WO2012014401A1 - Intermediate cooling device for gas turbine and gas turbine using same - Google Patents

Intermediate cooling device for gas turbine and gas turbine using same Download PDF

Info

Publication number
WO2012014401A1
WO2012014401A1 PCT/JP2011/004027 JP2011004027W WO2012014401A1 WO 2012014401 A1 WO2012014401 A1 WO 2012014401A1 JP 2011004027 W JP2011004027 W JP 2011004027W WO 2012014401 A1 WO2012014401 A1 WO 2012014401A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
compressor
gas
gas turbine
turbine
Prior art date
Application number
PCT/JP2011/004027
Other languages
French (fr)
Japanese (ja)
Inventor
亮 宮前
大野 達也
前田 健一
昌一 高橋
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2012014401A1 publication Critical patent/WO2012014401A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/08Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof
    • F02K3/105Heating the by-pass flow
    • F02K3/115Heating the by-pass flow by means of indirect heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/05Heat inputs by air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to an intermediate cooling device interposed in the middle stage of a compressor of a gas turbine, and more particularly to a structure of an intermediate cooling device suitable for a gas turbine that is required to be reduced in size and weight, such as an aircraft engine.
  • an intermediate cooler is interposed in the middle stage of the compressor in order to reduce the compression work of the gas turbine.
  • the intercooler can also be used as a relatively low-temperature heat source, and it has already been proposed to use it in ancillary facilities such as building heating, hot water supply, and a hot water pool.
  • the pressure ratio of the compressor can be improved even in an aircraft gas turbine, and the reduction of fuel consumption and output can be improved by reducing the compression work.
  • the high-temperature portion of the turbine can be effectively cooled by the later air.
  • the intercooler of the stationary gas turbine since the heat exchanger for circulating the cooling water is interposed in the middle stage of the compressor, the cooling water is temporarily leaked from the heat exchanger. When such a failure occurs, the cooling water is transported to the combustor together with the compressed air, and there is a possibility that the combustion deteriorates and thus misfires. From this point, the intercooler can be said to be suitable for a stationary gas turbine in which a heavy and heavy heat exchanger can be installed.
  • an object of the present invention is to provide an intermediate cooling device that can be effectively used as a heat source, is relatively small and lightweight, and does not cause a problem in the operation of a gas turbine even if a leakage failure occurs. There is to do.
  • the present invention combines a gas turbine with a Stirling engine and uses a high-temperature side heat exchanger through which the working gas of the Stirling engine flows as an intermediate cooler in the middle stage of the compressor. Is.
  • the present invention is a gas comprising a multi-stage compressor, a combustor that injects and burns fuel into the compressed air, and a turbine that is driven by the combustion gas from the combustor.
  • An intermediate cooling device provided in a turbine and having a heat exchanger in the middle of the compressor is an object.
  • the heat exchanger of the high temperature side which heats the working gas of a Stirling engine is utilized, and this heat exchanger is arrange
  • the compressed air is cooled in the middle stage of the compressor by the heat exchanger, so that the pressure ratio is improved and the fuel consumption is reduced and the output is reduced by reducing the compression work. Improvement and the like. Moreover, it becomes possible to cool the high temperature part etc. of a turbine effectively with the cooled air.
  • the heat exchanger is disposed in the compressed air flow path of the compressor, the working gas of the Stirling engine can be effectively heated.
  • the overall thermal efficiency of the gas turbine is improved.
  • the Stirling engine is a relatively small, light and highly efficient engine, the weight increase by adding this is small. Moreover, even if the working gas leaks from the heat exchanger and is transported to the combustor, it does not cause a big problem like cooling water. From this point, it is preferable to use a nonflammable gas such as helium gas as the working gas of the Stirling engine.
  • a nonflammable gas such as helium gas
  • the intermediate cooling device using the Stirling engine according to the present invention it is possible to effectively use the heat recovered from the compressed air of the gas turbine as energy, and it is relatively small and lightweight and suitable for aircraft applications. Even if a malfunction occurs in which the working gas leaks, the operation of the gas turbine is not hindered.
  • the heat exchanger has a flow path of compressed air so as to directly exchange heat between the working gas of the Stirling engine and the compressed air of the compressor via a heat transfer wall, for example, a plate or fin of the heat exchanger. You may arrange
  • the compressor of the gas turbine when the compressor of the gas turbine is of an axial flow type provided with an inner peripheral rotor that supports the moving blades and an outer peripheral case that supports the stationary blades,
  • the heat exchanger may be provided in an annular shape over the entire flow path of the compressed air between the rotor and the case of the compressor.
  • at least one piston / cylinder of the Stirling engine may be disposed on the outer peripheral side of the case.
  • the Stirling engine has a plurality of pistons / cylinders
  • the plurality of pistons / cylinders may be arranged at intervals in the circumferential direction.
  • adjacent ones may be connected via a regenerator to form a so-called backward acting (double acting type) Stirling engine. This is advantageous for further miniaturization, weight reduction and high output.
  • an intermediate cooling device using a small, lightweight and highly efficient Stirling engine is suitable for an aircraft gas turbine.
  • the heat exchanger on the low temperature side for cooling the working gas may be arranged to exchange heat with the atmosphere. By doing so, the temperature difference between the high temperature side and the low temperature side is increased, and the efficiency of the Stirling engine can be further increased.
  • the low-temperature side heat exchanger may be housed in a fan case through which exhaust from the fan circulates.
  • the flow rate of the exhaust gas to the heat exchanger By adjusting the flow rate of the exhaust gas to the heat exchanger, the temperature of the working gas on the low temperature side can be changed and the output of the Stirling engine can be controlled.
  • the present invention can be applied not only to aircraft gas turbines but also to marine and industrial gas turbines.
  • gas turbines for ships are diverted to aircraft, and the advantages of miniaturization and weight reduction are great.
  • the gas turbine can be operated. It is also important from the viewpoint of ensuring the operation of the ship as well as the aircraft that it will not interfere.
  • a heat exchanger on the low temperature side may be disposed so as to exchange heat between the liquefied gas fuel and the working gas.
  • the temperature difference from the high temperature side becomes very large, and not only the efficiency of the Stirling engine is remarkably increased, but also the waste heat from the Stirling engine is effectively used as a heat source for vaporizing the liquefied gas fuel.
  • the present invention includes a multi-stage compressor, a combustor that injects and burns fuel into the compressed air, and a turbine that is driven by combustion gas from the combustor.
  • a gas turbine comprising an intermediate cooling device as described above (according to the inventions of claims 1 to 6 described later) with a heat exchanger interposed in the middle stage of the compressor. To do.
  • the high-temperature side heat exchanger that heats the working gas is provided with the intermediate cooling of the gas turbine.
  • the heat recovered from the middle stage of the compressor of the gas turbine can be effectively used as energy.
  • the working gas leaks from the heat exchanger, it does not hinder the operation of the gas turbine, and is suitable for an aircraft or marine gas turbine.
  • FIG. 1 is a system diagram of a gas turbine according to an embodiment of the present invention and a Stirling engine that is an intermediate cooling device thereof.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment applied to an aircraft turbofan engine in a plane including an axis of a compressor and a turbine. It is explanatory drawing which shows typically arrangement
  • FIG. 1 is a system diagram of a gas turbine and a Stirling engine according to the embodiment.
  • FIG. 2 shows a first embodiment in which the gas turbine is applied more specifically to a turbofan engine for an aircraft.
  • FIG. 3 schematically shows the arrangement of heat exchangers in the middle stage of the compressor.
  • the multistage gas turbine 1 includes an intermediate pressure compressor 2 and a high pressure compressor 3 that suck in (intake) and compress air, respectively, and compress the air by using these. While supplying high-temperature and high-pressure air to the combustor 4, fuel is injected into the combustor 4 and burned. And while driving the turbine 5 with the combustion gas from the combustor 4, a part of combustion gas is ejected back as a jet jet, and thrust is obtained.
  • the turbine 5 is also provided with a front-stage high-pressure turbine 5a and a rear-stage intermediate-pressure turbine 5b, which drive the high-pressure compressor 3 and the intermediate-pressure compressor 2 via shafts 6a and 6b, respectively.
  • a heat exchanger 7 is provided between the intermediate pressure compressor 2 and the high pressure compressor 3, and heat is taken away from high-temperature air of about 200 to 400 ° C. compressed by the intermediate pressure compressor 2. , Function as an intercooler to cool this.
  • the heat exchanger 7 is a heat source for heating the working gas (preferably helium gas) of the Stirling engine 8 shown in the upper side of FIG. 1, and is disposed in the compressed air flow path as described below. The compressed air and the working gas of the Stirling engine 8 are directly heat exchanged.
  • the Stirling engine 8 is a double-acting type (double-acting type) provided with a plurality of pistons / cylinders as an example, and two cylinders 9 connected to each other are basically arranged on the upper side of FIG. Illustration of other pistons / cylinders is omitted. Although the piston / cylinder operation will be described in detail later, the internal space of each cylinder 9 is divided into two in the longitudinal direction by the piston 10, and one space 9 a communicates with the other space 9 b of another cylinder 9 adjacent thereto. Yes.
  • the high-temperature side heat exchanger 7 interposed in the middle stage of the compressors 2 and 3 of the gas turbine 1 is connected to one space 9a (hereinafter referred to as a high-temperature space) of each cylinder 9.
  • the working gas in the high temperature space 9a is heated.
  • the other space 9b (hereinafter referred to as a low temperature space) of each cylinder 9 is connected to a low temperature side heat exchanger 11 for exchanging heat with a low temperature atmosphere (cold heat source) as will be described later.
  • the pistons 10 of the cylinders 9 are connected to the crankshaft 12 by connecting rods 10a, and reciprocate with a phase shift.
  • the working gas moves through the regenerator 13 between the high temperature space 9 a and the low temperature space 9 b communicated as described above, and a rotational force is output from the crankshaft 12.
  • the output from the crankshaft 12 is used, for example, to drive a generator (not shown) or an auxiliary machine of the gas turbine 1.
  • the Stirling engine 8 has a simple structure, can be reduced in size and weight, is excellent in silence and reliability, and is particularly suitable for use in an aircraft gas turbine. Further, the thermal efficiency of the Stirling engine 8 is theoretically the same as that of the Carnot cycle, and is extremely high. By using this, the overall thermal efficiency of the gas turbine 1 can be improved.
  • the gas turbine 1 is an aircraft turbofan engine 100.
  • a large fan 102 is accommodated near the front end portion of the fan case 101 of the turbofan engine 100 and is driven by the turbine 5 via a shaft (not shown).
  • the fan 102 functions as a low-pressure compressor, and sends out air (outside air) taken into the fan case 101 backward (to the right in the figure) while compressing it.
  • the intermediate pressure compressor 2 is an axial-flow multistage compressor in this example, and includes a drum 20 (rotor) that supports a plurality of stages (five stages in the illustrated example) of moving blades 21 and an outer periphery of the drum 20. , And a compressor case 22 that supports the stationary blades (not shown) so as to be alternately arranged before and after the moving blades 21.
  • the air flow sent from the fan 102 to the intermediate pressure compressor 2 is compressed while passing between the stationary blades and the moving blades 21 of each stage, and between the drum 20 and the compressor case 22.
  • the cross-section annular compression channel is fed backward.
  • the cross-sectional area of the compression flow path gradually decreases from the front to the rear so as to correspond to the compression ratio of air.
  • the air that has been compressed by the intermediate pressure compressor 2 to a high temperature is heat that is provided over the entire cross section of the compression flow path as schematically shown in FIG. After passing through the exchanger 7 and once cooled, it is taken into the high-pressure compressor 3.
  • the high-pressure compressor 3 is a multistage compressor having substantially the same structure as the intermediate-pressure compressor 2, and the temperature of the compressed air is circulated between the drum 30 that supports the moving blade 31 and the compressor case 32. And the pressure rises further. Then, air in a predetermined high temperature and high pressure state is supplied to the combustor 4.
  • the combustor 4 is a so-called annular combustor, and a detailed description thereof will be omitted, but the annular combustion chamber surrounded by the inner cylinder wall and the outer cylinder wall is inserted into the annular combustion chamber at one end in the cylinder axis direction. In this way, high-temperature and high-pressure air is supplied. Then, fuel is injected from a fuel injection nozzle facing the combustion chamber in the vicinity of the entrance, mixed with the high-temperature and high-pressure air, and burned well. In the combustor 4, secondary air and tertiary air are further supplied to the combustion gas to achieve complete combustion, and the combustion gas is diluted and adjusted to an appropriate temperature and ejected backward from the combustor outlet. Is done.
  • the turbine 5 that receives the jet of combustion gas is an axial-flow turbine having a plurality of stages including stationary blades and moving blades, similar to the intermediate pressure compressor 2 and the high pressure compressor 3.
  • a low-pressure turbine 5c for driving the fan 102 is provided in the last stage.
  • the shaft connecting the fan 102 and the low-pressure turbine 5c is inserted coaxially into the hollow shafts 6a and 6b that are coaxially arranged with each other.
  • the high-temperature and high-pressure states are further increased.
  • the maintained combustion gas is converted into kinetic energy from the internal energy (thermal energy) in the exhaust nozzle 105, and is jetted backward as a high-speed jet.
  • the heat exchanger 7 functioning as an intermediate cooler is interposed between the intermediate pressure compressor 2 and the high pressure compressor 3.
  • the heat exchanger 7 is disposed over the entire cross section of the compression flow path between the inner periphery side drum 20 and the vicinity of the rear end portion of the compressor case 22. That is, as shown schematically in FIG. 3, when viewed in the direction of the axial center of the compressors 2, 3 and the turbine 5, there are eight struts 23 between the inner drum 20 and the compressor case 22.
  • the heat exchanger units 70 are arranged one by one in eight regions that extend radially and are thus divided in the circumferential direction.
  • the heat exchanger unit 70 is, for example, a plate fin type (may be a tube fin type tube type or the like), and the working gas of the Stirling engine 8 flowing through the flow path between the plates is a heat transfer wall. Heat is exchanged directly with the compressed air through the plate and corrugated fins. In this way, heat exchange efficiency is high because heat exchange is performed directly without interposing a refrigerant.
  • the eight cylinders 9 of the Stirling engine 8 are arranged in the circumferential direction at intervals from each other on the outer peripheral side of the compressor cases 22 and 32 corresponding to the respective heat exchanger units 70.
  • the cylinder 9 is disposed in a structural space between the compressor case 32 and the duct component 103.
  • One end (left end in FIG. 2) in the longitudinal direction of each cylinder 9 is connected to the corresponding heat exchanger unit 70 via the high temperature side pipe 9c (see FIG. 1).
  • the high temperature side pipe 9c is actually composed of a plurality of pipes, and each cylinder 9 has an entire bowl-shaped portion at its end. Connected. The same applies to the low temperature side pipe 9d described below.
  • a low temperature side pipe 9d (see FIG. 1) is connected to the other end (right end in FIG. 2) in the longitudinal direction of each cylinder 9, and the opposite end of the low temperature side pipe 9d is a low temperature of the Stirling engine 8. It is connected to the side heat exchanger 11. As shown in FIG. 2, the heat exchanger 11 on the low temperature side is accommodated in the fan case 101, and low temperature air flowing through the duct 104 passes therethrough. Although not shown in detail, the low temperature side heat exchanger 11 is also composed of a plurality of units arranged at intervals in the circumferential direction of the cross section of the duct 104, and the air flow from the fan 102 flows between these units with low resistance. It is possible.
  • a flow rate adjusting member 106 such as a movable vane for guiding the air flow from the fan 102 is provided upstream of the low-temperature heat exchanger 11.
  • the flow rate adjusting member 106 is operated by an actuator (not shown), and distributes the air flow from the fan 102 to each unit of the low temperature side heat exchanger 11 and a flow path between them, thereby providing a low temperature side heat exchanger.
  • 11 functions as a flow rate adjusting means for adjusting the flow rate of the air to the air outlet 11. By adjusting the air flow rate, output control of the Stirling engine 8 can be performed.
  • the Stirling engine 8 of the present embodiment has eight pistons / cylinders arranged in the circumferential direction on the outer peripheral side of the compressor case 32 and is shown only in FIG.
  • a high temperature space 9a and a low temperature space 9b between the two cylinders 9 are communicated by a communication pipe 9e, and a regenerator 13 is interposed in the middle.
  • the pistons 10 of the two cylinders 9 reciprocate with a phase difference of approximately 90 degrees, and as a result, the working gas moves between the high temperature space 9a and the low temperature space 9b as described below.
  • the Stirling engine 8 of the present embodiment is basically an ⁇ -type engine composed of two pistons / cylinders, and further, the two working spaces are formed by the piston 10 in one cylinder 9, thereby reducing the size and weight. Is intended.
  • four pistons / cylinders each having two working spaces with a phase difference of 90 degrees four ⁇ -type Stirling engines can be configured.
  • eight pistons / cylinders can provide eight outputs.
  • the low temperature space 9b on the right side of the upper cylinder 9 communicates with the high temperature space 9a of another cylinder 9 (not shown).
  • the space 9 a is also communicated with a low temperature space 9 b of another cylinder 9.
  • only the operation of the engine by the high temperature space 9a of the upper cylinder 9 and the low temperature space 9b of the lower cylinder 9 will be described here for convenience.
  • the piston 10 of the upper cylinder 9 and the piston 10 of the lower cylinder 9 are substantially at the same position, but the phases of both are substantially 90 degrees apart.
  • the lower cylinder 9 is past the high temperature side dead center. Due to the operation of the general crank structure, the operation of the piston 10 from slightly before the dead center to past the dead center becomes very small.
  • crankshaft 12 is also rotated by 90 degrees between B and C in FIG. 4, whereby the piston 10 of the upper cylinder 9 moves from the vicinity of the high temperature side dead center toward the low temperature side, and the lower cylinder. 9, the piston 10 operates from approximately the center of the stroke to just before the low temperature side dead center at the right end of the drawing. That is, the two pistons 10 are operated substantially synchronously, whereby the working gas moves from the low temperature space 9b of the lower cylinder 9 where the volume decreases to the high temperature space 9a of the upper cylinder 9 where the volume increases. At this time, the working gas is heated by passing through the regenerator 13 (isothermal heating) and absorbs heat in the state 2 to the state 3 in FIG.
  • regenerator 13 isothermal heating
  • crankshaft 12 also rotates about 90 degrees between C and D in FIG. 4, but this time the piston 10 of the lower cylinder 9 near the low temperature side dead center does not operate much, In the cylinder 9, the piston 10 moves greatly from the approximate center of the stroke to just before the low temperature side dead center.
  • the heated working gas expands (isothermal expansion) while keeping the temperature substantially constant, and absorbs heat as indicated by arrows in the state 3 to the state 4 in FIG.
  • the piston 10 When viewed through D ⁇ E ⁇ F ⁇ A in FIG. 4, the piston 10 operates from the vicinity of the low temperature side dead center to the vicinity of the high temperature side dead center in both the upper and lower cylinders 9. It is pushed out of the high temperature space 9a, cooled when passing through the regenerator 13, and moved to the low temperature space 9b of the lower cylinder 9. That is, the working gas is cooled at the same volume while dissipating heat as indicated by arrows in the state 4 to the state 1 in FIG.
  • one cycle of the Stirling cycle as shown in FIG. 5 is performed in the high temperature space 9a and the low temperature space 9b in which the two adjacent cylinders 9 communicate with each other. Then, a generator and an engine accessory connected to the rotating crankshaft 12 are driven. That is, by cooling the compressed air between the compressors 2 and 3 of the turbofan engine 100, and performing power generation and supplementary driving using the waste heat, overall thermal efficiency can be improved.
  • the high temperature side heat exchanger 7 for heating the working gas is combined with the relatively small, light and highly efficient Stirling engine 8. Since the compressed air is cooled by interposing between the pressure compressor 2 and the high pressure compressor 3, the pressure ratio can be improved to reduce fuel consumption by reducing compression work, improve output, etc. realizable. A part of the cooled compressed air can be used for cooling a high-temperature part such as a moving blade of the turbine 5.
  • the high temperature side heat exchanger 7 can be accommodated in a compressed air flow path between the intermediate pressure compressor 2 and the high pressure compressor 3, and the size and weight of the engine can be increased even if the piston / cylinder of the Stirling engine 8 is included.
  • the increase is not very large. It is possible to add without making a major design change based on the existing engine.
  • the working gas which flows through the flow path between the plates of the high temperature side heat exchanger 7 directly exchanges heat with the compressed air, the efficiency of heat exchange is also high.
  • the low-temperature side heat exchanger 11 that cools the working gas is housed in the fan case 101 and directly exchanges heat between the low-temperature air flowing through the duct 104 and the working gas. If the outside air is high, the temperature becomes minus 40 ° C., and the temperature difference from the high temperature side heat exchanger 7 becomes large. Therefore, the advantage of the Stirling engine 8 that the thermodynamic cycle efficiency increases as the temperature difference between the high temperature side and the low temperature side increases can be maximized.
  • FIG. 6 shows a second embodiment applied to a marine gas turbine 110.
  • symbol is attached
  • the gas turbine 110 is an aeroderivative type that is small, light, and has high output, and the basic structure of a so-called gas generator such as the intermediate pressure compressor 2, the high pressure compressor 3, the turbine 5, and the like has been described above. It is the same as that of the first embodiment.
  • the fan 102 is not disposed in front of the intermediate pressure compressor 2, and instead, the output shaft 6 is connected to the low pressure turbo 5c so that the driving force can be taken out.
  • symbol 24 in a figure is the moving blade arrange
  • FIG. The entire amount of air from here is supplied to the intermediate pressure compressor 2.
  • a can-type combustor that can be easily replaced and maintained is used. That is, a plurality of combustion cylinders 40 are arranged radially so as to surround the shafts of the compressors 2, 3 and the turbine 5. Fuel is injected from a fuel injection nozzle 41 individually disposed in the combustion cylinder 40 and burned. The combustion gas is ejected from the combustion cylinder outlet provided at the inner peripheral end of the combustion cylinder 40 so as to be deflected toward the turbine 5 and supplied to the turbine 5.
  • liquefied natural gas (LNG) is used as an example.
  • LNG is stored in a high-pressure tank 42 in a liquid state, and is warmed and gasified as necessary, and is pressurized to a predetermined pressure by the fuel pump 43 and supplied to the fuel injection nozzle 41.
  • the heat exchanger 11 on the low temperature side of the Stirling engine 8 is used as a heat source for warming the LNG.
  • the turbine 5 that receives the combustion gas from the combustor 4 also has a different part from that of the first embodiment.
  • the high-pressure turbine 5a at the front stage and the intermediate-pressure turbine 5b at the rear stage drive the high-pressure compressor 3 and the intermediate-pressure compressor 2, respectively.
  • a part of the driving force of the intermediate-pressure compressor 2 is decelerated by the gear train and is compressed at low pressure.
  • the output shaft 6 extends rearward from the last-stage low-pressure turbine 5c, and drives a ship screw or a generator for rotating the screw via a speed reducer or the like. Yes.
  • the combustion gas after driving the low-pressure turbine 5c that performs the work for driving the screw does not leave enough internal energy to become a jet jet like an aircraft engine.
  • the turbine 110 is not provided with the exhaust nozzle 105.
  • Exhaust gas from the low-pressure turbine 5c may be discharged from a chimney or the like after being sent to a reheater (not shown) to recover waste heat. If the waste heat collected in the reheater is used to reheat the compressed air of the high-pressure compressor 3, the heat utilization efficiency is further enhanced in combination with intermediate cooling, which is preferable.
  • the high temperature side heat exchanger 7 of the Stirling engine 8 which is an intermediate cooling device is the same between the intermediate pressure compressor 2 and the high pressure compressor 3 as in the first embodiment described above. It is disposed across the entire annular cross section in the flow path of the compressed air.
  • the heat exchanger 11 on the low temperature side is arranged so that the LNG supplied to the combustor 4 passes as schematically shown in FIG. 6, and the working gas of the Stirling engine 8 and the cryogenic LNG Heat exchange.
  • the high temperature side heat exchanger 7 is interposed in the LNG supply line 44 from the high pressure tank 42 to the fuel pump 43.
  • the working gas is effectively cooled and the LNG is effectively warmed.
  • the temperature difference between the high temperature side and the low temperature side in the Stirling engine 8 becomes very large, and the efficiency becomes extremely high.
  • the waste heat from the Stirling engine 8 is also effectively used.
  • first and second embodiments described above are merely illustrative in nature, and are not intended to limit the present invention, its application, or its use.
  • the present invention is applied to a turbofan engine 100 with a high bypass ratio and excellent fuel efficiency as an aircraft gas turbine has been described. You may apply to an engine, a turboprop engine, or you may apply to a turbojet engine.
  • the fan case 101 as in the first embodiment is not provided, so the low temperature side heat exchanger 11 of the Stirling engine 8 covers the outer periphery of the engine case. It may be accommodated in such a dedicated case and arranged so that the outside air passes therethrough.
  • the heat exchanger 7 on the high temperature side of the Stirling engine 8 does not depend on the kind of the gas turbine as described above, and the drum (rotor) on the inner peripheral side in the middle stage of the compressor as in the above embodiments. You may arrange
  • the compressors 2 and 3 and the turbine 5 of the gas turbine 1 are all axial flow types, but are not limited to this, and for example, a centrifugal compressor or a radial turbine is used.
  • the present invention may be applied to a gas turbine provided.
  • the Stirling engine 8 is not limited to the structure and arrangement described in the above embodiments.
  • the number of pistons / cylinders may not be eight, and they may be arranged on the outer peripheral side of the compressor case 32. There is no need to arrange them.
  • the Stirling engine 8 is not limited to the reciprocating type Stirling engine 8, but the basic two-piston type ( ⁇ type), displacer type ( ⁇ type and ⁇ type), and free piston type can be used. Can be used.
  • the LNG is used as a fuel and applied to the aeroderivative marine gas turbine 110
  • a liquefied gas fuel other than LNG may be used.
  • the present invention can also be applied to a marine gas turbine 110 using various fuels.
  • the low temperature side heat exchanger 11 of the Stirling engine 8 may be provided so that, for example, seawater circulates, and the working gas can be effectively cooled by the low temperature seawater.
  • the intermediate cooling device of the present invention may be applied to a so-called industrial gas turbine.
  • the structure of the gas turbine is the same as that of the ship of the second embodiment. This is similar to the industrial gas turbine 110.
  • the intermediate cooling device for a gas turbine uses a small, lightweight and highly efficient Stirling engine, can effectively use the recovered heat, and can interfere with the operation of the gas turbine even in the event of a leakage failure. This is particularly suitable for aircraft use.

Abstract

A gas turbine (1) comprises: multiple stage compressors (2, 3); a combustor (4) for injecting a fuel into air compressed by the compressors and combusting the fuel; and a turbine (5) driven by the combustion gas from the combustor. In the gas turbine, a heat exchanger (7) is installed between the compressor stages. The heat exchanger is used for heating the working gas of a Stirling engine (8) serving as an intermediate cooling device and is disposed in a flow path of compressed air compressed by the compressors to directly exchange heat between the compressed air and the working gas. This makes it possible to effectively use the waste heat of the gas turbine and to provide a relatively small-type and light weight intermediate cooling device, the leakage failure of which even does not pose a problem to the operation of the gas turbine. In the case of an aircraft gas turbine, a low-temperature-side heat exchanger (11) of the Stirling engine is disposed so that a low temperature atmosphere passes therethrough.

Description

ガスタービンの中間冷却装置、これを用いたガスタービンGas turbine intermediate cooling device and gas turbine using the same
 本発明は、ガスタービンの圧縮機の途中段に介設する中間冷却装置に関し、特に、航空機用エンジンのような小型化、軽量化の求められるガスタービンに好適な中間冷却装置の構造に関する。 The present invention relates to an intermediate cooling device interposed in the middle stage of a compressor of a gas turbine, and more particularly to a structure of an intermediate cooling device suitable for a gas turbine that is required to be reduced in size and weight, such as an aircraft engine.
 従来より、例えば特開2003-193910号公報や特開2006-220150号公報に開示されるように、ガスタービンの圧縮仕事の軽減等を図るべく圧縮機の途中段に中間冷却器を介在させることは公知であり、プラント等の定置形システムにおいては既に実用化された例も多い。中間冷却器は、比較的低温の熱源としても利用可能であり、これを建物の暖房や給湯、温水プール等の付帯設備において利用することも既に提案されている。 Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-193910 and Japanese Patent Application Laid-Open No. 2006-220150, an intermediate cooler is interposed in the middle stage of the compressor in order to reduce the compression work of the gas turbine. Are well known, and there are many examples already in practical use in stationary systems such as plants. The intercooler can also be used as a relatively low-temperature heat source, and it has already been proposed to use it in ancillary facilities such as building heating, hot water supply, and a hot water pool.
 また、近年、環境意識の高まりに加えて石油系燃料価格の高騰等により、航空機業界においても燃料消費の低減を目指して種々の取り組みがなされており、航空機用のガスタービン(いわゆるジェットエンジン等)においても燃費低減のための技術的な新機軸が検討されている。 In recent years, various efforts have been made in the aircraft industry to reduce fuel consumption due to rising oil-related fuel prices in addition to rising environmental awareness, and aircraft gas turbines (so-called jet engines, etc.) Are also studying technological innovations to reduce fuel consumption.
 例えば前記のような中間冷却器を採用することができれば、航空機用ガスタービンにおいても圧縮機の圧力比が向上し、その圧縮仕事の低減による燃費の低減、出力の向上等が図られるとともに、冷却後の空気によってタービンの高温部等を効果的に冷却できるといった様々なメリットがある。 For example, if an intercooler such as that described above can be employed, the pressure ratio of the compressor can be improved even in an aircraft gas turbine, and the reduction of fuel consumption and output can be improved by reducing the compression work. There are various merits such that the high-temperature portion of the turbine can be effectively cooled by the later air.
 しかしながら、従来一般に航空機用途では小型、軽量であることが最重要課題とされ、ガスタービンの圧縮機に中間冷却器を設けた実例はない。また、前記のように中間冷却器を熱源として見た場合も、その用途が暖房や給湯のような比較的低温のものに限られることから、この観点からも航空機用のガスタービンには中間冷却器のような寸法、重量の増大を招く機器は付帯しないのが常識であった。 However, in general, in aircraft applications, it has been the most important issue to be small and light, and there is no example of providing an intermediate cooler in a compressor of a gas turbine. In addition, when the intermediate cooler is viewed as a heat source as described above, the use is limited to relatively low-temperature ones such as heating and hot water supply. From this point of view as well, intermediate gas turbines for aircraft use intermediate cooling. It was common sense not to attach equipment that would increase the size and weight of the container.
 さらに、前記従来例のような定置形ガスタービンの中間冷却器では、圧縮機の途中段に冷却水の循環する熱交換器を介在させていることから、仮に熱交換器から冷却水が漏洩するような故障が起きると、この冷却水が圧縮空気と共に燃焼器に輸送されて、燃焼の悪化ひいては失火を招くおそれがあった。この点からも中間冷却器は、重量のある頑丈な熱交換器を設置可能な定置形のガスタービンに適したものといえる。 Further, in the intercooler of the stationary gas turbine as in the conventional example, since the heat exchanger for circulating the cooling water is interposed in the middle stage of the compressor, the cooling water is temporarily leaked from the heat exchanger. When such a failure occurs, the cooling water is transported to the combustor together with the compressed air, and there is a possibility that the combustion deteriorates and thus misfires. From this point, the intercooler can be said to be suitable for a stationary gas turbine in which a heavy and heavy heat exchanger can be installed.
 かかる諸点に鑑みて本発明の目的は、熱源としての有効利用が可能で比較的小型、軽量であるとともに、たとえ漏洩故障が起きたとしてもガスタービンの運転に問題を生じない中間冷却装置を提供することにある。 In view of these points, an object of the present invention is to provide an intermediate cooling device that can be effectively used as a heat source, is relatively small and lightweight, and does not cause a problem in the operation of a gas turbine even if a leakage failure occurs. There is to do.
 前記の目的を達成するために本発明は、ガスタービンにスターリング機関を組み合わせて、このスターリング機関の作動ガスが流通する高温側の熱交換器を、圧縮機の途中段の中間冷却器として利用するものである。 In order to achieve the above object, the present invention combines a gas turbine with a Stirling engine and uses a high-temperature side heat exchanger through which the working gas of the Stirling engine flows as an intermediate cooler in the middle stage of the compressor. Is.
 すなわち、本発明は、複数段の圧縮機と、これにより圧縮された空気中に燃料を噴射して燃焼させる燃焼器と、この燃焼器からの燃焼ガスにより駆動されるタービンと、を備えたガスタービンに設けられ、前記圧縮機の途中段に熱交換器を介設してなる中間冷却装置が対象である。そして、前記熱交換器としては、スターリング機関の作動ガスを加熱する高温側の熱交換器を利用し、この熱交換器を前記圧縮機の圧縮空気の流路内に配設したものである。 That is, the present invention is a gas comprising a multi-stage compressor, a combustor that injects and burns fuel into the compressed air, and a turbine that is driven by the combustion gas from the combustor. An intermediate cooling device provided in a turbine and having a heat exchanger in the middle of the compressor is an object. And as said heat exchanger, the heat exchanger of the high temperature side which heats the working gas of a Stirling engine is utilized, and this heat exchanger is arrange | positioned in the flow path of the compressed air of the said compressor.
 前記構成の中間冷却装置を備えたガスタービンでは、熱交換器により圧縮機の途中段にて圧縮空気が冷却されることから、圧力比が向上するとともに、圧縮仕事の低減による燃費の低減、出力の向上等が図られる。また、冷却した空気によってタービンの高温部等を効果的に冷やすことも可能になる。 In the gas turbine provided with the intermediate cooling device having the above-described configuration, the compressed air is cooled in the middle stage of the compressor by the heat exchanger, so that the pressure ratio is improved and the fuel consumption is reduced and the output is reduced by reducing the compression work. Improvement and the like. Moreover, it becomes possible to cool the high temperature part etc. of a turbine effectively with the cooled air.
 さらに、その熱交換器を前記圧縮機の圧縮空気の流路内に配設しているので、スターリング機関の作動ガスを効果的に加熱することができる。スターリング機関によって例えばガスタービンの補機や発電機等を駆動することにより、ガスタービンの総合的な熱効率が向上する。 Furthermore, since the heat exchanger is disposed in the compressed air flow path of the compressor, the working gas of the Stirling engine can be effectively heated. By driving, for example, an auxiliary machine or a generator of the gas turbine by the Stirling engine, the overall thermal efficiency of the gas turbine is improved.
 スターリング機関は比較的小型、軽量で高効率な機関であるから、これを付加することによる重量増は少なくて済む。しかも、仮に熱交換器から作動ガスが漏洩して、燃焼器に輸送されたとしても、冷却水のように大きな問題を生じることはない。この点からはスターリング機関の作動ガスとして、ヘリウムガスのような不燃性のガスを用いることが好ましい。 Since the Stirling engine is a relatively small, light and highly efficient engine, the weight increase by adding this is small. Moreover, even if the working gas leaks from the heat exchanger and is transported to the combustor, it does not cause a big problem like cooling water. From this point, it is preferable to use a nonflammable gas such as helium gas as the working gas of the Stirling engine.
 つまり、本発明に係るスターリング機関を用いた中間冷却装置によると、ガスタービンの圧縮空気から回収した熱をエネルギとして有効利用することが可能であり、比較的小型、軽量で航空機用途にも適するとともに、仮に作動ガスの漏洩する故障が起きたとしても、ガスタービンの運転に支障を来すことがない。 In other words, according to the intermediate cooling device using the Stirling engine according to the present invention, it is possible to effectively use the heat recovered from the compressed air of the gas turbine as energy, and it is relatively small and lightweight and suitable for aircraft applications. Even if a malfunction occurs in which the working gas leaks, the operation of the gas turbine is not hindered.
 前記熱交換器は、スターリング機関の作動ガスと前記圧縮機の圧縮空気とを伝熱壁、即ち例えば熱交換器のプレートやフィンを介して直接的に熱交換させるように、圧縮空気の流路内に配設してもよい。こうして直接的に熱交換させることで、スターリング機関の作動ガスを効果的に加熱することができる。 The heat exchanger has a flow path of compressed air so as to directly exchange heat between the working gas of the Stirling engine and the compressed air of the compressor via a heat transfer wall, for example, a plate or fin of the heat exchanger. You may arrange | position in. By directly exchanging heat in this way, the working gas of the Stirling engine can be effectively heated.
 好ましい態様として前記ガスタービンの圧縮機が、動翼を支持する内周側のロータと、静翼を支持する外周側のケースと、を備えた軸流式のものである場合、その途中段において熱交換器は、圧縮機のロータ及びケースの間の圧縮空気の流路全体に亘って円環状に設けてもよい。また、そのケースの外周側には、スターリング機関の少なくとも1つのピストン/シリンダを配設してもよい。こうすれば既存のガスタービンにも大きな設計変更なく、寸法や重量の増大を抑えながら設けることが可能である。 As a preferred embodiment, when the compressor of the gas turbine is of an axial flow type provided with an inner peripheral rotor that supports the moving blades and an outer peripheral case that supports the stationary blades, The heat exchanger may be provided in an annular shape over the entire flow path of the compressed air between the rotor and the case of the compressor. Further, at least one piston / cylinder of the Stirling engine may be disposed on the outer peripheral side of the case. In this way, existing gas turbines can be installed while suppressing an increase in size and weight without major design changes.
 また、スターリング機関が複数のピストン/シリンダを有するものであれば、その複数のピストン/シリンダを周方向に間隔を空けて配設してもよい。この場合に、前記複数のピストン/シリンダのうち、隣り合うもの同士を再生器を介して連結し、いわゆる復動形(ダブルアクティング形)のスターリング機関としてもよい。こうすれば、より小型化、軽量化及び高出力に有利になる。 Further, if the Stirling engine has a plurality of pistons / cylinders, the plurality of pistons / cylinders may be arranged at intervals in the circumferential direction. In this case, among the plurality of pistons / cylinders, adjacent ones may be connected via a regenerator to form a so-called backward acting (double acting type) Stirling engine. This is advantageous for further miniaturization, weight reduction and high output.
 そうして小型、軽量であり効率の高いスターリング機関を用いた中間冷却装置は、航空機用のガスタービンに好適である。航空機の場合は飛行中の外気温度がかなり低いので、作動ガスを冷却する低温側の熱交換器は大気と熱交換するように配設してもよい。こうすれば、高温側との低温側との温度差が大きくなり、スターリング機関の効率をさらに高めることができる。 Thus, an intermediate cooling device using a small, lightweight and highly efficient Stirling engine is suitable for an aircraft gas turbine. In the case of an aircraft, since the outside air temperature during flight is considerably low, the heat exchanger on the low temperature side for cooling the working gas may be arranged to exchange heat with the atmosphere. By doing so, the temperature difference between the high temperature side and the low temperature side is increased, and the efficiency of the Stirling engine can be further increased.
 例えばガスタービンが、圧縮機の前段にファンの設けられているターボファン等であれば、このファンからの排気が流通するファンケース内に前記低温側の熱交換器を収容してもよい。この熱交換器への排気の流量を調整することによって低温側の作動ガスの温度を変更し、スターリング機関の出力を制御することが可能になる。 For example, if the gas turbine is a turbo fan or the like in which a fan is provided in front of the compressor, the low-temperature side heat exchanger may be housed in a fan case through which exhaust from the fan circulates. By adjusting the flow rate of the exhaust gas to the heat exchanger, the temperature of the working gas on the low temperature side can be changed and the output of the Stirling engine can be controlled.
 また、航空機用ガスタービンに限らず、船舶用や産業用のガスタービンにも本発明は適用できる。船舶用のガスタービンにおいては航空機用のものを転用することも多く、小型化、軽量化のメリットが大きいことは勿論、高温側の熱交換器から作動ガスが漏洩してもガスタービンの運転に支障を来さないことも、航空機と同じく船舶の運航を確保するという観点から重要である。 Further, the present invention can be applied not only to aircraft gas turbines but also to marine and industrial gas turbines. In many cases, gas turbines for ships are diverted to aircraft, and the advantages of miniaturization and weight reduction are great. Of course, even if operating gas leaks from the heat exchanger on the high temperature side, the gas turbine can be operated. It is also important from the viewpoint of ensuring the operation of the ship as well as the aircraft that it will not interfere.
 特に、ガスタービンの運転に液化ガス燃料を用いる場合は、この液化ガス燃料と作動ガスとを熱交換させるように低温側の熱交換器を配設してもよい。こうすれば、高温側との温度差が非常に大きくなって、スターリング機関の効率が著しく高くなるだけでなく、スターリング機関からの廃熱を、液化ガス燃料を気化させる熱源として有効に利用することができる。 In particular, when liquefied gas fuel is used for the operation of the gas turbine, a heat exchanger on the low temperature side may be disposed so as to exchange heat between the liquefied gas fuel and the working gas. In this way, the temperature difference from the high temperature side becomes very large, and not only the efficiency of the Stirling engine is remarkably increased, but also the waste heat from the Stirling engine is effectively used as a heat source for vaporizing the liquefied gas fuel. Can do.
 見方を変えれば、本発明は、複数段の圧縮機と、これにより圧縮された空気中に燃料を噴射して燃焼させる燃焼器と、この燃焼器からの燃焼ガスにより駆動されるタービンとを備えたガスタービンであって、前記圧縮機の途中段に熱交換器を介在させて、前記の如き(後述の請求項1~6の発明に係る)中間冷却装置が設けられていることを特徴とするものである。 In other words, the present invention includes a multi-stage compressor, a combustor that injects and burns fuel into the compressed air, and a turbine that is driven by combustion gas from the combustor. A gas turbine comprising an intermediate cooling device as described above (according to the inventions of claims 1 to 6 described later) with a heat exchanger interposed in the middle stage of the compressor. To do.
 以上より、本発明に係るガスタービンの中間冷却装置によると、小型、軽量で高効率であるというスターリング機関の特徴に鑑み、その作動ガスを加熱する高温側の熱交換器をガスタービンの中間冷却器として利用することで、ガスタービンの圧縮機途中段から回収した熱をエネルギとして有効利用することができる。また、熱交換器から作動ガスが漏洩することがあっても、ガスタービンの運転に支障を来すことはなく、航空機用や船舶用のガスタービンに好適である。 As described above, according to the gas turbine intermediate cooling apparatus according to the present invention, in view of the characteristics of the Stirling engine that is small, light, and highly efficient, the high-temperature side heat exchanger that heats the working gas is provided with the intermediate cooling of the gas turbine. By using as a compressor, the heat recovered from the middle stage of the compressor of the gas turbine can be effectively used as energy. Further, even if the working gas leaks from the heat exchanger, it does not hinder the operation of the gas turbine, and is suitable for an aircraft or marine gas turbine.
本発明の実施の形態に係るガスタービン、及びその中間冷却装置であるスターリング機関の系統図である。1 is a system diagram of a gas turbine according to an embodiment of the present invention and a Stirling engine that is an intermediate cooling device thereof. 航空機用のターボファン・エンジンに適用した第1の実施形態を、圧縮機やタービンの軸心を含む平面において示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing a first embodiment applied to an aircraft turbofan engine in a plane including an axis of a compressor and a turbine. 圧縮機の途中段における熱交換器の配置を模式的に示す説明図である。It is explanatory drawing which shows typically arrangement | positioning of the heat exchanger in the middle stage of a compressor. スターリング機関の動作の説明図である。It is explanatory drawing of operation | movement of a Stirling engine. スターリングサイクルのPV線図である。It is a PV diagram of a Stirling cycle. 船舶用のガスタービンに適用した第2の実施形態に係る図2相当図である。It is FIG. 2 equivalent view which concerns on 2nd Embodiment applied to the gas turbine for ships.
 以下、本発明の好ましい実施の形態について図面を参照しながら説明する。図1は、実施の形態に係るガスタービン及びスターリング機関の系統図であり、図2は、このガスタービンとしてより具体的に航空機用のターボファン・エンジンに適用した第1の実施形態を示す。また、図3には圧縮機の途中段における熱交換器の配置を模式的に示す。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of a gas turbine and a Stirling engine according to the embodiment. FIG. 2 shows a first embodiment in which the gas turbine is applied more specifically to a turbofan engine for an aircraft. FIG. 3 schematically shows the arrangement of heat exchangers in the middle stage of the compressor.
 図1の下側に模式的に示すように、多段式のガスタービン1は、それぞれ空気を吸入して(吸気)圧縮する中圧圧縮機2と高圧圧縮機3とを備え、これらによって圧縮した高温高圧の空気を燃焼器4へ供給するとともに、この燃焼器4内へ燃料を噴射して燃焼させるものである。そして、燃焼器4からの燃焼ガスによりタービン5を駆動するとともに、燃焼ガスの一部は後方にジェット噴流として噴出させて推力を得る。図の例ではタービン5も前段の高圧タービン5aと後段の中圧タービン5bとを備えており、それぞれがシャフト6a,6bを介して高圧圧縮機3、中圧圧縮機2を駆動する。 As schematically shown in the lower side of FIG. 1, the multistage gas turbine 1 includes an intermediate pressure compressor 2 and a high pressure compressor 3 that suck in (intake) and compress air, respectively, and compress the air by using these. While supplying high-temperature and high-pressure air to the combustor 4, fuel is injected into the combustor 4 and burned. And while driving the turbine 5 with the combustion gas from the combustor 4, a part of combustion gas is ejected back as a jet jet, and thrust is obtained. In the illustrated example, the turbine 5 is also provided with a front-stage high-pressure turbine 5a and a rear-stage intermediate-pressure turbine 5b, which drive the high-pressure compressor 3 and the intermediate-pressure compressor 2 via shafts 6a and 6b, respectively.
 また、中圧圧縮機2と高圧圧縮機3との間には熱交換器7が設けられており、中圧圧縮機2により圧縮された200~400℃くらいの高温の空気から熱を奪って、これを冷却する中間冷却器として機能する。この熱交換器7は、図1の上側に示すスターリング機関8の作動ガス(ヘリウムガスが好ましい)を加熱するための温熱源であり、以下に述べるように圧縮空気の流路内に配設されて、この圧縮空気とスターリング機関8の作動ガスとを直接的に熱交換させる。 Further, a heat exchanger 7 is provided between the intermediate pressure compressor 2 and the high pressure compressor 3, and heat is taken away from high-temperature air of about 200 to 400 ° C. compressed by the intermediate pressure compressor 2. , Function as an intercooler to cool this. The heat exchanger 7 is a heat source for heating the working gas (preferably helium gas) of the Stirling engine 8 shown in the upper side of FIG. 1, and is disposed in the compressed air flow path as described below. The compressed air and the working gas of the Stirling engine 8 are directly heat exchanged.
 スターリング機関8は、一例としてピストン/シリンダを複数、備えた複動形(ダブルアクティング形)のもので、図1の上側には基本的な構成として、互いに接続された2本のシリンダ9を示し、それ以外のピストン/シリンダの図示は省略している。そのピストン/シリンダ動作について詳しくは後述するが、各シリンダ9の内部空間はピストン10によって長手方向に二分されていて、一方の空間9aが隣り合う別のシリンダ9の他方の空間9bに連通されている。 The Stirling engine 8 is a double-acting type (double-acting type) provided with a plurality of pistons / cylinders as an example, and two cylinders 9 connected to each other are basically arranged on the upper side of FIG. Illustration of other pistons / cylinders is omitted. Although the piston / cylinder operation will be described in detail later, the internal space of each cylinder 9 is divided into two in the longitudinal direction by the piston 10, and one space 9 a communicates with the other space 9 b of another cylinder 9 adjacent thereto. Yes.
 そして、前記のようにガスタービン1の圧縮機2,3の途中段に介設されている高温側の熱交換器7が、各シリンダ9の一方の空間9a(以下、高温空間という)に接続され、この高温空間9a内の作動ガスを加熱する。一方、各シリンダ9の他方の空間9b(以下、低温空間という)は、後述するように低温の大気(冷熱源)と熱交換する低温側の熱交換器11に接続されている。 As described above, the high-temperature side heat exchanger 7 interposed in the middle stage of the compressors 2 and 3 of the gas turbine 1 is connected to one space 9a (hereinafter referred to as a high-temperature space) of each cylinder 9. The working gas in the high temperature space 9a is heated. On the other hand, the other space 9b (hereinafter referred to as a low temperature space) of each cylinder 9 is connected to a low temperature side heat exchanger 11 for exchanging heat with a low temperature atmosphere (cold heat source) as will be described later.
 また、各シリンダ9のピストン10は各々連接棒10aによりクランク軸12に接続されており、互いに位相のずれを有して往復動作する。このことで、前記のように連通されている高温空間9aと低温空間9bとの間で、再生器13を介して作動ガスが移動するとともに、クランク軸12からは回転力が出力される。 The pistons 10 of the cylinders 9 are connected to the crankshaft 12 by connecting rods 10a, and reciprocate with a phase shift. As a result, the working gas moves through the regenerator 13 between the high temperature space 9 a and the low temperature space 9 b communicated as described above, and a rotational force is output from the crankshaft 12.
 そのクランク軸12からの出力は、例えば図示しない発電機やガスタービン1の補機の駆動に用いられる。スターリング機関8は、シンプルな構造で小型、軽量化が可能であり、静粛性、信頼性にも優れており、特に航空機用のガスタービンに用いて好適である。また、スターリング機関8の熱効率は理論上はカルノーサイクルと同じで極めて高く、これを用いることでガスタービン1の総合的な熱効率の向上が図られる。 The output from the crankshaft 12 is used, for example, to drive a generator (not shown) or an auxiliary machine of the gas turbine 1. The Stirling engine 8 has a simple structure, can be reduced in size and weight, is excellent in silence and reliability, and is particularly suitable for use in an aircraft gas turbine. Further, the thermal efficiency of the Stirling engine 8 is theoretically the same as that of the Carnot cycle, and is extremely high. By using this, the overall thermal efficiency of the gas turbine 1 can be improved.
 -ガスタービン-
 図2に示す第1の実施形態においてガスタービン1は、航空機用のターボファン・エンジン100である。同図の左端に示すように、このターボファン・エンジン100のファンケース101の前端部付近には大型のファン102が収容されており、図示しないシャフトを介してタービン5により駆動される。このファン102は低圧圧縮機として機能するものであり、ファンケース101内に取り込んだ空気(外気)を圧縮しながら後方(図の右方)へと送り出す。
-gas turbine-
In the first embodiment shown in FIG. 2, the gas turbine 1 is an aircraft turbofan engine 100. As shown at the left end of the figure, a large fan 102 is accommodated near the front end portion of the fan case 101 of the turbofan engine 100 and is driven by the turbine 5 via a shaft (not shown). The fan 102 functions as a low-pressure compressor, and sends out air (outside air) taken into the fan case 101 backward (to the right in the figure) while compressing it.
 そのファン102からの空気流の大部分(一例として90%くらい)は、ファンケース101とその内周側のダクト構成部材103との間、即ち断面円環状のダクト104内を流通し、中圧圧縮機2等をバイパスする比較的低速の排気噴流としてファンケース101の後方に噴出する。一方、ファン102からの空気流の一部は中圧圧縮機2に取り込まれ、燃焼器4での燃焼に供される。こうしてファン102からの空気流の大部分をそのまま後方に噴出させる高バイパス比のターボファン・エンジン100では、排気噴流の無効エネルギーが少なくなり、燃費の低減に有利である。 Most of the airflow from the fan 102 (about 90% as an example) flows between the fan case 101 and the duct component 103 on the inner peripheral side thereof, that is, in the duct 104 having an annular cross section, and has an intermediate pressure. A relatively low-speed exhaust jet that bypasses the compressor 2 and the like is ejected to the rear of the fan case 101. On the other hand, a part of the air flow from the fan 102 is taken into the intermediate pressure compressor 2 and used for combustion in the combustor 4. Thus, in the high bypass ratio turbofan engine 100 in which most of the airflow from the fan 102 is ejected rearward as it is, the reactive energy of the exhaust jet is reduced, which is advantageous in reducing fuel consumption.
 中圧圧縮機2は、この例では軸流式の多段圧縮機であって、複数段(図の例では5段)の動翼21を支持するドラム20(ロータ)と、このドラム20の外周を取り囲んで、動翼21の前後に交互に並ぶように静翼(図示は省略)を支持する圧縮機ケース22と、を備えている。前記のようにファン102から中圧圧縮機2に送り込まれた空気流は、各段の静翼及び動翼21の間を通過する間に圧縮されて、前記ドラム20及び圧縮機ケース22の間の断面円環状の圧縮流路を後方へ送られる。この空気の圧縮比に対応するように圧縮流路の断面積は前方から後方に向かって徐々に減少している。 The intermediate pressure compressor 2 is an axial-flow multistage compressor in this example, and includes a drum 20 (rotor) that supports a plurality of stages (five stages in the illustrated example) of moving blades 21 and an outer periphery of the drum 20. , And a compressor case 22 that supports the stationary blades (not shown) so as to be alternately arranged before and after the moving blades 21. As described above, the air flow sent from the fan 102 to the intermediate pressure compressor 2 is compressed while passing between the stationary blades and the moving blades 21 of each stage, and between the drum 20 and the compressor case 22. The cross-section annular compression channel is fed backward. The cross-sectional area of the compression flow path gradually decreases from the front to the rear so as to correspond to the compression ratio of air.
 そうして中圧圧縮機2において圧縮されて高温(例えば200~400℃くらい)になった空気は、図3に模式的に示すように圧縮流路の断面全体に亘って設けられている熱交換器7を通過して一旦、冷却された後に高圧圧縮機3に取り込まれる。この高圧圧縮機3は、中圧圧縮機2と概ね同じ構造の多段式圧縮機であり、動翼31を支持するドラム30と圧縮機ケース32との間を流通する間に、圧縮空気の温度及び圧力はさらに上昇する。そして、所定の高温高圧状態になった空気が燃焼器4へと供給される。 The air that has been compressed by the intermediate pressure compressor 2 to a high temperature (for example, about 200 to 400 ° C.) is heat that is provided over the entire cross section of the compression flow path as schematically shown in FIG. After passing through the exchanger 7 and once cooled, it is taken into the high-pressure compressor 3. The high-pressure compressor 3 is a multistage compressor having substantially the same structure as the intermediate-pressure compressor 2, and the temperature of the compressed air is circulated between the drum 30 that supports the moving blade 31 and the compressor case 32. And the pressure rises further. Then, air in a predetermined high temperature and high pressure state is supplied to the combustor 4.
 一例として燃焼器4はいわゆる環状燃焼器であり、詳しい説明は省略するが、内筒壁と外筒壁とに囲まれた円環状の燃焼室にその筒軸方向一端の燃焼器入り口から、前記のように高温高圧状態の空気が供給される。そして、その入り口付近で燃焼室に臨む燃料噴射ノズルから燃料が噴射され、前記高温高圧状態の空気と混ざり合って良好に燃焼される。燃焼器4内では燃焼ガスにさらに2次空気、3次空気が供給されて完全燃焼が図られるとともに、燃焼ガスが希釈されて適温に調整された状態で、燃焼器出口から後方に向けて噴出される。 As an example, the combustor 4 is a so-called annular combustor, and a detailed description thereof will be omitted, but the annular combustion chamber surrounded by the inner cylinder wall and the outer cylinder wall is inserted into the annular combustion chamber at one end in the cylinder axis direction. In this way, high-temperature and high-pressure air is supplied. Then, fuel is injected from a fuel injection nozzle facing the combustion chamber in the vicinity of the entrance, mixed with the high-temperature and high-pressure air, and burned well. In the combustor 4, secondary air and tertiary air are further supplied to the combustion gas to achieve complete combustion, and the combustion gas is diluted and adjusted to an appropriate temperature and ejected backward from the combustor outlet. Is done.
 その燃焼ガスの噴流を受けるタービン5は、前記の中圧圧縮機2,高圧圧縮機3と同様に静翼、動翼からなる複数段を有する軸流式タービンであって、図の例では前段の高圧タービン5a及び後段の中圧タービン5bの他に、ファン102を駆動するための低圧タービン5cを最後段に備えている。図示は省略するが、ファン102と低圧タービン5cとを連結するシャフトは、互いに同軸配置されている中空状シャフト6a,6bの内部に挿通されて、同軸状に配置されている。 The turbine 5 that receives the jet of combustion gas is an axial-flow turbine having a plurality of stages including stationary blades and moving blades, similar to the intermediate pressure compressor 2 and the high pressure compressor 3. In addition to the high-pressure turbine 5a and the intermediate-pressure turbine 5b in the subsequent stage, a low-pressure turbine 5c for driving the fan 102 is provided in the last stage. Although not shown, the shaft connecting the fan 102 and the low-pressure turbine 5c is inserted coaxially into the hollow shafts 6a and 6b that are coaxially arranged with each other.
 そして、高圧タービン5a、中圧タービン5b及び低圧タービン5cをそれぞれ駆動し、これらを介して高圧圧縮機3、中圧圧縮機2及びファン102を駆動する仕事を行った後に、さらに高温高圧状態を維持している燃焼ガスが排気ノズル105において、その内部エネルギ(熱エネルギ)を運動エネルギに変換され、高速のジェット噴流となって後方に噴出される。 Then, after driving the high-pressure turbine 5a, the intermediate-pressure turbine 5b, and the low-pressure turbine 5c and driving the high-pressure compressor 3, the intermediate-pressure compressor 2, and the fan 102 through these, the high-temperature and high-pressure states are further increased. The maintained combustion gas is converted into kinetic energy from the internal energy (thermal energy) in the exhaust nozzle 105, and is jetted backward as a high-speed jet.
 ところで、前記したように中圧圧縮機2と高圧圧縮機3との間には中間冷却器として機能する熱交換器7が介設されている。図2に示すように熱交換器7は、圧縮機ケース22の後端部付近において内周側のドラム20との間の圧縮流路の断面全体に亘って配設されている。すなわち、図3に模式的に示すように圧縮機2,3やタービン5の軸心の方向に見ると、内周側のドラム20と圧縮機ケース22との間には8本の支柱23が放射状に延びていて、これにより周方向に区分された8つの領域に1つずつ熱交換器ユニット70が配設されている。 Incidentally, as described above, the heat exchanger 7 functioning as an intermediate cooler is interposed between the intermediate pressure compressor 2 and the high pressure compressor 3. As shown in FIG. 2, the heat exchanger 7 is disposed over the entire cross section of the compression flow path between the inner periphery side drum 20 and the vicinity of the rear end portion of the compressor case 22. That is, as shown schematically in FIG. 3, when viewed in the direction of the axial center of the compressors 2, 3 and the turbine 5, there are eight struts 23 between the inner drum 20 and the compressor case 22. The heat exchanger units 70 are arranged one by one in eight regions that extend radially and are thus divided in the circumferential direction.
 その熱交換器ユニット70は一例としてプレートフィン型のものであり(チューブフィン型チューブ型等であってもよい)、プレート間の流路を流れるスターリング機関8の作動ガスが、伝熱壁であるプレート及び波板状のフィンを介して圧縮空気と直接的に熱交換するようになっている。こうして別途、冷媒を介在させることなく直接的に熱交換することから、熱交換効率が高い。 The heat exchanger unit 70 is, for example, a plate fin type (may be a tube fin type tube type or the like), and the working gas of the Stirling engine 8 flowing through the flow path between the plates is a heat transfer wall. Heat is exchanged directly with the compressed air through the plate and corrugated fins. In this way, heat exchange efficiency is high because heat exchange is performed directly without interposing a refrigerant.
 また、それぞれの熱交換器ユニット70に対応して圧縮機ケース22,32の外周側に、スターリング機関8の8つのシリンダ9が周方向に互いに間隔を空けて配設されている。この例では図2に示すように、シリンダ9は、圧縮機ケース32とダクト構成部材103との間の構造的な空間部に配設されている。そして、各シリンダ9の長手方向の一方の端(図2の左端)が高温側パイプ9c(図1を参照)を介して、対応する熱交換器ユニット70と接続されている。 Further, the eight cylinders 9 of the Stirling engine 8 are arranged in the circumferential direction at intervals from each other on the outer peripheral side of the compressor cases 22 and 32 corresponding to the respective heat exchanger units 70. In this example, as shown in FIG. 2, the cylinder 9 is disposed in a structural space between the compressor case 32 and the duct component 103. One end (left end in FIG. 2) in the longitudinal direction of each cylinder 9 is connected to the corresponding heat exchanger unit 70 via the high temperature side pipe 9c (see FIG. 1).
 なお、図には模式的に高温側パイプ9cを1本だけ示しているが、実際には高温側パイプ9cは複数のパイプからなり、各シリンダ9毎にその端部のお椀状の部分全体に亘って接続されている。これは、以下に述べる低温側パイプ9dについても同様である。 Although only one high temperature side pipe 9c is schematically shown in the figure, the high temperature side pipe 9c is actually composed of a plurality of pipes, and each cylinder 9 has an entire bowl-shaped portion at its end. Connected. The same applies to the low temperature side pipe 9d described below.
 すなわち、各シリンダ9の長手方向の他方の端(図2の右端)には低温側パイプ9d(図1を参照)が接続され、この低温側パイプ9dの反対の端部がスターリング機関8の低温側の熱交換器11に接続されている。図2に示すように低温側の熱交換器11はファンケース101内に収容されており、ダクト104を流通する低温の空気が通過する。詳細は図示しないが低温側熱交換器11も、ダクト104の断面の周方向に間隔を空けて並んだ複数のユニットからなり、それらのユニットの間をファン102からの空気流が低抵抗で流通可能となっている。 That is, a low temperature side pipe 9d (see FIG. 1) is connected to the other end (right end in FIG. 2) in the longitudinal direction of each cylinder 9, and the opposite end of the low temperature side pipe 9d is a low temperature of the Stirling engine 8. It is connected to the side heat exchanger 11. As shown in FIG. 2, the heat exchanger 11 on the low temperature side is accommodated in the fan case 101, and low temperature air flowing through the duct 104 passes therethrough. Although not shown in detail, the low temperature side heat exchanger 11 is also composed of a plurality of units arranged at intervals in the circumferential direction of the cross section of the duct 104, and the air flow from the fan 102 flows between these units with low resistance. It is possible.
 また、本実施形態では、前記低温側の熱交換器11よりも上流に、ファン102からの空気流を案内する可動ベーンのような流量調整部材106が設けられている。この流量調整部材106は、図示しないアクチュエータによって動作され、ファン102からの空気の流れを低温側熱交換器11の各ユニットと、それらの間の流路とに振り分けることにより、低温側熱交換器11への空気の流量を調整する流量調整手段として機能する。この空気の流量調整によって、スターリング機関8の出力制御が可能になる。 In the present embodiment, a flow rate adjusting member 106 such as a movable vane for guiding the air flow from the fan 102 is provided upstream of the low-temperature heat exchanger 11. The flow rate adjusting member 106 is operated by an actuator (not shown), and distributes the air flow from the fan 102 to each unit of the low temperature side heat exchanger 11 and a flow path between them, thereby providing a low temperature side heat exchanger. 11 functions as a flow rate adjusting means for adjusting the flow rate of the air to the air outlet 11. By adjusting the air flow rate, output control of the Stirling engine 8 can be performed.
 -スターリング機関- 
 図3を参照して上述したように本実施形態のスターリング機関8は、8つのピストン/シリンダが圧縮機ケース32の外周側において周方向に並んでいて、図1にのみ示すが、隣り合う2つのシリンダ9同士の高温空間9a及び低温空間9bが連通パイプ9eによって連通され、その途中には再生器13が介在されている。この2つのシリンダ9のピストン10は、概ね90度の位相差で往復動作し、これに伴い、以下に述べるように高温空間9aと低温空間9bとの間で作動ガスが移動する。
-Stirling organization-
As described above with reference to FIG. 3, the Stirling engine 8 of the present embodiment has eight pistons / cylinders arranged in the circumferential direction on the outer peripheral side of the compressor case 32 and is shown only in FIG. A high temperature space 9a and a low temperature space 9b between the two cylinders 9 are communicated by a communication pipe 9e, and a regenerator 13 is interposed in the middle. The pistons 10 of the two cylinders 9 reciprocate with a phase difference of approximately 90 degrees, and as a result, the working gas moves between the high temperature space 9a and the low temperature space 9b as described below.
 つまり、本実施形態のスターリング機関8は、2つのピストン/シリンダからなるα形のものを基本とし、さらに1つのシリンダ9内にピストン10によって2つの作動空間を形成することで小型化、軽量化を図ったものである。各々2つの作動空間を有する4つのピストン/シリンダを90度の位相差で4つ組み合わせれば、α型のスターリング機関を4つ構成することができる。本実施形態では8つのピストン/シリンダによって8つ分の高出力が得られる。 In other words, the Stirling engine 8 of the present embodiment is basically an α-type engine composed of two pistons / cylinders, and further, the two working spaces are formed by the piston 10 in one cylinder 9, thereby reducing the size and weight. Is intended. By combining four pistons / cylinders each having two working spaces with a phase difference of 90 degrees, four α-type Stirling engines can be configured. In this embodiment, eight pistons / cylinders can provide eight outputs.
 以下に図4及び図5を参照して、スターリング機関8の動作と熱サイクルについて詳しく説明する。なお、図4のA~Fにおいて上側のシリンダ9の右側の低温空間9bは、図示しない別のシリンダ9の高温空間9aに連通されており、一方、図の下側のシリンダ9の左側の高温空間9aも、また別のシリンダ9の低温空間9bに連通されている。しかし、ここでは便宜上、上側シリンダ9の高温空間9aと下側シリンダ9の低温空間9bとによる機関の動作についてのみ説明する。 Hereinafter, the operation and thermal cycle of the Stirling engine 8 will be described in detail with reference to FIG. 4 and FIG. In FIG. 4A to FIG. 4F, the low temperature space 9b on the right side of the upper cylinder 9 communicates with the high temperature space 9a of another cylinder 9 (not shown). The space 9 a is also communicated with a low temperature space 9 b of another cylinder 9. However, only the operation of the engine by the high temperature space 9a of the upper cylinder 9 and the low temperature space 9b of the lower cylinder 9 will be described here for convenience.
 まず、図4のAにおいて、上側シリンダ9のピストン10と下側シリンダ9のピストン10は概ね同じ位置にあるが、両者の位相は概ね90度くらいずれていて、上側シリンダ9は、図の左端である高温側死点の手前にあり、一方、下側シリンダ9は高温側死点を過ぎたところにある。一般的なクランク構造の動作によって、死点の少し手前からこれを過ぎるまでのピストン10の動作は非常に小さくなる。 First, in FIG. 4A, the piston 10 of the upper cylinder 9 and the piston 10 of the lower cylinder 9 are substantially at the same position, but the phases of both are substantially 90 degrees apart. On the other hand, the lower cylinder 9 is past the high temperature side dead center. Due to the operation of the general crank structure, the operation of the piston 10 from slightly before the dead center to past the dead center becomes very small.
 図4のAからBの間にクランク軸12は90度くらい回動し、上側シリンダ9が高温側死点を超えて前記図4のAの下側シリンダ9とほぼ同じ位置に達する。この間、この上側シリンダ9のピストン10は、高温側死点の付近にあってあまり動作しない一方で、下側シリンダ9のピストン10は、高温側死点の付近から低温側に向かって大きく動作する。この間、下側シリンダ9では低温空間9bにおいて作動ガスが温度を概ね一定に保ったまま圧縮される(等温圧縮)。つまり、図5のPV線上では、状態1から状態2まで変化し、矢印で示すように放熱する。 4 between A and B in FIG. 4, the crankshaft 12 rotates about 90 degrees, and the upper cylinder 9 reaches the same position as the lower cylinder 9 in FIG. During this time, the piston 10 of the upper cylinder 9 is in the vicinity of the high temperature side dead center and does not operate much, while the piston 10 of the lower cylinder 9 operates largely from the vicinity of the high temperature side dead center toward the low temperature side. . Meanwhile, in the lower cylinder 9, the working gas is compressed in the low temperature space 9b while keeping the temperature substantially constant (isothermal compression). That is, on the PV line in FIG. 5, the state changes from state 1 to state 2, and heat is radiated as indicated by arrows.
 続いて図4のBからCの間にもクランク軸12は90度くらい回動し、これにより上側シリンダ9ではピストン10が高温側死点の付近から低温側に向かって、また、下側シリンダ9ではピストン10が行程の略中央から、図の右端である低温側死点の手前まで動作する。つまり、2つのピストン10が概ね同期して動作し、これにより作動ガスは、容積の減少する下側シリンダ9の低温空間9bから容積の増大する上側シリンダ9の高温空間9aへと移動する。この際、作動ガスは再生器13を通過することにより加熱され(等容加熱)、図5の状態2から状態3までにおいて吸熱する。 Subsequently, the crankshaft 12 is also rotated by 90 degrees between B and C in FIG. 4, whereby the piston 10 of the upper cylinder 9 moves from the vicinity of the high temperature side dead center toward the low temperature side, and the lower cylinder. 9, the piston 10 operates from approximately the center of the stroke to just before the low temperature side dead center at the right end of the drawing. That is, the two pistons 10 are operated substantially synchronously, whereby the working gas moves from the low temperature space 9b of the lower cylinder 9 where the volume decreases to the high temperature space 9a of the upper cylinder 9 where the volume increases. At this time, the working gas is heated by passing through the regenerator 13 (isothermal heating) and absorbs heat in the state 2 to the state 3 in FIG.
 続いて図4のCからDの間にもクランク軸12は90度くらい回動するが、今度は低温側死点の付近にある下側シリンダ9のピストン10があまり動作せず、一方、上側シリンダ9ではピストン10が行程の略中央から低温側死点の手前まで大きく動作する。この上側シリンダ9の高温空間9aでは加熱された作動ガスが、温度を概ね一定に保ったまま膨張し(等温膨張)、図5の状態3から状態4までにおいて、矢印で示すように吸熱する。 Subsequently, the crankshaft 12 also rotates about 90 degrees between C and D in FIG. 4, but this time the piston 10 of the lower cylinder 9 near the low temperature side dead center does not operate much, In the cylinder 9, the piston 10 moves greatly from the approximate center of the stroke to just before the low temperature side dead center. In the high-temperature space 9a of the upper cylinder 9, the heated working gas expands (isothermal expansion) while keeping the temperature substantially constant, and absorbs heat as indicated by arrows in the state 3 to the state 4 in FIG.
 そして、図4のDからEの間では低温側死点の付近にある上側シリンダ9のピストン10が再びあまり動作しなくなる一方、下側シリンダ9のピストン10は低温側死点の付近から高温側に向かって大きく動作する。また、図4のEから4Fの間では、上側シリンダ9のピストン10が低温側死点の付近から高温側に向かって動作し、下側シリンダ9のピストン10は高温側死点の手前に至る。ここから前記した図4Aまでの間に、上側シリンダ9のピストン10が高温側死点の手前に至り、下側シリンダ9のピストン10は高温側死点の付近にある。 And between D and E in FIG. 4, the piston 10 of the upper cylinder 9 near the low temperature side dead center does not operate much again, while the piston 10 of the lower cylinder 9 moves from the vicinity of the low temperature side dead center to the high temperature side. Operates greatly toward. Further, between E and 4F in FIG. 4, the piston 10 of the upper cylinder 9 operates from the vicinity of the low temperature side dead center toward the high temperature side, and the piston 10 of the lower cylinder 9 reaches before the high temperature side dead center. . From here to the above-described FIG. 4A, the piston 10 of the upper cylinder 9 reaches the high temperature side dead center, and the piston 10 of the lower cylinder 9 is in the vicinity of the high temperature side dead center.
 図4のD→E→F→Aを通して見ると、上側、下側の両方のシリンダ9においてピストン10が低温側死点の付近から高温側死点の付近まで動作し、作動ガスは上側シリンダ9の高温空間9aから押し出され、再生器13を通過する際に冷却されて下側シリンダ9の低温空間9bへと移動する。つまり、作動ガスは図5の状態4から状態1までにおいて、矢印で示すように放熱しながら、等容冷却される。 When viewed through D → E → F → A in FIG. 4, the piston 10 operates from the vicinity of the low temperature side dead center to the vicinity of the high temperature side dead center in both the upper and lower cylinders 9. It is pushed out of the high temperature space 9a, cooled when passing through the regenerator 13, and moved to the low temperature space 9b of the lower cylinder 9. That is, the working gas is cooled at the same volume while dissipating heat as indicated by arrows in the state 4 to the state 1 in FIG.
 こうしてクランク軸12の1回転半する間に、隣り合う2つのシリンダ9同士の連通されている高温空間9a、低温空間9bにおいて、図5に示すようなスターリングサイクルが1サイクル行われる。そして、回転するクランク軸12に連結された発電機やエンジン補機が駆動される。つまり、ターボファン・エンジン100の圧縮機2,3の間で圧縮空気を冷却するとともに、その廃熱を利用して発電や補記駆動を行うことで、総合的な熱効率の向上が図られる。 Thus, during one and a half rotations of the crankshaft 12, one cycle of the Stirling cycle as shown in FIG. 5 is performed in the high temperature space 9a and the low temperature space 9b in which the two adjacent cylinders 9 communicate with each other. Then, a generator and an engine accessory connected to the rotating crankshaft 12 are driven. That is, by cooling the compressed air between the compressors 2 and 3 of the turbofan engine 100, and performing power generation and supplementary driving using the waste heat, overall thermal efficiency can be improved.
 以上、説明した第1の実施形態に係るターボファン・エンジン100によると、比較的小型、軽量で高効率なスターリング機関8を組み合わせ、その作動ガスを加熱するための高温側熱交換器7を中圧圧縮機2と高圧圧縮機3との間に介設して、圧縮空気を冷却するようにしたから、その圧力比を向上させて、圧縮仕事の低減による燃費の低減、出力の向上等を実現できる。冷却した圧縮空気の一部をタービン5の動翼等、高温部分の冷却に利用することも可能になる。 As described above, according to the turbofan engine 100 according to the first embodiment described above, the high temperature side heat exchanger 7 for heating the working gas is combined with the relatively small, light and highly efficient Stirling engine 8. Since the compressed air is cooled by interposing between the pressure compressor 2 and the high pressure compressor 3, the pressure ratio can be improved to reduce fuel consumption by reducing compression work, improve output, etc. realizable. A part of the cooled compressed air can be used for cooling a high-temperature part such as a moving blade of the turbine 5.
 しかも、前記の高温側熱交換器7は中圧圧縮機2と高圧圧縮機3との間の圧縮空気の流路に収まり、スターリング機関8のピストン/シリンダを含めてもエンジンの寸法や重量の増大はあまり大きくはない。既存のエンジンをベースにして大きな設計変更をすることなく、追加することが可能である。また、高温側熱交換器7のプレート間の流路を流れる作動ガスが圧縮空気と直接的に熱交換することから、熱交換の効率も高い。 In addition, the high temperature side heat exchanger 7 can be accommodated in a compressed air flow path between the intermediate pressure compressor 2 and the high pressure compressor 3, and the size and weight of the engine can be increased even if the piston / cylinder of the Stirling engine 8 is included. The increase is not very large. It is possible to add without making a major design change based on the existing engine. Moreover, since the working gas which flows through the flow path between the plates of the high temperature side heat exchanger 7 directly exchanges heat with the compressed air, the efficiency of heat exchange is also high.
 一方、作動ガスを冷却する低温側の熱交換器11は、ファンケース101内に収容し、ダクト104を流通する低温の空気と作動ガスとを直接的に熱交換させるが、航空機の飛行中に外気は高空であればマイナス40℃にもなり、高温側熱交換器7との温度差が大きくなる。よって、高温側と低温側との温度差が拡大するほど、熱力学的サイクル効率が高くなるというスターリング機関8のメリットを最大限に活かすことができる。 On the other hand, the low-temperature side heat exchanger 11 that cools the working gas is housed in the fan case 101 and directly exchanges heat between the low-temperature air flowing through the duct 104 and the working gas. If the outside air is high, the temperature becomes minus 40 ° C., and the temperature difference from the high temperature side heat exchanger 7 becomes large. Therefore, the advantage of the Stirling engine 8 that the thermodynamic cycle efficiency increases as the temperature difference between the high temperature side and the low temperature side increases can be maximized.
 その上さらに、仮に熱交換器7から作動ガスが漏洩し、燃焼器4にまで輸送されたとしても、これは不燃性のヘリウムガスであるから燃焼器4において失火等の大きな問題を引き起こすことはない。このことは航空機の運行を確保するために重要である。 Furthermore, even if the working gas leaks from the heat exchanger 7 and is transported to the combustor 4, it is a non-combustible helium gas, so that it causes a serious problem such as misfire in the combustor 4. Absent. This is important to ensure aircraft operation.
 -第2の実施形態-
 図6には、船舶用のガスタービン110に適用した第2の実施形態を示す。なお、第1実施形態と共通する構成については同一符号を付して説明を省略する。図の例ではガスタービン110は、小型軽量で高出力の得られる航空転用型であり、中圧圧縮機2や高圧圧縮機3、タービン5等、いわゆるガス発生器の基本的な構造は前記した第1実施形態のものと同様である。但し、ガスタービン110において中圧圧縮機2の前段にファン102は配設されておらず、その代わりに低圧ターボ5cには出力シャフト6が連結されていて、駆動力を外に取り出すことができる。なお、図に符号24として示すのは、中圧圧縮機2の前段に配置された動翼であり、ドラム20や動翼21と一体に回転する。ここからの空気はその全量が中圧圧縮機2に供給される。
-Second Embodiment-
FIG. 6 shows a second embodiment applied to a marine gas turbine 110. In addition, about the structure which is common in 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted. In the example shown in the figure, the gas turbine 110 is an aeroderivative type that is small, light, and has high output, and the basic structure of a so-called gas generator such as the intermediate pressure compressor 2, the high pressure compressor 3, the turbine 5, and the like has been described above. It is the same as that of the first embodiment. However, in the gas turbine 110, the fan 102 is not disposed in front of the intermediate pressure compressor 2, and instead, the output shaft 6 is connected to the low pressure turbo 5c so that the driving force can be taken out. . In addition, what is shown as a code | symbol 24 in a figure is the moving blade arrange | positioned in the front | former stage of the intermediate pressure compressor 2, and rotates integrally with the drum 20 and the moving blade 21. FIG. The entire amount of air from here is supplied to the intermediate pressure compressor 2.
 また、航空機用と比較すれば寸法の制限が緩いことから、図の例では燃焼器4としては交換・保守の容易な缶形燃焼器のものが用いられている。すなわち、圧縮機2,3やタービン5の軸心を取り囲むよう放射状に複数本の燃焼筒40が配設され、それぞれに外周端の燃焼筒入り口から高温高圧状態の空気が供給されるともに、各燃焼筒40に個別に配設されている燃料噴射ノズル41から燃料が噴射されて燃焼される。燃焼ガスは、燃焼筒40の内周端においてタービン5寄りに偏向して設けられた燃焼筒出口から噴出して、タービン5に供給される。 In addition, since the dimensional restrictions are loose compared with those for aircraft, in the example shown in the figure, a can-type combustor that can be easily replaced and maintained is used. That is, a plurality of combustion cylinders 40 are arranged radially so as to surround the shafts of the compressors 2, 3 and the turbine 5. Fuel is injected from a fuel injection nozzle 41 individually disposed in the combustion cylinder 40 and burned. The combustion gas is ejected from the combustion cylinder outlet provided at the inner peripheral end of the combustion cylinder 40 so as to be deflected toward the turbine 5 and supplied to the turbine 5.
 前記燃焼筒40の燃料噴射ノズル41に供給する燃料としては、一例として液化天然ガス(LNG)が用いられる。LNGは液体の状態で高圧タンク42に貯留されており、必要に応じて暖められてガス化され、燃料ポンプ43によって所定圧力まで昇圧されて、燃料噴射ノズル41に供給される。後述するが本実施形態では、LNGを暖めるための熱源としてスターリング機関8の低温側の熱交換器11を利用している。 As the fuel supplied to the fuel injection nozzle 41 of the combustion cylinder 40, liquefied natural gas (LNG) is used as an example. LNG is stored in a high-pressure tank 42 in a liquid state, and is warmed and gasified as necessary, and is pressurized to a predetermined pressure by the fuel pump 43 and supplied to the fuel injection nozzle 41. As will be described later, in this embodiment, the heat exchanger 11 on the low temperature side of the Stirling engine 8 is used as a heat source for warming the LNG.
 さらに、本実施形態のガスタービン110では、前記燃焼器4からの燃焼ガスを受けるタービン5についても第1実施形態のものとは異なる部分がある。前段の高圧タービン5a、後段の中圧タービン5bはそれぞれ高圧圧縮機3、中圧圧縮機2を駆動するが、この中圧圧縮機2の駆動力の一部は歯車列により減速されて低圧圧縮機111の駆動に用いられる。また、最後段の低圧タービン5cからは後方に出力シャフト6が延びており、減速機等を介して船舶のスクリューを駆動したり、或いはスクリューを回転させるための発電機を駆動するようになっている。 Furthermore, in the gas turbine 110 of this embodiment, the turbine 5 that receives the combustion gas from the combustor 4 also has a different part from that of the first embodiment. The high-pressure turbine 5a at the front stage and the intermediate-pressure turbine 5b at the rear stage drive the high-pressure compressor 3 and the intermediate-pressure compressor 2, respectively. A part of the driving force of the intermediate-pressure compressor 2 is decelerated by the gear train and is compressed at low pressure. Used to drive the machine 111. Further, the output shaft 6 extends rearward from the last-stage low-pressure turbine 5c, and drives a ship screw or a generator for rotating the screw via a speed reducer or the like. Yes.
 そうしてスクリューの駆動のための仕事を行う低圧タービン5cを駆動した後の燃焼ガスには、航空機用エンジンのようなジェット噴流になるほどの内部エネルギーは残されていないので、本実施形態のガスタービン110には排気ノズル105は設けられていない。低圧タービン5cからの排気は、図示しない再熱器に送って廃熱を回収した後に、煙突等から排出すればよい。再熱器において回収した廃熱を利用して、高圧圧縮機3の圧縮空気を再加熱するようにすれば、中間冷却との組み合わせで熱利用効率がさらに高くなり、好ましい。 The combustion gas after driving the low-pressure turbine 5c that performs the work for driving the screw does not leave enough internal energy to become a jet jet like an aircraft engine. The turbine 110 is not provided with the exhaust nozzle 105. Exhaust gas from the low-pressure turbine 5c may be discharged from a chimney or the like after being sent to a reheater (not shown) to recover waste heat. If the waste heat collected in the reheater is used to reheat the compressed air of the high-pressure compressor 3, the heat utilization efficiency is further enhanced in combination with intermediate cooling, which is preferable.
 そして、本実施形態のガスタービン110において、中間冷却装置であるスターリング機関8の高温側熱交換器7は、上述した第1の実施形態と同様に中圧圧縮機2と高圧圧縮機3との間の圧縮空気の流路にその円環状の断面全体に亘って配設されている。一方、低温側の熱交換器11は、図6に模式的に示すように燃焼器4へ供給されるLNGが通過するように配設されて、スターリング機関8の作動ガスと極低温のLNGとを熱交換させるようになっている。 And in the gas turbine 110 of this embodiment, the high temperature side heat exchanger 7 of the Stirling engine 8 which is an intermediate cooling device is the same between the intermediate pressure compressor 2 and the high pressure compressor 3 as in the first embodiment described above. It is disposed across the entire annular cross section in the flow path of the compressed air. On the other hand, the heat exchanger 11 on the low temperature side is arranged so that the LNG supplied to the combustor 4 passes as schematically shown in FIG. 6, and the working gas of the Stirling engine 8 and the cryogenic LNG Heat exchange.
 すなわち、燃焼器4の各燃焼筒40にそれぞれLNGを供給する燃料供給系において、高圧タンク42から燃料ポンプ43に至るLNGの供給ライン44に高温側熱交換器7が介設されており、ここにおいて作動ガスは効果的に冷却され、LNGは効果的に暖められる。こうして極低温のLNGを利用することでスターリング機関8において高温側と低温側との温度差が非常に大きくなり、その効率は極めて高くなる。しかも、スターリング機関8からの廃熱も有効利用されることになる。 That is, in the fuel supply system for supplying LNG to each combustion cylinder 40 of the combustor 4, the high temperature side heat exchanger 7 is interposed in the LNG supply line 44 from the high pressure tank 42 to the fuel pump 43. The working gas is effectively cooled and the LNG is effectively warmed. Thus, by using the cryogenic LNG, the temperature difference between the high temperature side and the low temperature side in the Stirling engine 8 becomes very large, and the efficiency becomes extremely high. Moreover, the waste heat from the Stirling engine 8 is also effectively used.
 したがって、この第2の実施形態に係る船舶用ガスタービン110においても、第1の実施形態と同じく中間冷却によって圧力比の向上、圧縮仕事の低減、出力の向上等の効果が得られる。また、回収した熱を温熱源とし、極低温のLNGを冷熱源として利用することから、スターリング機関8の効率が非常に高くなり、ガスタービン110の総合的な熱効率が向上する。仮に作動ガスが漏洩したとしても、ガスタービン110の運転に支障を来すことがなく、船舶の運行を確保できる。 Therefore, also in the marine gas turbine 110 according to the second embodiment, effects such as improvement of the pressure ratio, reduction of compression work, and improvement of output can be obtained by the intermediate cooling as in the first embodiment. Further, since the recovered heat is used as a heat source and the extremely low temperature LNG is used as a cold heat source, the efficiency of the Stirling engine 8 becomes very high, and the overall heat efficiency of the gas turbine 110 is improved. Even if the working gas leaks, the operation of the gas turbine 110 is not hindered and the operation of the ship can be ensured.
 -その他の実施形態-
 なお、上述した第1、第2の実施形態は本質的に例示に過ぎず、本発明、その適用物、或いはその用途を制限することを意図するものではない。例えば、第1の実施形態においては航空機用のガスタービンとして燃費性能に優れた高バイパス比のターボファン・エンジン100に適用した場合を説明したが、これに限らず、低バイパス比のターボファン・エンジンやターボプロップ・エンジンに適用してもよいし、或いはターボジェット・エンジンに適用してもよい。
-Other embodiments-
The first and second embodiments described above are merely illustrative in nature, and are not intended to limit the present invention, its application, or its use. For example, in the first embodiment, the case where the present invention is applied to a turbofan engine 100 with a high bypass ratio and excellent fuel efficiency as an aircraft gas turbine has been described. You may apply to an engine, a turboprop engine, or you may apply to a turbojet engine.
 ターボプロップ・エンジンやターボジェット・エンジンに適用した場合は、第1の実施形態のようなファンケース101を有しないので、スターリング機関8の低温側熱交換器11は、エンジンのケースの外周を覆うような専用のケース内に収容して、外気が通過するように配設してもよい。 When applied to a turboprop engine or a turbojet engine, the fan case 101 as in the first embodiment is not provided, so the low temperature side heat exchanger 11 of the Stirling engine 8 covers the outer periphery of the engine case. It may be accommodated in such a dedicated case and arranged so that the outside air passes therethrough.
 一方、スターリング機関8の高温側の熱交換器7は、前記のようなガスタービンの種類に依らず、前記の各実施形態と同様に圧縮機の途中段において内周側のドラム(ロータ)と外周側のケースとの間の圧縮流路の断面全体に亘って配置してもよいし、これに限らず、例えばその圧縮流路の断面の一部分だけに配置してもよい。 On the other hand, the heat exchanger 7 on the high temperature side of the Stirling engine 8 does not depend on the kind of the gas turbine as described above, and the drum (rotor) on the inner peripheral side in the middle stage of the compressor as in the above embodiments. You may arrange | position over the whole cross section of the compression flow path between cases on the outer peripheral side, and you may arrange | position not only to this but to a part of cross section of the compression flow path, for example.
 また、前記の各実施形態においてガスタービン1の圧縮機2,3及びタービン5は、いずれも軸流式のものであるが、これに限ることもなく、例えば遠心式の圧縮機やラジアルタービンを備えたガスタービンに本発明を適用してもよい。 Further, in each of the above-described embodiments, the compressors 2 and 3 and the turbine 5 of the gas turbine 1 are all axial flow types, but are not limited to this, and for example, a centrifugal compressor or a radial turbine is used. The present invention may be applied to a gas turbine provided.
 また、スターリング機関8についても前記の各実施形態において説明した構造、配置には限定されず、例えばピストン/シリンダの数は8つでなくてもよいし、それらを圧縮機ケース32の外周側に配設する必要もない。また、復動形のスターリング機関8にも限定されず、その基本となる2ピストン形(α形)、ディスプレーサ形(β形及びγ形)、フリーピストン形のような種々の構造のスターリング機関を用いることができる。 Also, the Stirling engine 8 is not limited to the structure and arrangement described in the above embodiments. For example, the number of pistons / cylinders may not be eight, and they may be arranged on the outer peripheral side of the compressor case 32. There is no need to arrange them. Further, the Stirling engine 8 is not limited to the reciprocating type Stirling engine 8, but the basic two-piston type (α type), displacer type (β type and γ type), and free piston type can be used. Can be used.
 さらに、第2の実施形態においては航空転用形の船舶用ガスタービン110に適用し、且つ燃料としてLNGを用いる場合について説明したが、LNG以外の液化ガス燃料を用いてもよいし、それ以外の種々の燃料を用いる船舶用ガスタービン110にも本発明は適用できる。液化ガス燃料を用いない場合はスターリング機関8の低温側熱交換器11を例えば海水が流通するように設けてもよく、低温の海水によって効果的に作動ガスを冷却することができる。 Furthermore, in the second embodiment, the case where the LNG is used as a fuel and applied to the aeroderivative marine gas turbine 110 has been described. However, a liquefied gas fuel other than LNG may be used. The present invention can also be applied to a marine gas turbine 110 using various fuels. When liquefied gas fuel is not used, the low temperature side heat exchanger 11 of the Stirling engine 8 may be provided so that, for example, seawater circulates, and the working gas can be effectively cooled by the low temperature seawater.
 また、航空機用、船舶用にも限定されず、本発明の中間冷却装置はいわゆる産業用のガスタービンに適用してもよく、この場合にガスタービンの構造は、前記第2の実施形態の船舶用ガスタービン110に類似したものとなる。 The intermediate cooling device of the present invention may be applied to a so-called industrial gas turbine. In this case, the structure of the gas turbine is the same as that of the ship of the second embodiment. This is similar to the industrial gas turbine 110.
 本発明に係るガスタービンの中間冷却装置は、小型軽量で高効率なスターリング機関を利用し、回収した熱を有効利用できるとともに、漏洩故障の際にもガスタービンの運転に支障を来すことがないので、特に航空機用として好適である。 The intermediate cooling device for a gas turbine according to the present invention uses a small, lightweight and highly efficient Stirling engine, can effectively use the recovered heat, and can interfere with the operation of the gas turbine even in the event of a leakage failure. This is particularly suitable for aircraft use.

Claims (7)

  1.  複数段の圧縮機と、これにより圧縮された空気中に燃料を噴射して燃焼させる燃焼器と、この燃焼器からの燃焼ガスにより駆動されるタービンと、を備えたガスタービンに設けられ、前記圧縮機の途中段に熱交換器を介設してなる中間冷却装置において、
     前記熱交換器は、スターリング機関の作動ガスを加熱する高温側の熱交換器であって、前記圧縮機の圧縮空気の流路内に配設されていることを特徴とするガスタービンの中間冷却装置。
    Provided in a gas turbine comprising a multi-stage compressor, a combustor that injects and burns fuel into compressed air, and a turbine driven by combustion gas from the combustor, In the intercooling device comprising a heat exchanger in the middle of the compressor,
    The heat exchanger is a high-temperature side heat exchanger that heats the working gas of the Stirling engine, and is disposed in a flow path of compressed air of the compressor. apparatus.
  2.  前記熱交換器は、前記スターリング機関の作動ガスと前記圧縮機の圧縮空気とが伝熱壁を介して直接的に熱交換するように、該圧縮空気の流路内に配設されている、請求項1の中間冷却装置。 The heat exchanger is disposed in the flow path of the compressed air so that the working gas of the Stirling engine and the compressed air of the compressor exchange heat directly via a heat transfer wall. The intermediate cooling device according to claim 1.
  3.  前記圧縮機が、動翼を支持する内周側のロータと、静翼を支持する外周側のケースと、を備えた軸流式のものであり、
     前記熱交換器は、前記圧縮機のロータ及びケースの間の圧縮空気の流路全体に亘って円環状に設けられ、
     前記ケースの外周側には、前記スターリング機関の少なくとも1つのピストン/シリンダが配設されている、請求項1の中間冷却装置。
    The compressor is of an axial flow type provided with an inner peripheral rotor that supports the moving blades and an outer peripheral case that supports the stationary blades,
    The heat exchanger is provided in an annular shape over the entire flow path of compressed air between the rotor and the case of the compressor,
    The intermediate cooling device according to claim 1, wherein at least one piston / cylinder of the Stirling engine is disposed on an outer peripheral side of the case.
  4.  前記ガスタービンが航空機用のものであり、
     前記スターリング機関は、作動ガスを冷却する低温側の熱交換器が大気と接触するように配設されている、請求項1の中間冷却装置。
    The gas turbine is for aircraft;
    The intermediate cooling device according to claim 1, wherein the Stirling engine is disposed such that a low-temperature heat exchanger for cooling the working gas comes into contact with the atmosphere.
  5.  前記圧縮機の前段にはファンが設けられ、このファンからの排気が流通するファンケース内に、前記低温側の熱交換器が収容されている、請求項4の中間冷却装置。 The intermediate cooling device according to claim 4, wherein a fan is provided in a front stage of the compressor, and the low-temperature side heat exchanger is accommodated in a fan case through which exhaust from the fan circulates.
  6.  前記ガスタービンが、液化ガス燃料を用いるものであり、
     前記スターリング機関の低温側の熱交換器は、作動ガスと前記液化ガス燃料とを熱交換させるように配設されている、請求項1の中間冷却装置。
    The gas turbine uses liquefied gas fuel;
    The intermediate cooling device according to claim 1, wherein the heat exchanger on the low temperature side of the Stirling engine is arranged to exchange heat between the working gas and the liquefied gas fuel.
  7.  複数段の圧縮機と、これにより圧縮された空気中に燃料を噴射して燃焼させる燃焼器と、この燃焼器からの燃焼ガスにより駆動されるタービンとを備え、
     前記圧縮機の途中段に熱交換器を介在させて、前記請求項1の中間冷却装置が設けられていることを特徴とするガスタービン。
    A multi-stage compressor, a combustor that injects and burns fuel into the compressed air, and a turbine that is driven by combustion gas from the combustor;
    A gas turbine, wherein the intermediate cooling device according to claim 1 is provided with a heat exchanger interposed in the middle stage of the compressor.
PCT/JP2011/004027 2010-07-28 2011-07-14 Intermediate cooling device for gas turbine and gas turbine using same WO2012014401A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010169108A JP5572471B2 (en) 2010-07-28 2010-07-28 Gas turbine intermediate cooling device and gas turbine using the same
JP2010-169108 2010-07-28

Publications (1)

Publication Number Publication Date
WO2012014401A1 true WO2012014401A1 (en) 2012-02-02

Family

ID=45529635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004027 WO2012014401A1 (en) 2010-07-28 2011-07-14 Intermediate cooling device for gas turbine and gas turbine using same

Country Status (2)

Country Link
JP (1) JP5572471B2 (en)
WO (1) WO2012014401A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL424532A1 (en) * 2018-02-08 2019-08-12 Politechnika Śląska System of air cooling in gas turbines

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103939229B (en) * 2014-04-02 2015-02-04 绿能高科集团有限公司 Thermodynamic cycle method for prime mover on basis of correct timing constant volume combustion mode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151724A (en) * 1987-12-08 1989-06-14 Mitsubishi Heavy Ind Ltd Composite engine of stirling engine and gas turbine
JPH04128541A (en) * 1990-09-19 1992-04-30 Hino Motors Ltd Compressed air thermal regeneration device of turbo supercharged engine
JP2008175151A (en) * 2007-01-19 2008-07-31 Chugoku Electric Power Co Inc:The Cogeneration system using cold of liquefied gas and method for operating same
JP2008208836A (en) * 2007-02-27 2008-09-11 Snecma Aircraft engine equipped with heat exchanging means
JP2009057972A (en) * 2007-08-30 2009-03-19 Snecma Ventilation and pressurization in turbomachine
JP2009057969A (en) * 2007-08-30 2009-03-19 Snecma Electricity generation in turbomachine
JP2009144538A (en) * 2007-12-12 2009-07-02 Kobe Steel Ltd Liquefied gas vaporization system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151724A (en) * 1987-12-08 1989-06-14 Mitsubishi Heavy Ind Ltd Composite engine of stirling engine and gas turbine
JPH04128541A (en) * 1990-09-19 1992-04-30 Hino Motors Ltd Compressed air thermal regeneration device of turbo supercharged engine
JP2008175151A (en) * 2007-01-19 2008-07-31 Chugoku Electric Power Co Inc:The Cogeneration system using cold of liquefied gas and method for operating same
JP2008208836A (en) * 2007-02-27 2008-09-11 Snecma Aircraft engine equipped with heat exchanging means
JP2009057972A (en) * 2007-08-30 2009-03-19 Snecma Ventilation and pressurization in turbomachine
JP2009057969A (en) * 2007-08-30 2009-03-19 Snecma Electricity generation in turbomachine
JP2009144538A (en) * 2007-12-12 2009-07-02 Kobe Steel Ltd Liquefied gas vaporization system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL424532A1 (en) * 2018-02-08 2019-08-12 Politechnika Śląska System of air cooling in gas turbines

Also Published As

Publication number Publication date
JP2012031729A (en) 2012-02-16
JP5572471B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
EP3623602B1 (en) Hybrid expander cycle with intercooling and turbo-generator
JP6739956B2 (en) Turbine engine with integrated heat recovery and cooling cycle system
AU2001242649B2 (en) An engine
EP2500530A1 (en) Engine waste heat recovery power-generating turbo system and reciprocating engine system provided therewith
JP2014522938A (en) Quasi-isothermal compression engine with separate combustor and expander and corresponding system and method
CA3103999C (en) System for recovering waste heat and method thereof
US20190063313A1 (en) Disc Turbine Engine
US20190309997A1 (en) Combined refrigeration and power plant
US20130097994A1 (en) Multi-fluid turbine engine
RU2478811C2 (en) Ventilation and supercharging of turbo-machine components
JP5572471B2 (en) Gas turbine intermediate cooling device and gas turbine using the same
RU2424441C1 (en) Nuclear turboprop gas turbine engine
CA3168539A1 (en) Dual cycle intercooled engine architectures
US11428162B2 (en) Supercritical CO2 cycle for gas turbine engines using powered cooling flow
JP2007270622A (en) Internal combustion engine system
RU2334886C1 (en) Combined heat-recovery cooled gas turbine power plant
JP2007270621A (en) Internal combustion engine system
RU2349775C1 (en) Nuclear gas-turbine aviation engine
Chen Laws of Thermodynamics and Their Applications in Heat Engine
Stankovic Intercooled-Recuperated Gas-Turbine-Cycle Engine Coupled With Pneumatic Motor With Quasi-Isothermal Heat Addition
Saikrishna et al. Overview of a Gas Turbine and the different methods to improve its Thermal Efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812003

Country of ref document: EP

Kind code of ref document: A1