WO2012014879A1 - Laser processing machine and protective device against laser light - Google Patents

Laser processing machine and protective device against laser light Download PDF

Info

Publication number
WO2012014879A1
WO2012014879A1 PCT/JP2011/066942 JP2011066942W WO2012014879A1 WO 2012014879 A1 WO2012014879 A1 WO 2012014879A1 JP 2011066942 W JP2011066942 W JP 2011066942W WO 2012014879 A1 WO2012014879 A1 WO 2012014879A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperture
laser
reflected light
optical path
laser beam
Prior art date
Application number
PCT/JP2011/066942
Other languages
French (fr)
Japanese (ja)
Inventor
裕司 木野
茂 横井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2012014879A1 publication Critical patent/WO2012014879A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • B23K26/125Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases of mixed gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Definitions

  • the present invention relates to a laser processing machine and a laser beam protection device for protecting an optical path component from reflected light of a laser beam.
  • the laser beam emitted from the laser oscillator is guided onto the workpiece along a predetermined optical path.
  • a member (optical path component) in the vicinity of the optical path is damaged. For this reason, it is desired to prevent the reflected light from the workpiece from entering the optical path.
  • an aperture that blocks reflected light (laser light) from the workpiece is provided in the optical path.
  • the reflected light largely deviated from the optical path out of the reflected light from the workpiece is prevented from entering the optical path.
  • the conventional technique has a problem in that reflected light that has passed through the aperture enters the optical path, and the reflected light may damage optical path components (such as bellows covering the periphery of the optical path).
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a laser processing machine and a laser light protection device that protect optical path components from reflected light of laser light.
  • the present invention provides a laser beam machine for irradiating a workpiece by propagating a laser beam emitted from a laser oscillator along an optical path.
  • An optical path protector that protects the environment of the optical path by surrounding the periphery of the optical path along an axis, and is disposed in the optical path protector or at a lower stage of the optical path than the optical path protector and passes the laser light
  • An aperture that blocks the reflected light of the laser beam reflected by the workpiece, a reflected light detection unit that detects the reflected light applied to the aperture, and a reflected light detected by the reflected light detection unit.
  • a control unit that controls the operation of the laser oscillator based on a detection result, the aperture is formed of a plate-like member, and the main surface of the plate-like member is on the optical axis of the laser beam. Characterized in that it is arranged to face a direction perpendicular to.
  • the optical path component can be protected from the reflected light of the laser beam.
  • FIG. 1 is a diagram showing a configuration of a laser beam machine according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the machining head.
  • FIG. 3 is a diagram showing the arrangement positions of the apertures provided on the optical path of the laser processing machine.
  • FIG. 4 is a diagram for explaining the function of the aperture.
  • FIG. 5 is a diagram showing the configuration of the aperture.
  • FIG. 6 is a diagram for explaining the position of the temperature switch.
  • FIG. 7 is a diagram for explaining reflected light detected by the temperature switch.
  • FIG. 1 is a diagram showing a configuration of a laser beam machine according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the machining head.
  • the structural example of the laser processing machine 100 is shown as a perspective view
  • the structural example of the processing head 40 is shown as a perspective view.
  • the laser beam machine 100 includes a laser beam protection device (see FIG. 1) for preventing burning of optical path components due to reflected light (a reflected light Lb described later) from a workpiece (workpiece) W on the optical path of the laser beam. (Not shown).
  • the laser light protection device has an aperture that blocks the reflected light Lb on the optical path, and a temperature detecting means (a temperature switch 3 described later) provided on the aperture detects the surface temperature of the aperture, thereby the aperture. The reflected light Lb applied to the light is detected. Then, the laser light protection device stops the emission of the laser light based on the detection result of the reflected light Lb.
  • a temperature detecting means a temperature switch 3 described later
  • the laser processing machine 100 includes a Y-axis unit movably provided in a Y-axis direction on a work table 32 provided on a bed 31 and a cross rail 36 horizontally stretched between left and right columns 34 and 35. 38.
  • the laser beam machine 100 includes an X-axis unit 37 provided on the cross rail 36 so as to be movable in the X-axis direction, and a Z-axis unit 39 provided on the X-axis unit 37 so as to be movable in the Z-axis direction.
  • the laser processing machine 100 includes a processing head 40 attached to the Z-axis unit 39, a processing nozzle (laser nozzle) 33 attached to the tip of the processing head 40, and a computer-type processing control device 41. is doing.
  • the machining control device 41 includes an operation panel 42A and a screen display unit 42B such as a CRT as a man-machine interface.
  • the work table 32, the Y-axis unit 38, and the Z-axis unit 39 are driven by an X-axis servo motor, a Y-axis servo motor, and a Z-axis servo motor (not shown), respectively, and position control is performed according to each axis command from the machining control device 41. Is done.
  • the laser processing machine 100 includes a laser oscillator (laser light output unit) 21 described later, and guides the laser light from the laser oscillator 21 onto the work W along a predetermined optical path.
  • the laser beam machine 100 according to the present embodiment includes an aperture (aperture 1 described later) that prevents the reflected light Lb from entering the optical path through which the laser beam is guided.
  • FIG. 3 is a diagram showing the arrangement positions of the apertures provided on the optical path of the laser processing machine.
  • the laser processing machine 100 includes a laser oscillator 21, a PR (Partial Reflection) mirror 22, a bend mirror 23, a beam optimization unit 24, bend mirrors 25 and 26, a processing lens 27 provided in the processing head 39, and a laser light protection device. It is comprised including.
  • the laser light protection device includes an aperture 1, a bellows (optical path protection unit) 2, a temperature switch (reflected light detection unit) 3, and a control unit 50.
  • the laser oscillator 21 is a device that oscillates laser light (beam light) La, such as a CO2 laser, and emits laser light La while changing laser output in various ways during laser processing.
  • the PR mirror (partial reflection mirror) 22 partially reflects the laser beam La emitted from the laser oscillator 21 and guides it to the bend mirror 23.
  • the bend mirror (beam angle changing mirror) 23 changes the beam angle of the laser light La sent from the PR mirror 22 and guides it to the beam optimization unit 24.
  • the beam optimization unit (beam diameter changing device) 24 adjusts the beam diameter (diameter) of the laser beam La sent from the bend mirror 23 and sends it to the bend mirror 25.
  • the bend mirrors 25 and 26 are mirrors for changing the beam angle.
  • the bend mirror 25 deflects the beam angle of the laser beam La sent from the beam optimization unit 24 in the horizontal direction and sends it to the bend mirror 26.
  • the bend mirror 26 deflects the beam angle of the laser beam La sent from the bend mirror 25 vertically downward and sends it to the processing lens 27.
  • a mirror (not shown) that changes polarization is mounted between the bend mirror 25 and the bend mirror 26.
  • the processing lens 27 focuses the laser beam from the bend mirror 26 on a small spot diameter and irradiates the workpiece W with it.
  • the work W is placed on the work table 32, and laser processing is performed on the work table 32.
  • a cylindrical bellows 2 formed so as to surround the periphery of the optical path along the optical axis of the laser light La is disposed in the optical path between the bend mirror 25 and the bend mirror 26.
  • the bellows 2 has a function of protecting the optical path from outside air (processing waste etc.) by blocking the optical path environment from outside air.
  • the bellows 2 is configured to be able to expand and contract in the same direction as the optical path (optical axis), and its shape is changed according to the position and direction of the optical path.
  • an aperture 1 that prevents the reflected light Lb from entering is disposed in the vicinity of the bellows 2.
  • the aperture 1 allows the laser light La to pass therethrough, and out of the reflected light Lb, the reflected light Lb that deviates more than a predetermined amount from the optical path (a predetermined angle from the optical axis of the laser light La) enters the bellows 2.
  • the aperture 1 has, for example, a substantially flat plate shape (for example, a plate member having a thickness of 1 mm to 10 mm), and has a through hole (a laser light passage portion 4 to be described later) through which the laser light La passes at the center of the main surface. ) Is provided.
  • the aperture 1 is arranged so that the main surface of the plate-shaped member faces a direction perpendicular to the optical axis of the laser light La.
  • the aperture 1 is provided with a temperature switch 3 as temperature detecting means, and the aperture 1 is provided with an absorber that absorbs the reflected light Lb on the incident surface side of the reflected light Lb (the outgoing slope side of the laser light La). Has been.
  • the temperature switch 3 detects the temperature of the aperture 1 and sends the detected temperature (measurement result) to the control unit 50.
  • the control unit 50 is a device included in the processing control device 41 and controls the operation of the laser oscillator 21.
  • the control unit 50 according to the present embodiment controls the output of the laser light La from the laser oscillator 21 based on the measurement result (temperature of the aperture 1) sent from the temperature switch 3. Specifically, the control unit 50 stops the output of the laser light La from the laser oscillator 21 when the temperature of the aperture 1 or the rate of temperature increase is higher than a predetermined value.
  • FIG. 4 is a diagram for explaining the function of the aperture.
  • the reflected light Lb from the surface of the workpiece W may be shifted from the optical axis from the laser oscillator 21 and return to the optical path due to the surface state of the workpiece W or the like.
  • the aperture 1 is provided in the optical path.
  • This aperture 1 is formed of a member having high thermal conductivity.
  • the aperture 1 is formed using, for example, aluminum, silver, copper, gold, or an alloy using these.
  • the aperture 1 is formed using at least one of aluminum, silver, copper, and gold, for example.
  • the aperture 1 is aluminum
  • the aperture 1 is formed by performing shot blasting on the surface of the aperture 1 of the aluminum base (the emission side of the laser light La) and further subjecting the surface to alumite treatment.
  • the aperture 1 may be configured by combining a plurality of types of metal plates.
  • FIG. 5 is a diagram showing the configuration of the aperture.
  • FIG. 5 shows a perspective view of the aperture 1.
  • the aperture 1 is joined to the bellows 2 on the back surface (bottom surface) side. Thereby, the aperture 1 is arranged so that the back surface side thereof faces the bellows 2 side and the front surface side faces the emission side of the laser light La.
  • the substantially flat aperture 1 is provided with a laser beam passage portion 4 (for example, a diameter of 50 mm) as a through hole from the front surface side to the back surface side.
  • the laser beam passage portion 4 is provided at the center of the aperture 1 and has a substantially cylindrical shape (cylindrical wall surface).
  • three temperature switches 3 a to 3 c are arranged as the temperature switch 3.
  • Part or all of the return light (reflected light Lb) reflected from the workpiece W is irradiated on the surface of the aperture 1.
  • the reflected light Lb is absorbed by the aperture 1 and raises the temperature of the aperture 1.
  • the temperature switches 3a to 3c detect the reflected light Lb irradiated to the aperture 1 out of the reflected light Lb by detecting the temperature of the aperture 1.
  • a plurality of temperature switches 3 are arranged on the aperture 1. This is to compensate for the difference in detection of heat conduction depending on the absorption position of the reflected light Lb.
  • the temperature switches 3a to 3c send the detected temperature (measurement result) to the control unit 50.
  • the control unit 50 reduces or stops the output of the laser light La, thereby preventing the optical path from being damaged by the reflected light Lb. To do.
  • the control unit 50 may control the laser oscillator 21 so as to lower the beam output of the laser beam La by an amount corresponding to the measurement results by the temperature switches 3a to 3c.
  • FIG. 6 is a diagram for explaining the position of the temperature switch.
  • FIG. 6 shows a bottom view of the aperture 1.
  • temperature switches 3 a to 3 c are arranged around the laser beam passage portion 4.
  • Each of the temperature switches 3a to 3c is disposed at a position that is equidistant from the center of the laser beam passage portion 4 (the optical axis of the laser beam La), and the distance between adjacent temperature switches is equally spaced.
  • the temperature switches 3a to 3c are arranged on the back surface of the aperture 1 so as to form an equilateral triangle.
  • the temperature switches 3a to 3c may be disposed in the vicinity of the laser beam passage portion 4, or may be disposed at positions separated from the laser beam passage portion 4 by a predetermined distance as shown in FIG. .
  • a part of the reflected light Lb enters the bellows 2 from the laser beam passage portion 4, and a part of the reflected light Lb It is possible to accurately detect the reflected light Lb when the surface of the aperture 1 is irradiated.
  • the temperature switches 3a to 3c are arranged at a position away from the laser beam passage portion 4 by a predetermined distance, the reflected light Lb that is significantly larger than the predetermined amount from the optical path among the reflected light Lb is accurately detected. It becomes possible.
  • FIG. 7 is a diagram for explaining reflected light detected by the temperature switch.
  • the reflected light Lb the reflected light Lb1 that deviates by a predetermined amount or less from the optical path enters the bellows 2 from the laser light passage portion 4.
  • the reflected light Lb the reflected light Lb2 that deviates more than a predetermined amount from the optical path irradiates the surface of the aperture 1, thereby increasing the temperature of the aperture 1.
  • the temperature switches 3a to 3c detect the reflected light Lb2 that irradiates the surface of the aperture 1 among the reflected light Lb.
  • the detection sensitivity of the reflected light Lb can be improved.
  • the aperture 1 is substantially flat, the detection sensitivity of the reflected light Lb can be improved.
  • the surface of the aperture 1 is shot blasted or anodized, the reflected light Lb is less likely to be reflected on the surface of the aperture 1. As a result, it becomes possible to improve the detection sensitivity of the reflected light Lb.
  • the reflected light Lb reflected and diffused by the workpiece W can be detected with high accuracy. Accordingly, it is possible to accurately determine an abnormal state in which reflection on the workpiece W continues, and to stop the laser beam machine 100 before the optical path components such as the bellows 2 are burned out. In other words, the laser beam machine 100 can be stopped by detecting an abnormality that leads to burnout of the optical path component.
  • the aperture 1 may be arranged at any position on the optical path.
  • the aperture 1 may be disposed in the bellows 2 or between the bellows 2 and the bend mirror 25.
  • the aperture 1 may be disposed between the beam optimization unit 24 and the bend mirror 25, or the aperture 1 may be disposed on the optical path upper stage side (laser oscillator 21 side) than the beam optimization unit 24.
  • the aperture 1 may be disposed on any optical path between the workpiece W and the bellows 2.
  • two or more apertures 1 may be disposed in the laser processing machine 100.
  • the apertures 1 may be arranged at two locations, the laser beam La emission side of the bellows 2 and the bellows 2.
  • the reflected light Lb deviating more than a predetermined angle from the optical axis of the laser light La can be efficiently blocked by the two apertures 1.
  • the aperture 1 is composed of a plate-like member, the temperature of the aperture 1 can be accurately detected.
  • a member having extremely high thermal conductivity such as silver or copper is disposed only in a part of the aperture 1 (a region where the detection sensitivity of the laser beam La is to be increased), and aluminum is disposed in the other region.
  • the aperture 1 may be formed using aluminum, and silver, copper, or the like may be disposed only around the laser beam passage portion 4. Thereby, it is possible to improve the high sensitivity of the laser around the laser beam passage portion 4.
  • the surface of the aperture 1 may be formed using aluminum, and the back surface of the aperture 1 may be formed using silver or copper. Thereby, shot blasting and anodizing can be performed on the surface of the aperture 1. Therefore, the surface of the aperture 1 can be configured with a member having a high heat absorption rate, and the back surface of the aperture 1 can be configured with a member having an extremely high thermal conductivity.
  • the reflected light Lb may be detected using a non-contact type temperature sensor instead of the temperature switch 3.
  • a non-contact type temperature sensor may be arranged on the surface side of the aperture 1. Further, not only the temperature of the aperture 1 when the reflected light Lb irradiates the aperture 1, but also the amount of thermal expansion of the aperture 1, luminance, etc. may be detected.
  • the temperature switch 3 may be two or less, and may be four or more.
  • the aperture 1 is plate-shaped, the amount of heat transfer in the aperture 1 can be increased. As a result, the reflected light Lb that irradiates the surface of the aperture 1 can be accurately detected. Therefore, damage to the optical path component due to the reflected light Lb from the workpiece W can be prevented, and the optical path component can be protected.
  • the temperature switches 3a to 3c are arranged on the back surface of the aperture 1 so as to form an equilateral triangle, the reflected light Lb can be accurately detected on the aperture 1.
  • the aperture 1 can efficiently absorb the reflected light Lb. Therefore, the reflected light Lb can be accurately detected on the aperture 1.
  • the laser beam machine and the laser beam protection device according to the present invention are suitable for protecting the optical path components from the reflected light of the laser beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser processing machine which causes laser light (La) emitted from a laser oscillator (21) to propagate along a light path and applies the laser light to a workpiece (W) is provided with a bellows (2) which protects the environment of the light path by surrounding the periphery of the light path along the optical axis of the laser light, an aperture (1) which is disposed on the lower stage side of the light path than the bellows (2), passes the laser light (La) therethrough, and blocks reflected light of the laser light (La) reflected by the workpiece (W), a temperature switch (3) which detects the reflected light applied to the aperture (1), and a control unit (50) which controls the operation of the laser oscillator (21) on the basis of the detection result of the reflected light detected by the temperature switch (3), the aperture (1) being formed by a plate-shaped member and disposed so that the principal surface of the plate-shaped member faces the direction perpendicular to the optical axis of the laser light (La).

Description

レーザ加工機およびレーザ光保護装置Laser processing machine and laser beam protection device
 本発明は、レーザ光の反射光から光路部品を保護するレーザ加工機およびレーザ光保護装置に関する。 The present invention relates to a laser processing machine and a laser beam protection device for protecting an optical path component from reflected light of a laser beam.
 被加工物にレーザ光を照射して被加工物へのレーザ加工を行うレーザ加工機では、レーザ発振器から出射されたレーザ光を所定の光路に沿って被加工物上へ導いている。このようなレーザ加工機では、被加工物からの反射光が光路側に反射されると、光路近傍の部材(光路部品)などが損傷する。このため、被加工物からの反射光の光路側への進入を防止することが望まれている。 In a laser processing machine that performs laser processing on a workpiece by irradiating the workpiece with laser light, the laser beam emitted from the laser oscillator is guided onto the workpiece along a predetermined optical path. In such a laser processing machine, when the reflected light from the workpiece is reflected to the optical path side, a member (optical path component) in the vicinity of the optical path is damaged. For this reason, it is desired to prevent the reflected light from the workpiece from entering the optical path.
 例えば、特許文献1,2に記載のレーザ加工機は、被加工物からの反射光(レーザ光)を遮断するアパーチャを光路内に設けている。これにより、被加工物からの反射光のうち、光路から大きく外れた反射光が光路内に進入することを防止している。 For example, in the laser processing machines described in Patent Documents 1 and 2, an aperture that blocks reflected light (laser light) from the workpiece is provided in the optical path. Thereby, the reflected light largely deviated from the optical path out of the reflected light from the workpiece is prevented from entering the optical path.
特開2002-316291号公報JP 2002-316291 A 特開2003-71584号公報JP 2003-71584 A
 しかしながら、上記従来の技術では、アパーチャを通りぬけた反射光が光路内に進入し、反射光が光路部品(光路周辺を覆うジャバラなど)を損傷させる場合があるという問題があった。 However, the conventional technique has a problem in that reflected light that has passed through the aperture enters the optical path, and the reflected light may damage optical path components (such as bellows covering the periphery of the optical path).
 本発明は、上記に鑑みてなされたものであって、レーザ光の反射光から光路部品を保護するレーザ加工機およびレーザ光保護装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a laser processing machine and a laser light protection device that protect optical path components from reflected light of laser light.
 上述した課題を解決し、目的を達成するために、本発明は、レーザ発振器から出射されたレーザ光を光路に沿って伝播させて被加工物に照射するレーザ加工機において、前記レーザ光の光軸に沿って前記光路の周辺を囲むことにより前記光路の環境を保護する光路保護部と、前記光路保護部内または前記光路保護部よりも前記光路の下段側に配置され、且つ前記レーザ光を通過させるとともに前記被加工物で反射された前記レーザ光の反射光を遮断するアパーチャと、前記アパーチャに照射された反射光を検出する反射光検出部と、前記反射光検出部が検出した反射光の検出結果に基づいて、前記レーザ発振器の動作を制御する制御部と、を備え、前記アパーチャは、板状部材で形成され、且つ前記板状部材の主面が前記レーザ光の光軸に対して垂直な方向を向くよう配置されていることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a laser beam machine for irradiating a workpiece by propagating a laser beam emitted from a laser oscillator along an optical path. An optical path protector that protects the environment of the optical path by surrounding the periphery of the optical path along an axis, and is disposed in the optical path protector or at a lower stage of the optical path than the optical path protector and passes the laser light An aperture that blocks the reflected light of the laser beam reflected by the workpiece, a reflected light detection unit that detects the reflected light applied to the aperture, and a reflected light detected by the reflected light detection unit. A control unit that controls the operation of the laser oscillator based on a detection result, the aperture is formed of a plate-like member, and the main surface of the plate-like member is on the optical axis of the laser beam. Characterized in that it is arranged to face a direction perpendicular to.
 本発明によれば、レーザ光の反射光から光路部品を保護することが可能になるという効果を奏する。 According to the present invention, the optical path component can be protected from the reflected light of the laser beam.
図1は、本発明の実施の形態に係るレーザ加工機の構成を示す図である。FIG. 1 is a diagram showing a configuration of a laser beam machine according to an embodiment of the present invention. 図2は、加工ヘッドの構成を示す図である。FIG. 2 is a diagram showing the configuration of the machining head. 図3は、レーザ加工機の光路上に設けられたアパーチャの配置位置を示す図である。FIG. 3 is a diagram showing the arrangement positions of the apertures provided on the optical path of the laser processing machine. 図4は、アパーチャの機能を説明するための図である。FIG. 4 is a diagram for explaining the function of the aperture. 図5は、アパーチャの構成を示す図である。FIG. 5 is a diagram showing the configuration of the aperture. 図6は、温度スイッチの配置位置を説明するための図である。FIG. 6 is a diagram for explaining the position of the temperature switch. 図7は、温度スイッチによって検出される反射光を説明するための図である。FIG. 7 is a diagram for explaining reflected light detected by the temperature switch.
 以下に、本発明の実施の形態に係るレーザ加工機およびレーザ光保護装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a laser beam machine and a laser beam protection device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態に係るレーザ加工機の構成を示す図である。また、図2は、加工ヘッドの構成を示す図である。図1では、レーザ加工機100の構成例を斜視図として示し、図2では、加工ヘッド40の構成例を斜視図として示している。レーザ加工機100は、レーザ光の光路上に、ワーク(被加工物)Wからの反射光(後述の反射光Lb)による光路部品の焼損を防止するためのレーザ光保護装置(図1には図示せず)を備えている。レーザ光保護装置は、光路上で反射光Lbを遮断するアパーチャを有しており、アパーチャ上に設けられた温度検出手段(後述の温度スイッチ3)がアパーチャの表面温度を検出することによって、アパーチャに照射された反射光Lbを検出している。そして、レーザ光保護装置は、反射光Lbの検出結果に基づいてレーザ光の出射を停止させている。
Embodiment.
FIG. 1 is a diagram showing a configuration of a laser beam machine according to an embodiment of the present invention. FIG. 2 is a diagram showing the configuration of the machining head. In FIG. 1, the structural example of the laser processing machine 100 is shown as a perspective view, and in FIG. 2, the structural example of the processing head 40 is shown as a perspective view. The laser beam machine 100 includes a laser beam protection device (see FIG. 1) for preventing burning of optical path components due to reflected light (a reflected light Lb described later) from a workpiece (workpiece) W on the optical path of the laser beam. (Not shown). The laser light protection device has an aperture that blocks the reflected light Lb on the optical path, and a temperature detecting means (a temperature switch 3 described later) provided on the aperture detects the surface temperature of the aperture, thereby the aperture. The reflected light Lb applied to the light is detected. Then, the laser light protection device stops the emission of the laser light based on the detection result of the reflected light Lb.
 レーザ加工機100は、ベッド31上に設けられたワークテーブル32と、左右のコラム34,35間に水平に掛け渡されたクロスレール36上にY軸方向に移動可能に設けられたY軸ユニット38と、を有している。また、レーザ加工機100は、クロスレール36にX軸方向に移動可能に設けられたX軸ユニット37と、X軸ユニット37にZ軸方向に移動可能に設けられたZ軸ユニット39と、を有している。さらに、レーザ加工機100は、Z軸ユニット39に取り付けられた加工ヘッド40と、加工ヘッド40の先端部に取り付けられた加工ノズル(レーザ用ノズル)33と、コンピュータ式の加工制御装置41を有している。 The laser processing machine 100 includes a Y-axis unit movably provided in a Y-axis direction on a work table 32 provided on a bed 31 and a cross rail 36 horizontally stretched between left and right columns 34 and 35. 38. The laser beam machine 100 includes an X-axis unit 37 provided on the cross rail 36 so as to be movable in the X-axis direction, and a Z-axis unit 39 provided on the X-axis unit 37 so as to be movable in the Z-axis direction. Have. Further, the laser processing machine 100 includes a processing head 40 attached to the Z-axis unit 39, a processing nozzle (laser nozzle) 33 attached to the tip of the processing head 40, and a computer-type processing control device 41. is doing.
 加工制御装置41は、マンマシンインタフェースとして、操作盤42A、CRT等の画面表示部42Bを具備している。ワークテーブル32、Y軸ユニット38、Z軸ユニット39は、それぞれ、図示省略のX軸サーボモータ、Y軸サーボモータ、Z軸サーボモータによって駆動され、加工制御装置41からの各軸指令によって位置制御される。 The machining control device 41 includes an operation panel 42A and a screen display unit 42B such as a CRT as a man-machine interface. The work table 32, the Y-axis unit 38, and the Z-axis unit 39 are driven by an X-axis servo motor, a Y-axis servo motor, and a Z-axis servo motor (not shown), respectively, and position control is performed according to each axis command from the machining control device 41. Is done.
 レーザ加工機100は、後述するレーザ発振器(レーザ光出力部)21を備えており、レーザ発振器21からのレーザ光を、所定の光路に沿って伝播させてワークW上へ導いている。本実施の形態のレーザ加工機100は、レーザ光が導かれる光路上に、反射光Lbの進入を防止するアパーチャ(後述のアパーチャ1)を備えている。 The laser processing machine 100 includes a laser oscillator (laser light output unit) 21 described later, and guides the laser light from the laser oscillator 21 onto the work W along a predetermined optical path. The laser beam machine 100 according to the present embodiment includes an aperture (aperture 1 described later) that prevents the reflected light Lb from entering the optical path through which the laser beam is guided.
 図3は、レーザ加工機の光路上に設けられたアパーチャの配置位置を示す図である。レーザ加工機100は、レーザ発振器21、PR(Partial Reflection)ミラー22、ベンドミラー23、ビーム最適化ユニット24、ベンドミラー25,26、加工ヘッド39内に設けられた加工レンズ27、レーザ光保護装置を含んで構成されている。そして、レーザ光保護装置が、アパーチャ1、蛇腹(光路保護部)2、温度スイッチ(反射光検出部)3、制御部50を備えている。 FIG. 3 is a diagram showing the arrangement positions of the apertures provided on the optical path of the laser processing machine. The laser processing machine 100 includes a laser oscillator 21, a PR (Partial Reflection) mirror 22, a bend mirror 23, a beam optimization unit 24, bend mirrors 25 and 26, a processing lens 27 provided in the processing head 39, and a laser light protection device. It is comprised including. The laser light protection device includes an aperture 1, a bellows (optical path protection unit) 2, a temperature switch (reflected light detection unit) 3, and a control unit 50.
 レーザ発振器21は、CO2レーザなどのレーザ光(ビーム光)Laを発振させる装置であり、レーザ加工の際にはレーザ出力を種々変化させながらレーザ光Laを出射する。PRミラー(部分反射鏡)22は、レーザ発振器21が出射するレーザ光Laを部分反射させてベンドミラー23へ導く。ベンドミラー(ビーム角度変化用ミラー)23は、PRミラー22から送られてくるレーザ光Laのビーム角度を変えてビーム最適化ユニット24へ導く。 The laser oscillator 21 is a device that oscillates laser light (beam light) La, such as a CO2 laser, and emits laser light La while changing laser output in various ways during laser processing. The PR mirror (partial reflection mirror) 22 partially reflects the laser beam La emitted from the laser oscillator 21 and guides it to the bend mirror 23. The bend mirror (beam angle changing mirror) 23 changes the beam angle of the laser light La sent from the PR mirror 22 and guides it to the beam optimization unit 24.
 ビーム最適化ユニット(ビーム径変更装置)24は、ベンドミラー23から送られてくるレーザ光Laのビーム径(直径)を調整してベンドミラー25へ送る。ベンドミラー25,26は、ビーム角度変化用のミラーである。ベンドミラー25は、ビーム最適化ユニット24から送られてくるレーザ光Laのビーム角度を水平方向に偏向してベンドミラー26に送る。ベンドミラー26は、ベンドミラー25から送られてくるレーザ光Laのビーム角度を垂直下方に偏向して加工レンズ27に送る。ベンドミラー25とベンドミラー26の間には、偏光を変化させるミラー(図示せず)が装着される。 The beam optimization unit (beam diameter changing device) 24 adjusts the beam diameter (diameter) of the laser beam La sent from the bend mirror 23 and sends it to the bend mirror 25. The bend mirrors 25 and 26 are mirrors for changing the beam angle. The bend mirror 25 deflects the beam angle of the laser beam La sent from the beam optimization unit 24 in the horizontal direction and sends it to the bend mirror 26. The bend mirror 26 deflects the beam angle of the laser beam La sent from the bend mirror 25 vertically downward and sends it to the processing lens 27. A mirror (not shown) that changes polarization is mounted between the bend mirror 25 and the bend mirror 26.
 加工レンズ27は、ベンドミラー26からのレーザ光を小さなスポット径に集光してワークWに照射する。ワークWは、ワークテーブル32上に載置されており、このワークテーブル32上でレーザ加工される。 The processing lens 27 focuses the laser beam from the bend mirror 26 on a small spot diameter and irradiates the workpiece W with it. The work W is placed on the work table 32, and laser processing is performed on the work table 32.
 レーザ加工機100には、ベンドミラー25とベンドミラー26との間の光路に、レーザ光Laの光軸に沿って光路の周辺を囲うよう形成された筒状の蛇腹2が配設されている。蛇腹2は、光路環境を外気から遮断することによって光路を外気(加工くず等)から保護する機能を有している。蛇腹2は、光路(光軸)と同じ方向に伸縮可能なよう構成されており、光路の位置や方向に応じて、その形状が変更される。また、本実施の形態のレーザ加工機100には、蛇腹2の近傍に、反射光Lbの進入を防止するアパーチャ1が配設されている。 In the laser processing machine 100, a cylindrical bellows 2 formed so as to surround the periphery of the optical path along the optical axis of the laser light La is disposed in the optical path between the bend mirror 25 and the bend mirror 26. . The bellows 2 has a function of protecting the optical path from outside air (processing waste etc.) by blocking the optical path environment from outside air. The bellows 2 is configured to be able to expand and contract in the same direction as the optical path (optical axis), and its shape is changed according to the position and direction of the optical path. In the laser processing machine 100 according to the present embodiment, an aperture 1 that prevents the reflected light Lb from entering is disposed in the vicinity of the bellows 2.
 アパーチャ1は、レーザ光Laを通過させるとともに、反射光Lbのうち、光路から所定量(レーザ光Laの光軸から所定角度)よりも大きく外れた反射光Lbが蛇腹2内に進入することを防止する。アパーチャ1は、例えば、概略平板状(例えば厚さ1mm~10mmの板状部材)をなしており、その主面の中心部にはレーザ光Laを通過させる貫通穴(後述のレーザ光通過部4)が設けられている。アパーチャ1は、板状部材の主面がレーザ光Laの光軸に対して垂直な方向を向くよう配置されている。また、アパーチャ1には、温度検出手段として温度スイッチ3が設けられ、かつアパーチャ1は、反射光Lbの入射面側(レーザ光Laの出斜面側)に反射光Lbを吸収する吸収体が配置されている。 The aperture 1 allows the laser light La to pass therethrough, and out of the reflected light Lb, the reflected light Lb that deviates more than a predetermined amount from the optical path (a predetermined angle from the optical axis of the laser light La) enters the bellows 2. To prevent. The aperture 1 has, for example, a substantially flat plate shape (for example, a plate member having a thickness of 1 mm to 10 mm), and has a through hole (a laser light passage portion 4 to be described later) through which the laser light La passes at the center of the main surface. ) Is provided. The aperture 1 is arranged so that the main surface of the plate-shaped member faces a direction perpendicular to the optical axis of the laser light La. Further, the aperture 1 is provided with a temperature switch 3 as temperature detecting means, and the aperture 1 is provided with an absorber that absorbs the reflected light Lb on the incident surface side of the reflected light Lb (the outgoing slope side of the laser light La). Has been.
 温度スイッチ3は、アパーチャ1の温度を検出するとともに、検出した温度(測定結果)を制御部50に送る。制御部50は、加工制御装置41が有する装置であり、レーザ発振器21の動作を制御する。本実施の形態の制御部50は、温度スイッチ3から送られてくる測定結果(アパーチャ1の温度)に基づいて、レーザ発振器21からのレーザ光Laの出力を制御する。具体的には、制御部50は、アパーチャ1の温度または温度上昇率などが、所定値よりも高くなった場合に、レーザ発振器21からのレーザ光Laの出力を停止させる。 The temperature switch 3 detects the temperature of the aperture 1 and sends the detected temperature (measurement result) to the control unit 50. The control unit 50 is a device included in the processing control device 41 and controls the operation of the laser oscillator 21. The control unit 50 according to the present embodiment controls the output of the laser light La from the laser oscillator 21 based on the measurement result (temperature of the aperture 1) sent from the temperature switch 3. Specifically, the control unit 50 stops the output of the laser light La from the laser oscillator 21 when the temperature of the aperture 1 or the rate of temperature increase is higher than a predetermined value.
 ここで、アパーチャ1の機能について説明する。図4は、アパーチャの機能を説明するための図である。レーザ加工中には、ワークWに照射するレーザ光Laの焦点位置のずれ、レーザ光Laの光路のずれなどが生じる場合がある。また、レーザ加工中には、ワークWの表面状態などが原因でワークW表面からの反射光Lbが、レーザ発振器21からの光軸からずれて光路に戻る場合がある。 Here, the function of the aperture 1 will be described. FIG. 4 is a diagram for explaining the function of the aperture. During laser processing, there may be a shift in the focal position of the laser beam La irradiated on the workpiece W, a shift in the optical path of the laser beam La, or the like. In addition, during laser processing, the reflected light Lb from the surface of the workpiece W may be shifted from the optical axis from the laser oscillator 21 and return to the optical path due to the surface state of the workpiece W or the like.
 このため、本実施の形態では、光路中にアパーチャ1が設けられている。このアパーチャ1は、熱伝導率の高い部材で形成されている。アパーチャ1は、例えばアルミニウム、銀、銅、金や、これらを用いた合金を用いて形成されている。換言すると、アパーチャ1は、例えばアルミニウム、銀、銅および金の少なくとも1つを用いて形成されている。アパーチャ1がアルミニウムの場合、アルミニウム基材のアパーチャ1表面(レーザ光Laの出射側)にショットブラスト加工を行い、さらに、その表面にアルマイト処理を施すことによって、アパーチャ1が形成される。なお、アパーチャ1は、複数種類の金属板を組み合わせて構成してもよい。 Therefore, in the present embodiment, the aperture 1 is provided in the optical path. This aperture 1 is formed of a member having high thermal conductivity. The aperture 1 is formed using, for example, aluminum, silver, copper, gold, or an alloy using these. In other words, the aperture 1 is formed using at least one of aluminum, silver, copper, and gold, for example. In the case where the aperture 1 is aluminum, the aperture 1 is formed by performing shot blasting on the surface of the aperture 1 of the aluminum base (the emission side of the laser light La) and further subjecting the surface to alumite treatment. The aperture 1 may be configured by combining a plurality of types of metal plates.
 つぎに、アパーチャ1に設けられた温度スイッチ3について説明する。図5は、アパーチャの構成を示す図である。図5では、アパーチャ1の斜視図を示している。アパーチャ1は、その裏面(底面)側が蛇腹2に接合されている。これにより、アパーチャ1は、その裏面側が蛇腹2側を向き、表面側がレーザ光Laの出射側を向くよう配設される。 Next, the temperature switch 3 provided in the aperture 1 will be described. FIG. 5 is a diagram showing the configuration of the aperture. FIG. 5 shows a perspective view of the aperture 1. The aperture 1 is joined to the bellows 2 on the back surface (bottom surface) side. Thereby, the aperture 1 is arranged so that the back surface side thereof faces the bellows 2 side and the front surface side faces the emission side of the laser light La.
 概略平板状のアパーチャ1には、表面側から裏面側に向けて貫通穴としてのレーザ光通過部4(例えば直径50mm)が設けられている。レーザ光通過部4は、アパーチャ1の中心部に設けられており、概略円筒状(円筒壁面)をなしている。 The substantially flat aperture 1 is provided with a laser beam passage portion 4 (for example, a diameter of 50 mm) as a through hole from the front surface side to the back surface side. The laser beam passage portion 4 is provided at the center of the aperture 1 and has a substantially cylindrical shape (cylindrical wall surface).
 アパーチャ1の裏面側には、温度スイッチ3として3つの温度スイッチ3a~3cが配置されている。ワークWから反射した戻り光(反射光Lb)の一部または全部は、アパーチャ1の表面に照射される。この反射光Lbは、アパーチャ1によって吸収されてアパーチャ1の温度を上昇させる。温度スイッチ3a~3cは、アパーチャ1の温度を検出することによって、反射光Lbのうち、アパーチャ1に照射された反射光Lbを検出する。本実施の形態では、アパーチャ1上に温度スイッチ3を複数配置している。これは、反射光Lbの吸収位置に依存した熱伝導の検知差異を補うためである。 On the back side of the aperture 1, three temperature switches 3 a to 3 c are arranged as the temperature switch 3. Part or all of the return light (reflected light Lb) reflected from the workpiece W is irradiated on the surface of the aperture 1. The reflected light Lb is absorbed by the aperture 1 and raises the temperature of the aperture 1. The temperature switches 3a to 3c detect the reflected light Lb irradiated to the aperture 1 out of the reflected light Lb by detecting the temperature of the aperture 1. In the present embodiment, a plurality of temperature switches 3 are arranged on the aperture 1. This is to compensate for the difference in detection of heat conduction depending on the absorption position of the reflected light Lb.
 温度スイッチ3a~3cは、検出した温度(測定結果)を制御部50に送る。制御部50は、例えば、温度スイッチ3a~3cが測定した温度が所定値を超えた場合に、レーザ光Laの出力を下げるか、または止めるなどし、これにより、反射光Lbによる光路損傷を防止する。なお、制御部50は、レーザ光Laのビーム出力を下げる場合、温度スイッチ3a~3cによる測定結果に応じた量だけレーザ光Laのビーム出力を下げるようレーザ発振器21を制御してもよい。 The temperature switches 3a to 3c send the detected temperature (measurement result) to the control unit 50. For example, when the temperature measured by the temperature switches 3a to 3c exceeds a predetermined value, the control unit 50 reduces or stops the output of the laser light La, thereby preventing the optical path from being damaged by the reflected light Lb. To do. Note that when the beam output of the laser beam La is lowered, the control unit 50 may control the laser oscillator 21 so as to lower the beam output of the laser beam La by an amount corresponding to the measurement results by the temperature switches 3a to 3c.
 つぎに、温度スイッチ3a~3cの配置位置について説明する。図6は、温度スイッチの配置位置を説明するための図である。図6では、アパーチャ1の底面図を示している。アパーチャ1の底面には、レーザ光通過部4の周辺に温度スイッチ3a~3cが配置されている。温度スイッチ3a~3cは、それぞれ、レーザ光通過部4の中心(レーザ光Laの光軸)から等距離となる位置で、かつ隣接する温度スイッチ間の距離が等間隔となるよう配置されている。ここでは、温度スイッチ3a~3cが3つであるので、温度スイッチ3a~3cがアパーチャ1の裏面上で正三角形をなすよう配置されている。 Next, the arrangement positions of the temperature switches 3a to 3c will be described. FIG. 6 is a diagram for explaining the position of the temperature switch. FIG. 6 shows a bottom view of the aperture 1. On the bottom surface of the aperture 1, temperature switches 3 a to 3 c are arranged around the laser beam passage portion 4. Each of the temperature switches 3a to 3c is disposed at a position that is equidistant from the center of the laser beam passage portion 4 (the optical axis of the laser beam La), and the distance between adjacent temperature switches is equally spaced. . Here, since there are three temperature switches 3a to 3c, the temperature switches 3a to 3c are arranged on the back surface of the aperture 1 so as to form an equilateral triangle.
 なお、温度スイッチ3a~3cは、レーザ光通過部4の近傍に配置してもよいし、図6に示すように、レーザ光通過部4から所定の距離だけ離れた位置に配置してもよい。例えば、温度スイッチ3a~3cを、レーザ光通過部4の近傍に配置することによって、反射光Lbの一部がレーザ光通過部4から蛇腹2内に進入し、かつ反射光Lbの一部がアパーチャ1の表面を照射するような場合の反射光Lbを正確に検出することが可能となる。また、温度スイッチ3a~3cを、レーザ光通過部4から所定の距離だけ離れた位置に配置した場合、反射光Lbのうち、光路から所定量よりも大きく外れた反射光Lbを正確に検出することが可能となる。 The temperature switches 3a to 3c may be disposed in the vicinity of the laser beam passage portion 4, or may be disposed at positions separated from the laser beam passage portion 4 by a predetermined distance as shown in FIG. . For example, by arranging the temperature switches 3a to 3c in the vicinity of the laser beam passage portion 4, a part of the reflected light Lb enters the bellows 2 from the laser beam passage portion 4, and a part of the reflected light Lb It is possible to accurately detect the reflected light Lb when the surface of the aperture 1 is irradiated. Further, when the temperature switches 3a to 3c are arranged at a position away from the laser beam passage portion 4 by a predetermined distance, the reflected light Lb that is significantly larger than the predetermined amount from the optical path among the reflected light Lb is accurately detected. It becomes possible.
 つぎに、温度スイッチ3a~3cによって検出される反射光Lbについて説明する。図7は、温度スイッチによって検出される反射光を説明するための図である。反射光Lbのうち、光路から所定量以下しか外れていない反射光Lb1は、レーザ光通過部4から蛇腹2内に進入する。一方、反射光Lbのうち、光路から所定量よりも大きく外れた反射光Lb2は、アパーチャ1の表面を照射し、これにより、アパーチャ1の温度が上昇する。温度スイッチ3a~3cは、反射光Lbのうち、アパーチャ1の表面を照射する反射光Lb2を検出する。 Next, the reflected light Lb detected by the temperature switches 3a to 3c will be described. FIG. 7 is a diagram for explaining reflected light detected by the temperature switch. Of the reflected light Lb, the reflected light Lb1 that deviates by a predetermined amount or less from the optical path enters the bellows 2 from the laser light passage portion 4. On the other hand, of the reflected light Lb, the reflected light Lb2 that deviates more than a predetermined amount from the optical path irradiates the surface of the aperture 1, thereby increasing the temperature of the aperture 1. The temperature switches 3a to 3c detect the reflected light Lb2 that irradiates the surface of the aperture 1 among the reflected light Lb.
 このように、本実施の形態では、アパーチャ1の表面をビーム吸収体とし、アパーチャ1を熱伝導率の高い部材としているので、反射光Lbの検出感度を向上させることが可能となる。また、アパーチャ1を概略平板状としているので反射光Lbの検出感度を向上させることが可能となる。また、アパーチャ1の表面にショットブラスト加工やアルマイト処理を行っているので、反射光Lbがアパーチャ1の表面で反射しにくくなる。この結果、反射光Lbの検出感度を向上させることが可能となる。 Thus, in this embodiment, since the surface of the aperture 1 is a beam absorber and the aperture 1 is a member having high thermal conductivity, the detection sensitivity of the reflected light Lb can be improved. Moreover, since the aperture 1 is substantially flat, the detection sensitivity of the reflected light Lb can be improved. In addition, since the surface of the aperture 1 is shot blasted or anodized, the reflected light Lb is less likely to be reflected on the surface of the aperture 1. As a result, it becomes possible to improve the detection sensitivity of the reflected light Lb.
 したがって、ワークWで反射して拡散された反射光Lbを精度良く検出できる。これにより、ワークWでの反射が継続するような異常状態を正確に判断し、蛇腹2などの光路部品が焼損に至る前に、レーザ加工機100を停止させることが可能となる。換言すると、光路部品の焼損につながる異常を未然に検知してレーザ加工機100を停止させることが可能となる。 Therefore, the reflected light Lb reflected and diffused by the workpiece W can be detected with high accuracy. Accordingly, it is possible to accurately determine an abnormal state in which reflection on the workpiece W continues, and to stop the laser beam machine 100 before the optical path components such as the bellows 2 are burned out. In other words, the laser beam machine 100 can be stopped by detecting an abnormality that leads to burnout of the optical path component.
 なお、本実施の形態では、蛇腹2のレーザ光Laの出射側にアパーチャ1を配置する場合について説明したが、アパーチャ1は、光路上の何れの位置に配置してもよい。例えば、アパーチャ1を蛇腹2内に配置してもよいし、蛇腹2とベンドミラー25の間に配置してもよい。また、アパーチャ1をビーム最適化ユニット24とベンドミラー25との間に配置してもよいし、アパーチャ1をビーム最適化ユニット24よりも光路上段側(レーザ発振器21側)に配置してもよい。また、アパーチャ1をワークWと蛇腹2との間の何れかの光路上に配置してもよい。 In the present embodiment, the case where the aperture 1 is arranged on the laser beam La emission side of the bellows 2 has been described. However, the aperture 1 may be arranged at any position on the optical path. For example, the aperture 1 may be disposed in the bellows 2 or between the bellows 2 and the bend mirror 25. In addition, the aperture 1 may be disposed between the beam optimization unit 24 and the bend mirror 25, or the aperture 1 may be disposed on the optical path upper stage side (laser oscillator 21 side) than the beam optimization unit 24. . Further, the aperture 1 may be disposed on any optical path between the workpiece W and the bellows 2.
 また、レーザ加工機100に1つのアパーチャ1を配設する場合について説明したが、レーザ加工機100に2つ以上のアパーチャ1を配設してもよい。例えば、アパーチャ1を、蛇腹2のレーザ光Laの出射側と、蛇腹2内と、の2箇所に配置してもよい。一方のアパーチャ1と他方のアパーチャ1とを、所定の間隔をあけて配置することにより、レーザ光Laの光軸から所定角度よりも大きく外れた反射光Lbを効率良く2つのアパーチャ1で遮断できる。また、アパーチャ1を板状部材で構成しているので、アパーチャ1の温度を正確に検出できる。 Further, although the case where one aperture 1 is disposed in the laser processing machine 100 has been described, two or more apertures 1 may be disposed in the laser processing machine 100. For example, the apertures 1 may be arranged at two locations, the laser beam La emission side of the bellows 2 and the bellows 2. By arranging one aperture 1 and the other aperture 1 at a predetermined interval, the reflected light Lb deviating more than a predetermined angle from the optical axis of the laser light La can be efficiently blocked by the two apertures 1. . In addition, since the aperture 1 is composed of a plate-like member, the temperature of the aperture 1 can be accurately detected.
 また、アパーチャ1のうちの一部(レーザ光Laの検出感度を高めたい領域)にのみ、銀や銅などの熱伝導率が極めて高い部材を配置し、その他の領域にはアルミニウムを配置してもよい。例えば、アパーチャ1をアルミニウムを用いて形成するとともに、レーザ光通過部4の周辺にのみ銀や銅などを配置してもよい。これにより、レーザ光通過部4周辺のレーザ高感度を向上させることが可能となる。 In addition, a member having extremely high thermal conductivity such as silver or copper is disposed only in a part of the aperture 1 (a region where the detection sensitivity of the laser beam La is to be increased), and aluminum is disposed in the other region. Also good. For example, the aperture 1 may be formed using aluminum, and silver, copper, or the like may be disposed only around the laser beam passage portion 4. Thereby, it is possible to improve the high sensitivity of the laser around the laser beam passage portion 4.
 また、アパーチャ1の表面を、アルミニウムを用いて形成するとともに、アパーチャ1の裏面を銀や銅などを用いて形成してもよい。これにより、アパーチャ1の表面に対してショットブラスト加工およびアルマイト処理を行うことができる。したがって、アパーチャ1の表面を、熱吸収率の高い部材で構成するとともに、アパーチャ1の裏面を熱伝導率の極めて高い部材で構成することが可能となる。 Further, the surface of the aperture 1 may be formed using aluminum, and the back surface of the aperture 1 may be formed using silver or copper. Thereby, shot blasting and anodizing can be performed on the surface of the aperture 1. Therefore, the surface of the aperture 1 can be configured with a member having a high heat absorption rate, and the back surface of the aperture 1 can be configured with a member having an extremely high thermal conductivity.
 また、温度スイッチ3の代わりに非接触型の温度センサを用いて反射光Lbを検出してもよい。この場合、非接触型の温度センサをアパーチャ1の表面側に配置してもよい。また、反射光Lbがアパーチャ1を照射した際の、アパーチャ1の温度に限らず、アパーチャ1の熱膨張量、輝度などを検出してもよい。また、本実施の形態では、温度スイッチ3が3つである場合について説明したが、温度スイッチ3は、2つ以下であってもよいし、4つ以上であってもよい。 Further, the reflected light Lb may be detected using a non-contact type temperature sensor instead of the temperature switch 3. In this case, a non-contact type temperature sensor may be arranged on the surface side of the aperture 1. Further, not only the temperature of the aperture 1 when the reflected light Lb irradiates the aperture 1, but also the amount of thermal expansion of the aperture 1, luminance, etc. may be detected. Moreover, although the case where the temperature switch 3 is three was demonstrated in this Embodiment, the temperature switch 3 may be two or less, and may be four or more.
 このように実施の形態によれば、アパーチャ1が板状であるのでアパーチャ1内の伝熱量を大きくすることができる。これにより、アパーチャ1の表面を照射する反射光Lbを正確に検出することが可能となる。したがって、ワークWからの反射光Lbによる光路部品の損傷を防止でき、光路部品を保護することが可能となる。 Thus, according to the embodiment, since the aperture 1 is plate-shaped, the amount of heat transfer in the aperture 1 can be increased. As a result, the reflected light Lb that irradiates the surface of the aperture 1 can be accurately detected. Therefore, damage to the optical path component due to the reflected light Lb from the workpiece W can be prevented, and the optical path component can be protected.
 また、温度スイッチ3a~3cがアパーチャ1の裏面上で正三角形をなすよう配置されているので、アパーチャ1上で反射光Lbを正確に検出できる。また、アパーチャ1の表面がショットブラスト加工およびアルマイト処理されているので、アパーチャ1が反射光Lbを効率良く吸収できる。したがって、アパーチャ1上で反射光Lbを正確に検出できる。 Further, since the temperature switches 3a to 3c are arranged on the back surface of the aperture 1 so as to form an equilateral triangle, the reflected light Lb can be accurately detected on the aperture 1. In addition, since the surface of the aperture 1 is shot blasted and anodized, the aperture 1 can efficiently absorb the reflected light Lb. Therefore, the reflected light Lb can be accurately detected on the aperture 1.
 以上のように、本発明に係るレーザ加工機およびレーザ光保護装置は、レーザ光の反射光からの光路部品の保護に適している。 As described above, the laser beam machine and the laser beam protection device according to the present invention are suitable for protecting the optical path components from the reflected light of the laser beam.
 1 アパーチャ
 2 蛇腹
 3,3a-3c 温度スイッチ
 4 レーザ光通過部
 21 レーザ発振器
 41 加工制御装置
 50 制御部
 100 レーザ加工機
 La レーザ光
 Lb,Lb1,Lb2 反射光
 W ワーク
DESCRIPTION OF SYMBOLS 1 Aperture 2 Bellows 3, 3a-3c Temperature switch 4 Laser light passage part 21 Laser oscillator 41 Processing control apparatus 50 Control part 100 Laser processing machine La Laser light Lb, Lb1, Lb2 Reflected light W Workpiece

Claims (7)

  1.  レーザ発振器から出射されたレーザ光を光路に沿って伝播させて被加工物に照射するレーザ加工機において、
     前記レーザ光の光軸に沿って前記光路の周辺を囲むことにより前記光路の環境を保護する光路保護部と、
     前記光路保護部内または前記光路保護部よりも前記光路の下段側に配置され、且つ前記レーザ光を通過させるとともに前記被加工物で反射された前記レーザ光の反射光を遮断するアパーチャと、
     前記アパーチャに照射された反射光を検出する反射光検出部と、
     前記反射光検出部が検出した反射光の検出結果に基づいて、前記レーザ発振器の動作を制御する制御部と、
     を備え、
     前記アパーチャは、板状部材で形成され、且つ前記板状部材の主面が前記レーザ光の光軸に対して垂直な方向を向くよう配置されていることを特徴とするレーザ加工機。
    In a laser processing machine that propagates a laser beam emitted from a laser oscillator along an optical path and irradiates a workpiece,
    An optical path protection unit for protecting the environment of the optical path by surrounding the periphery of the optical path along the optical axis of the laser beam;
    An aperture that is disposed in the optical path protection unit or on the lower side of the optical path than the optical path protection unit, and that allows the laser light to pass therethrough and blocks the reflected light of the laser light reflected by the workpiece;
    A reflected light detection unit for detecting reflected light applied to the aperture;
    A control unit for controlling the operation of the laser oscillator based on the detection result of the reflected light detected by the reflected light detection unit;
    With
    2. The laser processing machine according to claim 1, wherein the aperture is formed of a plate-like member, and the main surface of the plate-like member is disposed so as to face a direction perpendicular to the optical axis of the laser beam.
  2.  前記アパーチャは、アルミニウム、銀、銅および金の少なくとも1つを用いて形成されていることを特徴とする請求項1に記載のレーザ加工機。 The laser processing machine according to claim 1, wherein the aperture is formed using at least one of aluminum, silver, copper, and gold.
  3.  前記アパーチャは、アルミニウムを用いて形成され、且つ前記レーザ光の反射光が照射される側の主面は、ショットブラスト加工およびアルマイト処理が行われていることを特徴とする請求項1に記載のレーザ加工機。 2. The aperture according to claim 1, wherein the aperture is formed using aluminum, and the main surface on the side irradiated with the reflected light of the laser beam is subjected to shot blasting and anodizing. Laser processing machine.
  4.  前記反射光検出部は、複数からなり、
     それぞれの前記反射光検出部が前記反射光を検出する反射光検出位置は、前記アパーチャ上の位置であって且つ前記レーザ光の光軸から同じ距離だけ離れた位置であることを特徴とする請求項1~3のいずれか1つに記載のレーザ加工機。
    The reflected light detection unit comprises a plurality of,
    The reflected light detection position where each of the reflected light detection units detects the reflected light is a position on the aperture and a position away from the optical axis of the laser light by the same distance. Item 4. The laser beam machine according to any one of Items 1 to 3.
  5.  前記反射光検出部は、前記アパーチャの主面のうち前記レーザ光の反射光が照射される側の主面とは反対側の主面上に配置されていることを特徴とする請求項1~4のいずれか1つに記載のレーザ加工機。 The reflected light detection unit is arranged on a main surface of the main surface of the aperture opposite to the main surface on the side irradiated with the reflected light of the laser light. 4. The laser beam machine according to any one of 4 above.
  6.  前記反射光検出部は、前記アパーチャの表面温度を検出することによって、前記アパーチャに照射された反射光を検出することを特徴とする請求項1~5のいずれか1つに記載のレーザ加工機。 The laser beam machine according to any one of claims 1 to 5, wherein the reflected light detection unit detects reflected light applied to the aperture by detecting a surface temperature of the aperture. .
  7.  レーザ発振器から出射されて光路に沿って伝播させるレーザ光から、前記光路上に配置される光路部品を保護するレーザ光保護装置において、
     前記レーザ光の光軸に沿って前記光路の周辺を囲むことにより前記光路の環境を保護する光路保護部と、
     前記光路保護部内または前記光路保護部よりも光路の下段側に配置され、且つ前記レーザ光を通過させるとともに前記被加工物で反射された前記レーザ光の反射光を遮断するアパーチャと、
     前記アパーチャに照射された反射光を検出する反射光検出部と、
     前記反射光検出部が検出した反射光の検出結果に基づいて、前記レーザ発振器の動作を制御する制御部と、
     を備え、
     前記アパーチャは、板状部材で形成され、且つ前記板状部材の主面が前記レーザ光の光軸に対して垂直な方向を向くよう配置されていることを特徴とするレーザ光保護装置。
    In a laser light protection device that protects optical path components arranged on the optical path from laser light emitted from a laser oscillator and propagated along the optical path,
    An optical path protection unit for protecting the environment of the optical path by surrounding the periphery of the optical path along the optical axis of the laser beam;
    An aperture that is disposed in the optical path protection unit or on the lower side of the optical path than the optical path protection unit, and that allows the laser light to pass therethrough and blocks the reflected light of the laser light reflected by the workpiece;
    A reflected light detection unit for detecting reflected light applied to the aperture;
    A control unit for controlling the operation of the laser oscillator based on the detection result of the reflected light detected by the reflected light detection unit;
    With
    The aperture is formed by a plate-like member, and the main surface of the plate-like member is arranged so as to face a direction perpendicular to the optical axis of the laser beam.
PCT/JP2011/066942 2010-07-28 2011-07-26 Laser processing machine and protective device against laser light WO2012014879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010169626A JP2013212510A (en) 2010-07-28 2010-07-28 Laser processing machine and protective device against laser beam
JP2010-169626 2010-07-28

Publications (1)

Publication Number Publication Date
WO2012014879A1 true WO2012014879A1 (en) 2012-02-02

Family

ID=45530086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066942 WO2012014879A1 (en) 2010-07-28 2011-07-26 Laser processing machine and protective device against laser light

Country Status (2)

Country Link
JP (1) JP2013212510A (en)
WO (1) WO2012014879A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015084087A1 (en) * 2013-12-05 2015-06-11 주식회사 한광 Laser processing machine
DE102014016889A1 (en) * 2014-11-15 2016-05-19 Mbda Deutschland Gmbh Monitoring device for a laser beam

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308983A (en) * 1996-05-17 1997-12-02 Sumitomo Heavy Ind Ltd Laser beam machine
WO2002067390A1 (en) * 2001-02-22 2002-08-29 Mitsubishi Denki Kabushiki Kaisha Laser apparatus
JP2002316291A (en) * 2001-04-18 2002-10-29 Amada Co Ltd Laser beam machine
JP2003071584A (en) * 2001-08-30 2003-03-11 Amada Co Ltd Optical path protective bellows for laser beam machine
JP2006061913A (en) * 2004-08-24 2006-03-09 Naberu:Kk Scattered light shielding device, bellows mechanism or laser beam machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308983A (en) * 1996-05-17 1997-12-02 Sumitomo Heavy Ind Ltd Laser beam machine
WO2002067390A1 (en) * 2001-02-22 2002-08-29 Mitsubishi Denki Kabushiki Kaisha Laser apparatus
JP2002316291A (en) * 2001-04-18 2002-10-29 Amada Co Ltd Laser beam machine
JP2003071584A (en) * 2001-08-30 2003-03-11 Amada Co Ltd Optical path protective bellows for laser beam machine
JP2006061913A (en) * 2004-08-24 2006-03-09 Naberu:Kk Scattered light shielding device, bellows mechanism or laser beam machine

Also Published As

Publication number Publication date
JP2013212510A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
US9656348B2 (en) Laser processing apparatus
US9791411B2 (en) Processing apparatus including a three-dimensional interferometric imager
JP5260644B2 (en) Method for detecting contact point of laser beam at edge of object and laser processing machine
US20090314752A1 (en) In-situ monitoring for laser ablation
KR102226222B1 (en) Laser machining apparatus
US9285211B2 (en) Height detecting apparatus
JP2003200286A (en) Laser microspot welding equipment
KR20130111990A (en) Laser machining method and laser machining apparatus
JP2007229758A (en) Laser beam machining system
TW201921546A (en) Height detecting device and laser processing device which can appropriately detect the height of the workpiece held on the chuck table
CN108136544A (en) Method and apparatus and the workpiece that is generated by silk for the workpiece of silk non-face parallel shape
KR102280373B1 (en) Clean laser system with three-layered laser emission safety device
JP2013130856A5 (en)
KR20220110254A (en) Method and system for determining and controlling the separation distance between the working head of a laser processing machine and the surface of the workpiece by low coherence optical interferometry techniques
WO2012014879A1 (en) Laser processing machine and protective device against laser light
JP2020108895A (en) Laser processing machine and alignment adjusting method in laser processing machine at client's place
JP2021058933A (en) Method for detecting operation state of optical element arranged along propagation path of laser beam of material processing machine, system for implementing the same method, and laser processing machine with the same system
KR100512805B1 (en) Laser machining apparatus
JP6388522B2 (en) Laser processing equipment
JP6157245B2 (en) Laser processing apparatus and laser optical axis adjustment method
KR20200002422A (en) Laser processing apparatus and laser processing method using the same
JP5846797B2 (en) Laser processing equipment
JP6633297B2 (en) Laser processing apparatus and method for setting condensing angle of laser processing apparatus
JP7126223B2 (en) Laser processing equipment
JP7305271B2 (en) Confirmation method of processing performance of laser processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812468

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP