration were 2.5 ppm in 3% by weight of hydrogen peroxide. 50 g of Fenton reagent was collected in a 50 ml glass sample tube, a polymer electrolyte membrane cut to 2 cm × 3 cm was added, and after sealing, immersed in a constant temperature water bath at 45 ° C., a 24-hour Fenton test was performed. After the Fenton test, the film was taken out, washed with ion-exchanged water, allowed to stand at 25 ° C. and a relative humidity of 50% for 12 hours, and various physical properties were measured. The weight retention rate in the Fenton test was calculated by the following mathematical formula.
Weight retention (%) in Fenton test = film weight after Fenton test / film weight before Fenton test × 100
Evaluation criteria:
Weight retention of 95% or more ... ○,
More than 50% weight retention and less than 95%… △,
Weight retention 50% or less ... ×
Ion exchange capacity retention rate (%) in Fenton test = ion exchange capacity after Fenton test / ion exchange capacity before Fenton test × 100
Evaluation criteria:
More than 95% ion exchange capacity ...
More than 50% ion exchange capacity and less than 95%… △,
Ion exchange capacity 50% or less… ×
 [熱水試験:膨潤収縮量の求め方]
 フィルムを2.0cm×3.0cmにカットし秤量して、試験用のテストピースとした。24℃、相対湿度(RH)50%条件下にて状態調整した後、このフィルムを、ポリカーボネート製の250ml瓶に入れ、そこに約100mlの蒸留水を加え、プレッシャークッカー試験機(HIRAYAMA MFS CORP製、 PC-242HS)を用いて、120℃で24時間加温した。試験終了後、各フィルムを熱水中から取り出し、軽く表面の水をキムワイプで拭き取り、寸法を測定し膨潤率を求めた。この膜を24℃、RH50%条件下で状態調整し、水を留去して、熱水試験後の膜の寸法を測定し収縮率を求めた。膨順収縮量は、下記式にしたがって求めた。
膨潤率=(含水時の2cm辺の寸法/2cm+含水時の3cm辺の寸法/3cm)×100/2
収縮率=(乾燥時の2cm辺の寸法/2cm+乾燥時の3cm辺の寸法/3cm)×100/2
膨潤収縮量=(膨潤率-100)+(100-収縮率)

[引張強度、引張伸びおよび弾性率の測定]
引張強度、引張伸びおよび弾性率の測定は、JIS K7113に準じて行った(引っ張り速度:50mm/min)。ただし、弾性率は、標線間距離をチャック間距離とし算出した。JIS K7113に従い、温度23±2℃、相対湿度50±5%の条件下で48時間試料の状態調整を行った。ただし、試料の打ち抜きは、JIS K6251に記載の7号ダンベルを用いた。引っ張り試験測定装置は、INSTRON製5543を用いた。

[収率の計算]
 収率は、収率(%)=(生成物収量/理論生成量)×100により算出した。
[Hot water test: How to determine swelling shrinkage]
The film was cut into 2.0 cm × 3.0 cm and weighed to obtain a test piece for testing. After conditioning under conditions of 24 ° C. and 50% relative humidity (RH), this film is put into a polycarbonate 250 ml bottle, about 100 ml of distilled water is added thereto, and a pressure cooker tester (manufactured by HIRAYAMA MFS CORP) is used. And PC-242HS) for 24 hours. After completion of the test, each film was taken out from the hot water, the surface water was gently wiped off with Kimwipe, the dimensions were measured, and the swelling rate was determined. The film was conditioned at 24 ° C. and RH 50%, water was distilled off, and the dimensions of the film after the hot water test were measured to determine the shrinkage. The amount of expansion and contraction was determined according to the following formula.
Swelling ratio = (size of 2 cm side when containing water / 2 cm + size of 3 cm side when containing water / 3 cm) × 100/2
Shrinkage rate = (size of 2 cm side when dried / 2 cm + size of 3 cm side when dried / 3 cm) × 100/2
Swelling shrinkage amount = (swelling rate−100) + (100−shrinkage rate)

[Measurement of tensile strength, tensile elongation and elastic modulus]
Measurement of tensile strength, tensile elongation, and elastic modulus was performed according to JIS K7113 (tensile speed: 50 mm / min). However, the elastic modulus was calculated with the distance between marked lines as the distance between chucks. According to JIS K7113, the condition of the sample was adjusted for 48 hours under conditions of a temperature of 23 ± 2 ° C. and a relative humidity of 50 ± 5%. However, the No. 7 dumbbell described in JIS K6251 was used for punching the sample. As the tensile test measurement device, 5543 manufactured by INSTRON was used.

[Yield calculation]
The yield was calculated by yield (%) = (product yield / theoretical production amount) × 100.
 <式(1)で表される構造単位の由来となる化合物A>
 <合成例1-1>
 3、5-ジクロロベンゼンスルホニルクロライド(114.65g、467mmol)を、ネオペンチルアルコール(45.30g、514mmol)のピリジン(300mL)溶液に、少量ずつ攪拌しながら15分かけて添加した。この間、反応温度は18~20℃に保った。反応混合物を、冷却しながらさらに30分攪拌した後、氷冷した10% HCl(1600mL)を添加した。水に不溶の成分を700mLの酢酸エチルで抽出し、1N HClで2回(各700mL)洗浄し、5% NaHCO3で2回(各700mL)洗浄し、MgSO4で乾燥させた。回転乾燥機を用いて溶媒を除去し、残渣を500mLのメタノールから再結晶させた。その結果、純粋な(1H NMRで99%を超える純度)3、5-ジクロロベンゼンスルホン酸ネオペンチル(式(30-1))を、光沢のある無色の結晶として得た。収量は、105.98g、収率76%であった。
<Compound A derived from the structural unit represented by Formula (1)>
<Synthesis Example 1-1>
3,5-Dichlorobenzenesulfonyl chloride (114.65 g, 467 mmol) was added to a solution of neopentyl alcohol (45.30 g, 514 mmol) in pyridine (300 mL) over 15 minutes with stirring. During this time, the reaction temperature was kept at 18-20 ° C. The reaction mixture was stirred for an additional 30 minutes with cooling, then ice-cold 10% HCl (1600 mL) was added. Insoluble components in water were extracted with 700 mL of ethyl acetate, washed twice with 1N HCl (700 mL each), twice with 5% NaHCO 3 (700 mL each) and dried over MgSO 4 . The solvent was removed using a rotary dryer and the residue was recrystallized from 500 mL methanol. As a result, pure (purity exceeding 99% by 1H NMR) neopentyl 3,5-dichlorobenzenesulfonate (formula (30-1)) was obtained as glossy colorless crystals. The yield was 105.98 g, and the yield was 76%.
Figure JPOXMLDOC01-appb-C000030
 <合成例1-2>
 2、5-ジクロロベンゼンスルホニルクロライド(114.65g、467mmol)を、ネオペンチルアルコール(45.30g、514mmol)のピリジン(300mL)溶液に、少量ずつ攪拌しながら15分かけて添加した。この間、反応温度は18~20℃に保った。反応混合物を、冷却しながらさらに30分攪拌した後、氷冷した10% HCl(1600mL)を添加した。水に不溶の成分を700mLの酢酸エチルで抽出し、1N HClで2回(各700mL)洗浄し、5% NaHCO3で2回(各700mL)洗浄し、MgSO4で乾燥させた。回転乾燥機を用いて溶媒を除去し、残渣を500mLのメタノールから再結晶させた。その結果、純粋な(1H-NMRで99%を超える純度)2、5-ジクロロベンゼンスルホン酸ネオペンチル(式(30-2))を、光沢のある無色の結晶として得た。収量は99.93g、収率は72%であった。
Figure JPOXMLDOC01-appb-C000030
<Synthesis Example 1-2>
2,5-Dichlorobenzenesulfonyl chloride (114.65 g, 467 mmol) was added to a solution of neopentyl alcohol (45.30 g, 514 mmol) in pyridine (300 mL) over 15 minutes with little stirring. During this time, the reaction temperature was kept at 18-20 ° C. The reaction mixture was stirred for an additional 30 minutes with cooling, then ice-cold 10% HCl (1600 mL) was added. Insoluble components in water were extracted with 700 mL of ethyl acetate, washed twice with 1N HCl (700 mL each), twice with 5% NaHCO 3 (700 mL each) and dried over MgSO 4 . The solvent was removed using a rotary dryer and the residue was recrystallized from 500 mL methanol. As a result, pure (purity exceeding 99% by 1H-NMR) neopentyl 2,5-dichlorobenzenesulfonate (formula (30-2)) was obtained as glossy colorless crystals. The yield was 99.93 g, and the yield was 72%.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 <ホスホン酸基を有する構造単位の由来となる化合物Bの合成例>
 <合成例2-1>
 撹拌羽根、温度計、窒素導入管を取り付けた2Lの3口フラスコに1,4-ジクロロベンゼン134.0g(0.91mol)、3-ブロモベンゾイルクロライド100.0g(0.46mol)、塩化アルミニウム121.5g(0.91mol)を取り、135℃で4時間撹拌した。反応終了後、氷水に滴下し、トルエンから抽出を行った。1%炭酸水素ナトリウム水溶液により中和した後、飽和食塩水で洗浄し、濃縮を行った。ヘキサンから再結晶を行うことにより、下記式(30-3)を得た。収量96.1gであった。
<Synthesis example of compound B derived from structural unit having phosphonic acid group>
<Synthesis Example 2-1>
In a 2 L three-necked flask equipped with a stirring blade, a thermometer, and a nitrogen introduction tube, 134.0 g (0.91 mol) of 1,4-dichlorobenzene, 100.0 g (0.46 mol) of 3-bromobenzoyl chloride, 121 aluminum chloride 121 0.5 g (0.91 mol) was taken and stirred at 135 ° C. for 4 hours. After completion of the reaction, the reaction solution was dropped into ice water and extracted from toluene. The mixture was neutralized with 1% aqueous sodium hydrogen carbonate solution, washed with saturated brine, and concentrated. The following formula (30-3) was obtained by recrystallization from hexane. The yield was 96.1 g.
 撹拌羽根、温度計、窒素導入管を取り付けた1Lの3口フラスコに(30-3)33.0g(0.1mol)、2-ヒドロキシ-1,3,2-ジオキサフォスフォリナン13.43g(0.11mol)、テトラキス(トリフェニルホスフィノ)パラジウム5.78g(5mmol)、トリエチルアミン11.13g(0.11mol)を取り、80℃で3時間撹拌した。反応終了後、析出した塩をろ過で取除き溶媒を濃縮した。トルエンから再結晶で精製を行い、下記式(30-4)を得た。収量20.4gであった。 (30-3) 33.0 g (0.1 mol), 2-hydroxy-1,3,2-dioxaphosphorinane 13.43 g in a 1 L three-necked flask equipped with a stirring blade, thermometer, and nitrogen inlet tube (0.11 mol), 5.78 g (5 mmol) of tetrakis (triphenylphosphino) palladium and 11.13 g (0.11 mol) of triethylamine were taken and stirred at 80 ° C. for 3 hours. After completion of the reaction, the precipitated salt was removed by filtration, and the solvent was concentrated. Purification by recrystallization from toluene gave the following formula (30-4). Yield 20.4g.
Figure JPOXMLDOC01-appb-C000032
 <合成例2-2>
Figure JPOXMLDOC01-appb-C000032
<Synthesis Example 2-2>
Figure JPOXMLDOC01-appb-C000033
 撹拌羽根、温度計、窒素導入管を取り付けた1Lの4口フラスコに、3,5-ジクロロアニリン32.4g(0.2mol)を取り、濃塩酸125mL、水125mLに分散させ、-10℃に冷却した。亜硝酸ナトリウム13.8g(0.2mol)を水80mLに溶解させた水溶液を-5℃以下を保ちながら滴下した。滴下終了後、-5℃以下で30分間撹拌を続け、ヨウ化ナトリウム60g(0.4mol)を水100mLに溶解させた水溶液に0℃で滴下した。気体の発生が止まった後、反応溶液に水を加えて希釈した。亜硫酸ナトリウムを遊離ヨウ素による濃い着色が消えるまで加えた。水蒸気蒸留、エタノールから再結晶で精製を行い、目的物である1-ヨード-3,5-ジクロロベンゼンの無色結晶29.5gを得た。
Figure JPOXMLDOC01-appb-C000033
Take 32.4 g (0.2 mol) of 3,5-dichloroaniline in a 1 L four-necked flask equipped with a stirring blade, thermometer, and nitrogen inlet tube, and disperse in 125 mL of concentrated hydrochloric acid and 125 mL of water. Cooled down. An aqueous solution in which 13.8 g (0.2 mol) of sodium nitrite was dissolved in 80 mL of water was dropped while maintaining the temperature at −5 ° C. or lower. After completion of the dropping, stirring was continued at −5 ° C. or lower for 30 minutes, and then dropwise added at 0 ° C. to an aqueous solution in which 60 g (0.4 mol) of sodium iodide was dissolved in 100 mL of water. After gas evolution ceased, the reaction solution was diluted with water. Sodium sulfite was added until the dark coloration due to free iodine disappeared. Purification by steam distillation and recrystallization from ethanol gave 29.5 g of colorless crystals of 1-iodo-3,5-dichlorobenzene, which was the target product.
 文献1:Adv. Mater. 2007, 19, 3317-3321. 撹拌羽根、温度計、窒素導入管を取り付けた500mLの3口フラスコに、上記で得られた1-ヨード-3,5-ジクロロベンゼン27.29g(0.10mol)、2-ヒドロキシ-1,3,2-ジオキサフォスフォリナン13.43g(0.11mol)、テトラキス(トリフェニルホスフィノ)パラジウム5.78g(5mmol)、トリエチルアミン11.13g(0.11mol)、トルエン150mLを取り、80℃で5時間撹拌した。反応終了後、析出した塩をろ過で取除き溶媒を濃縮した。トルエンから再結晶で精製を行い、目的物である上記式(30-5)で表される化合物を得た。収量は20.3gであった。 Reference 1: Adv. Mater. 2007, 19, 3317-3321. In a 500 mL three-necked flask equipped with a stirring blade, a thermometer, and a nitrogen introduction tube, 27.29 g (0.10 mol) of 1-iodo-3,5-dichlorobenzene obtained above, 2-hydroxy-1,3 , 2-dioxaphosphorinane 13.43 g (0.11 mol), tetrakis (triphenylphosphino) palladium 5.78 g (5 mmol), triethylamine 11.13 g (0.11 mol), toluene 150 mL were taken at 80 ° C. Stir for 5 hours. After completion of the reaction, the precipitated salt was removed by filtration, and the solvent was concentrated. Purification was carried out by recrystallization from toluene to obtain the compound represented by the above formula (30-5) as the target product. The yield was 20.3g.
 <合成例2-3> <Synthesis example 2-3>
Figure JPOXMLDOC01-appb-C000034
 撹拌羽根、温度計、窒素導入管を取り付けた500mLの3口フラスコに、1-ブロモ-2,5-ジクロロベンゼン22.59g(0.10mol)、2-ヒドロキシ-1,3,2-ジオキサフォスフォリナン13.43g(0.11mol)、テトラキス(トリフェニルホスフィノ)パラジウム5.78g(5mmol)、トリエチルアミン11.13g(0.11mol)、トルエン150mLを取り、80℃で5時間撹拌した。反応終了後、析出した塩をろ過で取除き溶媒を濃縮した。トルエンから再結晶で精製を行い、目的物である上記式(30-6)で表される化合物を得た。収量は19.2gであった。
Figure JPOXMLDOC01-appb-C000034
In a 500 mL three-necked flask equipped with a stirring blade, a thermometer, and a nitrogen inlet tube, 22.59 g (0.10 mol) of 1-bromo-2,5-dichlorobenzene, 2-hydroxy-1,3,2-dioxa Phosphorinan (13.43 g, 0.11 mol), tetrakis (triphenylphosphino) palladium (5.78 g, 5 mmol), triethylamine (11.13 g, 0.11 mol), and toluene (150 mL) were taken and stirred at 80 ° C. for 5 hours. After completion of the reaction, the precipitated salt was removed by filtration, and the solvent was concentrated. Purification was performed by recrystallization from toluene to obtain a compound represented by the above formula (30-6), which was the target product. The yield was 19.2g.
 <芳香族構造を有する構造単位の由来となる化合物Cの合成>
 <合成例3-1>
 攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、2,6-ジクロロベンゾニトリル154.8g(0.9mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン269.0g(0.8mol)、炭酸カリウム143.7g(1.04mol)をはかりとった。窒素置換後、スルホラン1020mL、トルエン510mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を200℃に上げ、3時間攪拌を続けた後、2,6-ジクロロベンゾニトリル51.6g(0.3mol)を加え、さらに5時間反応させた。
<Synthesis of Compound C Derived from Structural Unit Having Aromatic Structure>
<Synthesis Example 3-1>
To a 1 L three-necked flask equipped with a stirrer, thermometer, Dean-stark tube, nitrogen inlet tube, and condenser tube, 154.8 g (0.9 mol) of 2,6-dichlorobenzonitrile and 2,2-bis (4-hydroxy) were added. Phenyl) -1,1,1,3,3,3-hexafluoropropane (269.0 g, 0.8 mol) and potassium carbonate (143.7 g, 1.04 mol) were weighed. After substitution with nitrogen, 1020 mL of sulfolane and 510 mL of toluene were added and stirred. The reaction solution was heated to reflux at 150 ° C. in an oil bath. Water produced by the reaction was trapped in a Dean-stark tube. After 3 hours, when almost no water was observed, toluene was removed from the Dean-stark tube out of the system. The reaction temperature was gradually raised to 200 ° C. and stirring was continued for 3 hours. Then, 51.6 g (0.3 mol) of 2,6-dichlorobenzonitrile was added, and the reaction was further continued for 5 hours.
 反応液を放冷後、トルエン250mLを加えて希釈した。反応液に不溶の無機塩を濾過し、濾液をメタノール8Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥後、テトラヒドロフラン500mLに溶解し、これをメタノール5Lに注いで再沈殿させた。沈殿した白色粉末を濾過、乾燥し、目的物258gを得た。GPCで測定したMnは8,200であった。得られた化合物は式(40-1)で表されるオリゴマーであることを確認した。式(40-1)中、uは、18.4である(なお、uは、数平均分子量(Mn)から算出した平均値である。) The reaction solution was allowed to cool and then diluted by adding 250 mL of toluene. Inorganic salts insoluble in the reaction solution were filtered, and the filtrate was poured into 8 L of methanol to precipitate the product. The precipitated product was filtered and dried, then dissolved in 500 mL of tetrahydrofuran, and poured into 5 L of methanol for reprecipitation. The precipitated white powder was filtered and dried to obtain 258 g of the desired product. Mn measured by GPC was 8,200. It was confirmed that the obtained compound was an oligomer represented by formula (40-1). In formula (40-1), u is 18.4 (where u is an average value calculated from the number average molecular weight (Mn)).
Figure JPOXMLDOC01-appb-C000035
 <合成例3-2>
 攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、2,6-ジクロロベンゾニトリル90.1g(0.52mol)、2,5-ジ-tert-ブチルハイドロキノン26.6g(0.12mol)、2-tert-ブチルハイドロキノン59.4g(0.36mol)、炭酸カリウム85.6g(0.62mol)をはかりとった。窒素置換後、スルホラン600mL、トルエン300mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を180から190℃に上げ、3時間攪拌を続けた後、2,6-ジクロロベンゾニトリル24.6g(0.14mol)を加え、さらに5時間反応させた。
Figure JPOXMLDOC01-appb-C000035
<Synthesis Example 3-2>
To a 1 L three-necked flask equipped with a stirrer, thermometer, Dean-stark tube, nitrogen introduction tube, and condenser tube, 90.1 g (0.52 mol) of 2,6-dichlorobenzonitrile and 2,5-di-tert-butyl Weighed 26.6 g (0.12 mol) of hydroquinone, 59.4 g (0.36 mol) of 2-tert-butylhydroquinone, and 85.6 g (0.62 mol) of potassium carbonate. After substitution with nitrogen, 600 mL of sulfolane and 300 mL of toluene were added and stirred. The reaction solution was heated to reflux at 150 ° C. in an oil bath. Water produced by the reaction was trapped in a Dean-stark tube. After 3 hours, when almost no water was observed, toluene was removed from the Dean-stark tube out of the system. The reaction temperature was gradually raised from 180 to 190 ° C., and stirring was continued for 3 hours. Then, 24.6 g (0.14 mol) of 2,6-dichlorobenzonitrile was added, and the reaction was further continued for 5 hours.
 反応液を放冷後、メタノール/4wt%(5/1(体積比))硫酸溶液2401mL中に凝固した。沈殿した生成物を濾過し、水2401mL中、55℃で1時間攪拌した。濾過後、再度水2401mL中、55℃で1時間攪拌した。濾過後、メタノール2401mL中、55℃で1時間攪拌した後、濾過し、再度メタノール2401mL中、55℃で1時間攪拌し濾過した。風乾後、80℃で真空乾燥し目的物125g(収率90%)を得た。
 GPCで測定したMnは7,000であった。得られた化合物は式(40-2)で表されるオリゴマーであることを確認した。式(40-2)中、qは6.1、rは18.3である(なお、qおよびrは、数平均分子量(Mn)から算出した平均値である。)
The reaction solution was allowed to cool and then coagulated in 2401 mL of a methanol / 4 wt% (5/1 (volume ratio)) sulfuric acid solution. The precipitated product was filtered and stirred in 2401 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was again stirred in 2401 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was stirred in methanol (2401 mL) at 55 ° C. for 1 hour, filtered, and again stirred in methanol (2401 mL) at 55 ° C. for 1 hour and filtered. After air drying, it was vacuum-dried at 80 ° C. to obtain 125 g (yield 90%) of the desired product.
Mn measured by GPC was 7,000. It was confirmed that the obtained compound was an oligomer represented by formula (40-2). In formula (40-2), q is 6.1 and r is 18.3 (where q and r are average values calculated from the number average molecular weight (Mn)).
Figure JPOXMLDOC01-appb-C000036
 <合成例3-3>
 2,5-ジ-tert-ブチルハイドロキノン26.6g(0.12mol)、2-tert-ブチルハイドロキノン59.4g(0.36mol)を、2,5-ジ-tert-ブチルハイドロキノン26.6g(0.12mol)、2-tert-ブチルハイドロキノン47.5g(0.29mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン24.0g(0.07mol)へ変更した以外は、 <合成例3-2>と同様にして下記(40-3)で表されるオリゴマーを得た。GPCで測定したMnは7,200であった。式(40-3)中、sは5.8、tは14.0、uは3.4である(なお、s、tおよびuは、数平均分子量(Mn)から算出した平均値である。)
Figure JPOXMLDOC01-appb-C000036
<Synthesis Example 3-3>
2,6.6 g (0.12 mol) of 2,5-di-tert-butylhydroquinone, 59.4 g (0.36 mol) of 2-tert-butylhydroquinone, 26.6 g (0,0) of 2,5-di-tert-butylhydroquinone (0 .12 mol), 47.5 g (0.29 mol) of 2-tert-butylhydroquinone, 24.0 g of 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane ( Except for the change to 0.07 mol), an oligomer represented by the following (40-3) was obtained in the same manner as in Synthesis Example 3-2. The Mn measured by GPC was 7,200. In formula (40-3), s is 5.8, t is 14.0, u is 3.4 (where s, t, and u are average values calculated from the number average molecular weight (Mn)). .)
Figure JPOXMLDOC01-appb-C000037
 <合成例3-4>
 攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、ビス(4-クロロフェニル)スルホン149.3g(0.52mol)、ビス(4-ヒドロキシフェニル)スルホン120.1g(0.48mol)、炭酸カリウム85.6g(0.62mol)をはかりとった。窒素置換後、スルホラン700mL、トルエン350mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を180から190℃に上げ、3時間攪拌を続けた後、ビス(4-クロロフェニル)スルホン40.2g(0.14mol)を加え、さらに5時間反応させた。
Figure JPOXMLDOC01-appb-C000037
<Synthesis Example 3-4>
Into a 1 L three-necked flask equipped with a stirrer, thermometer, Dean-stark tube, nitrogen introduction tube, and cooling tube, 149.3 g (0.52 mol) of bis (4-chlorophenyl) sulfone, bis (4-hydroxyphenyl) sulfone 120 0.1 g (0.48 mol) and potassium carbonate 85.6 g (0.62 mol) were weighed. After substitution with nitrogen, 700 mL of sulfolane and 350 mL of toluene were added and stirred. The reaction solution was heated to reflux at 150 ° C. in an oil bath. Water produced by the reaction was trapped in a Dean-stark tube. After 3 hours, when almost no water was observed, toluene was removed from the Dean-stark tube out of the system. The reaction temperature was gradually raised from 180 to 190 ° C. and stirring was continued for 3 hours. Then, 40.2 g (0.14 mol) of bis (4-chlorophenyl) sulfone was added, and the reaction was further continued for 5 hours.
 反応液を放冷後、メタノール/4wt%(5/1(体積比))硫酸溶液2400mL中に凝固した。沈殿した生成物を濾過し、水2400mL中、55℃で1時間攪拌した。濾過後、再度水2400mL中、55℃で1時間攪拌した。濾過後、メタノール2401mL中、55℃で1時間攪拌した後、濾過し、再度メタノール2400mL中、55℃で1時間攪拌し濾過した。風乾後、80℃で真空乾燥し目的物187.6g(収率80%)を得た。GPCで測定したMnは8,500であった。得られた化合物は式(40-4)で表されるオリゴマーであることを確認した。式(40-4)中、uは、35.5である(なお、uは、数平均分子量(Mn)から算出した平均値である。) The reaction solution was allowed to cool and then coagulated in 2400 mL of a methanol / 4 wt% (5/1 (volume ratio)) sulfuric acid solution. The precipitated product was filtered and stirred in 2400 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was again stirred in 2400 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was stirred in methanol (2401 mL) at 55 ° C. for 1 hour, filtered, and again stirred in methanol (2400 mL) at 55 ° C. for 1 hour and filtered. After air drying, it was vacuum dried at 80 ° C. to obtain 187.6 g (yield 80%) of the target product. The Mn measured by GPC was 8,500. It was confirmed that the obtained compound was an oligomer represented by formula (40-4). In formula (40-4), u is 35.5 (where u is an average value calculated from the number average molecular weight (Mn)).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 [実施例1]
 上記(30-1)で表される化合物28.18g(94.8mmol)と、上記(30-4)で表される化合物1.09g(2.93mmol)と、上記(40-1)で表される化合物18.45g(2.25mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.96g(3.0mmol)、トリフェニルホスフィン2.36g(9.0mmol)、亜鉛11.77g(180mmol)の混合物中に乾燥したジメチルアセトアミド(DMAc)160mLを窒素下で加えた。
[Example 1]
28.18 g (94.8 mmol) of the compound represented by (30-1) above, 1.09 g (2.93 mmol) of the compound represented by (30-4) above, and (40-1) above Of 18.45 g (2.25 mmol) of the compound to be obtained, 1.96 g (3.0 mmol) of bis (triphenylphosphine) nickel dichloride, 2.36 g (9.0 mmol) of triphenylphosphine, 11.77 g (180 mmol) of zinc 160 mL of dry dimethylacetamide (DMAc) was added under nitrogen.
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc 330mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。 The reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction. The polymerization reaction solution was diluted with 330 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
 濾液に臭化リチウム39.4g(453.1mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、水4.3Lに注ぎ、凝固した。凝固物をアセトンに浸漬し、濾過し洗浄した。洗浄物を1N硫酸6500gで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。得られたポリマーは、下記一般式(50-1)であった。式(50-1)中、x、y、zはそれぞれ組成比を示し、xは94.8モル%、yは2.9モル%、zは2.3モル%であり、uは18.4である。 39.4 g (453.1 mmol) of lithium bromide was added to the filtrate, and the mixture was reacted at an internal temperature of 120 ° C. for 7 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4.3 L of water and solidified. The coagulum was immersed in acetone, filtered and washed. The washed product was washed while being stirred with 6500 g of 1N sulfuric acid. After filtration, the product was washed with ion exchanged water until the pH of the washing solution became 5 or higher. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1. The obtained polymer was represented by the following general formula (50-1). In formula (50-1), x, y, and z each represent a composition ratio, x is 94.8 mol%, y is 2.9 mol%, z is 2.3 mol%, and u is 18. 4.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 [実施例2]
 上記(30-1)で表される化合物28.18g(94.8mmol)を27.31g(91.9mmol)、上記(30-4)で表される化合物1.09g(2.93mmol)を2.18g(5.87mmol)、臭化リチウム39.4g(453.1mmol)を40.5g(466.3mmol)へ変更した以外は、実施例1と同様にして下記一般式(50-2)を得た。式(50-2)中、x、y、zはそれぞれ組成比を示し、xは91.9モル%、yは5.9モル%、zは2.3モル%であり、uは18.4である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 2]
27.31 g (91.9 mmol) of the compound represented by the above (30-1) is 27.31 g (91.9 mmol), and 1.09 g (2.93 mmol) of the compound represented by the above (30-4) is 2 The following general formula (50-2) was changed in the same manner as in Example 1 except that .18 g (5.87 mmol) and lithium bromide 39.4 g (453.1 mmol) were changed to 40.5 g (466.3 mmol). Obtained. In formula (50-2), x, y, and z each represent a composition ratio, x is 91.9 mol%, y is 5.9 mol%, z is 2.3 mol%, and u is 18. 4. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 [実施例3]
 上記(30-1)で表される化合物28.18g(94.8mmol)を28.08g(94.5mmol)、上記(30-4)で表される化合物1.09g(2.93mmol)を1.08g(2.92mmol)、上記(40-1)で表される化合物18.45g(2.25mmol)を上記(40-2)で表される化合物18.20g(2.60mmol)、臭化リチウム39.4g(453.1mmol)を39.2g(451.4mmol)へ変更した以外は、実施例1と同様にして下記一般式(50-3)を得た。式(50-3)中、x、y、zはそれぞれ組成比を示し、xは94.5モル%、yは2.9モル%、zは2.6モル%であり、rは18.3、qは6.1である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 3]
28.08 g (94.5 mmol) of the compound represented by the above (30-1) is 28.08 g (94.5 mmol), and 1.09 g (2.93 mmol) of the compound represented by the above (30-4) is 1 0.08 g (2.92 mmol), 18.45 g (2.25 mmol) of the compound represented by (40-1) above, 18.20 g (2.60 mmol) of the compound represented by (40-2) above, bromide The following general formula (50-3) was obtained in the same manner as in Example 1 except that 39.4 g (453.1 mmol) of lithium was changed to 39.2 g (451.4 mmol). In the formula (50-3), x, y, and z each represent a composition ratio, x is 94.5 mol%, y is 2.9 mol%, z is 2.6 mol%, and r is 18. 3, q is 6.1. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 [実施例4]
 上記(30-1)で表される化合物28.18g(94.8mmol)を28.08g(94.5mmol)、上記(30-4)で表される化合物1.09g(2.93mmol)を1.08g(2.92mmol)上記(40-1)で表される化合物18.45g(2.25mmol)を上記(40-2)で表される化合物18.72g(2.60mmol)、臭化リチウム39.4g(453.1mmol)を39.2g(451.4mmol)へ変更した以外は、実施例1と同様にして下記一般式(50-4)を得た式(50-3)中、x、y、zはそれぞれ組成比を示し、xは94.5モル%、yは2.9モル%、zは2.6モル%であり、sは5.8、tは14.0、uは3.4である。
 得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 4]
28.08 g (94.5 mmol) of the compound represented by the above (30-1) is 28.08 g (94.5 mmol), and 1.09 g (2.93 mmol) of the compound represented by the above (30-4) is 1 0.08 g (2.92 mmol) 18.45 g (2.25 mmol) of the compound represented by (40-1) above, 18.72 g (2.60 mmol) of the compound represented by (40-2) above, lithium bromide In the formula (50-3), the following general formula (50-4) was obtained in the same manner as in Example 1 except that 39.4 g (453.1 mmol) was changed to 39.2 g (451.4 mmol). , Y and z each represent a composition ratio, x is 94.5 mol%, y is 2.9 mol%, z is 2.6 mol%, s is 5.8, t is 14.0, u Is 3.4.
As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 [実施例5]
 上記(30-1)で表される化合物28.18g(94.8mmol)を上記(30-2)で表される化合物28.18g(94.8mmol)へ変更した以外は、実施例1と同様にして下記一般式(50-5)を得た。式(50-5)中、x、y、zはそれぞれ組成比を示し、xは94.8モル%、yは2.9モル%、zは2.3モル%であり、uは18.4である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 5]
The same as Example 1 except that 28.18 g (94.8 mmol) of the compound represented by the above (30-1) was changed to 28.18 g (94.8 mmol) of the compound represented by the above (30-2). The following general formula (50-5) was obtained. In the formula (50-5), x, y, and z each represent a composition ratio, x is 94.8 mol%, y is 2.9 mol%, z is 2.3 mol%, and u is 18. 4. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 [実施例6]
 上記(30-1)で表される化合物27.31g(91.9mmol)を上記(30-2)で表される化合物27.31g(91.9mmol)へ変更した以外は、実施例2と同様にして下記一般式(50-6)を得た。式(50-6)中、x、y、zはそれぞれ組成比を示し、xは91.9モル%、yは5.9モル%、zは2.3モル%であり、uは18.4である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 6]
The same as Example 2 except that 27.31 g (91.9 mmol) of the compound represented by (30-1) was changed to 27.31 g (91.9 mmol) of the compound represented by (30-2). The following general formula (50-6) was obtained. In formula (50-6), x, y, and z each represent a composition ratio, x is 91.9 mol%, y is 5.9 mol%, z is 2.3 mol%, and u is 18. 4. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 [実施例7]
 上記(30-1)で表される化合物28.08g(94.5mmol)を上記(30-2)で表される化合物28.08g(94.5mmol)へ変更した以外は、実施例3と同様にして下記一般式(50-7)を得た。式(50-7)中、x、y、zはそれぞれ組成比を示し、xは94.5モル%、yは2.9モル%、zは2.6モル%であり、rは18.3、qは6.1である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 7]
The same as Example 3 except that 28.08 g (94.5 mmol) of the compound represented by (30-1) was changed to 28.08 g (94.5 mmol) of the compound represented by (30-2). Thus, the following general formula (50-7) was obtained. In the formula (50-7), x, y, and z each represent a composition ratio, x is 94.5 mol%, y is 2.9 mol%, z is 2.6 mol%, and r is 18. 3, q is 6.1. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 [実施例8]
 上記(30-1)で表される化合物28.08g(94.5mmol)を上記(30-2)で表される化合物28.08g(94.5mmol)へ変更した以外は、実施例4と同様にして下記一般式(50-8)を得た。式(50-8)中、x、y、zはそれぞれ組成比を示し、xは94.5モル%、yは2.9モル%、zは2.6モル%であり、sは5.8、tは14.0、uは3.4である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 8]
The same as Example 4 except that 28.08 g (94.5 mmol) of the compound represented by the above (30-1) was changed to 28.08 g (94.5 mmol) of the compound represented by the above (30-2). Thus, the following general formula (50-8) was obtained. In the formula (50-8), x, y and z each represent a composition ratio, x is 94.5 mol%, y is 2.9 mol%, z is 2.6 mol%, and s is 5. 8, t is 14.0, and u is 3.4. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 [実施例9]
 上記(40-1)で表される化合物18.45g(2.25mmol)を上記(40-4)で表される化合物19.13g(2.25mmol)、へ変更した以外は、実施例1と同様にして下記一般式(50-9)を得た。式(50-9)中、x、y、zはそれぞれ組成比を示し、xは94.8モル%、yは2.9モル%、zは2.3モル%であり、uは35.5である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 9]
Except for changing 18.45 g (2.25 mmol) of the compound represented by (40-1) to 19.13 g (2.25 mmol) of the compound represented by (40-4), Example 1 and Similarly, the following general formula (50-9) was obtained. In the formula (50-9), x, y, and z each represent a composition ratio, x is 94.8 mol%, y is 2.9 mol%, z is 2.3 mol%, and u is 35. 5. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 [実施例10]
 上記(30-1)で表される化合物28.18g(94.8mmol)を上記(30-2)で表される化合物28.18g(94.8mmol)へ変更した以外は、実施例9と同様にして下記一般式(50-10)を得た。式(50-9)中、x、y、zはそれぞれ組成比を示し、xは94.8モル%、yは2.9モル%、zは2.3モル%であり、uは35.5である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 10]
The same as Example 9 except that 28.18 g (94.8 mmol) of the compound represented by the above (30-1) was changed to 28.18 g (94.8 mmol) of the compound represented by the above (30-2). The following general formula (50-10) was obtained. In the formula (50-9), x, y, and z each represent a composition ratio, x is 94.8 mol%, y is 2.9 mol%, z is 2.3 mol%, and u is 35. 5. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 <スルホン化ブロックポリマーの合成>
 [実施例11]
 上記(30-1)で表される化合物27.39g(92.15mmol)と、上記(30-5)で表される化合物1.30g(4.85mmol)、上記(40-2)で表される化合物21.00g(3.00mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.62g(4.00mmol)、トリフェニルホスフィン3.15g(12.00mmol)、亜鉛15.69g(240mmol)の混合物中に乾燥したジメチルアセトアミド(DMAc)150mLを窒素下で加えた。
<Synthesis of sulfonated block polymer>
[Example 11]
27.39 g (92.15 mmol) of the compound represented by (30-1), 1.30 g (4.85 mmol) of the compound represented by (30-5), and (40-2) In a mixture of 21.00 g (3.00 mmol) of the compound, 2.62 g (4.00 mmol) of bis (triphenylphosphine) nickel dichloride, 3.15 g (12.00 mmol) of triphenylphosphine, and 15.69 g (240 mmol) of zinc 150 mL of dried dimethylacetamide (DMAc) was added under nitrogen.
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc 240mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。 The reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction. The polymerization reaction solution was diluted with 240 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
 濾液に臭化リチウム39.81g(458mmol)を加え、内温100℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、水3.4Lに注ぎ、凝固した。凝固物をアセトンに浸漬し、濾過し洗浄した。洗浄物を1N硫酸6.0kgで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。得られたポリマーは、下記式(50-11)で表される構造を含むポリマーであった。式(50-11)中、x、y、zはそれぞれ組成比を示し、xは92.2モル%、yは4.9モル%、zは3.0モル%であり、rは18.3、qは6.1である。 To the filtrate, 39.81 g (458 mmol) of lithium bromide was added and reacted at an internal temperature of 100 ° C. for 7 hours in a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 3.4 L of water and solidified. The coagulum was immersed in acetone, filtered and washed. The washed product was washed with stirring with 6.0 kg of 1N sulfuric acid. After filtration, the product was washed with ion exchanged water until the pH of the washing solution became 5 or higher. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1. The obtained polymer was a polymer having a structure represented by the following formula (50-11). In the formula (50-11), x, y, and z each represent a composition ratio, x is 92.2 mol%, y is 4.9 mol%, z is 3.0 mol%, and r is 18. 3, q is 6.1.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 [実施例12]
 上記(30-2)で表される化合物27.53g(92.64mmol)と、上記(30-5)で表される化合物1.30g(4.88mmol)、上記(40-4)で表される化合物21.08g(2.48mmol)、臭化リチウム40.02g(461mmol)へ変更した以外は、実施例1と同様にして下記式(50-12)で表されるポリマーを得た。式(50-12)中、x、y、zはそれぞれ組成比を示し、xは92.6モル%、yは4.9モル%、zは2.5モル%であり、uは35.5である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 12]
27.53 g (92.64 mmol) of the compound represented by (30-2) above, 1.30 g (4.88 mmol) of the compound represented by (30-5) above, represented by (40-4) above A polymer represented by the following formula (50-12) was obtained in the same manner as in Example 1, except that the compound was changed to 21.08 g (2.48 mmol) and lithium bromide 40.02 g (461 mmol). In the formula (50-12), x, y and z each represent a composition ratio, x is 92.6 mol%, y is 4.9 mol%, z is 2.5 mol%, and u is 35. 5. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 [実施例13]
 上記(30-1)で表される化合物27.47g(92.44mmol)と、上記(30-6)で表される化合物1.30g(4.87mmol)、上記(40-1)で表される化合物21.06g(2.70mmol)、臭化リチウム39.93g(460mmol)へ変更した以外は、実施例1と同様にして下記式(50-13)で表されるポリマーを得た。式(50-13)中、x、y、zはそれぞれ組成比を示し、xは92.4モル%、yは4.9モル%、zは2.7モル%であり、uは18.4である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 13]
27.47 g (92.44 mmol) of the compound represented by (30-1) above, 1.30 g (4.87 mmol) of the compound represented by (30-6) above, represented by (40-1) above A polymer represented by the following formula (50-13) was obtained in the same manner as in Example 1 except that the compound was changed to 21.06 g (2.70 mmol) and lithium bromide 39.93 g (460 mmol). In the formula (50-13), x, y and z each represent a composition ratio, x is 92.4 mol%, y is 4.9 mol%, z is 2.7 mol%, and u is 18. 4. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 [実施例14]
 上記(30-2)で表される化合物27.53g(92.64mmol)と、上記(30-6)で表される化合物1.30g(4.88mmol)、上記(40-4)で表される化合物21.08g(2.48mmol)、臭化リチウム40.02g(461mmol)へ変更した以外は、実施例1と同様にして下記式(50-14)で表されるポリマーを得た。式(50-14)中、x、y、zはそれぞれ組成比を示し、xは92.6モル%、yは4.9モル%、zは2.5モル%であり、uは35.5である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 14]
27.53 g (92.64 mmol) of the compound represented by (30-2) above, 1.30 g (4.88 mmol) of the compound represented by (30-6) above, represented by (40-4) above A polymer represented by the following formula (50-14) was obtained in the same manner as in Example 1 except that the compound was changed to 21.08 g (2.48 mmol) and lithium bromide 40.02 g (461 mmol). In the formula (50-14), x, y and z each represent a composition ratio, x is 92.6 mol%, y is 4.9 mol%, z is 2.5 mol%, and u is 35. 5. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 [実施例15]
 上記(30-1)で表される化合物21.62g(72.75mmol)と、上記(30-5)で表される化合物6.48g(24.25mmol)、臭化リチウム47.39g(546mmol)へ変更した以外は、実施例11と同様にして下記式(50-15)で表されるポリマーを得た。式(50-15)中、x、y、zはそれぞれ組成比を示し、xは72.8モル%、yは24.3モル%、zは3.0モル%であり、rは18.3、qは6.1である。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
[Example 15]
21.62 g (72.75 mmol) of the compound represented by the above (30-1), 6.48 g (24.25 mmol) of the compound represented by the above (30-5), 47.39 g (546 mmol) of lithium bromide A polymer represented by the following formula (50-15) was obtained in the same manner as in Example 11 except for changing to In the formula (50-15), x, y and z each represent a composition ratio, x is 72.8 mol%, y is 24.3 mol%, z is 3.0 mol%, and r is 18. 3, q is 6.1. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 [比較例1]
 上記(30-1)で表される化合物29.05g(97.8mmol)と、上記(40-1)で表される化合物18.45g(2.25mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.96g(3.0mmol)、トリフェニルホスフィン2.36g(9.0mmol)、亜鉛11.77g(180mmol)の混合物中に乾燥したジメチルアセトアミド(DMAc)160mLを窒素下で加えた。
[Comparative Example 1]
29.05 g (97.8 mmol) of the compound represented by the above (30-1), 18.45 g (2.25 mmol) of the compound represented by the above (40-1), bis (triphenylphosphine) nickel dichloride 1 In a mixture of .96 g (3.0 mmol), triphenylphosphine 2.36 g (9.0 mmol), and zinc 11.77 g (180 mmol), 160 mL of dried dimethylacetamide (DMAc) was added under nitrogen.
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc 330mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。 The reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction. The polymerization reaction solution was diluted with 330 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
 濾液に臭化リチウム25.5g(293.3mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、水4.3Lに注ぎ、凝固した。
 凝固物をアセトンに浸漬し、濾過し洗浄した。洗浄物を1N硫酸6500gで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。得られたポリマーは、下記一般式(60-1)であった。式(60-1)中、x、zはそれぞれ組成比を示し、xは97.8モル%、zは2.3モル%であり、uは18.4である。
Lithium bromide (25.5 g, 293.3 mmol) was added to the filtrate, and the mixture was reacted at an internal temperature of 120 ° C. for 7 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4.3 L of water and solidified.
The coagulum was immersed in acetone, filtered and washed. The washed product was washed while being stirred with 6500 g of 1N sulfuric acid. After filtration, the product was washed with ion exchanged water until the pH of the washing solution became 5 or higher. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1. The obtained polymer was represented by the following general formula (60-1). In formula (60-1), x and z each represent a composition ratio, x is 97.8 mol%, z is 2.3 mol%, and u is 18.4.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 [比較例2]
 上記(30-1)で表される化合物28.95g(97.4mmol)と、上記(40-2)で表される化合物18.2g(2.6mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.96g(3.0mmol)、トリフェニルホスフィン2.36g(9.0mmol)、亜鉛11.77g(180mmol)の混合物中に乾燥したジメチルアセトアミド(DMAc)160mLを窒素下で加えた。
[Comparative Example 2]
28.95 g (97.4 mmol) of the compound represented by the above (30-1), 18.2 g (2.6 mmol) of the compound represented by the above (40-2), bis (triphenylphosphine) nickel dichloride 1 In a mixture of .96 g (3.0 mmol), triphenylphosphine 2.36 g (9.0 mmol), and zinc 11.77 g (180 mmol), 160 mL of dried dimethylacetamide (DMAc) was added under nitrogen.
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc 330mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。 The reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction. The polymerization reaction solution was diluted with 330 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
 濾液に臭化リチウム25.4g(292.2mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、水4.3Lに注ぎ、凝固した。
 凝固物をアセトンに浸漬し、濾過し洗浄した。洗浄物を1N硫酸6500gで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。得られたポリマーは、下記一般式(60-2)であった。式(60-2)中、x、zはそれぞれ組成比を示し、xは97.4モル%、zは2.6モル%であり、rは18.3、qは6.1である。
Lithium bromide (25.4 g, 292.2 mmol) was added to the filtrate, and the mixture was reacted at an internal temperature of 120 ° C. for 7 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4.3 L of water and solidified.
The coagulum was immersed in acetone, filtered and washed. The washed product was washed while being stirred with 6500 g of 1N sulfuric acid. After filtration, the product was washed with ion exchanged water until the pH of the washing solution became 5 or higher. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1. The obtained polymer was represented by the following general formula (60-2). In formula (60-2), x and z each represent a composition ratio, x is 97.4 mol%, z is 2.6 mol%, r is 18.3, and q is 6.1.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 [比較例3]
 上記(30-2)で表される化合物28.95g(97.4mmol)と、上記(40-3)で表される化合物18.7g(2.6mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.96g(3.0mmol)、トリフェニルホスフィン2.36g(9.0mmol)、亜鉛11.77g(180mmol)の混合物中に乾燥したジメチルアセトアミド(DMAc)160mLを窒素下で加えた。
[Comparative Example 3]
28.95 g (97.4 mmol) of the compound represented by (30-2) above, 18.7 g (2.6 mmol) of the compound represented by (40-3) above, bis (triphenylphosphine) nickel dichloride 1 In a mixture of .96 g (3.0 mmol), triphenylphosphine 2.36 g (9.0 mmol), and zinc 11.77 g (180 mmol), 160 mL of dried dimethylacetamide (DMAc) was added under nitrogen.
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc 330mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。 The reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction. The polymerization reaction solution was diluted with 330 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
 濾液に臭化リチウム25.4g(292.2mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、水4.3Lに注ぎ、凝固した。凝固物をアセトンに浸漬し、濾過し洗浄した。洗浄物を1N硫酸6500gで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。得られたポリマーは、下記一般式(60-3)であった。式(60-3)中、x、zはそれぞれ組成比を示し、xは97.4モル%、zは2.6モル%であり、sは5.8、tは14.0、uは3.4である。 Lithium bromide (25.4 g, 292.2 mmol) was added to the filtrate, and the mixture was reacted at an internal temperature of 120 ° C. for 7 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4.3 L of water and solidified. The coagulum was immersed in acetone, filtered and washed. The washed product was washed while being stirred with 6500 g of 1N sulfuric acid. After filtration, the product was washed with ion exchanged water until the pH of the washing solution became 5 or higher. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1. The obtained polymer was represented by the following general formula (60-3). In the formula (60-3), x and z each represent a composition ratio, x is 97.4 mol%, z is 2.6 mol%, s is 5.8, t is 14.0, u is 3.4.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 [比較例4]
 上記(30-2)で表される化合物29.05g(97.8mmol)と、上記(40-4)で表される化合物19.13g(2.3mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.96g(3.0mmol)、トリフェニルホスフィン2.36g(9.0mmol)、亜鉛11.77g(180mmol)の混合物中に乾燥したジメチルアセトアミド(DMAc)160mLを窒素下で加えた。
[Comparative Example 4]
29.05 g (97.8 mmol) of the compound represented by (30-2) above, 19.13 g (2.3 mmol) of the compound represented by (40-4) above, bis (triphenylphosphine) nickel dichloride 1 In a mixture of .96 g (3.0 mmol), triphenylphosphine 2.36 g (9.0 mmol), and zinc 11.77 g (180 mmol), 160 mL of dried dimethylacetamide (DMAc) was added under nitrogen.
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc 330mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。 The reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction. The polymerization reaction solution was diluted with 330 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
 濾液に臭化リチウム25.5g(293.3mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、水4.3Lに注ぎ、凝固した。凝固物をアセトンに浸漬し、濾過し洗浄した。洗浄物を1N硫酸6500gで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。得られたポリマーは、下記一般式(60-4)であった。式(60-3)中、x、zはそれぞれ組成比を示し、xは97.8モル%、zは2.3モル%であり、uは35.5である。 Lithium bromide (25.5 g, 293.3 mmol) was added to the filtrate, and the mixture was reacted at an internal temperature of 120 ° C. for 7 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4.3 L of water and solidified. The coagulum was immersed in acetone, filtered and washed. The washed product was washed while being stirred with 6500 g of 1N sulfuric acid. After filtration, the product was washed with ion exchanged water until the pH of the washing solution became 5 or higher. As a result of measuring the molecular weight of the obtained polymer by GPC, the ion exchange capacity is shown in Table 1. The obtained polymer was represented by the following general formula (60-4). In the formula (60-3), x and z each represent a composition ratio, x is 97.8 mol%, z is 2.3 mol%, and u is 35.5.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
 表1に示すように、特定のスルホン酸基を有する構造単位とホスホン酸基を有する構造単位とを同時に用いることにより、プロトン伝導性を損なうことなく耐ラジカル性を向上させることが出来た。
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
As shown in Table 1, radical resistance could be improved without impairing proton conductivity by simultaneously using a structural unit having a specific sulfonic acid group and a structural unit having a phosphonic acid group.

Claims (7)

  1.  下記式(1)で表される構造単位と、下記式(4)で表わされる構造単位と、を含む芳香族系共重合体。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、R1は、各々独立に、ハロゲン原子、炭素数1~20の1価の炭化水素基、または炭素数1~20の1価のハロゲン化炭化水素基であり、aは0~3の整数、kは1~4の整数を表わす。ただし、a+k≦4の整数である。なお、複数のR1は、同一であっても異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(4)中、Eは、それぞれ独立に、-CO-、-SO2-、-SO-、-CONH-、-COO-基からなる群より選ばれた少なくとも1種の構造を示し、Ar31、Ar32、Ar33は、それぞれ独立に、ベンゼン環、ナフタレン環若しくは含窒素複素環を有する2価または3価の有機基又は水素原子の一部若しくは全部がフッ素原子で置換されたこれらの有機基を示す。
     R31は、直接結合、-O(CH2p-、-O(CF2p-、-(CH2p-、-(CF2p-からなる群より選ばれた少なくとも1種の構造を示す(pは、1~12の整数を示す)。eは0~10の整数を示し、fは1~5の整数を示し、gは0~4の整数を示す。)
    An aromatic copolymer comprising a structural unit represented by the following formula (1) and a structural unit represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (1), each R 1 is independently a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a represents an integer of 0 to 3, and k represents an integer of 1 to 4. However, a + k ≦ 4, and a plurality of R 1 may be the same or different.
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (4), each E independently represents at least one structure selected from the group consisting of —CO—, —SO 2 —, —SO—, —CONH—, and —COO— groups, Ar 31 , Ar 32 , and Ar 33 are each independently a divalent or trivalent organic group having a benzene ring, a naphthalene ring or a nitrogen-containing heterocyclic ring, or a hydrogen atom partially or entirely substituted with a fluorine atom. An organic group of
    R 31 is at least one selected from the group consisting of a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p —, and — (CF 2 ) p —. (P represents an integer of 1 to 12). e represents an integer of 0 to 10, f represents an integer of 1 to 5, and g represents an integer of 0 to 4. )
  2.  上記式(1)で表される構造単位が少なくとも2個連続している、請求項1に記載の芳香族系共重合体。 The aromatic copolymer according to claim 1, wherein at least two structural units represented by the formula (1) are continuous.
  3.  芳香族系共重合体に含まれるホスホン酸基と、スルホン酸基の数比が(ホスホン酸基/(ホスホン酸基+スルホン酸基))で0.001~0.5の範囲にあることを特徴とする請求項1または2に記載の芳香族系共重合体。 The number ratio of phosphonic acid groups and sulfonic acid groups contained in the aromatic copolymer is (phosphonic acid group / (phosphonic acid group + sulfonic acid group)) in the range of 0.001 to 0.5. The aromatic copolymer according to claim 1 or 2, characterized in that:
  4.  請求項1~3のいずれか1項に記載の芳香族系共重合体からなる高分子電解質。 A polymer electrolyte comprising the aromatic copolymer according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか1項に記載の芳香族系共重合体からなる固体高分子電解質膜。 A solid polymer electrolyte membrane comprising the aromatic copolymer according to any one of claims 1 to 4.
  6.  請求項5に記載の高分子電解質膜と、該高分子電解質膜の両側に接して、触媒層とガス拡散層とを有することを特徴とする膜-電極接合体。 6. A membrane-electrode assembly comprising the polymer electrolyte membrane according to claim 5 and a catalyst layer and a gas diffusion layer in contact with both sides of the polymer electrolyte membrane.
  7.  請求項6に記載の膜-電極接合体を有する固体高分子型燃料電池。 A polymer electrolyte fuel cell comprising the membrane-electrode assembly according to claim 6.
PCT/JP2011/067525 2010-08-03 2011-07-29 Aromatic copolymer with sulfonic acid groups and uses thereof WO2012017965A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012527725A JPWO2012017965A1 (en) 2010-08-03 2011-07-29 Aromatic copolymer having sulfonic acid group and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-174898 2010-08-03
JP2010174898 2010-08-03
JP2010-292598 2010-12-28
JP2010292598 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012017965A1 true WO2012017965A1 (en) 2012-02-09

Family

ID=45559464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067525 WO2012017965A1 (en) 2010-08-03 2011-07-29 Aromatic copolymer with sulfonic acid groups and uses thereof

Country Status (2)

Country Link
JP (1) JPWO2012017965A1 (en)
WO (1) WO2012017965A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108642A (en) * 2009-10-22 2011-06-02 Jsr Corp Electrode electrolyte for polymer electrolyte fuel cell and electrode varnish using the same, electrode paste, and membrane-electrode assembly
JP2013187139A (en) * 2012-03-09 2013-09-19 Toppan Printing Co Ltd Polymer electrolyte, polymer electrolyte membrane, solid polymer fuel cell, and ionic material
CN115109231A (en) * 2022-06-29 2022-09-27 中国科学院长春应用化学研究所 Phosphine-containing self-contained microporous polymer and preparation method thereof, membrane electrode and high-temperature proton exchange membrane fuel cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011755A (en) * 1998-06-22 2000-01-14 Toyota Central Res & Dev Lab Inc High-durability solid high molecular electrolyte
JP2003327674A (en) * 2002-05-10 2003-11-19 Jsr Corp Novel phosphorus-containing aromatic dihalogeno compound, polyarylene polymer, sulfonated polyarylene polymer, their production methods, and proton conductive membrane
JP2004175997A (en) * 2002-11-28 2004-06-24 Toyota Motor Corp Phosphorus-containing polymer compound, method of its synthesis, solid polymer electrolyte composition of high durability and fuel cell
JP2006096871A (en) * 2004-09-29 2006-04-13 Jsr Corp Proton conductor composition and proton conductive composite membrane
WO2008004645A1 (en) * 2006-07-04 2008-01-10 Sumitomo Chemical Company, Limited Polymer electrolyte emulsion and use thereof
WO2009142274A1 (en) * 2008-05-21 2009-11-26 住友化学株式会社 Polymer, polyarylene block copolymer, polyelectrolyte, polyelectrolyte membrane, and fuel cell
WO2010061963A1 (en) * 2008-11-28 2010-06-03 住友化学株式会社 Polymer, polymer electrolyte, fuel cell, and process for producing polymer electrolyte membrane
WO2011049211A1 (en) * 2009-10-22 2011-04-28 Jsr株式会社 Polyarylene copolymer having, in side chain thereof, aromatic ring containing phosphonate group

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011755A (en) * 1998-06-22 2000-01-14 Toyota Central Res & Dev Lab Inc High-durability solid high molecular electrolyte
JP2003327674A (en) * 2002-05-10 2003-11-19 Jsr Corp Novel phosphorus-containing aromatic dihalogeno compound, polyarylene polymer, sulfonated polyarylene polymer, their production methods, and proton conductive membrane
JP2004175997A (en) * 2002-11-28 2004-06-24 Toyota Motor Corp Phosphorus-containing polymer compound, method of its synthesis, solid polymer electrolyte composition of high durability and fuel cell
JP2006096871A (en) * 2004-09-29 2006-04-13 Jsr Corp Proton conductor composition and proton conductive composite membrane
WO2008004645A1 (en) * 2006-07-04 2008-01-10 Sumitomo Chemical Company, Limited Polymer electrolyte emulsion and use thereof
WO2009142274A1 (en) * 2008-05-21 2009-11-26 住友化学株式会社 Polymer, polyarylene block copolymer, polyelectrolyte, polyelectrolyte membrane, and fuel cell
WO2010061963A1 (en) * 2008-11-28 2010-06-03 住友化学株式会社 Polymer, polymer electrolyte, fuel cell, and process for producing polymer electrolyte membrane
WO2011049211A1 (en) * 2009-10-22 2011-04-28 Jsr株式会社 Polyarylene copolymer having, in side chain thereof, aromatic ring containing phosphonate group

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108642A (en) * 2009-10-22 2011-06-02 Jsr Corp Electrode electrolyte for polymer electrolyte fuel cell and electrode varnish using the same, electrode paste, and membrane-electrode assembly
JP2013187139A (en) * 2012-03-09 2013-09-19 Toppan Printing Co Ltd Polymer electrolyte, polymer electrolyte membrane, solid polymer fuel cell, and ionic material
CN115109231A (en) * 2022-06-29 2022-09-27 中国科学院长春应用化学研究所 Phosphine-containing self-contained microporous polymer and preparation method thereof, membrane electrode and high-temperature proton exchange membrane fuel cell
CN115109231B (en) * 2022-06-29 2023-08-29 中国科学院长春应用化学研究所 Phosphine-containing self-microporous polymer, preparation method thereof, membrane electrode and high-temperature proton exchange membrane fuel cell

Also Published As

Publication number Publication date
JPWO2012017965A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
KR101023577B1 (en) Membrane-Electrode Conjugate and Proton Conductive Membrane for Direct Methanol Fuel Cell
JP5181004B2 (en) Polyarylene block copolymer having sulfonic acid group and use thereof
JP5028828B2 (en) Polyarylene block copolymer and use thereof
JP5854046B2 (en) Aromatic copolymer having proton conductive group and use thereof
KR20070117663A (en) Polyarylene block copolymer and use thereof
KR20100021468A (en) Novel aromatic compound, and polyarylene copolymer having nitrogen-containing heterocyclic ring containing sulfonic acid group in side chain
JP5581937B2 (en) Aromatic copolymer and its use
KR20090005215A (en) Aromatic compound having fluorene skeleton and polyarylene having sulfonic acid group
WO2011155528A1 (en) Aromatic copolymer having sulfonic acid groups, and uses thereof
WO2012017965A1 (en) Aromatic copolymer with sulfonic acid groups and uses thereof
JP4976919B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2010031231A (en) New aromatic compound and polyarylene-based copolymer having nitrogen-containing aromatic ring
JP5692226B2 (en) Polyarylene block copolymer having sulfonic acid group and use thereof
JP5266691B2 (en) Polymer, polymer electrolyte and fuel cell using the same
JP5512488B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
WO2011049211A1 (en) Polyarylene copolymer having, in side chain thereof, aromatic ring containing phosphonate group
JP2015008060A (en) Electrolytic film, film-electrode assembly, and solid polymer type fuel battery
JP5350974B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP5562129B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
WO2012017960A1 (en) Aromatic copolymer having sulfonate group, and application thereof
JP5611761B2 (en) Electrode electrolyte for polymer electrolyte fuel cell and electrode varnish, electrode paste and membrane-electrode assembly using the same
JP2006299081A (en) Polynuclear aromatic sulfonic acid derivative, sulfonated polymer, polymeric solid electrolyte and proton-conductive film
WO2013183386A1 (en) Copolymer, composition, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP5455800B2 (en) Electrode electrolyte for polymer electrolyte fuel cell and electrode varnish, electrode paste and membrane-electrode assembly using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527725

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814591

Country of ref document: EP

Kind code of ref document: A1