WO2012017943A1 - Method for producing compressed wood product - Google Patents

Method for producing compressed wood product Download PDF

Info

Publication number
WO2012017943A1
WO2012017943A1 PCT/JP2011/067450 JP2011067450W WO2012017943A1 WO 2012017943 A1 WO2012017943 A1 WO 2012017943A1 JP 2011067450 W JP2011067450 W JP 2011067450W WO 2012017943 A1 WO2012017943 A1 WO 2012017943A1
Authority
WO
WIPO (PCT)
Prior art keywords
blank material
wood
compression
compressed
mold
Prior art date
Application number
PCT/JP2011/067450
Other languages
French (fr)
Japanese (ja)
Inventor
克之 市川
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2012017943A1 publication Critical patent/WO2012017943A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M1/00Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
    • B27M1/02Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by compressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M3/00Manufacture or reconditioning of specific semi-finished or finished articles
    • B27M3/34Manufacture or reconditioning of specific semi-finished or finished articles of cases, trunks, or boxes, of wood or equivalent material which cannot satisfactorily be bent without softening ; Manufacture of cleats therefor

Definitions

  • the present invention relates to a method for manufacturing a compressed wood product in which wood is compression-molded into a predetermined shape.
  • wood a natural material
  • wood has attracted attention. Since wood has various grain patterns, individual differences occur depending on the location of the raw wood, and the individual differences are the individuality of each product. In addition, scratches and changes in color caused by long-term use may also have a unique texture and may be familiar to the user. For these reasons, wood is attracting attention as a material that can produce unique and tasty products that are not found in products using synthetic resins and light metals, and its molding technology is also making rapid progress.
  • a compression molding technique for wood a technique for improving the strength of a compression-molded product by shaping the wood in consideration of the compression direction with respect to the wood in advance and then performing compression molding (for example, patents) is known.
  • Reference 1 a blank material comprising a main plate portion and a side plate portion that rises obliquely outward from the entire periphery from the main plate portion, and the main plate portion is formed from wood for shaping with fibers extending in a straight line. High strength is obtained by shaping along the fiber direction of the wood for shaping and compressing in the direction orthogonal to the plate surface of the main plate portion and the fiber direction.
  • Patent Document 1 can give a certain degree of strength to the whole compressed wood obtained by compressing the blank material, for example, the main plate portion having a grain pattern and a predetermined distance from the entire periphery of the main plate portion.
  • the thickness direction is wood if viewed partially
  • the side plate portion parallel to the fiber direction has a problem that the main plate portion and the side plate portion whose thickness direction is orthogonal to the wood fiber direction are less resistant to loads from the thickness direction.
  • the present invention has been made in view of the above, and in a compressed wood obtained by compressing a blank material having a plate-like body or a three-dimensional shape, the thickness direction is orthogonal to the compression direction, and the thickness direction is wood fiber. It aims at providing the manufacturing method of the compressed wood product which improves the intensity
  • a compressed wood product manufacturing method manufactures a compressed wood product by compressing a blank material taken from a raw wood using a compression mold.
  • a method for producing a compressed wood product, wherein the thickness direction is substantially parallel to the fiber direction of the wood and is substantially perpendicular to the direction of movement of the compression mold when compression is performed, and the end face is opposed to the compression mold during compression It includes a shaping process for shaping a blank material having a shape different from the contact surface of the mold.
  • the blank material has a predetermined angle from the main plate portion whose thickness direction is substantially orthogonal to the fiber direction of the wood and the entire periphery of the main plate portion.
  • a side plate portion that extends, and the side plate portion has a thickness direction that is substantially parallel to the fiber direction of the wood and a direction of movement of the compression mold when compression is performed. It has the part which is substantially orthogonal.
  • the compressed wood product manufacturing method according to the present invention is characterized in that, in the above-mentioned invention, the blank material has a plate shape.
  • the method for manufacturing a compressed wood product according to the present invention is characterized in that, in the above invention, the end surface of the blank material is inclined with respect to the contact surface.
  • the method for manufacturing a compressed wood product according to the present invention is characterized in that, in the above-mentioned invention, a concave portion and / or a convex portion are formed on the end face of the blank material.
  • the method for manufacturing a compressed wood product according to the present invention is characterized in that, in the above invention, the contact surface is inclined with respect to the end surface of the blank material.
  • the compressed wood product manufacturing method according to the present invention is characterized in that, in the above invention, a concave portion and / or a convex portion are formed on the contact surface of the compression mold.
  • the thickness direction is substantially parallel to the fiber direction of the wood and is substantially perpendicular to the moving direction of the compression mold when compression is performed, and the end surface of the compression mold faces when compressed.
  • FIG. 1 is a flowchart showing an outline of a method for manufacturing a compressed wood product according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram schematically showing an outline of a shaping process of the compressed wood product manufacturing method according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view taken along line AA of the blank shown in FIG. 4 is a cross-sectional view of the blank shown in FIG. 2 taken along line BB.
  • FIG. 5 is a diagram schematically showing an outline of a compression step in the method for manufacturing a compressed wooden product according to Embodiment 1 of the present invention. 6 is a cross-sectional view taken along the line CC of FIG. FIG.
  • FIG. 7 is a diagram showing a state in which the deformation of the blank material is almost completed in the compression step of the compressed wood product manufacturing method according to Embodiment 1 of the present invention.
  • FIG. 8 is a perspective view showing the configuration of the compressed wood after the compression step of the compressed wood product manufacturing method according to Embodiment 1 of the present invention.
  • FIG. 9 is an enlarged view of a partial cross section taken along line DD of FIG.
  • FIG. 10 is an enlarged view of a partial cross section taken along line CC of the blank shown in FIG.
  • FIG. 11 is a diagram schematically showing an outline of a heat shaping process of the method for manufacturing a compressed wood product according to Embodiment 1 of the present invention.
  • FIG. 12 schematically shows a state in which a pair of heating shaping concave molds and heating shaping convex molds are clamped in the heating shaping step of the compressed wood product manufacturing method according to Embodiment 1 of the present invention.
  • FIG. FIG. 13 is a perspective view which shows the structure of the blank material after the heat shaping process of the manufacturing method of the compressed wooden product which concerns on Embodiment 1 of this invention.
  • FIG. 14 is a perspective view showing a configuration of an exterior body of a digital camera which is an application example of a compressed wood product manufactured by the compressed wood product manufacturing method according to Embodiment 1 of the present invention.
  • FIG. 15 is a perspective view showing an external configuration of a digital camera mounted by the exterior body shown in FIG. FIG.
  • FIG. 16 is an enlarged partial cross-sectional view of the side plate portion of the blank material according to the first modification of the first embodiment.
  • FIG. 17 is an enlarged partial cross-sectional view of the side plate portion of the blank material according to the second modification of the first embodiment.
  • FIG. 18 is an enlarged view of a partial cross section of a side plate portion of a blank material according to Modification 3 of Embodiment 1.
  • FIG. 19 is an enlarged partial cross-sectional view of the side plate portion of the blank material according to the fourth modification of the first embodiment.
  • FIG. 20 is an enlarged partial cross-sectional view of the side plate portion of the blank material according to the fifth modification of the first embodiment.
  • FIG. 21 is a flowchart showing an outline of a method for manufacturing a compressed wood product according to Embodiment 2 of the present invention.
  • FIG. 22 is a diagram schematically showing an outline of a shaping process of the compressed wood product manufacturing method according to Embodiment 2 of the present invention.
  • 23 is a cross-sectional view of the blank shown in FIG. 22 taken along the line EE.
  • FIG. 24 is a diagram schematically showing an outline of the compression step of the compressed wood product manufacturing method according to Embodiment 2 of the present invention.
  • 25 is a cross-sectional view taken along line FF in FIG.
  • FIG. 26 is an enlarged view of a partial cross section of the convex mold used in Embodiment 2 of the present invention.
  • FIG. 22 is a diagram schematically showing an outline of a shaping process of the compressed wood product manufacturing method according to Embodiment 2 of the present invention.
  • 23 is a cross-sectional view of the blank shown in FIG. 22 taken along the line EE.
  • FIG. 27 is a diagram showing a state in which the deformation of the blank material is almost completed in the compression step of the compressed wood product manufacturing method according to Embodiment 2 of the present invention.
  • FIG. 28 is an enlarged view of a partial cross section of the compressed wood.
  • FIG. 29 is an enlarged view of a partial cross section of the blank material before the compression step.
  • FIG. 30 is an enlarged view of a partial cross section of the concave mold and the convex mold according to the first modification of the second embodiment.
  • FIG. 31 is an enlarged view of a partial cross section of the concave mold and the convex mold according to the second modification of the second embodiment.
  • FIG. 32 is a diagram schematically showing an outline of the shaping of the compressed wood product manufacturing method according to Embodiment 3 of the present invention.
  • FIG. 33 is a cross-sectional view illustrating a blank material compressing step according to Embodiment 3.
  • FIG. 1 is a flowchart showing an outline of processing of a compressed wood product manufacturing method according to an embodiment of the present invention.
  • a blank material having a substantially bowl shape is formed from the raw wood (step S1).
  • FIG. 2 is a diagram schematically showing an outline of the shaping process.
  • a blank material 2 having a substantially bowl shape is shaped by cutting or the like from a raw wood 1 such as a solid wood in an uncompressed state.
  • the blank material 2 includes two side plates that extend in a curved manner with respect to the main plate portion 2a from a flat main plate portion 2a having a substantially rectangular surface and two long sides facing each other on the surface of the main plate portion 2a.
  • Part 2b, and two side plate parts 2c extending from each of the two short sides facing each other on the surface of main plate part 2a so as to be curved with respect to main plate part 2a.
  • the two side plate portions 2c are provided with oblique notches 2d extending from the outer surface to the end portion of the side plate portion 2c.
  • the side plate portion 2c which is a short side portion, has a thickness W1 direction orthogonal to the direction of movement of the compression mold in the compression step described later and parallel to the wood fiber direction L. It is a part of a certain blank 2.
  • the side plate portion 2c is less resistant to loads from the thickness direction than the main plate portion 2a and the side plate portion 2b due to the strength anisotropy of the wood.
  • the notch part 2d is provided in the side-plate part 2c, and the fiber direction of a timber is changed by changing the compression rate of the outer surface side and inner surface side of the side-plate part 2c by compression by a compression mold after that. It is bent.
  • the blank material 2 has a volume obtained by adding in advance a volume to be reduced by a compression process described later.
  • the wood grain G of the main board part 2a has shown the case where the grain material substantially parallel to the fiber direction of the blank material 2 is shown
  • molded by the shaping process of the part is shown.
  • the thickness direction has a portion that is orthogonal to the moving direction of the compression mold in the compression step and is parallel to the wood fiber direction L
  • a grid material may be used.
  • the shape of the blank material 2 is only an example. That is, the substantially bowl shape here includes not only bowl shapes but also shapes such as a dish shape and a box shape.
  • the shaped blank 2 is left for a predetermined time in a high-temperature and high-pressure steam atmosphere to soften the blank 2 (step S2).
  • the water vapor atmosphere has a pressure of about 0.1 to 0.6 MPa and a temperature of about 100 to 160 ° C.
  • Such a water vapor atmosphere is realized by using a pressure vessel.
  • the blank material 2 may be left softened in the pressure vessel having the water vapor atmosphere.
  • the blank material 2 may be heated and softened by microwaves. Further, the blank material 2 may be boiled and softened.
  • the softened blank 2 is compressed (step S3).
  • the blank material 2 is deformed into a substantially bowl shape different from that before the softening step by sandwiching the blank material 2 using a pair of molds in the same steam atmosphere as the softening step and applying a compressive force.
  • the blank material 2 may be subsequently compressed in the pressure vessel.
  • FIG. 5 is a diagram showing an outline of the compression process and a configuration of a main part of a mold used in the compression process.
  • 6 is a cross-sectional view taken along the line CC of FIG. As shown in FIGS. 5 and 6, the blank material 2 is sandwiched between a pair of concave mold 101 and convex mold 102, and a predetermined compression force is applied.
  • the concave mold 101 for applying a compressive force from above the blank material 2 during the compression step includes a concave portion 111 having a smooth surface that comes into contact with the projecting outer surface of the blank material 2.
  • the curvature radius of the surface of the portion that curves from the main plate portion 2a to the side plate portion 2b and facing the concave mold 101 is RO
  • the curvature radius of the surface of the concave portion 111 that contacts this surface is RA
  • the two curvature radii RO and RA satisfy the relationship RO ⁇ RA.
  • the convex mold 102 for applying a compressive force from the lower side of the blank material 2 during the compression step includes a convex portion 121 having a smooth surface that comes into contact with the concave inner surface of the blank material 2.
  • RI be the curvature radius of the surface of the portion that curves from the main plate portion 2a to the side plate portion 2b and face the convex mold 102
  • RB be the curvature radius of the surface of the convex portion 121 that contacts this surface.
  • the two radii of curvature RI and RB satisfy the relationship RI ⁇ RB.
  • FIG. 7 is a view showing a state in which the blank material 2 is sandwiched between the concave mold 101 and the convex mold 102 and a predetermined pressure is applied in the compression step, and the deformation of the blank material 2 is almost completed.
  • FIG. 7 In the state shown in FIG. 7, the blank 2 is deformed into a substantially bowl shape different from that before the softening step by receiving a compressive force from the concave mold 101 and the convex mold 102.
  • the substantially bowl shape here is a shape corresponding to a gap formed by the concave portion 111 and the convex portion 121 in a state where the concave die 101 and the convex die 102 are closest to each other.
  • the shape of the contact portion 122 of the gap formed by the concave portion 111 and the convex portion 121 with the end surface of the side plate portion 2c is horizontal, and is different from the shape of the end surface including the notch portion 2d of the side plate portion 2c.
  • the thickness of the side plate portion 2c is determined by compressing the blank 2 with the concave die 101 and the convex die 102, with the shape of the end face of the side plate portion 2c being different from the shape of the contact portion 122 of the convex die 102. Resistance to a load from the vertical direction can be improved.
  • the surface of the convex part 121 of the convex mold 102 reaches after the shape of the compressed wooden product to be formed by the compressed wooden product manufacturing method according to the present embodiment, that is, the heating shaping step (step S6) described later. It has the same shape as the power shape (hereinafter referred to as “final shape”). Therefore, in the blank 2 after the compression process, the shape of the inner surface that forms a concave shape facing the convex portion 121 is substantially equal to the final shape. On the other hand, the surface area of the concave portion 111 of the concave mold 101 is larger than the surface area of the substantially bowl-shaped outer surface in the final shape.
  • the compressed wood is sandwiched between the concave mold 101 and the convex mold 102 and held in a predetermined three-dimensional shape.
  • the shape of the compressed wood is fixed by forming a steam atmosphere at a higher temperature and pressure than the steam atmosphere described above around the concave mold 101 and the convex mold 102 (step S4).
  • the water vapor atmosphere at this time has a pressure of about 0.6 to 3.4 MPa and a temperature of about 160 to 240 ° C., and is determined to be higher in temperature and pressure than the water vapor atmosphere in the compression step.
  • the pressure in the vessel in the softening step may be set to a value included in the above-described range.
  • step S5 the drying of the blank material 2 may be promoted by separating the concave mold 101 and the convex mold 102.
  • FIG. 8 is a perspective view showing a configuration of compressed wood after the drying step (hereinafter, the compressed wood after the drying step is referred to as “compressed wood 3”).
  • the compressed wood 3 has a main plate portion 3a and side plate portions 3b, 3c corresponding to the main plate portion 2a and the side plate portions 2b, 2c of the blank material 2, respectively.
  • the end surface of the side plate portion 3c of the compressed wood 3 is compressed into a horizontal shape similar to the contact portion 122 of the mold by a compression process using the compression mold (the concave mold 101 and the convex mold 102). Is done.
  • FIG. 9 is an enlarged view of a partial cross section taken along line DD of the compressed wood 3 in FIG.
  • FIG. 10 is an enlarged view of a partial cross section taken along line CC of the blank 2 shown in FIG.
  • the height of the side plate portion 3c of the compressed wood 3 is compressed from h1 to h3 and the thickness of the side plate portion 3c is compressed from W1 to W3 by compression of the blank material 2 or the like. Yes.
  • the outer surface of the side plate portion 2c has a smaller compressibility than the inner surface by the height h2 of the notch portion 2d.
  • the fiber arrangement of the wood that was substantially parallel in the side plate portion 2c of the blank material 2 before compression is shorter than that of the outer side surface in the side plate portion 3c of the compressed wood 3. So as to be compressed (fiber direction goes up to the right). Bending the fiber direction of the wood from parallel improves resistance to the load from the thickness direction of the side plate portion 3c.
  • the shape of the inner side surface in the substantially bowl shape of the compressed wood 3 is closer to the final shape than the shape of the outer side surface.
  • the thickness of the main plate portion 3a of the compressed wood 3 after the drying step is preferably about 20 to 50% of the thickness of the main plate portion 2a of the blank 2 before the compression step.
  • the compressed wood 3 may have a slight variation in thickness. Therefore, in the present embodiment, it is desirable that the minimum value of the thickness of the compressed wood 3 is set to be equal to or greater than the thickness of the final shape.
  • the compressed wood 3 is shaped into a shape substantially similar to the compressed wood 3 while being heated in the atmosphere (step S6).
  • FIG. 11 is a diagram schematically showing an outline of this heat shaping step.
  • the compressed wood 3 is shaped by sandwiching the compressed wood 3 using a pair of the heating shaping concave mold 151 and the heating shaping convex mold 152.
  • the heating shaping concave die 151 located above the compressed wood 3 includes a concave portion 161 having a smooth surface that abuts the surface of the compressed wood 3 on the protruding side.
  • the surface area of the concave portion 161 is smaller than the surface area of the concave portion 111 of the concave mold 101 shown in FIG. 4 and the like, and the shaping margin is provided almost uniformly.
  • the heating shaping convex mold 152 located below the compressed wood 3 in FIG. 11 includes a convex portion 162 having a smooth surface that comes into contact with the surface of the compressed wood 3 on the recessed side.
  • the shape of the convex part 162 is the same as the shape of the convex part 121 of the convex mold 102 shown in FIG.
  • the shape of the gap formed by the concave portion 161 and the convex portion 162 corresponds to the final shape.
  • the volume of this final shape is smaller than the volume of the compressed wood 3 by the amount reduced by the heat shaping process. It is desirable that the shape of the compressed wood 3 after the heat shaping step is the same as the final shape, but since there are individual differences in the individual compressed wood 3, there may be some errors from the final shape.
  • Heaters 153 and 154 for generating heat are provided inside the heating shaping concave mold 151 and the heating shaping convex mold 152, respectively.
  • the heaters 153 and 154 are respectively connected to a control device 155 having a temperature control function, generate heat under the control device 155, and respectively heat the heating shaping concave mold 151 and the heating shaping convex mold 152.
  • the control device 155 controls the mold temperature when the compressed wood 3 is sandwiched so as to be equal to or higher than the temperature at which the amorphous region of the wooden part is crystallized and lower than the thermal decomposition temperature of the wooden part.
  • control device 155 controls the mold temperature, so that the crystallization of the wood part proceeds during the heating shaping process, and at the same time the density of the wood part further increases, so that the surface hardness of the wood part increases. As a result, a compressed wood product having no moisture absorption and excellent shape stability can be obtained.
  • the shaping allowance is provided on the outer surface of the compressed wood 3 facing the recess 161, the tensile force acting on the outer surface of the compressed wood 3 during heat shaping can be suppressed as much as possible. Therefore, the crack of the surface of the compressed wood 3 at the time of heat shaping can be prevented.
  • FIG. 13 is a perspective view showing a configuration of a compressed wooden product 4 obtained by heating and shaping the compressed wood 3.
  • the compressed wood product 4 shown in the figure has a main plate portion 4a and side plate portions 4b and 4c corresponding to the main plate portion 3a and the side plate portions 3b and 3c of the compressed wood 3, respectively.
  • a broken line portion shown in FIG. 13 indicates an outer edge of the compressed wood 3. That is, the outer surface of the compressed wood product 4 has a smaller surface area than the outer surface of the compressed wood 3.
  • the inner surface of the compressed wood product 4 has substantially the same shape as the inner surface of the compressed wood 3.
  • FIG. 14 is a perspective view showing a configuration of an exterior body of a digital camera which is an application example of a compressed wood product manufactured by the above-described compressed wood product manufacturing method.
  • the exterior body 5 shown in the figure is an exterior body on the front side (the side facing the subject) of the digital camera, and the main plate portion 5a and the side plate corresponding to the main plate portion 4a and the side plate portions 4b and 4c of the compressed wood product 4, respectively. Parts 5b and 5c are provided.
  • the main plate portion 5a includes a cylindrical opening 51 that exposes the imaging unit of the digital camera, and a rectangular parallelepiped opening 52 that exposes the flash of the digital camera.
  • the side plate portion 5b has a semi-cylindrical cutout 53 that exposes the shutter button.
  • FIG. 15 is a perspective view showing an external configuration of a digital camera whose front side is externally covered by the external body 5.
  • a digital camera 301 shown in FIG. 1 includes an imaging unit 302, a flash 303, and a shutter button 304.
  • the front side of the digital camera 301 where the imaging unit 302 and the flash 303 are exposed is covered by the exterior body 5.
  • the back side of the digital camera 301 is packaged by an exterior body 5 ⁇ / b> A formed using the compressed wood product 4 in the same manner as the exterior body 5.
  • the wall thickness is about 1.0 to 1.6 mm. This is more preferable.
  • the strength is relatively weak
  • the thickness direction is substantially parallel to the fiber direction of the wood, and substantially perpendicular to the moving direction of the compression mold when performing compression.
  • the notch 2d is provided obliquely from the outer surface on the end surface of the side plate 2c of the blank member 2, but the shape of the notch 2d has a structure as shown in FIGS. Also good.
  • FIGS. 16 to 20 are enlarged views of a partial cross section of the side plate portion 2c of the blank 2 according to the first to fifth modifications of the first embodiment.
  • the notch 2d according to Modification 1 shown in FIG. 16 is cut obliquely from the inner surface to the end of the side plate 2c.
  • this blank material 2 is compressed by the mold shown in FIGS. 5 to 7, the fiber direction of the wood is displaced and compressed so as to rise to the left.
  • the tolerance with respect to the load from the thickness direction of a side-plate part can be improved by bending the fiber direction of wood from parallel to the left-up.
  • the notch 2d according to the modified example 2 shown in FIG. 17 is cut obliquely after cutting in the horizontal direction from the outer surface to the center of the end of the side plate 2c.
  • this blank material 2 is compressed by the mold shown in FIGS. 5 to 7, the fiber direction of the wood is compressed so that it is substantially parallel to the center portion of the outer surface and then rises to the right.
  • the tolerance with respect to the load from the thickness direction of a side-plate part can be improved by bending the fiber direction of wood to the right upward from a center part.
  • the notch 2d according to the modification 3 shown in FIG. 18 is cut obliquely after cutting in the horizontal direction from the inner surface to the center of the end of the side plate 2c.
  • the fiber direction of the wood is shifted from the inner side surface to the central portion so as to be substantially parallel and then leftward and compressed.
  • the tolerance with respect to the load from right side of a side-plate part can be improved by bending the fiber direction of wood from the center part to the left upward.
  • the notch portion 2d according to the modified example 4 shown in FIG. 19 is cut so as to form a recess in the center portion of the end surface of the side plate portion 2c.
  • this blank material 2 is compressed by the mold shown in FIGS. 5 to 7, the fiber direction of the wood is displaced and compressed so that the central portion is concave.
  • the tolerance with respect to the load from the thickness direction of a side-plate part can be improved by bending the fiber direction of wood so that a center part may become concave shape.
  • the notch 2d according to the modified example 5 shown in FIG. 20 is cut so as to form a convex portion at the center of the end face of the side plate 2c.
  • this blank material 2 is compressed by the mold shown in FIGS. 5 to 7, the fiber direction of the wood is compressed so that the central part is shifted so as to be convex.
  • the tolerance with respect to the load from the thickness direction of a side-plate part can be improved by bending the fiber direction of wood so that a center part may become convex.
  • the outer surface and the inner surface of the side plate portion are compressed by providing a notch portion on the end surface of the side plate portion of the blank material to which resistance to load from the thickness direction is to be imparted.
  • the fiber direction of the wood is bent by changing the rate, in Embodiment 2, the notch portion is not provided in the side plate portion of the blank material, but the protruding portion is in contact with the side plate portion of the compression mold.
  • FIG. 21 is a flowchart showing an outline of the processing of the compressed wood product manufacturing method according to Embodiment 2 of the present invention.
  • a blank 6 having a substantially bowl shape is formed from the raw wood 1 (step S21).
  • FIG. 22 is a diagram schematically showing an outline of the shaping process.
  • FIG. 23 is a cross-sectional view of the blank 6 shown in FIG. 22 taken along the line EE.
  • a blank material 6 having a substantially bowl shape is shaped by cutting or the like from a raw wood 1 such as a solid wood in an uncompressed state.
  • the blank material 6 has a flat main plate portion 6a having a substantially rectangular surface, and a main plate portion 6a from each of the two long sides facing each other on the surface of the main plate portion 6a.
  • Two side plate portions 6b curved and extended with respect to the main plate portion 6a, and two side plate portions 6c curved and extended with respect to the main plate portion 6a from each of the two short side portions facing each other on the surface of the main plate portion 6a, .
  • the end surface of the side plate portion 6c of the blank material 6 is different from the blank material 2 of the first embodiment in that it is cut horizontally without providing a notch.
  • the shaped blank 6 is left for a predetermined time in a high-temperature and high-pressure steam atmosphere to soften the blank 6 (step S22).
  • the softening method is performed in the same manner as in the first embodiment.
  • FIG. 24 is a diagram illustrating an outline of the compression process and a configuration of a main part of a mold used in the compression process.
  • 25 is a cross-sectional view taken along line FF in FIG.
  • the blank 6 is sandwiched between a pair of concave mold 201 and convex mold 202, and a predetermined compression force is applied.
  • a portion of the convex mold 202 that contacts the side plate portion 6c of the blank 6 is provided with a contact portion 222 that rises obliquely from the horizontal portion of the convex mold 202 toward the convex portion 221.
  • FIG. 26 is an enlarged view of a partial cross section of the convex mold 202.
  • the contact portion 222 forms a slope having a height of h4 in the direction from the horizontal portion of the convex mold 202 to the convex portion 221.
  • FIG. 27 is a diagram showing a state in which the blank material 6 is sandwiched between the concave mold 201 and the convex mold 202 and a predetermined pressure is applied in the compression process, and the deformation of the blank material 6 is almost completed.
  • the blank material 6 is deformed into a substantially bowl shape different from that before the softening step by receiving a compressive force from the concave mold 201 and the convex mold 202, and the end surface of the side plate portion 6c is convex metal.
  • the mold 202 is compressed so as to be in contact with the contact portion 222 of the mold 202. Thereby, the tolerance with respect to the load from the side of the side-plate part 6c can be improved (henceforth, the blank material 6 which complete
  • FIG. 28 is an enlarged view of a partial cross section of the compressed wood 7.
  • FIG. 29 is an enlarged view of a partial cross section of the blank 6 before the compression step.
  • the height of the side plate portion 7c of the compressed wood 7 is compressed from h5 to h6 and the thickness of the side plate portion 7c is compressed from W4 to W5 by compression of the blank material 6 or the like. Yes.
  • the compression rate of the inner side surface of the side plate portion 7c is greater than that of the outer side surface by the height h4 of the contact portion 222 of the convex mold 202.
  • the fiber direction of the wood which is substantially parallel in the side plate portion 6c of the blank material 6 before compression, is shorter than the outer side surface in the side plate portion 7c of the compressed wood 7 in the fiber array of the inner side wood. So that the wood fiber direction L rises to the right. By bending the fiber direction of the wood from parallel, resistance to a load from the thickness direction of the side plate portion 7c is improved.
  • the compressed wood 7 is sandwiched between the concave mold 201 and the convex mold 202 and kept in a predetermined three-dimensional shape.
  • the shape of the compressed wood 7 is fixed by forming it around the concave mold 201 and the convex mold 202 (step S24).
  • the water vapor atmosphere at this time is the same as in the first embodiment.
  • step S25 the compressed wood 7 that has been finished up to the cutting step is referred to as “compressed wood 8”.
  • the compressed wood 8 is heated in the atmosphere and shaped into a shape substantially similar to the compressed wood 8 (step S27).
  • the heating shaping process is performed in the same manner as in the first embodiment.
  • the portion of the blank material whose thickness direction is substantially parallel to the fiber direction of the wood and is substantially orthogonal to the moving direction of the compression mold when compression is performed.
  • the shape of the end surface of a part of the blank material is horizontally shaped, and a convex portion is formed on the compression mold surface in contact with the end surface to compress the blank material, thereby bending the fiber direction of the wood from parallel. This can improve the resistance to the load from the thickness direction for the portion of the blank material after compression.
  • a cutting step of the end face of the side plate portion of the compressed wood is provided (step S26), but the heating shaping convex mold used in the heating shaping step is provided.
  • the cutting process can be performed after the heat shaping process by providing an abutting portion formed obliquely.
  • the contact portion 222 with the end surface of the side plate portion 6c of the convex mold 202 is provided so as to rise obliquely in the direction of the convex portion 221 from the horizontal portion of the convex mold 202.
  • a structure as shown in FIGS. 30 and 31 may be adopted.
  • 30 and 31 are enlarged views of a partial cross section of the concave mold and the convex mold according to the first and second modifications of the second embodiment.
  • the contact portion 222A of the convex mold 202A according to Modification 1 shown in FIG. 30 is formed so that the center of the contact portion is convex.
  • the fiber direction of the wood is displaced and compressed so that the central portion is convex.
  • the tolerance with respect to the load from the thickness direction of a side-plate part can be improved by bending so that the center part of the fiber direction of wood may become convex.
  • the contact portion 222B of the convex mold 202B according to the modification 2 shown in FIG. 31 is formed with a convex portion in the direction of the convex portion 221B from the central portion of the contact portion.
  • the fiber direction of the wood is substantially parallel up to the center portion of the outer surface and then shifted so as to rise to the right.
  • the tolerance with respect to the load from the thickness direction of a side-plate part can be improved because the fiber direction of a wood bends rightward from a center part.
  • the end surface of the blank material side plate portion is horizontal, and by providing a convex portion at the contact portion with the end surface of the side plate portion of the compression mold, the shape of the end surface of the blank material side plate portion, The shape of the compression mold surface that comes into contact with the end surface is different, but it is not necessary to fix any one shape horizontally, the shape of the end surface of the blank material side plate portion, and the compression mold surface What is necessary is just a combination which can compress the blank part side board part after compression as a thing different from the shape of the contact part, and can bend
  • FIG. 32 is a diagram schematically showing an outline of a method of manufacturing a compressed wood product according to Embodiment 3 of the present invention.
  • the blank material 9 is a part of a flat plate portion obtained by cutting a raw wood into a ring shape.
  • the thickness W7 direction of the blank 9 is orthogonal to the moving direction of the compression mold shown in FIG. 33, and the thickness direction W7 is parallel to the wood fiber direction L.
  • FIG. 33 is a cross-sectional view for explaining the compression process of the blank 9 according to the third embodiment.
  • the blank 9 is sandwiched between a pair of concave mold 301 and convex mold 302, and is compressed by applying a predetermined compressive force from above and below between the concave mold 301 and convex mold 302.
  • the concave mold 301 for applying a compressive force from above the blank material 9 during the compression process has a concave portion having a thickness substantially the same as the thickness W7 of the flat plate portion of the blank material 9, and is in contact with the end surface of the blank material 9.
  • the contact portion 311 is formed with a concave depression.
  • the contact portion 312 that contacts the end surface of the blank material 9 is formed in a convex shape.
  • the blank 9 is sandwiched between the concave mold 301 and the convex mold 302 (FIG. 33-1), and compressed by applying a predetermined pressure to compress the blank 9 in the vertical direction. (FIG. 33-2).
  • the blank material 9 is compressed in the vertical direction by compression, and the shape of the end surface thereof is compressed so as to be a shape 9 d that contacts the contact portion 311 of the concave mold 301 and the contact portion 312 of the convex mold 302.
  • the upper end surface of the blank material 9 becomes a convex shape that comes into contact with the contact portion 311 of the concave mold 301, and the lower end surface of the blank material 9 is convex.
  • the concave shape comes into contact with the contact portion 312 of the mold 302.
  • the fiber direction of the wood which was substantially parallel in the blank material 9 before compression, is compressed with the central portion of the fiber direction of the wood shifted in a convex shape by compression.
  • resistance to a load from the thickness direction of the compressed wood obtained by compressing the blank material 9 can be improved.
  • the compressed wood which compressed the plate-shaped blank material improves the tolerance with respect to the load from a thickness direction, it is also possible to shape
  • the blank is about the portion where the thickness direction of the blank material is orthogonal to the moving direction of the compression mold and the thickness direction is parallel to the wood fiber direction.
  • the shape of the end face of the material is horizontally shaped, a convex portion is formed on the compression mold surface that comes into contact with the end face, and the fiber direction of the wood is shifted from parallel by compressing it as being different from the end face that comes into contact. This can improve the resistance to the load from the thickness direction of the compressed wood obtained by compressing the blank.
  • the concave portion and the convex portion are respectively provided in the contact portion 311 and the contact portion 312 with the end surface of the blank 9 of the compression mold, but the concave portion or the convex portion is provided only in one of them. It may be provided.
  • the contact portion of the compression mold may be horizontal, and a notch may be provided on the end surface of the blank material 9. The shape of the end surface of the blank material 9 and the shape of the contact portion of the compression mold Any combination can be used as long as the fiber direction of the compressed wood compressed as a different material and compressed from the blank 9 can be bent from parallel.
  • the thickness direction of at least one part of a blank material is orthogonal to the moving direction of a compression mold, and the said thickness direction is As long as it has a part parallel to the wood fiber direction, the blank may be L-shaped or U-shaped.
  • the present invention can include various embodiments and the like not described herein, and various design changes and the like can be made without departing from the technical idea specified by the claims. It is possible to apply.
  • the compressed wood product produced by the method for producing a compressed wood product according to the present invention is useful as an exterior body for electronic equipment, and can be particularly suitably used as an exterior body for a digital camera. Moreover, the compressed wood product manufactured by the compressed wood product manufacturing method according to the present invention can be applied to tableware, various cases, building materials, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Provided is a method for producing a compressed wood product having an increased strength at a portion of a predetermined shaped blank material where the thickness direction is orthogonal to the compressing direction, and the thickness direction is parallel with the wood fiber direction. A production method comprises a shaping step to shape the blank material from raw wood so that the thickness direction of the blank material is substantially parallel with the wood fiber direction, and is substantially orthogonal to the moving direction of a compression die at the time of compression, and an end face of the blank material has a different shape from an abutting face of the compression die which faces the end surface at the time of compression, and the compressed wood product is produced by compressing the blank material using the compression die.

Description

圧縮木製品の製造方法Compressed wood product manufacturing method
 本発明は、木材を所定の形状に圧縮成形する圧縮木製品の製造方法に関する。 The present invention relates to a method for manufacturing a compressed wood product in which wood is compression-molded into a predetermined shape.
 近年、自然素材である木材が注目されている。木材はさまざまな木目を有するため、原木から形取る箇所に応じて個体差が生じ、その個体差が製品ごとの個性となる。また、長期の使用によって生じる傷や色合いの変化自体も、独特の風合いとなって使用者に親しみを生じさせることがある。これらの理由により、合成樹脂や軽金属を用いた製品にはない、個性的で味わい深い製品を生み出すことの出来る素材として木材が注目されており、その成形技術も飛躍的に進歩しつつある。 In recent years, wood, a natural material, has attracted attention. Since wood has various grain patterns, individual differences occur depending on the location of the raw wood, and the individual differences are the individuality of each product. In addition, scratches and changes in color caused by long-term use may also have a unique texture and may be familiar to the user. For these reasons, wood is attracting attention as a material that can produce unique and tasty products that are not found in products using synthetic resins and light metals, and its molding technology is also making rapid progress.
 従来より、木材の圧縮成形技術として、木材に対する圧縮方向をあらかじめ考慮した上で木材を形取り、その後圧縮成形することにより、圧縮成形品の強度を向上する技術が知られている(例えば、特許文献1を参照)。この技術では、主板部と、該主板部からの全周縁から斜め外側方向に立ち上がる側板部とを備えるブランク材を、繊維が直線状に延在している形取用木材から前記主板部が前記形取用木材の繊維方向に沿うように形取り、前記主板部の板面および繊維方向に直交する方向に圧縮することにより高い強度を得ている。 2. Description of the Related Art Conventionally, as a compression molding technique for wood, a technique for improving the strength of a compression-molded product by shaping the wood in consideration of the compression direction with respect to the wood in advance and then performing compression molding (for example, patents) is known. Reference 1). In this technique, a blank material comprising a main plate portion and a side plate portion that rises obliquely outward from the entire periphery from the main plate portion, and the main plate portion is formed from wood for shaping with fibers extending in a straight line. High strength is obtained by shaping along the fiber direction of the wood for shaping and compressing in the direction orthogonal to the plate surface of the main plate portion and the fiber direction.
特許第4217165号公報Japanese Patent No. 4217165
 しかしながら、上記特許文献1に記載の技術では、ブランク材を圧縮した圧縮木材全体にある程度高い強度を付与することが出来るものの、例えば、板目模様の主板部と、該主板部の全周縁から所定の角度をなして延出する側板部を有する略椀形の3次元形状を有するブランク材を、主板部の板面と直交する方向から圧縮する場合、部分的に見れば、厚さ方向が木材繊維方向と平行な側板部は、主板部や厚さ方向が木材繊維方向と直交する側板部と比較して、厚さ方向からの荷重に対する耐性が弱いという問題を有している。 However, although the technique described in Patent Document 1 can give a certain degree of strength to the whole compressed wood obtained by compressing the blank material, for example, the main plate portion having a grain pattern and a predetermined distance from the entire periphery of the main plate portion. When a blank material having a substantially bowl-shaped three-dimensional shape having side plate portions extending at an angle of is compressed from a direction perpendicular to the plate surface of the main plate portion, the thickness direction is wood if viewed partially The side plate portion parallel to the fiber direction has a problem that the main plate portion and the side plate portion whose thickness direction is orthogonal to the wood fiber direction are less resistant to loads from the thickness direction.
 本発明は、上記に鑑みてなされたものであって、板状体や3次元形状を有するブランク材を圧縮した圧縮木材において、厚さ方向が圧縮方向と直交し、かつ厚さ方向が木材繊維方向と平行である部分の強度を向上する圧縮木製品の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and in a compressed wood obtained by compressing a blank material having a plate-like body or a three-dimensional shape, the thickness direction is orthogonal to the compression direction, and the thickness direction is wood fiber. It aims at providing the manufacturing method of the compressed wood product which improves the intensity | strength of the part parallel to a direction.
 上述した課題を解決し、目的を達成するために、本発明に係る圧縮木製品の製造方法は、原木から形取られたブランク材を、圧縮金型を用いて圧縮することによって圧縮木製品を製造する圧縮木製品の製造方法であって、厚さ方向が木材の繊維方向と略平行であって圧縮を行う際の前記圧縮金型の移動方向と略直交するとともに、端面が圧縮時に対向する前記圧縮金型の当接面と異なる形状をなすブランク材を形取る形取工程を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, a compressed wood product manufacturing method according to the present invention manufactures a compressed wood product by compressing a blank material taken from a raw wood using a compression mold. A method for producing a compressed wood product, wherein the thickness direction is substantially parallel to the fiber direction of the wood and is substantially perpendicular to the direction of movement of the compression mold when compression is performed, and the end face is opposed to the compression mold during compression It includes a shaping process for shaping a blank material having a shape different from the contact surface of the mold.
 また、本発明に係る圧縮木製品の製造方法は、上記発明において、前記ブランク材は、厚さ方向が前記木材の繊維方向と略直交する主板部と、該主板部の全周縁から所定の角度をなして延出する側板部と、からなる略椀状であり、前記側板部が、その厚さ方向が木材の繊維方向と略平行であって圧縮を行う際の前記圧縮金型の移動方向と略直交する部分を有することを特徴とする。 Further, in the method for manufacturing a compressed wood product according to the present invention, in the above invention, the blank material has a predetermined angle from the main plate portion whose thickness direction is substantially orthogonal to the fiber direction of the wood and the entire periphery of the main plate portion. A side plate portion that extends, and the side plate portion has a thickness direction that is substantially parallel to the fiber direction of the wood and a direction of movement of the compression mold when compression is performed. It has the part which is substantially orthogonal.
 また、本発明に係る圧縮木製品の製造方法は、上記発明において、前記ブランク材は、板状をなすことを特徴とする。 Further, the compressed wood product manufacturing method according to the present invention is characterized in that, in the above-mentioned invention, the blank material has a plate shape.
 また、本発明に係る圧縮木製品の製造方法は、上記発明において、前記ブランク材の前記端面を前記当接面に対し傾斜させることを特徴とする。 Further, the method for manufacturing a compressed wood product according to the present invention is characterized in that, in the above invention, the end surface of the blank material is inclined with respect to the contact surface.
 また、本発明に係る圧縮木製品の製造方法は、上記発明において、前記ブランク材の前記端面に、凹部および/または凸部を形成することを特徴とする。 Moreover, the method for manufacturing a compressed wood product according to the present invention is characterized in that, in the above-mentioned invention, a concave portion and / or a convex portion are formed on the end face of the blank material.
 また、本発明に係る圧縮木製品の製造方法は、上記発明において、前記当接面を前記ブランク材の前記端面に対し傾斜させることを特徴とする。 Further, the method for manufacturing a compressed wood product according to the present invention is characterized in that, in the above invention, the contact surface is inclined with respect to the end surface of the blank material.
 また、本発明に係る圧縮木製品の製造方法は、上記発明において、前記圧縮金型の前記当接面に、凹部および/または凸部を形成することを特徴とする。 Further, the compressed wood product manufacturing method according to the present invention is characterized in that, in the above invention, a concave portion and / or a convex portion are formed on the contact surface of the compression mold.
 本発明によれば、厚さ方向が木材の繊維方向と略平行であって圧縮を行う際の前記圧縮金型の移動方向と略直交するとともに、端面が圧縮時に対向する前記圧縮金型の当接面と異なる形状をなすブランク材を形取り、圧縮金型により該ブランク材を圧縮することにより、前記ブランク材を圧縮した圧縮木材の厚さ方向からの荷重に対する耐性を向上することができる。 According to the present invention, the thickness direction is substantially parallel to the fiber direction of the wood and is substantially perpendicular to the moving direction of the compression mold when compression is performed, and the end surface of the compression mold faces when compressed. By taking a blank material having a shape different from the contact surface and compressing the blank material with a compression mold, it is possible to improve resistance to a load from the thickness direction of the compressed wood in which the blank material is compressed.
図1は、本発明の実施の形態1に係る圧縮木製品の製造方法の概要を示すフローチャートである。FIG. 1 is a flowchart showing an outline of a method for manufacturing a compressed wood product according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る圧縮木製品の製造方法の形取工程の概要を模式的に示す図である。FIG. 2 is a diagram schematically showing an outline of a shaping process of the compressed wood product manufacturing method according to Embodiment 1 of the present invention. 図3は、図2に示すブランク材のA-A線断面図である。FIG. 3 is a cross-sectional view taken along line AA of the blank shown in FIG. 図4は、図2に示すブランク材のB-B線断面図である。4 is a cross-sectional view of the blank shown in FIG. 2 taken along line BB. 図5は、本発明の実施の形態1に係る圧縮木製品の製造方法の圧縮工程の概要を模式的に示す図である。FIG. 5 is a diagram schematically showing an outline of a compression step in the method for manufacturing a compressed wooden product according to Embodiment 1 of the present invention. 図6は、図5のC-C線断面図である。6 is a cross-sectional view taken along the line CC of FIG. 図7は、本発明の実施の形態1に係る圧縮木製品の製造方法の圧縮工程において、ブランク材の変形がほぼ完了した状態を示す図である。FIG. 7 is a diagram showing a state in which the deformation of the blank material is almost completed in the compression step of the compressed wood product manufacturing method according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態1に係る圧縮木製品の製造方法の圧縮工程終了後の圧縮木材の構成を示す斜視図である。FIG. 8 is a perspective view showing the configuration of the compressed wood after the compression step of the compressed wood product manufacturing method according to Embodiment 1 of the present invention. 図9は、図8のD-D線の一部断面を拡大した図である。FIG. 9 is an enlarged view of a partial cross section taken along line DD of FIG. 図10は、図5に示すブランク材のC-C線の一部断面を拡大した図である。FIG. 10 is an enlarged view of a partial cross section taken along line CC of the blank shown in FIG. 図11は、本発明の実施の形態1に係る圧縮木製品の製造方法の加熱整形工程の概要を模式的に示す図である。FIG. 11 is a diagram schematically showing an outline of a heat shaping process of the method for manufacturing a compressed wood product according to Embodiment 1 of the present invention. 図12は、本発明の実施の形態1に係る圧縮木製品の製造方法の加熱整形工程において、一対の加熱整形用凹金型と加熱整形用凸金型とを型締めした状態を模式的に示す図である。FIG. 12 schematically shows a state in which a pair of heating shaping concave molds and heating shaping convex molds are clamped in the heating shaping step of the compressed wood product manufacturing method according to Embodiment 1 of the present invention. FIG. 図13は、本発明の実施の形態1に係る圧縮木製品の製造方法の加熱整形工程後のブランク材の構成を示す斜視図である。FIG. 13: is a perspective view which shows the structure of the blank material after the heat shaping process of the manufacturing method of the compressed wooden product which concerns on Embodiment 1 of this invention. 図14は、本発明の実施の形態1に係る圧縮木製品の製造方法によって製造された圧縮木製品の適用例であるデジタルカメラの外装体の構成を示す斜視図である。FIG. 14 is a perspective view showing a configuration of an exterior body of a digital camera which is an application example of a compressed wood product manufactured by the compressed wood product manufacturing method according to Embodiment 1 of the present invention. 図15は、図14に示す外装体によって外装されるデジタルカメラの外観構成を示す斜視図である。FIG. 15 is a perspective view showing an external configuration of a digital camera mounted by the exterior body shown in FIG. 図16は、実施の形態1の変形例1に係るブランク材の側板部の一部断面を拡大した図である。FIG. 16 is an enlarged partial cross-sectional view of the side plate portion of the blank material according to the first modification of the first embodiment. 図17は、実施の形態1の変形例2に係るブランク材の側板部の一部断面を拡大した図である。FIG. 17 is an enlarged partial cross-sectional view of the side plate portion of the blank material according to the second modification of the first embodiment. 図18は、実施の形態1の変形例3に係るブランク材の側板部の一部断面を拡大した図である。FIG. 18 is an enlarged view of a partial cross section of a side plate portion of a blank material according to Modification 3 of Embodiment 1. 図19は、実施の形態1の変形例4に係るブランク材の側板部の一部断面を拡大した図である。FIG. 19 is an enlarged partial cross-sectional view of the side plate portion of the blank material according to the fourth modification of the first embodiment. 図20は、実施の形態1の変形例5に係るブランク材の側板部の一部断面を拡大した図である。FIG. 20 is an enlarged partial cross-sectional view of the side plate portion of the blank material according to the fifth modification of the first embodiment. 図21は、本発明の実施の形態2に係る圧縮木製品の製造方法の概要を示すフローチャートである。FIG. 21 is a flowchart showing an outline of a method for manufacturing a compressed wood product according to Embodiment 2 of the present invention. 図22は、本発明の実施の形態2に係る圧縮木製品の製造方法の形取工程の概要を模式的に示す図である。FIG. 22 is a diagram schematically showing an outline of a shaping process of the compressed wood product manufacturing method according to Embodiment 2 of the present invention. 図23は、図22に示すブランク材のE-E線断面図である。23 is a cross-sectional view of the blank shown in FIG. 22 taken along the line EE. 図24は、本発明の実施の形態2に係る圧縮木製品の製造方法の圧縮工程の概要を模式的に示す図である。FIG. 24 is a diagram schematically showing an outline of the compression step of the compressed wood product manufacturing method according to Embodiment 2 of the present invention. 図25は、図24のF-F線断面図である。25 is a cross-sectional view taken along line FF in FIG. 図26は、本発明の実施の形態2で使用する凸金型の一部断面を拡大した図である。FIG. 26 is an enlarged view of a partial cross section of the convex mold used in Embodiment 2 of the present invention. 図27は、本発明の実施の形態2に係る圧縮木製品の製造方法の圧縮工程において、ブランク材の変形がほぼ完了した状態を示す図である。FIG. 27 is a diagram showing a state in which the deformation of the blank material is almost completed in the compression step of the compressed wood product manufacturing method according to Embodiment 2 of the present invention. 図28は、圧縮木材の一部断面の拡大図である。FIG. 28 is an enlarged view of a partial cross section of the compressed wood. 図29は、圧縮工程前のブランク材の一部断面の拡大図である。FIG. 29 is an enlarged view of a partial cross section of the blank material before the compression step. 図30は、実施の形態2の変形例1にかかる凹金型および凸金型の一部断面を拡大した図である。FIG. 30 is an enlarged view of a partial cross section of the concave mold and the convex mold according to the first modification of the second embodiment. 図31は、実施の形態2の変形例2にかかる凹金型および凸金型の一部断面を拡大した図である。FIG. 31 is an enlarged view of a partial cross section of the concave mold and the convex mold according to the second modification of the second embodiment. 図32は、本発明の実施の形態3に係る圧縮木製品の製造方法の形取の概要を模式的に示す図である。FIG. 32 is a diagram schematically showing an outline of the shaping of the compressed wood product manufacturing method according to Embodiment 3 of the present invention. 図33は、実施の形態3に係るブランク材の圧縮工程を説明する断面図である。FIG. 33 is a cross-sectional view illustrating a blank material compressing step according to Embodiment 3.
 以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)を説明する。なお、以下の説明で参照する図面は模式的なものであって、同じ物体を異なる図面で示す場合には、寸法や縮尺等が異なる場合もある。 DETAILED DESCRIPTION Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the accompanying drawings. Note that the drawings referred to in the following description are schematic, and when the same object is shown in different drawings, dimensions, scales, and the like may be different.
(実施の形態1)
 図1は、本発明の一実施の形態に係る圧縮木製品の製造方法の処理の概要を示すフローチャートである。まず、原木から略椀状をなすブランク材を形取る(ステップS1)。図2は、形取工程の概要を模式的に示す図である。形取工程では、無圧縮状態にある無垢材などの原木1から、略椀状をなすブランク材2を切削等によって形取る。
(Embodiment 1)
FIG. 1 is a flowchart showing an outline of processing of a compressed wood product manufacturing method according to an embodiment of the present invention. First, a blank material having a substantially bowl shape is formed from the raw wood (step S1). FIG. 2 is a diagram schematically showing an outline of the shaping process. In the shaping process, a blank material 2 having a substantially bowl shape is shaped by cutting or the like from a raw wood 1 such as a solid wood in an uncompressed state.
 図3および図4に、図2に示すブランク材2のA-A線断面図およびB-B線断面図を示す。ブランク材2は、略長方形の表面を有する平板状の主板部2aと、主板部2aの表面で対向する二つの長辺部の各々から主板部2aに対して湾曲して延在する二つの側板部2bと、主板部2aの表面で対向する二つの短辺部の各々から主板部2aに対して湾曲して延在する二つの側板部2cと、を備える。図3に示すように、二つの側板部2cには、外側面から側板部2cの端部にかけて斜めの切欠き部2dが設けられている。図2~図4に示すように、短辺部である側板部2cは、その厚さW1方向が、後述する圧縮工程での圧縮金型の移動方向と直交し、木材繊維方向Lと平行であるブランク材2の部分である。側板部2cは、木材の強度異方性により、主板部2aおよび側板部2bより厚さ方向からの荷重に対する耐性が弱い。本実施の形態1では、側板部2cに切欠き部2dを設け、その後圧縮金型による圧縮により側板部2cの外側面側と内側面側の圧縮率を変更することにより、木材の繊維方向を曲げている。 3 and 4 show a cross-sectional view taken along line AA and a cross-sectional view taken along line BB of the blank 2 shown in FIG. The blank material 2 includes two side plates that extend in a curved manner with respect to the main plate portion 2a from a flat main plate portion 2a having a substantially rectangular surface and two long sides facing each other on the surface of the main plate portion 2a. Part 2b, and two side plate parts 2c extending from each of the two short sides facing each other on the surface of main plate part 2a so as to be curved with respect to main plate part 2a. As shown in FIG. 3, the two side plate portions 2c are provided with oblique notches 2d extending from the outer surface to the end portion of the side plate portion 2c. As shown in FIGS. 2 to 4, the side plate portion 2c, which is a short side portion, has a thickness W1 direction orthogonal to the direction of movement of the compression mold in the compression step described later and parallel to the wood fiber direction L. It is a part of a certain blank 2. The side plate portion 2c is less resistant to loads from the thickness direction than the main plate portion 2a and the side plate portion 2b due to the strength anisotropy of the wood. In this Embodiment 1, the notch part 2d is provided in the side-plate part 2c, and the fiber direction of a timber is changed by changing the compression rate of the outer surface side and inner surface side of the side-plate part 2c by compression by a compression mold after that. It is bent.
 ブランク材2は、後述する圧縮工程によって減少する分の容積を予め加えた容積を有する。なお、図2では、主板部2aの木目Gがブランク材2の繊維方向と略平行な板目材を形取った場合を示しているが、形取工程で形取るブランク材は、その部分の厚さ方向が、圧縮工程での圧縮金型の移動方向と直交し、木材繊維方向Lと平行である部分を有していれば、柾目材でもよい。また、ブランク材2の形状はあくまでも一例に過ぎない。すなわち、ここでいう略椀状には、椀状のほか皿状や函形状などの形状も含まれるものとする。 The blank material 2 has a volume obtained by adding in advance a volume to be reduced by a compression process described later. In addition, in FIG. 2, although the wood grain G of the main board part 2a has shown the case where the grain material substantially parallel to the fiber direction of the blank material 2 is shown, the blank material shape | molded by the shaping process of the part is shown. As long as the thickness direction has a portion that is orthogonal to the moving direction of the compression mold in the compression step and is parallel to the wood fiber direction L, a grid material may be used. Moreover, the shape of the blank material 2 is only an example. That is, the substantially bowl shape here includes not only bowl shapes but also shapes such as a dish shape and a box shape.
 次に、形取ったブランク材2を、高温高圧の水蒸気雰囲気中で所定時間放置して、ブランク材2を軟化させる(ステップS2)。この水蒸気雰囲気は、圧力が0.1~0.6MPa程度であり、温度が100~160℃程度である。このような水蒸気雰囲気は、圧力容器を用いることによって実現される。圧力容器を用いる場合には、上記水蒸気雰囲気を有する圧力容器の中にブランク材2を放置することによって軟化させればよい。なお、高温高圧の水蒸気雰囲気中でブランク材2を軟化させる代わりに、マイクロ波によってブランク材2を加熱して軟化させてもよい。またブランク材2を煮沸して軟化させてもよい。 Next, the shaped blank 2 is left for a predetermined time in a high-temperature and high-pressure steam atmosphere to soften the blank 2 (step S2). The water vapor atmosphere has a pressure of about 0.1 to 0.6 MPa and a temperature of about 100 to 160 ° C. Such a water vapor atmosphere is realized by using a pressure vessel. In the case of using a pressure vessel, the blank material 2 may be left softened in the pressure vessel having the water vapor atmosphere. Instead of softening the blank material 2 in a high-temperature and high-pressure steam atmosphere, the blank material 2 may be heated and softened by microwaves. Further, the blank material 2 may be boiled and softened.
 この後、軟化させたブランク材2を圧縮する(ステップS3)。この工程では、軟化工程と同じ水蒸気雰囲気中で一対の金型を用いてブランク材2を挟持して圧縮力を加えることにより、ブランク材2を軟化工程前とは異なる略椀状に変形させる。圧力容器の中でブランク材2を軟化させた場合には、引き続きその圧力容器の中でブランク材2を圧縮すればよい。 Thereafter, the softened blank 2 is compressed (step S3). In this step, the blank material 2 is deformed into a substantially bowl shape different from that before the softening step by sandwiching the blank material 2 using a pair of molds in the same steam atmosphere as the softening step and applying a compressive force. When the blank material 2 is softened in the pressure vessel, the blank material 2 may be subsequently compressed in the pressure vessel.
 図5は、圧縮工程の概要を示すとともに、圧縮工程で使用する金型の要部の構成を示す図である。図6は、図5のC-C線断面図である。図5および図6に示すように、ブランク材2は、一対の凹金型101、凸金型102によって挟持され、所定の圧縮力が加えられる。 FIG. 5 is a diagram showing an outline of the compression process and a configuration of a main part of a mold used in the compression process. 6 is a cross-sectional view taken along the line CC of FIG. As shown in FIGS. 5 and 6, the blank material 2 is sandwiched between a pair of concave mold 101 and convex mold 102, and a predetermined compression force is applied.
 圧縮工程の際にブランク材2の上方から圧縮力を加える凹金型101は、ブランク材2の突出している外側面に当接する平滑面を有する凹部111を備える。主板部2aから側板部2bにかけて湾曲する部分の表面であって凹金型101と対向する側の表面の曲率半径をROとし、この表面に当接する凹部111の表面の曲率半径をRAとすると、二つの曲率半径RO、RAは、RO≧RAという関係を満たす。 The concave mold 101 for applying a compressive force from above the blank material 2 during the compression step includes a concave portion 111 having a smooth surface that comes into contact with the projecting outer surface of the blank material 2. When the curvature radius of the surface of the portion that curves from the main plate portion 2a to the side plate portion 2b and facing the concave mold 101 is RO, and the curvature radius of the surface of the concave portion 111 that contacts this surface is RA, The two curvature radii RO and RA satisfy the relationship RO ≧ RA.
 一方、圧縮工程の際にブランク材2の下方から圧縮力を加える凸金型102は、ブランク材2の窪んでいる内側面に当接する平滑面を有する凸部121を備える。主板部2aから側板部2bにかけて湾曲する部分の表面であって凸金型102と対向する側の表面の曲率半径をRIとし、この表面に当接する凸部121の表面の曲率半径をRBとすると、二つの曲率半径RI、RBは、RI≧RBという関係を満たす。 On the other hand, the convex mold 102 for applying a compressive force from the lower side of the blank material 2 during the compression step includes a convex portion 121 having a smooth surface that comes into contact with the concave inner surface of the blank material 2. Let RI be the curvature radius of the surface of the portion that curves from the main plate portion 2a to the side plate portion 2b and face the convex mold 102, and let RB be the curvature radius of the surface of the convex portion 121 that contacts this surface. The two radii of curvature RI and RB satisfy the relationship RI ≧ RB.
 図7は、圧縮工程において、凹金型101および凸金型102によってブランク材2が挟持されて所定の圧力が加えられた状態を示す図であり、ブランク材2の変形がほぼ完了した状態を示す図である。図7に示す状態で、ブランク材2は、凹金型101および凸金型102から圧縮力を受けることにより、軟化工程前とは異なる略椀状に変形する。ここでいう略椀状は、凹金型101と凸金型102が最接近した状態で凹部111および凸部121が形成する隙間に相当する形状である。凹部111および凸部121が形成する隙間の側板部2cの端面との当接部分122の形状は水平であり、側板部2cの切欠き部2dを含む端面の形状と異なる。側板部2cの端面の形状と、凸金型102の当接部分122の形状とを異なるものとして、ブランク材2を凹金型101および凸金型102により圧縮することにより、側板部2cの厚さ方向からの荷重に対する耐性を向上することができる。 FIG. 7 is a view showing a state in which the blank material 2 is sandwiched between the concave mold 101 and the convex mold 102 and a predetermined pressure is applied in the compression step, and the deformation of the blank material 2 is almost completed. FIG. In the state shown in FIG. 7, the blank 2 is deformed into a substantially bowl shape different from that before the softening step by receiving a compressive force from the concave mold 101 and the convex mold 102. The substantially bowl shape here is a shape corresponding to a gap formed by the concave portion 111 and the convex portion 121 in a state where the concave die 101 and the convex die 102 are closest to each other. The shape of the contact portion 122 of the gap formed by the concave portion 111 and the convex portion 121 with the end surface of the side plate portion 2c is horizontal, and is different from the shape of the end surface including the notch portion 2d of the side plate portion 2c. The thickness of the side plate portion 2c is determined by compressing the blank 2 with the concave die 101 and the convex die 102, with the shape of the end face of the side plate portion 2c being different from the shape of the contact portion 122 of the convex die 102. Resistance to a load from the vertical direction can be improved.
 なお、凸金型102の凸部121の表面は、本実施の形態に係る圧縮木製品の製造方法によって形成されるべき圧縮木製品の形状、すなわち後述する加熱整形工程(ステップS6)の後で到達すべき形状(以下、「最終形状」という)と同じ形状をなしている。したがって、圧縮工程後のブランク材2において、凸部121と対向して凹状をなす内側面の形状は、最終形状と略等しくなる。これに対して、凹金型101の凹部111の表面積は、最終形状における略椀状の外側面の表面積よりも大きい。 In addition, the surface of the convex part 121 of the convex mold 102 reaches after the shape of the compressed wooden product to be formed by the compressed wooden product manufacturing method according to the present embodiment, that is, the heating shaping step (step S6) described later. It has the same shape as the power shape (hereinafter referred to as “final shape”). Therefore, in the blank 2 after the compression process, the shape of the inner surface that forms a concave shape facing the convex portion 121 is substantially equal to the final shape. On the other hand, the surface area of the concave portion 111 of the concave mold 101 is larger than the surface area of the substantially bowl-shaped outer surface in the final shape.
 圧縮工程が終了した後(以後、圧縮工程が終了したブランク材2を「圧縮木材」という)、凹金型101および凸金型102によって圧縮木材を挟持し、所定の三次元形状に保持したままの状態で、上述した水蒸気雰囲気よりもさらに高温高圧の水蒸気雰囲気を凹金型101および凸金型102の周囲に形成することにより、圧縮木材の形状を固定化する(ステップS4)。このときの水蒸気雰囲気は、圧力が0.6~3.4MPa程度であるとともに、温度が160~240℃程度であり、圧縮工程における水蒸気雰囲気よりも高温高圧となるように定められる。この固定化処理を圧力容器中で行う場合には、軟化工程における容器内圧力を上述した範囲に含まれる値とすればよい。 After the compression process is completed (hereinafter, the blank material 2 for which the compression process has been completed is referred to as “compressed wood”), the compressed wood is sandwiched between the concave mold 101 and the convex mold 102 and held in a predetermined three-dimensional shape. In this state, the shape of the compressed wood is fixed by forming a steam atmosphere at a higher temperature and pressure than the steam atmosphere described above around the concave mold 101 and the convex mold 102 (step S4). The water vapor atmosphere at this time has a pressure of about 0.6 to 3.4 MPa and a temperature of about 160 to 240 ° C., and is determined to be higher in temperature and pressure than the water vapor atmosphere in the compression step. When this immobilization process is performed in a pressure vessel, the pressure in the vessel in the softening step may be set to a value included in the above-described range.
 続いて、凹金型101、凸金型102、および圧縮木材を大気中へ放出し、圧縮木材を乾燥させる(ステップS5)。この際には、凹金型101と凸金型102を離間することによってブランク材2の乾燥を促進するようにしてもよい。 Subsequently, the concave mold 101, the convex mold 102, and the compressed wood are discharged into the atmosphere, and the compressed wood is dried (step S5). In this case, the drying of the blank material 2 may be promoted by separating the concave mold 101 and the convex mold 102.
 図8は、乾燥工程が終了した圧縮木材(以下、乾燥工程終了後の圧縮木材を「圧縮木材3」という)の構成を示す斜視図である。圧縮木材3は、ブランク材2の主板部2aおよび側板部2b、2cにそれぞれ対応する主板部3aおよび側板部3b、3cを有する。図8に示すように、圧縮金型(凹金型101および凸金型102)による圧縮工程により、圧縮木材3の側板部3cの端面は金型の当接部分122と同様の水平形状に圧縮される。 FIG. 8 is a perspective view showing a configuration of compressed wood after the drying step (hereinafter, the compressed wood after the drying step is referred to as “compressed wood 3”). The compressed wood 3 has a main plate portion 3a and side plate portions 3b, 3c corresponding to the main plate portion 2a and the side plate portions 2b, 2c of the blank material 2, respectively. As shown in FIG. 8, the end surface of the side plate portion 3c of the compressed wood 3 is compressed into a horizontal shape similar to the contact portion 122 of the mold by a compression process using the compression mold (the concave mold 101 and the convex mold 102). Is done.
 図9は、図8の圧縮木材3のD-D線の一部断面を拡大した図である。図10は、図5に示すブランク材2のC-C線の一部断面を拡大した図である。図9および図10に示すように、ブランク材2の圧縮等により、圧縮木材3の側板部3cの高さはh1からh3に圧縮され、側板部3cの厚さはW1からW3に圧縮されている。側板部2cの外側面は切欠き部2dの高さh2の分だけ内側面より圧縮率が小さくなる。このように、圧縮前のブランク材2の側板部2cでは略平行であった木材の繊維配列が、圧縮木材3の側板部3cでは、内側面の木材の繊維配列の間隔が外側面より短くなるようにずれて圧縮される(繊維方向が右上がり)。木材の繊維方向を平行から曲げることにより、側板部3cの厚さ方向からの荷重に対する耐性が向上する。 FIG. 9 is an enlarged view of a partial cross section taken along line DD of the compressed wood 3 in FIG. FIG. 10 is an enlarged view of a partial cross section taken along line CC of the blank 2 shown in FIG. As shown in FIGS. 9 and 10, the height of the side plate portion 3c of the compressed wood 3 is compressed from h1 to h3 and the thickness of the side plate portion 3c is compressed from W1 to W3 by compression of the blank material 2 or the like. Yes. The outer surface of the side plate portion 2c has a smaller compressibility than the inner surface by the height h2 of the notch portion 2d. Thus, the fiber arrangement of the wood that was substantially parallel in the side plate portion 2c of the blank material 2 before compression is shorter than that of the outer side surface in the side plate portion 3c of the compressed wood 3. So as to be compressed (fiber direction goes up to the right). Bending the fiber direction of the wood from parallel improves resistance to the load from the thickness direction of the side plate portion 3c.
 なお、圧縮木材3の略椀状における内側面の形状は、その外側面の形状よりも最終形状に近い。乾燥工程後の圧縮木材3の主板部3aの肉厚は、圧縮工程前のブランク材2の主板部2aの厚さの20~50%程度であるのが好ましい。ここで、圧縮木材3は、厚さに若干のバラツキを有している可能性がある。そのため、本実施の形態においては、圧縮木材3の肉厚の最小値が、最終形状の肉厚以上となるように設定されることが望ましい。 In addition, the shape of the inner side surface in the substantially bowl shape of the compressed wood 3 is closer to the final shape than the shape of the outer side surface. The thickness of the main plate portion 3a of the compressed wood 3 after the drying step is preferably about 20 to 50% of the thickness of the main plate portion 2a of the blank 2 before the compression step. Here, the compressed wood 3 may have a slight variation in thickness. Therefore, in the present embodiment, it is desirable that the minimum value of the thickness of the compressed wood 3 is set to be equal to or greater than the thickness of the final shape.
 乾燥工程の後、大気中で圧縮木材3を加熱しながら圧縮木材3と略相似する形状に整形する(ステップS6)。図11は、この加熱整形工程の概要を模式的に示す図である。加熱整形工程では、一対の加熱整形用凹金型151および加熱整形用凸金型152を用いて圧縮木材3を挟持することにより、圧縮木材3を整形する。 After the drying process, the compressed wood 3 is shaped into a shape substantially similar to the compressed wood 3 while being heated in the atmosphere (step S6). FIG. 11 is a diagram schematically showing an outline of this heat shaping step. In the heating shaping step, the compressed wood 3 is shaped by sandwiching the compressed wood 3 using a pair of the heating shaping concave mold 151 and the heating shaping convex mold 152.
 図11で圧縮木材3の上方に位置する加熱整形用凹金型151は、圧縮木材3の突出している側の表面に当接する平滑面を有する凹部161を備える。凹部161の表面積は、図4等に示す凹金型101の凹部111の表面積よりも小さく、整形代がほぼ均一に設けられている。なお、圧縮木材3の主板部3aと当接する部分の整形代を側板部3b、3cと当接する部分の整形代より多く取るようにしてもよい。このように、整形代の取り方は、圧縮木材3の形状や最終形状に応じて適宜変更することが可能である。 11, the heating shaping concave die 151 located above the compressed wood 3 includes a concave portion 161 having a smooth surface that abuts the surface of the compressed wood 3 on the protruding side. The surface area of the concave portion 161 is smaller than the surface area of the concave portion 111 of the concave mold 101 shown in FIG. 4 and the like, and the shaping margin is provided almost uniformly. In addition, you may make it take more shaping allowance of the part contact | abutted with the main board part 3a of the compressed wood 3 than the shaping allowance of the part contact | abutted with the side board parts 3b and 3c. In this way, the way of taking the shaping allowance can be appropriately changed according to the shape and final shape of the compressed wood 3.
 一方、図11で圧縮木材3の下方に位置する加熱整形用凸金型152は、圧縮木材3の窪んでいる側の表面に当接する平滑面を有する凸部162を備える。凸部162の形状は、図4等に示す凸金型102の凸部121の形状と同じである。 On the other hand, the heating shaping convex mold 152 located below the compressed wood 3 in FIG. 11 includes a convex portion 162 having a smooth surface that comes into contact with the surface of the compressed wood 3 on the recessed side. The shape of the convex part 162 is the same as the shape of the convex part 121 of the convex mold 102 shown in FIG.
 図12に示すように、加熱整形用凹金型151と加熱整形用凸金型152を型締めしたときに凹部161と凸部162によって形成される隙間の形状は最終形状に対応している。この最終形状の容積は、加熱整形工程によって減少する分だけ圧縮木材3の容積よりも小さい。この加熱整形工程後の圧縮木材3の形状は、最終形状と一致することが望ましいが、個々の圧縮木材3には個体差があるため、最終形状とは若干の誤差が生じる場合もある。 As shown in FIG. 12, when the heat shaping concave mold 151 and the heat shaping convex mold 152 are clamped, the shape of the gap formed by the concave portion 161 and the convex portion 162 corresponds to the final shape. The volume of this final shape is smaller than the volume of the compressed wood 3 by the amount reduced by the heat shaping process. It is desirable that the shape of the compressed wood 3 after the heat shaping step is the same as the final shape, but since there are individual differences in the individual compressed wood 3, there may be some errors from the final shape.
 加熱整形用凹金型151および加熱整形用凸金型152の内部には、熱を発生するヒータ153、154がそれぞれ設けられている。ヒータ153、154は、温度制御機能を有する制御装置155にそれぞれ接続されており、制御装置155のもとで発熱し、加熱整形用凹金型151および加熱整形用凸金型152にそれぞれ熱を加える。制御装置155は、圧縮木材3を挟持している時の金型温度を、木質部の非結晶領域が結晶化する温度以上であって木質部の熱分解温度以下となるように制御する。 Heaters 153 and 154 for generating heat are provided inside the heating shaping concave mold 151 and the heating shaping convex mold 152, respectively. The heaters 153 and 154 are respectively connected to a control device 155 having a temperature control function, generate heat under the control device 155, and respectively heat the heating shaping concave mold 151 and the heating shaping convex mold 152. Add. The control device 155 controls the mold temperature when the compressed wood 3 is sandwiched so as to be equal to or higher than the temperature at which the amorphous region of the wooden part is crystallized and lower than the thermal decomposition temperature of the wooden part.
 このようして、制御装置155が金型温度を制御することにより、加熱整形工程の最中に木質部の結晶化が進むと同時に木質部の密度が一段と高くなるため、木質部の表面硬度が増加する。その結果、吸湿がなく形状安定性に優れた圧縮木製品を得ることができる。 In this way, the control device 155 controls the mold temperature, so that the crystallization of the wood part proceeds during the heating shaping process, and at the same time the density of the wood part further increases, so that the surface hardness of the wood part increases. As a result, a compressed wood product having no moisture absorption and excellent shape stability can be obtained.
 また、凹部161と対向する圧縮木材3の外側表面に整形代が設けられているため、加熱整形時に圧縮木材3の外側表面に働く引っ張り力を極力抑えることができる。したがって、加熱整形時における圧縮木材3の表面の割れ等を防止することができる。 Further, since the shaping allowance is provided on the outer surface of the compressed wood 3 facing the recess 161, the tensile force acting on the outer surface of the compressed wood 3 during heat shaping can be suppressed as much as possible. Therefore, the crack of the surface of the compressed wood 3 at the time of heat shaping can be prevented.
 また、圧縮木材3の表面を大気中で加熱整形することにより、木質部の細胞壁の内部に含まれている物質が表面に抽出され、その表面に色、艶が生じる。その結果、木材ならではの独特の風合いを醸し出すことができる。 Also, by subjecting the surface of the compressed wood 3 to heat shaping in the atmosphere, substances contained in the cell wall of the woody part are extracted to the surface, and the surface is colored and glossy. As a result, a unique texture unique to wood can be created.
 図13は、圧縮木材3を加熱整形することによって得られる圧縮木製品4の構成を示す斜視図である。同図に示す圧縮木製品4は、圧縮木材3の主板部3aおよび側板部3b、3cにそれぞれ対応する主板部4aおよび側板部4b、4cを有する。図13に示す破線部は、圧縮木材3の外縁を示している。すなわち、圧縮木製品4の外側面の表面積が圧縮木材3の外側面の表面積よりも小さい形状をなす。これに対し、圧縮木製品4の内側面は、圧縮木材3の内側面とほぼ同じ形状をなす。 FIG. 13 is a perspective view showing a configuration of a compressed wooden product 4 obtained by heating and shaping the compressed wood 3. The compressed wood product 4 shown in the figure has a main plate portion 4a and side plate portions 4b and 4c corresponding to the main plate portion 3a and the side plate portions 3b and 3c of the compressed wood 3, respectively. A broken line portion shown in FIG. 13 indicates an outer edge of the compressed wood 3. That is, the outer surface of the compressed wood product 4 has a smaller surface area than the outer surface of the compressed wood 3. On the other hand, the inner surface of the compressed wood product 4 has substantially the same shape as the inner surface of the compressed wood 3.
 図14は、以上説明した圧縮木製品の製造方法によって製造された圧縮木製品の適用例であるデジタルカメラの外装体の構成を示す斜視図である。同図に示す外装体5は、デジタルカメラの前面側(被写体と対向する側)を外装するものであり、圧縮木製品4の主板部4aおよび側板部4b、4cにそれぞれ対応する主板部5aおよび側板部5b、5cを備える。主板部5aは、デジタルカメラの撮像部を表出する円筒形状の開口部51と、デジタルカメラのフラッシュを表出する直方体形状の開口部52とを有する。側板部5bは、シャッターボタンを表出する半円筒形状の切り欠き53を有する。 FIG. 14 is a perspective view showing a configuration of an exterior body of a digital camera which is an application example of a compressed wood product manufactured by the above-described compressed wood product manufacturing method. The exterior body 5 shown in the figure is an exterior body on the front side (the side facing the subject) of the digital camera, and the main plate portion 5a and the side plate corresponding to the main plate portion 4a and the side plate portions 4b and 4c of the compressed wood product 4, respectively. Parts 5b and 5c are provided. The main plate portion 5a includes a cylindrical opening 51 that exposes the imaging unit of the digital camera, and a rectangular parallelepiped opening 52 that exposes the flash of the digital camera. The side plate portion 5b has a semi-cylindrical cutout 53 that exposes the shutter button.
 図15は、外装体5によって前面側が外装されるデジタルカメラの外観構成を示す斜視図である。同図に示すデジタルカメラ301は、撮像部302と、フラッシュ303と、シャッターボタン304とを有する。撮像部302およびフラッシュ303が表出するデジタルカメラ301の前面側は、外装体5によって外装される。一方、デジタルカメラ301の背面側は、圧縮木製品4を用いて外装体5と同様に形成される外装体5Aによって外装される。このように、本実施の形態1に係る圧縮木製品の製造方法によって製造された圧縮木製品を、デジタルカメラの外装体として適用する場合には、肉厚が1.0~1.6mm程度となるようにすればより好ましい。 FIG. 15 is a perspective view showing an external configuration of a digital camera whose front side is externally covered by the external body 5. A digital camera 301 shown in FIG. 1 includes an imaging unit 302, a flash 303, and a shutter button 304. The front side of the digital camera 301 where the imaging unit 302 and the flash 303 are exposed is covered by the exterior body 5. On the other hand, the back side of the digital camera 301 is packaged by an exterior body 5 </ b> A formed using the compressed wood product 4 in the same manner as the exterior body 5. As described above, when the compressed wood product manufactured by the compressed wood product manufacturing method according to the first embodiment is applied as an exterior body of a digital camera, the wall thickness is about 1.0 to 1.6 mm. This is more preferable.
 以上説明した本発明の実施の形態1によれば、相対的に強度が弱い、厚さ方向が木材の繊維方向と略平行であって圧縮を行う際の前記圧縮金型の移動方向と略直交するブランク材の部分について、前記ブランク材の部分の端面に切欠き部を設けることで、前記圧縮金型の当接面と異なるものとして前記ブランク材を圧縮することにより、木材の繊維方向を平行からずらすことができ、これにより、圧縮後のブランク材の前記部分について厚さ方向からの荷重に対する耐性を向上することができる。 According to the first embodiment of the present invention described above, the strength is relatively weak, the thickness direction is substantially parallel to the fiber direction of the wood, and substantially perpendicular to the moving direction of the compression mold when performing compression. For the blank material portion to be made, by providing a notch portion on the end surface of the blank material portion, the blank material is compressed as being different from the contact surface of the compression mold, thereby paralleling the fiber direction of the wood. Accordingly, the resistance to the load from the thickness direction can be improved for the portion of the blank material after compression.
 本実施の形態1では、ブランク材2の側板部2cの端面に外側面から斜めに切欠き部2dを設けているが、切欠き部2dの形状は図16~図20に示すような構造としてもよい。図16~図20は、実施の形態1の変形例1~5にかかるブランク材2の側板部2cの一部断面を拡大した図である。図16に示す変形例1に係る切欠き部2dは、内側面から側板部2cの端部にかけて斜めに切削されている。このブランク材2を図5~図7に示す金型により圧縮すると、木材の繊維方向が左上がりになるようにずれて圧縮される。変形例1では、木材の繊維方向を平行から左上がりに曲げることにより、側板部の厚さ方向からの荷重に対する耐性を向上することができる。 In the first embodiment, the notch 2d is provided obliquely from the outer surface on the end surface of the side plate 2c of the blank member 2, but the shape of the notch 2d has a structure as shown in FIGS. Also good. FIGS. 16 to 20 are enlarged views of a partial cross section of the side plate portion 2c of the blank 2 according to the first to fifth modifications of the first embodiment. The notch 2d according to Modification 1 shown in FIG. 16 is cut obliquely from the inner surface to the end of the side plate 2c. When this blank material 2 is compressed by the mold shown in FIGS. 5 to 7, the fiber direction of the wood is displaced and compressed so as to rise to the left. In the modification 1, the tolerance with respect to the load from the thickness direction of a side-plate part can be improved by bending the fiber direction of wood from parallel to the left-up.
 また、図17に示す変形例2に係る切欠き部2dは、外側面から側板部2cの端部の中央部まで水平方向に切削後、斜めに切削されている。このブランク材2を図5~図7に示す金型により圧縮すると、木材の繊維方向が外側面中央部までは略平行でその後右上がりになるようにずれて圧縮される。変形例2では、木材の繊維方向を中央部から右上がりに曲げることにより、側板部の厚さ方向からの荷重に対する耐性を向上することができる。 Further, the notch 2d according to the modified example 2 shown in FIG. 17 is cut obliquely after cutting in the horizontal direction from the outer surface to the center of the end of the side plate 2c. When this blank material 2 is compressed by the mold shown in FIGS. 5 to 7, the fiber direction of the wood is compressed so that it is substantially parallel to the center portion of the outer surface and then rises to the right. In the modification 2, the tolerance with respect to the load from the thickness direction of a side-plate part can be improved by bending the fiber direction of wood to the right upward from a center part.
 また、図18に示す変形例3に係る切欠き部2dは、内側面から側板部2cの端部の中央部まで水平方向に切削後、斜めに切削されている。このブランク材2を図5~図7に示す金型により圧縮すると、木材の繊維方向が内側面から中央部までは略平行でその後左上がりになるようにずれて圧縮される。変形例2では、木材の繊維方向を中央部から左上がりに曲げることにより、側板部の真横からの荷重に対する耐性を向上することができる。 Further, the notch 2d according to the modification 3 shown in FIG. 18 is cut obliquely after cutting in the horizontal direction from the inner surface to the center of the end of the side plate 2c. When the blank 2 is compressed by the mold shown in FIGS. 5 to 7, the fiber direction of the wood is shifted from the inner side surface to the central portion so as to be substantially parallel and then leftward and compressed. In the modification 2, the tolerance with respect to the load from right side of a side-plate part can be improved by bending the fiber direction of wood from the center part to the left upward.
 さらに、図19に示す変形例4に係る切欠き部2dは、側板部2cの端面の中央部に凹部を形成するように切削されている。このブランク材2を図5~図7に示す金型により圧縮すると、木材の繊維方向は中央部が凹状になるようにずれて圧縮される。変形例4では、木材の繊維方向を中央部が凹状になるように曲げることにより、側板部の厚さ方向からの荷重に対する耐性を向上することができる。 Further, the notch portion 2d according to the modified example 4 shown in FIG. 19 is cut so as to form a recess in the center portion of the end surface of the side plate portion 2c. When this blank material 2 is compressed by the mold shown in FIGS. 5 to 7, the fiber direction of the wood is displaced and compressed so that the central portion is concave. In the modification 4, the tolerance with respect to the load from the thickness direction of a side-plate part can be improved by bending the fiber direction of wood so that a center part may become concave shape.
 さらにまた、図20に示す変形例5に係る切欠き部2dは、側板部2cの端面の中央部に凸部を形成するように切削されている。このブランク材2を図5~図7に示す金型により圧縮すると、木材の繊維方向は中央部が凸状になるようにずれて圧縮される。変形例5では、木材の繊維方向を中央部が凸状になるように曲げることにより、側板部の厚さ方向からの荷重に対する耐性を向上することができる。 Furthermore, the notch 2d according to the modified example 5 shown in FIG. 20 is cut so as to form a convex portion at the center of the end face of the side plate 2c. When this blank material 2 is compressed by the mold shown in FIGS. 5 to 7, the fiber direction of the wood is compressed so that the central part is shifted so as to be convex. In the modification 5, the tolerance with respect to the load from the thickness direction of a side-plate part can be improved by bending the fiber direction of wood so that a center part may become convex.
(実施の形態2)
 実施の形態1にかかる圧縮木製品の製造方法では、厚さ方向からの荷重に対する耐性を付与したいブランク材の側板部の端面に切欠き部を設けることにより、側板部の外側面と内側面の圧縮率を変更して、木材の繊維方向を曲げているが、実施の形態2では、ブランク材の側板部に切欠き部を設けるのではなく、圧縮金型の側板部との当接部分に凸部および/または凹部を設けることにより、側板部の外側面と内側面の圧縮率を変更し、側板部の木材の繊維方向を曲げて厚さ方向からの荷重に対する耐性を付与する。
(Embodiment 2)
In the compressed wood product manufacturing method according to the first embodiment, the outer surface and the inner surface of the side plate portion are compressed by providing a notch portion on the end surface of the side plate portion of the blank material to which resistance to load from the thickness direction is to be imparted. Although the fiber direction of the wood is bent by changing the rate, in Embodiment 2, the notch portion is not provided in the side plate portion of the blank material, but the protruding portion is in contact with the side plate portion of the compression mold. By providing the portion and / or the concave portion, the compressibility of the outer side surface and the inner side surface of the side plate portion is changed, the fiber direction of the wood of the side plate portion is bent, and resistance to a load from the thickness direction is imparted.
 図21は、本発明の実施の形態2に係る圧縮木製品の製造方法の処理の概要を示すフローチャートである。まず、原木1から略椀状をなすブランク材6を形取る(ステップS21)。図22は、形取工程の概要を模式的に示す図である。図23は、図22に示すブランク材6のE-E線断面図である。形取工程では、無圧縮状態にある無垢材などの原木1から、略椀状をなすブランク材6を切削等によって形取る。ブランク材6は、実施の形態1のブランク材2と同様に、略長方形の表面を有する平板状の主板部6aと、主板部6aの表面で対向する二つの長辺部の各々から主板部6aに対して湾曲して延在する二つの側板部6bと、主板部6aの表面で対向する二つの短辺部の各々から主板部6aに対して湾曲して延在する二つの側板部6cと、を備える。ブランク材6の側板部6cの端面は、図23に示すように、切欠き部を設けず、水平に切削されている点で実施の形態1のブランク材2と異なる。 FIG. 21 is a flowchart showing an outline of the processing of the compressed wood product manufacturing method according to Embodiment 2 of the present invention. First, a blank 6 having a substantially bowl shape is formed from the raw wood 1 (step S21). FIG. 22 is a diagram schematically showing an outline of the shaping process. FIG. 23 is a cross-sectional view of the blank 6 shown in FIG. 22 taken along the line EE. In the shaping process, a blank material 6 having a substantially bowl shape is shaped by cutting or the like from a raw wood 1 such as a solid wood in an uncompressed state. As with the blank material 2 of the first embodiment, the blank material 6 has a flat main plate portion 6a having a substantially rectangular surface, and a main plate portion 6a from each of the two long sides facing each other on the surface of the main plate portion 6a. Two side plate portions 6b curved and extended with respect to the main plate portion 6a, and two side plate portions 6c curved and extended with respect to the main plate portion 6a from each of the two short side portions facing each other on the surface of the main plate portion 6a, . As shown in FIG. 23, the end surface of the side plate portion 6c of the blank material 6 is different from the blank material 2 of the first embodiment in that it is cut horizontally without providing a notch.
 次に、形取ったブランク材6を、高温高圧の水蒸気雰囲気中で所定時間放置して、ブランク材6を軟化させる(ステップS22)。軟化の方法は実施の形態1と同様に行う。 Next, the shaped blank 6 is left for a predetermined time in a high-temperature and high-pressure steam atmosphere to soften the blank 6 (step S22). The softening method is performed in the same manner as in the first embodiment.
 この後、軟化させたブランク材6を圧縮する(ステップS23)。図24は、圧縮工程の概要を示すとともに、圧縮工程で使用する金型の要部の構成を示す図である。図25は、図24のF-F線断面図である。図24および図25に示すように、ブランク材6は、一対の凹金型201、凸金型202によって挟持され、所定の圧縮力が加えられる。凸金型202のブランク材6の側板部6cと当接する部分には、凸金型202の水平部から凸部221方向に斜めに盛り上がる当接部分222が設けられている。図26は、凸金型202の一部断面を拡大した図である。当接部分222は、凸金型202の水平部から凸部221方向にh4の高さの斜面を形成している。 Thereafter, the softened blank 6 is compressed (step S23). FIG. 24 is a diagram illustrating an outline of the compression process and a configuration of a main part of a mold used in the compression process. 25 is a cross-sectional view taken along line FF in FIG. As shown in FIGS. 24 and 25, the blank 6 is sandwiched between a pair of concave mold 201 and convex mold 202, and a predetermined compression force is applied. A portion of the convex mold 202 that contacts the side plate portion 6c of the blank 6 is provided with a contact portion 222 that rises obliquely from the horizontal portion of the convex mold 202 toward the convex portion 221. FIG. 26 is an enlarged view of a partial cross section of the convex mold 202. The contact portion 222 forms a slope having a height of h4 in the direction from the horizontal portion of the convex mold 202 to the convex portion 221.
 図27は、圧縮工程において、凹金型201および凸金型202によってブランク材6が挟持されて所定の圧力が加えられた状態を示す図であり、ブランク材6の変形がほぼ完了した状態を示す図である。側板部6cの端面は水平であるのに対し、凹部211および凸部221が形成する隙間の側板部6cの端面との当接部分222の形状は斜めに形成され、側板部6cの端面と該端面と接する当接部分222の形状とは異なる。図27に示す状態で、ブランク材6は、凹金型201および凸金型202から圧縮力を受けることにより、軟化工程前とは異なる略椀状に変形され、側板部6cの端面は凸金型202の当接部分222と当接する形状になるよう圧縮される。これにより、側板部6cの真横からの荷重に対する耐性を向上することができる(以下、圧縮工程まで終了したブランク材6を「圧縮木材7」という)。 FIG. 27 is a diagram showing a state in which the blank material 6 is sandwiched between the concave mold 201 and the convex mold 202 and a predetermined pressure is applied in the compression process, and the deformation of the blank material 6 is almost completed. FIG. While the end surface of the side plate portion 6c is horizontal, the shape of the contact portion 222 of the gap formed by the concave portion 211 and the convex portion 221 with the end surface of the side plate portion 6c is formed obliquely, and the end surface of the side plate portion 6c The shape of the abutting portion 222 that contacts the end surface is different. In the state shown in FIG. 27, the blank material 6 is deformed into a substantially bowl shape different from that before the softening step by receiving a compressive force from the concave mold 201 and the convex mold 202, and the end surface of the side plate portion 6c is convex metal. The mold 202 is compressed so as to be in contact with the contact portion 222 of the mold 202. Thereby, the tolerance with respect to the load from the side of the side-plate part 6c can be improved (henceforth, the blank material 6 which complete | finished to the compression process is called "compressed wood 7").
 図28は、圧縮木材7の一部断面の拡大図である。図29は、圧縮工程前のブランク材6の一部断面の拡大図である。図28および図29に示すように、ブランク材6の圧縮等により、圧縮木材7の側板部7cの高さはh5からh6に圧縮され、側板部7cの厚さはW4からW5に圧縮されている。側板部7cの内側面側は凸金型202の当接部分222の高さh4の分だけ外側面より圧縮率が大きくなる。このように、圧縮前のブランク材6の側板部6cでは略平行であった木材の繊維方向が、圧縮木材7の側板部7cでは、内側面の木材の繊維配列の間隔が外側面より短くなるようにずれて圧縮される(木材繊維方向Lが右上がり)。木材の繊維方向が平行から曲がることにより、側板部7cの厚さ方向からの荷重に対する耐性が向上する。 FIG. 28 is an enlarged view of a partial cross section of the compressed wood 7. FIG. 29 is an enlarged view of a partial cross section of the blank 6 before the compression step. As shown in FIGS. 28 and 29, the height of the side plate portion 7c of the compressed wood 7 is compressed from h5 to h6 and the thickness of the side plate portion 7c is compressed from W4 to W5 by compression of the blank material 6 or the like. Yes. The compression rate of the inner side surface of the side plate portion 7c is greater than that of the outer side surface by the height h4 of the contact portion 222 of the convex mold 202. As described above, the fiber direction of the wood, which is substantially parallel in the side plate portion 6c of the blank material 6 before compression, is shorter than the outer side surface in the side plate portion 7c of the compressed wood 7 in the fiber array of the inner side wood. So that the wood fiber direction L rises to the right. By bending the fiber direction of the wood from parallel, resistance to a load from the thickness direction of the side plate portion 7c is improved.
 圧縮工程が終了した後、凹金型201および凸金型202によって圧縮木材7を挟持し、所定の三次元形状に保持したままの状態で、上述した水蒸気雰囲気よりもさらに高温高圧の水蒸気雰囲気を凹金型201および凸金型202の周囲に形成することにより、圧縮木材7の形状を固定化する(ステップS24)。このときの水蒸気雰囲気は、実施の形態1と同様とする。 After the compression step, the compressed wood 7 is sandwiched between the concave mold 201 and the convex mold 202 and kept in a predetermined three-dimensional shape. The shape of the compressed wood 7 is fixed by forming it around the concave mold 201 and the convex mold 202 (step S24). The water vapor atmosphere at this time is the same as in the first embodiment.
 続いて、凹金型201、凸金型202、および圧縮木材7を大気中へ放出し、圧縮木材7を乾燥させ(ステップS25)、乾燥した圧縮木材7の側板部7cおよび側板部7bの端面を水平に切削する(以下、切削工程まで終了した圧縮木材7を「圧縮木材8」という)(ステップS26)。 Subsequently, the concave mold 201, the convex mold 202, and the compressed wood 7 are discharged into the atmosphere, the compressed wood 7 is dried (step S25), and the end surfaces of the side plate portion 7c and the side plate portion 7b of the dried compressed wood 7 are dried. Is cut horizontally (hereinafter, the compressed wood 7 that has been finished up to the cutting step is referred to as “compressed wood 8”) (step S26).
 切削工程の後、大気中で圧縮木材8を加熱しながら圧縮木材8と略相似する形状に整形する(ステップS27)。加熱整形工程は、実施の形態1と同様にして行なう。 After the cutting process, the compressed wood 8 is heated in the atmosphere and shaped into a shape substantially similar to the compressed wood 8 (step S27). The heating shaping process is performed in the same manner as in the first embodiment.
 以上説明した本発明の実施の形態2によれば、厚さ方向が木材の繊維方向と略平行であって圧縮を行う際の前記圧縮金型の移動方向と略直交するブランク材の部分について、前記ブランク材の一部の端面の形状を水平に形取り、前記端面と当接する前記圧縮金型面に凸部を形成して前記ブランク材を圧縮することにより、木材の繊維方向を平行から曲げることができ、これにより圧縮後のブランク材の前記部分について厚さ方向からの荷重に対する耐性を向上することができる。 According to the second embodiment of the present invention described above, the portion of the blank material whose thickness direction is substantially parallel to the fiber direction of the wood and is substantially orthogonal to the moving direction of the compression mold when compression is performed. The shape of the end surface of a part of the blank material is horizontally shaped, and a convex portion is formed on the compression mold surface in contact with the end surface to compress the blank material, thereby bending the fiber direction of the wood from parallel. This can improve the resistance to the load from the thickness direction for the portion of the blank material after compression.
 なお、本実施の形態2では、乾燥工程(ステップS25)の後に圧縮木材の側板部の端面の切削工程を設けているが(ステップS26)、加熱整形工程で使用する加熱整形用凸金型に、圧縮工程(ステップS23)で使用する凸金型202と同様に、斜めに形成された当接部分を設けることにより切削工程を加熱整形工程の後に行うこともできる。 In the second embodiment, after the drying step (step S25), a cutting step of the end face of the side plate portion of the compressed wood is provided (step S26), but the heating shaping convex mold used in the heating shaping step is provided. Similarly to the convex mold 202 used in the compression process (step S23), the cutting process can be performed after the heat shaping process by providing an abutting portion formed obliquely.
 また、本実施の形態2では、凸金型202の側板部6cの端面との当接部分222を、凸金型202の水平部から凸部221方向に斜めに盛り上がるように設けている。当接部分の形状は、側板部6cの端面形状(水平)と異なるものであれば、図30および図31に示すような構造としてもよい。図30および図31は、実施の形態2の変形例1および2にかかる凹金型および凸金型の一部断面を拡大した図である。図30に示す変形例1に係る凸金型202Aの当接部分222Aは、当接部分の中央が凸になるように形成されている。この凹金型201Aおよび凸金型202Aによりブランク材6を圧縮すると、木材の繊維方向は中央部が凸になるようにずれて圧縮される。変形例1では、木材の繊維方向の中央部が凸になるように曲がることにより、側板部の厚さ方向からの荷重に対する耐性を向上することができる。 Further, in the second embodiment, the contact portion 222 with the end surface of the side plate portion 6c of the convex mold 202 is provided so as to rise obliquely in the direction of the convex portion 221 from the horizontal portion of the convex mold 202. As long as the shape of the contact portion is different from the end face shape (horizontal) of the side plate portion 6c, a structure as shown in FIGS. 30 and 31 may be adopted. 30 and 31 are enlarged views of a partial cross section of the concave mold and the convex mold according to the first and second modifications of the second embodiment. The contact portion 222A of the convex mold 202A according to Modification 1 shown in FIG. 30 is formed so that the center of the contact portion is convex. When the blank material 6 is compressed by the concave mold 201A and the convex mold 202A, the fiber direction of the wood is displaced and compressed so that the central portion is convex. In the modification 1, the tolerance with respect to the load from the thickness direction of a side-plate part can be improved by bending so that the center part of the fiber direction of wood may become convex.
 また、図31に示す変形例2に係る凸金型202Bの当接部分222Bは、当接部分の中央部分から凸部221B方向に凸部が形成されている。この凹金型201Bおよび凸金型202Bによりブランク材6を圧縮すると、木材の繊維方向は外側面中央部までは略平行でその後右上がりになるようにずれて圧縮される。変形例2では、木材の繊維方向が中央部から右上がりに曲がることにより、側板部の厚さ方向からの荷重に対する耐性を向上することができる。 Further, the contact portion 222B of the convex mold 202B according to the modification 2 shown in FIG. 31 is formed with a convex portion in the direction of the convex portion 221B from the central portion of the contact portion. When the blank material 6 is compressed by the concave mold 201B and the convex mold 202B, the fiber direction of the wood is substantially parallel up to the center portion of the outer surface and then shifted so as to rise to the right. In the modification 2, the tolerance with respect to the load from the thickness direction of a side-plate part can be improved because the fiber direction of a wood bends rightward from a center part.
 本実施の形態2では、ブランク材側板部の端面を水平とし、圧縮金型の前記側板部の端面との当接部分に凸部を設けることにより、前記ブランク材側板部の端面の形状と、前記端面と当接する前記圧縮金型面の形状とを異なるものとしているが、いずれか一方の形状を水平に固定する必要はなく、前記ブランク材側板部の端面の形状と、前記圧縮金型面の当接部分の形状とを異なるものとして圧縮し、圧縮後のブランク材側板部の木材繊維方向を平行から曲げることができる組み合わせであればよい。 In the second embodiment, the end surface of the blank material side plate portion is horizontal, and by providing a convex portion at the contact portion with the end surface of the side plate portion of the compression mold, the shape of the end surface of the blank material side plate portion, The shape of the compression mold surface that comes into contact with the end surface is different, but it is not necessary to fix any one shape horizontally, the shape of the end surface of the blank material side plate portion, and the compression mold surface What is necessary is just a combination which can compress the blank part side board part after compression as a thing different from the shape of the contact part, and can bend | bend the wood fiber direction from parallel.
(実施の形態3)
 実施の形態1および2にかかる圧縮木製品の製造方法では、略椀状のブランク材の圧縮成形方法について説明したが、実施の形態3では、板状のブランク材の圧縮成形方法について説明する。
(Embodiment 3)
In the manufacturing method of the compressed wood product according to the first and second embodiments, the compression molding method of the substantially bowl-shaped blank material has been described. In the third embodiment, the compression molding method of the plate-shaped blank material will be described.
 図32は、本発明の実施の形態3に係る圧縮木製品の製造方法の形取の概要を模式的に示す図である。ブランク材9は、図32に示すように、原木を輪切状にした平板部の一部である。ブランク材9の厚さW7方向は、図33に示す圧縮金型の移動方向と直交であり、かつ、厚さ方向W7は木材繊維方向Lと平行である。 FIG. 32 is a diagram schematically showing an outline of a method of manufacturing a compressed wood product according to Embodiment 3 of the present invention. As shown in FIG. 32, the blank material 9 is a part of a flat plate portion obtained by cutting a raw wood into a ring shape. The thickness W7 direction of the blank 9 is orthogonal to the moving direction of the compression mold shown in FIG. 33, and the thickness direction W7 is parallel to the wood fiber direction L.
 図33は、実施の形態3に係るブランク材9の圧縮工程を説明する断面図である。ブランク材9は、一対の凹金型301、凸金型302によって挟持され、凹金型301と凸金型302とにより上下方向から所定の圧縮力を加えることにより圧縮される。 FIG. 33 is a cross-sectional view for explaining the compression process of the blank 9 according to the third embodiment. The blank 9 is sandwiched between a pair of concave mold 301 and convex mold 302, and is compressed by applying a predetermined compressive force from above and below between the concave mold 301 and convex mold 302.
 圧縮工程の際にブランク材9の上方から圧縮力を加える凹金型301は、ブランク材9の平板部の厚さW7と略同じ厚さの凹部を有し、ブランク材9の端面と接する当接部分311は凹状の窪みが形成されている。また、圧縮工程の際にブランク材9の下方から圧縮力を加える凸金型302は、ブランク材9の端面と接する当接部分312が凸状に形成されている。 The concave mold 301 for applying a compressive force from above the blank material 9 during the compression process has a concave portion having a thickness substantially the same as the thickness W7 of the flat plate portion of the blank material 9, and is in contact with the end surface of the blank material 9. The contact portion 311 is formed with a concave depression. Further, in the convex mold 302 that applies a compressive force from below the blank material 9 during the compression step, the contact portion 312 that contacts the end surface of the blank material 9 is formed in a convex shape.
 図33に示すように、凹金型301および凸金型302によってブランク材9を挟持して(図33-1)、所定の圧力を加えて圧縮することによりブランク材9は上下方向に圧縮される(図33-2)。ブランク材9は、圧縮により上下方向に圧縮されるとともに、その端面の形状は、凹金型301の当接部分311および凸金型302の当接部分312と当接する形状9dになるよう圧縮される。 As shown in FIG. 33, the blank 9 is sandwiched between the concave mold 301 and the convex mold 302 (FIG. 33-1), and compressed by applying a predetermined pressure to compress the blank 9 in the vertical direction. (FIG. 33-2). The blank material 9 is compressed in the vertical direction by compression, and the shape of the end surface thereof is compressed so as to be a shape 9 d that contacts the contact portion 311 of the concave mold 301 and the contact portion 312 of the convex mold 302. The
 凹金型301および凸金型302によるブランク材9の圧縮により、ブランク材9の上部端面は凹金型301の当接部分311と当接する凸状の形状となり、ブランク材9の下部端面は凸金型302の当接部分312と当接する凹状の形状となる。また、圧縮前のブランク材9では略平行であった木材の繊維方向が、圧縮により木材の繊維方向の中央部が凸状にずれて圧縮される。木材の繊維方向が平行から曲がることにより、ブランク材9を圧縮した圧縮木材の厚さ方向からの荷重に対する耐性を向上することができる。このように板状のブランク材を圧縮した圧縮木材は、厚さ方向からの荷重に対する耐性が向上するので、3次元成形して所望の形状に成形することも可能である。 Due to the compression of the blank material 9 by the concave mold 301 and the convex mold 302, the upper end surface of the blank material 9 becomes a convex shape that comes into contact with the contact portion 311 of the concave mold 301, and the lower end surface of the blank material 9 is convex. The concave shape comes into contact with the contact portion 312 of the mold 302. Further, the fiber direction of the wood, which was substantially parallel in the blank material 9 before compression, is compressed with the central portion of the fiber direction of the wood shifted in a convex shape by compression. By bending the fiber direction of the wood from parallel, resistance to a load from the thickness direction of the compressed wood obtained by compressing the blank material 9 can be improved. Thus, since the compressed wood which compressed the plate-shaped blank material improves the tolerance with respect to the load from a thickness direction, it is also possible to shape | mold into a desired shape by three-dimensional shaping | molding.
 以上説明した本発明の実施の形態3によれば、ブランク材の厚さ方向が圧縮金型の移動方向と直交し、かつ、前記厚さ方向が木材繊維方向と平行である部分について、前記ブランク材の端面の形状を水平に形取り、前記端面と当接する前記圧縮金型面に凸部を形成して、当接する端面と異なるものとして圧縮することにより、木材の繊維方向を平行からずらすことができ、これによりブランク材を圧縮した圧縮木材の前記部分について厚さ方向からの荷重に対する耐性を向上することができる。 According to the third embodiment of the present invention described above, the blank is about the portion where the thickness direction of the blank material is orthogonal to the moving direction of the compression mold and the thickness direction is parallel to the wood fiber direction. The shape of the end face of the material is horizontally shaped, a convex portion is formed on the compression mold surface that comes into contact with the end face, and the fiber direction of the wood is shifted from parallel by compressing it as being different from the end face that comes into contact. This can improve the resistance to the load from the thickness direction of the compressed wood obtained by compressing the blank.
 上記の実施の形態3では、圧縮金型のブランク材9の端面との当接部分311および当接部分312に凹部および凸部をそれぞれ設けているが、いずれか一方のみに凹部または凸部を設けることにしてもよい。あるいは、圧縮金型の当接部分は水平として、ブランク材9の端面に切欠き部を設けることにしてもよく、ブランク材9の端面の形状と、圧縮金型の当接部分の形状とを異なるものとして圧縮し、ブランク材9を圧縮した圧縮木材の繊維方向を平行から曲げることができる組み合わせであればよい。 In the above-described third embodiment, the concave portion and the convex portion are respectively provided in the contact portion 311 and the contact portion 312 with the end surface of the blank 9 of the compression mold, but the concave portion or the convex portion is provided only in one of them. It may be provided. Alternatively, the contact portion of the compression mold may be horizontal, and a notch may be provided on the end surface of the blank material 9. The shape of the end surface of the blank material 9 and the shape of the contact portion of the compression mold Any combination can be used as long as the fiber direction of the compressed wood compressed as a different material and compressed from the blank 9 can be bent from parallel.
 また、実施の形態3では、板状のブランク材の圧縮成形方法について説明したが、ブランク材の少なくとも一部の厚さ方向が圧縮金型の移動方向と直交し、かつ、前記厚さ方向が木材繊維方向と平行である部分を有するものであれば、ブランク材はL字状やコの字状であってもよい。 Moreover, in Embodiment 3, although the compression molding method of the plate-shaped blank material was demonstrated, the thickness direction of at least one part of a blank material is orthogonal to the moving direction of a compression mold, and the said thickness direction is As long as it has a part parallel to the wood fiber direction, the blank may be L-shaped or U-shaped.
 このように、本発明は、ここでは記載していない様々な実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。 Thus, the present invention can include various embodiments and the like not described herein, and various design changes and the like can be made without departing from the technical idea specified by the claims. It is possible to apply.
 本発明に係る圧縮木製品の製造方法によって製造された圧縮木製品は、電子機器用外装体として有用であり、特にデジタルカメラの外装体として好適に使用できる。また、本発明に係る圧縮木製品の製造方法によって製造された圧縮木製品は、例えば食器、各種筐体、建材などにも適用可能である。 The compressed wood product produced by the method for producing a compressed wood product according to the present invention is useful as an exterior body for electronic equipment, and can be particularly suitably used as an exterior body for a digital camera. Moreover, the compressed wood product manufactured by the compressed wood product manufacturing method according to the present invention can be applied to tableware, various cases, building materials, and the like.
 1 原木
 2、6、9 ブランク材
 2a、3a、4a、5a、6a 主板部
 2b、2c、3b、3c、4b、4c、5b、5c、6b、6c 側板部
 2d 切欠き部
 3、7、8 圧縮木材
 4 圧縮木製品
 5、5A 外装体
 101、201、201A、201B、301 凹金型
 102、202、202A、202B、302 凸金型
 111、211 凹部
 121、221 凸部
 151 加熱整形用凹金型
 152 加熱整形用凸金型
 153、154 ヒータ
 155 制御装置
 222、222A、222B、311 当接部分
 301 デジタルカメラ
 302 撮像部
 303 フラッシュ
 304 シャッターボタン
 G 木目
 L 木材繊維方向
DESCRIPTION OF SYMBOLS 1 Log 2, 6, 9 Blank material 2a, 3a, 4a, 5a, 6a Main board part 2b, 2c, 3b, 3c, 4b, 4c, 5b, 5c, 6b, 6c Side board part 2d Notch part 3, 7, 8 Compressed wood 4 Compressed wood product 5, 5A Exterior body 101, 201, 201A, 201B, 301 Concave mold 102, 202, 202A, 202B, 302 Convex mold 111, 211 Concave 121, 221 Convex part 151 Concave mold for heat shaping 152 Heat shaping convex mold 153, 154 Heater 155 Controller 222, 222A, 222B, 311 Abutting part 301 Digital camera 302 Imaging unit 303 Flash 304 Shutter button G Wood grain L Wood fiber direction

Claims (7)

  1.  原木から形取られたブランク材を、圧縮金型を用いて圧縮することによって圧縮木製品を製造する圧縮木製品の製造方法であって、
     厚さ方向が木材の繊維方向と略平行であって圧縮を行う際の前記圧縮金型の移動方向と略直交するとともに、端面が圧縮時に対向する前記圧縮金型の当接面と異なる形状をなすブランク材を形取る形取工程を含むことを特徴とする圧縮木製品の製造方法。
    A compressed wood product manufacturing method for manufacturing a compressed wood product by compressing a blank material shaped from a raw wood using a compression mold,
    The thickness direction is substantially parallel to the fiber direction of the wood and is substantially perpendicular to the direction of movement of the compression mold when compression is performed, and the end surface has a shape different from the contact surface of the compression mold opposed during compression. A method for producing a compressed wood product, comprising a step of shaping a blank material to be formed.
  2.  前記ブランク材は、
     厚さ方向が前記木材の繊維方向と略直交する主板部と、
     該主板部の全周縁から所定の角度をなして延出する側板部と、
     からなる略椀状であり、前記側板部が、その厚さ方向が木材の繊維方向と略平行であって圧縮を行う際の前記圧縮金型の移動方向と略直交する部分を有することを特徴とする請求項1に記載の圧縮木製品の製造方法。
    The blank material is
    A main plate portion whose thickness direction is substantially perpendicular to the fiber direction of the wood;
    A side plate extending from the entire periphery of the main plate at a predetermined angle;
    The side plate portion has a portion whose thickness direction is substantially parallel to the fiber direction of the wood and substantially perpendicular to the moving direction of the compression mold when compression is performed. The manufacturing method of the compression wooden product of Claim 1.
  3.  前記ブランク材は、板状をなすことを特徴とする請求項1に記載の圧縮木製品の製造方法。 2. The method for manufacturing a compressed wood product according to claim 1, wherein the blank material has a plate shape.
  4.  前記ブランク材の前記端面を前記当接面に対し傾斜させることを特徴とする請求項1~3のいずれか一つに記載の圧縮木製品の製造方法。 The method for producing a compressed wood product according to any one of claims 1 to 3, wherein the end surface of the blank material is inclined with respect to the contact surface.
  5.  前記ブランク材の前記端面に、凹部および/または凸部を形成することを特徴とする請求項1~3のいずれか一つに記載の圧縮木製品の製造方法。 The method for producing a compressed wood product according to any one of claims 1 to 3, wherein a concave portion and / or a convex portion are formed on the end face of the blank material.
  6.  前記当接面を前記ブランク材の前記端面に対し傾斜させることを特徴とする請求項1~5のいずれか一つに記載の圧縮木製品の製造方法。 The method for manufacturing a compressed wood product according to any one of claims 1 to 5, wherein the contact surface is inclined with respect to the end surface of the blank material.
  7.  前記圧縮金型の前記当接面に、凹部および/または凸部を形成することを特徴とする請求項1~5のいずれか一つに記載の圧縮木製品の製造方法。 The method for producing a compressed wood product according to any one of claims 1 to 5, wherein a concave portion and / or a convex portion are formed on the contact surface of the compression mold.
PCT/JP2011/067450 2010-08-03 2011-07-29 Method for producing compressed wood product WO2012017943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-174370 2010-08-03
JP2010174370A JP2012035410A (en) 2010-08-03 2010-08-03 Method for producing compressed wood product

Publications (1)

Publication Number Publication Date
WO2012017943A1 true WO2012017943A1 (en) 2012-02-09

Family

ID=45559443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067450 WO2012017943A1 (en) 2010-08-03 2011-07-29 Method for producing compressed wood product

Country Status (2)

Country Link
JP (1) JP2012035410A (en)
WO (1) WO2012017943A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103552142A (en) * 2013-10-29 2014-02-05 内蒙古农业大学 Method for integrally densifying, drying and carbonizing wood

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531858U (en) * 1976-06-24 1978-01-10
JP3349633B2 (en) * 1996-05-27 2002-11-25 中小企業総合事業団 Wood continuous forming equipment
JP4176087B2 (en) * 2005-02-25 2008-11-05 オリンパス株式会社 Manufacturing method of wood molded products

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4328331B2 (en) * 2006-01-24 2009-09-09 オリンパス株式会社 Core mold, cavity mold, and wood processing equipment
JP2008145872A (en) * 2006-12-12 2008-06-26 Olympus Corp Musical instrument
JP5500541B2 (en) * 2008-07-30 2014-05-21 独立行政法人産業技術総合研究所 Method for producing molded body of plant material and molded body thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531858U (en) * 1976-06-24 1978-01-10
JP3349633B2 (en) * 1996-05-27 2002-11-25 中小企業総合事業団 Wood continuous forming equipment
JP4176087B2 (en) * 2005-02-25 2008-11-05 オリンパス株式会社 Manufacturing method of wood molded products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103552142A (en) * 2013-10-29 2014-02-05 内蒙古农业大学 Method for integrally densifying, drying and carbonizing wood

Also Published As

Publication number Publication date
JP2012035410A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5137980B2 (en) Compressed wood product manufacturing method
JP4598797B2 (en) Wood processing method
JP5097741B2 (en) Wood molding method
JP4981836B2 (en) Compressed wood product manufacturing method
WO2012017943A1 (en) Method for producing compressed wood product
CN102211275A (en) Method for manufacturing a reinforced and curved metal structure and structure obtained by the method
JP2011189571A (en) Method of manufacturing compressed wood product
JP4869678B2 (en) Compressed wood product manufacturing method
WO2011089755A1 (en) Method for producing compressed wood product, and compressed wood product
JP5248949B2 (en) Wood molding method
JP5687475B2 (en) Compressed wood product manufacturing method
JP4176087B2 (en) Manufacturing method of wood molded products
WO2012029708A1 (en) Method for producing compressed wood product
JP4176086B2 (en) Manufacturing method of wood molded products
WO2013111621A1 (en) Case manufacturing method, case and case molding device
WO2012066908A1 (en) Method for producing compressed wood product
JP2013123899A (en) Method for manufacturing compressed wood product and molding apparatus
JP2013237223A (en) Method for manufacturing compressed wood product, and compressed wood product
KR20130010155A (en) The stress reinforcement technology of metal sheet angle or channel by multi bending
JP4847261B2 (en) Wood processing method
JP2007118456A (en) Manufacturing method of compressed wood product
JP2006289847A (en) Compressed wood molding product
JP5265469B2 (en) Wood mold
JP2007118455A (en) Wood processing method
JP2011011444A (en) Wood for compression and method for molding wood

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814569

Country of ref document: EP

Kind code of ref document: A1