JPH01151724A - Composite engine of stirling engine and gas turbine - Google Patents

Composite engine of stirling engine and gas turbine

Info

Publication number
JPH01151724A
JPH01151724A JP30851987A JP30851987A JPH01151724A JP H01151724 A JPH01151724 A JP H01151724A JP 30851987 A JP30851987 A JP 30851987A JP 30851987 A JP30851987 A JP 30851987A JP H01151724 A JPH01151724 A JP H01151724A
Authority
JP
Japan
Prior art keywords
engine
gas
stirling engine
combustor
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30851987A
Other languages
Japanese (ja)
Inventor
Kazuo Ujigawa
氏川 和男
Masanori Suzuki
正則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M H I SAGAMI HAITETSUKU KK
Mitsubishi Heavy Industries Ltd
MHI Sagami High Tech Ltd
Original Assignee
M H I SAGAMI HAITETSUKU KK
Mitsubishi Heavy Industries Ltd
MHI Sagami High Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M H I SAGAMI HAITETSUKU KK, Mitsubishi Heavy Industries Ltd, MHI Sagami High Tech Ltd filed Critical M H I SAGAMI HAITETSUKU KK
Priority to JP30851987A priority Critical patent/JPH01151724A/en
Publication of JPH01151724A publication Critical patent/JPH01151724A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/42Displacer drives
    • F02G2270/425Displacer drives the displacer being driven by a four-bar mechanism, e.g. a rhombic mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve control response and thermal efficiency, by a method wherein the combustor of a sterling engine is connected to the gas introduction port of a gas turbine, and a heater to heat-exchange actuating gas of the stirling engine with combustion gas is situated in a connection passage therebetween. CONSTITUTION:A sterling engine is provided with a displacer (a), a piston (b), a heater (c), are producer (d), and a cooler (e). Meanwhile, a gas turbine is provided with a combustor 1, a turbine 2, a compressor 3, a check valve 4, and a bypass valve 5. In this constitution, after the heater (c) is heated by means of combustion gas from the combustor 1, the turbine 2 is driven to run the compressor 3, and a part of pressurized air is returned to the combustor 1. The rest of the pressurized air is introduced to a compression space (f) of the stirling engine through the check valve 4. Regulation of the output of the stirling engine is effected through control of a fuel injection amount and the bypass valve 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスターリングエンジンとガスタービンの複合機
関に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combined engine of a Stirling engine and a gas turbine.

〔従来の技術〕[Conventional technology]

スターリングエンジンの出力を制御する従来方法として
は、作動流体の平均圧力を加減する第1の方法と、作動
流体の容積を変えて圧力振幅をカロ減する第2の方法と
がある。
Conventional methods for controlling the output of a Stirling engine include a first method in which the average pressure of the working fluid is adjusted and a second method in which the volume of the working fluid is varied to reduce the pressure amplitude.

平均圧力を加減する第1の従来方法を第3〜4図を参照
して説明する。
A first conventional method of adjusting the average pressure will be described with reference to FIGS. 3 and 4.

第3図が出力を増加するには供給弁03を開いて、蓄気
槽01の高圧ガスを圧縮スに一ス06に追給することに
よってなされる。その結果スターリングエンジンの平均
圧力が上昇するとともに、該エンジンのp−vIvji
図は第4図に示すようにBからAと平均圧力及びトルク
が上昇する。又出力を低減するには第3図の減圧弁04
i開いて圧縮機02により圧縮スペース06の作動流体
を蓄気槽01に引戻す。
In order to increase the output in FIG. 3, the supply valve 03 is opened and the high pressure gas in the storage tank 01 is added to the compressed gas 06. As a result, the average pressure of the Stirling engine increases, and the engine's p-vIvji
As shown in FIG. 4, the average pressure and torque increase from B to A. Also, to reduce the output, use the pressure reducing valve 04 in Figure 3.
i is opened and the compressor 02 pulls the working fluid in the compression space 06 back into the storage tank 01.

第5図(a)は作動流体の容積を加減する第2の制御方
法を示している。図ではdead容積06〜09ヲ4個
の電磁弁010t−介して順次開放してゆきdead容
積を増加し、圧力振幅を下げ全負荷のC曲線よ〕部分負
荷の0曲線へとスターリングエンジンの出力を低減させ
るものである。
FIG. 5(a) shows a second control method for adjusting the volume of the working fluid. In the figure, the dead volumes 06 to 09 are sequentially opened through four solenoid valves 010t to increase the dead volume and lower the pressure amplitude from the full load C curve to the partial load 0 curve.The Stirling engine output This reduces the

また以上の2つの方法を組合せたものも実施されている
A combination of the above two methods has also been implemented.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来外燃機関であるスターリングエンジンでは迅速な出
力制御が難かしく、平均圧力を加減する第1の方法では
、減員荷時の応答性が悪く、この応答性は圧縮機の能力
で制欝される。又容積全加減する第2の方法では構造が
可成複雑となり、いずれの場合も内燃機関と比べて応答
性が劣る欠点がある。
In the Stirling engine, which is an external combustion engine, it is difficult to quickly control the output, and the first method of adjusting the average pressure has poor response when the load is reduced, and this response is limited by the capacity of the compressor. . Further, in the second method of completely adjusting the volume, the structure becomes considerably complicated, and in either case, there is a drawback that the response is inferior to that of an internal combustion engine.

本発明の目的は前記従来装置の問題点を解消し、出力制
御の応答性がよく熱効率のよい、スターリングエンジン
とガスタービンの複合機関を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the conventional apparatus and to provide a combined engine of a Stirling engine and a gas turbine, which has good responsiveness in output control and high thermal efficiency.

〔問題点全解決するための手段〕[Means to solve all problems]

本発明のスターリングエンジンとガスタービンの複合機
関は、スターリングエンジンの燃焼器とガスタービンの
ガス導入口とを接続するガス通路を設けるとともに、上
記ガス通路中にスターリングエンジンの作動ガスと燃焼
ガスとを熱交換するヒータを設けたことを特徴としてい
る。
A combined engine of a Stirling engine and a gas turbine according to the present invention includes a gas passage connecting a combustor of the Stirling engine and a gas inlet of a gas turbine, and a working gas and combustion gas of the Stirling engine are provided in the gas passage. It is characterized by the provision of a heater for heat exchange.

〔作用〕[Effect]

本発明によれば、従来無駄に捨てられていたスターリン
グエンノンの燃焼ガスがガスタービンの駆動に利用され
、ガスタービンの迅速な応答性をスターリングエンジン
の平均圧力の加減に利用することができる。従ってスタ
ーリングエンジンの出力の制御は燃焼器の燃料噴射量と
パイA’ス弁の操作のみで行なうことができ、エンジン
の全体の応答性を向上させることができる。
According to the present invention, the combustion gas of Stirling Ennon, which was conventionally wasted, is used to drive the gas turbine, and the quick response of the gas turbine can be used to adjust the average pressure of the Stirling engine. Therefore, the output of the Stirling engine can be controlled only by the fuel injection amount of the combustor and the operation of the pie A' valve, and the overall responsiveness of the engine can be improved.

〔実施例〕〔Example〕

以下、第1〜2図を参照し本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.

第1図はスターリングエンジンの作動流体として空気を
使用する第1実施例の場合を示す。図のスターリングエ
ンジンはRhombic drive形であるが、他の
構造形式の外燃機関であっても本発明の作用は変わらな
い。
FIG. 1 shows a first embodiment in which air is used as the working fluid of the Stirling engine. Although the Stirling engine shown in the figure is of a rhombic drive type, the effect of the present invention does not change even if the external combustion engine has another structural type.

図においてa = fはスターリングエンジンの基本的
構成部品であり、aはデイスグレツサ、bはピストン、
Cはヒータ、dは再成器、eはクーラ、fは圧縮スペー
スを示す。1〜5はガスタービンの主要構成部品であり
、1は燃焼器、2はタービン、3はコンプレッサ、4は
逆止弁、5はパイ/4’ス弁を示す。燃焼器1より生じ
た燃焼ガスによってヒータCを加熱した後、さ・らにタ
ービン2を駆動し、同軸上のコンプレッサ3を回転させ
る。これによってコンプレッサ3は空気を吸い込み、こ
れを加圧しその一部を燃焼器1にもどしている。
In the figure, a = f are the basic components of a Stirling engine, where a is a disgrace, b is a piston,
C is a heater, d is a regenerator, e is a cooler, and f is a compression space. 1 to 5 are main components of the gas turbine, 1 is a combustor, 2 is a turbine, 3 is a compressor, 4 is a check valve, and 5 is a pi/4' valve. After the heater C is heated by the combustion gas generated from the combustor 1, the turbine 2 is further driven, and the compressor 3 on the same axis is rotated. This causes the compressor 3 to suck in air, pressurize it, and return a portion of it to the combustor 1.

又加圧された空気の残部は、逆止弁4を通りスターリン
グエンジンの圧縮スペースfに入りデツドス4−ス内を
常に過給加圧している。スターリングエンジンの出力調
整は燃料噴射量を操作することによって、ターゲ過給機
のタービン回転数を変更し過給圧力を加減して行なって
いる。さらに迅速な応答性を必要とする場合には、パイ
ノeス弁5の開度調整を行なう必要がある。このように
燃料噴射量とパイ・ぐス弁5のみの操作によって幅ひろ
い出力制御ができるようになっている。またがスタービ
ン2の軸でスターリングエンジンの軸を駆動するように
すれば、ガスタービンの出力を動力として取シ出すこと
ができる。
The remaining pressurized air passes through the check valve 4 and enters the compression space f of the Stirling engine, thereby constantly supercharging and pressurizing the interior of the dead space. The output of the Stirling engine is adjusted by manipulating the amount of fuel injection, changing the turbine rotation speed of the target supercharger, and adjusting the boost pressure. If even faster response is required, it is necessary to adjust the opening degree of the pinose valve 5. In this way, the output can be controlled over a wide range by operating only the fuel injection amount and the piston valve 5. Alternatively, if the shaft of the turbine 2 is used to drive the shaft of the Stirling engine, the output of the gas turbine can be extracted as power.

第2図はスターリングエンジンの作動流体として水素や
ヘリウムを使用した第2実施例の場合を示す。この第2
実施例では空気を使用する第1実施例てくらべ蓄圧槽g
と圧縮機りが必要となる。
FIG. 2 shows a second embodiment in which hydrogen or helium is used as the working fluid of the Stirling engine. This second
In the example, air is used.Compared with the first example, the pressure accumulator tank
A compressor is required.

ガスタービンの軸により圧縮機りを駆動し、作動流体を
加圧して常にスターリングエンジンの圧縮スペースfを
過給している。出力制御は作動流体が空気のときと同様
であるが、この場合にはパイ・母スされた作動流体は蓄
気槽gにもどされる。
The shaft of the gas turbine drives the compressor, pressurizes the working fluid, and constantly supercharges the compression space f of the Stirling engine. Output control is the same as when the working fluid is air, but in this case the pumped working fluid is returned to the gas storage tank g.

〔発明の効果〕〔Effect of the invention〕

本発明のスターリングエンジンとがスタービンの複合機
関は前記のとおり構成したので、従来スターリングエン
ジンにおける問題点であった出力制御の応答性が内燃機
関並に迅速化されるとともに、無駄に排気されていた熱
エネルギを利用してタービンを駆動すれば、出力として
回収することができ、機関全体の性能を向上させること
ができる。
Since the combined Stirling engine and turbine engine of the present invention is constructed as described above, the responsiveness of output control, which was a problem with conventional Stirling engines, is made as quick as that of an internal combustion engine, and wasteful exhaust gas is eliminated. If thermal energy is used to drive a turbine, it can be recovered as output, improving the overall performance of the engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図は本発明に係るもので第1図はスターリング
エンジンの作動流体として空気を使用した第1実施例の
構成図、第2図は作動流体として水素やヘリウムを使用
した第2実施例の構成図、第3〜5図は従来例で、第3
図は平均圧力の加減による出力制御の説明図、第4図は
同p−v線図、第5図(a)は作動流体容積の加減によ
る出力制御の説明図、第5図(b)は同P−丁線図であ
る。 1・・・燃焼器、2・・・ガスタービン、C・・・ヒー
タ。 第1図 第3図 第4図 C・・・全負荷 D・・・部分負荷 Q5− dead容積1 07°=dead容積2 08・・・dead容積3 09− dead容積4 010・・・電磁弁 第5図 (b) IME
Figures 1 and 2 are related to the present invention; Figure 1 is a configuration diagram of a first embodiment in which air is used as the working fluid of the Stirling engine, and Figure 2 is a diagram of the second embodiment in which hydrogen or helium is used as the working fluid. The example configuration diagrams, Figures 3 to 5, are conventional examples;
The figure is an explanatory diagram of output control by adjusting the average pressure, Figure 4 is the same p-v diagram, Figure 5 (a) is an explanatory diagram of output control by adjusting the working fluid volume, and Figure 5 (b) is It is a P-D diagram of the same. 1...Combustor, 2...Gas turbine, C...Heater. Figure 1 Figure 3 Figure 4 C... Full load D... Partial load Q5- Dead volume 1 07° = Dead volume 2 08... Dead volume 3 09- Dead volume 4 010... Solenoid valve Figure 5(b) IME

Claims (1)

【特許請求の範囲】[Claims] スターリングエンジンの燃焼器とガスタービンのガス導
入口とを接続するガス通路を設けるとともに、上記ガス
通路中にスターリングエンジンの作動ガスと燃焼ガスと
を熱交換するヒータを設けたことを特徴とするスターリ
ングエンジンとガスタービンの複合機関。
A Stirling engine characterized by having a gas passage connecting the combustor of the Stirling engine and a gas inlet of a gas turbine, and a heater for exchanging heat between the working gas of the Stirling engine and the combustion gas in the gas passage. A combination engine and gas turbine.
JP30851987A 1987-12-08 1987-12-08 Composite engine of stirling engine and gas turbine Pending JPH01151724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30851987A JPH01151724A (en) 1987-12-08 1987-12-08 Composite engine of stirling engine and gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30851987A JPH01151724A (en) 1987-12-08 1987-12-08 Composite engine of stirling engine and gas turbine

Publications (1)

Publication Number Publication Date
JPH01151724A true JPH01151724A (en) 1989-06-14

Family

ID=17982002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30851987A Pending JPH01151724A (en) 1987-12-08 1987-12-08 Composite engine of stirling engine and gas turbine

Country Status (1)

Country Link
JP (1) JPH01151724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031233A1 (en) * 2007-08-30 2009-03-04 Snecma Ventilation and pressurisation of components in a turbomachine by means of a stirling engine
EP2031234A1 (en) * 2007-08-30 2009-03-04 Snecma Generation of electricity in a turbomachine by means of a stirling engine
WO2012014401A1 (en) * 2010-07-28 2012-02-02 川崎重工業株式会社 Intermediate cooling device for gas turbine and gas turbine using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031233A1 (en) * 2007-08-30 2009-03-04 Snecma Ventilation and pressurisation of components in a turbomachine by means of a stirling engine
EP2031234A1 (en) * 2007-08-30 2009-03-04 Snecma Generation of electricity in a turbomachine by means of a stirling engine
FR2920483A1 (en) * 2007-08-30 2009-03-06 Snecma Sa GENERATION OF ELECTRICITY IN A TURBOMACHINE
FR2920482A1 (en) * 2007-08-30 2009-03-06 Snecma Sa VENTILATION AND PRESSURIZATION OF COMPONENTS IN A TURBOMACHINE
JP2009057969A (en) * 2007-08-30 2009-03-19 Snecma Electricity generation in turbomachine
US7685828B2 (en) 2007-08-30 2010-03-30 Snecma Electricity generation in a turbomachine
US8186144B2 (en) 2007-08-30 2012-05-29 Snecma Component ventilation and pressurization in a turbomachine
WO2012014401A1 (en) * 2010-07-28 2012-02-02 川崎重工業株式会社 Intermediate cooling device for gas turbine and gas turbine using same
JP2012031729A (en) * 2010-07-28 2012-02-16 Kawasaki Heavy Ind Ltd Intermediate cooling device of gas turbine, and gas turbine using the same

Similar Documents

Publication Publication Date Title
US3257797A (en) Tandem supercharging system
JP2524139B2 (en) Internal combustion engine and operating method thereof
US5590528A (en) Turbocharged reciprocation engine for power and refrigeration using the modified Ericsson cycle
JPS6241935A (en) Method for controlling working cycle of four cycle internal combustion piston engine
CN103299043B (en) For running method and the internal-combustion engine of the internal-combustion engine that quantity controls
US20050279093A1 (en) Supercharged intercooled engine using turbo-cool principle and method for operating the same
CN111997747B (en) Zero-emission compression ignition type two-stroke rotor machine capable of recycling oxygen and control method thereof
US5924305A (en) Thermodynamic system and process for producing heat, refrigeration, or work
CN105065110A (en) Organic rankine cycle and electric power dual-drive internal combustion engine pressurization system
US5199262A (en) Compound four stroke internal combustion engine with crossover overcharging
CN2881124Y (en) Piston type engine
US5179839A (en) Alternative charging method for engine with pressurized valved cell
JP2598060B2 (en) Method for controlling the working cycle of an internal combustion engine and its implementation
CN101979852A (en) Free piston engine with independent compression and controllable inlet air thermodynamic parameter
JPH01151724A (en) Composite engine of stirling engine and gas turbine
CN111188704B (en) Gasoline homogeneous charge compression ignition engine system and method capable of achieving high heat efficiency and low emission
US5704210A (en) Intercooled supercharged gas generator engine
JP2001193468A (en) Miller cycle engine
CN108757163B (en) Waste heat utilization device of turbine composite internal combustion engine and control method thereof
CN115653720A (en) Supercritical carbon dioxide cyclic load following control system and method
EP3957838B1 (en) Gas engine heat pump
US20070277793A1 (en) Method for operating an internal combustion engine
JPS594533B2 (en) Engine with turbocharger
Mostafavi et al. Thermodynamic analysis of charge air cooling of diesel engine by an exhaust gases operated absorption refrigeration unit-Turbocharged engine with combined pre and inter cooling
US10309299B2 (en) Systems and methods for use with internal combustion engines and vehicles comprising the same