WO2012014694A1 - Method for synthesis of feces-derived nucleic acid - Google Patents

Method for synthesis of feces-derived nucleic acid Download PDF

Info

Publication number
WO2012014694A1
WO2012014694A1 PCT/JP2011/066082 JP2011066082W WO2012014694A1 WO 2012014694 A1 WO2012014694 A1 WO 2012014694A1 JP 2011066082 W JP2011066082 W JP 2011066082W WO 2012014694 A1 WO2012014694 A1 WO 2012014694A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
stool
nucleic acid
alcohol
suspension
Prior art date
Application number
PCT/JP2011/066082
Other languages
French (fr)
Japanese (ja)
Inventor
長岡 智紀
恭央 谷上
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2012526419A priority Critical patent/JPWO2012014694A1/en
Publication of WO2012014694A1 publication Critical patent/WO2012014694A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR

Definitions

  • the present invention relates to a method for efficiently synthesizing cDNA from RNA contained in feces by reverse transcription reaction.
  • Patent Document 1 and Non-Patent Document 1 include a method for examining colon cancer by detecting non-apoptotic DNA frequently observed in nucleic acids derived from cancer cells, in particular, Alu repeat region and alphoid repeat region, A method for examining colorectal cancer based on the difference in fragment length of cancer-related genes such as p53 has been disclosed.
  • nucleic acid such as nucleic acid derived from cancer cells in stool
  • feces contain a large amount of digest residue and bacteria
  • nucleic acids are very easily degraded.
  • the analysis accuracy is impaired by introducing foreign substances in the stool into the nucleic acid collected from the stool. For this reason, in order to obtain a more reliable nucleic acid analysis result, a method for recovering highly purified nucleic acid from feces while preventing decomposition or the like has been developed.
  • Patent Document 2 discloses a method of stabilizing the stool structure by cooling the stool to a temperature below the gel freezing point, separating cells from the stool in this state, and analyzing the DNA extracted therefrom. ing.
  • Non-Patent Document 2 discloses that after removing contaminants such as proteins from a stool sample, RNA is extracted using phenol and chaotropic salt, and the extracted RNA is further extracted.
  • a method of recovering by adsorbing on a silica-containing solid support is disclosed.
  • Patent Document 3 discloses a method for preparing a stool sample for analyzing an oncogene in stool. This is a method in which a stool sample is homogenized at a solvent ratio of at least 5 with respect to stool mass 1, and then DNA derived from mammalian cells is collected including bacterial DNA.
  • the collected stool is homogenized in the presence of an RNase inhibitor, RNA is extracted directly from the prepared suspension, and the COX2 (cyclooxygenase-2) gene, which is an oncogene, is extracted.
  • a method for detecting transcripts is disclosed.
  • JP 2005-514073 A Japanese National Patent Publication No. 11-511982 Special Table 2002-539765 Japanese Patent No. 4134047
  • feces contain substances having an inhibitory action on nucleic acid synthesis reactions such as PCR (Polymerase Chain Reaction) such as bile acids and salts thereof (see Non-patent Document 3, for example).
  • PCR Polymerase Chain Reaction
  • the average amount of feces excreted by an adult is about 200 to 400 g / day, but there is a report that 200 to 650 mg / day of bile acid is excreted in feces of healthy people. That is, when converted to 1 g of stool, a healthy person contains about 0.5 mg to 3.25 mg, and a patient contains 10 times as much bile acid.
  • nucleic acid synthesis reaction inhibitors such as bile salts inhibit not only PCR but also reverse transcription reactions. Therefore, when nucleic acids are extracted from stool and used for amplification reactions such as reverse transcription and PCR, it is preferable to reduce the effects of these nucleic acid synthesis reaction inhibitors in order to improve reaction efficiency. .
  • An object of the present invention is to provide a method for efficiently synthesizing cDNA from RNA contained in feces by reverse transcription reaction.
  • the present inventor washed RNA extracted and collected from stool with a chaotropic salt and alcohol in advance before performing a reverse transcription reaction, and using the washed RNA as a template.
  • the present inventors have found that the reaction efficiency can be improved by performing a reaction in the presence of a single-stranded nucleic acid binding protein using a reverse transcriptase having heat resistance and low RNase H activity, and the present invention has been completed.
  • the present invention (1) (a) a washing step of washing RNA extracted from stool with a chaotropic salt and alcohol; and (b) using a reverse transcriptase having heat resistance and low RNase H activity using the washed RNA as a template.
  • the washing step (a) includes a step of first adding a chaotropic salt solution to RNA extracted from stool, then adding an alcohol solution, and then recovering RNA from the obtained RNA solution, (1) or the method for synthesizing a stool-derived nucleic acid according to (2), (4)
  • the washing step (a) includes a step of adding an alcohol solution containing a chaotropic salt to RNA extracted from stool and recovering RNA from the obtained RNA solution (1) or ( 2)
  • RNA from the suspension after adding A method for synthesizing a stool-derived nucleic acid according to (1) or (2), (8)
  • the washing step (a) (A-3) adding an alcohol solution to feces to prepare a suspension; (A-4) recovering solid components from the suspension; (A-5) adding a chaotropic agent to the recovered solid component to prepare a suspension, and extracting RNA from the suspension; and (a-6) further adding an alcohol solution to the suspension.
  • RNA obtained from the suspension after adding an alcohol solution containing a chaotropic salt
  • the method for synthesizing stool-derived nucleic acid according to (1) or (2), (9) A kit for synthesis of stool-derived nucleic acid having a chaotropic salt, alcohol, a reverse transcriptase having heat resistance and low RNase H activity, and a single-stranded nucleic acid binding protein, Is to provide.
  • a larger amount of cDNA can be synthesized when cDNA is synthesized by reverse transcription reaction from RNA collected from stool containing a large amount of contaminants.
  • Example 1 it is the figure which showed the expression level relative value of the COX2 gene in each sample at the time of using pseudo-feces origin RNA as a template. In Example 1, it is the figure which showed the relative expression level value of the COX2 gene in each sample at the time of using MKN45 cell sample origin RNA as a template. In Example 1, it is the figure which showed the expression level relative value of the COX2 gene in each sample at the time of using as a template RNA from E. coli containing MKN45 cell sample. In Example 1, it is the figure which showed the relative expression level value of the COX2 gene in each sample at the time of using bilirubin containing MKN45 cell sample origin RNA as a template.
  • Example 2 it is the figure which showed the expression level relative value of the COX2 gene at the time of using each reverse transcriptase.
  • Comparative example 1 it is the figure which showed the expression level relative value of the COX2 gene at the time of using each reverse transcriptase.
  • Example 3 it is the figure which showed the expression level relative value of the COX2 gene at the time of adding various SSB in a reaction liquid.
  • Example 4 it is the figure which showed the expression level relative value of the COX2 gene in each sample.
  • an inhibitory substance means a substance that acts in an inhibitory manner on an enzymatic reaction using a nucleic acid as a substrate.
  • the enzyme reaction is not particularly limited as long as it is an enzyme reaction using a nucleic acid as a substrate, and also includes a nucleic acid synthesis reaction such as reverse transcription reaction and PCR.
  • Specific examples include bile acids, bile salts, bilirubin, mucopolysaccharides and the like.
  • the method for synthesizing stool-derived nucleic acid of the present invention comprises a washing step of washing RNA extracted from stool with a chaotropic salt and alcohol, and a RNA after washing. And a reaction step of performing a reverse transcription reaction in a reaction solution containing a single-stranded nucleic acid binding protein using a reverse transcriptase having heat resistance and low RNase H activity as a template.
  • RNA extracted from stool is washed with a chaotropic salt and alcohol in advance, and then the RNA after washing is used as a template, using a reverse transcriptase having specific properties, and then single-stranded.
  • a reverse transcriptase having specific properties, and then single-stranded.
  • RNA extracted from stool inhibitors contained in stool are brought in.
  • a solution containing a chaotropic salt or an alcohol solution By washing the extracted RNA with a solution containing a chaotropic salt or an alcohol solution, the introduced inhibitory substance can be efficiently washed away.
  • reverse transcriptase with higher reverse transcription efficiency can be used, but even if a highly active enzyme is selected, a reaction product may be obtained depending on the amount of inhibitor brought in. It may not be possible.
  • proteins such as BSA (bovine serum albumin) are generally used as mitigating agents for PCR reaction inhibitors, but when stool-derived RNA is used, conventionally used mitigating agents are used. In many cases, the reverse transcription reaction efficiency is not improved only by adding an agent to the reaction solution.
  • the effect of an inhibitory substance in stool is conventionally achieved by performing a reverse transcription reaction in a reaction solution containing a single-stranded nucleic acid binding protein using a reverse transcriptase having heat resistance and low RNase H activity. It can be significantly reduced.
  • the combined use of a heat-resistant and low RNase H reverse transcriptase and a single-stranded nucleic acid binding protein is particularly effective in reducing the influence of stool-derived inhibitors and improving the reaction efficiency.
  • RNA extracted from stool is washed with a chaotropic salt and alcohol.
  • an RNA solution is prepared by adding chaotropic salt and alcohol to RNA extracted from stool, and then RNA is recovered from the RNA solution to obtain RNA washed with chaotropic salt and alcohol. be able to.
  • chaotropic salt and alcohol may be added to RNA, respectively, or an alcohol solution containing chaotropic salt may be prepared in advance and added thereto.
  • chaotropic salt and the alcohol are added separately, which one is added first can be appropriately determined in consideration of the RNA extraction method from feces.
  • the chaotropic salt added to RNA extracted from feces in the washing step is not particularly limited, and any chaotropic salt used in the technical field may be used.
  • chaotropic salts for example, guanidine salts such as guanidine hydrochloride, guanidine thiocyanate, and guanidine isothiocyanate are preferable.
  • One type of chaotropic salt may be used, or two or more types of chaotropic salts may be used in combination.
  • the chaotropic salt is preferably added as a chaotropic salt solution dissolved in an appropriate solvent.
  • an appropriate solvent for example, water, citrate buffer, phosphate buffer, Tris buffer, or the like can be used.
  • RNA is a substance that is very easily degraded, it is preferable to use a buffer containing an RNase inhibitor such as guanidine thiocyanate or guanidine hydrochloride.
  • a chaotropic salt-containing alcohol solution (alcohol solution containing a chaotropic salt) can be prepared by using alcohol as the solvent.
  • the concentration of the chaotropic salt solution added to the RNA extracted from stool is not particularly limited as long as it is a concentration that can exert the inhibitor cleaning effect, and the type of chaotropic salt and the RNA solution obtained after the addition
  • the concentration can be determined as appropriate in consideration of the concentration of the chaotropic salt, alcohol, the type of alcohol, and the like.
  • alcohol having a linear structure and being liquid at room temperature for example, 15 to 40 ° C.
  • an alcohol having a solubility in water of 12% by weight or more is preferable, an alcohol having a solubility in water of 20% by weight or more is more preferable, and an alcohol having a solubility in water of 90% by weight or more.
  • More preferred is an alcohol that can be mixed with water in any proportion. Examples of alcohols that can be mixed with water at an arbitrary ratio include methanol, ethanol, n-propanol, and 2-propanol.
  • methanol, ethanol, propanol, butanol, mercaptoethanol and the like which are water-soluble alcohols.
  • the propanol may be n-propanol or 2-propanol.
  • the butanol may be 1-butanol (water solubility 20% by weight) or 2-butanol (water solubility 12.5% by weight).
  • the alcohol used in the present invention is more preferably ethanol, propanol, or methanol from the viewpoints of availability, handleability, safety, and the like.
  • ethanol is particularly useful in screening tests such as periodic medical checkups because it has the highest safety and can be easily handled at home.
  • alcohol added to RNA extracted from feces only 1 type may be sufficient and you may add in combination of 2 or more types.
  • the RNA extracted from stool may be added directly as alcohol, or may be added as an alcohol solution diluted with an appropriate solvent.
  • the amount of alcohol to be added and the concentration and amount of the alcohol solution are particularly limited as long as they are added so as to have a concentration capable of exhibiting an inhibitor cleaning effect in the RNA solution obtained after the addition. Instead, it can be appropriately determined in consideration of the type of alcohol, the amount of RNA solution obtained after the addition, the type of chaotropic salt added, and the like.
  • the alcohol concentration in the chaotropic salt-containing alcohol solution is preferably 25% or more, and more preferably 35% or more.
  • “%” means “volume%” unless otherwise specified.
  • the RNA used for the washing step may be RNA extracted from the collected cells after separating and collecting desired cells from the stool, but may be directly extracted from the stool without performing the cell separation operation. RNA is preferred. This is because when RNA is extracted directly from stool, the amount of the stool-derived inhibitor is increased compared to when extracted from separated and collected cells, and thus the effects of the present invention are more remarkably exhibited. .
  • nucleic acids of all species contained in the stool mainly nucleic acids derived from animals excreting the stool, and intestinal resident Nucleic acids derived from bacteria such as fungi are simultaneously extracted and recovered from feces.
  • the nucleic acid contained in the stool includes, in addition to animal-derived nucleic acids and bacteria-derived nucleic acids, food-derived nucleic acids ingested by the animals.
  • the RNA extracted from the stool subjected to the washing step may be RNA extracted from solid components such as cells in the stool.
  • it may be a suspension in which RNA is extracted into a liquid phase from cells or the like contained in stool by adding and mixing a nucleic acid extraction solution to stool, and a solid component from the suspension.
  • It may be a relatively clear extract from which RNA has been removed, or an RNA solution recovered and purified from these suspensions or crude extracts.
  • nucleic acid extraction solution added to feces to prepare a suspension in which RNA is extracted in the liquid phase, proteins in the solid component are denatured, and mammalian cells and intestinal resident bacteria in the solid component
  • the solution is not particularly limited as long as the nucleic acid can be eluted from a cell such as a nucleic acid extraction solution, and any solution used in the technical field may be used.
  • a solution obtained by adding a compound usually used as a protein denaturant such as a chaotropic salt, an organic solvent, or a surfactant as an active ingredient to an appropriate solvent can be used as a solution for nucleic acid extraction.
  • active ingredients may be a combination of two or more.
  • Phenol may be neutral, but is preferably acidic.
  • acidic phenol is used, RNA can be selectively extracted into the aqueous layer rather than DNA.
  • a solvent for preparing a nucleic acid extraction solution by adding these active ingredients for example, water, citrate buffer, phosphate buffer, Tris buffer, or the like can be used.
  • RNA is also preferable to treat stool with alcohol before extracting RNA from the solid component.
  • the inhibitory substance contained in the solid component of stool is eluted in alcohol.
  • the liquid phase of the suspension is removed, and RNA is extracted and collected from the remaining solid component. More reduced RNA can be recovered.
  • alcohol has not only an effect of removing and eluting inhibitory substances, but also an effect of stably storing nucleic acids in stool.
  • the same alcohols listed as those that can be added in the washing step can be used. Further, it may be added directly to feces as alcohol, or may be added as an alcohol solution diluted with an appropriate solvent. If the amount of alcohol added to the stool, or the concentration or amount of the alcohol solution is such that the suspension can be added at a concentration that can achieve the nucleic acid stabilization effect and the inhibitory substance elution removal effect, It is not particularly limited, and can be determined appropriately in consideration of the type of alcohol, the amount of stool (solid component amount) and the mixing ratio of the added chaotropic salt solution or liquid component such as alcohol. In addition, when the alcohol concentration in the suspension is sufficiently high, the alcohol component quickly penetrates into the whole stool, so that the inhibitory substance elution removal effect and the nucleic acid stabilization effect can be quickly achieved.
  • RNA A lot of inhibitory substances are eluted in the liquid phase of the suspension obtained by mixing the stool with alcohol or an alcohol solution. For this reason, it is preferable to extract RNA by removing the liquid phase from the suspension and adding a nucleic acid extract to the collected solid components.
  • the method for recovering the solid component can be appropriately selected from separation methods usually used when separating the liquid component and the solid component. For example, the suspension may be centrifuged, and then the supernatant may be removed to remove the solid component derived from stool, which is a precipitate. The suspension may be filtered and filtered on the filter surface. You may carry out by the filtration method which collect
  • the recovered solid component may be washed with an appropriate buffer or the like before adding the nucleic acid extract.
  • the buffer include the aforementioned chaotropic salt-containing alcohol solution and a buffer solution whose pH is maintained within the range of 2 to 7.5.
  • the suspension obtained by mixing the stool with alcohol or an alcohol solution is stored for a predetermined time before collecting the solid components.
  • the time for storing the suspension can be appropriately determined in consideration of the type and concentration of the alcohol, the ratio of the stool-derived component in the suspension, the storage temperature, and the like.
  • storage for 1 hour or longer is preferable, storage for 12 hours or longer is more preferable, storage for 24 hours or longer is further preferable, and storage for 72 hours or longer is particularly preferable.
  • the inhibitory substance elution removal effect by alcohol is higher when the temperature is higher than when the temperature at which the suspension is stored is low.
  • the storage temperature of the suspension obtained by mixing stool with alcohol or an alcohol solution is preferably 4 ° C. or higher, and more preferably 20 ° C. or higher.
  • the storage temperature is preferably 50 ° C. or lower. This is because if the alcohol is stored for a long time under a high temperature condition of 50 ° C. or more, the concentration of the alcohol in the suspension may be lower than a concentration sufficient for the effect due to volatilization or the like.
  • RNA in the liquid phase of a suspension containing a solid component derived from stool is subjected to a washing step as RNA extracted from stool, specifically, a chaotropic salt or alcohol was added to the suspension. Thereafter, the RNA that has been washed can be recovered by recovering the RNA present in the liquid phase of the obtained RNA solution in a suspended state.
  • the denatured protein Before recovering the RNA in the liquid phase, the denatured protein may be removed from the suspension.
  • the quality of the recovered RNA can be improved by removing the previously denatured protein before recovering the RNA.
  • the protein can be removed from the suspension by a known method.
  • the denatured protein can be removed by precipitating the denatured protein by centrifugation and collecting only the supernatant.
  • centrifugation is performed, and the denatured protein is precipitated and only the supernatant is recovered. Protein can be removed.
  • the method for recovering RNA in the liquid phase can be performed by a known method such as ethanol precipitation or cesium chloride ultracentrifugation.
  • the nucleic acid can be recovered by eluting the adsorbed nucleic acid from the inorganic support using a certain volume of solvent.
  • RNA can be recovered from the liquid phase of the suspension after the addition of chaotropic salt or alcohol using a commercially available kit such as a nucleic acid extraction kit.
  • the inorganic support for adsorbing nucleic acid a known inorganic support capable of adsorbing nucleic acid can be used.
  • the shape of the inorganic support is not particularly limited, and may be in the form of particles or a film.
  • examples of the inorganic support include silica-containing particles (beads) such as silica gel, siliceous oxide, glass, and diatomaceous earth, and porous membranes such as nylon, polycarbonate, polyacrylate, and nitrocellulose.
  • Solvents for eluting adsorbed nucleic acids from inorganic supports are usually used to elute nucleic acids from these known inorganic supports in consideration of the type of nucleic acid to be recovered, the subsequent nucleic acid analysis method, and the like.
  • a solvent can be appropriately used.
  • the elution solvent is particularly preferably purified water.
  • the inorganic support on which the nucleic acid has been adsorbed is preferably washed with an appropriate washing buffer before the nucleic acid is eluted.
  • RNA when recovering RNA from a liquid phase, it is also preferable to selectively recover RNA over DNA. For example, by eluting RNA into the aqueous layer preferentially over DNA by the phenol / chloroform method using acidic phenol, the amount of DNA contamination can be reduced by performing a precipitation method using ethanol precipitation or an inorganic support. Reduced RNA can be recovered. In addition, RNA can be selectively recovered by cesium chloride ultracentrifugation. In addition, for example, in US Pat. No. 5,155,018, Gillespie et al. Isolated and biologically active RNA from biological sources including RNA, DNA and other cellular contents. A method of purification is disclosed.
  • the raw material containing RNA is brought into contact with particles made of silica gel containing a material such as finely crushed glass.
  • the binding buffer from which RNA is adsorbed to the particles is an acidified solution containing a chaotropic salt.
  • RNA binds to the silica material, but not DNA, so that RNA can be selectively recovered.
  • Japanese Patent No. 04036625 describes that RNA can be selectively adsorbed and recovered by changing the concentration of guanidine salt and ethanol.
  • a chaotropic salt solution, an alcohol solution, or a chaotropic salt-containing alcohol solution is added, and then RNA is recovered to obtain DNA. Washed RNA with a reduced amount of contamination can be recovered.
  • the solid extract was removed from the suspension obtained by adding the nucleic acid extraction solution to the stool by centrifugation or the like, and the crude extract containing only the liquid phase containing RNA was used as RNA extracted from the stool. It can also be subjected to a washing process. Specifically, the washed RNA can be recovered by adding chaotropic salt or alcohol to the crude extract and then recovering the RNA in the liquid phase. Similarly, washed RNA can be recovered by adding a chaotropic salt solution, alcohol solution, or chaotropic salt-containing alcohol solution to RNA purified by a conventional method, and then recovering RNA in the liquid phase. In addition, the recovery method of RNA in a liquid phase can use the method similar to the method quoted when a chaotropic salt or alcohol is added to the suspension.
  • the RNA extracted from stool may already contain chaotropic salt or alcohol.
  • chaotropic salt or alcohol remains in the extracted RNA. May have. Also in this case, the inhibitor can be washed and removed more effectively by washing with a chaotropic salt or alcohol.
  • the washing treatment in the washing step is a treatment of recovering RNA from a liquid phase containing chaotropic salt or alcohol after directly contacting chaotropic salt or alcohol with RNA extracted from the solid component of stool. For this reason, in the process of extracting RNA from stool, when chaotropic salt or alcohol is used, and when RNA extracted from a solid component is subjected to a treatment that contacts chaotropic salt or alcohol, the treatment is performed. Can be the cleaning treatment in the cleaning step of the present invention.
  • RNA when RNA is extracted from a solid component using a chaotropic salt solution as a nucleic acid extraction solution, the extracted RNA directly contacts the chaotropic salt in the liquid phase, and thus RNA is recovered from the liquid phase. As a result, the RNA washed with the chaotropic salt can be recovered without adding a new chaotropic salt.
  • a chaotropic salt solution is added to feces to prepare a suspension, RNA is extracted, and then an alcohol solution or an alcohol solution containing a chaotropic salt is added to the suspension containing the chaotropic salt. After that, RNA is recovered from the suspension. Thereby, RNA washed with chaotropic salt and alcohol can be recovered.
  • RNA washed with alcohol can be recovered.
  • the stool from which RNA to be subjected to the synthesis method of the present invention is extracted is not particularly limited as long as it is an animal, but is preferably derived from a mammal, preferably from a human. More preferably.
  • human feces collected for periodic medical examinations and diagnosis are preferable, but feces such as livestock and wild animals may be used.
  • feces such as livestock and wild animals may be used.
  • the collected feces are preferably those immediately after excretion, but may be those that have passed time after excretion.
  • the RNA washed with the chaotropic salt and alcohol is preferably RNA extracted from 10 mg to 1 g of stool as a weight, for example. If the amount of stool becomes too large, the handleability and the like may be reduced. On the other hand, when the amount of stool is too small, the number of mammalian cells such as large intestine exfoliated cells contained in the stool becomes too small, and thus the necessary RNA amount may not be recovered. Moreover, since feces are heterogeneous, it is preferable to collect from a wide range of feces when collecting feces in order to avoid the influence of the localization of mammalian cells.
  • a reaction step in a reaction solution containing a single-stranded nucleic acid binding protein using a reverse transcriptase having heat-resistant and low RNase H activity using the washed RNA collected in the washing step as a template Perform reverse transcription reaction with.
  • a reverse transcriptase with specific properties and a single-stranded nucleic acid-binding protein, both the template RNA and reverse transcriptase are sufficiently stabilized, so the reduction in reaction efficiency due to inhibitors can be suppressed. it is conceivable that.
  • the reverse transcription reaction can be performed by a conventional method except that a reverse transcriptase having heat resistance and low RNase H activity is used and a single-stranded nucleic acid binding protein is added to the reaction solution.
  • the reverse transcriptase used in the present invention is an enzyme having heat resistance.
  • heat-resistant reverse transcriptase means a reverse transcriptase having resistance to heat inactivation. Specifically, it is an enzyme that retains at least 50% or more of its enzyme activity even when heated at 90 ° C. for 30 seconds.
  • the reverse transcriptase used in the present invention is an enzyme having a low RNase H activity.
  • “reverse transcriptase having low RNase H activity” means that the RNase H activity of the enzyme is wild type or wild type Moloney murine leukemia virus (M-MLV), avian myeloblastosis virus (AMV) or It refers to a reverse transcriptase that is less than about 20% of the RNase H activity of an RNase H + enzyme such as Rous sarcoma virus (RSV) reverse transcriptase.
  • M-MLV Moloney murine leukemia virus
  • AMV avian myeloblastosis virus
  • RSV Rous sarcoma virus
  • the reverse transcriptase having heat resistance and low RNase H activity include M-MLV H-reverse transcriptase and the like.
  • SuperScript (registered trademark) III manufactured by Invitrogen is most preferable.
  • the enzyme is a single-base mutant of RNase H- of M-MLV reverse transcriptase.
  • the “single-stranded nucleic acid binding protein” is a protein that mainly binds to single-stranded DNA rather than double-stranded DNA regardless of the base sequence.
  • Specific examples of the single-stranded nucleic acid binding protein that can be used in the present invention include, for example, T4 gene 32. protein (manufactured by Promega), E.I. Examples include SSB derived from E. coli, Thermos aquaticus SSB exhibiting heat resistance, methane bacterium (Methanococcus jannaschii), SSB derived from Sulfolobus sulfatalicus, and the like. These single-stranded nucleic acid binding proteins may be used alone or in combination.
  • the single-stranded nucleic acid binding protein used in the present invention in the reverse transcription reaction may be a non-heat-resistant single-stranded nucleic acid binding protein, but is preferably a heat-resistant single-stranded nucleic acid binding protein.
  • the term “heat-resistant single-stranded nucleic acid binding protein” means a protein whose binding activity to single-stranded DNA has resistance to inactivation against heat. A single-stranded nucleic acid binding protein that retains at least 50% or more of its binding activity even when heated for seconds.
  • an RNase A inhibitor it is preferable to further add an RNase A inhibitor to the reaction solution for the reverse transcription reaction.
  • an RNase A inhibitor By performing a reverse transcription reaction in the presence of an RNase A inhibitor, the influence of a fecal-derived inhibitor obtained by using a single-stranded nucleic acid-binding protein and a reverse transcriptase having heat resistance and low RNase H activity is reduced. The effect can be further enhanced.
  • the RNase A inhibitor include Ribonclease Inhibitor, Cloned (manufactured by Invitrogen), Ribonclease Inhibitor (manufactured by TaKaRa), and the like.
  • the cDNA synthesized by the synthesis method of the present invention can be subjected to various analyzes in the same manner as DNA obtained by other methods.
  • the presence or absence of a gene mutation can detect, for example, a mutation such as insertion, deletion, substitution, duplication, inversion, or splicing variant (isoform) of a base on RNA.
  • RNA expression level can be detected (mRNA expression analysis).
  • analyzes can be performed by methods known in the art.
  • a commercially available analysis kit such as a K-ras gene mutation analysis kit may also be used.
  • the cDNA synthesized by the synthesis method of the present invention is derived from stool, it is preferably used for analyzing RNA derived from gastrointestinal cells such as the large intestine, small intestine, stomach, etc. It is more preferable to use it.
  • RNA derived from a marker gene for neoplastic transformation including cancer
  • a marker gene for inflammatory digestive organ disease used for analyzing RNA derived from a marker gene for colorectal cancer.
  • the “gene-derived RNA” means an expression product such as mRNA of the gene.
  • the marker showing neoplastic conversion include known cancer markers such as COX2 (cyclooxygenase-2) gene, carcinoembryonic antigen (CEA), sialyl Tn antigen (STN), APC gene, p53 gene, K- The presence or absence of mutations such as ras gene.
  • methylation of genes such as p16, hMLHI, MGMT, p14, APC, E-cadherin, ESR1, and SFRP2 is also useful as a diagnostic marker for colorectal diseases (for example, LindLet al., “A CpG island hypermethylation, profile, of primary, colorectal, carcinomas, and colon, cancer, cell lines, Molecular Cancer, 2004, Vol. 3, Chapter 28).
  • COX2 gene-derived RNA for example, there is COX2 gene-derived RNA.
  • Cox-2 gene-derived RNA is also used as a marker indicating neoplastic conversion.
  • the synthesis method of the present invention can significantly reduce the influence of the stool-derived inhibitory substance and increase the reaction efficiency of the reverse transcription reaction, and as a result, a stable reaction can be performed. For this reason, a highly reliable result can be obtained by using the cDNA obtained by the synthesis method of the present invention for nucleic acid analysis such as gene expression analysis of stool-derived RNA. The detection result thus obtained is suitably used for clinical examination.
  • a stool-derived nucleic acid synthesis kit includes, for example, a kit comprising a chaotropic salt, alcohol, a heat-resistant and low RNase H activity reverse transcriptase, and a single-stranded nucleic acid binding protein.
  • the kit may further include a reagent used for RNA extraction from stool or reverse transcription reaction. Examples of such a reagent include a nucleic acid extraction solution, an inorganic support, a solvent for elution from the inorganic support, a reverse transcription reaction buffer, a primer, and dNTP.
  • MKN45 cells used were cultured by a conventional method.
  • RNA is extracted from a stool sample derived from a pseudo-colorectal cancer patient (a stool pseudo-sample collected from a colorectal cancer patient). Extraction and collection were performed to prepare pseudofecal RNA.
  • a stool sample derived from a pseudo-colon cancer patient was prepared as follows. First, an equal amount of physiological saline was added to 5 g of normal human stool, mixed well, and homogenized. Then, 200 ⁇ g centrifugation treatment was performed to precipitate impurities, and the supernatant was collected. This stool supernatant was mixed with a cell pellet adjusted so as to contain 1 ⁇ 10 5 MKN45 cells, and this was used as a stool sample derived from a simulated colorectal cancer patient. MKN45 cells are derived from gastric cancer, but are cultured cell lines that highly express the COX2 gene in the same manner as colon cancer cells.
  • the prepared stool sample derived from a pseudo colorectal cancer patient is divided into three 1.5 mL tubes of 300 ⁇ L each, and RNA is extracted by SDS / phenol extraction method, guanidine / ethanol extraction method, or guanidine / ethanol / silica extraction method, respectively. Recovered.
  • Chloroform was added to the 1.5 mL tube and mixed (phenol / chloroform treatment), and then centrifuged again at 14000 rpm for 2 minutes, and the upper layer was collected in another 1.5 mL tube.
  • 30 ⁇ L of 3M CH 3 COONa and an equal amount of isopropanol were added and mixed, followed by centrifugation at 4 ° C., 14000 rpm for 10 minutes to obtain a pellet (ethanol precipitation).
  • the pellet was rinsed with a 75% ethanol solution, dried, and then dissolved in 50 ⁇ L of distilled water as phenol / chloroform-extracted RNA.
  • guanidine thiocyanate buffer (RLT buffer, manufactured by QIAGEN) was added to a tube containing 300 ⁇ L of a stool sample derived from a pseudo colorectal cancer patient, and after performing Vortex, etc. A volume (about 600 ⁇ L) of 70% ethanol was added and vortexed to obtain a suspension. Thereafter, 300 ⁇ L each of the suspension was dispensed into four 1.5 mL tubes, and 2.5 times the volume of 99.5% ethanol solution and 60 ⁇ L of 3M CH 3 COONa were added and mixed. Centrifugation was performed at 4 ° C., 14000 rpm for 10 minutes to obtain a pellet (ethanol precipitation). The obtained pellets in the four tubes were combined into one, rinsed with a 75% ethanol solution, dried, and then dissolved in 50 ⁇ L of distilled water as guanidine / ethanol-extracted RNA.
  • RLT buffer guanidine thiocyanate buffer
  • RNA recovery column of RNeasy midi kit (manufactured by Quiagen), and the RNA recovery column is washed and eluted according to the attached protocol.
  • the RNA was recovered as a 50 ⁇ L RNA solution.
  • the RNA was guanidine / ethanol / silica extracted RNA.
  • RNA used for comparison A cell sample (MKN45 cell sample) adjusted with PBS so that 1 ⁇ 10 5 MKN45 cells are contained, and added to the cell sample so as to contain 1 ⁇ 10 8 E. coli cells cultured in a liquid medium.
  • Three types, E. coli-containing MKN45 cell sample, and those obtained by adding bilirubin to the cell sample to a final concentration of 1 mg / ⁇ L (bilirubin-containing MKN45 cell sample) were used as comparison targets. From these cell samples, RNA was extracted and collected by the SDS / phenol extraction method or the guanidine / ethanol extraction method in the same manner as the stool samples derived from pseudo colorectal cancer patients.
  • RNA concentration based on the measurement result of the RNA concentration. Specifically, as shown in Table 1, phenol / chloroform as a template for each of pseudo-feces-derived RNA, MKN45 cell sample-derived RNA, E.
  • coli-containing MKN45 cell sample-derived RNA and bilirubin-containing MKN45 cell sample-derived RNA M-MLV (manufactured by TakaRa), which is non-thermostable and has high RNaseH activity, or SuperScript (registered trademark) III (manufactured by Invitrogen) having low thermostability and low RNaseH activity as reverse transcriptase using extracted RNA or guanidine / ethanol-extracted RNA 16 kinds of reaction solutions (samples) were prepared by changing the presence or absence of addition of 40 ng / ⁇ L T4 gene 32 protein (Promega) and the presence or absence of addition of RNase A inhibitor (TaKaRa).
  • T4 gene 32 protein is a single-stranded nucleic acid binding protein (hereinafter referred to as SSB).
  • SSB single-stranded nucleic acid binding protein
  • PCR plate was placed in an ABI real-time PCR apparatus, treated at 95 ° C. for 10 minutes, and then subjected to 40 cycles of thermal cycling at 95 ° C. for 1 minute, 56.5 ° C. for 1 minute, and 72 ° C. for 1 minute. Further, PCR was performed while measuring the fluorescence intensity over time by treating at 72 ° C. for 7 minutes.
  • FIGS. 1 shows the results when pseudo stool-derived RNA was used as a template
  • FIG. 2 shows the results when MKN45 cell sample-derived RNA was used as a template
  • FIG. 3 shows the case where E. coli-containing MKN45 cell sample-derived RNA was used as a template.
  • FIG. 4 shows the results when RNA derived from a bilirubin-containing MKN45 cell sample was used as a template.
  • RNA containing fecal-derived inhibitory substances such as bilirubin as a template the RNA is preliminarily obtained by using a chaotropic salt and alcohol when the RNA is recovered. It is clear that the treatment with the tropic salt and alcohol can reduce the influence of the inhibitor introduced into the reaction solution of the reverse transcription reaction.
  • the effect of adding the RNase A inhibitor is not observed when the bilirubin-containing MKN45 cell sample-derived RNA is used as a template, and the effect of adding SSB is more than that when the bilirubin-containing MKN45 cell sample-derived RNA is used as a template. It was significantly larger when pseudo-fecal RNA was used as a template. The difference is that when bilirubin-containing MKN45 cell sample-derived RNA was used as a template, only one kind of inhibitor was introduced into the reaction solution, whereas pseudofecal-derived RNA was used as a template. In some cases, it is presumed that various inhibitors derived from stool were brought into the reaction solution.
  • RLT buffer guanidine thiocyanate buffer
  • RNA sample extracted from feces and did. The RNA sample was quantified and the RNA concentration was measured.
  • RNA sample is added so that 1 ⁇ g of RNA is added, and Taq SSB (manufactured by Bio Academia), which is a heat-resistant SSB, is added to 500 ng / ⁇ L, and an RNase A inhibitor (
  • the product was prepared according to the instruction manual attached to each reverse transcriptase, except that Taunit (manufactured by TaKaRa) was added to 0.5 units / ⁇ L.
  • Each prepared reaction solution was reacted as described in the instruction manual for each reverse transcriptase to synthesize cDNA. Thereafter, in the same manner as in Example 1, real-time PCR was performed using the obtained cDNA as a template, and the expression product (mRNA) of the COX2 gene was detected.
  • each reaction solution was prepared by adding an RNA sample so that 1 ⁇ g of RNA was added, and further adding Taq SSB (manufactured by Bio Academia) to 500 ng / ⁇ L. It was prepared according to the instruction manual attached to the reverse transcriptase. Each prepared reaction solution is reacted as described in the instruction manual for each reverse transcriptase, and in the same manner as in Example 1, real-time PCR is performed using the obtained cDNA as a template to express the COX2 gene. Product (mRNA) was detected.
  • the measurement result of fluorescence intensity was analyzed, and the expression level of the COX2 gene in each reaction solution was examined.
  • the expression level was the lowest when AMV with high RNase H activity was used, and the expression level was highest when SuperScript III was used.
  • the relative value of the expression level when other reverse transcriptase was used was calculated. The calculation results are shown in FIG. In spite of using the same RNA sample as a template, when RNase A inhibitor is added to the reaction solution, it is approximately 4.8 times when SuperScript III is used compared to when AMV is used. In that case, the expression level was about 3.5 times higher.
  • the amount of COX2 gene expressed was greater when RNase A inhibitor was added to the reaction solution than when it was not added.
  • AMV assuming that the expression level when RNaseA inhibitor was added to the reaction solution was 1, it was about 0.7 when RNaseA inhibitor was not added.
  • SuperScript III or ReverseScript IV the expression level when RNase A inhibitor was not added was about 95% of the expression level when added.
  • the above three types of reverse transcriptases were used, respectively.
  • reverse transcription reaction was performed in a reaction solution to which RNase A inhibitor was added, real-time PCR was performed using the obtained cDNA as a template, and the expression product (mRNA) of the COX2 gene was detected.
  • the expression level was the lowest when AMV was used, and the expression level was highest when SuperScript III was used.
  • the expression level when using ReverseScript IV was 4.1, and SuperScript III The expression level when using was 4.6.
  • RNA extracted from feces is detected by reverse transcription reaction and subsequent nucleic acid amplification reaction such as PCR, such as SuperScript (registered trademark) III and RiverScript (registered trademark) IV. It is clear that it can be detected with high sensitivity by using a reverse transcriptase that exhibits thermostability and low RNase H activity, and that detection sensitivity can be further enhanced by carrying out the reverse transcription reaction in the presence of an RNase A inhibitor. It is.
  • RNA extracted from cultured cells considered to have few inhibitors as a template and measuring the expression levels of cDNA synthesis and COX2 gene expression products using three types of reverse transcriptase in the same manner as in Example 2, The influence of RNase H activity of the reverse transcriptase used in the reaction was examined. Specifically, RNA was extracted from the cell pellet adjusted to contain 1 ⁇ 10 5 MKN45 cells by the guanidine / ethanol extraction method in the same manner as in Example 1, and this was used as an RNA sample.
  • RNA sample was obtained as a template, in the same manner as in Example 2, a reverse transcription reaction was performed using AMV, ReverseScript IV, or SuperScript III, and real-time PCR was performed using the obtained cDNA as a template to express the COX2 gene.
  • Product mRNA was detected.
  • the measurement result of the fluorescence intensity was analyzed, and the expression level of the COX2 gene in each reaction solution was examined.
  • the expression level was the lowest when AMV was used, and the expression level was highest when SuperScript III was used, but there was not much difference in the expression level.
  • the expression level when using AMV is 1, and the relative value of the expression level when using other reverse transcriptases is calculated, the expression level when using SuperScript III or RiverScript IV is about 1.6 to It was only 1.7.
  • the calculation results are shown in FIG.
  • coli SSB non-heat resistant, manufactured by Bio Academia
  • 500 ng / ⁇ L -ET SSB heat resistance, New England Bio Lab
  • 4 ng / ⁇ L -Taq SSB heat resistance, manufactured by Bio Academia
  • each reaction solution was added to the SuperScript III, except that the RNA sample was added so that 1 ⁇ g of RNA was added, and various SSBs were added to each concentration. Prepared according to the instructions. Each prepared reaction solution was reacted as described in the instruction manual for SuperScript III, and in the same manner as in Example 1, real-time PCR was performed using the obtained cDNA as a template to obtain an expression product of COX2 gene ( mRNA) was detected.
  • the measurement result of fluorescence intensity was analyzed, and the expression level of the COX2 gene in each reaction solution was examined.
  • the expression level when T4 gene 32 protein was used was 1, and the relative value of the expression level when other SSB was used was calculated.
  • the calculation results are shown in FIG. As a result, when ET SSB and Taq SSB were used even though the same RNA sample was used as a template, T4 gene 32 protein and E.I.
  • the expression level of the COX2 gene was higher than when E. coli SSB was used. From these results, when reverse transcription reaction was performed using RNA extracted from feces as a template, the reaction efficiency was higher by adding heat-resistant SSB to the reaction solution than when non-heat-resistant SSB was added. It is clear that can be improved.
  • Table 2 shows the presence or absence of addition of T4 gene 32 protein (“SSB” in the table), BSA, and RNase A inhibitor in each sample.
  • SSB T4 gene 32 protein
  • “+” means that the substance was added to the reaction solution for the reverse transcription reaction
  • “ ⁇ ” means that it was not added.
  • Samples 17 to 20 correspond to the conditions in which BSA was added to Samples 13 to 16 of Example 1, respectively, in the RNA extraction conditions and the composition of the reaction solution for the reverse transcription reaction.
  • Reverse transcription reaction was performed in the four types of reaction solutions of Samples 17 to 20 in the same manner as in Example 1.
  • Real-time PCR was performed using the obtained cDNA as a template to detect the expression product (mRNA) of the COX2 gene. It was.
  • the measurement result of the fluorescence intensity was analyzed, and the expression level of the COX2 gene in each reaction solution was examined.
  • the expression level was the highest, and both SSB and RNase A inhibitor were added.
  • the expression level was the smallest.
  • the amount of expression was higher when only SSB was added to the reaction solution (sample 18) than when only RNase A inhibitor was added (sample 19).
  • cDNA can be efficiently synthesized from RNA contained in stool, so that it can be used not only in academic research but also in fields such as clinical tests using stool as a specimen. is there.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The purpose of the invention is to provide a method for synthesizing cDNA from RNA contained in feces by a reverse transcriptional reaction with high efficiency. The invention provides: a method for synthesizing a feces-derived nucleic acid, which comprises a washing step of washing RNA extracted from feces with a chaotropic salt and an alcohol and a reaction step of carrying out a reverse transcriptional reaction in a reaction solution containing a protein capable of binding to a single-stranded nucleic acid using the washed RNA as a template and using a reverse transcriptase having heat resistance and a low RNaseH activity; a method for synthesizing a feces-derived nucleic acid as mentioned above, wherein the reaction solution additionally contains an RNaseA inhibitor; and a feces-derived nucleic acid synthesis kit comprising a chaotropic salt, an alcohol, a reverse transcriptase having heat resistance and a low RNaseH activity and a a protein capable of binding to a single-stranded nucleic acid.

Description

糞便由来核酸の合成方法Method for synthesizing fecal nucleic acid
 本発明は、糞便に含まれているRNAから逆転写反応によりcDNAを効率よく合成するための方法に関する。 The present invention relates to a method for efficiently synthesizing cDNA from RNA contained in feces by reverse transcription reaction.
 近年、糞便中の癌遺伝子を増幅し、解析することによって大腸癌を検出する方法が開示されている。例えば、特許文献1及び非特許文献1には、癌細胞由来の核酸に多く観察される非アポトーシス性DNAを検出することによって大腸癌を検査する方法、特に、Alu反復領域・アルフォイド反復領域や、p53等の癌関連遺伝子の断片長の差異に基づいて大腸癌を検査する方法が開示されている。 Recently, a method for detecting colorectal cancer by amplifying and analyzing an oncogene in feces has been disclosed. For example, Patent Document 1 and Non-Patent Document 1 include a method for examining colon cancer by detecting non-apoptotic DNA frequently observed in nucleic acids derived from cancer cells, in particular, Alu repeat region and alphoid repeat region, A method for examining colorectal cancer based on the difference in fragment length of cancer-related genes such as p53 has been disclosed.
 このように、糞便中の癌細胞由来の核酸等の核酸を解析するためには、糞便から高品質の核酸を回収することが重要である。例えば、糞便中には、消化残留物やバクテリアが大量に含まれているため、核酸は非常に分解されやすいという問題がある。また、糞便から回収された核酸に、糞便中の夾雑物が持ち込まれることにより、解析精度が損なわれるという問題もある。このため、より信頼性の高い核酸解析結果を得るために、糞便から、分解等を防止しつつ精製度の高い核酸を回収するための方法の開発がなされている。 Thus, in order to analyze nucleic acid such as nucleic acid derived from cancer cells in stool, it is important to collect high-quality nucleic acid from stool. For example, since feces contain a large amount of digest residue and bacteria, there is a problem that nucleic acids are very easily degraded. In addition, there is a problem in that the analysis accuracy is impaired by introducing foreign substances in the stool into the nucleic acid collected from the stool. For this reason, in order to obtain a more reliable nucleic acid analysis result, a method for recovering highly purified nucleic acid from feces while preventing decomposition or the like has been developed.
 例えば特許文献2には、糞便をゲル氷点未満の温度まで冷却することによって便の構造を安定化させ、この状態の糞便からの細胞を分離し、そこから抽出したDNAを解析する方法が開示されている。その他、糞便試料からRNAを回収する方法として、非特許文献2には、糞便試料からタンパク質等の夾雑物を除去した後、フェノールとカオトロピック塩を用いてRNAを抽出し、抽出されたRNAをさらにシリカ含有固形支持体に吸着させることにより回収する方法が開示されている。 For example, Patent Document 2 discloses a method of stabilizing the stool structure by cooling the stool to a temperature below the gel freezing point, separating cells from the stool in this state, and analyzing the DNA extracted therefrom. ing. In addition, as a method for recovering RNA from a stool sample, Non-Patent Document 2 discloses that after removing contaminants such as proteins from a stool sample, RNA is extracted using phenol and chaotropic salt, and the extracted RNA is further extracted. A method of recovering by adsorbing on a silica-containing solid support is disclosed.
 特許文献2記載の方法においては、糞便試料の変質を効果的に防止するために、糞便を採便直後に冷却することが重要である。しかしながら、検診等のように家庭において採便が行われる場合には、採取後速やかに糞便試料を冷却することは非常に困難であり、現実的ではない。また、特許文献2記載の方法や非特許文献2記載の方法において行われているように、糞便から夾雑物を除去し、標的となる遺伝子を持つ細胞を分離し、そこから核酸を回収する方法には、細胞を分離する工程が煩雑であり、検査のコストアップにつながるという問題に加えて、細胞を分離する工程後に回収される核酸は、収量が低く、工程による収量の損失が大きいという問題もある。このため、糞便から核酸を回収する場合には、ヒト由来細胞と細菌由来細胞を区別せず、混在した状態で回収するほうが望ましい。 In the method described in Patent Document 2, it is important to cool the stool immediately after sampling in order to effectively prevent the stool sample from being altered. However, when stool collection is performed at home, such as in a medical examination, it is very difficult to cool a stool sample immediately after collection, which is not realistic. In addition, as performed in the method described in Patent Document 2 and the method described in Non-Patent Document 2, a method for removing impurities from stool, separating a cell having a target gene, and recovering a nucleic acid therefrom In addition to the problem that the process of separating the cells is complicated and leads to an increase in the cost of the test, the nucleic acid recovered after the process of separating the cells is low in yield and the loss of yield due to the process is large. There is also. For this reason, when recovering nucleic acid from stool, it is desirable to recover in a mixed state without distinguishing human-derived cells and bacteria-derived cells.
 糞便から細胞を分離回収せずに、糞便から直接核酸を回収する方法もある。例えば特許文献3には、糞便中の癌遺伝子を解析するための、糞便サンプルの調整方法が開示されている。これは、糞便サンプルを、糞便質量1に対して、少なくとも5の溶媒比でホモジナイズした後、哺乳細胞由来のDNAを、細菌のDNAを含めて回収する方法である。また、特許文献4には、採取された糞便をRNA分解酵素阻害剤の存在下で均質化し、調製された懸濁物から直接RNAを抽出し、癌遺伝子であるCOX2(cyclooxygenase-2)遺伝子の転写産物を検出する方法が開示されている。 There is also a method of collecting nucleic acid directly from stool without separating and collecting cells from stool. For example, Patent Document 3 discloses a method for preparing a stool sample for analyzing an oncogene in stool. This is a method in which a stool sample is homogenized at a solvent ratio of at least 5 with respect to stool mass 1, and then DNA derived from mammalian cells is collected including bacterial DNA. In Patent Document 4, the collected stool is homogenized in the presence of an RNase inhibitor, RNA is extracted directly from the prepared suspension, and the COX2 (cyclooxygenase-2) gene, which is an oncogene, is extracted. A method for detecting transcripts is disclosed.
特表2005-514073号公報JP 2005-514073 A 特表平11-511982号公報Japanese National Patent Publication No. 11-511982 特表2002-539765号公報Special Table 2002-539765 特許第4134047号公報Japanese Patent No. 4134047
 一方で、糞便中には、胆汁酸やその塩等の、PCR(Polymerase Chain Reaction)等の核酸合成反応に対して阻害作用を有する物質が含まれている(例えば、非特許文献3参照)。例えば、大人の平均的な排泄糞便量は、約200~400g/日とされるが、健常人ではその糞便中に200~650mg/日の胆汁酸が排泄されるという報告がある。すなわち、便1gあたりに換算した場合、健常人で約0.5mg~3.25mg、患者でその10倍の胆汁酸が含まれることになる。一方で、胆汁酸塩によるPCRの阻害効果は、50μg/mL程度の濃度で生じるとの報告もある。
 また、胆汁酸塩等の核酸合成反応阻害物質は、PCRのみならず、逆転写反応も阻害する。したがって、糞便から核酸を抽出し、それを用いて逆転写反応やPCR等による増幅反応を行う場合は、反応効率を向上させるために、これらの核酸合成反応阻害物質による影響を低減させることが好ましい。
On the other hand, feces contain substances having an inhibitory action on nucleic acid synthesis reactions such as PCR (Polymerase Chain Reaction) such as bile acids and salts thereof (see Non-patent Document 3, for example). For example, the average amount of feces excreted by an adult is about 200 to 400 g / day, but there is a report that 200 to 650 mg / day of bile acid is excreted in feces of healthy people. That is, when converted to 1 g of stool, a healthy person contains about 0.5 mg to 3.25 mg, and a patient contains 10 times as much bile acid. On the other hand, there is a report that the inhibitory effect of PCR by bile salts occurs at a concentration of about 50 μg / mL.
In addition, nucleic acid synthesis reaction inhibitors such as bile salts inhibit not only PCR but also reverse transcription reactions. Therefore, when nucleic acids are extracted from stool and used for amplification reactions such as reverse transcription and PCR, it is preferable to reduce the effects of these nucleic acid synthesis reaction inhibitors in order to improve reaction efficiency. .
 しかしながら、特許文献3及び4に記載されている方法のように、糞便から直接核酸を回収した場合には、細胞を分離した後に回収する方法に比べて、回収後の核酸に糞便中の夾雑物が大量に持ち込まれてしまうという問題がある。このため、特に逆転写反応を行う際に、鋳型として多量の糞便由来RNAを反応液中に持ち込んだ場合には、反応阻害が起こり、反応産物が得られないという問題がある。 However, when nucleic acids are directly collected from stool as in the methods described in Patent Documents 3 and 4, the collected nucleic acids are contaminated with stool compared to the method of collecting cells after separating them. There is a problem that a lot is brought in. For this reason, particularly when performing reverse transcription reaction, when a large amount of stool-derived RNA is brought into the reaction solution as a template, there is a problem that reaction inhibition occurs and a reaction product cannot be obtained.
 本発明は、糞便に含まれているRNAから、逆転写反応によりcDNAを効率よく合成するための方法を提供することを目的とする。 An object of the present invention is to provide a method for efficiently synthesizing cDNA from RNA contained in feces by reverse transcription reaction.
 本発明者は、上記課題を解決すべく鋭意研究した結果、糞便から抽出・回収されたRNAを、逆転写反応を行う前に、予めカオトロピック塩及びアルコールで洗浄し、洗浄後のRNAを鋳型とし、耐熱性かつ低RNaseH活性である逆転写酵素を用いて、一本鎖核酸結合タンパク質の存在下で反応を行うことにより、反応効率を改善し得ることを見出し、本発明を完成させた。 As a result of earnest research to solve the above problems, the present inventor washed RNA extracted and collected from stool with a chaotropic salt and alcohol in advance before performing a reverse transcription reaction, and using the washed RNA as a template. The present inventors have found that the reaction efficiency can be improved by performing a reaction in the presence of a single-stranded nucleic acid binding protein using a reverse transcriptase having heat resistance and low RNase H activity, and the present invention has been completed.
 すなわち、本発明は、
(1) (a)糞便から抽出されたRNAを、カオトロピック塩及びアルコールで洗浄する洗浄工程;及び
(b)洗浄後のRNAを鋳型とし、耐熱性かつ低RNaseH活性である逆転写酵素を用いて、一本鎖核酸結合タンパク質を含有する反応液中で逆転写反応を行う反応工程;
を有する、糞便由来核酸の合成方法、
(2) 前記反応液が、さらにRNaseA阻害剤を含む、前記(1)記載の糞便由来核酸の合成方法、
(3) 前記洗浄工程(a)が、糞便から抽出されたRNAに、まずカオトロピック塩溶液を添加し、次いでアルコール溶液を添加した後、得られたRNA溶液からRNAを回収する工程を含む、前記(1)又は(2)記載の糞便由来核酸の合成方法、
(4) 前記洗浄工程(a)が、糞便から抽出されたRNAに、カオトロピック塩を含有するアルコール溶液を添加し、得られたRNA溶液からRNAを回収する工程を含む、前記(1)又は(2)記載の糞便由来核酸の合成方法、
(5) 前記糞便から抽出されたRNAが、糞便からカオトロピック塩を用いて抽出されたRNAである、前記(1)~(4)のいずれか一つに記載の糞便由来核酸の合成方法、
(6) 前記洗浄工程(a)の前に、
(A)
(i)糞便にアルコール溶液を添加し、懸濁液を調製する工程;
(ii)前記懸濁液から、固形成分を回収する工程;及び
(iii)回収された固形成分にカオトロピック剤を添加して懸濁液を調製し、当該固形成分からRNAを抽出する工程;
を有する、前記(1)~(4)のいずれか一つに記載の糞便由来核酸の合成方法、
(7) 前記洗浄工程(a)の前に、
(a-1)糞便にカオトロピック塩溶液を添加して懸濁液を調製し、RNAを抽出する工程;及び
(a-2)前記懸濁液に、さらにアルコール溶液又はカオトロピック塩を含有するアルコール溶液を添加した後、当該懸濁液からRNAを回収する工程;
を行う、前記(1)又は(2)記載の糞便由来核酸の合成方法、
(8) 前記洗浄工程(a)が、
(a-3)糞便にアルコール溶液を添加し、懸濁液を調製する工程;
(a-4)前記懸濁液から、固形成分を回収する工程;
(a-5)回収された固形成分にカオトロピック剤を添加して懸濁液を調製し、当該懸濁液よりRNAを抽出する工程;及び
(a-6)前記懸濁液に、さらにアルコール溶液又はカオトロピック塩を含有するアルコール溶液を添加した後、当該懸濁液からRNAを回収する工程;
である、前記(1)又は(2)記載の糞便由来核酸の合成方法、
(9) カオトロピック塩、アルコール、耐熱性かつ低RNaseH活性である逆転写酵素、及び一本鎖核酸結合タンパク質を有する、糞便由来核酸の合成用キット、
を提供するものである。
That is, the present invention
(1) (a) a washing step of washing RNA extracted from stool with a chaotropic salt and alcohol; and (b) using a reverse transcriptase having heat resistance and low RNase H activity using the washed RNA as a template. A reaction step of performing a reverse transcription reaction in a reaction solution containing a single-stranded nucleic acid binding protein;
A method for synthesizing stool-derived nucleic acid,
(2) The method for synthesizing stool-derived nucleic acid according to (1), wherein the reaction solution further contains an RNase A inhibitor,
(3) The washing step (a) includes a step of first adding a chaotropic salt solution to RNA extracted from stool, then adding an alcohol solution, and then recovering RNA from the obtained RNA solution, (1) or the method for synthesizing a stool-derived nucleic acid according to (2),
(4) The washing step (a) includes a step of adding an alcohol solution containing a chaotropic salt to RNA extracted from stool and recovering RNA from the obtained RNA solution (1) or ( 2) The method for synthesizing the stool-derived nucleic acid described in
(5) The method for synthesizing a stool-derived nucleic acid according to any one of (1) to (4), wherein the RNA extracted from stool is RNA extracted from stool using a chaotropic salt,
(6) Before the washing step (a),
(A)
(I) adding an alcohol solution to feces to prepare a suspension;
(Ii) a step of recovering a solid component from the suspension; and (iii) a step of adding a chaotropic agent to the recovered solid component to prepare a suspension and extracting RNA from the solid component;
A method for synthesizing a stool-derived nucleic acid according to any one of (1) to (4),
(7) Before the washing step (a),
(A-1) adding a chaotropic salt solution to feces to prepare a suspension and extracting RNA; and (a-2) an alcohol solution or an alcohol solution further containing a chaotropic salt in the suspension. Recovering RNA from the suspension after adding
A method for synthesizing a stool-derived nucleic acid according to (1) or (2),
(8) The washing step (a)
(A-3) adding an alcohol solution to feces to prepare a suspension;
(A-4) recovering solid components from the suspension;
(A-5) adding a chaotropic agent to the recovered solid component to prepare a suspension, and extracting RNA from the suspension; and (a-6) further adding an alcohol solution to the suspension. Or a step of recovering RNA from the suspension after adding an alcohol solution containing a chaotropic salt;
The method for synthesizing stool-derived nucleic acid according to (1) or (2),
(9) A kit for synthesis of stool-derived nucleic acid having a chaotropic salt, alcohol, a reverse transcriptase having heat resistance and low RNase H activity, and a single-stranded nucleic acid binding protein,
Is to provide.
 本発明の糞便由来核酸の合成方法により、夾雑物の多い糞便から回収されたRNAから逆転写反応によりcDNAを合成する場合に、より多量のcDNAを合成することができる。 In the method for synthesizing stool-derived nucleic acid of the present invention, a larger amount of cDNA can be synthesized when cDNA is synthesized by reverse transcription reaction from RNA collected from stool containing a large amount of contaminants.
実施例1において、擬似糞便由来RNAを鋳型とした場合の、各サンプル中のCOX2遺伝子の発現量相対値を示した図である。In Example 1, it is the figure which showed the expression level relative value of the COX2 gene in each sample at the time of using pseudo-feces origin RNA as a template. 実施例1において、MKN45細胞試料由来RNAを鋳型とした場合の、各サンプル中のCOX2遺伝子の発現量相対値を示した図である。In Example 1, it is the figure which showed the relative expression level value of the COX2 gene in each sample at the time of using MKN45 cell sample origin RNA as a template. 実施例1において、大腸菌含有MKN45細胞試料由来RNAを鋳型とした場合の、各サンプル中のCOX2遺伝子の発現量相対値を示した図である。In Example 1, it is the figure which showed the expression level relative value of the COX2 gene in each sample at the time of using as a template RNA from E. coli containing MKN45 cell sample. 実施例1において、ビリルビン含有MKN45細胞試料由来RNAを鋳型とした場合の、各サンプル中のCOX2遺伝子の発現量相対値を示した図である。In Example 1, it is the figure which showed the relative expression level value of the COX2 gene in each sample at the time of using bilirubin containing MKN45 cell sample origin RNA as a template. 実施例2において、各逆転写酵素を用いた場合のCOX2遺伝子の発現量相対値を示した図である。In Example 2, it is the figure which showed the expression level relative value of the COX2 gene at the time of using each reverse transcriptase. 比較例1において、各逆転写酵素を用いた場合のCOX2遺伝子の発現量相対値を示した図である。In Comparative example 1, it is the figure which showed the expression level relative value of the COX2 gene at the time of using each reverse transcriptase. 実施例3において、反応液中に各種SSBを添加した場合のCOX2遺伝子の発現量相対値を示した図である。In Example 3, it is the figure which showed the expression level relative value of the COX2 gene at the time of adding various SSB in a reaction liquid. 実施例4において、各サンプル中のCOX2遺伝子の発現量相対値を示した図である。In Example 4, it is the figure which showed the expression level relative value of the COX2 gene in each sample.
 本発明及び本願明細書において、阻害物質とは、核酸を基質とする酵素反応に対して阻害的に作用する物質を意味する。当該酵素反応としては、核酸を基質とする酵素反応であれば特に限定されるものではなく、逆転写反応やPCR等の核酸合成反応も含まれる。具体的には、胆汁酸、胆汁酸塩、ビリルビン、ムコ多糖類等が挙げられる。 In the present invention and the specification of the present application, an inhibitory substance means a substance that acts in an inhibitory manner on an enzymatic reaction using a nucleic acid as a substrate. The enzyme reaction is not particularly limited as long as it is an enzyme reaction using a nucleic acid as a substrate, and also includes a nucleic acid synthesis reaction such as reverse transcription reaction and PCR. Specific examples include bile acids, bile salts, bilirubin, mucopolysaccharides and the like.
 本発明の糞便由来核酸の合成方法(以下、本発明の合成方法、ということがある。)は、糞便から抽出されたRNAを、カオトロピック塩及びアルコールで洗浄する洗浄工程と、洗浄後のRNAを鋳型とし、耐熱性かつ低RNaseH活性である逆転写酵素を用いて、一本鎖核酸結合タンパク質を含有する反応液中で逆転写反応を行う反応工程と、を有することを特徴とする。 The method for synthesizing stool-derived nucleic acid of the present invention (hereinafter sometimes referred to as the synthesis method of the present invention) comprises a washing step of washing RNA extracted from stool with a chaotropic salt and alcohol, and a RNA after washing. And a reaction step of performing a reverse transcription reaction in a reaction solution containing a single-stranded nucleic acid binding protein using a reverse transcriptase having heat resistance and low RNase H activity as a template.
 すなわち、本発明の合成方法では、糞便から抽出されたRNAを、予めカオトロピック塩及びアルコールで洗浄した後、洗浄後のRNAを鋳型とし、特定の性質を備える逆転写酵素を用いて、一本鎖核酸結合タンパク質の存在下で逆転写反応を行うことにより、逆転写反応の反応効率を飛躍的に改善することができる。このような効果が得られる理由は明らかではないが、以下に述べるように、糞便由来の阻害物質による影響を顕著に低減し得るためと推察される。 That is, in the synthesis method of the present invention, RNA extracted from stool is washed with a chaotropic salt and alcohol in advance, and then the RNA after washing is used as a template, using a reverse transcriptase having specific properties, and then single-stranded. By performing the reverse transcription reaction in the presence of the nucleic acid binding protein, the reaction efficiency of the reverse transcription reaction can be dramatically improved. The reason why such an effect is obtained is not clear, but it is presumed that the influence of the stool-derived inhibitory substance can be significantly reduced as described below.
 糞便から抽出されたRNA中には、糞便中に含まれていた阻害物質が持ち込まれている。この抽出されたRNAを、カオトロピック塩を含有する溶液やアルコール溶液で洗浄することにより、持ち込まれた阻害物質を効率良く洗浄除去することができる。 In the RNA extracted from stool, inhibitors contained in stool are brought in. By washing the extracted RNA with a solution containing a chaotropic salt or an alcohol solution, the introduced inhibitory substance can be efficiently washed away.
 糞便から細胞を分離することなく、糞便から直接RNAを回収する場合、カオトロピック塩やアルコールを用いて洗浄した場合であっても、完全に阻害物質を洗浄除去することは難しい。このため、洗浄後に回収されたRNAにも、一部の阻害物質が残存してしまう。 When collecting RNA directly from stool without separating cells from stool, it is difficult to completely remove the inhibitor even if it is washed with chaotropic salt or alcohol. For this reason, some inhibitory substances remain in the RNA recovered after washing.
 このような阻害物質による弊害に対する対策として、より逆転写効率の高い逆転写酵素を用いることも考えられるが、高活性の酵素を選択したとしても、阻害物質の持ち込み量によっては、反応産物が得られない場合がある。その他にも、PCRの反応阻害物質の緩和剤としてBSA(ウシ血清アルブミン)等のタンパク質が一般的に用いられているが、糞便由来のRNAを用いた場合には、従来から用いられている緩和剤を反応液に添加するだけでは逆転写反応効率は改善されない場合が多い。 As countermeasures against such harmful effects of inhibitors, reverse transcriptase with higher reverse transcription efficiency can be used, but even if a highly active enzyme is selected, a reaction product may be obtained depending on the amount of inhibitor brought in. It may not be possible. In addition, proteins such as BSA (bovine serum albumin) are generally used as mitigating agents for PCR reaction inhibitors, but when stool-derived RNA is used, conventionally used mitigating agents are used. In many cases, the reverse transcription reaction efficiency is not improved only by adding an agent to the reaction solution.
 本発明においては、耐熱性かつ低RNaseH活性である逆転写酵素を用いて、一本鎖核酸結合タンパク質を含有する反応液中で逆転写反応を行うことにより、糞便中の阻害物質の影響を従来になく顕著に低減させることができる。このように、耐熱性かつ低RNaseH活性である逆転写酵素と一本鎖核酸結合タンパク質とを併用することが、特に糞便由来の阻害物質の影響を低減させ、反応効率を改善することに有効であることは、本発明者により初めて見出された知見である。 In the present invention, the effect of an inhibitory substance in stool is conventionally achieved by performing a reverse transcription reaction in a reaction solution containing a single-stranded nucleic acid binding protein using a reverse transcriptase having heat resistance and low RNase H activity. It can be significantly reduced. Thus, the combined use of a heat-resistant and low RNase H reverse transcriptase and a single-stranded nucleic acid binding protein is particularly effective in reducing the influence of stool-derived inhibitors and improving the reaction efficiency. There is a finding for the first time by the present inventors.
 以下、工程ごとに説明する。
 まず、洗浄工程として、糞便から抽出されたRNAを、カオトロピック塩及びアルコールで洗浄する。具体的には、糞便から抽出されたRNAに、カオトロピック塩及びアルコールを添加してRNA溶液を調製した後、当該RNA溶液からRNAを回収することにより、カオトロピック塩及びアルコールで洗浄されたRNAを得ることができる。
Hereinafter, it demonstrates for every process.
First, as a washing step, RNA extracted from stool is washed with a chaotropic salt and alcohol. Specifically, an RNA solution is prepared by adding chaotropic salt and alcohol to RNA extracted from stool, and then RNA is recovered from the RNA solution to obtain RNA washed with chaotropic salt and alcohol. be able to.
 洗浄工程においては、RNAに、カオトロピック塩とアルコールとをそれぞれ添加してもよく、予めカオトロピック塩を含有するアルコール溶液を調製し、これを添加してもよい。また、カオトロピック塩とアルコールとを別個に添加する場合、いずれを先に添加するかは、糞便からのRNAの抽出方法等を考慮して、適宜決定することができる。本発明においては、先にカオトロピック塩を添加した後にアルコールを添加するか、又はカオトロピック塩を含有するアルコール溶液を添加するほうが好ましい。 In the washing step, chaotropic salt and alcohol may be added to RNA, respectively, or an alcohol solution containing chaotropic salt may be prepared in advance and added thereto. In addition, when the chaotropic salt and the alcohol are added separately, which one is added first can be appropriately determined in consideration of the RNA extraction method from feces. In the present invention, it is preferable to add an alcohol after adding a chaotropic salt first, or add an alcohol solution containing a chaotropic salt.
 洗浄工程において糞便から抽出されたRNAに添加されるカオトロピック塩としては、特に限定されるものではなく、当該技術分野において用いられているいずれのカオトロピック塩を用いてもよい。このようなカオトロピック塩として、例えば、塩酸グアニジン、チオシアン酸グアニジン、イソチオシアン酸グアニジン等のグアニジン塩が好ましい。また、1種類のカオトロピック塩を用いてもよく、2種類以上のカオトロピック塩を併用してもよい。 The chaotropic salt added to RNA extracted from feces in the washing step is not particularly limited, and any chaotropic salt used in the technical field may be used. As such chaotropic salts, for example, guanidine salts such as guanidine hydrochloride, guanidine thiocyanate, and guanidine isothiocyanate are preferable. One type of chaotropic salt may be used, or two or more types of chaotropic salts may be used in combination.
 カオトロピック塩は、適当な溶媒に溶解させたカオトロピック塩溶液として添加することが好ましい。この際用いられる溶媒としては、例えば、水、クエン酸バッファー、リン酸バッファー、トリスバッファー等を用いることができる。特に、RNAは非常に分解されやすい物質であるため、チオシアン酸グアニジンや塩酸グアニジン等のRNase阻害剤を含有したバッファーを用いることが好ましい。なお、当該溶媒として、アルコールを用いることにより、カオトロピック塩含有アルコール溶液(カオトロピック塩を含有するアルコール溶液)を調製することができる。 The chaotropic salt is preferably added as a chaotropic salt solution dissolved in an appropriate solvent. As the solvent used in this case, for example, water, citrate buffer, phosphate buffer, Tris buffer, or the like can be used. In particular, since RNA is a substance that is very easily degraded, it is preferable to use a buffer containing an RNase inhibitor such as guanidine thiocyanate or guanidine hydrochloride. In addition, a chaotropic salt-containing alcohol solution (alcohol solution containing a chaotropic salt) can be prepared by using alcohol as the solvent.
 糞便から抽出されたRNAに添加されるカオトロピック塩溶液の濃度は、阻害物質洗浄除去効果を発揮し得る濃度であれば、特に限定されるものではなく、カオトロピック塩の種類、添加後に得られるRNA溶液中のカオトロピック塩やアルコールの濃度、アルコールの種類等を考慮して、適宜決定することができる。 The concentration of the chaotropic salt solution added to the RNA extracted from stool is not particularly limited as long as it is a concentration that can exert the inhibitor cleaning effect, and the type of chaotropic salt and the RNA solution obtained after the addition The concentration can be determined as appropriate in consideration of the concentration of the chaotropic salt, alcohol, the type of alcohol, and the like.
 洗浄工程において糞便から抽出されたRNAに添加されるアルコールとしては、直鎖構造を有し、室温付近、例えば15~40℃において液状であるものを用いる。本発明においては、水に対する溶解度が12重量%以上のアルコールであることが好ましく、水に対する溶解度が20重量%以上のアルコールであることがより好ましく、水に対する溶解度が90重量%以上のアルコールであることがさらに好ましく、水と任意の割合で混合可能であるアルコールであることが特に好ましい。水と任意の割合で混合可能であるアルコールとして、例えば、メタノール、エタノール、n-プロパノール、2-プロパノール等がある。 As the alcohol added to RNA extracted from stool in the washing step, alcohol having a linear structure and being liquid at room temperature, for example, 15 to 40 ° C. is used. In the present invention, an alcohol having a solubility in water of 12% by weight or more is preferable, an alcohol having a solubility in water of 20% by weight or more is more preferable, and an alcohol having a solubility in water of 90% by weight or more. More preferred is an alcohol that can be mixed with water in any proportion. Examples of alcohols that can be mixed with water at an arbitrary ratio include methanol, ethanol, n-propanol, and 2-propanol.
 具体的には、水溶性アルコールであるメタノール、エタノール、プロパノール、ブタノール、メルカプトエタノール等がある。プロパノールは、n-プロパノールであってもよく、2-プロパノールであってもよい。また、ブタノールは、1-ブタノール(水に対する溶解度20重量%)であってもよく、2-ブタノール(水に対する溶解度12.5重量%)であってもよい。本発明において用いられるアルコールとしては、入手容易性、取り扱い性、安全性等の点から、エタノール、プロパノール、メタノールであることがさらに好ましい。特にエタノールは、最も安全性が高く、家庭内でも容易に扱うことが可能であるため、定期健診等のスクリーニング検査において特に有用である。なお、糞便から抽出されたRNAに添加するアルコールとしては、1種類のみであってもよく、2種類以上を併用して添加してもよい。 Specifically, there are methanol, ethanol, propanol, butanol, mercaptoethanol and the like which are water-soluble alcohols. The propanol may be n-propanol or 2-propanol. The butanol may be 1-butanol (water solubility 20% by weight) or 2-butanol (water solubility 12.5% by weight). The alcohol used in the present invention is more preferably ethanol, propanol, or methanol from the viewpoints of availability, handleability, safety, and the like. In particular, ethanol is particularly useful in screening tests such as periodic medical checkups because it has the highest safety and can be easily handled at home. In addition, as alcohol added to RNA extracted from feces, only 1 type may be sufficient and you may add in combination of 2 or more types.
 糞便から抽出されたRNAに、直接アルコールとして添加してもよく、適当な溶媒で希釈したアルコール溶液として添加してもよい。添加するアルコールの量、アルコール溶液の濃度や量は、添加後に得られるRNA溶液中で阻害物質洗浄除去効果を奏することができる濃度となるように添加されるものであれば、特に限定されるものではなく、アルコールの種類、添加後に得られるRNA溶液の量、添加したカオトロピック塩の種類等を考慮して、適宜決定することができる。 The RNA extracted from stool may be added directly as alcohol, or may be added as an alcohol solution diluted with an appropriate solvent. The amount of alcohol to be added and the concentration and amount of the alcohol solution are particularly limited as long as they are added so as to have a concentration capable of exhibiting an inhibitor cleaning effect in the RNA solution obtained after the addition. Instead, it can be appropriately determined in consideration of the type of alcohol, the amount of RNA solution obtained after the addition, the type of chaotropic salt added, and the like.
 例えば、カオトロピック塩含有アルコール溶液を糞便から抽出されたRNAに添加する場合には、カオトロピック塩含有アルコール溶液中のアルコール濃度は25%以上であることが好ましく、35%以上であることがより好ましい。なお、本発明及び本願明細書中においては、特に記載がない限り、「%」は「体積%」を意味する。 For example, when a chaotropic salt-containing alcohol solution is added to RNA extracted from feces, the alcohol concentration in the chaotropic salt-containing alcohol solution is preferably 25% or more, and more preferably 35% or more. In the present invention and the present specification, “%” means “volume%” unless otherwise specified.
 洗浄工程に供されるRNAとしては、糞便から所望の細胞を分離回収した後、回収された細胞から抽出されたRNAであってもよいが、細胞分離操作を行うことなく、糞便から直接抽出されたRNAであることが好ましい。糞便から直接RNAを抽出した場合には、分離回収された細胞から抽出する場合よりも、糞便由来の阻害物質の持ち込み量が多くなるため、本発明の効果がより顕著に奏されるためである。 The RNA used for the washing step may be RNA extracted from the collected cells after separating and collecting desired cells from the stool, but may be directly extracted from the stool without performing the cell separation operation. RNA is preferred. This is because when RNA is extracted directly from stool, the amount of the stool-derived inhibitor is increased compared to when extracted from separated and collected cells, and thus the effects of the present invention are more remarkably exhibited. .
 また、細胞分離操作を行うことなく、糞便から直接RNAを回収した場合には、糞便に含まれている全ての生物種の核酸、主に当該糞便を排泄した動物由来の核酸と腸内常在菌等のバクテリア由来の核酸とが、同時に糞便から抽出され回収される。これにより、糞便中に比較的微量にしか含まれていない哺乳細胞由来のRNAも、効率よく抽出・回収することができる。ここで、糞便に含まれている核酸としては、動物由来の核酸とバクテリア由来の核酸に加えて、当該動物が摂取した食物由来の核酸等が挙げられる。 In addition, when RNA is directly recovered from stool without performing cell separation operation, nucleic acids of all species contained in the stool, mainly nucleic acids derived from animals excreting the stool, and intestinal resident Nucleic acids derived from bacteria such as fungi are simultaneously extracted and recovered from feces. Thereby, it is possible to efficiently extract and collect RNA derived from mammalian cells that are contained only in a relatively small amount in feces. Here, the nucleic acid contained in the stool includes, in addition to animal-derived nucleic acids and bacteria-derived nucleic acids, food-derived nucleic acids ingested by the animals.
 洗浄工程に供される糞便から抽出されたRNAは、糞便中の細胞等の固形成分から抽出されたRNAであればよい。例えば、糞便に核酸抽出用溶液を添加して混合することによって、糞便に含まれていた細胞等からRNAが液相に抽出された懸濁液であってもよく、当該懸濁液から固形成分が除去された、比較的清澄な抽出液であってもよく、さらに、これらの懸濁液や粗抽出液から回収・精製されたRNA溶液であってもよい。 The RNA extracted from the stool subjected to the washing step may be RNA extracted from solid components such as cells in the stool. For example, it may be a suspension in which RNA is extracted into a liquid phase from cells or the like contained in stool by adding and mixing a nucleic acid extraction solution to stool, and a solid component from the suspension. It may be a relatively clear extract from which RNA has been removed, or an RNA solution recovered and purified from these suspensions or crude extracts.
 RNAが液相に抽出された懸濁液を調製するために糞便に添加される核酸抽出用溶液としては、固形成分中のタンパク質を変性させ、この固形成分中の哺乳細胞や腸内常在菌等の細胞から、核酸を核酸抽出用溶液中に溶出させることが可能な溶液であれば、特に限定されるものではなく、当該技術分野において用いられているいずれの溶液を用いてもよい。例えば、カオトロピック塩、有機溶媒、界面活性剤等の、通常タンパク質の変性剤として用いられている化合物を有効成分として適当な溶媒に添加した溶液を、核酸抽出用溶液として用いることができる。なお、これらの有効成分は2種類以上を組み合わせたものであってもよい。 As a nucleic acid extraction solution added to feces to prepare a suspension in which RNA is extracted in the liquid phase, proteins in the solid component are denatured, and mammalian cells and intestinal resident bacteria in the solid component The solution is not particularly limited as long as the nucleic acid can be eluted from a cell such as a nucleic acid extraction solution, and any solution used in the technical field may be used. For example, a solution obtained by adding a compound usually used as a protein denaturant such as a chaotropic salt, an organic solvent, or a surfactant as an active ingredient to an appropriate solvent can be used as a solution for nucleic acid extraction. These active ingredients may be a combination of two or more.
 核酸抽出用溶液の有効成分となり得るカオトロピック塩としては、例えば、塩酸グアニジン、チオシアン酸グアニジン、イソチオシアン酸グアニジン等がある。 Examples of the chaotropic salt that can be an active ingredient of the nucleic acid extraction solution include guanidine hydrochloride, guanidine thiocyanate, and guanidine isothiocyanate.
 核酸抽出用溶液の有効成分となり得る有機溶媒としては、フェノールであることが好ましい。フェノールは中性であってもよいが、酸性であることが好ましい。酸性のフェノールを用いた場合には、DNAよりもRNAを選択的に水層に抽出することができる。 As an organic solvent that can be an active ingredient of a solution for nucleic acid extraction, phenol is preferable. Phenol may be neutral, but is preferably acidic. When acidic phenol is used, RNA can be selectively extracted into the aqueous layer rather than DNA.
 これらの有効成分を添加して核酸抽出用溶液を調製する溶媒としては、例えば、水、クエン酸バッファー、リン酸バッファー、トリスバッファー等を用いることができる。 As a solvent for preparing a nucleic acid extraction solution by adding these active ingredients, for example, water, citrate buffer, phosphate buffer, Tris buffer, or the like can be used.
 固形成分からRNAを抽出する前に、糞便をアルコールで処理しておくことも好ましい。糞便をアルコールに懸濁させると、糞便の固形成分中に含まれていた阻害物質が、アルコールに溶出される。この際、RNA等の核酸は、固形成分中に留まるため、当該懸濁液の液相を除去し、残った固形成分からRNAを抽出・回収することにより、糞便由来の阻害物質のキャリーオーバーがより低減されたRNAを回収することができる。 It is also preferable to treat stool with alcohol before extracting RNA from the solid component. When stool is suspended in alcohol, the inhibitory substance contained in the solid component of stool is eluted in alcohol. At this time, since nucleic acids such as RNA remain in the solid component, the liquid phase of the suspension is removed, and RNA is extracted and collected from the remaining solid component. More reduced RNA can be recovered.
 特にアルコールには、阻害物質の溶出除去効果のみならず、糞便中の核酸を安定して保存し得る効果もある。これは、アルコールが有する脱水作用により、糞便中に含まれている哺乳細胞や微生物等の細胞活性が顕著に低下するため、及び、アルコールが有するタンパク質変性作用により、糞便中のプロテアーゼ、DNase、RNase等の各種分解酵素の活性が顕著に低下するために得られると推察される。つまり、糞便をアルコールと懸濁させることにより、糞便中の核酸の分解等を抑制しつつ、阻害物質を溶出除去することができる。 In particular, alcohol has not only an effect of removing and eluting inhibitory substances, but also an effect of stably storing nucleic acids in stool. This is because, due to the dehydration action of alcohol, the cellular activities of mammalian cells, microorganisms, etc. contained in the stool are remarkably reduced, and due to the protein denaturation action of alcohol, the protease, DNase, RNase in stool It is presumed that it is obtained because the activity of various degrading enzymes such as That is, by suspending stool with alcohol, the inhibitory substance can be eluted and removed while suppressing degradation of nucleic acid in the stool.
 固形成分からのRNA抽出前に糞便に添加されるアルコールとしては、洗浄工程で添加し得るものとして列挙されたものと同様のアルコールを用いることができる。また、アルコールとして直接糞便に添加してもよく、適当な溶媒で希釈したアルコール溶液として添加してもよい。糞便に添加するアルコール量、又はアルコール溶液の濃度や量は、懸濁液で核酸の安定化効果及び阻害物質の溶出除去効果を奏することができる濃度となるように添加されるものであれば、特に限定されるものではなく、アルコールの種類、糞便量(固形成分量)と添加したカオトロピック塩溶液やアルコール等の液体成分との混合比等を考慮して、適宜決定することができる。なお、懸濁液中のアルコール濃度が充分に高濃度であることにより、糞便全体にアルコール成分が迅速に浸透し、阻害物質溶出除去効果や核酸安定化効果を速やかに奏することができる。 As the alcohol added to the stool before RNA extraction from the solid component, the same alcohols listed as those that can be added in the washing step can be used. Further, it may be added directly to feces as alcohol, or may be added as an alcohol solution diluted with an appropriate solvent. If the amount of alcohol added to the stool, or the concentration or amount of the alcohol solution is such that the suspension can be added at a concentration that can achieve the nucleic acid stabilization effect and the inhibitory substance elution removal effect, It is not particularly limited, and can be determined appropriately in consideration of the type of alcohol, the amount of stool (solid component amount) and the mixing ratio of the added chaotropic salt solution or liquid component such as alcohol. In addition, when the alcohol concentration in the suspension is sufficiently high, the alcohol component quickly penetrates into the whole stool, so that the inhibitory substance elution removal effect and the nucleic acid stabilization effect can be quickly achieved.
 糞便にアルコール又はアルコール溶液を混合して得られた懸濁液の液相には、阻害物質が多く溶出されている。このため、当該懸濁液から液相を除去し、回収された固形成分に核酸抽出液を添加する等により、RNAを抽出することが好ましい。固形成分の回収方法は、液体成分と固体成分を分離する場合に通常用いられる分離方法から適宜選択して行うことができる。例えば、懸濁液を遠心分離処理後、上清を除去することにより、沈殿である糞便由来固形成分を回収する遠心分離法により行ってもよく、懸濁液をフィルター濾過し、フィルター面上に残った糞便由来固形成分を回収する濾過法により行ってもよい。 A lot of inhibitory substances are eluted in the liquid phase of the suspension obtained by mixing the stool with alcohol or an alcohol solution. For this reason, it is preferable to extract RNA by removing the liquid phase from the suspension and adding a nucleic acid extract to the collected solid components. The method for recovering the solid component can be appropriately selected from separation methods usually used when separating the liquid component and the solid component. For example, the suspension may be centrifuged, and then the supernatant may be removed to remove the solid component derived from stool, which is a precipitate. The suspension may be filtered and filtered on the filter surface. You may carry out by the filtration method which collect | recovers the remaining stool origin solid components.
 アルコール成分を除去して固形成分を回収した後、核酸抽出液を添加する前に、回収された固形成分を、適当なバッファー等により洗浄してもよい。当該バッファーとして、例えば、前述のカオトロピック塩含有アルコール溶液や、pHが2~7.5の範囲内に維持されるような緩衝液等が挙げられる。 After removing the alcohol component and recovering the solid component, the recovered solid component may be washed with an appropriate buffer or the like before adding the nucleic acid extract. Examples of the buffer include the aforementioned chaotropic salt-containing alcohol solution and a buffer solution whose pH is maintained within the range of 2 to 7.5.
 また、糞便にアルコール又はアルコール溶液を混合して得られた懸濁液は、固形成分を回収する前に、所定時間保存されることが好ましい。懸濁液を保存することにより、糞便由来の固形成分から溶出除去される阻害物質の量を多くすることができる。懸濁液を保存する時間は、アルコールの種類や濃度、懸濁液に占める糞便由来成分の割合、保存温度等を考慮して適宜決定することができる。本発明の合成方法においては、1時間以上保存することが好ましく、12時間以上保存することがより好ましく、24時間以上保存することがさらに好ましく、72時間以上保存することが特に好ましい。また、168時間以上保存してもよい。 Moreover, it is preferable that the suspension obtained by mixing the stool with alcohol or an alcohol solution is stored for a predetermined time before collecting the solid components. By storing the suspension, it is possible to increase the amount of the inhibitory substance that is eluted and removed from the stool-derived solid component. The time for storing the suspension can be appropriately determined in consideration of the type and concentration of the alcohol, the ratio of the stool-derived component in the suspension, the storage temperature, and the like. In the synthesis method of the present invention, storage for 1 hour or longer is preferable, storage for 12 hours or longer is more preferable, storage for 24 hours or longer is further preferable, and storage for 72 hours or longer is particularly preferable. Moreover, you may preserve | save for 168 hours or more.
 アルコールによる阻害物質溶出除去効果は、懸濁液を保存する温度が低温の場合よりもむしろ温度が高いほうが高い効果が得られる。具体的には、糞便にアルコール又はアルコール溶液を混合して得られた懸濁液の保存温度は、4℃以上であることが好ましく、20℃以上であることがより好ましい。但し、保存温度は、50℃以下で行うことが好ましい。50℃以上の高温条件下で長期間保存することにより、揮発等により、該懸濁液中のアルコールの濃度が、効果を奏するに充分な濃度よりも低下するおそれがあるためである。 The inhibitory substance elution removal effect by alcohol is higher when the temperature is higher than when the temperature at which the suspension is stored is low. Specifically, the storage temperature of the suspension obtained by mixing stool with alcohol or an alcohol solution is preferably 4 ° C. or higher, and more preferably 20 ° C. or higher. However, the storage temperature is preferably 50 ° C. or lower. This is because if the alcohol is stored for a long time under a high temperature condition of 50 ° C. or more, the concentration of the alcohol in the suspension may be lower than a concentration sufficient for the effect due to volatilization or the like.
 糞便由来の固形成分を含む懸濁液の液相中のRNAを、糞便から抽出されたRNAとして洗浄工程に供する場合には、具体的には、懸濁液に、カオトロピック塩やアルコールを添加した後、得られた懸濁状態のRNA溶液の液相中に存在するRNAを回収することにより、洗浄済みのRNAを回収することができる。 When RNA in the liquid phase of a suspension containing a solid component derived from stool is subjected to a washing step as RNA extracted from stool, specifically, a chaotropic salt or alcohol was added to the suspension. Thereafter, the RNA that has been washed can be recovered by recovering the RNA present in the liquid phase of the obtained RNA solution in a suspended state.
 液相中のRNAを回収する前に、懸濁液から変性させたタンパク質を除去してもよい。
RNAを回収する前に、予め変性させたタンパク質を除去することにより、回収されるRNAの品質を向上させることができる。懸濁液からのタンパク質の除去は、公知の手法で行うことができる。例えば、遠心分離により、変性タンパク質を沈殿させて上清のみを回収することにより、変性タンパク質を除去することができる。また、クロロホルムを添加し、ボルテックス等により充分に攪拌混合させた後に遠心分離を行い、変性タンパク質を沈殿させて上清のみを回収することにより、単に遠心分離を行う場合よりも、より完全に変性タンパク質を除去することができる。
Before recovering the RNA in the liquid phase, the denatured protein may be removed from the suspension.
The quality of the recovered RNA can be improved by removing the previously denatured protein before recovering the RNA. The protein can be removed from the suspension by a known method. For example, the denatured protein can be removed by precipitating the denatured protein by centrifugation and collecting only the supernatant. In addition, after adding chloroform and thoroughly stirring and mixing by vortexing, etc., centrifugation is performed, and the denatured protein is precipitated and only the supernatant is recovered. Protein can be removed.
 液相中のRNAの回収方法は、例えば、エタノール沈殿法や塩化セシウム超遠心法等の公知の手法で行うことができる。また、液相中のRNAを無機支持体に吸着させた後、この吸着させた核酸を、一定容量の溶媒を用いて無機支持体から溶出させることにより、核酸を回収することができる。その他、カオトロピック塩やアルコールを添加した後の懸濁液の液相中からのRNAの回収は、核酸抽出キット等の市販のキットを用いて行うこともできる。 The method for recovering RNA in the liquid phase can be performed by a known method such as ethanol precipitation or cesium chloride ultracentrifugation. Moreover, after adsorbing RNA in a liquid phase on an inorganic support, the nucleic acid can be recovered by eluting the adsorbed nucleic acid from the inorganic support using a certain volume of solvent. In addition, RNA can be recovered from the liquid phase of the suspension after the addition of chaotropic salt or alcohol using a commercially available kit such as a nucleic acid extraction kit.
 核酸を吸着させる無機支持体は、核酸を吸着することができる公知の無機支持体を用いることができる。また、該無機支持体の形状も特に限定されるものではなく、粒子状であってもよく、膜状であってもよい。該無機支持体として、例えば、シリカゲル、シリカ質オキシド、ガラス、珪藻土等のシリカ含有粒子(ビーズ)や、ナイロン、ポリカーボネート、ポリアクリレート、ニトロセルロース等の多孔質膜等がある。吸着させた核酸を無機支持体から溶出させる溶媒は、回収する核酸の種類やその後の核酸解析方法等を考慮して、これらの公知の無機支持体から核酸を溶出するために通常用いられている溶媒を適宜用いることができる。該溶出用溶媒として、特に精製水であることが好ましい。なお、核酸を吸着させた無機支持体は、核酸を溶出させる前に、適当な洗浄バッファーを用いて洗浄することが好ましい。 As the inorganic support for adsorbing nucleic acid, a known inorganic support capable of adsorbing nucleic acid can be used. The shape of the inorganic support is not particularly limited, and may be in the form of particles or a film. Examples of the inorganic support include silica-containing particles (beads) such as silica gel, siliceous oxide, glass, and diatomaceous earth, and porous membranes such as nylon, polycarbonate, polyacrylate, and nitrocellulose. Solvents for eluting adsorbed nucleic acids from inorganic supports are usually used to elute nucleic acids from these known inorganic supports in consideration of the type of nucleic acid to be recovered, the subsequent nucleic acid analysis method, and the like. A solvent can be appropriately used. The elution solvent is particularly preferably purified water. The inorganic support on which the nucleic acid has been adsorbed is preferably washed with an appropriate washing buffer before the nucleic acid is eluted.
 なお、液相からRNAを回収する際に、DNAよりもRNAを選択的に回収することも好ましい。例えば、酸性フェノールを用いたフェノール/クロロホルム法により、DNAよりもRNAを優先的に水層に溶出させた後に、エタノール沈殿や無機支持体を用いた回収方法を行うことにより、DNAの混入量を低減させたRNAを回収することができる。
また、塩化セシウム超遠心法により、RNAを選択的に回収することができる。その他、例えば米国特許5,155,018号明細書において、ギレスピイ(Gillespie)らは、RNA、DNA及びその他の細胞内容物を含む生物学的原料から、生物学的に活性なRNAを単離及び精製する方法を開示している。当該方法では、RNAを含む原料は、例えば細かく粉砕されたガラスのような材料を含むシリカゲルからなる粒子と接触させられる。そこからRNAが前記粒子に吸着される結合バッファーはカオトロピック塩を含む酸性化溶液である。そのような条件下、RNAはシリカ物質に結合するが、DNAはしないため、RNAを選択的に回収することができる。また、特許04036625号公報には、グアニジン塩とエタノール濃度を変化させることにより、RNAを選択的に吸着、回収することができることが記載されている。これらの方法においては、糞便由来の固形成分からRNAが抽出された後の任意の工程において、カオトロピック塩溶液やアルコール溶液、若しくはカオトロピック塩含有アルコール溶液を添加し、その後RNAを回収することにより、DNAの混入量を低減させた、洗浄済みのRNAを回収することができる。
In addition, when recovering RNA from a liquid phase, it is also preferable to selectively recover RNA over DNA. For example, by eluting RNA into the aqueous layer preferentially over DNA by the phenol / chloroform method using acidic phenol, the amount of DNA contamination can be reduced by performing a precipitation method using ethanol precipitation or an inorganic support. Reduced RNA can be recovered.
In addition, RNA can be selectively recovered by cesium chloride ultracentrifugation. In addition, for example, in US Pat. No. 5,155,018, Gillespie et al. Isolated and biologically active RNA from biological sources including RNA, DNA and other cellular contents. A method of purification is disclosed. In the method, the raw material containing RNA is brought into contact with particles made of silica gel containing a material such as finely crushed glass. The binding buffer from which RNA is adsorbed to the particles is an acidified solution containing a chaotropic salt. Under such conditions, RNA binds to the silica material, but not DNA, so that RNA can be selectively recovered. Japanese Patent No. 04036625 describes that RNA can be selectively adsorbed and recovered by changing the concentration of guanidine salt and ethanol. In these methods, in an arbitrary step after RNA is extracted from a solid component derived from stool, a chaotropic salt solution, an alcohol solution, or a chaotropic salt-containing alcohol solution is added, and then RNA is recovered to obtain DNA. Washed RNA with a reduced amount of contamination can be recovered.
 また、糞便に核酸抽出用溶液を添加して得られた懸濁液から遠心分離処理等により固形成分を除き、RNAを含む液相のみを回収した粗抽出液を、糞便から抽出されたRNAとして洗浄工程に供することもできる。具体的には、粗抽出液に、カオトロピック塩やアルコールを添加した後、液相中のRNAを回収することにより、洗浄済みのRNAを回収することができる。同じく、常法により精製されたRNAに、カオトロピック塩溶液やアルコール溶液、若しくはカオトロピック塩含有アルコール溶液を添加した後、液相中のRNAを回収することにより、洗浄済みRNAを回収することができる。なお、液相中のRNAの回収方法は、懸濁液にカオトロピック塩やアルコールを添加した場合に挙げられた方法と同様の方法を用いることができる。 Moreover, the solid extract was removed from the suspension obtained by adding the nucleic acid extraction solution to the stool by centrifugation or the like, and the crude extract containing only the liquid phase containing RNA was used as RNA extracted from the stool. It can also be subjected to a washing process. Specifically, the washed RNA can be recovered by adding chaotropic salt or alcohol to the crude extract and then recovering the RNA in the liquid phase. Similarly, washed RNA can be recovered by adding a chaotropic salt solution, alcohol solution, or chaotropic salt-containing alcohol solution to RNA purified by a conventional method, and then recovering RNA in the liquid phase. In addition, the recovery method of RNA in a liquid phase can use the method similar to the method quoted when a chaotropic salt or alcohol is added to the suspension.
 糞便からRNAを抽出する工程において、カオトロピック塩を用いたり、アルコールを用いた場合には、糞便から抽出されたRNAには、既にカオトロピック塩やアルコールが含まれていることもある。例えば、核酸抽出用溶液としてカオトロピック塩溶液を用いた場合や、固形成分からRNAを抽出する前に、糞便をアルコール溶液で保存した場合には、抽出されたRNAには、カオトロピック塩やアルコールが残留している場合がある。この場合にも、さらに、カオトロピック塩やアルコールで洗浄することにより、より効果的に阻害物質を洗浄除去することができる。 In the step of extracting RNA from stool, when chaotropic salt is used or alcohol is used, the RNA extracted from stool may already contain chaotropic salt or alcohol. For example, when a chaotropic salt solution is used as a nucleic acid extraction solution, or when feces are stored in an alcohol solution before extracting RNA from solid components, chaotropic salt or alcohol remains in the extracted RNA. May have. Also in this case, the inhibitor can be washed and removed more effectively by washing with a chaotropic salt or alcohol.
 また、洗浄工程における洗浄処理は、糞便の固形成分から抽出されたRNAに直接カオトロピック塩やアルコールを接触させた後に、カオトロピック塩やアルコールを含有する液相からRNAを回収する処理である。このため、糞便からRNAを抽出する工程において、カオトロピック塩やアルコールを用いた場合であって、固形成分から抽出されたRNAが、カオトロピック塩やアルコールに接触する処理が行われる場合には、当該処理を本発明の洗浄工程における洗浄処理とすることができる。 Further, the washing treatment in the washing step is a treatment of recovering RNA from a liquid phase containing chaotropic salt or alcohol after directly contacting chaotropic salt or alcohol with RNA extracted from the solid component of stool. For this reason, in the process of extracting RNA from stool, when chaotropic salt or alcohol is used, and when RNA extracted from a solid component is subjected to a treatment that contacts chaotropic salt or alcohol, the treatment is performed. Can be the cleaning treatment in the cleaning step of the present invention.
 例えば、核酸抽出用溶液としてカオトロピック塩溶液を用いて、固形成分からRNAを抽出した場合には、抽出されたRNAが液相中のカオトロピック塩に直接接触するため、当該液相からRNAを回収することにより、その後、新たにカオトロピック塩を添加せずとも、カオトロピック塩で洗浄されたRNAを回収することができる。 For example, when RNA is extracted from a solid component using a chaotropic salt solution as a nucleic acid extraction solution, the extracted RNA directly contacts the chaotropic salt in the liquid phase, and thus RNA is recovered from the liquid phase. As a result, the RNA washed with the chaotropic salt can be recovered without adding a new chaotropic salt.
 具体的には、糞便にカオトロピック塩溶液を添加して懸濁液を調製し、RNAを抽出した後、カオトロピック塩を含む当該懸濁液に、さらにアルコール溶液又はカオトロピック塩を含有するアルコール溶液を添加した後、当該懸濁液からRNAを回収する。これにより、カオトロピック塩及びアルコールで洗浄されたRNAを回収することができる。 Specifically, a chaotropic salt solution is added to feces to prepare a suspension, RNA is extracted, and then an alcohol solution or an alcohol solution containing a chaotropic salt is added to the suspension containing the chaotropic salt. After that, RNA is recovered from the suspension. Thereby, RNA washed with chaotropic salt and alcohol can be recovered.
 また、糞便にアルコール溶液を添加し、懸濁液を調製した後、当該懸濁液から、固形成分を回収し、アルコール成分と分離された当該固形成分にカオトロピック塩溶液を添加して、再度懸濁液を調製する。カオトロピック塩の働きにより固形成分からRNAを抽出した後、当該懸濁液に、さらにアルコール溶液又はカオトロピック塩を含有するアルコール溶液を添加した後、当該懸濁液からRNAを回収することにより、カオトロピック塩及びアルコールで洗浄されたRNAを回収することができる。 Also, after adding an alcohol solution to feces and preparing a suspension, a solid component is recovered from the suspension, and a chaotropic salt solution is added to the solid component separated from the alcohol component, and then suspended again. Prepare a suspension. After RNA is extracted from the solid component by the action of the chaotropic salt, an alcohol solution or an alcohol solution containing a chaotropic salt is further added to the suspension, and then the RNA is recovered from the suspension to thereby collect the chaotropic salt. And RNA washed with alcohol can be recovered.
 なお、本発明の合成方法に供されるRNAが抽出される糞便は、動物のものであれば特に限定されるものではないが、哺乳動物由来のものであることが好ましく、ヒト由来のものであることがより好ましい。例えば、定期健診や診断等のために採取されたヒトの糞便であることが好ましいが、家畜や野生動物等の糞便であってもよい。また、採取後一定期間保存されたものであってもよいが、採取直後のものであることが好ましい。さらに、採取された糞便は、排泄直後のものであることが好ましいが、排泄後時間を経たものであってもよい。 The stool from which RNA to be subjected to the synthesis method of the present invention is extracted is not particularly limited as long as it is an animal, but is preferably derived from a mammal, preferably from a human. More preferably. For example, human feces collected for periodic medical examinations and diagnosis are preferable, but feces such as livestock and wild animals may be used. Moreover, although it may be preserved for a certain period after collection, it is preferably immediately after collection. Further, the collected feces are preferably those immediately after excretion, but may be those that have passed time after excretion.
 また、洗浄工程において、カオトロピック塩及びアルコールで洗浄されるRNAは、例えば、重量として10mg~1gの糞便から抽出されたRNAであることが好ましい。糞便量があまりに多くなってしまうと、取り扱い性等が低下するおそれがある。逆に糞便量があまりに少量である場合には、糞便中に含まれる大腸剥離細胞等の哺乳細胞数が少なくなりすぎるため、必要なRNA量を回収できないおそれがある。また、糞便はヘテロジニアスであるため、哺乳細胞の局在の影響を避けるために、採糞時には、糞便の広範囲から採取することが好ましい。 In the washing step, the RNA washed with the chaotropic salt and alcohol is preferably RNA extracted from 10 mg to 1 g of stool as a weight, for example. If the amount of stool becomes too large, the handleability and the like may be reduced. On the other hand, when the amount of stool is too small, the number of mammalian cells such as large intestine exfoliated cells contained in the stool becomes too small, and thus the necessary RNA amount may not be recovered. Moreover, since feces are heterogeneous, it is preferable to collect from a wide range of feces when collecting feces in order to avoid the influence of the localization of mammalian cells.
 洗浄工程後、さらに反応工程として、洗浄工程において回収された洗浄済みのRNAを鋳型とし、耐熱性かつ低RNaseH活性である逆転写酵素を用いて、一本鎖核酸結合タンパク質を含有する反応液中で逆転写反応を行う。特定の性質を備える逆転写酵素と一本鎖核酸結合タンパク質とを併用することにより、鋳型RNAと逆転写酵素の両方が十分に安定化されるため、阻害物質による反応効率の低下を抑制し得ると考えられる。なお、逆転写反応は、耐熱性かつ低RNaseH活性である逆転写酵素を用いることと、反応液に一本鎖核酸結合タンパク質を添加すること以外は、常法により行うことができる。 After the washing step, as a reaction step, in a reaction solution containing a single-stranded nucleic acid binding protein using a reverse transcriptase having heat-resistant and low RNase H activity using the washed RNA collected in the washing step as a template Perform reverse transcription reaction with. By combining a reverse transcriptase with specific properties and a single-stranded nucleic acid-binding protein, both the template RNA and reverse transcriptase are sufficiently stabilized, so the reduction in reaction efficiency due to inhibitors can be suppressed. it is conceivable that. The reverse transcription reaction can be performed by a conventional method except that a reverse transcriptase having heat resistance and low RNase H activity is used and a single-stranded nucleic acid binding protein is added to the reaction solution.
 本発明において用いる逆転写酵素は、耐熱性を有する酵素である。なお、本発明において、「耐熱性を有する逆転写酵素」とは、熱に対する不活性化に対して耐性を有する逆転写酵素を意味する。具体的には、90℃において30秒間加熱された場合でも、その酵素活性の少なくとも50%以上を保持する酵素である。 The reverse transcriptase used in the present invention is an enzyme having heat resistance. In the present invention, “heat-resistant reverse transcriptase” means a reverse transcriptase having resistance to heat inactivation. Specifically, it is an enzyme that retains at least 50% or more of its enzyme activity even when heated at 90 ° C. for 30 seconds.
 本発明において用いる逆転写酵素は、さらに、RNaseH活性が低い酵素である。なお、本発明において、「RNaseH活性が低い逆転写酵素」とは、当該酵素のRNaseH活性が、野生型又は野生型モロニーマウス白血病ウイルス(M-MLV)、トリ骨髄芽球症ウイルス(AMV)若しくはラウス肉腫ウイルス(RSV)逆転写酵素等のRNaseH+酵素のRNaseH活性の約20%未満である逆転写酵素を意味する。 The reverse transcriptase used in the present invention is an enzyme having a low RNase H activity. In the present invention, “reverse transcriptase having low RNase H activity” means that the RNase H activity of the enzyme is wild type or wild type Moloney murine leukemia virus (M-MLV), avian myeloblastosis virus (AMV) or It refers to a reverse transcriptase that is less than about 20% of the RNase H activity of an RNase H + enzyme such as Rous sarcoma virus (RSV) reverse transcriptase.
 耐熱性かつ低RNaseH活性である逆転写酵素としては、具体的には、例えば、M-MLV H-逆転写酵素等が挙げられる。特に、Invitrogen社製のSuperScript(登録商標) IIIが最も好ましい。当該酵素は、M-MLV逆転写酵素のRNaseH-の一塩基変異株である。 Specific examples of the reverse transcriptase having heat resistance and low RNase H activity include M-MLV H-reverse transcriptase and the like. In particular, SuperScript (registered trademark) III manufactured by Invitrogen is most preferable. The enzyme is a single-base mutant of RNase H- of M-MLV reverse transcriptase.
 本発明において、「一本鎖核酸結合タンパク質」とは、塩基配列に関係なく、二本鎖DNAよりも一本鎖DNAに主に結合するタンパク質である。本発明において用いることができる一本鎖核酸結合タンパク質としては、具体的には、例えば、T4 gene 32
 protein(プロメガ社製)、E.coli由来のSSB、耐熱性を示すThermus aquaticus SSB、メタン細菌(Methanococcus jannaschii)、Sulfolobus sulfataricus由来のSSB等が挙げられる。なお、これらの一本鎖核酸結合タンパク質は、単体で用いても良く、組み合わせて用いても良い。
In the present invention, the “single-stranded nucleic acid binding protein” is a protein that mainly binds to single-stranded DNA rather than double-stranded DNA regardless of the base sequence. Specific examples of the single-stranded nucleic acid binding protein that can be used in the present invention include, for example, T4 gene 32.
protein (manufactured by Promega), E.I. Examples include SSB derived from E. coli, Thermos aquaticus SSB exhibiting heat resistance, methane bacterium (Methanococcus jannaschii), SSB derived from Sulfolobus sulfatalicus, and the like. These single-stranded nucleic acid binding proteins may be used alone or in combination.
 逆転写反応において本発明において用いられる一本鎖核酸結合タンパク質としては、非耐熱性の一本鎖核酸結合タンパク質であってもよいが、耐熱性の一本鎖核酸結合タンパク質であることが好ましい。なお、「耐熱性の一本鎖核酸結合タンパク質」とは、一本鎖DNAに対する結合活性が、熱に対する不活性化に対して耐性を有するタンパク質を意味し、具体的には、90℃において30秒間加熱された場合でも、その結合活性の少なくとも50%以上を保持する一本鎖核酸結合タンパク質である。 The single-stranded nucleic acid binding protein used in the present invention in the reverse transcription reaction may be a non-heat-resistant single-stranded nucleic acid binding protein, but is preferably a heat-resistant single-stranded nucleic acid binding protein. The term “heat-resistant single-stranded nucleic acid binding protein” means a protein whose binding activity to single-stranded DNA has resistance to inactivation against heat. A single-stranded nucleic acid binding protein that retains at least 50% or more of its binding activity even when heated for seconds.
 本発明においては、逆転写反応の反応液に、さらに、RNaseA阻害剤を添加することが好ましい。RNaseA阻害剤の存在下で逆転写反応を行うことにより、一本鎖核酸結合タンパク質と、耐熱性かつ低RNaseH活性である逆転写酵素とを用いることにより得られる、糞便由来の阻害物質による影響低減効果をより高めることができる。RNaseA阻害剤としては、例えば、Ribonuclease Inhibitor,  Cloned(invitrogen社製)、Ribonuclease Inhibitor(TaKaRa社製)等が挙げられる。 In the present invention, it is preferable to further add an RNase A inhibitor to the reaction solution for the reverse transcription reaction. By performing a reverse transcription reaction in the presence of an RNase A inhibitor, the influence of a fecal-derived inhibitor obtained by using a single-stranded nucleic acid-binding protein and a reverse transcriptase having heat resistance and low RNase H activity is reduced. The effect can be further enhanced. Examples of the RNase A inhibitor include Ribonclease Inhibitor, Cloned (manufactured by Invitrogen), Ribonclease Inhibitor (manufactured by TaKaRa), and the like.
 本発明の合成方法により合成されたcDNAは、その他の手法により得られたDNAと同様に、様々な解析に供することができる。遺伝子変異の有無は、例えば、RNA上の塩基の挿入、欠失、置換、重複、逆位、又はスプライシングバリアント(アイソフォーム)等の変異を検出することができる。その他、RNA発現量を検出する(mRNAの発現解析)こともできる。なお、これらの解析は、当該分野において公知の方法により行うことができる。また、K-ras遺伝子変異解析キット等の市販の解析キットを用いてもよい。 The cDNA synthesized by the synthesis method of the present invention can be subjected to various analyzes in the same manner as DNA obtained by other methods. The presence or absence of a gene mutation can detect, for example, a mutation such as insertion, deletion, substitution, duplication, inversion, or splicing variant (isoform) of a base on RNA. In addition, RNA expression level can be detected (mRNA expression analysis). These analyzes can be performed by methods known in the art. A commercially available analysis kit such as a K-ras gene mutation analysis kit may also be used.
 本発明の合成方法により合成されたcDNAは、糞便由来であることから、大腸、小腸、胃等の消化管細胞由来のRNAを解析するために用いることが好ましく、大腸剥離細胞由来のRNAを解析するために用いることがより好ましい。 Since the cDNA synthesized by the synthesis method of the present invention is derived from stool, it is preferably used for analyzing RNA derived from gastrointestinal cells such as the large intestine, small intestine, stomach, etc. It is more preferable to use it.
 特に、新生物性転化(癌を含む)のマーカー遺伝子や炎症性消化器疾患のマーカー遺伝子由来のRNAを解析するために用いることが好ましく、大腸癌のマーカー遺伝子由来のRNAを解析するために用いることがより好ましい。なお、「遺伝子由来のRNA」とは、当該遺伝子のmRNA等の発現産物を意味する。該新生物性転化を示すマーカーとして、例えば、COX2(cyclooxygenase-2)遺伝子、癌胎児性抗原(CEA)、シアリルTn抗原(STN)等の公知の癌マーカーや、APC遺伝子、p53遺伝子、K-ras遺伝子等の変異の有無等がある。また、p16、hMLHI、MGMT、p14、APC、E-cadherin、ESR1、SFRP2等の遺伝子のメチル化の検出も、大腸疾患の診断マーカーとして有用である(例えば、Lind et al.、「A CpG island hypermethylation profile of primary colorectal carcinomas and colon cancer cell lines」、Molecular Cancer、2004年、第3巻第28章参照。)。一方、炎症性消化器疾患を示すマーカーとして、例えば、COX2遺伝子由来RNA等がある。なお、Cox-2遺伝子由来RNAは、新生物性転化を示すマーカーとしても用いられる。 In particular, it is preferably used for analyzing RNA derived from a marker gene for neoplastic transformation (including cancer) or a marker gene for inflammatory digestive organ disease, and used for analyzing RNA derived from a marker gene for colorectal cancer. It is more preferable. The “gene-derived RNA” means an expression product such as mRNA of the gene. Examples of the marker showing neoplastic conversion include known cancer markers such as COX2 (cyclooxygenase-2) gene, carcinoembryonic antigen (CEA), sialyl Tn antigen (STN), APC gene, p53 gene, K- The presence or absence of mutations such as ras gene. Furthermore, detection of methylation of genes such as p16, hMLHI, MGMT, p14, APC, E-cadherin, ESR1, and SFRP2 is also useful as a diagnostic marker for colorectal diseases (for example, LindLet al., “A CpG island hypermethylation, profile, of primary, colorectal, carcinomas, and colon, cancer, cell lines, Molecular Cancer, 2004, Vol. 3, Chapter 28). On the other hand, as a marker indicating inflammatory digestive organ disease, for example, there is COX2 gene-derived RNA. Cox-2 gene-derived RNA is also used as a marker indicating neoplastic conversion.
 本発明の合成方法により、糞便由来の阻害物質による影響を顕著に低減し、逆転写反応の反応効率を高めることができ、結果として安定した反応を行うことが可能となる。このため、本発明の合成方法により得られたcDNAを、糞便由来RNAの遺伝子発現解析等の核酸解析に用いることにより、信頼性の高い結果を得ることができる。こうして得られた検出結果は、臨床検査のために好適に用いられる。 The synthesis method of the present invention can significantly reduce the influence of the stool-derived inhibitory substance and increase the reaction efficiency of the reverse transcription reaction, and as a result, a stable reaction can be performed. For this reason, a highly reliable result can be obtained by using the cDNA obtained by the synthesis method of the present invention for nucleic acid analysis such as gene expression analysis of stool-derived RNA. The detection result thus obtained is suitably used for clinical examination.
 また、本発明の合成方法において用いる試薬類をキット化することにより、本発明の合成方法をより簡便に行うことができる。このような糞便由来核酸の合成用キットとしては、例えば、カオトロピック塩、アルコール、耐熱性かつ低RNaseH活性である逆転写酵素、及び一本鎖核酸結合タンパク質を備えるものが挙げられる。また、当該キットは、糞便からのRNA抽出や、逆転写反応に用いられる試薬等をさらに備えていてもよい。このような試薬としては、例えば、核酸抽出用溶液、無機支持体、無機支持体からの溶出用溶媒、逆転写反応用バッファー、プライマー、dNTP等が挙げられる。 Moreover, the synthesis method of the present invention can be carried out more easily by making a kit of reagents used in the synthesis method of the present invention. Such a stool-derived nucleic acid synthesis kit includes, for example, a kit comprising a chaotropic salt, alcohol, a heat-resistant and low RNase H activity reverse transcriptase, and a single-stranded nucleic acid binding protein. The kit may further include a reagent used for RNA extraction from stool or reverse transcription reaction. Examples of such a reagent include a nucleic acid extraction solution, an inorganic support, a solvent for elution from the inorganic support, a reverse transcription reaction buffer, a primer, and dNTP.
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、MKN45細胞は、常法により培養したものを用いた。 Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. MKN45 cells used were cultured by a conventional method.
<擬似糞便由来RNAの調製>
 SDS/フェノール抽出法、グアニジン・エタノール抽出法、及びグアニジン・エタノール・シリカ抽出法の3種類の方法により、擬似大腸癌患者由来糞便試料(大腸癌患者から採取された糞便の擬似試料)からRNAを抽出・回収し、擬似糞便由来RNAを調製した。
<Preparation of pseudofecal RNA>
By using SDS / phenol extraction method, guanidine / ethanol extraction method, and guanidine / ethanol / silica extraction method, RNA is extracted from a stool sample derived from a pseudo-colorectal cancer patient (a stool pseudo-sample collected from a colorectal cancer patient). Extraction and collection were performed to prepare pseudofecal RNA.
 擬似大腸癌患者由来糞便試料は、以下のようにして調製した。まず、健常人の糞便5gに生理食塩水を等量添加し、よく混ぜて均一化した後、200×gの遠心分離処理をいって夾雑物を沈殿させ、その上清を回収した。この糞便上清と、MKN45細胞が1×10個含むように調整した細胞ペレットとを混合し、これを擬似大腸癌患者由来糞便試料とした。なお、MKN45細胞は胃癌由来であるが、大腸癌細胞と同様にCOX2遺伝子を高発現する培養細胞株である。 A stool sample derived from a pseudo-colon cancer patient was prepared as follows. First, an equal amount of physiological saline was added to 5 g of normal human stool, mixed well, and homogenized. Then, 200 × g centrifugation treatment was performed to precipitate impurities, and the supernatant was collected. This stool supernatant was mixed with a cell pellet adjusted so as to contain 1 × 10 5 MKN45 cells, and this was used as a stool sample derived from a simulated colorectal cancer patient. MKN45 cells are derived from gastric cancer, but are cultured cell lines that highly express the COX2 gene in the same manner as colon cancer cells.
 調製された擬似大腸癌患者由来糞便試料を300μLずつ3本の1.5mLチューブに分け、それぞれSDS/フェノール抽出法、グアニジン・エタノール抽出法、又はグアニジン・エタノール・シリカ抽出法により、RNAを抽出し、回収した。 The prepared stool sample derived from a pseudo colorectal cancer patient is divided into three 1.5 mL tubes of 300 μL each, and RNA is extracted by SDS / phenol extraction method, guanidine / ethanol extraction method, or guanidine / ethanol / silica extraction method, respectively. Recovered.
 SDS/フェノール抽出法では、まず、300μLの擬似大腸癌患者由来糞便試料が入っているチューブに、300μLのAEバッファー(50 mM CHCOONa、10 mM EDTA、pH5.3)を添加して懸濁させた後、30μLの10%SDS溶液を添加して、Vortexを行った。当該チューブに、さらに等量のフェノールを添加してVortexを行った後、65℃で4分間加熱した。その後、直ちに液体窒素を用いて当該チューブを冷却した。当該チューブの凍らせた内容物を室温で融解させた後、14000rpm、2分間で遠心処理を行い、上層を別の1.5mLチューブに回収した。当該1.5mLチューブにクロロホルムを添加して混合した後(フェノール/クロロホルム処理)、再度14000rpm、2分間で遠心処理を行い、上層を別の1.5mLチューブに回収した。得られた上層に30μLの3M CHCOONa及び等量のイソプロパノールを加えて混和し、4℃、14000rpm、10分間の遠心処理を行い、ペレットを得た(エタノール沈殿)。当該ペレットを75%エタノール溶液でリンスし、乾燥させた後、50μLの蒸留水に溶解させたものを、フェノール・クロロホルム抽出RNAとした。 In the SDS / phenol extraction method, first, 300 μL of AE buffer (50 mM CH 3 COONa, 10 mM EDTA, pH 5.3) is added and suspended in a tube containing 300 μL of a stool sample derived from a pseudo colorectal cancer patient. Then, 30 μL of 10% SDS solution was added to perform vortex. The tube was further vortexed with an equal amount of phenol, and then heated at 65 ° C. for 4 minutes. Thereafter, the tube was immediately cooled using liquid nitrogen. The frozen contents of the tube were thawed at room temperature and then centrifuged at 14000 rpm for 2 minutes, and the upper layer was collected in another 1.5 mL tube. Chloroform was added to the 1.5 mL tube and mixed (phenol / chloroform treatment), and then centrifuged again at 14000 rpm for 2 minutes, and the upper layer was collected in another 1.5 mL tube. To the obtained upper layer, 30 μL of 3M CH 3 COONa and an equal amount of isopropanol were added and mixed, followed by centrifugation at 4 ° C., 14000 rpm for 10 minutes to obtain a pellet (ethanol precipitation). The pellet was rinsed with a 75% ethanol solution, dried, and then dissolved in 50 μL of distilled water as phenol / chloroform-extracted RNA.
 グアニジン・エタノール抽出法では、まず、300μLの擬似大腸癌患者由来糞便試料が入っているチューブに、300μLのチオシアン酸グアニジンバッファー(RLTバッファー、QIAGEN社製)を添加し、Vortexを行った後、等量(約600μL)の70%エタノールを加えてVortexを行い、懸濁液を得た。その後、当該懸濁液を300μLずつ4本の1.5mLチューブに分注し、それぞれに2.5倍容量の99.5% エタノール溶液と60μLの3M CHCOONaを添加して混和した後、4℃、14000rpm、10分間の遠心処理を行い、ペレットを得た(エタノール沈殿)。得られた4本のチューブ内のペレットを1つに纏めた後、75%エタノール溶液でリンスし、乾燥させた後、50μLの蒸留水に溶解させたものを、グアニジン・エタノール抽出RNAとした。 In the guanidine / ethanol extraction method, first, 300 μL of guanidine thiocyanate buffer (RLT buffer, manufactured by QIAGEN) was added to a tube containing 300 μL of a stool sample derived from a pseudo colorectal cancer patient, and after performing Vortex, etc. A volume (about 600 μL) of 70% ethanol was added and vortexed to obtain a suspension. Thereafter, 300 μL each of the suspension was dispensed into four 1.5 mL tubes, and 2.5 times the volume of 99.5% ethanol solution and 60 μL of 3M CH 3 COONa were added and mixed. Centrifugation was performed at 4 ° C., 14000 rpm for 10 minutes to obtain a pellet (ethanol precipitation). The obtained pellets in the four tubes were combined into one, rinsed with a 75% ethanol solution, dried, and then dissolved in 50 μL of distilled water as guanidine / ethanol-extracted RNA.
 グアニジン・エタノール・シリカ抽出法では、RNeasy mini kit(QIAGEN社製)を使用した。まず、300μLの擬似大腸癌患者由来糞便試料が入っているチューブに、300μLのRTLバッファー(グアニジン塩を含むバッファー、Quiagen社製)を添加し、Vortexで攪拌した。攪拌後、等量の70%エタノール溶液を加えて混和したものを、RNeasy midi kit(Quiagen社製)のRNA回収用カラムに通し、添付のプロトコールに従って該RNA回収用カラムの洗浄操作及びRNA溶出操作を行うことにより、RNAを50μLのRNA溶液として回収した。当該RNAをグアニジン・エタノール・シリカ抽出RNAとした。 In the guanidine / ethanol / silica extraction method, RNeasy mini kit (manufactured by QIAGEN) was used. First, 300 μL of an RTL buffer (a buffer containing a guanidine salt, manufactured by Qiagen) was added to a tube containing 300 μL of a stool sample derived from a pseudo colorectal cancer patient, and stirred with Vortex. After stirring, an equal amount of 70% ethanol solution added and mixed is passed through the RNA recovery column of RNeasy midi kit (manufactured by Quiagen), and the RNA recovery column is washed and eluted according to the attached protocol. The RNA was recovered as a 50 μL RNA solution. The RNA was guanidine / ethanol / silica extracted RNA.
<比較対象として用いるRNAの調製>
 MKN45細胞が1×10個含むようにPBSで調整した細胞試料(MKN45細胞試料)、前記細胞試料に、液体培地で培養して得られた大腸菌を1×10個含むように添加したもの(大腸菌含有MKN45細胞試料)、及び前記細胞試料に、最終濃度が1mg/μLとなるようにビリルビンを添加したもの(ビリルビン含有MKN45細胞試料)の3種類を比較対象とした。
 これらの細胞試料から、擬似大腸癌患者由来糞便試料と同様にして、SDS/フェノール抽出法又はグアニジン・エタノール抽出法によりRNAを抽出・回収した。
<Preparation of RNA used for comparison>
A cell sample (MKN45 cell sample) adjusted with PBS so that 1 × 10 5 MKN45 cells are contained, and added to the cell sample so as to contain 1 × 10 8 E. coli cells cultured in a liquid medium. Three types, E. coli-containing MKN45 cell sample, and those obtained by adding bilirubin to the cell sample to a final concentration of 1 mg / μL (bilirubin-containing MKN45 cell sample) were used as comparison targets.
From these cell samples, RNA was extracted and collected by the SDS / phenol extraction method or the guanidine / ethanol extraction method in the same manner as the stool samples derived from pseudo colorectal cancer patients.
<逆転写反応>
 得られた各RNAをそれぞれ鋳型として、逆転写反応を行った。各RNAの定量を行い、RNA濃度の測定結果をもとに、各反応液に1μgのRNAが添加されるようにした。
 具体的には、擬似糞便由来RNA、MKN45細胞試料由来RNA、大腸菌含有MKN45細胞試料由来RNA、及びビリルビン含有MKN45細胞試料由来RNAのそれぞれに対して、表1に示すように、鋳型としてフェノール・クロロホルム抽出RNA又はグアニジン・エタノール抽出RNAを用い、逆転写酵素として非耐熱性かつRNaseH活性の高いM-MLV(TakaRa社製)又は耐熱性かつRNaseH活性の低いSuperScript(登録商標) III(Invitrogen社製)を用い、40ng/μLのT4 gene 32 protein(プロメガ社製)の添加の有無、及びRNaseA阻害剤(TaKaRa社製)の添加の有無の条件を変えた16種類の反応液(サンプル)を調製し、逆転写反応を行い、cDNAを合成した。なお、T4 gene 32 proteinは、一本鎖核酸結合タンパク質(以下、SSB)である。表1中、「RNA抽出法」の欄においては、「+」は当該抽出法で抽出されたRNAを鋳型として添加したことを、「-」は当該抽出法で抽出されたRNAを鋳型として用いなかったことを、それぞれ意味する。また、「逆転写反応」の欄においては、「+」は当該物質を逆転写反応の反応液に添加したことを、「-」は添加しなかったことを、それぞれ意味する。
<Reverse transcription reaction>
A reverse transcription reaction was performed using each of the obtained RNAs as a template. Each RNA was quantified, and 1 μg of RNA was added to each reaction solution based on the measurement result of the RNA concentration.
Specifically, as shown in Table 1, phenol / chloroform as a template for each of pseudo-feces-derived RNA, MKN45 cell sample-derived RNA, E. coli-containing MKN45 cell sample-derived RNA, and bilirubin-containing MKN45 cell sample-derived RNA M-MLV (manufactured by TakaRa), which is non-thermostable and has high RNaseH activity, or SuperScript (registered trademark) III (manufactured by Invitrogen) having low thermostability and low RNaseH activity as reverse transcriptase using extracted RNA or guanidine / ethanol-extracted RNA 16 kinds of reaction solutions (samples) were prepared by changing the presence or absence of addition of 40 ng / μL T4 gene 32 protein (Promega) and the presence or absence of addition of RNase A inhibitor (TaKaRa). Perform a reverse transcription reaction It was synthesized cDNA. T4 gene 32 protein is a single-stranded nucleic acid binding protein (hereinafter referred to as SSB). In Table 1, in the column of “RNA extraction method”, “+” indicates that RNA extracted by the extraction method is added as a template, and “−” indicates that RNA extracted by the extraction method is used as a template. It means that there was no. In the column of “reverse transcription reaction”, “+” means that the substance was added to the reaction solution for reverse transcription reaction, and “−” means that it was not added.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<COX2遺伝子の発現量の測定>
 得られたcDNAを鋳型としてリアルタイムPCRを行い、COX2遺伝子の発現産物(mRNA)の検出を行った。リアルタイムPCRのプライマーは、アプライドバイオシステム社製のCOX2プライマープローブMIX(カタログNo:Hs00153133_m1)を用いた。具体的には、0.2mLの96ウェルPCRプレートに、各cDNAを1μLずつ分取した。その後、各ウェルに8μLの超純水と10μLの核酸増幅試薬「TaqMan GeneExpression Master Mix」(アプライドバイオシステム社製)を添加し、さらに、1μLのCOX2プライマープローブMIX(アプライドバイオシステム社製)をそれぞれ添加して混合し、PCR反応液を調製した。該PCRプレートを、ABIリアルタイムPCR装置に設置し、95℃で10分間処理した後、95℃で1分間、56.5℃で1分間、72℃で1分間の熱サイクルを40サイクル行った後、さらに72℃で7分間処理することにより、経時的に蛍光強度を計測しながらPCRを行った。
<Measurement of expression level of COX2 gene>
Real-time PCR was performed using the obtained cDNA as a template, and the expression product (mRNA) of the COX2 gene was detected. As a primer for real-time PCR, COX2 primer probe MIX (Catalog No: Hs00153133_m1) manufactured by Applied Biosystems was used. Specifically, 1 μL of each cDNA was dispensed into a 0.2 mL 96-well PCR plate. Thereafter, 8 μL of ultrapure water and 10 μL of nucleic acid amplification reagent “TaqMan GeneExpression Master Mix” (Applied Biosystems) were added to each well, and 1 μL of COX2 primer probe MIX (Applied Biosystems) was added. The mixture was added and mixed to prepare a PCR reaction solution. The PCR plate was placed in an ABI real-time PCR apparatus, treated at 95 ° C. for 10 minutes, and then subjected to 40 cycles of thermal cycling at 95 ° C. for 1 minute, 56.5 ° C. for 1 minute, and 72 ° C. for 1 minute. Further, PCR was performed while measuring the fluorescence intensity over time by treating at 72 ° C. for 7 minutes.
 蛍光強度の計測結果を分析して、各サンプル中のCOX2遺伝子のmRNAから合成されたcDNA量(COX2遺伝子の発現量)を調べた。表1に示す16種類のサンプルのうち、グアニジン・エタノール抽出RNAを鋳型とし、M-MLV逆転写酵素を用いて、SSBとRNaseA阻害剤のいずれも添加しなかったサンプル12の発現量を1として、他のサンプルの発現量の相対値を算出した。算出結果を図1~4に示す。図1は擬似糞便由来RNAを鋳型とした場合の結果であり、図2はMKN45細胞試料由来RNAを鋳型とした場合の結果であり、図3は大腸菌含有MKN45細胞試料由来RNAを鋳型とした場合の結果であり、図4はビリルビン含有MKN45細胞試料由来RNAを鋳型とした場合の結果である。 Fluorescence intensity measurement results were analyzed, and the amount of cDNA synthesized from the COX2 gene mRNA in each sample (COX2 gene expression level) was examined. Of the 16 types of samples shown in Table 1, guanidine / ethanol extracted RNA was used as a template, M-MLV reverse transcriptase was used, and the expression level of sample 12 to which neither SSB nor RNase A inhibitor was added was defined as 1. The relative value of the expression level of other samples was calculated. The calculation results are shown in FIGS. FIG. 1 shows the results when pseudo stool-derived RNA was used as a template, FIG. 2 shows the results when MKN45 cell sample-derived RNA was used as a template, and FIG. 3 shows the case where E. coli-containing MKN45 cell sample-derived RNA was used as a template. FIG. 4 shows the results when RNA derived from a bilirubin-containing MKN45 cell sample was used as a template.
 この結果、図1~4のいずれにおいても、他の条件が同じ場合には、M-MLVを用いた場合(サンプル1~4、9~12)よりも、SuperScript(登録商標) IIIを用いた場合(サンプル5~8、13~16)のほうが、COX2遺伝子の発現量が高かった。 As a result, in all of FIGS. 1 to 4, when other conditions were the same, SuperScript (registered trademark) III was used rather than using M-MLV (samples 1 to 4 and 9 to 12). In the cases (Samples 5-8, 13-16), the expression level of the COX2 gene was higher.
 一方で、MKN45細胞試料由来RNAを鋳型とした場合(図2)及び大腸菌含有MKN45細胞試料由来RNAを鋳型とした場合(図3)には、同じく他の条件が同じ場合には、フェノール・クロロホルム抽出RNAを用いた場合(サンプル1~8)とグアニジン・エタノール抽出RNAを用いた場合(サンプル9~16)とでは、ほとんど差がなく、RNAの抽出方法の相違は、逆転写反応にほとんど影響を与えないことが分かった。また、SSBの添加の有無とRNaseA阻害剤の添加の有無は、いずれも発現量に対する影響は観察されなかった。 On the other hand, when MKN45 cell sample-derived RNA was used as a template (FIG. 2) and when E. coli-containing MKN45 cell sample-derived RNA was used as a template (FIG. 3), when other conditions were the same, phenol / chloroform There is almost no difference between using extracted RNA (samples 1 to 8) and guanidine / ethanol extracted RNA (samples 9 to 16), and differences in RNA extraction methods have little effect on reverse transcription. It turned out not to give. Moreover, neither the presence or absence of the addition of SSB nor the presence or absence of the addition of the RNase A inhibitor was observed to affect the expression level.
 これに対して、擬似糞便由来RNAを鋳型とした場合(図1)には、他の条件が同じ場合には、フェノール・クロロホルム抽出RNAを用いた場合(サンプル1~8)よりも、グアニジン・エタノール抽出RNAを用いた場合(サンプル9~16)のほうが、COX2遺伝子の発現量が高かった。ビリルビン含有MKN45細胞試料由来RNAを鋳型とした場合(図4)にも、擬似糞便由来RNAを鋳型とした場合と同様の傾向が観察された。 On the other hand, when pseudo-fecal RNA was used as a template (FIG. 1), guanidine · RNA was extracted more than when phenol / chloroform-extracted RNA was used (samples 1 to 8) when the other conditions were the same. The expression level of the COX2 gene was higher when ethanol-extracted RNA was used (samples 9 to 16). Even when bilirubin-containing MKN45 cell sample-derived RNA was used as a template (FIG. 4), the same tendency as when pseudo-feces-derived RNA was used as a template was observed.
 これらの結果から、ビリルビンをはじめとする糞便由来の阻害物質を含むRNAを鋳型として逆転写反応を行う場合に、RNAを回収する際に、カオトロピック塩及びアルコールを用いる等によって、RNAを予めカオオトロピック塩及びアルコールで処理することにより、阻害物質が逆転写反応の反応液中に持ち込まれたことによる影響を低減させられることが明らかである。 From these results, when performing a reverse transcription reaction using RNA containing fecal-derived inhibitory substances such as bilirubin as a template, the RNA is preliminarily obtained by using a chaotropic salt and alcohol when the RNA is recovered. It is clear that the treatment with the tropic salt and alcohol can reduce the influence of the inhibitor introduced into the reaction solution of the reverse transcription reaction.
 さらに、擬似糞便由来RNAを鋳型とした場合(図1)には、グアニジン・エタノール抽出RNAを鋳型とし、SuperScript(登録商標) IIIを用いた場合(サンプル13~16)にのみ、SSBの添加(サンプル14)やRNaseA阻害剤の添加(サンプル15)、及び両者の併用(サンプル13)により、いずれも添加しなかった場合(サンプル16)よりも明らかにCOX2遺伝子の発現量が高かった。中でもいずれも添加しなかったサンプル16に比べて、SSBを添加したサンプル14のCOX2遺伝子の発現量はおよそ5倍、両者を併用したサンプル13はおよそ6倍と非常に多かった。 Furthermore, when pseudofecal RNA was used as a template (FIG. 1), SSB was added only when guanidine / ethanol extracted RNA was used as a template and SuperScript (registered trademark) III was used (samples 13 to 16) ( The expression level of the COX2 gene was clearly higher by the addition of sample 14), the addition of RNase A inhibitor (sample 15), and the combined use of both (sample 13) than when none was added (sample 16). Among them, compared to the sample 16 to which none of them was added, the expression level of the COX2 gene of the sample 14 to which SSB was added was about 5 times, and the sample 13 to which both were used was about 6 times as much.
 一方で、ビリルビン含有MKN45細胞試料由来RNAを鋳型とした場合(図4)には、グアニジン・エタノール抽出RNAを鋳型とし、SuperScript(登録商標) IIIを用い、SSBを添加した場合(サンプル13及び14)には、SSBを添加しなかった場合(サンプル15及び16)よりもCOX2遺伝子の発現量が高かった。但し、サンプル13と14、又は15と16の比較から分かるように、擬似糞便由来RNAを鋳型とした場合とは異なり、RNaseA阻害剤の添加の有無による影響はほとんど観察されなかった。 On the other hand, when bilirubin-containing MKN45 cell sample-derived RNA is used as a template (FIG. 4), guanidine / ethanol extracted RNA is used as a template, SuperScript (registered trademark) III is used, and SSB is added (samples 13 and 14). ), The COX2 gene expression level was higher than when SSB was not added (samples 15 and 16). However, as can be seen from the comparison of Samples 13 and 14, or 15 and 16, unlike the case of using pseudofeces-derived RNA as a template, the effect of the presence or absence of the addition of an RNase A inhibitor was hardly observed.
 つまり、RNaseA阻害剤の添加による効果がビリルビン含有MKN45細胞試料由来RNAを鋳型とした場合には観察されず、また、SSBの添加による効果がビリルビン含有MKN45細胞試料由来RNAを鋳型とした場合よりも擬似糞便由来RNAを鋳型とした場合のほうが顕著に大きかった。このような相違は、ビリルビン含有MKN45細胞試料由来RNAを鋳型とした場合には、反応液に持ち込まれた阻害物質はビリルビン1種類のみであったのに対して、擬似糞便由来RNAを鋳型とした場合には、糞便由来の様々な阻害物質が反応液に持ち込まれていたため、と推察される。 That is, the effect of adding the RNase A inhibitor is not observed when the bilirubin-containing MKN45 cell sample-derived RNA is used as a template, and the effect of adding SSB is more than that when the bilirubin-containing MKN45 cell sample-derived RNA is used as a template. It was significantly larger when pseudo-fecal RNA was used as a template. The difference is that when bilirubin-containing MKN45 cell sample-derived RNA was used as a template, only one kind of inhibitor was introduced into the reaction solution, whereas pseudofecal-derived RNA was used as a template. In some cases, it is presumed that various inhibitors derived from stool were brought into the reaction solution.
 これらの結果から、逆転写反応の反応液にSSBやRNaseA阻害剤を添加することにより得られる反応効率の改善効果は、反応液中に糞便由来の阻害物質が持ち込まれた場合に顕著に奏されることが分かった。つまり、糞便から回収する際にカオトロピック塩及びアルコールを用いる等により、糞便由来の阻害物質の持ち込み量を低減させたRNAを鋳型とし、耐熱性かつ低RNaseH活性である逆転写酵素を用い、逆転写反応の反応液にSSBを添加することにより、糞便由来のRNAから効率よくcDNAを合成し得ることが明らかである。また、SSBに加えてさらにRNaseA阻害剤を添加することにより、ビリルビン以外にも様々な特性を持つ糞便特有の阻害物質による影響を、より効果的に回避し得るといえる。 From these results, the effect of improving the reaction efficiency obtained by adding an SSB or RNase A inhibitor to the reaction solution of the reverse transcription reaction is remarkably exhibited when a fecal-derived inhibitor is brought into the reaction solution. I found out. That is, reverse transcription using reverse transcriptase with heat resistance and low RNase H activity using RNA with reduced amount of stool-derived inhibitor as a template by using chaotropic salt and alcohol when recovering from stool It is clear that cDNA can be efficiently synthesized from stool-derived RNA by adding SSB to the reaction solution. Moreover, it can be said that by adding an RNase A inhibitor in addition to SSB, it is possible to more effectively avoid the influence of an inhibitor specific to feces having various characteristics other than bilirubin.
 健常人由来の糞便中のRNAを鋳型としてcDNAを合成する際の、反応に用いる逆転写酵素のRNaseH活性の影響を調べた。 The influence of the RNase H activity of the reverse transcriptase used in the reaction when cDNA was synthesized using RNA in feces from healthy individuals as a template was examined.
<糞便由来RNAの抽出>
 まず、健常人由来の糞便から、実施例1と同様にグアニジン・エタノール抽出法によりRNAを抽出した。具体的には、健常人から採取された糞便検体に、等量のチオシアン酸グアニジンバッファー(RLTバッファー、QIAGEN社製)を添加し、Vortexを行った後、等量の70%エタノールを加えてVortexを行い、懸濁液を得た。その後、当該懸濁液を300μLずつ4本の1.5mLチューブに分注し、それぞれに2.5倍容量の99.5% エタノール溶液と60μLの3M CHCOONaを添加して混和した後、4℃、14000rpm、10分間の遠心処理を行い、ペレットを得た(エタノール沈殿)。得られた4本のチューブ内のペレットを1つに纏めた後、75%エタノール溶液でリンスし、乾燥させた後、50μLの蒸留水に溶解させたものを、糞便から抽出されたRNAサンプルとした。当該RNAサンプルの定量を行い、RNA濃度を測定した。
<Extraction of fecal RNA>
First, RNA was extracted from feces derived from healthy individuals by the guanidine / ethanol extraction method in the same manner as in Example 1. Specifically, an equal amount of guanidine thiocyanate buffer (RLT buffer, manufactured by QIAGEN) was added to a stool sample collected from a healthy person, and after vortexing, an equal amount of 70% ethanol was added and vortex was added. To obtain a suspension. Thereafter, 300 μL each of the suspension was dispensed into four 1.5 mL tubes, and 2.5 times the volume of 99.5% ethanol solution and 60 μL of 3M CH 3 COONa were added and mixed. Centrifugation was performed at 4 ° C., 14000 rpm for 10 minutes to obtain a pellet (ethanol precipitation). After the pellets in the four tubes obtained were combined into one, rinsed with a 75% ethanol solution, dried, and dissolved in 50 μL of distilled water, an RNA sample extracted from feces and did. The RNA sample was quantified and the RNA concentration was measured.
<逆転写反応及びCOX2遺伝子の発現量の測定>
 得られたRNAサンプルを鋳型とし、RNaseH活性の高いAMV(Avian Myeloblastosis Virus) Reverse Transcriptase(Promega社製)(以下、AMV)、RNaseH活性のほとんど無いReverScript IV(Wako社製)、及びRNaseH活性の低いSuperScript III(M-MLV由来、Invitorgen社製)の3つの耐熱性逆転写酵素をそれぞれ用いて逆転写反応を行った。各反応液は、RNAサンプルを1μgのRNAが添加されるように添加し、さらに、耐熱性のSSBであるTaq SSB(バイオアカデミア社製)を500ng/μLになるように、また、RNaseA inhibitor(TaKaRa社製)を0.5units/μLになるように添加した以外は、それぞれの逆転写酵素に添付されていた取扱説明書に従って調製した。調製された各反応液に対して、各逆転写酵素の取扱説明書に記載通りに反応を行い、cDNAを合成した。
その後、実施例1と同様にして、得られたcDNAを鋳型としてリアルタイムPCRを行い、COX2遺伝子の発現産物(mRNA)の検出を行った。
<Reverse transcription reaction and measurement of COX2 gene expression level>
Using the obtained RNA sample as a template, AMV with high RNase H activity (Avian Myeloblastosis Virus) Reverse Transcriptase (manufactured by Promega) (hereinafter referred to as AMV), RiverScript IV with low RNase H activity (manufactured by WakoNa H), A reverse transcription reaction was performed using each of three thermostable reverse transcriptases of SuperScript III (derived from M-MLV, manufactured by Invitrogen). In each reaction solution, an RNA sample is added so that 1 μg of RNA is added, and Taq SSB (manufactured by Bio Academia), which is a heat-resistant SSB, is added to 500 ng / μL, and an RNase A inhibitor ( The product was prepared according to the instruction manual attached to each reverse transcriptase, except that Taunit (manufactured by TaKaRa) was added to 0.5 units / μL. Each prepared reaction solution was reacted as described in the instruction manual for each reverse transcriptase to synthesize cDNA.
Thereafter, in the same manner as in Example 1, real-time PCR was performed using the obtained cDNA as a template, and the expression product (mRNA) of the COX2 gene was detected.
 また、得られたRNAサンプルを鋳型とし、AMV、ReverScript IV、又はSuperScript IIIをそれぞれ用いて、RNaseA inhibitorの非存在下で逆転写反応を行った。具体的には、各反応液は、RNAサンプルを1μgのRNAが添加されるように添加し、さらに、Taq SSB(バイオアカデミア社製)を500ng/μLになるように添加した以外は、それぞれの逆転写酵素に添付されていた取扱説明書に従って調製した。調製された各反応液に対して、各逆転写酵素の取扱説明書に記載通りに反応を行い、実施例1と同様にして、得られたcDNAを鋳型としてリアルタイムPCRを行い、COX2遺伝子の発現産物(mRNA)の検出を行った。 Also, using the obtained RNA sample as a template, reverse transcription reaction was carried out in the absence of RNase A inhibitor using AMV, ReverseScript IV, or SuperScript III, respectively. Specifically, each reaction solution was prepared by adding an RNA sample so that 1 μg of RNA was added, and further adding Taq SSB (manufactured by Bio Academia) to 500 ng / μL. It was prepared according to the instruction manual attached to the reverse transcriptase. Each prepared reaction solution is reacted as described in the instruction manual for each reverse transcriptase, and in the same manner as in Example 1, real-time PCR is performed using the obtained cDNA as a template to express the COX2 gene. Product (mRNA) was detected.
 蛍光強度の計測結果を分析して、各反応液中のCOX2遺伝子の発現量を調べた。この結果、反応液へのRNaseA inhibitorの添加の有無に関わらず、RNaseH活性の高いAMVを用いた場合が最も発現量が少なく、SuperScript IIIを用いた場合が最も発現量が多かった。RNaseA inhibitor存在下でAMVを用いた場合の発現量を1として、他の逆転写酵素を用いた場合の発現量の相対値を算出した。算出結果を図5に示す。同じRNAサンプルを鋳型としたにも関わらず、RNaseA inhibitorを反応液に添加した場合には、AMVを用いた場合に比べて、SuperScript IIIを用いた場合は約4.8倍、ReverScript IVを用いた場合は約3.5倍も発現量が高く検出できた。 The measurement result of fluorescence intensity was analyzed, and the expression level of the COX2 gene in each reaction solution was examined. As a result, regardless of whether or not RNase A inhibitor was added to the reaction solution, the expression level was the lowest when AMV with high RNase H activity was used, and the expression level was highest when SuperScript III was used. With the expression level when AMV was used in the presence of RNase A inhibitor as 1, the relative value of the expression level when other reverse transcriptase was used was calculated. The calculation results are shown in FIG. In spite of using the same RNA sample as a template, when RNase A inhibitor is added to the reaction solution, it is approximately 4.8 times when SuperScript III is used compared to when AMV is used. In that case, the expression level was about 3.5 times higher.
 また、いずれの逆転写酵素を用いた場合にも、RNaseA inhibitorを反応液に添加した場合のほうが、添加しなかった場合よりも、COX2遺伝子の発現量が多かった。AMVを用いた場合には、RNaseA inhibitorを反応液に添加した場合の発現量を1とすると、RNaseA inhibitorを添加しなかった場合は約0.7であった。同じく、SuperScript IIIやReverScript IVを用いた場合には、RNaseA inhibitorを添加しなかった場合の発現量は、添加した場合の発現量の約95%程度であった。 In addition, when any reverse transcriptase was used, the amount of COX2 gene expressed was greater when RNase A inhibitor was added to the reaction solution than when it was not added. In the case of using AMV, assuming that the expression level when RNaseA inhibitor was added to the reaction solution was 1, it was about 0.7 when RNaseA inhibitor was not added. Similarly, when SuperScript III or ReverseScript IV was used, the expression level when RNase A inhibitor was not added was about 95% of the expression level when added.
 なお、健常人由来の糞便から、実施例1と同様にグアニジン・エタノール・シリカ抽出法によりRNAを抽出し、得られたRNAサンプルを鋳型として、上記3種の逆転写酵素をそれぞれ用いて、上記と同様に、RNaseA inhibitorを添加した反応液中で逆転写反応を行い、得られたcDNAを鋳型としてリアルタイムPCRを行い、COX2遺伝子の発現産物(mRNA)の検出を行った。この結果、グアニジン・エタノール抽出法により抽出されたRNAを用いた場合と同様に、AMVを用いた場合が最も発現量が少なく、SuperScript IIIを用いた場合が最も発現量が多かった。AMVを用いた場合の発現量を1として、他の逆転写酵素を用いた場合の発現量の相対値を算出したところ、ReverScript IVを用いた場合の発現量は4.1であり、SuperScript IIIを用いた場合の発現量は4.6であった。 In addition, RNA was extracted from feces derived from healthy individuals by the guanidine / ethanol / silica extraction method in the same manner as in Example 1. Using the obtained RNA samples as templates, the above three types of reverse transcriptases were used, respectively. In the same manner as described above, reverse transcription reaction was performed in a reaction solution to which RNase A inhibitor was added, real-time PCR was performed using the obtained cDNA as a template, and the expression product (mRNA) of the COX2 gene was detected. As a result, similarly to the case of using RNA extracted by the guanidine / ethanol extraction method, the expression level was the lowest when AMV was used, and the expression level was highest when SuperScript III was used. Assuming that the expression level when using AMV was 1, the relative value of the expression level when using other reverse transcriptases was calculated. The expression level when using ReverseScript IV was 4.1, and SuperScript III The expression level when using was 4.6.
 これらの結果から、逆転写反応、及びその後のPCR等の核酸増幅反応により、糞便から抽出されたRNAを検出する場合には、SuperScript(登録商標) IIIやReverScript(登録商標) IVのような、耐熱性を示し、かつRNaseH活性の低い逆転写酵素を用いることにより高感度に検出し得ること、及び、逆転写反応をRNaseA阻害剤存在下で行うことにより、さらに検出感度を高められることが明らかである。 From these results, when RNA extracted from feces is detected by reverse transcription reaction and subsequent nucleic acid amplification reaction such as PCR, such as SuperScript (registered trademark) III and RiverScript (registered trademark) IV, It is clear that it can be detected with high sensitivity by using a reverse transcriptase that exhibits thermostability and low RNase H activity, and that detection sensitivity can be further enhanced by carrying out the reverse transcription reaction in the presence of an RNase A inhibitor. It is.
[比較例1]
 阻害物質が少ないと考えられる培養細胞から抽出されたRNAを鋳型として、実施例2と同様にして3種類の逆転写酵素を用いてそれぞれcDNA合成及びCOX2遺伝子の発現産物の発現量を測定し、反応に用いる逆転写酵素のRNaseH活性の影響を調べた。
 具体的には、MKN45細胞が1×10個含むように調整した細胞ペレットから、実施例1と同様にグアニジン・エタノール抽出法によりRNAを抽出し、これをRNAサンプルとした。得られたRNAサンプルを鋳型とし、実施例2と同様にして、AMV、ReverScript IV、又はSuperScript IIIを用いて逆転写反応を行い、得られたcDNAを鋳型としてリアルタイムPCRを行い、COX2遺伝子の発現産物(mRNA)の検出を行った。
[Comparative Example 1]
Using RNA extracted from cultured cells considered to have few inhibitors as a template, and measuring the expression levels of cDNA synthesis and COX2 gene expression products using three types of reverse transcriptase in the same manner as in Example 2, The influence of RNase H activity of the reverse transcriptase used in the reaction was examined.
Specifically, RNA was extracted from the cell pellet adjusted to contain 1 × 10 5 MKN45 cells by the guanidine / ethanol extraction method in the same manner as in Example 1, and this was used as an RNA sample. Using the obtained RNA sample as a template, in the same manner as in Example 2, a reverse transcription reaction was performed using AMV, ReverseScript IV, or SuperScript III, and real-time PCR was performed using the obtained cDNA as a template to express the COX2 gene. Product (mRNA) was detected.
 蛍光強度の計測結果を分析して、各反応液中のCOX2遺伝子の発現量を調べた。この結果、実施例2と同様に、AMVを用いた場合が最も発現量が少なく、SuperScript IIIを用いた場合が最も発現量が多かったが、発現量にあまり差はなかった。
AMVを用いた場合の発現量を1として、他の逆転写酵素を用いた場合の発現量の相対値を算出したところ、SuperScript IIIやReverScript IVを用いた場合の発現量は約1.6~1.7にすぎなかった。算出結果を図6に示す。これらの結果から、阻害物質の量が少ない培養細胞から抽出されたRNAを鋳型とする場合には、RNaseH活性の低い逆転写酵素を用いたとしても、RNaseH活性の高い逆転写酵素を用いた場合に比べて反応効率はあまり改善されないことが明らかである。
The measurement result of the fluorescence intensity was analyzed, and the expression level of the COX2 gene in each reaction solution was examined. As a result, as in Example 2, the expression level was the lowest when AMV was used, and the expression level was highest when SuperScript III was used, but there was not much difference in the expression level.
Assuming that the expression level when using AMV is 1, and the relative value of the expression level when using other reverse transcriptases is calculated, the expression level when using SuperScript III or RiverScript IV is about 1.6 to It was only 1.7. The calculation results are shown in FIG. From these results, when RNA extracted from cultured cells with a small amount of inhibitor is used as a template, even when reverse transcriptase with low RNase H activity is used, reverse transcriptase with high RNase H activity is used. It is clear that the reaction efficiency is not improved much compared to.
 健常人由来の糞便中のRNAを鋳型としてcDNAを合成する際の、反応液に添加するSSBの耐熱性の影響を調べた。
 実施例2において糞便から抽出したRNAサンプルを鋳型とし、同じく実施例2において用いた逆転写酵素SuperScript IIIを用い、下記4種のSSBを各濃度となるように反応液を調製した。
・T4 gene 32 protein(非耐熱性、バイオアカデミア社製)、500ng/μL
・E.coli SSB(非耐熱性、バイオアカデミア社製)、500ng/μL
・ET SSB(耐熱性、New England Bio Lab社製)、4ng/μL
・Taq SSB(耐熱性、バイオアカデミア社製)、500ng/μL
The influence of the heat resistance of SSB added to the reaction solution when synthesizing cDNA using stool RNA derived from healthy persons as a template was examined.
Using the RNA sample extracted from stool in Example 2 as a template and the reverse transcriptase SuperScript III used in Example 2 in the same manner, reaction solutions were prepared so that each of the following four types of SSBs had respective concentrations.
T4 gene 32 protein (non-heat resistant, manufactured by Bio Academia), 500 ng / μL
E. E. coli SSB (non-heat resistant, manufactured by Bio Academia), 500 ng / μL
-ET SSB (heat resistance, New England Bio Lab), 4 ng / μL
-Taq SSB (heat resistance, manufactured by Bio Academia), 500 ng / μL
 具体的には、各反応液は、RNAサンプルを1μgのRNAが添加されるように添加し、さらに、各種SSBを各濃度となるように添加した以外は、SuperScript IIIに添付されていた取扱説明書に従って調製した。調製された各反応液に対して、SuperScript IIIの取扱説明書に記載通りに反応を行い、実施例1と同様にして、得られたcDNAを鋳型としてリアルタイムPCRを行い、COX2遺伝子の発現産物(mRNA)の検出を行った。 Specifically, each reaction solution was added to the SuperScript III, except that the RNA sample was added so that 1 μg of RNA was added, and various SSBs were added to each concentration. Prepared according to the instructions. Each prepared reaction solution was reacted as described in the instruction manual for SuperScript III, and in the same manner as in Example 1, real-time PCR was performed using the obtained cDNA as a template to obtain an expression product of COX2 gene ( mRNA) was detected.
 蛍光強度の計測結果を分析して、各反応液中のCOX2遺伝子の発現量を調べた。T4 gene 32 proteinを用いた場合の発現量を1として、他のSSBを用いた場合の発現量の相対値を算出した。算出結果を図7に示す。この結果、同じRNAサンプルを鋳型としたにも関わらず、ET SSB及びTaq SSBを用いた場合には、T4 gene 32 protein及びE.coli SSBを用いた場合に比べて、COX2遺伝子の発現量が多かった。これらの結果から、糞便から抽出されたRNAを鋳型として逆転写反応を行う際には、反応液に耐熱性のSSBを添加することにより、非耐熱性のSSBを添加した場合よりも、反応効率を改善し得ることが明らかである。 The measurement result of fluorescence intensity was analyzed, and the expression level of the COX2 gene in each reaction solution was examined. The expression level when T4 gene 32 protein was used was 1, and the relative value of the expression level when other SSB was used was calculated. The calculation results are shown in FIG. As a result, when ET SSB and Taq SSB were used even though the same RNA sample was used as a template, T4 gene 32 protein and E.I. The expression level of the COX2 gene was higher than when E. coli SSB was used. From these results, when reverse transcription reaction was performed using RNA extracted from feces as a template, the reaction efficiency was higher by adding heat-resistant SSB to the reaction solution than when non-heat-resistant SSB was added. It is clear that can be improved.
 健常人由来の糞便中のRNAを鋳型としてcDNAを合成する際に、さらにBSAを反応液に添加した場合の反応効率を調べた。
 実施例2において糞便から抽出したRNAサンプルを鋳型とし、同じく実施例2において用いた逆転写酵素SuperScript IIIを用い、400ng/μLとなるようにBSA(プロメガ社製)を添加し、さらに40ng/μLのT4 gene 32 protein(プロメガ社製)の添加の有無及びRNaseA阻害剤(TaKaRa社製)の添加の有無の条件を変えた4種類の反応液(サンプル17~20)を調製し、逆転写反応を行い、cDNAを合成した。各サンプル中のT4 gene 32 protein(表中、「SSB」)、BSA、及びRNaseA阻害剤の添加の有無を、表2に示す。表2中、「+」は当該物質を逆転写反応の反応液に添加したことを、「-」は添加しなかったことを、それぞれ意味する。なお、サンプル17~20は、RNAの抽出条件及び逆転写反応の反応液の組成において、実施例1のサンプル13~16にそれぞれBSAを添加した条件に相当する。
When cDNA was synthesized using RNA in stool from a healthy person as a template, the reaction efficiency when BSA was further added to the reaction solution was examined.
Using the RNA sample extracted from stool in Example 2 as a template, and using the reverse transcriptase SuperScript III used in Example 2 as well, BSA (manufactured by Promega) was added to a concentration of 400 ng / μL, and 40 ng / μL. 4 reaction solutions (samples 17 to 20) were prepared by changing the conditions of whether or not T4 gene 32 protein (Promega) was added and whether or not RNase A inhibitor (TaKaRa) was added. To synthesize cDNA. Table 2 shows the presence or absence of addition of T4 gene 32 protein (“SSB” in the table), BSA, and RNase A inhibitor in each sample. In Table 2, “+” means that the substance was added to the reaction solution for the reverse transcription reaction, and “−” means that it was not added. Samples 17 to 20 correspond to the conditions in which BSA was added to Samples 13 to 16 of Example 1, respectively, in the RNA extraction conditions and the composition of the reaction solution for the reverse transcription reaction.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
サンプル17~20の4種の反応液中で、実施例1と同様にして逆転写反応を行い、得られたcDNAを鋳型としてリアルタイムPCRを行い、COX2遺伝子の発現産物(mRNA)の検出を行った。蛍光強度の計測結果を分析して、各反応液中のCOX2遺伝子の発現量を調べた。この結果、実施例1のサンプル13~16と同様に、反応液にSSBとRNaseA阻害剤の両方を添加した場合(サンプル17)が最も発現量が多く、SSBとRNaseA阻害剤のいずれも添加しなかった場合(サンプル20)が最も発現量が少なかった。また、SSBとRNaseA阻害剤のうち、反応液にSSBのみを添加した場合(サンプル18)のほうが、RNaseA阻害剤のみを添加した場合(サンプル19)よりも発現量が多かった。 Reverse transcription reaction was performed in the four types of reaction solutions of Samples 17 to 20 in the same manner as in Example 1. Real-time PCR was performed using the obtained cDNA as a template to detect the expression product (mRNA) of the COX2 gene. It was. The measurement result of the fluorescence intensity was analyzed, and the expression level of the COX2 gene in each reaction solution was examined. As a result, similar to Samples 13 to 16 of Example 1, when both SSB and RNase A inhibitor were added to the reaction solution (Sample 17), the expression level was the highest, and both SSB and RNase A inhibitor were added. When there was no sample (sample 20), the expression level was the smallest. Moreover, among SSB and RNase A inhibitors, the amount of expression was higher when only SSB was added to the reaction solution (sample 18) than when only RNase A inhibitor was added (sample 19).
 実施例1の擬似糞便由来RNAを鋳型とした場合(図1)のサンプル12の発現量を1として、サンプル17~20のサンプルの発現量の相対値を算出した。算出結果を図8に示す。また、参考値として、図1のサンプル13~16の発現量相対値も同じグラフに示した。この結果、反応液にSSBを添加したサンプル(サンプル13、14、17、及び18)では、BSAをさらに添加することにより、COX2遺伝子の発現量が若干低下する傾向が観察された。逆に、反応液にSSBを添加していないサンプル(サンプル15、16、19、及び20)では、BSAの添加の有無によって発現量はほとんど変化がみられなかった。 When the pseudofecal RNA derived from Example 1 was used as a template (FIG. 1), the expression level of sample 12 was 1, and the relative value of the expression levels of samples 17 to 20 was calculated. The calculation results are shown in FIG. As reference values, the relative expression levels of samples 13 to 16 in FIG. 1 are also shown in the same graph. As a result, in the samples ( samples 13, 14, 17, and 18) in which SSB was added to the reaction solution, a tendency that the expression level of the COX2 gene slightly decreased was observed by further adding BSA. On the contrary, in the samples to which SSB was not added to the reaction solution ( samples 15, 16, 19, and 20), the expression level hardly changed depending on whether or not BSA was added.
 本発明の合成方法を用いることにより、糞便に含まれているRNAからcDNAを効率よく合成することができるため、学術研究のみならず、糞便を検体とする臨床検査等の分野において利用が可能である。 By using the synthesis method of the present invention, cDNA can be efficiently synthesized from RNA contained in stool, so that it can be used not only in academic research but also in fields such as clinical tests using stool as a specimen. is there.

Claims (9)

  1.  (a)糞便から抽出されたRNAを、カオトロピック塩及びアルコールで洗浄する洗浄工程;及び
     (b)洗浄後のRNAを鋳型とし、耐熱性かつ低RNaseH活性である逆転写酵素を用いて、一本鎖核酸結合タンパク質を含有する反応液中で逆転写反応を行う反応工程;
    を有する、糞便由来核酸の合成方法。
    (A) a washing step of washing RNA extracted from stool with a chaotropic salt and alcohol; and (b) one using a reverse transcriptase having heat resistance and low RNase H activity using the washed RNA as a template. A reaction step of performing a reverse transcription reaction in a reaction solution containing a strand nucleic acid binding protein;
    A method for synthesizing stool-derived nucleic acid.
  2.  前記反応液が、さらにRNaseA阻害剤を含む、請求項1記載の糞便由来核酸の合成方法。 The stool-derived nucleic acid synthesis method according to claim 1, wherein the reaction solution further contains an RNase A inhibitor.
  3.  前記洗浄工程(a)が、糞便から抽出されたRNAに、まずカオトロピック塩溶液を添加し、次いでアルコール溶液を添加した後、得られたRNA溶液からRNAを回収する工程を含む、請求項1又は2記載の糞便由来核酸の合成方法。 The washing step (a) comprises a step of first adding a chaotropic salt solution to RNA extracted from stool, then adding an alcohol solution, and then recovering RNA from the obtained RNA solution. 2. A method for synthesizing a stool-derived nucleic acid according to 2.
  4.  前記洗浄工程(a)が、糞便から抽出されたRNAに、カオトロピック塩を含有するアルコール溶液を添加し、得られたRNA溶液からRNAを回収する工程を含む、請求項1又は2記載の糞便由来核酸の合成方法。 The stool-derived origin according to claim 1 or 2, wherein the washing step (a) includes a step of adding an alcohol solution containing a chaotropic salt to RNA extracted from stool and recovering RNA from the obtained RNA solution. Nucleic acid synthesis method.
  5.  前記糞便から抽出されたRNAが、糞便からカオトロピック塩を用いて抽出されたRNAである請求項1~4のいずれか一項に記載の糞便由来核酸の合成方法。 The method for synthesizing a stool-derived nucleic acid according to any one of claims 1 to 4, wherein the RNA extracted from the stool is an RNA extracted from the stool using a chaotropic salt.
  6.  前記洗浄工程(a)の前に、
    (A)
    (i)糞便にアルコール溶液を添加し、懸濁液を調製する工程;
    (ii)前記懸濁液から、固形成分を回収する工程;及び
    (iii)回収された固形成分にカオトロピック剤を添加して懸濁液を調製し、当該固形成分からRNAを抽出する工程;
    を有するRNA抽出工程
    を有する、請求項1~4のいずれか一項に記載の糞便由来核酸の合成方法。
    Before the washing step (a),
    (A)
    (I) adding an alcohol solution to feces to prepare a suspension;
    (Ii) a step of recovering a solid component from the suspension; and (iii) a step of adding a chaotropic agent to the recovered solid component to prepare a suspension and extracting RNA from the solid component;
    The method for synthesizing a stool-derived nucleic acid according to any one of claims 1 to 4, further comprising an RNA extraction step having:
  7.  前記洗浄工程(a)の前に、
    (a-1)糞便にカオトロピック塩溶液を添加して懸濁液を調製し、RNAを抽出する工程;及び
    (a-2)前記懸濁液に、さらにアルコール溶液又はカオトロピック塩を含有するアルコール溶液を添加した後、当該懸濁液からRNAを回収する工程;
    を行う、請求項1又は2記載の糞便由来核酸の合成方法。
    Before the washing step (a),
    (A-1) adding a chaotropic salt solution to feces to prepare a suspension and extracting RNA; and (a-2) an alcohol solution or an alcohol solution further containing a chaotropic salt in the suspension. Recovering RNA from the suspension after adding
    The stool-derived nucleic acid synthesis method according to claim 1 or 2, wherein
  8.  前記洗浄工程(a)が、
    (a-3)糞便にアルコール溶液を添加し、懸濁液を調製する工程;
    (a-4)前記懸濁液から、固形成分を回収する工程;
    (a-5)回収された固形成分にカオトロピック剤を添加して懸濁液を調製し、当該懸濁液よりRNAを抽出する工程;及び
    (a-6)前記懸濁液に、さらにアルコール溶液又はカオトロピック塩を含有するアルコール溶液を添加した後、当該懸濁液からRNAを回収する工程;
    である、請求項1又は2記載の糞便由来核酸の合成方法。
    The washing step (a)
    (A-3) adding an alcohol solution to feces to prepare a suspension;
    (A-4) recovering solid components from the suspension;
    (A-5) adding a chaotropic agent to the recovered solid component to prepare a suspension, and extracting RNA from the suspension; and (a-6) further adding an alcohol solution to the suspension. Or a step of recovering RNA from the suspension after adding an alcohol solution containing a chaotropic salt;
    The stool-derived nucleic acid synthesis method according to claim 1 or 2, wherein
  9.  カオトロピック塩、アルコール、耐熱性かつ低RNaseH活性である逆転写酵素、及び一本鎖核酸結合タンパク質を含む、糞便由来核酸の合成用キット。 A stool-derived nucleic acid synthesis kit comprising chaotropic salt, alcohol, heat-resistant and low RNase H activity reverse transcriptase, and single-stranded nucleic acid binding protein.
PCT/JP2011/066082 2010-07-26 2011-07-14 Method for synthesis of feces-derived nucleic acid WO2012014694A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012526419A JPWO2012014694A1 (en) 2010-07-26 2011-07-14 Method for synthesizing fecal nucleic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-167036 2010-07-26
JP2010167036 2010-07-26

Publications (1)

Publication Number Publication Date
WO2012014694A1 true WO2012014694A1 (en) 2012-02-02

Family

ID=45529910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066082 WO2012014694A1 (en) 2010-07-26 2011-07-14 Method for synthesis of feces-derived nucleic acid

Country Status (2)

Country Link
JP (1) JPWO2012014694A1 (en)
WO (1) WO2012014694A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511982A (en) * 1995-09-06 1999-10-19 メディカル・リサーチ・カウンシル How to separate cells
JP2002539765A (en) * 1998-11-23 2002-11-26 エグザクト サイエンシーズ コーポレイション Methods for fecal sample preparation
WO2004083856A1 (en) * 2003-03-19 2004-09-30 Hamamatsu Foundation For Science And Technology Promotion Method of detecting colon cancer marker
JP2005514073A (en) * 2001-12-24 2005-05-19 テイサイド、ユニバーシティー、ホスピタルズ、エヌエイチエス、トゥラスト DNA detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511982A (en) * 1995-09-06 1999-10-19 メディカル・リサーチ・カウンシル How to separate cells
JP2002539765A (en) * 1998-11-23 2002-11-26 エグザクト サイエンシーズ コーポレイション Methods for fecal sample preparation
JP2005514073A (en) * 2001-12-24 2005-05-19 テイサイド、ユニバーシティー、ホスピタルズ、エヌエイチエス、トゥラスト DNA detection
WO2004083856A1 (en) * 2003-03-19 2004-09-30 Hamamatsu Foundation For Science And Technology Promotion Method of detecting colon cancer marker

Also Published As

Publication number Publication date
JPWO2012014694A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
US8367817B2 (en) Reagents for isolation of purified RNA
DK2588609T3 (en) METHOD AND KIT FOR SEQUENTIAL ISOLATION OF NUCLEOTIDE SPECIES FROM A SAMPLE
EP1669449B1 (en) Reagent-Kit for preparing sample solution for nucleic acid amplification reaction and method for detecting nucleic acid by using treatment solution
JPH11511020A (en) Methods for purifying, stabilizing or isolating nucleic acids from biological material
WO2010134246A1 (en) Method for preparation of nucleic acid-containing sample
US20100331534A1 (en) nucleic acid purification method
JP4471659B2 (en) Direct nucleic acid amplification method
JP5710969B2 (en) Nucleic acid recovery method from stool samples
JP5924888B2 (en) Nucleic acid extraction method, nucleic acid extraction reagent kit, and nucleic acid extraction reagent
WO2015159979A1 (en) Method for recovering short-chain nucleic acids
WO2010134245A1 (en) Method for collection of nucleic acid derived from mammalian cell, method for analysis of nucleic acid, and kit for collection of feces
KR101912488B1 (en) Molecular detection assay
WO2012014694A1 (en) Method for synthesis of feces-derived nucleic acid
WO2011004517A1 (en) Method for detection of target nucleic acid, and method for testing for colorectal cancer
WO2012043183A1 (en) Method for synthesizing target nucleic acid in feces
WO2006064739A1 (en) Method of treating biological sample for performing nucleic acid amplification
Zaorska et al. Multiplexed SNP Typing of DNA after Demineralization and Organic Extraction from a Bone
JP2015096061A (en) Nucleic acid amplification method, method for producing nucleic acid sample for nucleic acid amplification and nucleic acid analyzing method
JP2023536085A (en) Purification of sulfonated DNA
KR101500686B1 (en) DNA Extraction Method for Obtaining Amplifiable DNA in a Small Number of Cells and composition thereof
JP2004105009A (en) Reagent for separating nucleic acid comprising tetraphenylboron compound and method for separating nucleic acid using the same
Ruchira et al. Application of FTA card and novel primers for amplification and sequencing of human mitochondrial cytochrome b (CYTB) gene
Martin STR-typing of nuclear DNA from human fecal matter using the Qiagen Qiaamp® Stool Mini Kit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812286

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526419

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812286

Country of ref document: EP

Kind code of ref document: A1