WO2012017116A2 - Method for producing biosensors - Google Patents
Method for producing biosensors Download PDFInfo
- Publication number
- WO2012017116A2 WO2012017116A2 PCT/ES2011/070536 ES2011070536W WO2012017116A2 WO 2012017116 A2 WO2012017116 A2 WO 2012017116A2 ES 2011070536 W ES2011070536 W ES 2011070536W WO 2012017116 A2 WO2012017116 A2 WO 2012017116A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- irradiation
- substrate
- areas
- ionic
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 55
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000000126 substance Substances 0.000 claims abstract description 32
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims description 55
- 239000000463 material Substances 0.000 claims description 51
- 150000002500 ions Chemical class 0.000 claims description 46
- 230000008569 process Effects 0.000 claims description 24
- 108091034117 Oligonucleotide Proteins 0.000 claims description 22
- 239000012620 biological material Substances 0.000 claims description 13
- 239000002253 acid Substances 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 12
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 10
- 108090000623 proteins and genes Proteins 0.000 claims description 10
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 7
- 230000003993 interaction Effects 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 102000004190 Enzymes Human genes 0.000 claims description 3
- 108090000790 Enzymes Proteins 0.000 claims description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 150000004665 fatty acids Chemical class 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000011343 solid material Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 238000000151 deposition Methods 0.000 abstract description 10
- 238000002493 microarray Methods 0.000 abstract description 4
- 238000004377 microelectronic Methods 0.000 abstract 1
- 239000004408 titanium dioxide Substances 0.000 description 8
- 230000008021 deposition Effects 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 238000010884 ion-beam technique Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 238000000399 optical microscopy Methods 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 238000005280 amorphization Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 238000007444 cell Immobilization Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 210000001822 immobilized cell Anatomy 0.000 description 2
- 238000000996 ion projection lithography Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000899864 Cherry mottle leaf virus Species 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 101150023613 mev-1 gene Proteins 0.000 description 1
- 238000012775 microarray technology Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00206—Processes for functionalising a surface, e.g. provide the surface with specific mechanical, chemical or biological properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/551—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00306—Reactor vessels in a multiple arrangement
- B01J2219/00313—Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
- B01J2219/00315—Microtiter plates
- B01J2219/00317—Microwell devices, i.e. having large numbers of wells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
- B01J2219/00527—Sheets
- B01J2219/00533—Sheets essentially rectangular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00612—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00639—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
- B01J2219/00644—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium the porous medium being present in discrete locations, e.g. gel pads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00659—Two-dimensional arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00722—Nucleotides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/0074—Biological products
- B01J2219/00743—Cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0214—Biosensors; Chemical sensors
Definitions
- the present invention falls within the field of manufacturing devices on a substrate, more specifically, to the definition and preparation of structured surfaces with the aim of being applicable in chemical analysis and biotechnology analysis processes.
- the invention relates, in general, to a method of obtaining and applying a biosensor based on the immobilization of biological molecules or materials on Ti0 2 surfaces, and can be applied in the detection and characterization of nucleic acid molecules in general and / or other substances or compounds, such as prokaryotic cells (bacteria), eukaryotic cells and viruses of biotechnological, biosanitary, clinical, veterinary, environmental, agricultural or food interest.
- bacteria prokaryotic cells
- eukaryotic cells and viruses of biotechnological, biosanitary, clinical, veterinary, environmental, agricultural or food interest.
- microarrays are also called chips or microchips. According to this technology, thousands of molecular probes capable of specifically recognizing target molecules of different nature can be covalently fixed. to a solid support (glass, nitrocellulose, nylon etc.).
- a solid support glass, nitrocellulose, nylon etc.
- robots are used with needles, modified atomic force microscopes (AFM) or elastomeric seals that are impregnated with solutions that They contain the biological material of interest and contact the receiving substrate. These solutions are deposited in precise areas to facilitate their possibility of reaction with the surface in the contact areas.
- AFM modified atomic force microscopes
- elastomeric seals that are impregnated with solutions that They contain the biological material of interest and contact the receiving substrate. These solutions are deposited in precise areas to facilitate their possibility of reaction with the surface in the contact areas.
- substrates provided with three-dimensional patterns or wells where the material can be deposited [WO 2007/011405; US 2008/0245109].
- the current manufacturing techniques and materials of these substrates usually based on silicon or polymeric materials, the depth and dimensions of these wells are limited by the methods of production.
- These substrates present serious difficulties or limitations for their use and their reuse that is: optical signal, chemical and physical stability. In many cases the surface of these materials is covered with others for anchoring the biological material on its surface
- Titanium dioxide is a biocompatible material, which has been studied as a support for the adhesion of oligonucleotides, viruses and cells among others. This titanium dioxide takes the form of thin sheets, covering other materials, or micro and nanoparticles, in isolation or also coating other materials [WO 2007/009994; Bo Li et al. 2009].
- the focused beams of electrons constitute an intermediate step in the process of generating three-dimensional patterns on other substrates, since they produce partially modified materials, usually polymers, which are subsequently removed by chemical processes, in order to obtain patterns, which in turn will serve like masks over other materials.
- the ion-focused beam technique cited in the second place represents a suitable method for the generation of three-dimensional patterns directly on the substrates, since it uses an ion beam as an active element that modifies and eliminates solid parts of the material.
- this technique is not appropriate for its implementation on an industrial scale due to the time required to create nanostructures over large areas on a macroscopic scale and the low aspect ratio (depth / lateral dimension) of the structures created.
- Ga ions of 10-50 keV of energy are typically employed. These ions have a notable lateral dispersion as they pass through the material, due to predominant interactions with the nuclei of the atoms of the material. How consequently, these ions are implanted tens of nanometers of the created structures and can cause unwanted phenomena in them.
- IPL Ion Projection Lithography
- the maximum depth at which the ions are detained is high, so that their scope constitutes another advantage of the use of heavy ions with MeV energy over structures created with less energy ions.
- the ions implanted in this way remain at distances of the order of the micrometer from the surfaces of the generated structures. These structures, in practice, are therefore exempt from the inclusion of the ions used.
- the irradiation of fast heavy ions has been used successfully in recent decades to induce isolated modifications in sensitive materials. When an ion passes through matter !, it induces a trace of modified material or latent traces. These modifications, when eliminated by chemical attacks, generate pores on materials such as polymers, alloys and crystals.
- Irradiation with fast heavy ions has also been used for the generation of nanostructures in various materials sensitive to this radiation without removing the affected material.
- the difficulty in selecting the area to radiate at scales below the mine can be resolved without resorting to ion beam targeting using solid lithographic masks that restrict the areas exposed to irradiation.
- the substrate described in US 2006157873 allows the deposition and fixation of multiple substances after the chemical functionalization of its Si-based surface, but its lack of transparency hinders its use in microscopy examinations. Added to this capacity is the one related to the non-emission of titanium oxide fluorescence in the range of wavelengths normally used by the usual biological markers.
- substrates equipped with wells obtained by optical lithography do not have the ability to fix biological substances and emit fluorescence.
- the present invention tries to solve the problems derived from the deposition of materials on substrates by means of a lithography process with ions on titanium dioxide substrates that generates three-dimensional structures with different physical-chemical characteristics.
- The. areas exposed to irradiation have the capacity themselves to be functional for immobilization or support of chemical or biological materials, avoiding their overlapping and facilitating their examination through the use of optical microscopy, fluorescence and / or AF techniques.
- the irradiated Ti0 2 substrate of the invention gives rise to the amorphous structure of Ti0 2 with a hydrophilic behavior, as opposed to the hydrophobic behavior of the non-irradiated material, as well as with a great capacity for the support of biological material, and the immobilization of chemical material and biological These characteristics and capacities are not evident given the variations presented by the amorphous structure compared to those previously obtained through other chemical and physical processes.
- the optical properties of the material transparency in wavelengths of the visible spectrum and the fact of not emitting fluorescence in the wavelengths in which they emit the fluorescent markers commonly used for the marking of biological material, make the oxide of Titanium more suitable than other materials used as support such as glass, Si, Si0 2 and polymers.
- the present invention relates to a method of manufacturing a biosensor that can be applied to multiple tests, detections and reactions of biological and / or chemical samples with high efficiency, high fidelity, low cost and compatibility between usual detection techniques.
- the biosensor obtained by the process of the invention is a titanium oxide substrate totally or partially exposed from its surface to at least one process of heavy ion irradiation in the energy range of MeV, hereinafter ionic irradiation, which sustains or to which is adhered one or more deposits of chemical material or biological that may be performed both on regions of the substrate oxide 'virgin titanium, and those which have been modified both surface volumetrically by ion irradiation and exposed or not the effect of an attack chemical that eliminates part of these volumes, 1
- the procedure comprises the following stages:
- the type of irradiation can be of any accelerated heavy ion, heavy ion being understood as any mass greater than that of H, which deposits by means of ialastic interactions, with the electron cloud of atoms, at least on the surface, an energy greater than 5 , 1 KeV per nm route.
- Irradiation as it passes through a substrate of monocrystalline Ti0 2 in the rutile phase, will generate a volume of damaged material called trace.
- the shape of this trace can be continuous or discontinuous depending on the energy of the ion, in a general case it can be associated with a cylindrical shape, whose. radius and depth will depend on the total energy deposited by the ion. If the ion irradiation passes a threshold fluence, this is the number of ions passing through an area, the superposition of these traces is achieved in singular principle, forming a connected volume capable of being dissolved by etching consisting of an aqueous solution of HF
- the value of the required threshold creep depends on the energy of the ion used. For example, for irradiation with Br ions of energies ranging from 9 MeV to 50 eV, the threshold creep must be equal to or greater than 8-10 13 cm 'z .
- a previous stage of fixation is carried out on the titanium oxide substrate, of at least one element that acts as a mask whose density difference and thickness of motifs allow selective braking of ions.
- Any material capable of slowing an ion flow can be used to compose the mask to be used, depending on the desired braking capacity.
- Solid materials that resist ionic flow without high deformations are preferred, for example metals such as Au, Cu, Cu / Ni, oxides such as Al 2 0 3)
- a substance or material selected from chemical or biological such as a chemical solution of organic molecules or a suspension of cells, oligonucleotides, fatty acids or proteins including enzymes and antibodies
- the chemical or biological material deposited in the second stage can be fixed in a third stage with ultraviolet light for the adhesion of, for example, oligonucleotides.
- the zones subjected to ionic irradiation can be subsequently exposed to the effect of at least one chemical attack that eliminates part of the volumes corresponding to those zones to generate a three-dimensional pattern in depth, so, optionally, an intermediate stage can be performed between the first and the second, in which, after the ionic irradiation process, the substrate is subjected to a selective acid attack in order to eliminate part of the exposed material, being able to apply as many ionic irradiation processes and acid attacks as necessary with the removal or replacement of different masks if required, until obtaining the three-dimensional structure with the desired topographic profiles on the Ti0 2 substrate.
- the time required for the dissolution of the affected Ti0 2 will depend on the concentration of the acid used. For example, a 20% volume HF solution will attack the entire volume susceptible to dissolution in 25 minutes at room temperature.
- the technique allows to concatenate several processes of ionic irradiation and subsequent chemical attack to increase the depth of the treated areas.
- certain type procedures can be carried out or facilitated Physical, chemical, biological, biophysical, biochemical, etc. These processes can be carried out directly on the structures themselves or on functionalized structures by deposition of other materials. As examples we can indicate the adhesion of oligonucleotides to at least one of these structures and the cell support on them.
- the biosensor obtained from the deposit of biological matter on the substrate of monocrystalline titanium dioxide in the rutile phase can be used for the study of specific interactions by depositing, on, the entire surface or at least one of the three-dimensional structures where it has been the deposition of the biological material, of an oligonucleotide complementary to that adhered to the substrate in the second stage, by examination with AFM or fluorescence signal if the complementary oligonucleotides are equipped with fluorescent markers.
- each structure or group of structures can be adapted to particular needs, as an example of an isolated and non-limiting structure, square, rectangle, circle or ellipse.
- a particular aspect of the invention is that the biosensor obtained by said method allows it to be illuminated from the bottom base of the substrate.
- This aspect is a crucial advantage for its compatibility with usual detection techniques by means of optical microscopy, such as a cell proliferation examination or analysis with confocai microscopy, and which other substrates do not possess.
- biosensor obtained by the process of the invention is given by its resistance to high temperatures, less than 450 ° C and chemical stability, which gives it the ability to reuse by cleaning it with organic solvents, such as acetone, with solutions. aggressive, such as H 2 S0 4: H 2 0 2 (1: 1), also allowing autoclaving processes. These properties of resistance to sterilization and cleaning processes confer reuse capabilities, which reduces the cost of operation. ,
- Figure 1 shows a diagram of the procedure for obtaining the biosensor with an intermediate stage of acid attack.
- FIG. 2 shows a scheme of the process of the invention without intermediate acid attack stage
- the manufacturing process of the biosensor of the invention comprises:
- biological material (4) selected from oligonucleotides, enzymes; organic proteins or molecules
- an intermediate stage (C) can be carried out between the first and the second stage, as shown in Figure 1, in which an acid attack is carried out on the substrate of " ⁇ 2 irradiated ionically (2), giving rise to a plurality of wells (7) in which the acid attack itself does not eliminate all the " amorphous ⁇ 2 (5) obtained from the irradiation of the first stage, as can be seen in Figure 1.
- the biological material that it is deposited in the second stage it is still deposited on the amorphous Ti0 2 (5) obtained from the irradiation.
- the method described in the previous lines has been applied in order to verify that the invention has the ability to adhere oligonucleotides in irradiated areas against non-adhesion to non-irradiated areas.
- a 50 base length deoxyoligonucleotide corresponding to the cDNA derived from the mRNA of the? -Actin gene SEQ, ID.
- monocrystalline substrates were used in the rutile phase with orientation ⁇ 100> and dimensions 10 x 5 x 0.5 mm 3 , with the two major surfaces polished to optical grade (MTI Corp .).
- the areas exposed to irradiation were obtained by covering part of one of them by means of a mask '.
- the mask consisted of a TEM type grid (Spi supplies Cu-400) and was immobilized to the surface by Crystaibond 509 thermo-reversible glue (Electron Microscopy. Sciences).
- the substrates were sterilized with wells by saturated steam autoclave for 20 minutes at 120 degrees Celsius and 1.0 atmospheres of pressure.
- a 50 base oligonucleotide solution microliter labeled at the 5 'end labeled with Cy 3 fluorochrome was applied to the corresponding substrates, at 10 micromolar concentration.
- Four replications were made of each trial.
- As a nonspecific fluorescence control another series of four replicas was used in which a microliter of sterile double-distilled water was deposited. The eight samples were incubated at 65 0 for 0 minutes to favor evaporation of the solvent from the solution.
- the eight samples were treated for 60 minutes with ultraviolet light of 254 nanometers in wavelength to favor the binding of the nucleotide to the substrate.
- ultraviolet light 254 nanometers in wavelength
- systematic washing of the samples in 8.3 molar urea solution is carried out to favor the removal of oligonucleotide not bound to the substrate.
- an image of the fluorescence emitted by the oligonucleotide is still taken. remains attached to the substrate. Fluorescence measurements were performed on a Typhoon 9210 Variable Mode Imager scanner with specific ImageQuant TL software (Amersham Biosciences). The analysis conditions were optimized to detect the fluorescence emission of the labeled oligonucleotide.
- the eight samples of treated substrate in which wells had been generated were selected. Four of them were used to deposit a microliter of fluorescently labeled oligonucleotide solution, at a concentration of ten micromolar. Four other samples were used as a control for nonspecific irradiation of the material at the fluorophore wavelength of! oligonucleotide In this second series, a microliter of sterile double-distilled water was deposited in each sample. The reason for using four replicates for each test is to rule out the possible variability between the different samples in order to see if the oligonucleotide has been effectively retained on the substrate due to the action of ultraviolet irradiation.
- the first fluorescence image obtained after sterilizing the samples demonstrates that there is no significant fluorescent emission in the sample, either in the treated area or in the untreated area.
- the successive images taken after each washing with 8.3 molar Urea solution a solution commonly used in hybridization assays of different nature as a nucleic acid denaturing agent, it is observed that the treated area specifically retains the oligonucleotide, since it is not Loses fluorescence signal after each wash. It is also noted that untreated areas do not retain the oligonucleotide.
- the method described in the previous example has been applied in order to verify that the biosensor obtained by the process of the invention has the capacity to support and immobilize cells on the lithographed surface.
- rutile phase monocrystalline substrates with orientation ⁇ 110> and dimensions 10 x 5 x 0.5 mm 3 were used , with the two major surfaces polished to optical grade (TI Corp .).
- the areas exposed to radiation were obtained by covering part of, one of them through a mask.
- the mask consisted of a grid commercial type TEM ⁇ Spi supplies Cu-400) and was immobilized to the surface using Crystalbond 509 thermo-reversible glue (Electron IVlicroscopy Sciences). The joint was subjected to an irradiation of Br +7 ions of 25 MeV to a creep of 1 - 0 14 cm "2.
- the mask was moved manually and a process of irradiation of Br +7 ions of 13 MeV 1 -10 14 cm "2 coh the objective of generating a structure of different heights and different from a regular pattern of wells.
- the mask was removed and the substrate was immersed in a 20% aqueous solution of hydrofluoric acid (HF) for 25 minutes to dissolve part of the areas affected by irradiation.
- HF hydrofluoric acid
- vascular smooth muscle cells isolated from rat aorta at a density of 40,000-60,000, were seeded in the overlapping wells in line and separated by virgin material walls of the manufactured biosensor.
- the cultures were grown on the supports using a DMEM culture medium with low glucose supplemented with 10% bovine fetal serum by volume.
- PBS phosphate buffered saline
- the immobilized and individualized cells may be used to simultaneously carry out the quantitative and qualitative analysis of biochemical, genetic and / or molecular parameters in a single biosensor.
- the quantification of the oxygen consumption of a cellular type in different experimental and / or logical pathophysio situations or the determination of patterns of expression and localization of different proteins or nucleic acids stands out.
- these biosensors will analyze the effect on oxygen consumption and the expression and / or localization of a protein or nucleic acid from as many treatments as wells with immobilized cells have been used in the assay.
- the biosensor understood as a support with cell immobilization capacity, will allow to analyze the effect of a treatment on the expression and / or localization of a number of proteins b genes equal to the number of wells with immobilized cells inside that the user have decided to employ.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
The invention relates to a method for producing biosensors that include a substrate of TiO2, that includes: a first stage of ionic irradiation of certain areas of a substrate of rutile monocrystalline titanium oxide, resulting in amorphous TiO2 in the areas of the irradiated substrate; a second stage of depositing a biological or chemical substance or matter on at least one of the areas of amorphous TiO2 produced in the preceding stage in order to manufacture microelectronic or biotechnology devices such a biological microarray or microchip.
Description
PROCEDIMIENTO DE OBTENCIÓN DE BIOSENSORES BIOSENSOR OBTAINING PROCEDURE
Cam o de la invención Cam or of the invention
La presente invención se engloba dentro del campo de la■ fabricación de dispositivos sobre un substrato, más concretamente, a la definición y preparación de superficies estructuradas con el objetivo de ser aplicables en procesos de análisis de sustancias en química y en biotecnología. The present invention falls within the field of manufacturing devices on a substrate, more specifically, to the definition and preparation of structured surfaces with the aim of being applicable in chemical analysis and biotechnology analysis processes.
En este último aspecto, y de forma más concreta la invención se relaciona, en general, con un procedimiento de obtención y aplicaciones de un biosensor basado en la inmovilización de moléculas o materiales biológicos sobre superficies de Ti02, pudiéndose ser aplicado en la detección y caracterización de moléculas de ácidos nucleicos en general y/o otras sustancias o compuestos, como células procarióticas (bacterias), células eucarióticas y virus de interés biotecnológico, biosanitario, clínico, veterinario, medioambiental, agrario o alimentario. In this last aspect, and more specifically the invention relates, in general, to a method of obtaining and applying a biosensor based on the immobilization of biological molecules or materials on Ti0 2 surfaces, and can be applied in the detection and characterization of nucleic acid molecules in general and / or other substances or compounds, such as prokaryotic cells (bacteria), eukaryotic cells and viruses of biotechnological, biosanitary, clinical, veterinary, environmental, agricultural or food interest.
Antecedentes de la invención Background of the invention
En el ámbito de la biotecnología ha supuesto un avance importante el desarrollo reciente de la tecnología de microarrays de distintos elementos biológicos como los anteriormente presentados, entre otros. Estos microarrays también son denominados chips o microchips. Según esta tecnología, miles de sondas moleculares con capacidad para reconocer específicamente moléculas diana de distinta naturaleza se pueden fijar covalentemente. a un soporte sólido (vidrio, nitrocelulosa, nylon etc.). Mediante estos microarrays se pueden realizar por ejemplo experimentos de expresión génica, estudios de polimorfismos de nucleótidos (SNPs), minisecuenciación y genotipado de microorganismos y de genes eucarióticos. Han sido aplicadas diferentes tecnologías para la fabricación de estos microarrays [Chun y cois., 2009; Yarmush y King, 2009; Barbulovic-Nad y cois., 2006; Truskett y Watts, 2006]. Sin embargo estas presentan limitaciones muy importantes como son la resolución de los mismos (que impide obtener arrays de muy alta densidad o nanoarrays) y el número de puntos de reconocimiento que pueden ser fabricados simultáneamente. Tales circunstancias se deben principalmente a la dificultad de inmovilizar los materiales biológicos, usualmente presentes en forma de dispersión líquida, sin que estos depósitos líquidos se superpongan entre sí. A esta dificultad se le añade la de depositar pequeños volúmenes de líquido de manera precisa a alta velocidad. En estas técnicas, se utilizan robots con agujas, microscopios de fuerza atómica (AFM) modificados o sellos elastoméricos que se impregnan con unas soluciones que
contienen el material biológico de interés y se ponen en contacto con el substrato receptor. Dichas soluciones se depositan en zonas precisas para facilitar su posibilidad de reacción con la superficie en las áreas de contacto. Para facilitar la deposición sin que se mezclen los líquidos sobre el substrato es posible recurrir a substratos dotados de patrones tridimensionales o pocilios donde depositar el material [WO 2007/011405; US 2008/0245109]. Sin embargo, con las actuales técnicas de fabricación y los materiales de estos substratos, usualmeñte basados en silicio o materiales poliméricos, la profundidad y las dimensiones de estos pocilios están limitadas por los métodos de obtención. Estos substratos presentan serias dificultades o limitaciones para su uso y su reutilización esto es: señal óptica, estabilidad química y física. En muchos casos la superficie de estos materiales está recubierta de otros para el anclaje del material biológico sobre su superficie o mejora de su reflectancia. In the field of biotechnology, the recent development of microarray technology of different biological elements such as those presented above, among others, has been an important development. These microarrays are also called chips or microchips. According to this technology, thousands of molecular probes capable of specifically recognizing target molecules of different nature can be covalently fixed. to a solid support (glass, nitrocellulose, nylon etc.). By means of these microarrays, for example gene expression experiments, nucleotide polymorphism studies (SNPs), micro-sequencing and genotyping of microorganisms and eukaryotic genes can be performed. Different technologies have been applied for the manufacture of these microarrays [Chun et al., 2009; Yarmush and King, 2009; Barbulovic-Nad et al., 2006; Truskett and Watts, 2006]. However, these have very important limitations such as their resolution (which prevents obtaining very high density arrays or nanoarrays) and the number of recognition points that can be manufactured simultaneously. Such circumstances are mainly due to the difficulty of immobilizing biological materials, usually present in the form of a liquid dispersion, without these liquid deposits overlapping each other. To this difficulty is added the deposit of small volumes of liquid accurately at high speed. In these techniques, robots are used with needles, modified atomic force microscopes (AFM) or elastomeric seals that are impregnated with solutions that They contain the biological material of interest and contact the receiving substrate. These solutions are deposited in precise areas to facilitate their possibility of reaction with the surface in the contact areas. To facilitate deposition without mixing the liquids on the substrate it is possible to resort to substrates provided with three-dimensional patterns or wells where the material can be deposited [WO 2007/011405; US 2008/0245109]. However, with the current manufacturing techniques and materials of these substrates, usually based on silicon or polymeric materials, the depth and dimensions of these wells are limited by the methods of production. These substrates present serious difficulties or limitations for their use and their reuse that is: optical signal, chemical and physical stability. In many cases the surface of these materials is covered with others for anchoring the biological material on its surface or improving its reflectance.
El dióxido de titanio es un material biocompatible, el cual ha sido estudiado como soporte para la adhesión de oligonucleótidos, virus y células entre otros. Este dióxido de titanio toma la forma de láminas delgadas, cubriendo otros materiales, o micro y nanopartículas, en forma aislada o recubriendo también otros materiales [WO 2007/009994; Bo Li y col. 2009]. Titanium dioxide is a biocompatible material, which has been studied as a support for the adhesion of oligonucleotides, viruses and cells among others. This titanium dioxide takes the form of thin sheets, covering other materials, or micro and nanoparticles, in isolation or also coating other materials [WO 2007/009994; Bo Li et al. 2009].
Las técnicas litográfícas más extendidas actualmente que permiten producir patrones tridimensionales con escalas por debajo de la miera, están basadas en haces focalizados de electrones (e-beam) o de iones (FIB) [C. J. Lo y col., 2006; D. Stein y col., 2002; H. Chang y col., 2006]. Los haces focalizados de electrones constituyen un paso intermedio en el proceso de generación de patrones tridimensionales sobre otros substratos, ya que producen materiales parcialmente modificados, normalmente polímeros, que posteriormente se eliminan mediante procesos químicos, con objeto de obtener patrones, que a su vez servirán como máscaras sobre otros materiales. La técnica de haces focalizados de iones citada en segundo lugar representa un método adecuado para ia generación de patrones tridimensionales directamente sobre los substratos, ya que usa como elemento activo un haz de iones que modifica y elimina partes sólidas del material. Sin embargo, en la actualidad esta técnica no resulta apropiada para su implementación a escala industrial debido al tiempo requerido para crear nanoestructuras sobre áreas extensas a escala macroscópica y a la baja relación de aspecto (profundidad / dimensión lateral) de las estructuras creadas. En esta técnica típicamente se emplean iones Ga de 10-50 keV de energía. Estos iones presentan una dispersión lateral notable a su paso por el material, debida a interacciones predominantes con los núcleos de los átomos del material. Como
consecuencia, estos iones quedan implantados a decenas de nanómetros de las estructuras creadas pudiendo originar fenómenos no deseados en estas. The most widespread lithographic techniques currently that allow three-dimensional patterns to be produced with scales below the mine, are based on focused beams of electrons (e-beam) or ions (FIB) [CJ Lo et al., 2006; D. Stein et al., 2002; H. Chang et al., 2006]. The focused beams of electrons constitute an intermediate step in the process of generating three-dimensional patterns on other substrates, since they produce partially modified materials, usually polymers, which are subsequently removed by chemical processes, in order to obtain patterns, which in turn will serve like masks over other materials. The ion-focused beam technique cited in the second place represents a suitable method for the generation of three-dimensional patterns directly on the substrates, since it uses an ion beam as an active element that modifies and eliminates solid parts of the material. However, at present this technique is not appropriate for its implementation on an industrial scale due to the time required to create nanostructures over large areas on a macroscopic scale and the low aspect ratio (depth / lateral dimension) of the structures created. In this technique, Ga ions of 10-50 keV of energy are typically employed. These ions have a notable lateral dispersion as they pass through the material, due to predominant interactions with the nuclei of the atoms of the material. How consequently, these ions are implanted tens of nanometers of the created structures and can cause unwanted phenomena in them.
El uso de máscaras en técnicas de implantación iónica es muy habitual en la industria de semiconductores. Una de las alternativas mas recientes es la llamada Litografía por Proyección de Iones (Ion Proyection Lithography, IPL) [F. Watt y col., 2005], en la que se utilizan máscaras litográficas de no contacto (stencil masks) ΓΤ. Shibata y col., 2002] y una óptica electromagnética reductora que focaliza el haz de iones. Sin embargo, esta técnica presenta dificultades por el hecho de que debe mantener la alineación entre el haz de iones, la máscara y el substrato [A. A. Tseng. 2005).], para lo que recurre a sistemas externos de alineamiento y reducción de vibraciones. Este sistema litográfico ha sido empleado con iones en el rango energético de los cientos de keV. No tenemos conocimiento, hasta el momento, de su utilización con iones de mayor energía. The use of masks in ion implantation techniques is very common in the semiconductor industry. One of the most recent alternatives is the so-called Ion Projection Lithography (IPL) [F. Watt et al., 2005], in which lithographic masks of non-contact (stencil masks) are used ΓΤ. Shibata et al., 2002] and a reducing electromagnetic optic that focuses the ion beam. However, this technique presents difficulties due to the fact that it must maintain the alignment between the ion beam, the mask and the substrate [A. A. Tseng. 2005).], For which it relies on external systems of alignment and vibration reduction. This lithographic system has been used with ions in the energy range of hundreds of keV. We have no knowledge, so far, of its use with higher energy ions.
Por otra parte es posible usar iones con un rango energético de MeV para generar modificaciones a su paso por los materiales, en los que genera zonas con características distintas a las obtenidas por iones de menor energía. Estas modificaciones se deben al favoreci miento de interacciones electrónicas de los iones con los electrones de los átomos del material. Estos iones de rango energético de MeV, denominados en la bibliografía científica iones pesados rápidos (R. Spohr, "Ion tracks and microtechnoiogy. Basic principies and applications", Vieweg, Wiesbaden, (1990)) presentan a su paso por el material una desviación lateral mínima al inicio de su camino a través del material, incluyendo por tanto la sección de interés a emplear en los procesos laográficos, que es del orden de una tercera parte del alcance del ión en el material. La profundidad máxima a la que los iones quedan detenidos es elevada, por lo que su alcance constituye otra ventaja del uso de iones pesados con energía de MeV frente a las estructuras creadas con iones de menor energía. Los iones implantados de esta forma permanecen a distancias del orden del micrómetro de las superficies de las estructuras generadas. Estas estructuras, en la práctica, resultan por tanto exentas de la inclusión de los iones utilizados. La irradiación de iones pesados rápidos ha sido empleada satisfactoriamente en las últimas décadas para inducir modificaciones aisladas en materiales sensibles. Cuándo un ión pasa por el materia!, induce una traza de material modificado o trazas latentes. Estas modificaciones al ser eliminadas mediante ataques químicos, generan poros sobre materiales tales como polímeros, aleaciones y cristales. La irradiación con iones pesados rápidos también se ha utilizado para la generación de nanoestructuras en
diversos materiales sensibles a esta radiación sin ser necesaria la eliminación del material afectado. La dificultad para seleccionar la zona a radiar a escalas por debajo de la miera puede resolverse sin recurrir a la focalización del haz de iones usando máscaras litográficas sólidas que restrinjan las zonas expuestas a ¡a irradiación. On the other hand it is possible to use ions with an energy range of MeV to generate modifications as they pass through the materials, in which it generates areas with different characteristics than those obtained by ions of lower energy. These modifications are due to the favor of electronic interactions of the ions with the electrons of the atoms of the material. These energy-range ions of MeV, referred to in the scientific literature as fast heavy ions (R. Spohr, "Ion tracks and microtechnoiogy. Basic principies and applications", Vieweg, Wiesbaden, (1990)) present a deviation through the material minimum lateral at the beginning of its path through the material, therefore including the section of interest to be used in the laographic processes, which is of the order of one third of the scope of the ion in the material. The maximum depth at which the ions are detained is high, so that their scope constitutes another advantage of the use of heavy ions with MeV energy over structures created with less energy ions. The ions implanted in this way remain at distances of the order of the micrometer from the surfaces of the generated structures. These structures, in practice, are therefore exempt from the inclusion of the ions used. The irradiation of fast heavy ions has been used successfully in recent decades to induce isolated modifications in sensitive materials. When an ion passes through matter !, it induces a trace of modified material or latent traces. These modifications, when eliminated by chemical attacks, generate pores on materials such as polymers, alloys and crystals. Irradiation with fast heavy ions has also been used for the generation of nanostructures in various materials sensitive to this radiation without removing the affected material. The difficulty in selecting the area to radiate at scales below the mine can be resolved without resorting to ion beam targeting using solid lithographic masks that restrict the areas exposed to irradiation.
Los efectos de la irradiación de dióxido de titanio monocristalino en fase rutilo y otros materiales con iones pesados en el rango de MeV para la generación de trazas latentes, tanto aisladas como superpuestas, así como su posterior ataque para generar micro y nanoestructurás con profundidades de varios micrómetros y con relaciones de aspecto (profundidad-dimensión lateral) superiores a 25, han sido estudiadas en profundidad por diversos autores y recogidas por .Sanz, "Nanoestructurás basadas en Ti02 y ZnO obtenidas mediante irradiación iónica", Tesis Doctoral, Universidad Autónoma de Madrid, Marzo 2009 (http://hdl.handle.net/10261/22699). The effects of irradiation of monocrystalline titanium dioxide in the rutile phase and other materials with heavy ions in the MeV range for the generation of latent traces, both isolated and overlapping, as well as their subsequent attack to generate micro and nanostructures with depths of several micrometers and with aspect ratios (depth-lateral dimension) greater than 25, have been studied in depth by various authors and collected by. Sanz, "Nanostructures based on Ti0 2 and ZnO obtained by ionic irradiation", Doctoral Thesis, Autonomous University of Madrid, March 2009 (http://hdl.handle.net/10261/22699).
En estos trabajos se describen e indican los valores de energía umbral de los iones empleados, fluencia para conseguir una amortización volumétrica del material y parámetros para su disolución, tanto en regímenes de traza aislada como en superposición de estas. Los volúmenes de dióxido de titanio afectado por ia irradiación tienen carácter amorfo y no todo este material afectado puede ser eliminado mediante un ataque ácido selectivo. Este material amortizado presenta cualidades distintas al obtenido por otros métodos de síntesis tanto químicos como físicos. These works describe and indicate the threshold energy values of the ions used, creep to achieve a volumetric amortization of the material and parameters for its dissolution, both in isolated trace regimes and in superposition of these. The volumes of titanium dioxide affected by irradiation are amorphous and not all of this affected material can be removed by a selective acid attack. This amortized material has qualities different from that obtained by other methods of synthesis, both chemical and physical.
Por otro lado, el substrato descrito en US 2006157873 permite el depósito y la fijación de múltiples sustancias tras la funcionalización química de su superficie basada en Si, pero su falta de transparencia dificulta su uso en exámenes de microscopía. Sumada a esta capacidad se encuentra la relativa a la no emisión de fluorescencia del óxido de titanio en el rango de longitudes de onda normalmente empleadas por los marcadores biológicos habituales. On the other hand, the substrate described in US 2006157873 allows the deposition and fixation of multiple substances after the chemical functionalization of its Si-based surface, but its lack of transparency hinders its use in microscopy examinations. Added to this capacity is the one related to the non-emission of titanium oxide fluorescence in the range of wavelengths normally used by the usual biological markers.
Así mismo los substratos dotados de pocilios obtenidos mediante litografía óptica (WO20100 1939) no tienen la capacidad de fijación de sustancias biológicas y emiten fluorescencia. Likewise, substrates equipped with wells obtained by optical lithography (WO20100 1939) do not have the ability to fix biological substances and emit fluorescence.
Descripción de la invención Description of the invention
La presente invención trata de resolver los problemas derivados de la deposición de materiales sobre substratos mediante un proceso de litografía con iones sobre substratos de dióxido de titanio que genera estructuras tridimensionales con distintas características físico-químicas. Las. zonas expuestas a la irradiación presentan la capacidad por sí mismas de ser funcionales para la inmovilización o
soporte de materiales químico o biológico, evitando el solapamiento de éstos y facilitando su examen mediante el uso de técnicas de microscopía óptica, fluorescencia y/o AF . The present invention tries to solve the problems derived from the deposition of materials on substrates by means of a lithography process with ions on titanium dioxide substrates that generates three-dimensional structures with different physical-chemical characteristics. The. areas exposed to irradiation have the capacity themselves to be functional for immobilization or support of chemical or biological materials, avoiding their overlapping and facilitating their examination through the use of optical microscopy, fluorescence and / or AF techniques.
El uso de irradiación iónica para la generación de estructuras en óxido de titanio amorfo y su utilización como elemento en cristales fotónicos es conocido, sin embargo, nada hace evidenciar del estado de la técnica su aplicación para la deposición de material biológico o químico. . The use of ionic irradiation for the generation of structures in amorphous titanium oxide and its use as an element in photonic crystals is known, however, nothing shows the state of the art its application for the deposition of biological or chemical material. .
El sustrato de Ti02 irradiado de la invención da lugar a estructura amorfa del Ti02 con un comportamiento hidrofílico, frente al comportamiento hidrofóbico del material no irradiado, así como con una gran capacidad para el soporte de material biológico, y la inmovilización dé material químico y biológico. Estas características y capacidades no resultan evidentes dadas las variaciones que presenta la estructura amorfa frente a las anteriormente obtenidas mediante otros procesos tanto químicos como físicos. Además de esto, las propiedades ópticas del material, transparencia en longitudes de onda del espectro visible y el hecho de no emitir fluorescencia en las longitudes de onda en la que emiten los marcadores fluorescentes comúnmente empleados para el mareaje de material biológico, hacen al óxido de titanio más adecuado que otros materiales usados como soporte como, vidrio, Si, Si02 y polímeros. Como ejemplo para ilustrar estas ventajas, podemos indicar la posibilidad de iluminar la superficie opuesta a la superficie donde se ha realizado el depósito de material (iluminación en transmisión). Esto simplifica en gran medida el proceso de iluminación y detección al estar las fuentes de luz y los detectores situados en lugares opuestos, por ejemplo pero no limitativo en exámenes con microscopía confocal. The irradiated Ti0 2 substrate of the invention gives rise to the amorphous structure of Ti0 2 with a hydrophilic behavior, as opposed to the hydrophobic behavior of the non-irradiated material, as well as with a great capacity for the support of biological material, and the immobilization of chemical material and biological These characteristics and capacities are not evident given the variations presented by the amorphous structure compared to those previously obtained through other chemical and physical processes. In addition to this, the optical properties of the material, transparency in wavelengths of the visible spectrum and the fact of not emitting fluorescence in the wavelengths in which they emit the fluorescent markers commonly used for the marking of biological material, make the oxide of Titanium more suitable than other materials used as support such as glass, Si, Si0 2 and polymers. As an example to illustrate these advantages, we can indicate the possibility of illuminating the surface opposite the surface where the material deposit was made (lighting in transmission). This greatly simplifies the process of illumination and detection by being the light sources and the detectors located in opposite places, for example but not limiting in examinations with confocal microscopy.
La presente invención se refiere a un método de fabricación de un biosensor que puede aplicarse a múltiples exámenes, detecciones y reacciones de muestras biológicas y/o químicas con alta eficacia, alta fidelidad, bajo coste y compatibilidad entre técnicas de detección habituales. The present invention relates to a method of manufacturing a biosensor that can be applied to multiple tests, detections and reactions of biological and / or chemical samples with high efficiency, high fidelity, low cost and compatibility between usual detection techniques.
El biosensor obtenido por el procedimiento de la invención es un substrato de óxido de titanio expuesto total o parcialmente de su superficie a al menos un proceso de irradiación de iones pesados en el rango energético de MeV, en adelante irradiación iónica, que sustenta o al que queda adherido uno o varios depósitos de material químico ó biológico que pueden realizarse tanto sobre zonas del substrato de óxido'de titanio vírgenes, como en aquellas que han sido modificadas tanto superficial como volumétricamente mediante la irradiación iónica y expuestas o no al efecto de un ataque químico que elimina parte de estos volúmenes, 1
El procedimiento comprende las siguientes etapas: The biosensor obtained by the process of the invention is a titanium oxide substrate totally or partially exposed from its surface to at least one process of heavy ion irradiation in the energy range of MeV, hereinafter ionic irradiation, which sustains or to which is adhered one or more deposits of chemical material or biological that may be performed both on regions of the substrate oxide 'virgin titanium, and those which have been modified both surface volumetrically by ion irradiation and exposed or not the effect of an attack chemical that eliminates part of these volumes, 1 The procedure comprises the following stages:
1) Irradiación iónica 1) Ionic irradiation
Una primera etapa de irradiación iónica sobre determinadas zonas de un sustrato de óxido de titanio monocristalino en fase rutilo, dando lugar a T¡02 amorfo en las zonas del sustrato irradiado. A first stage of ionic irradiation on certain areas of a rutile phase monocrystalline titanium oxide substrate, giving rise to amorphous T0 2 in the areas of the irradiated substrate.
El tipo de irradiación puede ser de cualquier ión pesado acelerado, entendiendo por ión pesado cualquier masa superior a la del H, que deposite por medio de interacciones ifielásticas, con ta nube electrónica de los átomos, al menos en superficie, una energía superior a 5,1 KeV por nm recorrido. The type of irradiation can be of any accelerated heavy ion, heavy ion being understood as any mass greater than that of H, which deposits by means of ialastic interactions, with the electron cloud of atoms, at least on the surface, an energy greater than 5 , 1 KeV per nm route.
La irradiación, a su paso por un substrato de Ti02 monocristalino en fase rutilo, generará un volumen de material dañado denominado traza. La forma de esta traza puede ser continua o discontinua dependiendo de la energía del ión, en un caso general puede ser asociada a una forma cilindrica, cuyo . radio y profundidad dependerá de la energía total depositada por el ión. Si la irradiación iónica supera una fluencia umbral, esto, es número de iones que atraviesan una superficie, se logra la superposición de estas trazas, en principio singulares, formándose un volumen conexo susceptible de ser disuelto mediante un ataque químico compuesto por una disolución acuosa de HF. Irradiation, as it passes through a substrate of monocrystalline Ti0 2 in the rutile phase, will generate a volume of damaged material called trace. The shape of this trace can be continuous or discontinuous depending on the energy of the ion, in a general case it can be associated with a cylindrical shape, whose. radius and depth will depend on the total energy deposited by the ion. If the ion irradiation passes a threshold fluence, this is the number of ions passing through an area, the superposition of these traces is achieved in singular principle, forming a connected volume capable of being dissolved by etching consisting of an aqueous solution of HF
El valor de la fluencia umbral necesaria depende de la energía del ión empleado. Por ejemplo, para irradiaciones con iones Br de energías comprendidas desde 9 MeV hasta 50 eV, la fluencia umbral debe ser igual o superior a 8-1013 cm'z.The value of the required threshold creep depends on the energy of the ion used. For example, for irradiation with Br ions of energies ranging from 9 MeV to 50 eV, the threshold creep must be equal to or greater than 8-10 13 cm 'z .
Sin embargo experimentos realizados con iones de mayor energía, por ejemplo ionesHowever experiments performed with higher energy ions, for example ions
Cu de 84.5 MeV, muestran fluencias umbrales de 5-1013 cm"2. Cu of 84.5 MeV, show threshold fluences of 5-10 13 cm "2 .
Para la que la radiación iónica sea en unas zonas específicas del sustrato de "ΠΟ2, se realiza una etapa previa de fijación sobre el substrato de óxido de titanio, de al menos un elemento que actúen como máscara cuya diferencia de densidad y o grosores de motivos permita un frenado selectivo de los iones. For which the ionic radiation is in specific areas of the substrate of " ΠΟ2, a previous stage of fixation is carried out on the titanium oxide substrate, of at least one element that acts as a mask whose density difference and thickness of motifs allow selective braking of ions.
Cualquier material capaz de frenar un flujo de iones puede ser empleado para componer la máscara a utilizar, dependiendo de la capacidad de frenado deseada. Son preferibles los materiales de carácter sólido que resistan el flujo iónico sin sufrir altas deformaciones, por ejemplo metales como Au, Cu, Cu/Ni, óxidos como Al203) Any material capable of slowing an ion flow can be used to compose the mask to be used, depending on the desired braking capacity. Solid materials that resist ionic flow without high deformations are preferred, for example metals such as Au, Cu, Cu / Ni, oxides such as Al 2 0 3)
S1O2. Es posible usar máscaras espacialmente heterogéneas de distintos materiales para aprovechar las distintas capacidades de frenado de cada material. Dentro de los materiales se prefieren los metales o las máscaras cuya primera capa expuesta al flujo de iones sea de carácter metálico, para difundir más fácilmente el calor generado. La
fijación de la máscara al substrato de óxido de titanio puede ser mediante elementos físicos o químicos. S1O2. It is possible to use spatially heterogeneous masks of different materials to take advantage of the different braking capabilities of each material. Among the materials, metals or masks whose first layer exposed to the flow of ions are of a metallic nature are preferred, to more easily diffuse the generated heat. The Fixation of the mask to the titanium oxide substrate can be by physical or chemical elements.
2) Depósito de sustancia o material de carácter químico o biofógico '. 2) Deposit of chemical or biological substance or material.
Una segunda etapa de depósito de una sustancia o un material seleccionado entre químico o biológico, como por ejemplo una disolución química de moléculas orgánicas o una suspensión de células, oligonucleótidos, ácidos grasos o proteínas incluyendo enzimas y anticuerpos,, sobre toda la superficie o al menos en una de las estructuras tridimensionales generadas de el Ti02 amorfo obtenido. A second stage of deposit of a substance or material selected from chemical or biological, such as a chemical solution of organic molecules or a suspension of cells, oligonucleotides, fatty acids or proteins including enzymes and antibodies, over the entire surface or at less in one of the three-dimensional structures generated from the amorphous Ti0 2 obtained.
3) Fijación opcional por UV. 3) Optional UV fixation.
El material de carácter químico o biológico depositado en la segunda etapa puede ser fijado en una tercera etapa con luz ultravioleta para la adhesión de, por ejemplo, oligonucleótidos. The chemical or biological material deposited in the second stage can be fixed in a third stage with ultraviolet light for the adhesion of, for example, oligonucleotides.
4) Ataque ácido intermedio entre la primera y segunda etapa 4) Intermediate acid attack between the first and second stage
Las zonas sometidas a la irradiación iónica pueden ser expuestas posteriormente al efecto de, al menos, un ataque químico que elimine parte de los volúmenes correspondientes a esas zonas para generar así un patrón tridimensional en profundidad, así, opcionalmente, se puede realizar una etapa intermedia entre la primera y la segunda, en la que, tras el proceso de irradiación iónica, el substrato se somete a un ataque ácido selectivo con objeto eliminar parte del material expuesto, pudiéndo aplicarse cuantos procesos de irradiación iónica y ataques ácidos sean necesarios con la retirada o sustitución de diferentes máscaras si se requiriera, hasta la obtención de la estructura tridimensional con los perfiles topográficos deseados sobre el substrato de Ti02. El tiempo necesario para la disolución del Ti02 afectado dependerá de la concentración del ácido empleado. Por ejemplo, una disolución de HF al 20% en volumen atacará la totalidad del volumen susceptible de disolución en 25 minutos a temperatura ambiente. The zones subjected to ionic irradiation can be subsequently exposed to the effect of at least one chemical attack that eliminates part of the volumes corresponding to those zones to generate a three-dimensional pattern in depth, so, optionally, an intermediate stage can be performed between the first and the second, in which, after the ionic irradiation process, the substrate is subjected to a selective acid attack in order to eliminate part of the exposed material, being able to apply as many ionic irradiation processes and acid attacks as necessary with the removal or replacement of different masks if required, until obtaining the three-dimensional structure with the desired topographic profiles on the Ti0 2 substrate. The time required for the dissolution of the affected Ti0 2 will depend on the concentration of the acid used. For example, a 20% volume HF solution will attack the entire volume susceptible to dissolution in 25 minutes at room temperature.
Las profundidades obtenidas tras eí ataque ácido, para fluencias iguales o superiores a 8-1013cnrf2 de iones Br con distintas energías sobre substratos de Ti02 monocristalino en fase rutilo independientemente de su orientación de -superficie se recogen en la siguiente tabla: The depths obtained after the acid attack, for creep equal to or greater than 8-10 13 cnrf 2 of Br ions with different energies on substrates of monocrystalline Ti0 2 in the rutile phase regardless of their surface orientation are shown in the following table:
Energía (MeV) Profundidad Energy (MeV) Depth
9 10 nm 9 10 nm
13 700 nm 13 700 nm
25 2000 nm 25 2000 nm
50 4000 nm
La técnica permite concatenar varios procesos de irradiación iónica y ataque químico posterior para aumentar la profundidad de las zonas tratadas. 50 4000 nm The technique allows to concatenate several processes of ionic irradiation and subsequent chemical attack to increase the depth of the treated areas.
En o sobre las micro ó nanoestructuras obtenidas tras la irradiación iónica, tales como pilares, o tas obtenidas tras al menos alguno de los procesos de irradiación iónica y ataque químico posterior tales como canales o pocilios, pueden llevarse a cabo ó facilitarse ciertos procedimientos de tipo físico, químico, biológico, biofísico, bioquímico, etc. Estos procesos pueden llevarse a cabo directamente sobre las estructuras mismas o sobre estructuras funcionalizadas mediante la deposición de otros materiales. A modo de ejemplos podemos indicar la adhesión de oligonucleótidos al menos a una de estas estructuras y el soporte de células sobre estas mismas. In or on the microstructures or nanostructures obtained after ionic irradiation, such as pillars, or rates obtained after at least some of the ionic irradiation and subsequent chemical attack processes such as channels or wells, certain type procedures can be carried out or facilitated Physical, chemical, biological, biophysical, biochemical, etc. These processes can be carried out directly on the structures themselves or on functionalized structures by deposition of other materials. As examples we can indicate the adhesion of oligonucleotides to at least one of these structures and the cell support on them.
El biosensor obtenido del depósito de materia biológica sobre el sustrato de dióxido de titanio monocristalino en fase rutilo, puede ser utilizado para el estudio de interacciones específicas mediante el depósito, sobre, toda la superficie o al menos en una de las estructuras tridimensionales donde se ha realizado la deposición del material biológico, de un oligónucieótido complementario al adherido al substrato en la segunda etapa, mediante su examen con AFM o señal de fluorescencia si los oligonucleótidos complementarios están dotados de marcadores fluorescentes. The biosensor obtained from the deposit of biological matter on the substrate of monocrystalline titanium dioxide in the rutile phase, can be used for the study of specific interactions by depositing, on, the entire surface or at least one of the three-dimensional structures where it has been the deposition of the biological material, of an oligonucleotide complementary to that adhered to the substrate in the second stage, by examination with AFM or fluorescence signal if the complementary oligonucleotides are equipped with fluorescent markers.
Las formas de cada estructura o grupo de estructuras pueden ser adaptadas a ias necesidades particulares, a modo de ejemplo de estructura aislada y no limitativa, cuadrado, rectángulo, círculo o elipse. The shapes of each structure or group of structures can be adapted to particular needs, as an example of an isolated and non-limiting structure, square, rectangle, circle or ellipse.
Un aspecto particular de !a invención es que el biosensor obtenido por el citado procedimiento permite que pueda ser iluminado desde la base inferior del substrato. Este aspecto es una ventaja crucial para su compatibilidad con técnicas de detección habituales mediante microscopía óptica, como por ejemplo, a examen de proliferación celular o análisis con microscopía confocai, y que otros substratos no poseen. A particular aspect of the invention is that the biosensor obtained by said method allows it to be illuminated from the bottom base of the substrate. This aspect is a crucial advantage for its compatibility with usual detection techniques by means of optical microscopy, such as a cell proliferation examination or analysis with confocai microscopy, and which other substrates do not possess.
Otro aspecto particular del biosensor obtenido por el procedimiento de la invención, viene dada por su resistencia a temperaturas elevadas, menores a 450°C y estabilidad química, lo que le otorga capacidad de reutilización mediante su limpieza mediante disolventes orgánicos, como acetona, con disoluciones agresivas, como por ejemplo H2S04:H202 (1:1), permitiendo también procesos de autoclavado. Estas propiedades de resistencia a procesos de esterilización y limpieza le confieren capacidades de reutilización, lo que reduce el coste de operación. , Another particular aspect of the biosensor obtained by the process of the invention is given by its resistance to high temperatures, less than 450 ° C and chemical stability, which gives it the ability to reuse by cleaning it with organic solvents, such as acetone, with solutions. aggressive, such as H 2 S0 4: H 2 0 2 (1: 1), also allowing autoclaving processes. These properties of resistance to sterilization and cleaning processes confer reuse capabilities, which reduces the cost of operation. ,
Breve descripción de los dibujos Brief description of the drawings
A continuación se pasa a describir de manera muy breve una serie de dibujos que. ayudan a comprender mejor la invención y que se relacionan expresamente con
una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta. A series of drawings will be described very briefly below . help to better understand the invention and that expressly relate to an embodiment of said invention presented as a non-limiting example thereof.
La Figura 1 muestra un esquema dei procedimiento de obtención del biosensor con una etapa intermedia de ataque ácido. Figure 1 shows a diagram of the procedure for obtaining the biosensor with an intermediate stage of acid attack.
La Figura 2 muestra un esquema del procedimiento de la invención sin etapa intermedia de ataque ácido Figure 2 shows a scheme of the process of the invention without intermediate acid attack stage
En las figuras anteriormente citadas se identifican una serie de referencias que corresponden a los elementos indicados a continuación, sin que ello suponga carácter limitativo alguno: In the aforementioned figures, a series of references are identified that correspond to the elements indicated below, without implying any limiting character:
1. - biosensor 1. - biosensor
2. - sustrato de Ti02 litografiado con iones pesados 2. - Ti0 2 substrate lithographed with heavy ions
3. - zonas expuestas a irradiación iónica 3. - areas exposed to ionic irradiation
4. - depósito biológico , 4. - biological deposit,
5. - Ti02 amorfo 5. - Ti0 2 amorphous
6. - pozo 6. - well
Descripción detallada de un modo de realización Detailed description of one embodiment
Tal y como puede verse en la figura 2, el procedimiento de fabricación del biosensor de la invención comprende: As can be seen in Figure 2, the manufacturing process of the biosensor of the invention comprises:
una primera etapa (A) en la que se aplica una irradiación iónica sobre determinadas zonas (3) de un substrato -de ΤΊΟ2 moriocristalino en fase rutilo dando lugar a T1O2 amorfo (5), a first stage (A) in which an ionic irradiation is applied on certain areas (3) of a substrate-of mor2 moriocrystalline in rutile phase giving rise to amorphous T1O2 (5),
- una segunda etapa (B) de deposición de material biológico (4) sobre el Ti02 amorfo (5) obtenido en la etapa . primera, seleccionado entre oligonucleótidos, enzimas; proteínas o moléculas orgánicas - a second stage (B) of deposition of biological material (4) on the amorphous Ti0 2 (5) obtained in the stage . first, selected from oligonucleotides, enzymes; organic proteins or molecules
Opcionalmente se puede realizar una etapa intermedia (C) entra la primera y la segunda etapa, como se muestra en la figura 1, en la que se realiza un ataque ácido sobre el substrato de "ΠΟ2 irradiado iónicamente (2), dando lugar a una pluralidad de pocilios (7) en los que el propio ataque ácido no elimina todo el "ΠΟ2 amorfo (5) obtenido de la irradiación de la primera etapa, tal y como puede verse en la figura 1. De esta manera, el material biológico que se deposita en la segunda etapa, se sigue depositando sobre el Ti02 amorfo (5) obtenido de la irradiación. Optionally an intermediate stage (C) can be carried out between the first and the second stage, as shown in Figure 1, in which an acid attack is carried out on the substrate of " ΠΟ2 irradiated ionically (2), giving rise to a plurality of wells (7) in which the acid attack itself does not eliminate all the " amorphous ΠΟ2 (5) obtained from the irradiation of the first stage, as can be seen in Figure 1. In this way, the biological material that it is deposited in the second stage, it is still deposited on the amorphous Ti0 2 (5) obtained from the irradiation.
A modo de ejemplo de realización, se ha aplicado el método descrito en las líneas anteriores con él fin de comprobar que ia invención posee la capacidad de adhesión de oligonucleótidos en zonas irradiadas frente a la no adhesión sobre las zonas no irradiadas.
Para este propósito, un deoxioligonucleótido de 50 bases de longitud correspondiente al ADNc derivado del ARNm del gen de la ?-actina (SEQ, ID. NO:1 ) de rata fue marcado en ei extremo 5' con una molécula fluorescente, concretamente el fluorocromo Cy3. Tras resuspender el oligonucleótido marcado en agua estéril libre de nucleasas, alícuotas de un microlitro a concentración diez micromolar fueron depositadas en substratos estructurados en forma de pocilios. As an exemplary embodiment, the method described in the previous lines has been applied in order to verify that the invention has the ability to adhere oligonucleotides in irradiated areas against non-adhesion to non-irradiated areas. For this purpose, a 50 base length deoxyoligonucleotide corresponding to the cDNA derived from the mRNA of the? -Actin gene (SEQ, ID. NO: 1) of rat was labeled at the 5 'end with a fluorescent molecule, specifically the fluorochrome Cy3 After resuspending the labeled oligonucleotide in sterile nuclease-free water, aliquots of a microliter at a concentration of ten micromolar were deposited on structured substrates in the form of wells.
Para la generación de los pocilios sobre el substrato de dióxido de titanio sé emplearon substratos monocristalinos en fase rutilo con orientación <100> y de dimensiones 10 x 5 x 0,5 mm3, con las dos superficies mayores pulidas hasta grado óptico (MTI Corp.). Las zonas expuestas a la irradiación fueron obtenidas cubriendo parte de una de ellas mediante una máscara'. La máscara consistía en una rejilla tipo TEM (Spi supplies Cu-400) y fue inmovilizada a la superficie mediante pegamento termorreversible Crystaibond 509 (Electron Microscopy . Sciences). Se sometió al conjunto a una irradiación de iones Br+r de 25 MeV hasta una fluencia de 1 -1014 cm"2 para obtener üna amorfización volumétrica susceptible de ser disuelta completamente hasta los 2200 nm. Este proceso induce una amorfización de las zonas expuestas y por consiguiente una expansión volumétrica del material creando una elevación topográfica de estas frente a las no afectadas de 175 nm. Tras este proceso se procedió a retirar la máscara y el substrato fue sumergido en una disolución acuosa de ácido fluorhídrico (HF) al 20% en volumen, durante 25 minutos para disolver parte de las zonas afectadas por la irradiación. For the generation of the wells on the titanium dioxide substrate, monocrystalline substrates were used in the rutile phase with orientation <100> and dimensions 10 x 5 x 0.5 mm 3 , with the two major surfaces polished to optical grade (MTI Corp .). The areas exposed to irradiation were obtained by covering part of one of them by means of a mask '. The mask consisted of a TEM type grid (Spi supplies Cu-400) and was immobilized to the surface by Crystaibond 509 thermo-reversible glue (Electron Microscopy. Sciences). The whole was subjected to an irradiation of Br + r ions of 25 MeV to a fluence of 1-10 14 cm "2 to obtain a volumetric amorphization capable of being completely dissolved until 2200 nm. This process induces an amorphization of the exposed areas and therefore a volumetric expansion of the material creating a topographic elevation of these against the unaffected 175 nm. After this process the mask was removed and the substrate was immersed in a 20% aqueous solution of hydrofluoric acid (HF) in volume, for 25 minutes to dissolve part of the areas affected by irradiation.
Antes de depositar las muestras de oligonucleótido, se esterilizaron los substratos con pocilios mediante autoclave de vapor saturado durante 20 minutos a 120 grados centígrados y 1,0 atmósferas de presión. A continuación se aplicaron en los substratos correspondientes un microlitro de solución de oligonucleótido de 50 bases marcado en el extremo 5' con fluorocromo Cy3, a concentración 10 micromolar. De cada ensayo se hicieron cuatro réplicas. Como control de fluorescencia inespecífica, se utilizó otra serie de cuatro réplicas en las que de depositó un microlitro de agua bidestilada estéril. Las ocho muestras se incubaron a 65 0 durante 0 minutos para favorecer la evaporación del solvente de la solución. A continuación, las ocho muestras fueron tratadas durante 60 minutos con luz ultravioleta de 254 nanómetros de longitud de onda para favorecer la unión del nucleótido al substrato. Tras la irradiación, se procede a realizar lavados sistemáticos de las muestras en solución de urea 8,3 molar para favorecer la retirada de oligonucleótido no unido al substrato. Tras cada lavado se toma imagen de la fluorescencia emitida por el oligonucleótido que aún
permanece unido al substrato. Las mediciones de fluorescencia fueron realizadas en un escáner Typhoon 9210 Variable Mode Imager con software específico ImageQuant TL (Amersham Biosciences). Las condiciones de análisis fueron optimizadas para detectar ia emisión de fluorescencia del oligonucleótido marcado. Before depositing the oligonucleotide samples, the substrates were sterilized with wells by saturated steam autoclave for 20 minutes at 120 degrees Celsius and 1.0 atmospheres of pressure. Next, a 50 base oligonucleotide solution microliter labeled at the 5 'end labeled with Cy 3 fluorochrome was applied to the corresponding substrates, at 10 micromolar concentration. Four replications were made of each trial. As a nonspecific fluorescence control, another series of four replicas was used in which a microliter of sterile double-distilled water was deposited. The eight samples were incubated at 65 0 for 0 minutes to favor evaporation of the solvent from the solution. Then, the eight samples were treated for 60 minutes with ultraviolet light of 254 nanometers in wavelength to favor the binding of the nucleotide to the substrate. After irradiation, systematic washing of the samples in 8.3 molar urea solution is carried out to favor the removal of oligonucleotide not bound to the substrate. After each wash, an image of the fluorescence emitted by the oligonucleotide is still taken. remains attached to the substrate. Fluorescence measurements were performed on a Typhoon 9210 Variable Mode Imager scanner with specific ImageQuant TL software (Amersham Biosciences). The analysis conditions were optimized to detect the fluorescence emission of the labeled oligonucleotide.
Se seleccionaron las ocho muestras de substrato tratado en las que se habían generado pocilios. Cuatro de ellas fueron usadas para depositar un microlitro de solución de oligonucleótido marcado fluorescentemente, a concentración diez micromolar. Otras cuatro muestras fueron usadas como control de irradiación inespecífica del material en la longitud de onda del fluoróforo de! oligonucleótido. En esta segunda serie se depositó en cada muestra un microlitro de agua bidestilada estéril. El motivo de usar cuatro réplicas para cada ensayo es descartar la posible variabilidad entre las distintas muestras a lá hora de observar si efectivamente el oligonucleótido ha quedado retenido sobre el substrato debido a la acción de la irradiación ultravioleta. The eight samples of treated substrate in which wells had been generated were selected. Four of them were used to deposit a microliter of fluorescently labeled oligonucleotide solution, at a concentration of ten micromolar. Four other samples were used as a control for nonspecific irradiation of the material at the fluorophore wavelength of! oligonucleotide In this second series, a microliter of sterile double-distilled water was deposited in each sample. The reason for using four replicates for each test is to rule out the possible variability between the different samples in order to see if the oligonucleotide has been effectively retained on the substrate due to the action of ultraviolet irradiation.
La primera imagen de fluorescencia obtenida tras esterilizar las muestras demuestra que no hay emisión fluorescente significativa en la muestra, ya sea en la zona tratada o en la zona no tratada. En las imágenes sucesivas tomadas después de cada lavado con solución de Urea 8,3 molar, disolución empleada comúnmente en ensayos de hibridación de distinta naturaleza como agente desnaturalizante de ácidos nucleicos, se observa que la zona tratada retiene específicamente el oligonucleótido, ya que no se pierde señal de fluorescencia después de cada lavado. También se observa que las zonas no tratadas no retienen el oligonucleótido. The first fluorescence image obtained after sterilizing the samples demonstrates that there is no significant fluorescent emission in the sample, either in the treated area or in the untreated area. In the successive images taken after each washing with 8.3 molar Urea solution, a solution commonly used in hybridization assays of different nature as a nucleic acid denaturing agent, it is observed that the treated area specifically retains the oligonucleotide, since it is not Loses fluorescence signal after each wash. It is also noted that untreated areas do not retain the oligonucleotide.
En los resultados obtenidos al estudiar la posible retención de oligonucleótido por el substrato cuando no hay irradiación con luz ultravioleta, se observa que el substrato por sí solo lio es capaz de retener el oligonucleótido ni en la zona tratada ni en la zona sin tratar, ya que se pierde completamente la emisión de fluorescencia. In the results obtained when studying the possible retention of oligonucleotide by the substrate when there is no irradiation with ultraviolet light, it is observed that the substrate alone is capable of retaining the oligonucleotide either in the treated area or in the untreated area, since that the fluorescence emission is completely lost.
A modo de ejemplo de realización, se ha aplicado el método descrito en el ejemplo anterior con el fin de comprobar que el biosensor obtenido por el procedimiento de la invención posee la capacidad de soporte e inmovilización de células sobre la superficie litografiada. As an exemplary embodiment, the method described in the previous example has been applied in order to verify that the biosensor obtained by the process of the invention has the capacity to support and immobilize cells on the lithographed surface.
Para la generación de los pocilios sobre el substrato de dióxido de titanio se emplearon substratos monúcristalinos en fase rutilo con orientación <110> y de dimensiones 10 x 5 x 0,5 mm3, con las dos superficies mayores pulidas hasta grado óptico ( TI Corp.). Las zonas expuestas a la radiación, fueron obtenidas cubriendo parte de , una de ellas mediante una máscara. La máscara consistía en una rejilla
comercial tipo TEM {Spi supplies Cu-400) y fue inmovilizada a la superficie mediante pegamento termorreversible Crystalbond 509 (Electron IVlicroscopy Sciences). Se sometió al conjuntó a una irradiación de iones Br+7 de 25 MeV hasta una fluencia de 1 - 014 cm"2. Tras la irradiación se procedió a mover la máscara manualmente y realizar un proceso de irradiación de iones Br+7 de 13 MeV 1 -1014 cm"2 coh el objetivo de generar una estructura de distintas alturas y diferente a un patrón regular de pocilios. Tras este proceso se procedió a retirar la máscara y ef substrato fue sumergido en una disolución acuosa de ácido fluorhídrico (HF) al 20% en volumen durante 25 minutos para disolver parte de las zonas afectadas por la irradiación. El patrón obtenido resultante es una superficie de pocilios superpuestos en línea y separados por paredes de material virgen. For the generation of the wells on the titanium dioxide substrate, rutile phase monocrystalline substrates with orientation <110> and dimensions 10 x 5 x 0.5 mm 3 were used , with the two major surfaces polished to optical grade (TI Corp .). The areas exposed to radiation were obtained by covering part of, one of them through a mask. The mask consisted of a grid commercial type TEM {Spi supplies Cu-400) and was immobilized to the surface using Crystalbond 509 thermo-reversible glue (Electron IVlicroscopy Sciences). The joint was subjected to an irradiation of Br +7 ions of 25 MeV to a creep of 1 - 0 14 cm "2. After irradiation, the mask was moved manually and a process of irradiation of Br +7 ions of 13 MeV 1 -10 14 cm "2 coh the objective of generating a structure of different heights and different from a regular pattern of wells. After this process, the mask was removed and the substrate was immersed in a 20% aqueous solution of hydrofluoric acid (HF) for 25 minutes to dissolve part of the areas affected by irradiation. The resulting obtained pattern is a surface of wells superimposed in line and separated by walls of virgin material.
Para el proceso de inmovilización de células se sembraron células de músculo liso vascular (CMLV), aisladas de aorta de rata a una densidad de 40.000-60.000, en los pocilios superpuestos en línea y separados por paredes de material virgen del biosensor fabricado. Los cultivos se crecieron en los soportes empleando un medio de cultivo DMEM con baja glucosa suplementado con suero fetal bovino al 10 % en volumen. Al día siguiente se fijaron con paraformaldehido al 4% en volumen, preparado en tampón fosfato salino (Phosphate buffer saline PBS)) durante 10 minutos y tras distintos lavados con PBS se montaron en portas, visualizándose por microscopía óptica empleando distintos aumentos. Las células inmovilizadas e individualizadas podrán emplearse para llevar a cabo de forma simultánea el análisis cuantitativo y cualitativo de parámetros bioquímicos, genéticos y/o moleculares en un único biosensor. Entre estas aplicaciones destaca la cuantificación del consumo de oxígeno de un tipo celular en distintas situaciones experimentales y/o patofisio lógicas o la determinación de patrones de expresión y localización de distintas proteínas o ácidos nucleicos. Así, estos biosensores permitirán analizar el efecto sobre el consumo de oxígeno y la expresión y/o localización de una proteína o ácido nucleico de tantos tratamientos como pocilios con células inmovilizadas se hayan empleado en el ensayo. Igualmente, el biosensor, entendido este como soporte con capacidad de inmovilización celular, permitirá analizar el efecto de un tratamiento sobre la expresión y/o localización de un número de proteínas b genes igual al número de pocilios con células inmovilizadas en su interior que el usuario haya decidido a emplear.
For the cell immobilization process vascular smooth muscle cells (CMLV), isolated from rat aorta at a density of 40,000-60,000, were seeded in the overlapping wells in line and separated by virgin material walls of the manufactured biosensor. The cultures were grown on the supports using a DMEM culture medium with low glucose supplemented with 10% bovine fetal serum by volume. The next day they were fixed with 4% paraformaldehyde by volume, prepared in phosphate buffered saline (PBS) for 10 minutes and after different washings with PBS they were mounted on slides, visualized by optical microscopy using different magnifications. The immobilized and individualized cells may be used to simultaneously carry out the quantitative and qualitative analysis of biochemical, genetic and / or molecular parameters in a single biosensor. Among these applications, the quantification of the oxygen consumption of a cellular type in different experimental and / or logical pathophysio situations or the determination of patterns of expression and localization of different proteins or nucleic acids stands out. Thus, these biosensors will analyze the effect on oxygen consumption and the expression and / or localization of a protein or nucleic acid from as many treatments as wells with immobilized cells have been used in the assay. Likewise, the biosensor, understood as a support with cell immobilization capacity, will allow to analyze the effect of a treatment on the expression and / or localization of a number of proteins b genes equal to the number of wells with immobilized cells inside that the user have decided to employ.
Claims
REIVINPICACIONES REIVINPICATIONS
1- Procedimiento de obtención .de biosensores (1 ) que comprenden un sustrato de Ti02, caracterizado por comprender: 1- Procedure for obtaining biosensors (1) comprising a Ti0 2 substrate, characterized by comprising:
una primera etapa de irradiación iónica sobre determinadas zonas (3) de un sustrato de óxido de titanio (2) monocristalinq en fase rutilo, dando lugar a Ti02 amorfo (5) en las zonas del sustrato irradiado. a first stage of ionic irradiation on certain areas (3) of a substrate of titanium oxide (2) monocristalinq in rutile phase, giving rise to amorphous Ti0 2 (5) in the areas of the irradiated substrate.
- una segunda etapa dé depósito de un material seleccionado entre químico o biológico (4), sobre al menos una de las zonas de Ti02 amorfo (5) obtenido en la etapa anterior. - a second stage of deposit of a material selected from chemical or biological (4), on at least one of the zones of amorphous Ti0 2 (5) obtained in the previous stage.
2.- Procedimiento según la reivindicación 1 caracterizado por que comprende una etapa intermedia entre la primera y la segunda etapa, de ataque acido sobre la superficie irradiada dando lugar a una pluralidad de pocilios (6). 2. Method according to claim 1 characterized in that it comprises an intermediate stage between the first and the second stage, of acid attack on the irradiated surface giving rise to a plurality of wells (6).
3.- Procedimiento según reivindicación 2 caracterizado por que el ataque ácido se realiza con una disolución acuosa de ácido fluorhídrico. 3. Method according to claim 2 characterized in that the acid attack is carried out with an aqueous solution of hydrofluoric acid.
4.- Procedimiento según la reivindicaciones 1-3 caracterizado por que comprende una tercera etapa de fijación con luz ultravioleta del material de carácter químico o biológico (4) depositado en la segunda etapa 4. Method according to claims 1-3 characterized in that it comprises a third stage of fixation with ultraviolet light of the chemical or biological material (4) deposited in the second stage
5. - Procedimiento según la reivindicaciones anteriores caracterizado por que comprende una etapa de fijación sobre el substrato de óxido de titanio de ai menos un material máscara, previa a la irradiación iónica. 5. - Method according to the preceding claims characterized in that it comprises a fixing step on the titanium oxide substrate of at least one mask material, prior to ionic irradiation.
6. - Procedimiento según reivindicación 5 caracterizado por que el material máscara es un material de carácter sólido que resiste el flujo iónico sin sufrir altas deformaciones, seleccionado entre Au, Cu, Cu/Ni, Al203, S¡02 o combinaciones de los mismos. 6. - Process according to claim 5 wherein the mask material is a solid material which resists ionic character stream without suffering high strains selected from Au, Cu, Cu / Ni, Al 2 0 3, 2 or combinations S¡0 thereof.
7 - Procedimiento según reivindicaciones anteriores caracterizado por que en la segunda etapa se deposita material biológico seleccionado entre células, oligonucleótidos, ácidos grasos o proteínas 7 - Method according to previous claims characterized in that in the second stage biological material selected from cells, oligonucleotides, fatty acids or proteins is deposited
8- Procedimiento según reivindicación 7 caracterizado por que las proteínas son enzimas o anticuerpos. 8- Method according to claim 7 characterized in that the proteins are enzymes or antibodies.
9. - Procedimiento según reivindicaciones 1-6 caracterizado por que en la segunda etapa se deposita una disolución de biomoléculas orgánicas como material químico. 9. - Method according to claims 1-6 characterized in that in the second stage a solution of organic biomolecules is deposited as chemical material.
10. - Procedimiento según reivindicaciones anteriores caracterizado por que la irradiación iónica es una irradiación de cualquier ión acelerado, de masa superior a la del Hidrógeno, que deposite por medio de interacciones inelásticas, una energía superior a 5,1 KeV por nm recorrido. 10. - Method according to previous claims characterized in that the ionic irradiation is an irradiation of any accelerated ion, of a mass greater than that of Hydrogen, which deposits, by means of inelastic interactions, an energy greater than 5.1 KeV per nm traveled.
11 - Procedimiento según reivindicación 10 caracterizado por que lá irradiación iónica es una irradiación con iones Br de energías comprendidas desde 9 MeV hasta 50 MeV 12- Biosensor (1 ) caracterizado por comprender un substrato de óxido de titanio monocristalino en fase rutilo con una pluralidad de zonas de óxido de titanio amorfo obtenido por radiación iónica, con uno o varios depósitos de material químico ó biológico adheridos sobre las zonas de óxido de titanio amorfo 11 - Method according to claim 10 characterized in that the ionic irradiation is an irradiation with Br ions of energies ranging from 9 MeV to 50 MeV 12- Biosensor (1) characterized by comprising a substrate of rutile phase monocrystalline titanium oxide with a plurality of areas of amorphous titanium oxide obtained by ionic radiation, with one or more deposits of chemical or biological material adhered on the areas of amorphous titanium oxide
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201031224A ES2351495B1 (en) | 2010-08-05 | 2010-08-05 | BIOSENSOR OBTAINING PROCEDURE. |
ESP201031224 | 2010-08-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012017116A2 true WO2012017116A2 (en) | 2012-02-09 |
WO2012017116A3 WO2012017116A3 (en) | 2012-03-29 |
Family
ID=43499760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2011/070536 WO2012017116A2 (en) | 2010-08-05 | 2011-07-21 | Method for producing biosensors |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2351495B1 (en) |
WO (1) | WO2012017116A2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060157873A1 (en) | 2005-01-10 | 2006-07-20 | Bioforce Nanosciences, Inc. | Topographically indexed support substrates |
WO2007011405A2 (en) | 2004-10-29 | 2007-01-25 | Bioforce Nanosciences, Inc. | Device and method of use for detection and characterization of microorganisms and microparticles |
WO2007009994A1 (en) | 2005-07-21 | 2007-01-25 | Tethis S.R.L. | Support having nanostructured titanium dioxide film and uses thereof |
US20080245109A1 (en) | 2007-03-28 | 2008-10-09 | Life Bioscience, Inc. | Methods to fabricate a photoactive substrate suitable for shaped glass structures |
WO2010011939A2 (en) | 2008-07-25 | 2010-01-28 | Life Bioscience, Inc. | Assay plates, methods and systems having one or more etched features |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003046508A2 (en) * | 2001-11-09 | 2003-06-05 | Biomicroarrays, Inc. | High surface area substrates for microarrays and methods to make same |
US7682688B2 (en) * | 2002-11-26 | 2010-03-23 | University Of Utah Research Foundation | Microporous materials, methods, and articles for localizing and quantifying analytes |
US20080025875A1 (en) * | 2004-09-29 | 2008-01-31 | Martin Charles R | Chemical, Particle, and Biosensing with Nanotechnology |
US8093177B2 (en) * | 2008-11-06 | 2012-01-10 | Wisconsin Alumni Research Foundation | Metal oxides having molecular and/or biomolecular functionalization |
-
2010
- 2010-08-05 ES ES201031224A patent/ES2351495B1/en not_active Expired - Fee Related
-
2011
- 2011-07-21 WO PCT/ES2011/070536 patent/WO2012017116A2/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007011405A2 (en) | 2004-10-29 | 2007-01-25 | Bioforce Nanosciences, Inc. | Device and method of use for detection and characterization of microorganisms and microparticles |
US20060157873A1 (en) | 2005-01-10 | 2006-07-20 | Bioforce Nanosciences, Inc. | Topographically indexed support substrates |
WO2007009994A1 (en) | 2005-07-21 | 2007-01-25 | Tethis S.R.L. | Support having nanostructured titanium dioxide film and uses thereof |
US20080245109A1 (en) | 2007-03-28 | 2008-10-09 | Life Bioscience, Inc. | Methods to fabricate a photoactive substrate suitable for shaped glass structures |
WO2010011939A2 (en) | 2008-07-25 | 2010-01-28 | Life Bioscience, Inc. | Assay plates, methods and systems having one or more etched features |
Non-Patent Citations (2)
Title |
---|
R. SPOHR: "Ion tracks and microteclµ1ology. Basic principles and applications", 1990, WIESBADEN |
R.SANZ: "Tesis Doctoral", March 2009, UNIVERSIDAD AUTONOMA DE MADRID, article "Nanoestructuras basadas en Ti02 y ZnO obtenidas ' mediante irradiación ionica" |
Also Published As
Publication number | Publication date |
---|---|
ES2351495B1 (en) | 2011-09-08 |
WO2012017116A3 (en) | 2012-03-29 |
ES2351495A1 (en) | 2011-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | A nanostructure platform for live-cell manipulation of membrane curvature | |
Shao et al. | Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective | |
Xu et al. | Precision-guided nanospears for targeted and high-throughput intracellular gene delivery | |
Xu et al. | Superwettable microchips as a platform toward microgravity biosensing | |
Zhou et al. | Chemically functionalized surface patterning | |
JP4741477B2 (en) | Nanofiber surface for increased surface area | |
ES2836215T3 (en) | Three-dimensional polymeric networks with channels located there | |
Ramakrishnan et al. | Regular nanoscale protein patterns via directed adsorption through self-assembled DNA origami masks | |
Beckwith et al. | Tunable high aspect ratio polymer nanostructures for cell interfaces | |
BR112016014923B1 (en) | ARRANGEMENT, METHOD FOR PRODUCING AN ARRANGEMENT AND METHOD FOR DETECTING NUCLEIC ACIDS | |
Quist et al. | Micropatterned surfaces: techniques and applications in cell biology | |
WO2021252671A2 (en) | Flow cell systems and devices | |
Ning et al. | Biomaterial-based microfluidics for cell culture and analysis | |
Giridharan et al. | Microfluidic platforms for evaluation of nanobiomaterials: A review | |
Tudureanu et al. | Insight and recent advances into the role of topography on the cell differentiation and proliferation on biopolymeric surfaces | |
Shimanovich et al. | Stabilizing RNA by the sonochemical formation of RNA nanospheres | |
Liu et al. | High-throughput protein nanopatterning | |
WO2007140388A2 (en) | Ablation based laser machining of biomolecule patterns on substrates | |
Belling et al. | Lipid bicelle micropatterning using chemical lift-off lithography | |
Kim et al. | Nano-patterned SU-8 surface using nanosphere-lithography for enhanced neuronal cell growth | |
Handrea-Dragan et al. | Patterning at the micro/nano-scale: Polymeric scaffolds for medical diagnostic and cell-surface interaction applications | |
Sevcik et al. | Patterning on topography for generation of cell culture substrates with independent nanoscale control of chemical and topographical extracellular matrix cues | |
US20110014436A1 (en) | Methods for forming hydrogels on surfaces and articles formed thereby | |
ES2758182T3 (en) | Method for obtaining planar microparticles with surface molecular multiplexing, the microparticles and their use | |
Chen et al. | Self-assisted optothermal trapping of gold nanorods under two-photon excitation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11764795 Country of ref document: EP Kind code of ref document: A2 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11764795 Country of ref document: EP Kind code of ref document: A2 |