WO2012016410A1 - 一种多路led负载供电电路 - Google Patents

一种多路led负载供电电路 Download PDF

Info

Publication number
WO2012016410A1
WO2012016410A1 PCT/CN2010/079857 CN2010079857W WO2012016410A1 WO 2012016410 A1 WO2012016410 A1 WO 2012016410A1 CN 2010079857 W CN2010079857 W CN 2010079857W WO 2012016410 A1 WO2012016410 A1 WO 2012016410A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
led load
switch tube
diode
control circuit
Prior art date
Application number
PCT/CN2010/079857
Other languages
English (en)
French (fr)
Inventor
葛良安
Original Assignee
英飞特电子(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英飞特电子(杭州)有限公司 filed Critical 英飞特电子(杭州)有限公司
Priority to US13/813,723 priority Critical patent/US9148933B2/en
Publication of WO2012016410A1 publication Critical patent/WO2012016410A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology

Definitions

  • the present invention relates to the field of power electronics, and in particular, to a multi-channel LED load power supply circuit. Background technique
  • FIG. 1 the figure is a circuit suitable for two-way LED constant current driving (China Application No. 200910155848.0), wherein the capacitor Cb can control the currents of the two LED loads (A1 and A2) to be equal.
  • Figure 1 shows only a constant current drive circuit with two LED loads. When the LED load is greater than two, it can be realized by the circuit shown in Figure 2 and Figure 3.
  • Multi-channel LED load is realized by the current sharing transformer T1. Current sharing.
  • Figure 2 applies to the drive of even-numbered LED loads
  • Figure 3 applies to the drive of odd-numbered LED loads.
  • FIG. 4 the figure shows an LED driving circuit with an open circuit protection circuit in the prior art.
  • Each LED load is connected in parallel with an open circuit protection circuit K.
  • the trigger thyristors SCR1, SCR2 are turned on, and the thyristor flows through the load current to prevent an abnormal output voltage due to the open load.
  • the open circuit protection circuit K has the following disadvantages: when the output voltage is abnormal, the trigger thyristor is turned on, and the short circuit discharge of the output filter capacitor (Co3, Co4) generates a large inrush current, which increases the current stress of the circuit. Circuit costs increase while reducing circuit reliability.
  • the technical problem to be solved by the present invention is to provide a multi-channel LED load power supply circuit capable of reducing the current stress of the circuit and the cost of the circuit.
  • the present invention provides a multi-channel LED load power supply circuit, including: a first filter capacitor, a second filter capacitor, a first switch tube, a second switch tube, a first rectification branch, and a second rectification branch;
  • the input ends of the first rectifying branch and the second rectifying branch are connected to a high frequency alternating current power source;
  • the first input end of the first rectifying branch is connected in series with the first diode, the first LED load, the fourth diode and the first capacitor, and is connected to the second input end of the first rectifying branch;
  • the second input end of the second rectifying branch is connected in series with the first capacitor, the third diode, the second LED load and the second diode, and is connected to the first input end of the second rectifying branch;
  • the first input end and the second input end of the first rectifying branch are respectively connected to the first input end and the second input end of the second rectifying circuit
  • a first filter capacitor is connected in parallel to both ends of the first LED load;
  • the second filter capacitor is connected in parallel to both ends of the second LED load;
  • the first switch tube is connected in parallel at two ends of the second diode, and when the first LED load needs to be turned off, the first switch tube is closed;
  • the second switch tube is connected in parallel at both ends of the fourth diode, and when the second LED load needs to be turned off, the second switch tube is closed.
  • the first control circuit is configured to detect a first LED load output voltage, and when the first LED load output voltage is greater than the first preset voltage, control the first switch tube to be closed;
  • the second control circuit is configured to detect a second LED load output voltage, and when the second LED load output voltage is greater than a second preset voltage, control the second switch tube to be closed.
  • the first control circuit is specifically a first comparator
  • the second control circuit is specifically a second comparator
  • the positive input end of the first comparator is connected to the positive output end of the first LED load, the negative input end of the first comparator is connected to the first preset voltage, and the output end of the first comparator is connected to the control end of the first switch tube ;
  • the positive input end of the second comparator is connected to the positive output end of the second LED load, the negative input end of the second comparator is connected to the second preset voltage, and the output end of the second comparator is connected to the control end of the second switch tube .
  • the invention also provides a multi-channel LED load power supply circuit, comprising: a first filter capacitor, a second filter capacitor, a first rectification branch and a second rectification branch;
  • the input ends of the first rectifying branch and the second rectifying branch are connected to a high frequency alternating current power supply; the first input end of the first rectifying branch is connected in series with the first diode, the first LED load, a second switching tube and a first capacitor, and connected to the second input end of the first rectifying branch;
  • the second input end of the second rectifying branch is connected in series with the first capacitor, the second diode, and the second
  • the first input end and the second input end of the first rectifying branch are respectively connected to the first input end and the second input end of the second rectifying circuit
  • the high frequency alternating current power source When the power supply circuit is in a normal state: the high frequency alternating current power source outputs a positive voltage, the first diode and the second switch tube are turned on to supply power to the first LED load; the alternating current power source outputs a negative voltage, the first switch tube and The second diode is turned on to supply power to the second LED load;
  • the first switch tube When the output of the first LED load needs to be turned off, the first switch tube is controlled to be closed when the high frequency AC power source outputs positive and negative voltages; when the output of the second LED load needs to be turned off, the second switch tube is controlled to be at the high frequency AC power source It is closed when both positive and negative voltages are output.
  • the method further includes a first switch transistor driving circuit, a second switch transistor driving circuit, a first control circuit, and a second control circuit;
  • the first switch tube driving circuit includes: a first enable circuit, a third diode, and a first synchronous rectification control circuit; and an output end of the first control circuit is connected to the first switch tube through a third diode a control end; the output end of the first control circuit is connected to the first input end of the first synchronous rectification control circuit through a first enable circuit, and the second input end and the third input end of the first synchronous rectification control circuit are respectively connected
  • the two ends of the first switching tube, the output end of the first synchronous rectification control circuit is connected to the control end of the first switching tube; when the output of the first LED load needs to be turned off, the first control circuit outputs a high level, so that the third two The pole tube is turned on, and the first enable circuit output enable signal is controlled to cause the first synchronous rectification control circuit to stop outputting the driving signal to close the first switch tube;
  • the second switch tube driving circuit includes: a second enable circuit, a fourth diode, and a second synchronous rectification control circuit; and an output end of the second control circuit is connected to the second switch tube through the fourth diode a control end; the output end of the second control circuit is connected to the first input end of the second synchronous rectification control circuit through the second enable circuit, and the second input end and the third input end of the second synchronous rectification control circuit are respectively connected
  • the two ends of the second switching tube, the output end of the second synchronous rectification control circuit is connected to the control end of the second switching tube; when the output of the second LED load needs to be turned off, the second control circuit outputs a high level, so that the fourth two The pole tube is turned on, and the second enable circuit output enable signal is controlled to cause the second synchronous rectification control circuit to stop outputting the driving signal to close the second switching tube.
  • a first switch tube drive circuit a second switch tube drive circuit, a first control circuit and a second control circuit
  • the first switch tube driving circuit includes: a third diode, a first current transformer, a first shaping reset circuit, a third triode, a fourth triode, and a first driving self-power supply circuit;
  • the primary winding of a current transformer is connected between the first diode and the first switching tube, and the two ends of the secondary winding are connected to the input end of the first shaping reset circuit, and the two ends of the secondary winding are also connected to the first driving self
  • the third triode and the fourth triode are connected into a push-pull circuit, the output end of the first shaping reset circuit is connected to the input end of the push-pull circuit, and the output end of the push-pull circuit is connected to the first switch tube
  • the control end of the first driving self-power supply circuit is connected to the collector of the third triode; the collector of the fourth triode is grounded; the output end of the first control circuit is connected to the push-pull circuit through the third diode The input end; when the output of
  • the second switch tube driving circuit includes: a fourth diode, a second current transformer, a second shaping reset circuit, a fifth triode, a sixth triode, and a second driving self-power supply circuit;
  • the primary winding of the two current transformer is connected between the second diode and the second switching tube, and the two ends of the secondary winding are connected to the input end of the second shaping reset circuit, and the two ends of the secondary winding are also connected to the second driving
  • the fifth triode and the sixth triode are connected into a push-pull circuit, the output end of the second shaping reset circuit is connected to the input end of the push-pull circuit, and the output end of the push-pull circuit is connected to the second switch tube a control end of the second driving self-power supply circuit is connected to the collector of the fifth triode; the collector of the sixth triode is grounded;
  • the output end of the first control circuit is connected to the push-pull circuit through the third diode The input terminal; when the output of
  • the method further includes a first switch transistor driving circuit, a second switch transistor driving circuit, a first control circuit, and a second control circuit;
  • the first switch tube driving circuit includes: a third diode, a first auxiliary winding, and a third switching tube; an output end of the first control circuit is connected to a control end of the third switching tube through a third diode; One end of the switch tube is connected to the control end of the first switch tube, the other end is connected to one end of the first auxiliary winding, and the other end of the first auxiliary winding is grounded; when the output of the first LED load needs to be turned off, the first control circuit outputs low power Leveling, turning off the third diode and the third switching tube to close the first switching tube;
  • the second switch tube driving circuit includes: a fourth diode, a second auxiliary winding, and a fourth switching tube; the output of the second control circuit is connected to the control end of the fourth switching tube through the fourth diode; the fourth switch One end of the tube is connected to the control end of the second switch tube, the other end is connected to one end of the second auxiliary winding, and the other end of the second auxiliary winding
  • the first control circuit is configured to detect a first LED load output voltage, and when the first LED load output voltage is greater than the first preset voltage, control the first switch tube to be closed;
  • the second control circuit is configured to detect a second LED load output voltage, and when the second LED load output voltage is greater than a second preset voltage, control the second switch tube to be closed.
  • the first control circuit is specifically a first comparator
  • the second control circuit is specifically a second comparator
  • the positive input end of the first comparator is connected to the positive output end of the first LED load, the negative input end of the first comparator is connected to the first preset voltage, and the output end of the first comparator is connected to the anode of the third diode
  • the positive input end of the second comparator is connected to the positive output end of the second LED load, the negative input end of the second comparator is connected to the second preset voltage, and the output end of the second comparator is connected to the fourth diode anode.
  • the main circuit of the power supply circuit is a LLC resonant conversion circuit, a bridge circuit, an active clamp flyback circuit or a forward flyback circuit.
  • the present invention has the following advantages:
  • the multi-channel LED load power supply circuit has a first switch tube connected in parallel at both ends of the second diode and a second switch tube connected in parallel at both ends of the fourth diode; and the first switch tube and the second switch are controlled by The switching state of the tube controls the conduction mode of the second diode and the fourth diode.
  • the first switch tube and the second switch tube are both disconnected; when the output of a certain load needs to be turned off, the corresponding switch tube is controlled to be closed, so that the diode connected in parallel with the switch tube is short-circuited. This avoids direct short-circuiting of a certain load to generate a large inrush current to the filter capacitor, thereby reducing the current stress of the circuit, improving the reliability of the circuit, and reducing the cost.
  • 1 is a circuit diagram of a prior art suitable for constant current driving of two LEDs
  • FIG. 2 is a driving circuit diagram of a prior art LED load suitable for even-numbered circuits
  • FIG. 3 is a schematic diagram of a driving circuit suitable for an odd-numbered LED load in the prior art
  • 4 is an LED driving circuit with an open circuit protection circuit in the prior art
  • FIG. 5 is a circuit diagram of a first embodiment of a multi-channel LED load power supply circuit provided by the present invention
  • FIG. 6 is a circuit diagram of a second embodiment of a multi-channel LED load power supply circuit provided by the present invention.
  • FIG. 7 is a circuit diagram of a third embodiment of a multi-channel LED load power supply circuit provided by the present invention.
  • FIG. 8 is a circuit diagram of a fourth embodiment of a multi-channel LED load power supply circuit provided by the present invention.
  • Embodiment 9 is a circuit diagram of Embodiment 5 of a multi-channel LED load power supply circuit provided by the present invention.
  • Embodiment 6 is a circuit diagram of Embodiment 6 of a multi-channel LED load power supply circuit provided by the present invention.
  • Embodiment 7 is a circuit diagram of Embodiment 7 of a multi-channel LED load power supply circuit provided by the present invention.
  • FIG. 12 is a circuit diagram of Embodiment 8 of the multi-channel LED load power supply circuit provided by the present invention.
  • the figure is a circuit diagram of a first embodiment of a multi-channel LED load power supply circuit provided by the present invention.
  • the multi-channel LED load power supply circuit provided in this embodiment includes: a first filter capacitor Col, a second filter capacitor Co2, a first switch transistor Q1, a second switch transistor Q2, a first rectifier branch, and a second rectifier branch;
  • the input ends of the first rectifying branch and the second rectifying branch are connected to a high frequency alternating current power supply; as shown in FIG. 5, the anode of the first diode D1 and the cathode of the second diode D2 are connected to a high frequency At one end of the AC power source, the left end of the first capacitor Cb is connected to the other end of the high frequency AC power source. It should be noted that the connection between the first rectifying branch and the second rectifying branch in the following embodiments is the same as that in the embodiment, and details are not described herein again.
  • the first input end of the first rectifying branch is connected in series with the first diode D1, the first LED load A1, the fourth diode D4 and the first capacitor Cb connected to the second input end of the first rectifying branch;
  • the second input end of the second rectifying branch is connected in series with the first capacitor Cb, the third diode D3, the second LED load A2, and the second diode D2 connected to the first input end of the second rectifying branch;
  • the first input end and the second input end of the first rectifying branch are respectively connected to the first input end and the second input end of the second rectifying circuit
  • the first filter capacitor Col is connected in parallel to both ends of the first LED load A1; the second filter capacitor Co2 is connected in parallel to both ends of the second LED load A2;
  • the first switch tube Q1 is connected in parallel at both ends of the second diode D2, and when the first LED load A1 needs to be turned off, the first switch tube Q1 is controlled to be closed;
  • the second switch tube Q2 is connected in parallel at both ends of the fourth diode D4, and when the second LED load A2 needs to be turned off, the second switch tube Q2 is controlled to be closed.
  • the high frequency AC power source provides energy for the first LED load A1 and the second LED load A2.
  • the high frequency referred to in the high frequency alternating current power source is several tens of K or more.
  • the closing and opening of the first switching transistor Q1 and the second switching transistor Q2 can be controlled by the first control signal Vs1 and the second control signal Vs2, respectively.
  • the multi-channel LED load power supply circuit provided by the embodiment of the present invention has a first switch tube Q1 connected in parallel with the second diode D2 and a second switch tube Q2 connected in parallel with the fourth diode D4;
  • the switching states of Q1 and the second switching transistor Q2 control the conduction modes of the second diode D2 and the fourth diode D4.
  • the first rectification branch and the second rectification branch work alternately, Q1 and Q2 are both disconnected; when it is necessary to turn off the output of a certain load
  • the corresponding switch tube is controlled to be closed, so that the diode connected in parallel with the switch tube is short-circuited. This avoids direct short-circuiting of a certain load to generate a large inrush current to the filter capacitor, thereby reducing the current stress of the circuit, improving the reliability of the circuit, and reducing the cost.
  • FIG. 6 the figure is a circuit diagram of a second embodiment of a multi-channel LED load power supply circuit provided by the present invention.
  • the multi-channel LED load power supply circuit provided by this embodiment further includes a first control circuit 601 and a second control circuit 602;
  • the input end of the first control circuit 601 is connected to the output end of the first LED load A1, and the output end of the first control circuit 601 is connected to the control end of the first switch tube Q1.
  • the first control circuit 601 is configured to detect a first LED load A1 output voltage, and when the first LED load A1 output voltage is greater than the first preset voltage, control the first switch tube Q1 to be closed;
  • the input end of the second control circuit 602 is connected to the positive output end of the second LED load A2, and the output end of the second control circuit 602 is connected to the control end of the second switch tube Q2.
  • the second control circuit 602 is configured to detect an output voltage of the second LED load A2. When the output voltage of the second LED load A2 is greater than the second preset voltage, the second switch Q2 is controlled to be closed.
  • the multi-channel LED load power supply circuit controls the switching states of Q1 and Q2 by detecting the output voltage of the LED load, and is used for an LED fault in a certain way, such as an open circuit fault or over The fault is faulted, and the faulty LED load is turned off, thereby preventing abnormal overvoltage of the faulty LED load.
  • a self-locking circuit can be added to keep the corresponding switch tube closed after the fault load is turned off.
  • the first control circuit 601 provided by the embodiment of the present invention is specifically a first comparator IC1
  • the second control circuit 602 is specifically a second comparator IC2
  • the positive input end of the first comparator IC1 is connected to the positive output end of the first LED load A1, the negative input end of the first comparator IC1 is connected to the first preset voltage Vrefl, and the output end of the first comparator IC1 is connected to the first The control end of the switch tube Q1;
  • the positive input terminal of the second comparator IC2 is connected to the positive output terminal of the second LED load A2, the negative input terminal of the second comparator IC2 is connected to the second preset voltage Vref2, and the output terminal of the second comparator IC2 is connected to the second terminal.
  • first preset voltage Vref1 and the second preset voltage Vref2 may be the same or different.
  • the rectifier circuit in the multi-channel LED load power supply circuit provided by the above embodiment includes four diodes, and the present invention further provides a multi-channel LED load power supply circuit, wherein the rectifier circuit includes two diodes and two switch tubes, and two switches The tube acts both as a synchronous rectifier in the normal state and as a switching tube in the fault state.
  • Another multi-channel LED load supply circuit provided by the present invention will be described in detail below with reference to the accompanying drawings.
  • FIG. 8 the figure is a circuit diagram of a fourth embodiment of a multi-channel LED load power supply circuit provided by the present invention.
  • the multi-channel LED load power supply circuit provided in this embodiment includes: a first filter capacitor Col, a second filter capacitor Co2, a first rectification branch, and a second rectification branch;
  • the input ends of the first rectifying branch and the second rectifying branch are connected to a high frequency alternating current power supply; the first input end of the first rectifying branch is connected in series with the first diode, the first LED load, and the second a switching tube and a first capacitor, and connected to the second input end of the first rectifying branch;
  • the second input end of the second rectifying branch is connected in series with the first capacitor, the second diode, and the second
  • the first input end and the second input end of the first rectifying branch are respectively connected to the first input end and the second input end of the second rectifying circuit
  • the high frequency alternating current power source outputs a positive voltage
  • the first diode Dl and the second switch tube Q2 are turned on to supply power to the first LED load A1
  • the high frequency AC power source outputs a negative voltage
  • the first switch tube Q1 and the second diode D2 are turned on to supply power to the second LED load A2
  • the first switch tube Q1 is controlled to be in a closed state when the positive and negative voltages of the high frequency AC power source are turned on
  • the second switch tube Q2 is controlled. It is closed when the positive and negative voltages of the high frequency AC power supply.
  • the multi-channel LED load power supply circuit provided in this embodiment, when the system is in a normal state, the first diode D1, the second diode D2, and the first switch tube Q1 and the second switch tube Q2 used as diodes,
  • the rectifier circuit is formed; when it is necessary to turn off a certain LED load, the switch tube in the rectifier branch corresponding to the LED load is always in a closed state, and the switch tube is used not only as a diode but also as a controllable switch tube.
  • the circuit provided in this embodiment also avoids a large short-circuit caused by direct short-circuiting of the LED load, improves the reliability of the circuit, and reduces the cost.
  • a self-locking circuit can be added to keep the corresponding switch tube closed after the fault load is turned off.
  • FIG. 9 the figure is a circuit diagram of Embodiment 5 of a multi-channel LED load power supply circuit provided by the present invention. 901, a second switch driving circuit 902, a first control circuit 903 and a second control circuit 904;
  • the first switch transistor driving circuit 901 includes: a first enable circuit 901a, a third diode D3, and a first synchronous rectification control circuit 901b;
  • the output end of the first control circuit 903 is connected to the control end of the first switch tube Q1 through the third diode D3; the output end of the first control circuit 903 is connected to the first synchronous rectification control through the first enable circuit 901a.
  • the first input end of the circuit 901b, the second input end and the third input end of the first synchronous rectification control circuit 901b are respectively connected to the two ends of the first switch tube Q1, and the output end of the first synchronous rectification control circuit 901b is connected to the first end.
  • the control terminal of the switch Q1 when the output of the first LED load A1 needs to be turned off, the first control circuit 903 outputs a high level to turn on the third diode D3, and simultaneously controls the output of the first enable circuit 901a to enable The signal causes the first synchronous rectification control circuit 901b to stop outputting the driving signal to close the first switching transistor Q1;
  • the second switch transistor driving circuit 902 includes: a second enable circuit 909a, a fourth diode D4, and a second synchronous rectification control circuit 902b;
  • the output end of the second control circuit 904 is connected to the control end of the second switch tube Q2 through the fourth diode D4; the output end of the second control circuit 904 is connected to the second through the second enable circuit 902a.
  • the first input end of the synchronous rectification control circuit 902b, the second input end and the third input end of the second synchronous rectification control circuit 902b are respectively connected at two ends of the second switching tube Q2, and the output end of the second synchronous rectification control circuit 902b Connecting the control end of the second switch Q2; when it is required to turn off the output of the second LED load A2, the second control circuit 904 outputs a high level to turn on the fourth diode D4 while controlling the second enable circuit 902a
  • the output enable signal causes the second synchronous rectification control circuit 902b to stop outputting the drive signal to close the second switching transistor Q2.
  • FIG. 10 is a circuit diagram of a sixth embodiment of a multi-channel LED load power supply circuit according to the present invention.
  • the first switch transistor driving circuit 1001 includes: a third diode D3, a first current transformer ST1, and a first shaping Reset circuit 1001a, third transistor Q3, fourth transistor Q4 and first driving self-power supply circuit 1001b;
  • the primary winding of the first current transformer ST1 is connected between the first diode D1 and the first switching transistor Q1, and the two ends of the secondary winding are connected to the input end of the first shaping reset circuit 1001a, and the two ends of the secondary winding
  • the terminal is further connected to the input end of the first driving self-power supply circuit 1001b;
  • the third transistor Q3 and the fourth transistor Q4 are connected into a push-pull circuit, and the first shaping reset circuit
  • the output end of the 1001a is connected to the input end of the push-pull circuit, and the output end of the push-pull circuit is connected to the control end of the first switch tube Q1;
  • the output end of the first driving self-power supply circuit 1001b is connected to the collector of the third transistor Q3; the collector of the fourth transistor Q4 is grounded;
  • the output end of the first control circuit 903 is connected to the input end of the push-pull circuit through the third diode D3; when the output of the first LED load A1 needs to be turned off, the first control circuit 903 outputs a high level to make the third diode The tube D3 is turned on, and the push-pull circuit outputs a high level to close the first switch tube Q1;
  • the second switch transistor driving circuit 1002 includes: a fourth diode D4, a second current transformer ST2, a second shaping reset circuit 1002a, a fifth transistor Q5, a sixth transistor Q6, and a second driver Self-powered circuit 1002b;
  • the primary winding of the second current transformer ST2 is connected between the second diode D2 and the second switching transistor Q2, and the two ends of the secondary winding are connected to the input end of the second shaping reset circuit 1002a, and the two ends of the secondary winding
  • the terminal is further connected to the input end of the second driving self-power supply circuit 1002b;
  • the fifth triode Q5 and the sixth triode Q6 are connected into a push-pull circuit, and the second shaping reset circuit
  • the output end of the 1002a is connected to the input end of the push-pull circuit, the output end of the push-pull circuit is connected to the control end of the second switch tube Q2; the output end of the second drive self-power supply circuit 1002b is connected to the collector of the fifth transistor Q5; The collector of the six transistor Q6 is grounded; the output of the first control circuit 903 is connected to the input terminal of the push-pull circuit through the third diode D3; when the output of the second LED load A2 needs to be turned off, the second control circuit 904 The output high level causes the fourth diode D4 to be turned on, and the push-pull circuit outputs a high level to close the second switching transistor Q3.
  • the embodiment of the present invention further provides a switch tube driving circuit.
  • FIG. 11 the figure is a circuit diagram of a seventh embodiment of a multi-channel LED load power supply circuit provided by the present invention.
  • the first switch transistor driving circuit 1101 includes: a third diode D3, a first auxiliary winding T1-2, and a third Switch tube Q3;
  • the output end of the first control circuit 903 is connected to the control end of the third switch tube Q3 through the third diode D3; one end of the third switch tube Q3 is connected to the control end of the first switch tube Q1, and the other end is connected to the first auxiliary winding T1. One end of -2, the other end of the first auxiliary winding T1-2 is grounded;
  • the first control circuit 903 When it is necessary to turn off the output of the first LED load A1, the first control circuit 903 outputs a low level to turn off the third diode D3 and the third switching transistor Q3 to close the first switching transistor Q1;
  • the second switch tube driving circuit 1102 includes: a fourth diode D4, a second auxiliary winding T1-3, and a fourth switching tube Q4;
  • the output of the second control circuit 904 is connected to the control end of the fourth switch tube Q4 through the fourth diode D4; one end of the fourth switch tube Q4 is connected to the control end of the second switch tube Q2, and the other end is connected to the second auxiliary winding T1- One end of 3, the other end of the second auxiliary winding T1-3 is grounded; when it is necessary to turn off the output of the second LED load A2, the second control circuit 904 outputs a low level, so that the fourth diode D4 and the fourth switching tube Q4 is turned off, and the second switching transistor Q2 is closed.
  • the first auxiliary winding and the second auxiliary winding may be a winding with a tap, and the tap is grounded and divided into a first auxiliary winding and a second auxiliary winding, as shown in FIG.
  • first control circuit and the second control circuit in the multi-channel LED load power supply circuit shown in FIG. 9-11 are the same as those shown in FIG. 7, and are not described below, only in FIG. Based on the introduction of the control circuit, as shown in Figure 12.
  • the first control circuit 1201 is configured to detect a first LED load A1 output voltage, and when the first LED load A1 output voltage is greater than the first preset voltage Vref1, control the first switch tube Q1 to be closed; the first control circuit 1201 The input terminal is connected to the positive output terminal of the first LED load A1, and the output terminal of the first control circuit 1201 is connected to the anode of the third diode D3.
  • the second control circuit 1202 is configured to detect the output voltage of the second LED load A2. When the output voltage of the second LED load A2 is greater than the second preset voltage Vref2, the second switch Q2 is controlled to be closed.
  • the input of the second control circuit 1202 is coupled to the positive output of the second LED load A2, and the output of the second control circuit 1202 is coupled to the anode of the fourth diode D4.
  • the first control circuit 1201 is specifically a first comparator IC1
  • the second control circuit 1202 is specifically a second comparator IC2;
  • the positive input terminal of the first comparator IC1 is connected to the positive output terminal of the first LED load A1, the negative input terminal of the first comparator IC1 is connected to the first preset voltage Vrefl, and the output terminal of the first comparator IC2 is connected to the third diode The anode of the tube D3;
  • the positive input terminal of the second comparator IC2 is connected to the positive output terminal of the second LED load A2, the negative input terminal of the second comparator IC2 is connected to the second preset voltage Vref2, and the output terminal of the second comparator IC2 is connected to the fourth diode The anode of tube D4.
  • first preset voltage Vref1 and the second preset voltage Vref2 may be the same or different.
  • the main circuit of the power supply circuit may be an LLC resonant conversion circuit, a bridge circuit, an active clamp flyback circuit, or a forward flyback circuit, wherein FIG. 9-12 is an LLC resonance.
  • the circuit is the main circuit.
  • the switch tube provided in the embodiment of the present invention may preferably be a MOSFET tube, as shown in FIGS. 8-12. It should be noted that the above embodiments are all described by taking two LED loads as an example. The technical solutions of the multiple LED load power supply circuits provided by all the embodiments of the present invention can be applied to more than two. In the circuit of the LED load path, the specific topology structure can be similar to the even-numbered LED load and the odd-numbered LED load as shown in FIG. 2 and FIG. 3, and details are not described herein again.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)

Description

一种多路 LED负载供电电路
本申请要求于 2010年 8月 3日提交中国专利局、申请号为 201010246507.7、 发明名称为"一种多路 LED 负载供电电路"的中国专利申请的优先权, 其全部 内容通过引用结合在本申请中。
技术领域
本发明涉及电力电子技术领域, 特别涉及一种多路 LED负载供电电路。 背景技术
参见图 1 , 该图为一种适用于两路 LED 恒流驱动的电路(中国申请号 200910155848.0 ), 其中, 电容 Cb可以控制两路 LED负载 ( A1和 A2 ) 的电 流保持相等。 图 1仅示出了有两路 LED负载的恒流驱动电路, 当 LED负载大 于两路时, 可以由图 2和图 3所示的电路来实现, 通过均流变压器 T1实现多 路 LED负载之间的均流。 其中图 2适用于偶数路 LED负载的驱动, 图 3适用 于奇数路 LED负载的驱动。
对于图 1所示的电路, 如果其中一路 LED负载开路, 保证另一路正常工 作, 开路的一路的输出将出现异常过电压, 这样会导致驱动电路的损坏, 因此 需要额外的开路保护电路。
参见图 4, 该图为现有技术中的一种带有开路保护电路的 LED驱动电路。 每路 LED负载均并联一个开路保护电路 K。 当检测到输出出现异常过电 压时, 触发晶闸管 (SCR1、 SCR2 )导通, 此时晶闸管流过负载电流, 防止因 负载开路产生的输出电压异常。
但是, 该开路保护电路 K具有以下缺点: 输出电压异常时, 触发晶闸管 导通, 对输出滤波电容(Co3、 Co4 ) 的短路放电会产生很大的冲击电流, 这 样将增加电路的电流应力, 使电路成本增加, 同时降低电路的可靠性。
发明内容
本发明要解决的技术问题是提供一种多路 LED负载供电电路, 能够降低 电路的电流应力, 降氏电路成本。
本发明提供一种多路 LED负载供电电路, 包括: 第一滤波电容、 第二滤 波电容、 第一开关管、 第二开关管、 第一整流支路和第二整流支路;
所述第一整流支路和第二整流支路的输入端均连接高频交流电源; 所述第一整流支路的第一输入端依次串联第一二极管、 第一 LED负载、 第四二极管和第一电容, 并连接第一整流支路的第二输入端;
所述第二整流支路的第二输入端依次串联第一电容、 第三二极管、 第二 LED负载和第二二极管, 并连接第二整流支路的第一输入端;
所述的第一整流支路的第一输入端和第二输入端分别连接第二整流回路 的第一输入端和第二输入端;
第一滤波电容并联于所述第一 LED负载的两端; 所述第二滤波电容并联 于所述第二 LED负载的两端;
所述第一开关管并联在所述第二二极管的两端, 当需要关闭第一 LED负 载时, 所述第一开关管闭合;
所述第二开关管并联在所述第四二极管的两端, 当需要关闭第二 LED负 载时, 所述第二开关管闭合。
优选地, 还包括第一控制电路和第二控制电路;
所述第一控制电路, 用于检测第一 LED负载输出电压, 当第一 LED负载 输出电压大于第一预设电压时, 控制所述第一开关管闭合;
所述第二控制电路, 用于检测第二 LED负载输出电压, 当第二 LED负载 输出电压大于第二预设电压时, 控制所述第二开关管闭合。
优选地, 所述第一控制电路具体为第一比较器, 所述第二控制电路具体为 第二比较器;
所述第一比较器的正输入端连接第一 LED负载的正输出端, 第一比较器 的负输入端连接第一预设电压, 第一比较器的输出端连接第一开关管的控制 端;
所述第二比较器的正输入端连接第二 LED负载的正输出端, 第二比较器 的负输入端连接第二预设电压, 第二比较器的输出端连接第二开关管的控制 端。
本发明还提供一种多路 LED负载供电电路, 包括: 第一滤波电容、 第二 滤波电容、 第一整流支路和第二整流支路;
所述第一整流支路和第二整流支路的输入端均连接高频交流电源; 所述第一整流支路的第一输入端依次串联第一二极管、 第一 LED负载、 第二开关管和第一电容, 并连接第一整流支路的第二输入端;
所述第二整流支路的第二输入端依次串联第一电容、 第二二极管、 第二
LED负载和第一开关管, 并连接第二整流支路的第二输入端;
所述的第一整流支路的第一输入端和第二输入端分别连接第二整流回路 的第一输入端和第二输入端;
当供电电路处于正常状态时: 高频交流电源输出正电压, 所述第一二极管 和第二开关管导通为第一 LED负载供电; 交流电源输出负电压, 所述第一开 关管和第二二极管导通为第二 LED负载供电;
当需要关闭第一 LED负载的输出时, 控制第一开关管在高频交流电源输 出正负电压时均闭合; 当需要关闭第二 LED负载的输出时, 控制第二开关管 在高频交流电源输出正负电压时均闭合。
优选地, 还包括第一开关管驱动电路、 第二开关管驱动电路、 第一控制电 路和第二控制电路;
所述第一开关管驱动电路包括: 第一使能电路、 第三二极管、 第一同步整 流控制电路;所述第一控制电路的输出端通过第三二极管连接第一开关管的控 制端;所述第一控制电路的输出端通过第一使能电路连接第一同步整流控制电 路的第一输入端,第一同步整流控制电路的第二输入端和第三输入端分别连接 在第一开关管的两端,第一同步整流控制电路的输出端连接第一开关管的控制 端; 当需要关闭第一 LED负载的输出时, 第一控制电路输出高电平, 使第三 二极管导通,同时控制第一使能电路输出使能信号使第一同步整流控制电路停 止输出驱动信号, 使第一开关管闭合;
所述第二开关管驱动电路包括: 第二使能电路、 第四二极管、 第二同步整 流控制电路;所述第二控制电路的输出端通过第四二极管连接第二开关管的控 制端;所述第二控制电路的输出端通过第二使能电路连接第二同步整流控制电 路的第一输入端,第二同步整流控制电路的第二输入端和第三输入端分别连接 在第二开关管的两端,第二同步整流控制电路的输出端连接第二开关管的控制 端; 当需要关闭第二 LED负载的输出时, 第二控制电路输出高电平, 使第四 二极管导通,同时控制第二使能电路输出使能信号使第二同步整流控制电路停 止输出驱动信号, 使第二开关管闭合。 优选地, 还包括第一开关管驱动电路、 第二开关管驱动电路、 第一控制电 路和第二控制电路;
所述第一开关管驱动电路包括: 第三二极管、 第一电流互感器、 第一整形 复位电路、 第三三极管、 第四三极管和第一驱动自供电电路; 所述第一电流互 感器的一次绕组连接在第一二极管与第一开关管之间,二次绕组的两端连接第 一整形复位电路的输入端,二次绕组的两端还连接第一驱动自供电电路的输入 端; 第三三极管和第四三极管连接成推挽电路, 第一整形复位电路的输出端连 接推挽电路的输入端,推挽电路的输出端连接第一开关管的控制端; 第一驱动 自供电电路的输出端连接第三三极管的集电极; 第四三极管的集电极接地; 第 一控制电路的输出端通过第三二极管连接推挽电路的输入端;当需要关闭第一 LED 负载的输出时, 第一控制电路输出高电平, 使第三二极管导通, 推挽电 路输出高电平, 使第一开关管闭合;
所述第二开关管驱动电路包括: 第四二极管、 第二电流互感器、 第二整形 复位电路、 第五三极管、 第六三极管和第二驱动自供电电路; 所述第二电流互 感器的一次绕组连接在第二二极管与第二开关管之间,二次绕组的两端连接第 二整形复位电路的输入端,二次绕组的两端还连接第二驱动自供电电路的输入 端; 第五三极管和第六三极管连接成推挽电路, 第二整形复位电路的输出端连 接推挽电路的输入端,推挽电路的输出端连接第二开关管的控制端; 第二驱动 自供电电路的输出端连接第五三极管的集电极; 第六三极管的集电极接地; 第 一控制电路的输出端通过第三二极管连接推挽电路的输入端;当需要关闭第二 LED 负载的输出时, 第二控制电路输出高电平, 使第四二极管导通, 推挽电 路输出高电平, 使第二开关管闭合。
优选地, 还包括第一开关管驱动电路、 第二开关管驱动电路、 第一控制电 路和第二控制电路;
所述第一开关管驱动电路包括:第三二极管、第一辅助绕组和第三开关管; 第一控制电路的输出端通过第三二极管连接第三开关管的控制端;第三开关管 的一端连接第一开关管的控制端, 另一端连接第一辅助绕组的一端, 第一辅助 绕组的另一端接地; 当需要关闭第一 LED负载的输出时, 第一控制电路输出 低电平, 使第三二极管和第三开关管截止, 使第一开关管闭合; 所述第二开关管驱动电路包括:第四二极管、第二辅助绕组和第四开关管; 第二控制电路的输出通过第四二极管连接第四开关管的控制端;第四开关管的 一端连接第二开关管的控制端, 另一端连接第二辅助绕组的一端, 第二辅助绕 组的另一端接地; 当需要关闭第二 LED负载的输出时, 第二控制电路输出低 电平, 使第四二极管和第四开关管截止, 使第二开关管闭合。
优选地, 所述第一控制电路, 用于检测第一 LED负载输出电压, 当第一 LED负载输出电压大于第一预设电压时, 控制所述第一开关管闭合;
所述第二控制电路, 用于检测第二 LED负载输出电压, 当第二 LED负载 输出电压大于第二预设电压时, 控制所述第二开关管闭合。
优选地, 所述第一控制电路具体为第一比较器, 所述第二控制电路具体为 第二比较器;
所述第一比较器的正输入端连接第一 LED负载的正输出端, 第一比较器 的负输入端连接第一预设电压, 第一比较器的输出端连接第三二极管的阳极; 所述第二比较器的正输入端连接第二 LED负载的正输出端, 第二比较器 的负输入端连接第二预设电压, 第二比较器的输出端连接第四二极管的阳极。
优选地, 所述供电电路的主电路为 LLC谐振变换电路、 桥式电路、 有源 钳位反激电路或正反激电路。
与现有技术相比, 本发明具有以下优点:
本发明实施例提供的多路 LED 负载供电电路在第二二极管两端并联第一 开关管和在第四二极管两端并联第二开关管;通过控制第一开关管和第二开关 管的开关状态来控制第二二极管和第四二极管的导通方式。当系统处于正常状 态时, 第一开关管和第二开关管均断开; 当需要关闭某一路负载的输出时, 控 制对应的开关管闭合,从而使与开关管并联的二极管被短路。这样避免了直接 将某一路负载直接短路对滤波电容产生很大的冲击电流,从而减小了电路的电 流应力, 提高电路的可靠性, 降低成本。
附图说明
图 1是现有技术中一种适用于两路 LED恒流驱动的电路图;
图 2是现有技术中适用于偶数路 LED负载的驱动电路图;
图 3是现有技术中适用于奇数路 LED负载的驱动电路图; 图 4是现有技术中的一种带有开路保护电路的 LED驱动电路; 图 5是本发明提供的多路 LED负载供电电路实施例一电路图;
图 6是本发明提供的多路 LED负载供电电路实施例二电路图;
图 7是本发明提供的多路 LED负载供电电路实施例三电路图;
图 8是本发明提供的多路 LED负载供电电路实施例四电路图;
图 9是本发明提供的多路 LED负载供电电路实施例五电路图;
图 10是本发明提供的多路 LED负载供电电路实施例六电路图;
图 11是本发明提供的多路 LED负载供电电路实施例七电路图;
图 12是本发明提供的多路 LED负载供电电路实施例八电路图。
具体实施方式
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。
参见图 5 , 该图为本发明提供的多路 LED负载供电电路实施例一电路图。 本实施例提供的多路 LED负载供电电路, 包括: 第一滤波电容 Col、 第 二滤波电容 Co2、 第一开关管 Ql、 第二开关管 Q2、 第一整流支路和第二整流 支路;
所述第一整流支路和第二整流支路的输入端均连接高频交流电源; 如图 5 所示, 第一二极管 D1的阳极和第二二极管 D2的阴极均连接高频交流电源的 一端, 第一电容 Cb的左端连接高频交流电源的另一端。 需要说明的是, 以下 各个实施例中的第一整流支路和第二整流支路与高频交流电源的连接与本实 施例相同, 不再赘述。
所述第一整流支路的第一输入端依次串联第一二极管 D1、第一 LED负载 Al、 第四二极管 D4和第一电容 Cb连接第一整流支路的第二输入端;
所述第二整流支路的第二输入端依次串联第一电容 Cb、 第三二极管 D3、 第二 LED负载 A2、 第二二极管 D2连接第二整流支路的第一输入端;
所述的第一整流支路的第一输入端和第二输入端分别连接第二整流回路 的第一输入端和第二输入端;
第一滤波电容 Col并联于所述第一 LED负载 A1的两端; 所述第二滤波 电容 Co2并联于所述第二 LED负载 A2的两端; 所述第一开关管 Q1并联在所述第二二极管 D2的两端, 当需要关闭第一 LED负载 A1时, 控制所述第一开关管 Q1闭合;
所述第二开关管 Q2并联在所述第四二极管 D4的两端, 当需要关闭第二 LED负载 A2时, 控制所述第二开关管 Q2闭合。
高频交流电源为第一 LED负载 A1和第二 LED负载 A2提供能量。 所述 的高频交流电源所指的高频为几十 K以上。
需要说明的是, 第一开关管 Q1和第二开关管 Q2的闭合和断开可以分别 通过第一控制信号 Vsl和第二控制信号 Vs2来控制。
本发明实施例提供的多路 LED负载供电电路在第二二极管 D2两端并联第 一开关管 Q1和在第四二极管 D4两端并联第二开关管 Q2;通过控制第一开关 管 Q1和第二开关管 Q2的开关状态来控制第二二极管 D2和第四二极管 D4的 导通方式。当系统处于正常状态时,随着高频交流电源的正负电压的交替出现, 第一整流支路和第二整流支路交替工作, Q1和 Q2均断开; 当需要关闭某一 路负载的输出时,控制对应的开关管闭合,从而使与开关管并联的二极管被短 路。 这样避免了直接将某一路负载直接短路对滤波电容产生很大的冲击电流, 从而减小了电路的电流应力, 提高电路的可靠性, 降低成本。
参见图 6, 该图为本发明提供的多路 LED负载供电电路实施例二电路图。 本实施例提供的多路 LED负载供电电路还包括第一控制电路 601和第二 控制电路 602;
第一控制电路 601的输入端连接第一 LED负载 A1的输出端, 第一控制 电路 601的输出端连接第一开关管 Q1的控制端。
第一控制电路 601 , 用于检测第一 LED负载 A1输出电压, 当第一 LED 负载 A1输出电压大于第一预设电压时, 控制所述第一开关管 Q1闭合;
第二控制电路 602的输入端连接第二 LED负载 A2的正输出端,第二控制 电路 602的输出端连接第二开关管 Q2的控制端。
第二控制电路 602, 用于检测第二 LED负载 A2的输出电压, 当第二 LED 负载 A2的输出电压大于第二预设电压时, 控制所述第二开关管 Q2闭合。
本实施例提供的多路 LED负载供电电路通过检测 LED负载的输出电压来 控制 Q1和 Q2的开关状态, 用于在某一路 LED负载故障时, 如开路故障或过 压故障,关闭故障的 LED负载,从而防止该故障的 LED负载出现异常过电压。 另夕卜,可以添加自锁电路,在关闭故障负载后,让对应的开关管维持闭合状态。
需要说明的是,本发明实施例提供的所述第一控制电路 601具体为第一比 较器 IC1 , 所述第二控制电路 602具体为第二比较器 IC2; 具体参见图 7 , 该 图为本发明提供的多路 LED负载供电电路实施例三电路图。
所述第一比较器 IC1的正输入端连接第一 LED负载 A1的正输出端, 第 一比较器 IC1的负输入端连接第一预设电压 Vrefl , 第一比较器 IC1的输出端 连接第一开关管 Q1的控制端;
所述第二比较器 IC2的正输入端连接第二 LED负载 A2的正输出端, 第 二比较器 IC2的负输入端连接第二预设电压 Vref2, 第二比较器 IC2的输出端 连接第二开关管 Q2的控制端。
需要说明的是, 第一预设电压 Vrefl和第二预设电压 Vref2可以相同, 也 可以不同。
以上实施例提供的多路 LED 负载供电电路中的整流回路包括四个二极 管, 本发明还提供一种多路 LED负载供电电路, 其中的整流回路包括两个二 极管和两个开关管,两个开关管既作为正常状态时的同步整流管又作为故障状 态时的开关管。 以下结合附图详细介绍本发明提供的另一种多路 LED负载供 电电路。
参见图 8, 该图为本发明提供的多路 LED负载供电电路实施例四电路图。 本实施例提供的多路 LED负载供电电路, 包括: 第一滤波电容 Col、 第 二滤波电容 Co2、 第一整流支路和第二整流支路;
所述第一整流支路和第二整流支路的输入端均连接高频交流电源; 所述第一整流支路的第一输入端依次串联第一二极管、 第一 LED负载、 第二开关管和第一电容, 并连接第一整流支路的第二输入端;
所述第二整流支路的第二输入端依次串联第一电容、 第二二极管、 第二
LED负载和第一开关管, 并连接第二整流支路的第二输入端;
所述的第一整流支路的第一输入端和第二输入端分别连接第二整流回路 的第一输入端和第二输入端;
当供电电路处于正常状态时: 高频交流电源输出正电压, 所述第一二极管 Dl和第二开关管 Q2导通为第一 LED负载 A1供电; 高频交流电源输出负电 压, 所述第一开关管 Q1和第二二极管 D2导通为第二 LED负载 A2供电; 当需要关闭第一 LED负载 A1的输出时,控制第一开关管 Q1在高频交流 电源的正负电压时都处于闭合状态; 当需要关闭第二 LED负载 A2的输出时, 控制第二开关管 Q2在高频交流电源的正负电压时都处于闭合状态。
本实施例提供的多路 LED 负载供电电路, 当系统处于正常状态时, 第一 二极管 Dl、 第二二极管 D2, 和作为二极管使用的第一开关管 Q1和第二开关 管 Q2, 组成整流回路; 当需要关闭某一路 LED负载时, 使该路 LED负载对 应的整流支路中的开关管始终处于闭合状态, 此时开关管不仅作为二极管使 用, 而且作为可控开关管来使用。 本实施例提供的电路同样避免了直接短路 LED 负载造成很大的冲击电流, 提高电路的可靠性, 降低成本。 另外, 可以 添加自锁电路, 在关闭故障负载后, 让对应的开关管维持闭合状态。
参见图 9, 该图为本发明提供的多路 LED负载供电电路实施例五电路图。 901、 第二开关管驱动电路 902、 第一控制电路 903和第二控制电路 904;
所述第一开关管驱动电路 901包括:第一使能电路 901a、第三二极管 D3、 第一同步整流控制电路 901b;
所述第一控制电路 903的输出端通过第三二极管 D3连接第一开关管 Q1 的控制端; 所述第一控制电路 903的输出端通过第一使能电路 901a连接第一 同步整流控制电路 901b的第一输入端,第一同步整流控制电路 901b的第二输 入端和第三输入端分别连接在第一开关管 Q1的两端, 第一同步整流控制电路 901b的输出端连接第一开关管 Q1 的控制端; 当需要关闭第一 LED 负载 A1 的输出时, 第一控制电路 903输出高电平, 使第三二极管 D3导通, 同时控制 第 一使能电路 901a输出使能信号使第一同步整流控制电路 901b停止输出驱 动信号, 使第一开关管 Q1闭合;
所述第二开关管驱动电路 902包括: 第二使能电路 909a、第四二极管 D4、 第二同步整流控制电路 902b;
所述第二控制电路 904的输出端通过第四二极管 D4连接第二开关管 Q2 的控制端; 所述第二控制电路 904的输出端通过第二使能电路 902a连接第二 同步整流控制电路 902b的第一输入端,第二同步整流控制电路 902b的第二输 入端和第三输入端分别连接在第二开关管 Q2的两端, 第二同步整流控制电路 902b的输出端连接第二开关管 Q2的控制端; 当需要关闭第二 LED 负载 A2 的输出时, 第二控制电路 904输出高电平, 使第四二极管 D4导通, 同时控制 第二使能电路 902a输出使能信号使第二同步整流控制电路 902b停止输出驱动 信号, 使第二开关管 Q2闭合。
系统正常状态下, D3、 D4截止, 第一同步整流控制电路 901b和第二同步 整流控制电路 902b分别检测 Q1和 Q2两端的电压, 第一使能电路 901a和第 二使能电路 902a不工作, Q1和 Q2工作在同步整流状态。
本发明实施例还提供的另外一种开关管驱动电路, 参见图 10, 该图为本 发明提供的多路 LED负载供电电路实施例六电路图。
1001、 第二开关管驱动电路 1002、 第一控制电路 903和第二控制电路 904; 所述第一开关管驱动电路 1001 包括: 第三二极管 D3、 第一电流互感器 ST1、 第一整形复位电路 1001a、 第三三极管 Q3、 第四三极管 Q4和第一驱动 自供电电路 1001b;
所述第一电流互感器 ST1的一次绕组连接在第一二极管 D1与第一开关管 Q1之间, 二次绕组的两端连接第一整形复位电路 1001a的输入端, 二次绕组 的两端还连接第一驱动自供电电路 1001b的输入端;
第三三极管 Q3 和第四三极管 Q4 连接成推挽电路, 第一整形复位电路
1001a 的输出端连接推挽电路的输入端, 推挽电路的输出端连接第一开关管 Q1的控制端;
第一驱动自供电电路 1001b的输出端连接第三三极管 Q3的集电极; 第四 三极管 Q4的集电极接地;
第一控制电路 903的输出端通过第三二极管 D3连接推挽电路的输入端; 当需要关闭第一 LED负载 A1的输出时, 第一控制电路 903输出高电平, 使 第三二极管 D3导通, 推挽电路输出高电平, 使第一开关管 Q1闭合;
所述第二开关管驱动电路 1002 包括: 第四二极管 D4、 第二电流互感器 ST2、 第二整形复位电路 1002a、 第五三极管 Q5、 第六三极管 Q6和第二驱动 自供电电路 1002b;
所述第二电流互感器 ST2的一次绕组连接在第二二极管 D2与第二开关管 Q2之间, 二次绕组的两端连接第二整形复位电路 1002a的输入端, 二次绕组 的两端还连接第二驱动自供电电路 1002b的输入端;
第五三极管 Q5 和第六三极管 Q6 连接成推挽电路, 第二整形复位电路
1002a 的输出端连接推挽电路的输入端, 推挽电路的输出端连接第二开关管 Q2的控制端; 第二驱动自供电电路 1002b的输出端连接第五三极管 Q5的集 电极; 第六三极管 Q6的集电极接地; 第一控制电路 903的输出端通过第三二 极管 D3连接推挽电路的输入端; 当需要关闭第二 LED负载 A2的输出时, 第 二控制电路 904输出高电平, 使第四二极管 D4导通, 推挽电路输出高电平, 使第二开关管 Q3闭合。
本发明实施例还提供一种开关管驱动电路, 参见图 11 , 该图为本发明提 供的多路 LED负载供电电路实施例七电路图。 1101、 第二开关管驱动电路 1102、 第一控制电路 903和第二控制电路 904; 所述第一开关管驱动电路 1101包括: 第三二极管 D3、第一辅助绕组 T1-2 和第三开关管 Q3;
第一控制电路 903的输出端通过第三二极管 D3连接第三开关管 Q3的控 制端; 第三开关管 Q3的一端连接第一开关管 Q1的控制端, 另一端连接第一 辅助绕组 T1-2的一端, 第一辅助绕组 T1-2的另一端接地;
当需要关闭第一 LED负载 A1的输出时, 第一控制电路 903输出低电平, 使第三二极管 D3和第三开关管 Q3截止, 使第一开关管 Q1闭合;
所述第二开关管驱动电路 1102包括: 第四二极管 D4、第二辅助绕组 T1-3 和第四开关管 Q4;
第二控制电路 904的输出通过第四二极管 D4连接第四开关管 Q4的控制 端; 第四开关管 Q4的一端连接第二开关管 Q2的控制端, 另一端连接第二辅 助绕组 T1-3的一端,第二辅助绕组 T1-3的另一端接地; 当需要关闭第二 LED 负载 A2的输出时, 第二控制电路 904输出低电平, 使第四二极管 D4和第四 开关管 Q4截止, 使第二开关管 Q2闭合。 需要说明的是, 第一辅助绕组和第二辅助绕组可以为一个带有抽头的绕 组, 抽头接地, 分为第一辅助绕组和第二辅助绕组, 如图 11所示。
需要说明的是,图 9-图 11所示的多路 LED负载供电电路中的第一控制电 路和第二控制电路与图 7所示的结构相同, 下面不——介绍,仅在图 9中的基 础上介绍控制电路, 如图 12所示。
第一控制电路 1201 , 用于检测第一 LED负载 A1输出电压, 当第一 LED 负载 A1输出电压大于第一预设电压 Vrefl时, 控制所述第一开关管 Q1闭合; 第一控制电路 1201的输入端连接第一 LED负载 A1的正输出端, 第一控 制电路 1201的输出端连接第三二极管 D3的阳极。
第二控制电路 1202 , 用于检测第二 LED负载 A2输出电压, 当第二 LED 负载 A2输出电压大于第二预设电压 Vref2时, 控制所述第二开关管 Q2闭合。
第二控制电路 1202的输入端连接第二 LED负载 A2的正输出端, 第二控 制电路 1202的输出端连接第四二极管 D4的阳极。
优选第, 第一控制电路 1201具体为第一比较器 IC1 , 所述第二控制电路 1202具体为第二比较器 IC2;
第一比较器 IC1的正输入端连接第一 LED负载 A1的正输出端, 第一比 较器 IC1的负输入端连接第一预设电压 Vrefl , 第一比较器 IC2的输出端连接 第三二极管 D3的阳极;
第二比较器 IC2的正输入端连接第二 LED负载 A2的正输出端,第二比较 器 IC2的负输入端连接第二预设电压 Vref2, 第二比较器 IC2的输出端连接第 四二极管 D4的阳极。
需要说明的是, 第一预设电压 Vrefl和第二预设电压 Vref2可以相同, 也 可以不同。
需要说明的是, 本发明实施例提供的供电电路的主电路可以为 LLC谐振 变换电路、 桥式电路、 有源钳位反激电路或正反激电路, 其中图 9-图 12是以 LLC谐振电路为主电路的。
本发明实施例中提供的开关管可以优选为 MOSFET管,如图 8-图 12所示。 需要说明的是, 以上实施例均是以两路 LED 负载为例进行介绍的, 本发 明所有实施例提供的多路 LED负载供电电路的技术方案可以应用于大于两个 LED负载路数的电路中, 具体的拓朴结构可以类似图 2和图 3那样拓朴偶数 路 LED负载和奇数路 LED负载, 在此不再赘述。
以上所述,仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的 限制。 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发明。 任何 熟悉本领域的技术人员, 在不脱离本发明技术方案范围情况下, 都可利用上述 揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改 为等同变化的等效实施例。 因此, 凡是未脱离本发明技术方案的内容, 依据本 发明的技术实质对以上实施例所做的任何筒单修改、等同变化及修饰, 均仍属 于本发明技术方案保护的范围内。

Claims

权 利 要 求
1、 一种多路 LED负载供电电路, 其特征在于, 包括: 第一滤波电容、 第 二滤波电容、 第一开关管、 第二开关管、 第一整流支路和第二整流支路; 所述第一整流支路和第二整流支路的输入端均连接高频交流电源; 所述第一整流支路的第一输入端依次串联第一二极管、 第一 LED负载、 第四二极管和第一电容, 并连接第一整流支路的第二输入端;
所述第二整流支路的第二输入端依次串联第一电容、 第三二极管、 第二 LED负载和第二二极管, 并连接第二整流支路的第一输入端;
所述的第一整流支路的第一输入端和第二输入端分别连接第二整流回路 的第一输入端和第二输入端;
第一滤波电容并联于所述第一 LED负载的两端; 所述第二滤波电容并联 于所述第二 LED负载的两端;
所述第一开关管并联在所述第二二极管的两端, 当需要关闭第一 LED负 载时, 所述第一开关管闭合;
所述第二开关管并联在所述第四二极管的两端, 当需要关闭第二 LED负 载时, 所述第二开关管闭合。
2、 根据权利要求 1所述的多路 LED负载供电电路, 其特征在于, 还包括 第一控制电路和第二控制电路;
所述第一控制电路, 用于检测第一 LED负载输出电压, 当第一 LED负载 输出电压大于第一预设电压时, 控制所述第一开关管闭合;
所述第二控制电路, 用于检测第二 LED负载输出电压, 当第二 LED负载 输出电压大于第二预设电压时, 控制所述第二开关管闭合。
3、 根据权利要求 2所述的多路 LED负载供电电路, 其特征在于, 所述第 一控制电路具体为第一比较器, 所述第二控制电路具体为第二比较器;
所述第一比较器的正输入端连接第一 LED负载的正输出端, 第一比较器 的负输入端连接第一预设电压, 第一比较器的输出端连接第一开关管的控制 端;
所述第二比较器的正输入端连接第二 LED负载的正输出端, 第二比较器 的负输入端连接第二预设电压, 第二比较器的输出端连接第二开关管的控制 端。
4、 一种多路 LED负载供电电路, 其特征在于, 包括: 第一滤波电容、 第 二滤波电容、 第一整流支路和第二整流支路;
所述第一整流支路和第二整流支路的输入端均连接高频交流电源; 所述第一整流支路的第一输入端依次串联第一二极管、 第一 LED负载、 第二开关管和第一电容, 并连接第一整流支路的第二输入端;
所述第二整流支路的第二输入端依次串联第一电容、 第二二极管、 第二
LED负载和第一开关管, 并连接第二整流支路的第二输入端;
所述的第一整流支路的第一输入端和第二输入端分别连接第二整流回路 的第一输入端和第二输入端;
当供电电路处于正常状态时: 高频交流电源输出正电压, 所述第一二极管 和第二开关管导通为第一 LED负载供电; 交流电源输出负电压, 所述第一开 关管和第二二极管导通为第二 LED负载供电;
当需要关闭第一 LED负载的输出时, 控制第一开关管在高频交流电源输 出正负电压时均闭合; 当需要关闭第二 LED负载的输出时, 控制第二开关管 在高频交流电源输出正负电压时均闭合。
5、 根据权利要求 4所述的多路 LED负载供电电路, 其特征在于, 还包括 第一开关管驱动电路、 第二开关管驱动电路、 第一控制电路和第二控制电路; 所述第一开关管驱动电路包括: 第一使能电路、 第三二极管、 第一同步整 流控制电路;所述第一控制电路的输出端通过第三二极管连接第一开关管的控 制端;所述第一控制电路的输出端通过第一使能电路连接第一同步整流控制电 路的第一输入端,第一同步整流控制电路的第二输入端和第三输入端分别连接 在第一开关管的两端,第一同步整流控制电路的输出端连接第一开关管的控制 端; 当需要关闭第一 LED负载的输出时, 第一控制电路输出高电平, 使第三 二极管导通,同时控制第一使能电路输出使能信号使第一同步整流控制电路停 止输出驱动信号, 使第一开关管闭合;
所述第二开关管驱动电路包括: 第二使能电路、 第四二极管、 第二同步整 流控制电路;所述第二控制电路的输出端通过第四二极管连接第二开关管的控 制端;所述第二控制电路的输出端通过第二使能电路连接第二同步整流控制电 路的第一输入端,第二同步整流控制电路的第二输入端和第三输入端分别连接 在第二开关管的两端,第二同步整流控制电路的输出端连接第二开关管的控制 端; 当需要关闭第二 LED负载的输出时, 第二控制电路输出高电平, 使第四 二极管导通,同时控制第二使能电路输出使能信号使第二同步整流控制电路停 止输出驱动信号, 使第二开关管闭合。
6、 根据权利要求 4所述的多路 LED负载供电电路, 其特征在于, 还包括 第一开关管驱动电路、 第二开关管驱动电路、 第一控制电路和第二控制电路; 所述第一开关管驱动电路包括: 第三二极管、 第一电流互感器、 第一整形 复位电路、 第三三极管、 第四三极管和第一驱动自供电电路; 所述第一电流互 感器的一次绕组连接在第一二极管与第一开关管之间,二次绕组的两端连接第 一整形复位电路的输入端,二次绕组的两端还连接第一驱动自供电电路的输入 端; 第三三极管和第四三极管连接成推挽电路, 第一整形复位电路的输出端连 接推挽电路的输入端,推挽电路的输出端连接第一开关管的控制端; 第一驱动 自供电电路的输出端连接第三三极管的集电极; 第四三极管的集电极接地; 第 一控制电路的输出端通过第三二极管连接推挽电路的输入端;当需要关闭第一 LED 负载的输出时, 第一控制电路输出高电平, 使第三二极管导通, 推挽电 路输出高电平, 使第一开关管闭合;
所述第二开关管驱动电路包括: 第四二极管、 第二电流互感器、 第二整形 复位电路、 第五三极管、 第六三极管和第二驱动自供电电路; 所述第二电流互 感器的一次绕组连接在第二二极管与第二开关管之间,二次绕组的两端连接第 二整形复位电路的输入端,二次绕组的两端还连接第二驱动自供电电路的输入 端; 第五三极管和第六三极管连接成推挽电路, 第二整形复位电路的输出端连 接推挽电路的输入端,推挽电路的输出端连接第二开关管的控制端; 第二驱动 自供电电路的输出端连接第五三极管的集电极; 第六三极管的集电极接地; 第 一控制电路的输出端通过第三二极管连接推挽电路的输入端;当需要关闭第二 LED 负载的输出时, 第二控制电路输出高电平, 使第四二极管导通, 推挽电 路输出高电平, 使第二开关管闭合。
7、 根据权利要求 4所述的多路 LED负载供电电路, 其特征在于, 还包括 第一开关管驱动电路、 第二开关管驱动电路、 第一控制电路和第二控制电路; 所述第一开关管驱动电路包括:第三二极管、第一辅助绕组和第三开关管; 第一控制电路的输出端通过第三二极管连接第三开关管的控制端;第三开关管 的一端连接第一开关管的控制端, 另一端连接第一辅助绕组的一端, 第一辅助 绕组的另一端接地; 当需要关闭第一 LED负载的输出时, 第一控制电路输出 低电平, 使第三二极管和第三开关管截止, 使第一开关管闭合;
所述第二开关管驱动电路包括:第四二极管、第二辅助绕组和第四开关管; 第二控制电路的输出通过第四二极管连接第四开关管的控制端;第四开关管的 一端连接第二开关管的控制端, 另一端连接第二辅助绕组的一端, 第二辅助绕 组的另一端接地; 当需要关闭第二 LED负载的输出时, 第二控制电路输出低 电平, 使第四二极管和第四开关管截止, 使第二开关管闭合。
8、根据权利要求 5-7任一项所述的多路 LED负载供电电路,其特征在于, 所述第一控制电路, 用于检测第一 LED负载输出电压, 当第一 LED负载输出 电压大于第一预设电压时, 控制所述第一开关管闭合;
所述第二控制电路, 用于检测第二 LED负载输出电压, 当第二 LED负载 输出电压大于第二预设电压时, 控制所述第二开关管闭合。
9、 根据权利要求 8所述的多路 LED负载供电电路, 其特征在于, 所述第 一控制电路具体为第一比较器, 所述第二控制电路具体为第二比较器;
所述第一比较器的正输入端连接第一 LED负载的正输出端, 第一比较器 的负输入端连接第一预设电压, 第一比较器的输出端连接第三二极管的阳极; 所述第二比较器的正输入端连接第二 LED负载的正输出端, 第二比较器 的负输入端连接第二预设电压, 第二比较器的输出端连接第四二极管的阳极。
10、 根据权利要求 4所述的多路 LED负载供电电路, 其特征在于, 所述 供电电路的主电路为 LLC谐振变换电路、 桥式电路、 有源钳位反激电路或正 反激电路。
PCT/CN2010/079857 2010-08-03 2010-12-16 一种多路led负载供电电路 WO2012016410A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/813,723 US9148933B2 (en) 2010-08-03 2010-12-16 Power supply circuit for multi-path light-emitting diode (LED) loads

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010246507.7 2010-08-03
CN2010102465077A CN102348310B (zh) 2010-08-03 2010-08-03 一种多路led负载供电电路

Publications (1)

Publication Number Publication Date
WO2012016410A1 true WO2012016410A1 (zh) 2012-02-09

Family

ID=45546478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079857 WO2012016410A1 (zh) 2010-08-03 2010-12-16 一种多路led负载供电电路

Country Status (3)

Country Link
US (1) US9148933B2 (zh)
CN (1) CN102348310B (zh)
WO (1) WO2012016410A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101575A (zh) * 2015-09-06 2015-11-25 王天甜 智能t系列led灯驱动器及其控制方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348310B (zh) 2010-08-03 2013-08-14 英飞特电子(杭州)股份有限公司 一种多路led负载供电电路
CN202759632U (zh) * 2012-06-20 2013-02-27 伟思科技控股有限公司 一种发光二极管的驱动电路及照明装置
TWI514929B (zh) * 2013-08-30 2015-12-21 Lextar Electronics Corp 結合開關元件之調光裝置
GB2520037B (en) * 2013-11-07 2021-08-11 Greengage Lighting Ltd Power distribution
CN105099230B (zh) * 2014-04-16 2018-07-31 华为技术有限公司 谐振变换器和其同步整流变换电路
JP2016071981A (ja) * 2014-09-29 2016-05-09 三菱電機株式会社 光源制御装置および光源制御方法
CN106163046B (zh) * 2015-04-28 2018-12-28 赛尔富电子有限公司 一种具有短路保护的led电源
CN106455258A (zh) * 2016-09-30 2017-02-22 成都赛昂电子科技有限公司 一种基于时基集成芯片的过流保护型路灯自动控制电路
CN106455257A (zh) * 2016-09-30 2017-02-22 成都赛昂电子科技有限公司 一种可过流保护的路灯自动控制电路
CN106422053B (zh) * 2016-12-16 2023-09-05 广州市英侨科技发展有限公司 一种扫频波谱能量仪
GB2587292B (en) * 2018-05-28 2022-05-04 Tridonic Gmbh & Co Kg Power supply circuit, controlling method and lighting equipment
CN109195261B (zh) * 2018-10-08 2020-02-14 广东省崧盛电源技术有限公司 一种多路输出恒流驱动电路及驱动电源
CN211557553U (zh) * 2019-06-06 2020-09-22 上海路傲电子科技有限公司 芯片驱动电路、芯片、线性恒流驱动电路及照明装置
CN111817262B (zh) * 2020-06-22 2023-03-14 深圳市禾望电气股份有限公司 SiC器件的短路保护电路以及电力电子设备
CN113252974B (zh) * 2021-07-01 2021-11-05 钰泰半导体股份有限公司 负载电流检测电路
CN117479383A (zh) * 2023-11-17 2024-01-30 上海衡亮电子科技股份有限公司 一种自动消除失效led灯珠漏电的电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129652B2 (en) * 2004-03-26 2006-10-31 Texas Instruments Incorporated System and method for driving a plurality of loads
CN101702854A (zh) * 2009-11-21 2010-05-05 英飞特电子(杭州)有限公司 一种适用于多路led恒流驱动的电路
KR20100049243A (ko) * 2008-11-03 2010-05-12 엘지전자 주식회사 발광다이오드의 멀티채널 구동 장치
CN101772246A (zh) * 2010-02-24 2010-07-07 英飞特电子(杭州)有限公司 适用于多路led精确恒流驱动的多谐振电路
CN101778506A (zh) * 2009-12-28 2010-07-14 英飞特电子(杭州)有限公司 一种实现多路led精确恒流的驱动电路
CN201766749U (zh) * 2010-08-03 2011-03-16 英飞特电子(杭州)有限公司 一种多路led负载供电电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996462A (en) * 1988-07-27 1991-02-26 Siemens Aktiengesellschaft Electronic ballast for fluoroscent lamps
US6441558B1 (en) * 2000-12-07 2002-08-27 Koninklijke Philips Electronics N.V. White LED luminary light control system
CN102348310B (zh) 2010-08-03 2013-08-14 英飞特电子(杭州)股份有限公司 一种多路led负载供电电路
CN202168249U (zh) * 2011-07-19 2012-03-14 深圳市华星光电技术有限公司 Led驱动电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129652B2 (en) * 2004-03-26 2006-10-31 Texas Instruments Incorporated System and method for driving a plurality of loads
KR20100049243A (ko) * 2008-11-03 2010-05-12 엘지전자 주식회사 발광다이오드의 멀티채널 구동 장치
CN101702854A (zh) * 2009-11-21 2010-05-05 英飞特电子(杭州)有限公司 一种适用于多路led恒流驱动的电路
CN101778506A (zh) * 2009-12-28 2010-07-14 英飞特电子(杭州)有限公司 一种实现多路led精确恒流的驱动电路
CN101772246A (zh) * 2010-02-24 2010-07-07 英飞特电子(杭州)有限公司 适用于多路led精确恒流驱动的多谐振电路
CN201766749U (zh) * 2010-08-03 2011-03-16 英飞特电子(杭州)有限公司 一种多路led负载供电电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101575A (zh) * 2015-09-06 2015-11-25 王天甜 智能t系列led灯驱动器及其控制方法

Also Published As

Publication number Publication date
CN102348310B (zh) 2013-08-14
US9148933B2 (en) 2015-09-29
US20130127343A1 (en) 2013-05-23
CN102348310A (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2012016410A1 (zh) 一种多路led负载供电电路
TWI661634B (zh) 模組化電源系統
US9065341B2 (en) DC-DC converter
TWI535175B (zh) Load driving circuit and method thereof
TWI439024B (zh) 一種級聯型變頻器、功率單元及其旁路模組
US9860947B2 (en) Driver circuit for illuminants, particularly LEDs
US9072126B2 (en) Open-circuit protection circuit of constant current driving circuit for light emitting diodes
US8680820B2 (en) PFC booster circuit
US9042140B2 (en) Bridge-less step-up switching power supply device
US9362831B2 (en) Fly-forward converter with energy recovery snubber
TW201223105A (en) DC-DC converter
US9564797B2 (en) Indirect matrix converter
JP2015159710A (ja) エネルギー回収スナバ
CN110365203B (zh) 电流采样电路、电流过零检测电路、图腾柱无桥pfc电路及其控制方法
JP2015192546A (ja) ブリッジレス力率改善コンバータ
EP2709228B1 (en) Clamping protection circuit, resonance circuit and convertor
CN105871218A (zh) 一种配置推挽式隔离电源的igbt驱动方法及装置
TW201434349A (zh) 發光二極體驅動器
US10986713B2 (en) Retrofit lamp and a lighting system using the same
US20140192562A1 (en) Single stage ac/dc converter
KR20090006667A (ko) 인터리브드 플라이백 led 구동 장치
CN212992651U (zh) 一种不对称半桥电路及照明系统
US9564819B2 (en) Switching power supply circuit
WO2011161728A1 (ja) スイッチング電源装置およびこれを用いた電源システム、電子装置
KR102142630B1 (ko) 전압구동형 동기정류기 구동회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13813723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 09.04.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10855548

Country of ref document: EP

Kind code of ref document: A1