WO2012014346A1 - Total phosphorous quantity determination method - Google Patents

Total phosphorous quantity determination method Download PDF

Info

Publication number
WO2012014346A1
WO2012014346A1 PCT/JP2011/000460 JP2011000460W WO2012014346A1 WO 2012014346 A1 WO2012014346 A1 WO 2012014346A1 JP 2011000460 W JP2011000460 W JP 2011000460W WO 2012014346 A1 WO2012014346 A1 WO 2012014346A1
Authority
WO
WIPO (PCT)
Prior art keywords
test water
compound
carbon atoms
acid
water
Prior art date
Application number
PCT/JP2011/000460
Other languages
French (fr)
Japanese (ja)
Inventor
石井宏
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Priority to JP2011526336A priority Critical patent/JP4821941B1/en
Publication of WO2012014346A1 publication Critical patent/WO2012014346A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/182Specific anions in water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Definitions

  • the present invention relates to a method for quantifying total phosphorus, and in particular, quantifies the total phosphorus in test water by decomposing the phosphorus compound contained in the test water and converting it into phosphate ions and then quantifying the phosphate ions in the test water. Regarding the method.
  • Phosphorus is one of the causative substances related to eutrophication such as ocean water, lake water, river water, and groundwater, so there are regulations on the discharge of factory wastewater. Quantification of phosphate ions is required before discharge.
  • factory effluents not only contain phosphorus as phosphate ions, but may also contain phosphorus elements as various phosphorus compounds. Phosphorus compounds are naturally decomposed after being discharged into the environment, which is the source of phosphorus. It becomes. For this reason, factory wastewater and the like may be required to determine not only phosphate ions but also the total amount of phosphate ions including phosphate ions that can be generated from phosphorus compounds, so-called total phosphorus.
  • Non-Patent Document 1 As an official quantification method of total phosphorus contained in water, molybdenum blue (ascorbic acid reduction) absorptiometry described in Non-Patent Document 1 is known. In this quantitative method, a heteropoly compound formed by reacting phosphate ions contained in water with hexaammonium heptamolybdate and potassium antimonyl tartrate (bis ((+)-tartrate) diantimony (III) dipotassium) is produced. Phosphate ions are quantified by measuring the absorbance of test water colored by molybdenum blue produced by reduction with L (+)-ascorbic acid.
  • a predetermined amount of test water is collected, and pretreatment is performed to decompose the phosphorus compounds contained in the test water and convert them into phosphate ions.
  • pretreatment after adding a potassium peroxodisulfate solution, which is an oxidizing agent of a phosphorus compound, to the test water, the test water is treated in a high-pressure steam sterilizer set at 120 ° C. for 30 minutes to oxidize the phosphorus compound. Decomposes and converts to phosphate ion.
  • a predetermined amount of ammonium molybdate-ascorbic acid mixed solution is added to the pretreated test water, shaken, and allowed to stand at 20 to 40 ° C. for about 15 minutes. Then, the absorbance at a wavelength of about 880 nm is measured for this solution, and the phosphate ion concentration (mgPO 4 3 ⁇ / L) of test water is calculated based on a calibration curve prepared in advance from the measured value.
  • Non-Patent Document 2 proposes a method of treating at 100 ° C. for 60 minutes after adding potassium peroxodisulfate to test water.
  • this method a portion of potassium peroxodisulfate remains in the test water, which may inhibit the reduction of the heteropoly compound by L (+)-ascorbic acid, so the ammonium molybdate-ascorbic acid mixture
  • the test water is allowed to cool to 20-40 ° C to suppress the oxidation of potassium peroxodisulfate, or sodium sulfite as a reducing agent is added to the test water in an alkaline state. It is necessary to extinguish potassium disulfate.
  • the above-mentioned method for determining total phosphorus contains a more essential problem.
  • the quantification range is a minute range of 1.25 to 25 ⁇ g, it cannot be applied when the test water contains a relatively large amount of phosphate ions or phosphorus compounds. There is a bug.
  • the test water contains silica such as silicon dioxide, silicic acid and silicate, the quantitative result may be affected by the silica and may be unreliable.
  • chloride ions chlorine is generated from the chloride ions during the pretreatment of the test water, and this chlorine delays the color development of the test water due to the formation of molybdenum blue, thus obtaining a quantitative result. It may take a long time to complete.
  • An object of the present invention is to make it possible to quantitate total phosphorus in test water safely and in a short time.
  • the present invention relates to a method for quantifying the total phosphorus of test water by decomposing the phosphorus compound contained in the test water and converting it into phosphate ions, and then quantifying the phosphate ions of the test water,
  • the alkali metal salt of peroxodisulfuric acid or ammonium peroxodisulfate and sulfuric acid were added to the test water, and the process was heated for a predetermined time at a temperature from 65 ° C. to the boiling temperature of the test water.
  • a saccharide compound selected from a saccharide compound group consisting of possible oligosaccharide groups and a color former containing hexaammonium heptamolybdate or an alkali metal molybdate are added, and a predetermined time at a temperature from 65 ° C. to the boiling temperature of the inspection water Step 2 of heating and Step 3 of measuring the absorbance at an arbitrary wavelength in the range of 600 to 950 nm for the test water that has passed through Step 2 are included.
  • this quantification method includes steps 1 to 3 described above, the total phosphorus in the test water can be quantified safely and in a short time.
  • step 2 the color former can be added in two or more steps while providing an interval.
  • the present invention according to another aspect relates to a method for coloring phosphate ions contained in test water.
  • This color development method is applied to the test water that is set so that the test water contains sulfuric acid and the test water that has undergone the process A.
  • at least one hydroxyl group-containing compound selected from a hydroxyl group-containing compound group consisting of a hydroxycarboxylic acid group and an alditol, a vanadium compound having a valence of 3 to 5 vanadium, an aldose having 5 carbon atoms, an aldose having 6 carbon atoms, carbon
  • a saccharide compound selected from the group of saccharides consisting of aldoses having 5 carbon atoms, aldoses having 5 carbon atoms, aldoses having 6 carbon atoms or ketoses having 6 carbon atoms by decomposition, and hexaammonium heptamolybdate or molybdenum
  • a color former containing acid alkali metal salt and apply for a predetermined time at
  • step A of the color development method for example, an alkali metal salt of peroxodisulfuric acid or ammonium peroxodisulfate and sulfuric acid is added to the test water and heated at a temperature from 65 ° C. to the boiling temperature of the test water for a predetermined time. Is set to contain sulfuric acid.
  • Step B it is preferable to add the color former in two or more steps while providing an interval.
  • the present invention according to still another aspect relates to a color former for phosphate ions contained in test water, and the color former is at least one selected from a hydroxycarboxylic acid group and a hydroxyl group-containing compound group comprising alditol.
  • Hydroxyl-containing compounds vanadium compounds with a valence of vanadium of 3 to 5, aldoses with 5 carbons, aldoses with 6 carbons, aldoses with 5 carbons, aldoses with 6 carbons, aldoses with 6 carbons, or carbon numbers It consists of the aqueous solution containing the saccharide compound chosen from the saccharide compound group which consists of the oligosaccharide group which can produce
  • this color former is composed of an aqueous solution containing a predetermined component, it can be used in the total phosphorus determination method and phosphate ion color development method according to the present invention.
  • the color former used in the quantitative method and color development method according to the present invention and the color former of the present invention may further contain an antimony compound having an antimony valence of 3.
  • the hydroxycarboxylic acid group is composed of, for example, citric acid, malic acid, aldaric acid, and aldonic acid.
  • the oligosaccharide group is composed of, for example, sucrose, maltose, lactose, raffinose, kestose, stachyose, isomaltulose, maltulose and lactulose.
  • the vanadium compound is selected from the group consisting of, for example, vanadium (III) chloride, vanadium oxide sulfate (IV), sodium metavanadate (V), and vanadium oxide (V).
  • the saccharide compound used in the color former of the present invention is preferably a non-reducing oligosaccharide selected from the group consisting of sucrose, raffinose, kestose and stachyose.
  • FIG. 3 is a diagram showing a calibration curve created in Example 1.
  • FIG. 6 is a diagram showing a calibration curve created in Example 2.
  • FIG. 6 is a diagram showing a calibration curve created in Example 3. The figure which shows the calibration curve created in Example 4.
  • FIG. 6 is a diagram showing a calibration curve created in Example 5.
  • FIG. 6 is a diagram showing a calibration curve created in Example 6.
  • FIG. 10 is a diagram showing a calibration curve created in Example 7.
  • FIG. 10 is a diagram showing a calibration curve created in Example 8.
  • FIG. 10 shows a calibration curve created in Example 9.
  • FIG. 10 is a diagram showing a calibration curve created in Example 10.
  • FIG. 10 is a diagram showing a calibration curve created in Example 11.
  • the figure which shows the calibration curve created in Example 13 The figure which shows the calibration curve created in Example 14.
  • test water capable of quantifying total phosphorus by the quantification method of the present invention is not particularly limited, but in addition to wastewater that is usually provided with phosphorus discharge regulations such as factory wastewater and domestic wastewater, marine water, Natural water such as lake water, river water and groundwater.
  • a predetermined amount of the test water is collected and pretreated to convert the phosphorus compound contained in the test water into phosphate ions.
  • an alkali metal salt of peroxodisulfuric acid or ammonium peroxodisulfate (hereinafter sometimes referred to as a peroxodisulfuric acid compound) and sulfuric acid are added to test water, and boiling of the test water starts at 65 ° C. under normal pressure. It is heated for a predetermined time at a temperature up to the temperature, preferably from 75 ° C. to the boiling temperature of the inspection water (step 1).
  • organic and inorganic phosphorus compounds, particularly organic phosphorus compounds, contained in the test water are oxidatively decomposed by the peroxodisulfuric acid compound, and phosphorus elements are converted into phosphate ions.
  • the alkali metal salt of peroxodisulfuric acid used here is usually potassium peroxodisulfate or sodium peroxodisulfate.
  • the peroxodisulfuric acid compound is usually added to test water as an aqueous solution dissolved in purified water, for example, pure water, distilled water or ion exchange water.
  • the concentration of this aqueous solution is usually preferably set to 0.4 to 50 g / L, and more preferably set to 3.0 to 40 g / L.
  • the amount of the peroxodisulfuric acid compound aqueous solution added to the test water is preferably set so that the concentration of the peroxodisulfate compound in the test water can sufficiently oxidatively decompose the phosphorus compound contained in the test water.
  • the concentration of the peroxodisulfuric acid compound in the test water is preferably set so that the concentration of the peroxodisulfuric acid compound aqueous solution and sulfuric acid when added to the test water is usually 0.5 to 9 g / L. It is more preferable to set 1 to 6 g / L.
  • the amount of sulfuric acid added to the inspection water is preferably set so that the concentration of sulfuric acid when the aqueous peroxodisulfuric acid compound solution and sulfuric acid are added to the inspection water is 0.1 M or more. However, if too much is added, it may be necessary to neutralize sulfuric acid which is excessive for the purpose of forming molybdenum blue (coloration of phosphate ions) in Step 2 to be described later. It is preferable to set it to 1 to 0.3M.
  • the heating time of the inspection water in this step varies depending on the heating temperature, but it is usually preferable to set it to 20 to 40 minutes.
  • a color former is added to the inspection water that has undergone step 1 and then heated for a predetermined time (step 2).
  • This process can be applied to the test water in the high temperature state or the heating continuation state after completion of the process 1 without cooling the test water that has passed through the process 1 by standing cooling or the like.
  • the color former used here includes a hydroxyl group-containing compound, a vanadium compound, a saccharide compound, and a molybdenum compound.
  • the hydroxyl group-containing compound at least one selected from the hydroxyl group-containing compound group consisting of a hydroxycarboxylic acid group and alditol is used.
  • the hydroxycarboxylic acid group includes, for example, citric acid, malic acid, aldaric acid and aldonic acid, and salts thereof (for example, alkali metal salts).
  • the aldaric acid used here is a compound represented by the general formula of HO 2 C— (CHOH) n—CO 2 H (n is an integer of 1 or more, preferably an integer of 1 to 5) and is water-soluble. Examples thereof include tartaric acid having n of 2 and mucoic acid having n of 4.
  • the aldonic acid used here is represented by the general formula HO 2 C— (CHOH) n—CH 2 OH (n is an integer of 1 or more, preferably an integer of 1 to 5, more preferably 4 or 5).
  • n is 1 glyceric acid
  • n is 4 gluconic acid
  • n is 5 glucoheptonic acid.
  • the alditol used here is a compound represented by the general formula HOH 2 C— (CHOH) n—CH 2 OH (n is an integer of 1 or more, preferably an integer of 2 to 5) and is water-soluble. Examples thereof include erythritol, where n is 2, xylitol where n is 3, sorbitol where n is 4, and boremitol where n is 5.
  • vanadium compound vanadium having a valence of 3 to 5 is used.
  • vanadium compounds that can be used include vanadium chloride (III), vanadium oxide sulfate (IV), sodium metavanadate (V), and vanadium oxide (V). Two or more of these vanadium compounds may be used in combination.
  • vanadium having a valence of 2 can be used (for example, vanadium (II) chloride).
  • a compound having a valence of vanadium is quickly converted to trivalent or tetravalent vanadium when added to the test water in this step. Can be used.
  • Examples of the saccharide compounds include aldoses having 5 carbon atoms, aldoses having 6 carbon atoms, ketoses having 6 carbon atoms, and aldoses having 5 carbon atoms, aldoses having 6 carbon atoms, or saccharides having 6 carbon atoms by decomposition. Those selected from the following saccharide compound group are used. Examples of aldoses having 5 carbon atoms include ribose, arabinose and xylose. Examples of aldoses having 6 carbon atoms include altrose, glucose, mannose and galactose. Examples of ketoses having 6 carbon atoms include fructose and sorbose.
  • the oligosaccharide group capable of generating aldoses having 5 carbon atoms, aldoses having 6 carbon atoms or ketoses having 6 carbon atoms by decomposition includes, for example, disaccharides sucrose, maltose, lactose, isomaltulose, maltulose, lactulose, These include galactosucrose, primebellose and vicyanose, the trisaccharide raffinose, kestose, gentianose, planteose and umbelliferose, the tetrasaccharide stachyose and the pentasaccharide Verbasse.
  • These exemplary oligosaccharides upon decomposition, produce xylose (5 carbon aldose), glucose (6 carbon aldose), galactose (6 carbon aldose) or fructose (6 carbon ketose). Can do.
  • oligosaccharide group is usually available at a low price, those composed of sucrose, maltose, lactose, raffinose, kestose, stachyose, isomaltulose, maltulose and lactulose are preferable.
  • hexaammonium heptamolybdate or an alkali metal salt alkaline earth metal salt or heavy metal salt of molybdic acid is used.
  • alkali metal salts of molybdate include sodium molybdate, potassium molybdate and lithium molybdate.
  • alkaline earth metal salts of molybdate include calcium molybdate and magnesium molybdate.
  • the heavy metal salt of molybdate include zinc molybdate and aluminum molybdate.
  • the color former is usually added to the inspection water as an aqueous solution in which a hydroxyl group-containing compound, vanadium compound, saccharide compound and molybdenum compound are dissolved in purified water.
  • the color former composed of such an aqueous solution can be added to the inspection water in various forms.
  • a first form of the color former is an aqueous solution containing a hydroxyl group-containing compound, a vanadium compound, a saccharide compound and a molybdenum compound simultaneously in purified water.
  • the 2nd form of the example of a color former consists of each aqueous solution of a hydroxyl-containing compound, a vanadium compound, a saccharide compound, and a molybdenum compound.
  • the third form of the color former includes a first aqueous solution containing a saccharide compound and a second aqueous solution containing a hydroxyl group-containing compound, a vanadium compound, and a molybdenum compound at the same time.
  • each aqueous solution of the second and third forms is stable, it can be prepared and stored in advance, and can be used as needed when necessary.
  • the color former of the first form can be used by adding it to the test water as it is, but it is usually preferable to prepare it immediately before the addition to the test water in order to ensure the stability of each component. It can be prepared by using the storable color former of the second form or the third form and mixing each of the aqueous solutions immediately before addition to the test water.
  • the color formers of the second form and the third form can be used by adding each of the aqueous solutions separately to the test water, but by mixing each aqueous solution immediately before addition to the test water, One form of color former can also be added to the test water.
  • the color former is preferably of the first form because it can more stably color phosphate ions in test water.
  • the color former of the first form is a reaction between solutes when a non-reducing oligosaccharide capable of producing an aldose having 5 carbon atoms, an aldose having 6 carbon atoms or a ketose having 6 carbon atoms is used as a saccharide compound by decomposition. Can be stored stably for a long period of time. Therefore, such a color former of the first form can be prepared in advance and used when necessary.
  • the non-reducing oligosaccharide used in this case is usually sucrose, raffinose, kestose or stachyose, and these oligosaccharides are decomposed by glucose (carbon number 6 aldose), galactose (carbon number 6 aldose). ) Or fructose (6 carbon ketoses).
  • the color former may further contain an antimony compound.
  • an antimony compound those having an antimony valence of 3 are used.
  • the antimony compound having an antimony valence of 3 include potassium antimonyl tartrate, antimony trioxide (that is, antimony (III) oxide), and a halide salt of antimony.
  • the halide salt of antimony it is preferable to use antimony trichloride (that is, antimony (III) chloride) that hardly generates harmful substances by hydrolysis.
  • an antimony compound having an antimony valence of 5 can also be used. Since this antimony compound is naturally converted into an antimony compound having an antimony valence of 3 in an aqueous solution, it can be used as a source of the antimony compound having an antimony valence of 3.
  • the antimony compound having an antimony valence of 5 usable here include antimony pentoxide (that is, antimony (V) oxide) and an antimony halide salt having a valence of 5.
  • antimony pentoxide that is, antimony (V) oxide
  • antimony halide salt having a valence of 5 As the halide salt of antimony having a valence of 5, it is preferable to use antimony pentachloride (that is, antimony chloride (V)) that does not easily generate harmful substances by hydrolysis.
  • the antimony compound can be added to the inspection water as an aqueous solution dissolved in purified water like the other components for the color former, and is used in the color former in any of the first, second and third forms. be able to.
  • the storable color former of the first form using non-reducing oligosaccharides should be stored stably for a long time because the reaction between the solutes does not substantially proceed even when the antimony compound is contained. Can do.
  • the antimony compound is preferably included in the second aqueous solution because it may impair the storage stability of the aqueous solution. Even when the second aqueous solution contains an antimony compound, it can be stably stored.
  • an aqueous solution containing a vanadium compound may be colored due to the decomposition of the vanadium compound. It is preferable to adjust the alkalinity by adding an aqueous solution of a strong alkali agent such as an alkaline earth metal hydroxide such as calcium, or to prepare using an aqueous solution of a similar strong alkali agent instead of purified water. . In these cases, the aqueous solution containing the vanadium compound is prevented from being decomposed and colored by the vanadium compound, and the storage stability is improved.
  • a strong alkali agent such as an alkaline earth metal hydroxide such as calcium
  • an appropriate amount of sulfuric acid or sulfuric acid is used in order to promote dissolution of the alkaline earth metal salt of molybdic acid during the preparation of the various aqueous solutions described above for the color former.
  • Hydrochloric acid can be added.
  • antimony trioxide is used as the antimony compound
  • an appropriate amount of hydrochloric acid can be added in order to promote dissolution of antimony trioxide during the preparation of the various aqueous solutions described above for the color former.
  • phosphate ions originally contained in the inspection water and phosphate ions generated by oxidative decomposition of the phosphorus compound in step 1 react with the added molybdenum compound to form a heteropoly compound. And the produced
  • the saccharide compound is an aldose having 5 carbon atoms, an aldose having 6 carbon atoms, or a ketose having 6 carbon atoms, the heteropoly compound is reduced thereby.
  • the heteropoly compound When the saccharide compound is an oligosaccharide, the heteropoly compound is reduced by an aldose having 5 carbon atoms, an aldose having 6 carbon atoms, or a ketose having 6 carbon atoms generated by the decomposition.
  • a reducing oligosaccharide such as maltose, lactose, isomaltulose, maltulose, lactulose and primeverose
  • the heteropoly compound produced also by the reducing oligosaccharide itself can be reduced. Reduction of such a heteropoly compound generates molybdenum blue (coloration of phosphate ions), and the molybdenum blue changes the color of the inspection water.
  • the peroxodisulfuric acid compound remaining in the test water without being consumed for the oxidative decomposition of the phosphorus compound in Step 1 is decomposed by the saccharide compound and quickly disappears before the heteropoly compound is formed.
  • the saccharide compound is an aldose having 5 carbon atoms, an aldose having 6 carbon atoms, or a ketose having 6 carbon atoms, these monosaccharides decompose and disappear the peroxodisulfuric acid compound remaining in the test water. To do.
  • the saccharide compound is an oligosaccharide
  • the peroxodisulfuric acid compound remaining by the aldose having 5 carbon atoms, the aldose having 6 carbon atoms, or the ketose having 6 carbon atoms generated by the decomposition of the oligosaccharide is decomposed and disappears.
  • the remaining peroxodisulfuric acid compound can be decomposed by the oligosaccharide itself.
  • the peroxodisulfuric acid compound remaining in the test water without being consumed for the oxidative decomposition of the phosphorus compound is prevented from interfering with the reduction of the heteropoly compound.
  • silica such as silicon dioxide, silicic acid and silicate contained in the inspection water is inhibited from reacting with phosphate ions by the action of the hydroxyl group-containing compound to form a complex.
  • the phosphate ion in test water reacts with a molybdenum compound, produces
  • the color former added to the inspection water is the concentration of each component in each aqueous solution and the inspection of each aqueous solution so that the concentration of each component in the inspection water at the time of addition of the color former to the inspection water is as follows: It is preferable to adjust the amount added to water.
  • the concentration of the hydroxyl group-containing compound in the test water (the concentration at the time of addition) is preferably set to an amount that can sufficiently suppress the color development due to the formation of molybdenum blue from being affected by silica. From this point of view, the concentration of the hydroxyl group-containing compound in the test water is usually preferably set to 0.5 to 10 g / L, and more preferably set to 1 to 7 g / L.
  • the concentration of the vanadium compound in the test water (concentration at the time of addition, and the converted concentration excluding water molecules when hydrate is used) is sufficient to accelerate the consumption of chlorine by the saccharide compound added to the test water It is preferable to set to an appropriate amount. From this viewpoint, the concentration of the vanadium compound in the test water is usually preferably set to 0.05 to 10 g / L, and more preferably set to 0.1 to 3.0 g / L.
  • the concentration of the saccharide compound in the test water (concentration at the time of addition, when using an oligosaccharide, the converted concentration in the aldose with 5 carbon atoms, the aldose with 6 carbon atoms or the ketose with 6 carbon atoms) ,
  • the concentration of the saccharide compound in the test water is usually preferably set to 2 to 60 g / L, and more preferably set to 5 to 40 g / L.
  • the concentration of the molybdenum compound in the test water (the concentration at the time of addition, and when using a hydrate, the concentration converted excluding water molecules) is usually preferably set to 0.3 to 3.0 g / L. More preferably, it is set to 0.5 to 2.0 g / L.
  • the concentration of the antimony compound in the test water (the concentration at the time of addition, or the concentration converted without water molecules when a hydrate is used) is usually 0.01 to 0.24 g. / L is preferable, and 0.02 to 0.13 g / L is more preferable.
  • the concentration ratio (A: B) between the antimony compound (A) and the molybdenum compound (B) in the test water is preferably set to 1: 8 to 100, and preferably 1:10 to 50. It is more preferable to set.
  • the color former can be added in portions to the test water while providing an interval in two or more steps.
  • Step 1 a part of the total amount of the color former to be added to the inspection water can be added, and the remainder of the total amount of the color former can be added when a predetermined time has elapsed.
  • the predetermined time of the divided addition interval is usually preferably set to 1 to 30 minutes.
  • the amount added at the time of the first addition may change due to the molybdenum compound coming into contact with the peroxodisulfate compound remaining in the test water, and the coloration of phosphate ions may be impaired. Therefore, it is preferable to set the amount less than the amount added at the second and subsequent additions. For example, it is preferred that 20% of the total amount of color former is added at the first addition, and the remaining 80% of the color former is added at the second addition.
  • the heating temperature of the inspection water in the step 2 can be set to the same temperature range as the heating in the step 1, but it is usually preferable to set the same as the heating temperature in the step 1.
  • the heating time of the inspection water in this process (when the color former is added in a divided manner as described above, the heating time after the last addition) varies depending on the heating temperature, the coloration of phosphate ions is completed. It is enough time. This time can be normally set to a short time of about 5 to 30 minutes since the influence of chlorine derived from chloride ions contained in the inspection water is eliminated.
  • steps 1 and 2 can be operated safely under normal pressure and can be safely carried out because no harmful gas is generated.
  • the inspection water after step 1 is completed can be transferred to step 2 smoothly and quickly.
  • chlorine since this chlorine is quickly consumed by the saccharide compound in the presence of the vanadium compound, it is difficult to delay the color development of the test water by molybdenum blue. For this reason, from the start of step 1 to the completion of step 2, it can usually be completed in a short time of about 30 to 90 minutes.
  • the absorbance at an arbitrary wavelength in the range of 600 to 950 nm is measured for the test water discolored by molybdenum blue (step 3). Then, based on a calibration curve prepared by examining the relationship between the absorbance and the phosphate ion concentration in advance, the phosphate ion amount of the test water, that is, the total phosphorus amount is determined from the absorbance measurement value.
  • the method for quantifying total phosphorus according to the present invention can be safely carried out without using a special reaction apparatus such as a pressure vessel that requires attention in handling, and it is not necessary to cool inspection water between processes. Therefore, a series of processes can be smoothly advanced without interruption, and can be completed in a short time. For this reason, this quantification method is easy to apply to automation.
  • the color former used in step 2 is of the first form (provided that a non-reducing oligosaccharide is used as the saccharide compound)
  • the color former is a component required for the test water only by its addition. Can be added at the same time and can be stored, making it easier to apply to automation.
  • the linear relationship between the phosphate ion concentration and the absorbance at an arbitrary wavelength in the range of 600 to 950 nm is relatively high. Since it is well established up to the range of the phosphate ion concentration, the upper limit of quantification of phosphate ions contained in the test water is expanded to a range of 4 mg [P] / L or more. Therefore, this quantification method can also be applied to test water having a high content of phosphate ions and phosphorus compounds.
  • Step 2 in the quantification method of the present invention can be used as a method for coloring phosphate ions in test water containing phosphate ions. For example, when it is necessary to simply determine whether or not the test water contains phosphate ions, this determination can be easily performed in a short time by using this coloring method.
  • step A the inspection water to which this coloring method is applied needs to be set in advance to contain sulfuric acid.
  • Test water containing sulfuric acid can be prepared simply by adding sulfuric acid to the test water.
  • Step B phosphate ions contained in the test water are colored by the generation of molybdenum blue. Therefore, when this color development method is applied to test water, and coloration of phosphate ions is observed in the test water, it can be determined that the test water contains phosphate ions. When color development of phosphate ions is not observed, it can be determined that the test water does not contain phosphate ions.
  • step A step 1 in the quantification method of the present invention is applied to the test water.
  • the test water is set so as to contain sulfuric acid, and when the phosphorus compound is contained, the phosphorus compound is converted into phosphate ions.
  • the process B is applied to the test water that has undergone the process A, and color development of phosphate ions is observed in the test water, it can be determined that the test water contains a phosphorus compound. If no coloration of phosphate ions is observed in water, it can be determined that the test water does not contain a phosphorus compound.
  • the color former is used twice or more. It is preferable to divide and add to the inspection water while providing separate intervals.
  • the unit of mg [P] / L indicates the number of milligrams of phosphorus contained in 1 L of water.
  • Reagents and spectrophotometers The reagents and spectrophotometers used in the following examples and the like are as follows. Phosphorus standard solution (for water quality test): Wako Pure Chemical Industries, Ltd. Code 160-19241 Silicon standard solution: Wako Pure Chemical Industries, Ltd. Code 192-06031 Chloride ion standard solution: Wako Pure Chemical Industries, Ltd. Code 032-16151 1M sulfuric acid (for volumetric analysis): Wako Pure Chemical Industries, Ltd. Code 198-09595 Sodium hydroxide (reagent special grade): Wako Pure Chemical Industries, Ltd.
  • Wako Premium Code 244-00542 Sorbitol Wako first grade code 194-03752 from Wako Pure Chemical Industries, Ltd. Sodium metavanadate (V): Wako Pure Chemical Industries, Ltd. Code 190-07010 Vanadium oxide (V): Wako Pure Chemical Industries, Ltd. Code 222-00122 Vanadium oxide (IV) n hydrate: Wako Pure Chemical Industries, Ltd. Code 223-01132 Vanadium chloride (III): Sigma-Aldrich Japan Co., Ltd. Code 208272 D-fructose: Wako Special Grade code 127-02765 from Wako Pure Chemical Industries, Ltd. D-arabinose: Wako Special Grade code 013-04572 from Wako Pure Chemical Industries, Ltd.
  • D-glucose (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 047-10059 Sucrose (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 196-00001 D-Raffinose pentahydrate (reagent special grade): Wako Pure Chemical Industries, Ltd. Code 180-00012 D-maltose monohydrate: Wako special grade code 130-00615 from Wako Pure Chemical Industries, Ltd. Lactose monohydrate (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 128-00095 D-galactose (special grade reagent): Wako Pure Chemical Industries, Ltd.
  • Wako Special Code 044-04262 Sodium diphosphate decahydrate (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 195-03025 Ascorbic acid (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 014-04801 Spectrophotometer: Shimadzu Corporation trade name “UV-1600PC”
  • Phosphate ion solution used in the following examples and the like is as follows. Five types of phosphate ion solutions having phosphate ion concentrations of 0, 1.0, 2.0, 3.0, and 4.0 mg [P] / L were prepared. For phosphate ion solutions with a phosphate ion concentration of 0 mg [P] / L, distilled water was used as it was, and for other phosphate ion solutions, the phosphate standard concentration was adjusted by diluting the phosphorus standard solution with distilled water. .
  • Sample water 1 A phosphate ion solution having a phosphate ion concentration of 5 mg [P] / L.
  • Sample water 2 An aqueous solution obtained by dissolving sodium diphosphate decahydrate and D-glucose in distilled water (sodium diphosphate equivalent concentration is 5 mg [P] / L, D-glucose concentration is 40 mg / L).
  • Sample water 3 An aqueous solution obtained by dissolving adenosine-5′-triphosphate disodium salt trihydrate and D-glucose in distilled water (adenosine-5′-triphosphate disodium equivalent concentration is 5 mg [P] / L D-glucose concentration is 40 mg / L).
  • Sample water 4 Aqueous solution obtained by dissolving phenyl disodium phosphate dihydrate and D-glucose in distilled water (phenyl disodium phosphate equivalent concentration is 5 mg [P] / L, D-glucose concentration is 40 mg / L) .
  • Oxidizing agent aqueous solution 1 A potassium peroxodisulfate aqueous solution having a concentration of 40 g / L (a potassium peroxodisulfate aqueous solution having a concentration described in JIS K 0102 46.1.1 (hereinafter referred to as “JIS method concentration”)).
  • Oxidizing agent aqueous solution 2 A potassium peroxodisulfate aqueous solution having a concentration of 20 g / L (a potassium peroxodisulfate aqueous solution having a concentration of 50% of the JIS method concentration).
  • Oxidizing agent aqueous solution 3 A potassium peroxodisulfate aqueous solution having a concentration of 8 g / L (a potassium peroxodisulfate aqueous solution having a concentration of 20% of the JIS method concentration).
  • Oxidizing agent aqueous solution 4 A potassium peroxodisulfate aqueous solution having a concentration of 4 g / L (a potassium peroxodisulfate aqueous solution having a concentration of 10% of the JIS method concentration).
  • Oxidizing agent aqueous solution 5 A potassium peroxodisulfate aqueous solution having a concentration of 2 g / L (a potassium peroxodisulfate aqueous solution having a concentration of 5% of the JIS method concentration).
  • Oxidizing agent aqueous solution 6 A potassium peroxodisulfate aqueous solution having a concentration of 0.4 g / L (a potassium peroxodisulfate aqueous solution having a concentration of 1% of the JIS method concentration).
  • the oxidative degradation rate of sample waters 2 to 4 is the ratio of absorbance to the absorbance measured for sample water 1, and is converted to phosphate ions by oxidative degradation among the phosphorus compounds contained in sample water. Shows the percentage of food.
  • the phosphorus compound contained in the sample water is 90% or more when an aqueous solution (oxidant aqueous solution 4) having a potassium peroxodisulfate concentration of 4 g / L or more is used.
  • an aqueous solution (oxidant aqueous solution 3) having a concentration of 8 g / L or more 95% or more is decomposed and converted into phosphate ions.
  • potassium peroxodisulfate in the oxidizing agent aqueous solution can effectively oxidatively decompose the phosphorus compound contained in the sample water even when the concentration is set to about 1/5 or less of the JIS method concentration. .
  • Sample water 5 Dissolving adenosine-5'-triphosphate disodium trihydrate, phenyl disodium phosphate dihydrate and D-glucose in distilled water to reduce the concentration of adenosine-5'-triphosphate disodium to 1 mg
  • Sample water 6 An aqueous solution in which sodium diphosphate decahydrate and D-glucose are dissolved in distilled water to adjust the sodium diphosphate concentration to 2 mg [P] / L and the D-glucose concentration to 50 mg / L.
  • the relative decomposition rate means the decomposition rate of the phosphorus compound at each heating time when the decomposition rate of the phosphorus compound contained in each sample water is 100% when the heating time is 40 minutes, This is calculated based on the ratio of the absorbance to the absorbance when the heating time is 40 minutes. According to Table 2, it can be seen that the phosphorus compound in the sample water is decomposed by 90% or more in 25 minutes and 98% or more in 30 minutes.
  • Sample water 7 Adenosine-5′-triphosphate disodium trihydrate concentration of 65 mg / L (1 mg [P] / L), phenyl disodium phosphate dihydrate concentration of 82 mg / L (1 mg [P] / L) , D-glucose (assuming organic substances as contaminants) concentration of 20 mg / L, silica concentration of 50 mg [Si] / L, and chloride ion concentration of 75 mg / L in adenosine-5 ′ Disodium triphosphate trihydrate, phenyl disodium phosphate dihydrate, D-glucose, silicon standard solution and chloride ion standard solution were dissolved, and 5 mL of sample water was prepared.
  • This sample water has a total phosphorus concentration of 2 mg [P] / L.
  • the silicon standard solution is alkaline
  • a silicon standard solution neutralized by adding 1 M sulfuric acid was used, and the silica concentration was adjusted as described above.
  • Sample water 8 Without using the silicon standard solution, 5 mL of sample water having a total phosphorus concentration of 2 mg [P] / L was prepared in the same manner as Sample Water 7.
  • the concentration of ammonium tetrahydrate was adjusted to 7 g / L, and the concentration of potassium antimonyl tartrate trihydrate was adjusted to 0.5 g / L.
  • the time from when the color former was added to when the sample water started to change color was about 30 minutes. This is because it took time for chlorine produced from chloride ions to be consumed by sucrose and monosaccharides produced by its decomposition.
  • the absorbance at 830 nm of the sample water 7 after the heating was measured was 1.36.
  • the absorbance at the same wavelength was measured for sample water 8 treated in the same manner (similar to sample water 7, the time from when the color former was added to when the sample water started to change color). .02. Since the sample water 7 containing silica has an absorbance about 1.3 times that of the sample water 8 not containing silica, the measurement result of total phosphorus is greatly affected by silica.
  • Examples 1-12 (Create a calibration curve) For each 2.5 mL of the five phosphate ion solutions having phosphate ion concentrations of 0, 1.0, 2.0, 3.0, and 4.0 mg [P] / L, 0.7 mL of 1M sulfuric acid was obtained. The peroxodisulfuric acid compound aqueous solution 0.5mL shown in 3 was added, and it heated at 95 degreeC for 30 minute (s) using the block heater.
  • Example 12 was prepared by dissolving the components shown in Table 3 in a 0.5 M aqueous sodium hydroxide solution so as to have the concentrations shown in the same table in order to stabilize and colorless the vanadium compound. .
  • Test water preparation The following test water was prepared. In the preparation of test water using a silicon standard solution, the silicon standard solution neutralized by adding 1 M sulfuric acid was used because the silicon standard solution was alkaline.
  • Test water A Adenosine-5′-triphosphate disodium trihydrate concentration is 65 mg / L (1.00 mg [P] / L), and phenyl disodium phosphate dihydrate concentration is 82 mg / L (1.00 mg [P ] / L), adenosine-5′-triphosphate disodium in distilled water so that the concentration of D-glucose (assuming organic substances as impurities) is 20 mg / L and the chloride ion concentration is 100 mg / L. Trihydrate, phenyl disodium phosphate dihydrate, D-glucose and chloride ion standard solution were dissolved, and 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared. .
  • Test water B Except that the silicon standard solution was further dissolved so that the silica concentration was 45 mg / L, 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as test water A.
  • Test water C 2.5 mL of test water with a total phosphorus concentration of 2.00 mg [P] / L was used in the same manner as test water A, except that the chloride ion standard solution was used so that the chloride ion concentration was 150 mg / L. Prepared.
  • Test water D Except that the silicon standard solution was dissolved so that the silica concentration was 30 mg / L, 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as test water C.
  • Test water E 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L is the same as test water A except that the chloride ion standard solution is used so that the chloride ion concentration becomes 200 mg / L. Prepared.
  • Test water F 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as test water E, except that the silicon standard solution was dissolved so that the silica concentration was 35 mg / L.
  • Test water G 2.5 mL of test water with a total phosphorus concentration of 2.00 mg [P] / L was used in the same manner as test water A, except that the chloride ion standard solution was used so that the chloride ion concentration became 75 mg / L. Prepared.
  • Test water H Except that the silicon standard solution was dissolved so that the silica concentration was 40 mg / L, 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as the test water G.
  • Test water I Except that the silicon standard solution was dissolved so that the silica concentration was 35 mg / L, 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as the test water G.
  • Test water J Adenosine-5′-triphosphate disodium trihydrate concentration of 97.5 mg / L (1.50 mg [P] / L), phenyl disodium phosphate dihydrate concentration of 123 mg / L (1.50 mg) [P] / L), adenosine-5′-triphosphate in distilled water so that the concentration of D-glucose (assuming organic substances as impurities) is 20 mg / L and the chloride ion concentration is 30 mg / L.
  • Test water K Except that the silicon standard solution was dissolved so that the silica concentration was 40 mg / L, 2.5 mL of test water having a total phosphorus concentration of 3.00 mg [P] / L was prepared in the same manner as test water J.
  • Test water L 2.5 mL of test water having a total phosphorus concentration of 3.00 mg [P] / L is the same as test water J except that the chloride ion standard solution was used so that the chloride ion concentration was 100 mg / L. Prepared.
  • Test water M 2.5 mL of test water having a total phosphorus concentration of 3.00 mg [P] / L was prepared in the same manner as the test water L, except that the silicon standard solution was dissolved so that the silica concentration was 35 mg / L.
  • Test water N 2.5 mL of test water with a total phosphorus concentration of 3.00 mg [P] / L was used in the same manner as test water J, except that the chloride ion standard solution was used so that the chloride ion concentration was 150 mg / L. Prepared.
  • Test water O Except that the silicon standard solution was dissolved so that the silica concentration was 40 mg / L, 2.5 mL of test water having a total phosphorus concentration of 3.00 mg [P] / L was prepared in the same manner as the test water N.
  • Test water P Adenosine-5′-triphosphate disodium trihydrate concentration of 32.5 mg / L (0.50 mg [P] / L), phenyl disodium phosphate dihydrate concentration of 41 mg / L (0.50 mg) [P] / L), adenosine-5′-triphosphate in distilled water so that the concentration of D-glucose (assuming organic substances as impurities) is 20 mg / L and the chloride ion concentration is 200 mg / L.
  • Test water Q Except that the silicon standard solution was dissolved so that the silica concentration was 30 mg / L, 2.5 mL of test water having a total phosphorus concentration of 1.00 mg [P] / L was prepared in the same manner as the test water P.
  • Test water R Adenosine-5′-triphosphate disodium trihydrate concentration is 130 mg / L (2.00 mg [P] / L), phenyl disodium phosphate dihydrate concentration is 164 mg / L (2.00 mg [P ] / L), adenosine-5′-triphosphate disodium in distilled water so that the concentration of D-glucose (assuming organic substances as impurities) is 20 mg / L and the chloride ion concentration is 50 mg / L. Trihydrate, phenyl disodium phosphate dihydrate, D-glucose and chloride ion standard solution were dissolved, and 2.5 mL of test water having a total phosphorus concentration of 4.00 mg [P] / L was prepared. .
  • Test water S Except that the silicon standard solution was dissolved so that the silica concentration was 50 mg / L, 2.5 mL of test water having a total phosphorus concentration of 4.00 mg [P] / L was prepared in the same manner as the test water R.
  • Total phosphorus determination of test water To the test water shown in Table 4, 0.7 mL of 1M sulfuric acid and 0.5 mL of a peroxodisulfuric acid compound aqueous solution shown in Table 3 were added and heated at 95 ° C. for 30 minutes using a block heater. Next, with the test water heated to 95 ° C., 0.5 mL of a color former (the same as that used when preparing the calibration curve) was added and left for 20 minutes. Table 4 shows the time from when the color former is added to when the test water starts to develop color (color development start time).
  • Examples 13 to 16 (Create a calibration curve) For each 2.5 mL of the five phosphate ion solutions having phosphate ion concentrations of 0, 1.0, 2.0, 3.0, and 4.0 mg [P] / L, 0.7 mL of 1M sulfuric acid was obtained. The peroxodisulfuric acid compound aqueous solution 0.5mL shown in 5 was added, and it heated at 95 degreeC for 30 minute (s) using the block heater.
  • the color former used here was an aqueous solution of sodium hydroxide adjusted to 0.5 M in order to dissolve the components shown in Table 5 in distilled water so as to have the concentrations shown in the same table, and to stabilize and colorless the vanadium compound. Is adjusted to be alkaline by adding.
  • Test water preparation In addition to the same test waters C, E and L used in Examples 1-12, the following test waters T, U and V were prepared. In the preparation of each test water, the silicon standard solution neutralized by adding 1 M sulfuric acid was used because the silicon standard solution was alkaline.
  • Test water T 2.5 mL of test water having a total phosphorus concentration of 3.00 mg [P] / L was prepared in the same manner as test water L, except that the silicon standard solution was further dissolved so that the silica concentration was 40 mg / L.
  • Test water U Except that the silicon standard solution was further dissolved so that the silica concentration was 50 mg / L, 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as test water C.
  • Test water V 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as test water E, except that the silicon standard solution was further dissolved so that the silica concentration was 45 mg / L.
  • Total phosphorus determination of test water To the test water shown in Table 6, 0.7 mL of 1M sulfuric acid and 0.5 mL of a peroxodisulfuric acid compound aqueous solution shown in Table 5 were added and heated at 95 ° C. for 30 minutes using a block heater. Next, with the test water heated to 95 ° C., 0.1 mL of a color former was added and left for 2 minutes. Further, 0.4 mL of a color former was added while the test water was heated to 95 ° C., and heating at the same temperature was continued for 18 minutes. The color former added here is the same as that used in preparing the calibration curve. Table 6 shows the time (color development start time) from when the color former is added a second time until the test water starts to develop color.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The disclosed method determines the total phosphorous quantity in test water safely and in a short time period by breaking down phosphorous compounds included in test water and converting to phosphate ions, and then determining the quantity of phosphate ions in the test water. In the method, first sulfuric acid and alkali metal salts of peroxodisulfuric acid are added to test water, and the mixture is heated for a prescribed time period at a temperature from 65˚C to boiling temperature. A colour former formed from an aqueous solution is added to the test water, said aqueous solution containing at least one hydroxyl group-containing compound selected from the hydroxyl group-containing compound group consisting of hydroxyl carboxylic acids and alditol, a vanadium compound having a vanadium valence of 3-5, a non-reducing oligosaccharide capable of generating a 5 carbon aldose, a 6 carbon aldose or a 6 carbon ketose by means of decomposition, and a 7-molybdic acid 6-ammonium, and after heating the test water to at least 65˚C for a prescribed time period, the light absorbance of the test water for an arbitrary wavelength occurring in the range of 600-950nm is measured.

Description

全りんの定量方法Determination of total phosphorus
 本発明は、全りんの定量方法、特に、検査水に含まれるりん化合物を分解してりん酸イオンへ変換した後、検査水のりん酸イオンを定量することで検査水の全りんを定量する方法に関する。 The present invention relates to a method for quantifying total phosphorus, and in particular, quantifies the total phosphorus in test water by decomposing the phosphorus compound contained in the test water and converting it into phosphate ions and then quantifying the phosphate ions in the test water. Regarding the method.
 りんは海洋水、湖沼水、河川水および地下水等の富栄養化に関わる原因物質の一つであることから、工場排水等での排出規制が設けられており、工場排水等は、環境への排出前にりん酸イオンの定量が求められる。ここで、工場排水等は、りん酸イオンとしてりんを含むだけではなく、各種のりん化合物としてりん元素を含む場合もあり、りん化合物は環境への排出後に自然分解されることでりんの発生源となる。このため、工場排水等は、りん酸イオンだけではなく、りん化合物から生成し得るりん酸イオンを含めたりん酸イオンの総量、いわゆる全りんの定量が求められることがある。 Phosphorus is one of the causative substances related to eutrophication such as ocean water, lake water, river water, and groundwater, so there are regulations on the discharge of factory wastewater. Quantification of phosphate ions is required before discharge. Here, factory effluents not only contain phosphorus as phosphate ions, but may also contain phosphorus elements as various phosphorus compounds. Phosphorus compounds are naturally decomposed after being discharged into the environment, which is the source of phosphorus. It becomes. For this reason, factory wastewater and the like may be required to determine not only phosphate ions but also the total amount of phosphate ions including phosphate ions that can be generated from phosphorus compounds, so-called total phosphorus.
 水中に含まれる全りんの公的な定量方法として、非特許文献1に記載のモリブデン青(アスコルビン酸還元)吸光光度法が知られている。この定量方法は、水中に含まれるりん酸イオンが七モリブデン酸六アンモニウムおよび酒石酸アンチモニルカリウム(ビス[(+)-タルトラト]二アンチモン(III)酸二カリウム)と反応して生成するヘテロポリ化合物をL(+)-アスコルビン酸で還元し、それにより生成するモリブデン青により発色した検査水の吸光度を測定することでりん酸イオンを定量するものである。 As an official quantification method of total phosphorus contained in water, molybdenum blue (ascorbic acid reduction) absorptiometry described in Non-Patent Document 1 is known. In this quantitative method, a heteropoly compound formed by reacting phosphate ions contained in water with hexaammonium heptamolybdate and potassium antimonyl tartrate (bis ((+)-tartrate) diantimony (III) dipotassium) is produced. Phosphate ions are quantified by measuring the absorbance of test water colored by molybdenum blue produced by reduction with L (+)-ascorbic acid.
 モリブデン青(アスコルビン酸還元)吸光光度法による全りんの定量では、先ず、所定量の検査水を採取し、この検査水に含まれるりん化合物を分解してりん酸イオンへ変換する前処理をする。この前処理では、検査水に対してりん化合物の酸化剤であるペルオキソ二硫酸カリウム溶液を添加した後、検査水を120℃に設定した高圧蒸気滅菌器中で30分間処理し、りん化合物を酸化分解してりん酸イオンへ変換する。次に、前処理された検査水に対して所定量のモリブデン酸アンモニウム-アスコルビン酸混合溶液を加えて振り混ぜた後、20~40℃で約15分間放置する。そして、この溶液について波長880nm付近の吸光度を測定し、この測定値から予め作成しておいた検量線に基づいて検査水のりん酸イオン濃度(mgPO 3-/L)を算出する。 In the determination of total phosphorus by molybdenum blue (ascorbic acid reduction) absorptiometry, first, a predetermined amount of test water is collected, and pretreatment is performed to decompose the phosphorus compounds contained in the test water and convert them into phosphate ions. . In this pretreatment, after adding a potassium peroxodisulfate solution, which is an oxidizing agent of a phosphorus compound, to the test water, the test water is treated in a high-pressure steam sterilizer set at 120 ° C. for 30 minutes to oxidize the phosphorus compound. Decomposes and converts to phosphate ion. Next, a predetermined amount of ammonium molybdate-ascorbic acid mixed solution is added to the pretreated test water, shaken, and allowed to stand at 20 to 40 ° C. for about 15 minutes. Then, the absorbance at a wavelength of about 880 nm is measured for this solution, and the phosphate ion concentration (mgPO 4 3− / L) of test water is calculated based on a calibration curve prepared in advance from the measured value.
 このような全りんの定量方法における検査水の前処理は、高圧蒸気滅菌器、すなわち耐圧容器を用いる必要があるため、操作が複雑になり、特別な安全性も求められる。また、酸化剤として用いるペルオキソ二硫酸カリウムは、120℃の温度環境下ではりん化合物を酸化分解するのと同時に自己分解も進行することから、過剰量を用いる必要がある。 Since the pretreatment of the test water in such a method for determining total phosphorus requires the use of a high-pressure steam sterilizer, that is, a pressure-resistant container, the operation becomes complicated and special safety is also required. In addition, potassium peroxodisulfate used as an oxidizing agent needs to be used in an excessive amount because it decomposes the phosphorus compound at the same time as oxidative decomposition under a temperature environment of 120 ° C. and also proceeds with autolysis.
 そこで、この前処理方法に替わる前処理方法として、非特許文献2には、検査水にペルオキソ二硫酸カリウムを添加した後、100℃で60分間処理する方法が提案されている。しかし、この方法では、ペルオキソ二硫酸カリウムの一部が検査水に残留し、それがL(+)-アスコルビン酸によるヘテロポリ化合物の還元を阻害する可能性があるため、モリブデン酸アンモニウム-アスコルビン酸混合溶液を加える前に検査水を20~40℃まで放冷することでペルオキソ二硫酸カリウムの酸化作用を抑制するか、或いは、アルカリ性の状態の検査水へ還元剤である亜硫酸ナトリウムを添加してペルオキソ二硫酸カリウムを消滅させる必要がある。 Therefore, as a pretreatment method that replaces this pretreatment method, Non-Patent Document 2 proposes a method of treating at 100 ° C. for 60 minutes after adding potassium peroxodisulfate to test water. However, in this method, a portion of potassium peroxodisulfate remains in the test water, which may inhibit the reduction of the heteropoly compound by L (+)-ascorbic acid, so the ammonium molybdate-ascorbic acid mixture Before adding the solution, the test water is allowed to cool to 20-40 ° C to suppress the oxidation of potassium peroxodisulfate, or sodium sulfite as a reducing agent is added to the test water in an alkaline state. It is necessary to extinguish potassium disulfate.
 ところが、検査水を放冷することでペルオキソ二硫酸カリウムの酸化作用を抑制する場合、検査水の冷却に長時間を要し、一連の定量操作を短時間で終了するのが困難になる。また、亜硫酸ナトリウムを添加してペルオキソ二硫酸カリウムを消滅させる場合、有害な二酸化硫黄ガスが発生するため、それについての安全対策が求められる。 However, when the oxidation of potassium peroxodisulfate is suppressed by allowing the test water to cool, it takes a long time to cool the test water, making it difficult to complete a series of quantitative operations in a short time. In addition, when sodium sulfite is added to extinguish potassium peroxodisulfate, harmful sulfur dioxide gas is generated. Therefore, safety measures are required.
 また、上述の全りんの定量方法は、より本質的な問題を内包している。具体的には、非特許文献1に記載のように、定量範囲が1.25~25μgという微量範囲であるため、検査水が比較的多量のりん酸イオンやりん化合物を含む場合に適用できないという不具合がある。また、検査水が二酸化ケイ素、ケイ酸およびケイ酸塩等のシリカを含む場合は、定量結果がシリカの影響を受けて変動し、信頼性を欠くことがある。さらに、検査水が塩化物イオンを含む場合は、検査水の前処理時に塩化物イオンから塩素が生成し、この塩素がモリブデン青の生成による検査水の発色を遅延させることから、定量結果を得るまでに長時間を要する可能性がある。 Moreover, the above-mentioned method for determining total phosphorus contains a more essential problem. Specifically, as described in Non-Patent Document 1, since the quantification range is a minute range of 1.25 to 25 μg, it cannot be applied when the test water contains a relatively large amount of phosphate ions or phosphorus compounds. There is a bug. In addition, when the test water contains silica such as silicon dioxide, silicic acid and silicate, the quantitative result may be affected by the silica and may be unreliable. Furthermore, when the test water contains chloride ions, chlorine is generated from the chloride ions during the pretreatment of the test water, and this chlorine delays the color development of the test water due to the formation of molybdenum blue, thus obtaining a quantitative result. It may take a long time to complete.
 本発明の目的は、検査水の全りんを安全に短時間で定量できるようにすることにある。 An object of the present invention is to make it possible to quantitate total phosphorus in test water safely and in a short time.
 本発明は、検査水に含まれるりん化合物を分解してりん酸イオンへ変換した後、検査水のりん酸イオンを定量することで検査水の全りんを定量するための方法に関するものであり、この定量方法は、検査水へペルオキソ二硫酸のアルカリ金属塩またはペルオキソ二硫酸アンモニウムと硫酸とを添加し、65℃から検査水の沸騰温度までの温度で所定時間加熱する工程1と、工程1を経た検査水に対し、ヒドロキシカルボン酸群およびアルジトールからなる水酸基含有化合物群から選ばれた少なくとも1つの水酸基含有化合物、バナジウムの価数が3~5のバナジウム化合物、炭素数5のアルドース、炭素数6のアルドース、炭素数6のケトースおよび分解により炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースを生成可能なオリゴ糖群からなる糖類化合物群から選ばれた糖類化合物並びに七モリブデン酸六アンモニウムまたはモリブデン酸アルカリ金属塩を含む発色剤を添加し、65℃から検査水の沸騰温度までの温度で所定時間加熱する工程2と、工程2を経た検査水について、600から950nmの範囲における任意の波長の吸光度を測定する工程3とを含んでいる。 The present invention relates to a method for quantifying the total phosphorus of test water by decomposing the phosphorus compound contained in the test water and converting it into phosphate ions, and then quantifying the phosphate ions of the test water, In this quantification method, the alkali metal salt of peroxodisulfuric acid or ammonium peroxodisulfate and sulfuric acid were added to the test water, and the process was heated for a predetermined time at a temperature from 65 ° C. to the boiling temperature of the test water. With respect to the test water, at least one hydroxyl group-containing compound selected from the group consisting of a hydroxycarboxylic acid group and a hydroxyl group-containing compound consisting of alditol, a vanadium compound having a vanadium valence of 3 to 5, an aldose having 5 carbon atoms, and a carbon number having 6 carbon atoms Aldose, carbon 6 ketose and decomposition yields 5 carbon aldose, 6 carbon aldose or 6 carbon ketose A saccharide compound selected from a saccharide compound group consisting of possible oligosaccharide groups and a color former containing hexaammonium heptamolybdate or an alkali metal molybdate are added, and a predetermined time at a temperature from 65 ° C. to the boiling temperature of the inspection water Step 2 of heating and Step 3 of measuring the absorbance at an arbitrary wavelength in the range of 600 to 950 nm for the test water that has passed through Step 2 are included.
 この定量方法は、上述の工程1から3を含むものであるため、検査水の全りんを安全に短時間で定量することができる。 Since this quantification method includes steps 1 to 3 described above, the total phosphorus in the test water can be quantified safely and in a short time.
 この定量方法は、工程2において、発色剤を2回以上に分けて間隔を設けながら添加することができる。 In this quantification method, in step 2, the color former can be added in two or more steps while providing an interval.
 他の観点に係る本発明は、検査水に含まれるりん酸イオンの発色方法に関するものであり、この発色方法は、検査水が硫酸を含むよう設定する工程Aと、工程Aを経た検査水に対し、ヒドロキシカルボン酸群およびアルジトールからなる水酸基含有化合物群から選ばれた少なくとも1つの水酸基含有化合物、バナジウムの価数が3~5のバナジウム化合物、炭素数5のアルドース、炭素数6のアルドース、炭素数6のケトースおよび分解により炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースを生成可能なオリゴ糖群からなる糖類化合物群から選ばれた糖類化合物並びに七モリブデン酸六アンモニウムまたはモリブデン酸アルカリ金属塩を含む発色剤を添加し、65℃から検査水の沸騰温度までの温度で所定時間加熱する工程Bとを含んでいる。 The present invention according to another aspect relates to a method for coloring phosphate ions contained in test water. This color development method is applied to the test water that is set so that the test water contains sulfuric acid and the test water that has undergone the process A. On the other hand, at least one hydroxyl group-containing compound selected from a hydroxyl group-containing compound group consisting of a hydroxycarboxylic acid group and an alditol, a vanadium compound having a valence of 3 to 5 vanadium, an aldose having 5 carbon atoms, an aldose having 6 carbon atoms, carbon A saccharide compound selected from the group of saccharides consisting of aldoses having 5 carbon atoms, aldoses having 5 carbon atoms, aldoses having 6 carbon atoms or ketoses having 6 carbon atoms by decomposition, and hexaammonium heptamolybdate or molybdenum Add a color former containing acid alkali metal salt and apply for a predetermined time at a temperature from 65 ° C to the boiling temperature of the test water. And a step B of.
 この発色方法は、検査水に対し、硫酸の存在下で所定の発色剤を添加しているため、検査水に含まれるりん酸イオンを安全に短時間で発色させることができる。 In this coloring method, since a predetermined coloring agent is added to the inspection water in the presence of sulfuric acid, the phosphate ions contained in the inspection water can be safely developed in a short time.
 この発色方法の工程Aでは、例えば、検査水へペルオキソ二硫酸のアルカリ金属塩またはペルオキソ二硫酸アンモニウムと硫酸とを添加して65℃から検査水の沸騰温度までの温度で所定時間加熱し、検査水が硫酸を含むよう設定する。 In step A of the color development method, for example, an alkali metal salt of peroxodisulfuric acid or ammonium peroxodisulfate and sulfuric acid is added to the test water and heated at a temperature from 65 ° C. to the boiling temperature of the test water for a predetermined time. Is set to contain sulfuric acid.
 この場合、工程Bにおいて、発色剤を2回以上に分けて間隔を設けながら添加するのが好ましい。 In this case, in Step B, it is preferable to add the color former in two or more steps while providing an interval.
 さらに他の観点に係る本発明は、検査水に含まれるりん酸イオンの発色剤に関するものであり、この発色剤は、ヒドロキシカルボン酸群およびアルジトールからなる水酸基含有化合物群から選ばれた少なくとも1つの水酸基含有化合物、バナジウムの価数が3~5のバナジウム化合物、炭素数5のアルドース、炭素数6のアルドース、炭素数6のケトースおよび分解により炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースを生成可能なオリゴ糖群からなる糖類化合物群から選ばれた糖類化合物並びに七モリブデン酸六アンモニウムまたはモリブデン酸アルカリ金属塩を含む水溶液からなる。 The present invention according to still another aspect relates to a color former for phosphate ions contained in test water, and the color former is at least one selected from a hydroxycarboxylic acid group and a hydroxyl group-containing compound group comprising alditol. Hydroxyl-containing compounds, vanadium compounds with a valence of vanadium of 3 to 5, aldoses with 5 carbons, aldoses with 6 carbons, aldoses with 5 carbons, aldoses with 6 carbons, aldoses with 6 carbons, or carbon numbers It consists of the aqueous solution containing the saccharide compound chosen from the saccharide compound group which consists of the oligosaccharide group which can produce | generate 6 ketose, and hexamolybdate hexammonium or an alkali metal molybdate.
 この発色剤は、所定の成分を含む水溶液からなるため、本発明に係る全りんの定量方法およびりん酸イオンの発色方法において用いることができる。 Since this color former is composed of an aqueous solution containing a predetermined component, it can be used in the total phosphorus determination method and phosphate ion color development method according to the present invention.
 本発明に係る定量方法および発色方法において用いられる発色剤並びに本発明の発色剤は、アンチモンの価数が3であるアンチモン化合物をさらに含んでいてもよい。また、これらの発色剤において、ヒドロキシカルボン酸群は、例えば、クエン酸、リンゴ酸、アルダル酸およびアルドン酸からなる。また、オリゴ糖群は、例えば、スクロース、マルトース、ラクトース、ラフィノース、ケストース、スタキオース、イソマルツロース、マルツロースおよびラクツロースからなる。さらに、バナジウム化合物は、例えば、塩化バナジウム(III)、酸化硫酸バナジウム(IV)、メタバナジン(V)酸ナトリウムおよび酸化バナジウム(V)からなる群から選ばれたものである。本発明の発色剤において用いられる糖類化合物は、スクロース、ラフィノース、ケストースおよびスタキオースからなる群から選ばれた非還元性オリゴ糖が好ましい。 The color former used in the quantitative method and color development method according to the present invention and the color former of the present invention may further contain an antimony compound having an antimony valence of 3. In these color formers, the hydroxycarboxylic acid group is composed of, for example, citric acid, malic acid, aldaric acid, and aldonic acid. The oligosaccharide group is composed of, for example, sucrose, maltose, lactose, raffinose, kestose, stachyose, isomaltulose, maltulose and lactulose. Further, the vanadium compound is selected from the group consisting of, for example, vanadium (III) chloride, vanadium oxide sulfate (IV), sodium metavanadate (V), and vanadium oxide (V). The saccharide compound used in the color former of the present invention is preferably a non-reducing oligosaccharide selected from the group consisting of sucrose, raffinose, kestose and stachyose.
 本発明の他の目的および効果は、以下の詳細な説明において触れる。 Other objects and effects of the present invention will be mentioned in the detailed description below.
実施例1で作成した検量線を示す図。FIG. 3 is a diagram showing a calibration curve created in Example 1. 実施例2で作成した検量線を示す図。FIG. 6 is a diagram showing a calibration curve created in Example 2. 実施例3で作成した検量線を示す図。FIG. 6 is a diagram showing a calibration curve created in Example 3. 実施例4で作成した検量線を示す図。The figure which shows the calibration curve created in Example 4. FIG. 実施例5で作成した検量線を示す図。FIG. 6 is a diagram showing a calibration curve created in Example 5. 実施例6で作成した検量線を示す図。FIG. 6 is a diagram showing a calibration curve created in Example 6. 実施例7で作成した検量線を示す図。FIG. 10 is a diagram showing a calibration curve created in Example 7. 実施例8で作成した検量線を示す図。FIG. 10 is a diagram showing a calibration curve created in Example 8. 実施例9で作成した検量線を示す図。FIG. 10 shows a calibration curve created in Example 9. 実施例10で作成した検量線を示す図。FIG. 10 is a diagram showing a calibration curve created in Example 10. 実施例11で作成した検量線を示す図。FIG. 10 is a diagram showing a calibration curve created in Example 11. 実施例12で作成した検量線を示す図。The figure which shows the calibration curve created in Example 12. 実施例13で作成した検量線を示す図。The figure which shows the calibration curve created in Example 13. 実施例14で作成した検量線を示す図。The figure which shows the calibration curve created in Example 14. 実施例15で作成した検量線を示す図。The figure which shows the calibration curve created in Example 15. 実施例16で作成した検量線を示す図。The figure which shows the calibration curve created in Example 16.
 本発明の定量方法により全りんを定量可能な検査水は、特に限定されるものではないが、通常は工場排水や生活排水等のりんの排出規制が設けられている排水の他、海洋水、湖沼水、河川水および地下水等の天然水である。 The test water capable of quantifying total phosphorus by the quantification method of the present invention is not particularly limited, but in addition to wastewater that is usually provided with phosphorus discharge regulations such as factory wastewater and domestic wastewater, marine water, Natural water such as lake water, river water and groundwater.
 検査水の全りんを定量する際には、所定量の検査水を採取し、この検査水に含まれるりん化合物をりん酸イオンへ変換するための前処理をする。この前処理では、先ず、検査水へペルオキソ二硫酸のアルカリ金属塩またはペルオキソ二硫酸アンモニウム(以下、ペルオキソ二硫酸化合物という場合がある)と硫酸とを添加し、常圧下、65℃から検査水の沸騰温度までの温度、好ましくは75℃から検査水の沸騰温度までの温度で所定時間加熱する(工程1)。これにより、検査水に含まれる有機および無機のりん化合物、特に、有機りん化合物は、ペルオキソ二硫酸化合物により酸化分解され、りん元素がりん酸イオンに変換される。 When quantifying the total phosphorus in the test water, a predetermined amount of the test water is collected and pretreated to convert the phosphorus compound contained in the test water into phosphate ions. In this pretreatment, first, an alkali metal salt of peroxodisulfuric acid or ammonium peroxodisulfate (hereinafter sometimes referred to as a peroxodisulfuric acid compound) and sulfuric acid are added to test water, and boiling of the test water starts at 65 ° C. under normal pressure. It is heated for a predetermined time at a temperature up to the temperature, preferably from 75 ° C. to the boiling temperature of the inspection water (step 1). As a result, organic and inorganic phosphorus compounds, particularly organic phosphorus compounds, contained in the test water are oxidatively decomposed by the peroxodisulfuric acid compound, and phosphorus elements are converted into phosphate ions.
 ここで用いられるペルオキソ二硫酸のアルカリ金属塩は、通常、ペルオキソ二硫酸カリウムまたはペルオキソ二硫酸ナトリウムである。 The alkali metal salt of peroxodisulfuric acid used here is usually potassium peroxodisulfate or sodium peroxodisulfate.
 ペルオキソ二硫酸化合物は、通常、精製水、例えば、純水、蒸留水またはイオン交換水等に溶解した水溶液として検査水へ添加される。この水溶液の濃度は、通常、0.4~50g/Lに設定するのが好ましく、3.0~40g/Lに設定するのがより好ましい。ペルオキソ二硫酸化合物水溶液の検査水への添加量は、検査水におけるペルオキソ二硫酸化合物の濃度が検査水に含まれるりん化合物を十分に酸化分解可能なように設定するのが好ましいが、あまり過剰に添加するとペルオキソ二硫酸化合物が検査水に残留してしまい、後記する工程2において誤発色を引き起こす可能性がある。このため、検査水におけるペルオキソ二硫酸化合物の濃度は、検査水へペルオキソ二硫酸化合物水溶液と硫酸とを添加したときにおける濃度が、通常、0.5~9g/Lになるよう設定するのが好ましく、1~6g/Lになるよう設定するのがより好ましい。 The peroxodisulfuric acid compound is usually added to test water as an aqueous solution dissolved in purified water, for example, pure water, distilled water or ion exchange water. The concentration of this aqueous solution is usually preferably set to 0.4 to 50 g / L, and more preferably set to 3.0 to 40 g / L. The amount of the peroxodisulfuric acid compound aqueous solution added to the test water is preferably set so that the concentration of the peroxodisulfate compound in the test water can sufficiently oxidatively decompose the phosphorus compound contained in the test water. If it is added, the peroxodisulfuric acid compound remains in the inspection water, and there is a possibility of causing false color development in the step 2 described later. Therefore, the concentration of the peroxodisulfuric acid compound in the test water is preferably set so that the concentration of the peroxodisulfuric acid compound aqueous solution and sulfuric acid when added to the test water is usually 0.5 to 9 g / L. It is more preferable to set 1 to 6 g / L.
 一方、検査水に対する硫酸の添加量は、検査水へペルオキソ二硫酸化合物水溶液と硫酸とを添加したときにおける硫酸の濃度が0.1M以上になるよう設定するのが好ましい。但し、あまり過剰に添加すると、後記する工程2でモリブデン青の生成(りん酸イオンの発色)という目的に対して過剰となる硫酸の中和処理が必要となる可能性があるため、通常、0.1~0.3Mになるよう設定するのが好ましい。 On the other hand, the amount of sulfuric acid added to the inspection water is preferably set so that the concentration of sulfuric acid when the aqueous peroxodisulfuric acid compound solution and sulfuric acid are added to the inspection water is 0.1 M or more. However, if too much is added, it may be necessary to neutralize sulfuric acid which is excessive for the purpose of forming molybdenum blue (coloration of phosphate ions) in Step 2 to be described later. It is preferable to set it to 1 to 0.3M.
 この工程における検査水の加熱時間は、加熱温度により異なるが、通常、20~40分に設定するのが好ましい。 The heating time of the inspection water in this step varies depending on the heating temperature, but it is usually preferable to set it to 20 to 40 minutes.
 次に、工程1を経た検査水へ発色剤を添加し、引き続き所定時間加熱する(工程2)。この工程は、工程1を経た検査水を放冷等により冷却せずに、工程1が完了後の高温状態または加熱継続状態の検査水に対して適用することができる。ここで用いる発色剤は、水酸基含有化合物、バナジウム化合物、糖類化合物およびモリブデン化合物を含むものである。 Next, a color former is added to the inspection water that has undergone step 1 and then heated for a predetermined time (step 2). This process can be applied to the test water in the high temperature state or the heating continuation state after completion of the process 1 without cooling the test water that has passed through the process 1 by standing cooling or the like. The color former used here includes a hydroxyl group-containing compound, a vanadium compound, a saccharide compound, and a molybdenum compound.
 水酸基含有化合物としては、ヒドロキシカルボン酸群およびアルジトールからなる水酸基含有化合物群から選ばれた少なくとも1つのものが用いられる。ヒドロキシカルボン酸群には、例えば、クエン酸、リンゴ酸、アルダル酸およびアルドン酸並びにこれらの塩(例えば、アルカリ金属塩)が含まれる。ここで用いられるアルダル酸は、HOC-(CHOH)n-COHの一般式(nは1以上の整数、好ましくは1~5の整数)で表される化合物であって水溶性のものであり、例えば、nが2の酒石酸およびnが4の粘液酸が挙げられる。また、ここで用いられるアルドン酸は、HOC-(CHOH)n-CHOHの一般式(nは1以上の整数、好ましくは1~5の整数、より好ましくは4または5)で表される化合物であって水溶性のものであり、例えば、nが1のグリセリン酸、nが4のグルコン酸およびnが5のグルコヘプトン酸が挙げられる。ここで用いられるアルジトールは、HOHC-(CHOH)n-CHOHの一般式(nは1以上の整数、好ましくは2~5の整数)で表される化合物であって水溶性のものであり、例えば、nが2のエリトリトール、nが3のキシリトール、nが4のソルビトールおよびnが5のボレミトールが挙げられる。 As the hydroxyl group-containing compound, at least one selected from the hydroxyl group-containing compound group consisting of a hydroxycarboxylic acid group and alditol is used. The hydroxycarboxylic acid group includes, for example, citric acid, malic acid, aldaric acid and aldonic acid, and salts thereof (for example, alkali metal salts). The aldaric acid used here is a compound represented by the general formula of HO 2 C— (CHOH) n—CO 2 H (n is an integer of 1 or more, preferably an integer of 1 to 5) and is water-soluble. Examples thereof include tartaric acid having n of 2 and mucoic acid having n of 4. The aldonic acid used here is represented by the general formula HO 2 C— (CHOH) n—CH 2 OH (n is an integer of 1 or more, preferably an integer of 1 to 5, more preferably 4 or 5). For example, n is 1 glyceric acid, n is 4 gluconic acid, and n is 5 glucoheptonic acid. The alditol used here is a compound represented by the general formula HOH 2 C— (CHOH) n—CH 2 OH (n is an integer of 1 or more, preferably an integer of 2 to 5) and is water-soluble. Examples thereof include erythritol, where n is 2, xylitol where n is 3, sorbitol where n is 4, and boremitol where n is 5.
 バナジウム化合物としては、バナジウムの価数が3~5のものが用いられる。利用可能なバナジウム化合物としては、例えば、塩化バナジウム(III)、酸化硫酸バナジウム(IV)、メタバナジン(V)酸ナトリウムおよび酸化バナジウム(V)を挙げることができる。これらのバナジウム化合物は、二種以上のものが併用されてもよい。 As the vanadium compound, vanadium having a valence of 3 to 5 is used. Examples of vanadium compounds that can be used include vanadium chloride (III), vanadium oxide sulfate (IV), sodium metavanadate (V), and vanadium oxide (V). Two or more of these vanadium compounds may be used in combination.
 なお、バナジウム化合物としては、バナジウムの価数が2価のもの(例えば、塩化バナジウム(II))を用いることもできる。バナジウムの価数が2価の化合物は、本工程において検査水に対して添加したときに、速やかに3価または4価のバナジウムに変換されるため、3価または4価のバナジウムの供給源として用いることができる。 In addition, as the vanadium compound, vanadium having a valence of 2 can be used (for example, vanadium (II) chloride). As a source of trivalent or tetravalent vanadium, a compound having a valence of vanadium is quickly converted to trivalent or tetravalent vanadium when added to the test water in this step. Can be used.
 糖類化合物としては、炭素数5のアルドース、炭素数6のアルドース、炭素数6のケトースおよび分解により炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースを生成可能なオリゴ糖群からなる糖類化合物群から選ばれたものが用いられる。炭素数5のアルドースの例としては、リボース、アラビノースおよびキシロースを挙げることができる。炭素数6のアルドースの例としては、アルトロース、グルコース、マンノースおよびガラクトースを挙げることができる。炭素数6のケトースの例としては、フルクトースおよびソルボースを挙げることができる。 Examples of the saccharide compounds include aldoses having 5 carbon atoms, aldoses having 6 carbon atoms, ketoses having 6 carbon atoms, and aldoses having 5 carbon atoms, aldoses having 6 carbon atoms, or saccharides having 6 carbon atoms by decomposition. Those selected from the following saccharide compound group are used. Examples of aldoses having 5 carbon atoms include ribose, arabinose and xylose. Examples of aldoses having 6 carbon atoms include altrose, glucose, mannose and galactose. Examples of ketoses having 6 carbon atoms include fructose and sorbose.
 また、分解により炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースを生成可能なオリゴ糖群には、例えば、二糖類のスクロース、マルトース、ラクトース、イソマルツロース、マルツロース、ラクツロース、ガラクトスクロース、プリメベロースおよびビシアノース、三糖類のラフィノース、ケストース、ゲンチアノース、プランテオースおよびウンベリフェロース、四糖類のスタキオース並びに五糖類のベルバスコースが含まれる。これらの例示のオリゴ糖は、分解により、キシロース(炭素数5のアルドース)、グルコース(炭素数6のアルドース)、ガラクトース(炭素数6のアルドース)またはフルクトース(炭素数6のケトース)を生成することができる。 In addition, the oligosaccharide group capable of generating aldoses having 5 carbon atoms, aldoses having 6 carbon atoms or ketoses having 6 carbon atoms by decomposition includes, for example, disaccharides sucrose, maltose, lactose, isomaltulose, maltulose, lactulose, These include galactosucrose, primebellose and vicyanose, the trisaccharide raffinose, kestose, gentianose, planteose and umbelliferose, the tetrasaccharide stachyose and the pentasaccharide Verbasse. These exemplary oligosaccharides, upon decomposition, produce xylose (5 carbon aldose), glucose (6 carbon aldose), galactose (6 carbon aldose) or fructose (6 carbon ketose). Can do.
 なお、オリゴ糖群は、通常、安価に入手可能なことから、スクロース、マルトース、ラクトース、ラフィノース、ケストース、スタキオース、イソマルツロース、マルツロースおよびラクツロースからなるものが好ましい。 In addition, since the oligosaccharide group is usually available at a low price, those composed of sucrose, maltose, lactose, raffinose, kestose, stachyose, isomaltulose, maltulose and lactulose are preferable.
 モリブデン化合物としては、七モリブデン酸六アンモニウムまたはモリブデン酸のアルカリ金属塩、アルカリ土類金属塩若しくは重金属塩が用いられる。このうち、七モリブデン酸六アンモニウムまたはモリブデン酸アルカリ金属塩を用いるのが好ましい。モリブデン酸のアルカリ金属塩の例としては、モリブデン酸ナトリウム、モリブデン酸カリウムおよびモリブデン酸リチウムを挙げることができる。モリブデン酸のアルカリ土類金属塩の例としては、モリブデン酸カルシウムおよびモリブデン酸マグネシウムを挙げることができる。モリブデン酸の重金属塩の例としては、モリブデン酸亜鉛およびモリブデン酸アルミニウムを挙げることができる。 As the molybdenum compound, hexaammonium heptamolybdate or an alkali metal salt, alkaline earth metal salt or heavy metal salt of molybdic acid is used. Of these, hexammonium heptamolybdate or alkali metal molybdate is preferably used. Examples of alkali metal salts of molybdate include sodium molybdate, potassium molybdate and lithium molybdate. Examples of alkaline earth metal salts of molybdate include calcium molybdate and magnesium molybdate. Examples of the heavy metal salt of molybdate include zinc molybdate and aluminum molybdate.
 この工程において、発色剤は、通常、水酸基含有化合物、バナジウム化合物、糖類化合物およびモリブデン化合物を精製水に溶解した水溶液として検査水へ添加される。このような水溶液からなる発色剤は、各種の形態のものとして検査水へ添加することができる。発色剤の例の第1形態は、精製水に水酸基含有化合物、バナジウム化合物、糖類化合物およびモリブデン化合物を同時に含む水溶液からなるものである。発色剤の例の第2形態は、水酸基含有化合物、バナジウム化合物、糖類化合物およびモリブデン化合物のそれぞれの個別の水溶液からなるものである。発色剤の例の第3形態は、糖類化合物を含む第1水溶液と、水酸基含有化合物、バナジウム化合物およびモリブデン化合物を同時に含む第2水溶液とからなるものである。ここで、第2形態および第3形態の各発色剤は、その各水溶液が安定であるため、予め調製して保存し、必要なときに適宜使用することができる。 In this step, the color former is usually added to the inspection water as an aqueous solution in which a hydroxyl group-containing compound, vanadium compound, saccharide compound and molybdenum compound are dissolved in purified water. The color former composed of such an aqueous solution can be added to the inspection water in various forms. A first form of the color former is an aqueous solution containing a hydroxyl group-containing compound, a vanadium compound, a saccharide compound and a molybdenum compound simultaneously in purified water. The 2nd form of the example of a color former consists of each aqueous solution of a hydroxyl-containing compound, a vanadium compound, a saccharide compound, and a molybdenum compound. The third form of the color former includes a first aqueous solution containing a saccharide compound and a second aqueous solution containing a hydroxyl group-containing compound, a vanadium compound, and a molybdenum compound at the same time. Here, since each aqueous solution of the second and third forms is stable, it can be prepared and stored in advance, and can be used as needed when necessary.
 第1形態の発色剤は、そのまま検査水へ添加することで使用することができるが、通常、各成分の安定性を確保するために検査水への添加直前に調製するのが好ましく、例えば、保存可能な第2形態または第3形態の発色剤を利用し、その各水溶液を検査水への添加直前に混合することで調製することができる。第2形態および第3形態の発色剤は、いずれも、その各水溶液を検査水へ別々に添加することで使用することができるが、検査水への添加直前に各水溶液を混合することで第1形態の発色剤として検査水へ添加することもできる。 The color former of the first form can be used by adding it to the test water as it is, but it is usually preferable to prepare it immediately before the addition to the test water in order to ensure the stability of each component. It can be prepared by using the storable color former of the second form or the third form and mixing each of the aqueous solutions immediately before addition to the test water. The color formers of the second form and the third form can be used by adding each of the aqueous solutions separately to the test water, but by mixing each aqueous solution immediately before addition to the test water, One form of color former can also be added to the test water.
 なお、発色剤は、検査水においてりん酸イオンをより安定的に発色させることができることから、第1形態のものが好ましい。 It should be noted that the color former is preferably of the first form because it can more stably color phosphate ions in test water.
 第1形態の発色剤は、分解により炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースを生成可能な非還元性のオリゴ糖を糖類化合物として用いた場合、溶質間での反応が実質的に進行しないため、長期間安定に保存することができる。したがって、このような第1形態の発色剤は、予め調製しておき、必要なときに用いることができる。この場合に用いられる非還元性のオリゴ糖は、通常、スクロース、ラフィノース、ケストースまたはスタキオースであり、これらのオリゴ糖は、分解により、グルコース(炭素数6のアルドース)、ガラクトース(炭素数6のアルドース)またはフルクトース(炭素数6のケトース)を生成することができる。 The color former of the first form is a reaction between solutes when a non-reducing oligosaccharide capable of producing an aldose having 5 carbon atoms, an aldose having 6 carbon atoms or a ketose having 6 carbon atoms is used as a saccharide compound by decomposition. Can be stored stably for a long period of time. Therefore, such a color former of the first form can be prepared in advance and used when necessary. The non-reducing oligosaccharide used in this case is usually sucrose, raffinose, kestose or stachyose, and these oligosaccharides are decomposed by glucose (carbon number 6 aldose), galactose (carbon number 6 aldose). ) Or fructose (6 carbon ketoses).
 発色剤は、アンチモン化合物をさらに含んでいてもよい。この場合、後記するりん酸イオンの発色強度が高まる場合があることから、検査水のりん酸イオン量、すなわち全りんの量の定量精度を高められることがある。アンチモン化合物としては、アンチモンの価数が3のものが用いられる。アンチモンの価数が3であるアンチモン化合物の例としては、酒石酸アンチモニルカリウム、三酸化アンチモン(すなわち、酸化アンチモン(III))およびアンチモンのハロゲン化物塩などを挙げることができる。アンチモンのハロゲン化物塩としては、加水分解により有害な物質を生成しにくい三塩化アンチモン(すなわち、塩化アンチモン(III))などを用いるのが好ましい。 The color former may further contain an antimony compound. In this case, since the color intensity of phosphate ions described later may increase, the quantitative accuracy of the amount of phosphate ions in the test water, that is, the amount of total phosphorus may be increased. As the antimony compound, those having an antimony valence of 3 are used. Examples of the antimony compound having an antimony valence of 3 include potassium antimonyl tartrate, antimony trioxide (that is, antimony (III) oxide), and a halide salt of antimony. As the halide salt of antimony, it is preferable to use antimony trichloride (that is, antimony (III) chloride) that hardly generates harmful substances by hydrolysis.
 なお、アンチモン化合物としては、アンチモンの価数が5のアンチモン化合物を用いることもできる。このアンチモン化合物は、水溶液中において自然にアンチモンの価数が3のアンチモン化合物に変換されるため、アンチモンの価数が3のアンチモン化合物の供給源として用いることができる。ここで利用可能なアンチモンの価数が5のアンチモン化合物の例としては、五酸化アンチモン(すなわち、酸化アンチモン(V))および価数が5のアンチモンのハロゲン化物塩などを挙げることができる。価数が5のアンチモンのハロゲン化物塩としては、加水分解により有害な物質を生成しにくい五塩化アンチモン(すなわち、塩化アンチモン(V))などを用いるのが好ましい。 As the antimony compound, an antimony compound having an antimony valence of 5 can also be used. Since this antimony compound is naturally converted into an antimony compound having an antimony valence of 3 in an aqueous solution, it can be used as a source of the antimony compound having an antimony valence of 3. Examples of the antimony compound having an antimony valence of 5 usable here include antimony pentoxide (that is, antimony (V) oxide) and an antimony halide salt having a valence of 5. As the halide salt of antimony having a valence of 5, it is preferable to use antimony pentachloride (that is, antimony chloride (V)) that does not easily generate harmful substances by hydrolysis.
 アンチモン化合物は、他の発色剤用の成分と同じく精製水に溶解した水溶液として検査水に添加することができ、第1形態、第2形態および第3形態のいずれの形態の発色剤においても用いることができる。非還元性のオリゴ糖を用いた保存可能な第1形態の発色剤は、アンチモン化合物を含む場合であっても、溶質間での反応が実質的に進行しないため、長期間安定に保存することができる。第3形態の発色剤においてアンチモン化合物を用いる場合、アンチモン化合物は、第1水溶液に含めると当該水溶液の保存安定性を損なう可能性があることから第2水溶液に含めるのが好ましい。第2水溶液は、アンチモン化合物を含む場合であっても安定に保存することができる。 The antimony compound can be added to the inspection water as an aqueous solution dissolved in purified water like the other components for the color former, and is used in the color former in any of the first, second and third forms. be able to. The storable color former of the first form using non-reducing oligosaccharides should be stored stably for a long time because the reaction between the solutes does not substantially proceed even when the antimony compound is contained. Can do. When an antimony compound is used in the color former of the third form, the antimony compound is preferably included in the second aqueous solution because it may impair the storage stability of the aqueous solution. Even when the second aqueous solution contains an antimony compound, it can be stably stored.
 発色剤のための上述の各種水溶液のうち、バナジウム化合物を含む水溶液は、バナジウム化合物の分解が進行して着色することがあるため、調製時において水酸化ナトリウム等のアルカリ金属水酸化物や水酸化カルシウム等のアルカリ土類金属水酸化物などの強アルカリ剤の水溶液を添加することでアルカリ性に調整するか、或いは、精製水に替えて同様の強アルカリ剤の水溶液を用いて調製するのが好ましい。これらの場合、バナジウム化合物を含む水溶液は、バナジウム化合物の分解およびそれによる着色が抑制され、保存安定性が高まる。 Of the various aqueous solutions described above for the color former, an aqueous solution containing a vanadium compound may be colored due to the decomposition of the vanadium compound. It is preferable to adjust the alkalinity by adding an aqueous solution of a strong alkali agent such as an alkaline earth metal hydroxide such as calcium, or to prepare using an aqueous solution of a similar strong alkali agent instead of purified water. . In these cases, the aqueous solution containing the vanadium compound is prevented from being decomposed and colored by the vanadium compound, and the storage stability is improved.
 なお、モリブデン化合物としてモリブデン酸のアルカリ土類金属塩を用いる場合は、発色剤のための上述の各種水溶液の調製時にモリブデン酸のアルカリ土類金属塩の溶解を促進させるために、適量の硫酸または塩酸を添加することができる。また、アンチモン化合物として三酸化アンチモンを用いる場合は、発色剤のための上述の各種水溶液の調製時に三酸化アンチモンの溶解を促進させるために、適量の塩酸を添加することができる。 In the case where an alkaline earth metal salt of molybdic acid is used as the molybdenum compound, an appropriate amount of sulfuric acid or sulfuric acid is used in order to promote dissolution of the alkaline earth metal salt of molybdic acid during the preparation of the various aqueous solutions described above for the color former. Hydrochloric acid can be added. When antimony trioxide is used as the antimony compound, an appropriate amount of hydrochloric acid can be added in order to promote dissolution of antimony trioxide during the preparation of the various aqueous solutions described above for the color former.
 発色剤における各成分の使用量および発色剤の使用量については後記する。 The amount of each component used in the color former and the amount used of the color former will be described later.
 この工程において、検査水中に当初から含まれていたりん酸イオンおよび工程1においてりん化合物の酸化分解により生成したりん酸イオンは、添加されたモリブデン化合物と反応してヘテロポリ化合物を生成する。そして、生成したヘテロポリ化合物は、工程1において添加した硫酸による酸性環境下において、この工程で添加された糖類化合物により還元される。より具体的には、糖類化合物が炭素数5のアルドース、炭素数6のアルドース若しくは炭素数6のケトースの場合は、それらによってヘテロポリ化合物が還元される。また、糖類化合物がオリゴ糖の場合は、その分解によって生成する炭素数5のアルドース、炭素数6のアルドース若しくは炭素数6のケトースによってヘテロポリ化合物が還元される。この場合、オリゴ糖として還元性のもの、例えば、マルトース、ラクトース、イソマルツロース、マルツロース、ラクツロースおよびプリメベロースなどを用いると、当該還元性のオリゴ糖自体によっても生成したヘテロポリ化合物は還元され得る。このようなヘテロポリ化合物の還元によりモリブデン青が生成し(りん酸イオンの発色)、このモリブデン青により検査水が変色する。 In this step, phosphate ions originally contained in the inspection water and phosphate ions generated by oxidative decomposition of the phosphorus compound in step 1 react with the added molybdenum compound to form a heteropoly compound. And the produced | generated heteropoly compound is reduce | restored with the saccharide compound added at this process in the acidic environment by the sulfuric acid added at the process 1. FIG. More specifically, when the saccharide compound is an aldose having 5 carbon atoms, an aldose having 6 carbon atoms, or a ketose having 6 carbon atoms, the heteropoly compound is reduced thereby. When the saccharide compound is an oligosaccharide, the heteropoly compound is reduced by an aldose having 5 carbon atoms, an aldose having 6 carbon atoms, or a ketose having 6 carbon atoms generated by the decomposition. In this case, when a reducing oligosaccharide such as maltose, lactose, isomaltulose, maltulose, lactulose and primeverose is used, the heteropoly compound produced also by the reducing oligosaccharide itself can be reduced. Reduction of such a heteropoly compound generates molybdenum blue (coloration of phosphate ions), and the molybdenum blue changes the color of the inspection water.
 ここで、工程1においてりん化合物の酸化分解のために消費されずに検査水に残留しているペルオキソ二硫酸化合物は、ヘテロポリ化合物が生成する前に糖類化合物により分解されて速やかに消滅する。具体的には、糖類化合物が炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースの場合、これらの単糖により、検査水に残留しているペルオキソ二硫酸化合物が分解されて消滅する。一方、糖類化合物がオリゴ糖の場合、このオリゴ糖の分解により生成する炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースにより残留しているペルオキソ二硫酸化合物が分解されて消滅する。また、糖類化合物としてオリゴ糖を用いる場合は、当該オリゴ糖自体によっても残留しているペルオキソ二硫酸化合物が分解され得る。この結果、りん化合物の酸化分解のために消費されずに検査水に残留しているペルオキソ二硫酸化合物がヘテロポリ化合物の還元の妨げになるのが防止される。 Here, the peroxodisulfuric acid compound remaining in the test water without being consumed for the oxidative decomposition of the phosphorus compound in Step 1 is decomposed by the saccharide compound and quickly disappears before the heteropoly compound is formed. Specifically, when the saccharide compound is an aldose having 5 carbon atoms, an aldose having 6 carbon atoms, or a ketose having 6 carbon atoms, these monosaccharides decompose and disappear the peroxodisulfuric acid compound remaining in the test water. To do. On the other hand, when the saccharide compound is an oligosaccharide, the peroxodisulfuric acid compound remaining by the aldose having 5 carbon atoms, the aldose having 6 carbon atoms, or the ketose having 6 carbon atoms generated by the decomposition of the oligosaccharide is decomposed and disappears. . When an oligosaccharide is used as the saccharide compound, the remaining peroxodisulfuric acid compound can be decomposed by the oligosaccharide itself. As a result, the peroxodisulfuric acid compound remaining in the test water without being consumed for the oxidative decomposition of the phosphorus compound is prevented from interfering with the reduction of the heteropoly compound.
 また、検査水に含まれる二酸化ケイ素、ケイ酸およびケイ酸塩等のシリカは、水酸基含有化合物の作用によりりん酸イオンと反応して錯体を生成するのが抑制される。このため、検査水中のりん酸イオンは、モリブデン化合物と反応することで安定にヘテロポリ化合物を生成し、モリブデン青の生成により発色し得る。すなわち、りん酸イオンは、モリブデン青の生成による発色において、シリカの影響を受けるのが抑制される。 Further, silica such as silicon dioxide, silicic acid and silicate contained in the inspection water is inhibited from reacting with phosphate ions by the action of the hydroxyl group-containing compound to form a complex. For this reason, the phosphate ion in test water reacts with a molybdenum compound, produces | generates a heteropoly compound stably, and can color by the production | generation of molybdenum blue. That is, phosphate ions are suppressed from being affected by silica in the color development due to the formation of molybdenum blue.
 さらに、検査水が塩化物イオンを含む場合、工程1において、モリブデン青の生成を遅延させる原因となる塩素が生成する可能性があるが、生成した塩素は、この工程で検査水へ添加した糖類化合物により消費される。また、このような塩素の消費反応は、バナジウム化合物の存在下で加速される。この結果、この工程では、検査水に塩素が含まれる場合であってもモリブデン青の生成が速やかに進行し、次の工程へ早期に移行することができる。 Furthermore, in the case where the test water contains chloride ions, there is a possibility that chlorine that causes the generation of molybdenum blue to be delayed is generated in Step 1, and the generated chlorine is a saccharide added to the test water in this step. Consumed by the compound. In addition, such a chlorine consumption reaction is accelerated in the presence of a vanadium compound. As a result, in this step, even when chlorine is contained in the inspection water, the production of molybdenum blue proceeds promptly, and it is possible to move quickly to the next step.
 この工程において、検査水に添加する発色剤は、検査水への発色剤の添加時における各成分の検査水での濃度が次のようになるよう各水溶液における各成分の濃度および各水溶液の検査水への添加量を調整するのが好ましい。 In this step, the color former added to the inspection water is the concentration of each component in each aqueous solution and the inspection of each aqueous solution so that the concentration of each component in the inspection water at the time of addition of the color former to the inspection water is as follows: It is preferable to adjust the amount added to water.
 検査水における水酸基含有化合物の濃度(添加時の濃度)は、モリブデン青の生成による発色がシリカの影響を受けるのを十分に抑制可能な量に設定するのが好ましい。この観点から、検査水における水酸基含有化合物の濃度は、通常、0.5~10g/Lに設定するのが好ましく、1~7g/Lに設定するのがより好ましい。 The concentration of the hydroxyl group-containing compound in the test water (the concentration at the time of addition) is preferably set to an amount that can sufficiently suppress the color development due to the formation of molybdenum blue from being affected by silica. From this point of view, the concentration of the hydroxyl group-containing compound in the test water is usually preferably set to 0.5 to 10 g / L, and more preferably set to 1 to 7 g / L.
 検査水におけるバナジウム化合物の濃度(添加時の濃度であり、水和物を用いる場合は水分子を除いて換算した濃度)は、検査水へ添加した糖類化合物による塩素の消費を加速するために十分な量に設定するのが好ましい。この観点から、検査水におけるバナジウム化合物の濃度は、通常、0.05~10g/Lに設定するのが好ましく、0.1~3.0g/Lに設定するのがより好ましい。 The concentration of the vanadium compound in the test water (concentration at the time of addition, and the converted concentration excluding water molecules when hydrate is used) is sufficient to accelerate the consumption of chlorine by the saccharide compound added to the test water It is preferable to set to an appropriate amount. From this viewpoint, the concentration of the vanadium compound in the test water is usually preferably set to 0.05 to 10 g / L, and more preferably set to 0.1 to 3.0 g / L.
 検査水における糖類化合物の濃度(添加時の濃度であり、オリゴ糖を用いる場合は、その分解により生成する炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースでの換算濃度)は、検査水に残留するペルオキソ二硫酸化合物を消滅させるために必要な量であり、かつ、工程1において塩素が生成している場合は当該塩素を消費するために必要な量であり、しかも、生成したヘテロポリ化合物を十分に還元可能な濃度に設定するのが好ましい。この観点から、検査水における糖類化合物の濃度は、通常、2~60g/Lに設定するのが好ましく、5~40g/Lに設定するのがより好ましい。 The concentration of the saccharide compound in the test water (concentration at the time of addition, when using an oligosaccharide, the converted concentration in the aldose with 5 carbon atoms, the aldose with 6 carbon atoms or the ketose with 6 carbon atoms) , The amount necessary to extinguish the peroxodisulfuric acid compound remaining in the test water, and if chlorine is produced in step 1, it is the amount necessary to consume the chlorine, and It is preferable to set the concentration of the heteropoly compound so that it can be sufficiently reduced. From this viewpoint, the concentration of the saccharide compound in the test water is usually preferably set to 2 to 60 g / L, and more preferably set to 5 to 40 g / L.
 検査水におけるモリブデン化合物の濃度(添加時の濃度であり、水和物を用いる場合は水分子を除いて換算した濃度)は、通常、0.3~3.0g/Lに設定するのが好ましく、0.5~2.0g/Lに設定するのがより好ましい。また、アンチモン化合物を用いる場合、検査水におけるアンチモン化合物の濃度(添加時の濃度であり、水和物を用いる場合は水分子を除いて換算した濃度)は、通常、0.01~0.24g/Lに設定するのが好ましく、0.02~0.13g/Lになるよう設定するのがより好ましい。但し、検査水において、アンチモン化合物(A)とモリブデン化合物(B)との濃度比(A:B)は、1:8~100になるよう設定するのが好ましく、1:10~50になるよう設定するのがより好ましい。 The concentration of the molybdenum compound in the test water (the concentration at the time of addition, and when using a hydrate, the concentration converted excluding water molecules) is usually preferably set to 0.3 to 3.0 g / L. More preferably, it is set to 0.5 to 2.0 g / L. In addition, when an antimony compound is used, the concentration of the antimony compound in the test water (the concentration at the time of addition, or the concentration converted without water molecules when a hydrate is used) is usually 0.01 to 0.24 g. / L is preferable, and 0.02 to 0.13 g / L is more preferable. However, the concentration ratio (A: B) between the antimony compound (A) and the molybdenum compound (B) in the test water is preferably set to 1: 8 to 100, and preferably 1:10 to 50. It is more preferable to set.
 この工程において、発色剤は、2回以上に分けて間隔を設けながら、検査水に対して分割して添加することもできる。例えば、工程1の後に、検査水へ添加する発色剤の総量の一部を添加し、所定時間が経過したときに発色剤の総量の残りを添加することができる。分割添加の間隔の所定時間は、通常、1~30分に設定するのが好ましい。このような分割添加をする場合、最初の添加時における添加量は、モリブデン化合物が検査水に残留しているペルオキソ二硫酸化合物と接触することで変質し、りん酸イオンの発色が損なわれる可能性があることから、2回目以後の添加時における添加量よりも少なく設定するのが好ましい。例えば、発色剤の総量の20%を最初の添加時に添加し、2回目の添加時に発色剤の残りの80%を添加するのが好ましい。 In this step, the color former can be added in portions to the test water while providing an interval in two or more steps. For example, after Step 1, a part of the total amount of the color former to be added to the inspection water can be added, and the remainder of the total amount of the color former can be added when a predetermined time has elapsed. The predetermined time of the divided addition interval is usually preferably set to 1 to 30 minutes. In such a divided addition, the amount added at the time of the first addition may change due to the molybdenum compound coming into contact with the peroxodisulfate compound remaining in the test water, and the coloration of phosphate ions may be impaired. Therefore, it is preferable to set the amount less than the amount added at the second and subsequent additions. For example, it is preferred that 20% of the total amount of color former is added at the first addition, and the remaining 80% of the color former is added at the second addition.
 工程2における検査水の加熱温度は、工程1での加熱と同じ温度範囲に設定することができるが、通常は工程1での加熱温度と同一に設定するのが好ましい。また、この工程における検査水の加熱時間(発色剤を上述のように分割添加する場合は、最後の添加後の加熱時間)は、加熱温度により異なるが、りん酸イオンの発色が完結するのに十分な時間である。この時間は、検査水に含まれる塩化物イオンに由来の塩素の影響が排除されるため、通常、5~30分程度の短時間に設定することができる。 The heating temperature of the inspection water in the step 2 can be set to the same temperature range as the heating in the step 1, but it is usually preferable to set the same as the heating temperature in the step 1. In addition, although the heating time of the inspection water in this process (when the color former is added in a divided manner as described above, the heating time after the last addition) varies depending on the heating temperature, the coloration of phosphate ions is completed. It is enough time. This time can be normally set to a short time of about 5 to 30 minutes since the influence of chlorine derived from chloride ions contained in the inspection water is eliminated.
 以上の工程1および工程2は、常圧下で操作することができ、有害ガスの発生がないため、安全に実施することができる。また、工程1から工程2へ移行するときに検査水を放冷等により冷却する必要がないことから、工程1が完了後の検査水を円滑かつ速やかに工程2へ移行させることができる。さらに、工程1において塩素が生成した場合においても、この塩素は、バナジウム化合物の存在下において糖類化合物により速やかに消費されるため、モリブデン青による検査水の発色を遅延させにくい。このため、工程1の開始から工程2の完了までは、通常、30~90分程度の短時間で終了することができる。 The above steps 1 and 2 can be operated safely under normal pressure and can be safely carried out because no harmful gas is generated. In addition, since it is not necessary to cool the inspection water by standing cooling or the like when moving from step 1 to step 2, the inspection water after step 1 is completed can be transferred to step 2 smoothly and quickly. Further, even when chlorine is generated in Step 1, since this chlorine is quickly consumed by the saccharide compound in the presence of the vanadium compound, it is difficult to delay the color development of the test water by molybdenum blue. For this reason, from the start of step 1 to the completion of step 2, it can usually be completed in a short time of about 30 to 90 minutes.
 次に、モリブデン青により変色した検査水について、600から950nmの範囲における任意の波長の吸光度を測定する(工程3)。そして、当該吸光度とりん酸イオン濃度との関係を予め調べて作成しておいた検量線に基づいて、吸光度の測定値から検査水のりん酸イオン量、すなわち全りんの量を判定する。 Next, the absorbance at an arbitrary wavelength in the range of 600 to 950 nm is measured for the test water discolored by molybdenum blue (step 3). Then, based on a calibration curve prepared by examining the relationship between the absorbance and the phosphate ion concentration in advance, the phosphate ion amount of the test water, that is, the total phosphorus amount is determined from the absorbance measurement value.
 本発明に係る全りんの定量方法は、取り扱いに注意が必要な耐圧容器等の特殊な反応装置を用いずに安全に実施することができ、また、工程間において検査水を冷却する必要がないため、一連の工程を途切れなく円滑に進めることができ、短時間で終了することができる。このため、この定量方法は、自動化への適用が容易である。特に、工程2において用いる発色剤が第1形態のもの(但し、糖類化合物として非還元性のオリゴ糖を用いたもの)である場合、当該発色剤は、その添加のみで検査水へ所要の成分を同時に添加することができ、しかも保存可能であるため、自動化への適用がより容易になる。 The method for quantifying total phosphorus according to the present invention can be safely carried out without using a special reaction apparatus such as a pressure vessel that requires attention in handling, and it is not necessary to cool inspection water between processes. Therefore, a series of processes can be smoothly advanced without interruption, and can be completed in a short time. For this reason, this quantification method is easy to apply to automation. In particular, when the color former used in step 2 is of the first form (provided that a non-reducing oligosaccharide is used as the saccharide compound), the color former is a component required for the test water only by its addition. Can be added at the same time and can be stored, making it easier to apply to automation.
 また、本発明に係る全りんの定量方法においては、検量線を作成したときに、りん酸イオン濃度と600から950nmの範囲における任意の波長の吸光度との間の直線関係が比較的高濃度のりん酸イオン濃度の範囲まで良好に成立することから、検査水中に含まれるりん酸イオンの定量上限が4mg[P]/L若しくはそれ以上の範囲まで拡大する。このため、この定量方法は、りん酸イオンやりん化合物の含有量が多い検査水についても適用可能である。 In the method for determining total phosphorus according to the present invention, when a calibration curve is prepared, the linear relationship between the phosphate ion concentration and the absorbance at an arbitrary wavelength in the range of 600 to 950 nm is relatively high. Since it is well established up to the range of the phosphate ion concentration, the upper limit of quantification of phosphate ions contained in the test water is expanded to a range of 4 mg [P] / L or more. Therefore, this quantification method can also be applied to test water having a high content of phosphate ions and phosphorus compounds.
 本発明の定量方法における工程2は、りん酸イオンを含む検査水について、りん酸イオンを発色させるための方法として活用することができる。例えば、検査水がりん酸イオンを含むものであるかどうかを単純に判定する必要がある場合、この発色方法を用いれば、その判定を簡単に短時間で行うことができる。 Step 2 in the quantification method of the present invention can be used as a method for coloring phosphate ions in test water containing phosphate ions. For example, when it is necessary to simply determine whether or not the test water contains phosphate ions, this determination can be easily performed in a short time by using this coloring method.
 但し、この発色方法を適用する検査水は、予め硫酸を含むよう設定する必要がある(工程A)。硫酸を含む検査水は、検査水へ硫酸を添加するだけで調製することができる。この発色方法では、硫酸を含むよう設定された検査水に対して本発明の定量方法の工程2を適用すると(工程B)、検査水に含まれるりん酸イオンがモリブデン青の生成により発色する。したがって、検査水に対してこの発色方法を適用し、検査水においてりん酸イオンの発色が観測されたときは、検査水がりん酸イオンを含むものと判定することができ、一方、検査水においてりん酸イオンの発色が観測されなかったときは、検査水がりん酸イオンを含まないものと判定することができる。 However, the inspection water to which this coloring method is applied needs to be set in advance to contain sulfuric acid (step A). Test water containing sulfuric acid can be prepared simply by adding sulfuric acid to the test water. In this color development method, when Step 2 of the quantification method of the present invention is applied to test water set to contain sulfuric acid (Step B), phosphate ions contained in the test water are colored by the generation of molybdenum blue. Therefore, when this color development method is applied to test water, and coloration of phosphate ions is observed in the test water, it can be determined that the test water contains phosphate ions. When color development of phosphate ions is not observed, it can be determined that the test water does not contain phosphate ions.
 なお、検査水に対して上述のような発色方法を適用し、検査水においてりん酸イオンの発色が観測されない場合は、この発色方法を適用することで検査水がりん化合物を含むものであるかどうかを判定することもできる。この場合、工程Aでは、検査水に対して本発明の定量方法における工程1を適用する。これにより、検査水は、硫酸を含むように設定されるとともに、りん化合物を含む場合は当該りん化合物がりん酸イオンへ変換される。そして、工程Aを経た検査水に対して工程Bを適用し、検査水においてりん酸イオンの発色が観測されたときは、検査水がりん化合物を含むものと判定することができ、一方、検査水においてりん酸イオンの発色が観測されなかったときは、検査水がりん化合物を含まないものと判定することができる。 In addition, when the color development method as described above is applied to the test water, and the color development of phosphate ions is not observed in the test water, it is determined whether or not the test water contains a phosphorus compound by applying this color development method. It can also be determined. In this case, in step A, step 1 in the quantification method of the present invention is applied to the test water. As a result, the test water is set so as to contain sulfuric acid, and when the phosphorus compound is contained, the phosphorus compound is converted into phosphate ions. Then, when the process B is applied to the test water that has undergone the process A, and color development of phosphate ions is observed in the test water, it can be determined that the test water contains a phosphorus compound. If no coloration of phosphate ions is observed in water, it can be determined that the test water does not contain a phosphorus compound.
 このように、検査水に対して本発明の工程1を適用することで工程Aを実行したとき、工程Bにおいては、本発明の定量方法における工程2と同様に、発色剤を2回以上に分けて間隔を設けながら、検査水に対して分割して添加するのが好ましい。 Thus, when the process A is executed by applying the process 1 of the present invention to the test water, in the process B, as in the process 2 of the quantification method of the present invention, the color former is used twice or more. It is preferable to divide and add to the inspection water while providing separate intervals.
単位
 mg[P]/Lの単位は、1Lの水に含まれるりんのミリグラム数を示したものである。
試薬および分光光度計
 以下の実施例等で用いた試薬および分光光度計は次のものである。
りん標準液(水質試験用):和光純薬工業株式会社 コード160-19241
ケイ素標準液:和光純薬工業株式会社 コード192-06031
塩化物イオン標準液:和光純薬工業株式会社 コード032-16151
1M硫酸(容量分析用):和光純薬工業株式会社 コード198-09595
水酸化ナトリウム(試薬特級):和光純薬工業株式会社 コード198-13765
塩酸(試薬特級):和光純薬工業株式会社 コード080-01066
ペルオキソ二硫酸カリウム(窒素・りん測定用):和光純薬工業株式会社 コード169-1189
ペルオキソ二硫酸アンモニウム(試薬特級):和光純薬工業株式会社 コード012-03285
七モリブデン酸六アンモニウム四水和物(試薬特級):和光純薬工業株式会社 コード018-06901
モリブデン酸リチウム:和光純薬工業株式会社の和光一級 コード125-03501
モリブデン酸カリウム:和光純薬工業株式会社 コード165-04002
モリブデン(VI)酸二ナトリウム二水和物(試薬特級):和光純薬工業株式会社 コード190-02475
酒石酸アンチモニルカリウム三水和物(試薬特級):和光純薬工業株式会社 コード020-12832
酸化アンチモン(III)(化学用):和光純薬工業株式会社 コード018-04402
塩化アンチモン(III)(試薬特級):和光純薬工業株式会社 コード011-04492
DL-酒石酸:和光純薬工業株式会社の和光特級 コード203-00052
粘液酸:東京化成工業株式会社 コードM0466
グルコン酸ナトリウム:和光純薬工業株式会社の和光特級 コード193-13195
グルコヘプトン酸ナトリウム二水和物:東京化成工業株式会社 コードG0214
DL-グリセリン酸(40%水溶液): 東京化成工業株式会社 コードD0602
DL-リンゴ酸:和光純薬工業株式会社の和光特級 コード139-00565
クエン酸:和光純薬工業株式会社の和光特級 コード030-05525
meso-エリトリトール:和光純薬工業株式会社の和光一級 コード056-00242
キシリトール:和光純薬工業株式会社の和光特級 コード244-00542
ソルビトール:和光純薬工業株式会社の和光一級 コード194-03752
メタバナジン(V)酸ナトリウム:和光純薬工業株式会社 コード190-07012
酸化バナジウム(V):和光純薬工業株式会社 コード222-00122
酸化硫酸バナジウム(IV)n水和物:和光純薬工業株式会社 コード223-01132
塩化バナジウム(III):シグマアルドリッチジャパン株式会社 コード208272
D-フルクトース:和光純薬工業株式会社の和光特級 コード127-02765
D-アラビノース:和光純薬工業株式会社の和光特級 コード013-04572
D-グルコース(試薬特級):和光純薬工業株式会社 コード047-00592
スクロース(試薬特級):和光純薬工業株式会社 コード196-00015
D-ラフィノース五水和物(試薬特級):和光純薬工業株式会社 コード180-00012
D-マルトース一水和物:和光純薬工業株式会社の和光特級 コード130-00615
ラクトース一水和物(試薬特級):和光純薬工業株式会社 コード128-00095
D-ガラクトース(試薬特級):和光純薬工業株式会社 コード071-00032
1-ケストース(生化学用):和光純薬工業株式会社 コード112-00433
スタキオースn水和物:和光純薬工業株式会社 コード196-12764
イソマルツロース:和光純薬工業株式会社のパラチノース一水和物(生化学用) コード169-12991
マルツロース一水和物:東京化成工業株式会社 コードM1138
ラクツロース(生化学用):和光純薬工業株式会社 コード126-03732
アデノシン-5’-三りん酸二ナトリウム三水和物(生化学用):和光純薬工業株式会社 コード018-16911
りん酸フェニル二ナトリウム二水和物 :和光純薬工業株式会社の和光特級 コード044-04262
二りん酸ナトリウム十水和物(試薬特級):和光純薬工業株式会社 コード195-03025
アスコルビン酸(試薬特級):和光純薬工業株式会社 コード014-04801
分光光度計:株式会社島津製作所の商品名「UV-1600PC」
The unit of mg [P] / L indicates the number of milligrams of phosphorus contained in 1 L of water.
Reagents and spectrophotometers The reagents and spectrophotometers used in the following examples and the like are as follows.
Phosphorus standard solution (for water quality test): Wako Pure Chemical Industries, Ltd. Code 160-19241
Silicon standard solution: Wako Pure Chemical Industries, Ltd. Code 192-06031
Chloride ion standard solution: Wako Pure Chemical Industries, Ltd. Code 032-16151
1M sulfuric acid (for volumetric analysis): Wako Pure Chemical Industries, Ltd. Code 198-09595
Sodium hydroxide (reagent special grade): Wako Pure Chemical Industries, Ltd. Code 198-13765
Hydrochloric acid (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 080-01066
Potassium peroxodisulfate (for nitrogen and phosphorus measurement): Wako Pure Chemical Industries, Ltd. Code 169-1189
Ammonium peroxodisulfate (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 012-03285
Hexamolybdate hexaammonium tetrahydrate (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 018-06901
Lithium molybdate: Wako first grade code 125-03501 from Wako Pure Chemical Industries, Ltd.
Potassium molybdate: Wako Pure Chemical Industries, Ltd. Code 165-04002
Molybdenum (VI) disodium dihydrate (reagent special grade): Wako Pure Chemical Industries, Ltd. Code 190-02475
Potassium antimonyl tartrate trihydrate (reagent special grade): Wako Pure Chemical Industries, Ltd. Code 020-12832
Antimony (III) oxide (chemical): Wako Pure Chemical Industries, Ltd. Code 018-04402
Antimony (III) chloride (special reagent grade): Wako Pure Chemical Industries, Ltd. Code 011-0492
DL-tartaric acid: Wako special grade code 203-00052 from Wako Pure Chemical Industries, Ltd.
Mucus acid: Tokyo Chemical Industry Co., Ltd. Code M0466
Sodium gluconate: Wako Special Code 193-13195 from Wako Pure Chemical Industries, Ltd.
Sodium glucoheptonate dihydrate: Tokyo Chemical Industry Co., Ltd. Code G0214
DL-glyceric acid (40% aqueous solution): Tokyo Chemical Industry Co., Ltd. Code D0602
DL-malic acid: Wako Special Code 139-00565 from Wako Pure Chemical Industries, Ltd.
Citric acid: Wako Special Code 030-05525 from Wako Pure Chemical Industries, Ltd.
meso-erythritol: Wako first grade code 056-00242 from Wako Pure Chemical Industries, Ltd.
Xylitol: Wako Pure Chemical Industries, Ltd. Wako Premium Code 244-00542
Sorbitol: Wako first grade code 194-03752 from Wako Pure Chemical Industries, Ltd.
Sodium metavanadate (V): Wako Pure Chemical Industries, Ltd. Code 190-07010
Vanadium oxide (V): Wako Pure Chemical Industries, Ltd. Code 222-00122
Vanadium oxide (IV) n hydrate: Wako Pure Chemical Industries, Ltd. Code 223-01132
Vanadium chloride (III): Sigma-Aldrich Japan Co., Ltd. Code 208272
D-fructose: Wako Special Grade code 127-02765 from Wako Pure Chemical Industries, Ltd.
D-arabinose: Wako Special Grade code 013-04572 from Wako Pure Chemical Industries, Ltd.
D-glucose (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 047-10059
Sucrose (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 196-00001
D-Raffinose pentahydrate (reagent special grade): Wako Pure Chemical Industries, Ltd. Code 180-00012
D-maltose monohydrate: Wako special grade code 130-00615 from Wako Pure Chemical Industries, Ltd.
Lactose monohydrate (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 128-00095
D-galactose (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 071-00032
1-kestose (for biochemistry): Wako Pure Chemical Industries, Ltd. Code 112-00433
Stachyose n hydrate: Wako Pure Chemical Industries, Ltd. Code 196-12564
Isomaltulose: Palatinose monohydrate (for biochemistry) from Wako Pure Chemical Industries, Ltd. Code 169-12991
Martulose monohydrate: Tokyo Chemical Industry Co., Ltd. Code M1138
Lactulose (for biochemistry): Wako Pure Chemical Industries, Ltd. Code 126-03732
Adenosine-5′-triphosphate disodium salt trihydrate (for biochemistry): Wako Pure Chemical Industries, Ltd. Code 018-16911
Phenyl disodium phosphate dihydrate: Wako Pure Chemical Industries, Ltd. Wako Special Code 044-04262
Sodium diphosphate decahydrate (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 195-03025
Ascorbic acid (special grade reagent): Wako Pure Chemical Industries, Ltd. Code 014-04801
Spectrophotometer: Shimadzu Corporation trade name “UV-1600PC”
りん酸イオン溶液
 以下の実施例等で用いたりん酸イオン溶液は次のものである。
 りん酸イオン濃度が0、1.0、2.0、3.0および4.0mg[P]/Lの五種類のりん酸イオン溶液を用意した。りん酸イオン濃度が0mg[P]/Lのりん酸イオン溶液は蒸留水をそのまま用い、また、他のりん酸イオン溶液はりん標準液を蒸留水で希釈することでりん酸イオン濃度を調整した。
Phosphate ion solution The phosphate ion solution used in the following examples and the like is as follows.
Five types of phosphate ion solutions having phosphate ion concentrations of 0, 1.0, 2.0, 3.0, and 4.0 mg [P] / L were prepared. For phosphate ion solutions with a phosphate ion concentration of 0 mg [P] / L, distilled water was used as it was, and for other phosphate ion solutions, the phosphate standard concentration was adjusted by diluting the phosphorus standard solution with distilled water. .
実験例1
 次の試料水と酸化剤水溶液とを調製した。試料水2,3および4の調製に用いたD-グルコースは、きょう雑物としての有機物を想定したものである。
<試料水>
試料水1:
 りん酸イオン濃度が5mg[P]/Lのりん酸イオン溶液。
試料水2:
 二りん酸ナトリウム十水和物とD-グルコースとを蒸留水に溶解して得られた水溶液(二りん酸ナトリウム換算濃度が5mg[P]/L、D-グルコース濃度が40mg/L)。
試料水3:
 アデノシン-5’-三りん酸二ナトリウム三水和物とD-グルコースとを蒸留水に溶解して得られた水溶液(アデノシン-5’-三りん酸二ナトリウム換算濃度が5mg[P]/L、D-グルコース濃度が40mg/L)。
試料水4:
 りん酸フェニル二ナトリウム二水和物とD-グルコースとを蒸留水に溶解して得られた水溶液(りん酸フェニル二ナトリウム換算濃度が5mg[P]/L、D-グルコース濃度が40mg/L)。
Experimental example 1
The following sample water and oxidizer aqueous solution were prepared. The D-glucose used for the preparation of the sample waters 2, 3 and 4 assumes an organic substance as a contaminant.
<Sample water>
Sample water 1:
A phosphate ion solution having a phosphate ion concentration of 5 mg [P] / L.
Sample water 2:
An aqueous solution obtained by dissolving sodium diphosphate decahydrate and D-glucose in distilled water (sodium diphosphate equivalent concentration is 5 mg [P] / L, D-glucose concentration is 40 mg / L).
Sample water 3:
An aqueous solution obtained by dissolving adenosine-5′-triphosphate disodium salt trihydrate and D-glucose in distilled water (adenosine-5′-triphosphate disodium equivalent concentration is 5 mg [P] / L D-glucose concentration is 40 mg / L).
Sample water 4:
Aqueous solution obtained by dissolving phenyl disodium phosphate dihydrate and D-glucose in distilled water (phenyl disodium phosphate equivalent concentration is 5 mg [P] / L, D-glucose concentration is 40 mg / L) .
<酸化剤水溶液>
酸化剤水溶液1:
 濃度が40g/Lのペルオキソ二硫酸カリウム水溶液(JIS K 0102の46.1.1に記載された濃度(以下、「JIS法濃度」という)のペルオキソ二硫酸カリウム水溶液)。
酸化剤水溶液2:
 濃度が20g/Lのペルオキソ二硫酸カリウム水溶液(JIS法濃度の50%濃度のペルオキソ二硫酸カリウム水溶液)。
酸化剤水溶液3:
 濃度が8g/Lのペルオキソ二硫酸カリウム水溶液(JIS法濃度の20%濃度のペルオキソ二硫酸カリウム水溶液)。
酸化剤水溶液4:
 濃度が4g/Lのペルオキソ二硫酸カリウム水溶液(JIS法濃度の10%濃度のペルオキソ二硫酸カリウム水溶液)。
酸化剤水溶液5:
 濃度が2g/Lのペルオキソ二硫酸カリウム水溶液(JIS法濃度の5%濃度のペルオキソ二硫酸カリウム水溶液)。
酸化剤水溶液6:
 濃度が0.4g/Lのペルオキソ二硫酸カリウム水溶液(JIS法濃度の1%濃度のペルオキソ二硫酸カリウム水溶液)。
<Oxidizing agent aqueous solution>
Oxidizing agent aqueous solution 1:
A potassium peroxodisulfate aqueous solution having a concentration of 40 g / L (a potassium peroxodisulfate aqueous solution having a concentration described in JIS K 0102 46.1.1 (hereinafter referred to as “JIS method concentration”)).
Oxidizing agent aqueous solution 2:
A potassium peroxodisulfate aqueous solution having a concentration of 20 g / L (a potassium peroxodisulfate aqueous solution having a concentration of 50% of the JIS method concentration).
Oxidizing agent aqueous solution 3:
A potassium peroxodisulfate aqueous solution having a concentration of 8 g / L (a potassium peroxodisulfate aqueous solution having a concentration of 20% of the JIS method concentration).
Oxidizing agent aqueous solution 4:
A potassium peroxodisulfate aqueous solution having a concentration of 4 g / L (a potassium peroxodisulfate aqueous solution having a concentration of 10% of the JIS method concentration).
Oxidizing agent aqueous solution 5:
A potassium peroxodisulfate aqueous solution having a concentration of 2 g / L (a potassium peroxodisulfate aqueous solution having a concentration of 5% of the JIS method concentration).
Oxidizing agent aqueous solution 6:
A potassium peroxodisulfate aqueous solution having a concentration of 0.4 g / L (a potassium peroxodisulfate aqueous solution having a concentration of 1% of the JIS method concentration).
 試料水1~4のそれぞれ5mLに対し、酸化剤水溶液1~6の一つを1mL添加し、さらに1M硫酸を1mL添加した後、各試料水をブロックヒータを用いて95℃で40分間加熱した。そして、各試料水を蒸留水で5倍に希釈し、JIS K 0102の46.1.1に記載されたモリブデン青(アスコルビン酸還元)吸光光度法に従って各試料水を発色させ、890nmの吸光度を測定した。すなわち、同法において規定されたモリブデン酸アンモニウム溶液とアスコルビン酸溶液との5:1の混合溶液0.2mLを希釈した試料水へ添加し、25℃で約15分間放置した後、890nmの吸光度を測定した。結果を表1に示す。 1 mL of one of the oxidizer aqueous solutions 1 to 6 was added to 5 mL of each of the sample water 1 to 4, and 1 mL of 1M sulfuric acid was further added, and then each sample water was heated at 95 ° C. for 40 minutes using a block heater. . Each sample water was diluted 5 times with distilled water, and each sample water was colored according to the molybdenum blue (ascorbic acid reduction) absorptiometric method described in 46.1.1 of JIS K 0102, and the absorbance at 890 nm was obtained. It was measured. That is, 0.2 mL of a 5: 1 mixed solution of ammonium molybdate solution and ascorbic acid solution specified in the same method was added to diluted sample water and left at 25 ° C. for about 15 minutes, and then the absorbance at 890 nm was measured. It was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、試料水2~4の酸化分解率は、試料水1について測定された吸光度に対する吸光度の割合であり、試料水に含まれているりん化合物のうち酸化分解によりりん酸イオンに変換されたものの割合を示している。表1の酸化分解率によると、試料水に含まれるりん化合物は、ペルオキソ二硫酸カリウムの濃度が4g/L以上の水溶液(酸化剤水溶液4)を用いた場合において90%以上が、また、同濃度が8g/L以上の水溶液(酸化剤水溶液3)を用いた場合において95%以上が分解されてりん酸イオンに変換される。このことから、酸化剤水溶液におけるペルオキソ二硫酸カリウムは、JIS法濃度の大凡1/5以下の濃度に設定した場合であっても、試料水に含まれるりん化合物を効果的に酸化分解可能である。 In Table 1, the oxidative degradation rate of sample waters 2 to 4 is the ratio of absorbance to the absorbance measured for sample water 1, and is converted to phosphate ions by oxidative degradation among the phosphorus compounds contained in sample water. Shows the percentage of food. According to the oxidative degradation rate in Table 1, the phosphorus compound contained in the sample water is 90% or more when an aqueous solution (oxidant aqueous solution 4) having a potassium peroxodisulfate concentration of 4 g / L or more is used. When an aqueous solution (oxidant aqueous solution 3) having a concentration of 8 g / L or more is used, 95% or more is decomposed and converted into phosphate ions. From this, potassium peroxodisulfate in the oxidizing agent aqueous solution can effectively oxidatively decompose the phosphorus compound contained in the sample water even when the concentration is set to about 1/5 or less of the JIS method concentration. .
実験例2
 次の試料水を調製した。試料水5,6の調製に用いたD-グルコースは、きょう雑物としての有機物を想定したものである。
試料水5:
 アデノシン-5’-三りん酸二ナトリウム三水和物、りん酸フェニル二ナトリウム二水和物およびD-グルコースを蒸留水に溶解することにより、アデノシン-5’-三りん酸二ナトリウム濃度を1mg[P]/L、りん酸フェニル二ナトリウム濃度を1mg[P]/L、D-グルコース濃度を50mg/Lに調整した水溶液。
試料水6:
 二りん酸ナトリウム十水和物およびD-グルコースを蒸留水に溶解することにより、二りん酸ナトリウム濃度を2mg[P]/L、D-グルコース濃度を50mg/Lに調整した水溶液。
Experimental example 2
The following sample water was prepared. The D-glucose used for the preparation of the sample waters 5 and 6 assumes an organic substance as a contaminant.
Sample water 5:
Dissolving adenosine-5'-triphosphate disodium trihydrate, phenyl disodium phosphate dihydrate and D-glucose in distilled water to reduce the concentration of adenosine-5'-triphosphate disodium to 1 mg An aqueous solution in which [P] / L, phenyl disodium phosphate concentration is adjusted to 1 mg [P] / L, and D-glucose concentration is adjusted to 50 mg / L.
Sample water 6:
An aqueous solution in which sodium diphosphate decahydrate and D-glucose are dissolved in distilled water to adjust the sodium diphosphate concentration to 2 mg [P] / L and the D-glucose concentration to 50 mg / L.
 各試料水5mLに対し、濃度が30g/Lのペルオキソ二硫酸カリウム水溶液0.8mLと1M硫酸1.2mLとを添加した。そして、各試料水をブロックヒータを用いて95℃で40分間加熱した後、速やかに水で冷却した。冷却後の各試料水に蒸留水を加えて2倍に希釈し、実験例1の場合と同様にJIS K 0102の46.1.1に記載されたモリブデン青(アスコルビン酸還元)吸光光度法に従って各試料水を発色させ、890nmの吸光度を測定した。また、ブロックヒータによる各試料水の加熱時間を短縮した場合について、同様に試料水を発色させて890nmの吸光度を測定した。結果を表2に示す。 To each 5 mL of sample water, 0.8 mL of potassium peroxodisulfate aqueous solution having a concentration of 30 g / L and 1.2 mL of 1M sulfuric acid were added. And each sample water was heated for 40 minutes at 95 degreeC using the block heater, Then, it cooled with water rapidly. Distilled water is added to each sample water after cooling to dilute it twice, and in the same manner as in Experimental Example 1, according to the molybdenum blue (ascorbic acid reduction) spectrophotometric method described in JIS K 0102 46.1.1. Each sample water was colored and the absorbance at 890 nm was measured. Moreover, about the case where the heating time of each sample water by a block heater was shortened, the sample water was similarly developed and the light absorbency of 890 nm was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、相対分解率は、加熱時間が40分のときに各試料水に含まれるりん化合物の分解率が100%とした場合における、各加熱時間でのりん化合物の分解率を意味し、加熱時間が40分の場合の吸光度に対する吸光度の割合に基づいて算出したものである。表2によると、試料水中のりん化合物は、加熱時間が25分で90%以上、30分で98%以上が分解することがわかる。 In Table 2, the relative decomposition rate means the decomposition rate of the phosphorus compound at each heating time when the decomposition rate of the phosphorus compound contained in each sample water is 100% when the heating time is 40 minutes, This is calculated based on the ratio of the absorbance to the absorbance when the heating time is 40 minutes. According to Table 2, it can be seen that the phosphorus compound in the sample water is decomposed by 90% or more in 25 minutes and 98% or more in 30 minutes.
実験例3
 次の試料水を調製した。
試料水7:
 アデノシン-5’-三りん酸二ナトリウム三水和物濃度が65mg/L(1mg[P]/L)、りん酸フェニル二ナトリウム二水和物濃度が82mg/L(1mg[P]/L)、D-グルコース(きょう雑物としての有機物を想定したもの)濃度が20mg/L、シリカ濃度が50mg[Si]/L、塩化物イオン濃度が75mg/Lになるよう蒸留水にアデノシン-5’-三りん酸二ナトリウム三水和物、りん酸フェニル二ナトリウム二水和物、D-グルコース、ケイ素標準液および塩化物イオン標準液を溶解し、試料水を5mL調製した。この試料水は、全りんの濃度が2mg[P]/Lである。この試料水の調製では、ケイ素標準液がアルカリ性であることから1M硫酸を添加することで中和したケイ素標準液を用い、シリカ濃度を上記のように調整した。
Experimental example 3
The following sample water was prepared.
Sample water 7:
Adenosine-5′-triphosphate disodium trihydrate concentration of 65 mg / L (1 mg [P] / L), phenyl disodium phosphate dihydrate concentration of 82 mg / L (1 mg [P] / L) , D-glucose (assuming organic substances as contaminants) concentration of 20 mg / L, silica concentration of 50 mg [Si] / L, and chloride ion concentration of 75 mg / L in adenosine-5 ′ Disodium triphosphate trihydrate, phenyl disodium phosphate dihydrate, D-glucose, silicon standard solution and chloride ion standard solution were dissolved, and 5 mL of sample water was prepared. This sample water has a total phosphorus concentration of 2 mg [P] / L. In the preparation of the sample water, since the silicon standard solution is alkaline, a silicon standard solution neutralized by adding 1 M sulfuric acid was used, and the silica concentration was adjusted as described above.
試料水8:
 ケイ素標準液を用いずに、試料水7と同様にして全りんの濃度が2mg[P]/Lの試料水5mLを調製した。
Sample water 8:
Without using the silicon standard solution, 5 mL of sample water having a total phosphorus concentration of 2 mg [P] / L was prepared in the same manner as Sample Water 7.
 試料水7に1M硫酸1.4mLと濃度が30g/Lのペルオキソ二硫酸カリウム1.0mLとを添加し、ブロックヒータを用いて95℃で30分間加熱した。続いて、試料水7を95℃に加熱した状態で発色剤1.0mLを添加し、40分間放置した。ここで用いた発色剤は、蒸留水にスクロース、七モリブデン酸六アンモニウム四水和物および酒石酸アンチモニルカリウム三水和物を溶解したものであり、スクロースの濃度を100g/L、七モリブデン酸六アンモニウム四水和物の濃度を7g/L、酒石酸アンチモニルカリウム三水和物の濃度を0.5g/Lにそれぞれ調整したものである。発色剤を添加してから試料水が変色し始めるまでの時間は約30分であった。これは、塩化物イオンから生成した塩素がスクロースおよびその分解により生成した単糖により消費されるのに時間を要したためである。 1 mL of 1M sulfuric acid and 1.0 mL of potassium peroxodisulfate having a concentration of 30 g / L were added to the sample water 7 and heated at 95 ° C. for 30 minutes using a block heater. Subsequently, 1.0 mL of a color former was added in a state where the sample water 7 was heated to 95 ° C., and left for 40 minutes. The color former used here is a solution in which sucrose, hexaammonium heptamolybdate tetrahydrate and potassium antimonyl tartrate trihydrate are dissolved in distilled water, and the concentration of sucrose is 100 g / L, hexamolybdate hexahydrate. The concentration of ammonium tetrahydrate was adjusted to 7 g / L, and the concentration of potassium antimonyl tartrate trihydrate was adjusted to 0.5 g / L. The time from when the color former was added to when the sample water started to change color was about 30 minutes. This is because it took time for chlorine produced from chloride ions to be consumed by sucrose and monosaccharides produced by its decomposition.
 加熱終了後の試料水7について830nmの吸光度を測定したところ、1.36であった。同様に処理した試料水8(試料水7と同じく、発色剤を添加してから試料水が変色し始めるまでの時間は約30分であった。)について同じ波長の吸光度を測定したところ、1.02であった。シリカを含む試料水7は、シリカを含まない試料水8の約1.3倍の吸光度を示していることから、全りんの測定結果がシリカの影響を大きく受けることになる。 The absorbance at 830 nm of the sample water 7 after the heating was measured was 1.36. The absorbance at the same wavelength was measured for sample water 8 treated in the same manner (similar to sample water 7, the time from when the color former was added to when the sample water started to change color). .02. Since the sample water 7 containing silica has an absorbance about 1.3 times that of the sample water 8 not containing silica, the measurement result of total phosphorus is greatly affected by silica.
実施例1~12
(検量線の作成)
 りん酸イオン濃度が0、1.0、2.0、3.0および4.0mg[P]/Lの五種類のりん酸イオン溶液のそれぞれ2.5mLに対し、1M硫酸0.7mLと表3に示すペルオキソ二硫酸化合物水溶液0.5mLとを添加し、ブロックヒータを用いて95℃で30分間加熱した。
Examples 1-12
(Create a calibration curve)
For each 2.5 mL of the five phosphate ion solutions having phosphate ion concentrations of 0, 1.0, 2.0, 3.0, and 4.0 mg [P] / L, 0.7 mL of 1M sulfuric acid was obtained. The peroxodisulfuric acid compound aqueous solution 0.5mL shown in 3 was added, and it heated at 95 degreeC for 30 minute (s) using the block heater.
 次に、95℃に加熱した状態を維持し、発色剤0.5mLを添加して20分間放置した。実施例1~11で用いた発色剤は、表3に示す成分を同表に示す濃度になるよう蒸留水に溶解するとともに、バナジウム化合物を安定化して無色化するために0.5Mに調整した水酸化ナトリウム水溶液を添加することでアルカリ性に調整したものである。実施例12で用いた発色剤は、バナジウム化合物を安定化して無色化するために、表3に示す成分を同表に示す濃度になるよう0.5Mの水酸化ナトリウム水溶液に溶解したものである。 Next, while maintaining the state heated to 95 ° C., 0.5 mL of a color former was added and left for 20 minutes. The color formers used in Examples 1 to 11 were adjusted to 0.5 M in order to dissolve the components shown in Table 3 in distilled water so as to have the concentrations shown in the same table, and to stabilize and colorless the vanadium compound. It is adjusted to be alkaline by adding an aqueous sodium hydroxide solution. The color former used in Example 12 was prepared by dissolving the components shown in Table 3 in a 0.5 M aqueous sodium hydroxide solution so as to have the concentrations shown in the same table in order to stabilize and colorless the vanadium compound. .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上述の処理をした各りん酸イオン溶液について、表4に示す波長の吸光度を測定し、吸光度からりん酸イオン濃度を判定するための検量線を作成した。結果を図1~12に示す。図1~12によると、この検量線は、少なくともりん酸イオン濃度が0~4mg[P]/Lの範囲で高い直線性を示している。 For each phosphate ion solution treated as described above, the absorbance at the wavelengths shown in Table 4 was measured, and a calibration curve for determining the phosphate ion concentration from the absorbance was prepared. The results are shown in FIGS. According to FIGS. 1 to 12, this calibration curve shows high linearity at least in the range where the phosphate ion concentration is 0 to 4 mg [P] / L.
(試験水の調製)
 次の試験水を調製した。ケイ素標準液を用いる試験水の調製では、ケイ素標準液がアルカリ性であることから、1M硫酸を添加することで中和したケイ素標準液を用いた。
(Test water preparation)
The following test water was prepared. In the preparation of test water using a silicon standard solution, the silicon standard solution neutralized by adding 1 M sulfuric acid was used because the silicon standard solution was alkaline.
試験水A:
 アデノシン-5’-三りん酸二ナトリウム三水和物濃度が65mg/L(1.00mg[P]/L)、りん酸フェニル二ナトリウム二水和物濃度が82mg/L(1.00mg[P]/L)、D-グルコース(きょう雑物としての有機物を想定したもの)濃度が20mg/L、塩化物イオン濃度が100mg/Lになるよう蒸留水にアデノシン-5’-三りん酸二ナトリウム三水和物、りん酸フェニル二ナトリウム二水和物、D-グルコースおよび塩化物イオン標準液を溶解し、全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water A:
Adenosine-5′-triphosphate disodium trihydrate concentration is 65 mg / L (1.00 mg [P] / L), and phenyl disodium phosphate dihydrate concentration is 82 mg / L (1.00 mg [P ] / L), adenosine-5′-triphosphate disodium in distilled water so that the concentration of D-glucose (assuming organic substances as impurities) is 20 mg / L and the chloride ion concentration is 100 mg / L. Trihydrate, phenyl disodium phosphate dihydrate, D-glucose and chloride ion standard solution were dissolved, and 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared. .
試験水B:
 シリカ濃度が45mg/Lになるようケイ素標準液をさらに溶解した点を除き、試験水Aと同様にして全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water B:
Except that the silicon standard solution was further dissolved so that the silica concentration was 45 mg / L, 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as test water A.
試験水C:
 塩化物イオン濃度が150mg/Lになるよう塩化物イオン標準液を用いた点を除き、試験水Aと同様にして全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water C:
2.5 mL of test water with a total phosphorus concentration of 2.00 mg [P] / L was used in the same manner as test water A, except that the chloride ion standard solution was used so that the chloride ion concentration was 150 mg / L. Prepared.
試験水D:
 シリカ濃度が30mg/Lになるようケイ素標準液を溶解した点を除き、試験水Cと同様にして全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water D:
Except that the silicon standard solution was dissolved so that the silica concentration was 30 mg / L, 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as test water C.
試験水E:
 塩化物イオン濃度が200mg/Lになるよう塩化物イオン標準液を用いた点を除き、試験水Aと同様にして全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water E:
2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L is the same as test water A except that the chloride ion standard solution is used so that the chloride ion concentration becomes 200 mg / L. Prepared.
試験水F:
 シリカ濃度が35mg/Lになるようケイ素標準液を溶解した点を除き、試験水Eと同様にして全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water F:
2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as test water E, except that the silicon standard solution was dissolved so that the silica concentration was 35 mg / L.
試験水G:
 塩化物イオン濃度が75mg/Lになるよう塩化物イオン標準液を用いた点を除き、試験水Aと同様にして全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water G:
2.5 mL of test water with a total phosphorus concentration of 2.00 mg [P] / L was used in the same manner as test water A, except that the chloride ion standard solution was used so that the chloride ion concentration became 75 mg / L. Prepared.
試験水H:
 シリカ濃度が40mg/Lになるようケイ素標準液を溶解した点を除き、試験水Gと同様にして全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water H:
Except that the silicon standard solution was dissolved so that the silica concentration was 40 mg / L, 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as the test water G.
試験水I:
 シリカ濃度が35mg/Lになるようケイ素標準液を溶解した点を除き、試験水Gと同様にして全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water I:
Except that the silicon standard solution was dissolved so that the silica concentration was 35 mg / L, 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as the test water G.
試験水J:
 アデノシン-5’-三りん酸二ナトリウム三水和物濃度が97.5mg/L(1.50mg[P]/L)、りん酸フェニル二ナトリウム二水和物濃度が123mg/L(1.50mg[P]/L)、D-グルコース(きょう雑物としての有機物を想定したもの)濃度が20mg/L、塩化物イオン濃度が30mg/Lになるよう蒸留水にアデノシン-5’-三りん酸二ナトリウム三水和物、りん酸フェニル二ナトリウム二水和物、D-グルコースおよび塩化物イオン標準液を溶解し、全りんの濃度が3.00mg[P]/Lの試験水を2.5mL調製した。
Test water J:
Adenosine-5′-triphosphate disodium trihydrate concentration of 97.5 mg / L (1.50 mg [P] / L), phenyl disodium phosphate dihydrate concentration of 123 mg / L (1.50 mg) [P] / L), adenosine-5′-triphosphate in distilled water so that the concentration of D-glucose (assuming organic substances as impurities) is 20 mg / L and the chloride ion concentration is 30 mg / L. Dissolve disodium trihydrate, phenyl disodium phosphate dihydrate, D-glucose and chloride ion standard solution, and add 2.5 mL of test water with a total phosphorus concentration of 3.00 mg [P] / L Prepared.
試験水K:
 シリカ濃度が40mg/Lになるようケイ素標準液を溶解した点を除き、試験水Jと同様にして全りんの濃度が3.00mg[P]/Lの試験水を2.5mL調製した。
Test water K:
Except that the silicon standard solution was dissolved so that the silica concentration was 40 mg / L, 2.5 mL of test water having a total phosphorus concentration of 3.00 mg [P] / L was prepared in the same manner as test water J.
試験水L:
 塩化物イオン濃度が100mg/Lになるよう塩化物イオン標準液を用いた点を除き、試験水Jと同様にして全りんの濃度が3.00mg[P]/Lの試験水を2.5mL調製した。
Test water L:
2.5 mL of test water having a total phosphorus concentration of 3.00 mg [P] / L is the same as test water J except that the chloride ion standard solution was used so that the chloride ion concentration was 100 mg / L. Prepared.
試験水M:
 シリカ濃度が35mg/Lになるようケイ素標準液を溶解した点を除き、試験水Lと同様にして全りんの濃度が3.00mg[P]/Lの試験水を2.5mL調製した。
Test water M:
2.5 mL of test water having a total phosphorus concentration of 3.00 mg [P] / L was prepared in the same manner as the test water L, except that the silicon standard solution was dissolved so that the silica concentration was 35 mg / L.
試験水N:
 塩化物イオン濃度が150mg/Lになるよう塩化物イオン標準液を用いた点を除き、試験水Jと同様にして全りんの濃度が3.00mg[P]/Lの試験水を2.5mL調製した。
Test water N:
2.5 mL of test water with a total phosphorus concentration of 3.00 mg [P] / L was used in the same manner as test water J, except that the chloride ion standard solution was used so that the chloride ion concentration was 150 mg / L. Prepared.
試験水O:
 シリカ濃度が40mg/Lになるようケイ素標準液を溶解した点を除き、試験水Nと同様にして全りんの濃度が3.00mg[P]/Lの試験水を2.5mL調製した。
Test water O:
Except that the silicon standard solution was dissolved so that the silica concentration was 40 mg / L, 2.5 mL of test water having a total phosphorus concentration of 3.00 mg [P] / L was prepared in the same manner as the test water N.
試験水P:
 アデノシン-5’-三りん酸二ナトリウム三水和物濃度が32.5mg/L(0.50mg[P]/L)、りん酸フェニル二ナトリウム二水和物濃度が41mg/L(0.50mg[P]/L)、D-グルコース(きょう雑物としての有機物を想定したもの)濃度が20mg/L、塩化物イオン濃度が200mg/Lになるよう蒸留水にアデノシン-5’-三りん酸二ナトリウム三水和物、りん酸フェニル二ナトリウム二水和物、D-グルコースおよび塩化物イオン標準液を溶解し、全りんの濃度が1.00mg[P]/Lの試験水を2.5mL調製した。
Test water P:
Adenosine-5′-triphosphate disodium trihydrate concentration of 32.5 mg / L (0.50 mg [P] / L), phenyl disodium phosphate dihydrate concentration of 41 mg / L (0.50 mg) [P] / L), adenosine-5′-triphosphate in distilled water so that the concentration of D-glucose (assuming organic substances as impurities) is 20 mg / L and the chloride ion concentration is 200 mg / L. Dissolve disodium trihydrate, phenyl disodium phosphate dihydrate, D-glucose and chloride ion standard solution, and add 2.5 mL of test water with a total phosphorus concentration of 1.00 mg [P] / L Prepared.
試験水Q:
 シリカ濃度が30mg/Lになるようケイ素標準液を溶解した点を除き、試験水Pと同様にして全りんの濃度が1.00mg[P]/Lの試験水を2.5mL調製した。
Test water Q:
Except that the silicon standard solution was dissolved so that the silica concentration was 30 mg / L, 2.5 mL of test water having a total phosphorus concentration of 1.00 mg [P] / L was prepared in the same manner as the test water P.
試験水R:
 アデノシン-5’-三りん酸二ナトリウム三水和物濃度が130mg/L(2.00mg[P]/L)、りん酸フェニル二ナトリウム二水和物濃度が164mg/L(2.00mg[P]/L)、D-グルコース(きょう雑物としての有機物を想定したもの)濃度が20mg/L、塩化物イオン濃度が50mg/Lになるよう蒸留水にアデノシン-5’-三りん酸二ナトリウム三水和物、りん酸フェニル二ナトリウム二水和物、D-グルコースおよび塩化物イオン標準液を溶解し、全りんの濃度が4.00mg[P]/Lの試験水を2.5mL調製した。
Test water R:
Adenosine-5′-triphosphate disodium trihydrate concentration is 130 mg / L (2.00 mg [P] / L), phenyl disodium phosphate dihydrate concentration is 164 mg / L (2.00 mg [P ] / L), adenosine-5′-triphosphate disodium in distilled water so that the concentration of D-glucose (assuming organic substances as impurities) is 20 mg / L and the chloride ion concentration is 50 mg / L. Trihydrate, phenyl disodium phosphate dihydrate, D-glucose and chloride ion standard solution were dissolved, and 2.5 mL of test water having a total phosphorus concentration of 4.00 mg [P] / L was prepared. .
試験水S:
 シリカ濃度が50mg/Lになるようケイ素標準液を溶解した点を除き、試験水Rと同様にして全りんの濃度が4.00mg[P]/Lの試験水を2.5mL調製した。
Test water S:
Except that the silicon standard solution was dissolved so that the silica concentration was 50 mg / L, 2.5 mL of test water having a total phosphorus concentration of 4.00 mg [P] / L was prepared in the same manner as the test water R.
(試験水の全りん定量)
 表4に示す試験水に対して1M硫酸0.7mLと表3に示すペルオキソ二硫酸化合物水溶液0.5mLとを添加し、ブロックヒータを用いて95℃で30分間加熱した。次に、試験水を95℃に加熱した状態で発色剤(検量線の作成時に用いたものと同じもの)0.5mLを添加して20分間放置した。発色剤を添加してから試験水が発色し始めるまでの時間(発色開始時間)を表4に示す。
(Total phosphorus determination of test water)
To the test water shown in Table 4, 0.7 mL of 1M sulfuric acid and 0.5 mL of a peroxodisulfuric acid compound aqueous solution shown in Table 3 were added and heated at 95 ° C. for 30 minutes using a block heater. Next, with the test water heated to 95 ° C., 0.5 mL of a color former (the same as that used when preparing the calibration curve) was added and left for 20 minutes. Table 4 shows the time from when the color former is added to when the test water starts to develop color (color development start time).
 加熱終了後の試験水について、表4に示す波長の吸光度を測定し、その測定値から作成した検量線に基づいて全りん濃度を定量した。結果を表4に示す。 For the test water after heating, the absorbance at the wavelengths shown in Table 4 was measured, and the total phosphorus concentration was quantified based on a calibration curve created from the measured values. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例13~16
(検量線の作成)
 りん酸イオン濃度が0、1.0、2.0、3.0および4.0mg[P]/Lの五種類のりん酸イオン溶液のそれぞれ2.5mLに対し、1M硫酸0.7mLと表5に示すペルオキソ二硫酸化合物水溶液0.5mLとを添加し、ブロックヒータを用いて95℃で30分間加熱した。
Examples 13 to 16
(Create a calibration curve)
For each 2.5 mL of the five phosphate ion solutions having phosphate ion concentrations of 0, 1.0, 2.0, 3.0, and 4.0 mg [P] / L, 0.7 mL of 1M sulfuric acid was obtained. The peroxodisulfuric acid compound aqueous solution 0.5mL shown in 5 was added, and it heated at 95 degreeC for 30 minute (s) using the block heater.
 次に、95℃に加熱した状態を維持し、発色剤0.1mLを添加して2分間放置した。続けて、95℃に加熱した状態を維持しながら発色剤0.4mLをさらに添加し、18分間放置した。ここで用いた発色剤は、表5に示す成分を同表に示す濃度になるよう蒸留水に溶解するとともに、バナジウム化合物を安定化して無色化するために0.5Mに調整した水酸化ナトリウム水溶液を添加することでアルカリ性に調整したものである。 Next, while maintaining the state heated to 95 ° C., 0.1 mL of a color former was added and left for 2 minutes. Subsequently, while maintaining the state heated to 95 ° C., 0.4 mL of a color former was further added and left for 18 minutes. The color former used here was an aqueous solution of sodium hydroxide adjusted to 0.5 M in order to dissolve the components shown in Table 5 in distilled water so as to have the concentrations shown in the same table, and to stabilize and colorless the vanadium compound. Is adjusted to be alkaline by adding.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上述の処理をした各りん酸イオン溶液について、表6に示す波長の吸光度を測定し、吸光度からりん酸イオン濃度を判定するための検量線を作成した。結果を図13~16に示す。図13~16によると、この検量線は、少なくともりん酸イオン濃度が0~4mg[P]/Lの範囲で高い直線性を示している。 The absorbance at the wavelengths shown in Table 6 was measured for each phosphate ion solution treated as described above, and a calibration curve for determining the phosphate ion concentration from the absorbance was prepared. The results are shown in FIGS. According to FIGS. 13 to 16, this calibration curve shows high linearity at least in the range where the phosphate ion concentration is 0 to 4 mg [P] / L.
(試験水の調製)
 実施例1~12で用いたものと同じ試験水C、EおよびLの他に、次の試験水T、UおよびVを調製した。各試験水の調製では、ケイ素標準液がアルカリ性であることから1M硫酸を添加することで中和したケイ素標準液を用いた。
(Test water preparation)
In addition to the same test waters C, E and L used in Examples 1-12, the following test waters T, U and V were prepared. In the preparation of each test water, the silicon standard solution neutralized by adding 1 M sulfuric acid was used because the silicon standard solution was alkaline.
試験水T:
 シリカ濃度が40mg/Lになるようケイ素標準液をさらに溶解した点を除き、試験水Lと同様にして全りんの濃度が3.00mg[P]/Lの試験水を2.5mL調製した。
Test water T:
2.5 mL of test water having a total phosphorus concentration of 3.00 mg [P] / L was prepared in the same manner as test water L, except that the silicon standard solution was further dissolved so that the silica concentration was 40 mg / L.
試験水U:
 シリカ濃度が50mg/Lになるようケイ素標準液をさらに溶解した点を除き、試験水Cと同様にして全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water U:
Except that the silicon standard solution was further dissolved so that the silica concentration was 50 mg / L, 2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as test water C.
試験水V:
 シリカ濃度が45mg/Lになるようケイ素標準液をさらに溶解した点を除き、試験水Eと同様にして全りんの濃度が2.00mg[P]/Lの試験水を2.5mL調製した。
Test water V:
2.5 mL of test water having a total phosphorus concentration of 2.00 mg [P] / L was prepared in the same manner as test water E, except that the silicon standard solution was further dissolved so that the silica concentration was 45 mg / L.
(試験水の全りん定量)
 表6に示す試験水に対して1M硫酸0.7mLと表5に示すペルオキソ二硫酸化合物水溶液0.5mLとを添加し、ブロックヒータを用いて95℃で30分間加熱した。次に、試験水を95℃に加熱した状態で発色剤0.1mLを添加して2分間放置した。さらに、試験水を95℃に加熱した状態で発色剤を0.4mL添加し、同温度での加熱を18分間継続した。ここで添加した発色剤は、検量線の作成時に用いたものと同じものである。発色剤を二度目に添加してから試験水が発色し始めるまでの時間(発色開始時間)を表6に示す。
(Total phosphorus determination of test water)
To the test water shown in Table 6, 0.7 mL of 1M sulfuric acid and 0.5 mL of a peroxodisulfuric acid compound aqueous solution shown in Table 5 were added and heated at 95 ° C. for 30 minutes using a block heater. Next, with the test water heated to 95 ° C., 0.1 mL of a color former was added and left for 2 minutes. Further, 0.4 mL of a color former was added while the test water was heated to 95 ° C., and heating at the same temperature was continued for 18 minutes. The color former added here is the same as that used in preparing the calibration curve. Table 6 shows the time (color development start time) from when the color former is added a second time until the test water starts to develop color.
 加熱終了後の試験水について、表6に示す波長の吸光度を測定し、その測定値から作成した検量線に基づいて全りん濃度を定量した。結果を表6に示す。 For the test water after completion of heating, the absorbance at the wavelengths shown in Table 6 was measured, and the total phosphorus concentration was quantified based on a calibration curve created from the measured values. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態若しくは実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は、請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment or example is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the scope of claims, and is not restricted to the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

Claims (13)

  1.  検査水に含まれるりん化合物を分解してりん酸イオンへ変換した後、前記検査水のりん酸イオンを定量することで前記検査水の全りんを定量するための方法であって、
     前記検査水へペルオキソ二硫酸のアルカリ金属塩またはペルオキソ二硫酸アンモニウムと硫酸とを添加し、65℃から前記検査水の沸騰温度までの温度で所定時間加熱する工程1と、
     工程1を経た前記検査水に対し、ヒドロキシカルボン酸群およびアルジトールからなる水酸基含有化合物群から選ばれた少なくとも1つの水酸基含有化合物、バナジウムの価数が3~5のバナジウム化合物、炭素数5のアルドース、炭素数6のアルドース、炭素数6のケトースおよび分解により炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースを生成可能なオリゴ糖群からなる糖類化合物群から選ばれた糖類化合物並びに七モリブデン酸六アンモニウムまたはモリブデン酸アルカリ金属塩を含む発色剤を添加し、65℃から前記検査水の沸騰温度までの温度で所定時間加熱する工程2と、
     工程2を経た前記検査水について、600から950nmの範囲における任意の波長の吸光度を測定する工程3と、
    を含む全りんの定量方法。
    A method for quantifying the total phosphorus of the test water by decomposing the phosphorus compound contained in the test water and converting it into phosphate ions, and then quantifying the phosphate ion of the test water,
    Adding an alkali metal salt of peroxodisulfuric acid or ammonium peroxodisulfate and sulfuric acid to the test water, and heating at a temperature from 65 ° C. to the boiling temperature of the test water for a predetermined time;
    At least one hydroxyl group-containing compound selected from the hydroxycarboxylic acid group and the hydroxyl group-containing compound group consisting of alditol, vanadium compound having a valence of 3 to 5 and aldose having 5 carbon atoms with respect to the test water having undergone step 1 A saccharide compound selected from the group consisting of saccharide compounds comprising aldoses having 6 carbon atoms, ketoses having 6 carbon atoms and aldoses having 5 carbon atoms, aldoses having 6 carbon atoms, or oligosaccharide groups capable of producing ketoses having 6 carbon atoms by decomposition And adding a color former containing hexaammonium heptamolybdate or an alkali metal molybdate and heating at a temperature from 65 ° C. to the boiling temperature of the test water for a predetermined time,
    Step 3 for measuring the absorbance of any wavelength in the range of 600 to 950 nm for the test water that has undergone Step 2;
    For the determination of total phosphorus, including
  2.  前記ヒドロキシカルボン酸群がクエン酸、リンゴ酸、アルダル酸およびアルドン酸からなり、前記オリゴ糖群がスクロース、マルトース、ラクトース、ラフィノース、ケストース、スタキオース、イソマルツロース、マルツロースおよびラクツロースからなり、前記バナジウム化合物が塩化バナジウム(III)、酸化硫酸バナジウム(IV)、メタバナジン(V)酸ナトリウムおよび酸化バナジウム(V)からなる群から選ばれたものである、請求項1に記載の全りんの定量方法。 The hydroxycarboxylic acid group consists of citric acid, malic acid, aldaric acid and aldonic acid, the oligosaccharide group consists of sucrose, maltose, lactose, raffinose, kestose, stachyose, isomaltulose, maltulose and lactulose, and the vanadium compound The method for quantifying total phosphorus according to claim 1, wherein is selected from the group consisting of vanadium (III) chloride, vanadium oxide (IV) sulfate, sodium metavanadate (V) and vanadium oxide (V).
  3.  前記発色剤はアンチモンの価数が3であるアンチモン化合物をさらに含む、請求項1に記載の全りんの定量方法。 The method for quantifying total phosphorus according to claim 1, wherein the color former further comprises an antimony compound having an antimony valence of 3.
  4.  工程2において、発色剤を2回以上に分けて間隔を設けながら添加する、請求項1から3のいずれかに記載の全りんの定量方法。 The method for quantifying total phosphorus according to any one of claims 1 to 3, wherein, in step 2, the color former is added in two or more steps while providing an interval.
  5.  検査水に含まれるりん酸イオンの発色方法であって、
     前記検査水が硫酸を含むよう設定する工程Aと、
     工程Aを経た前記検査水に対し、ヒドロキシカルボン酸群およびアルジトールからなる水酸基含有化合物群から選ばれた少なくとも1つの水酸基含有化合物、バナジウムの価数が3~5のバナジウム化合物、炭素数5のアルドース、炭素数6のアルドース、炭素数6のケトースおよび分解により炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースを生成可能なオリゴ糖群からなる糖類化合物群から選ばれた糖類化合物並びに七モリブデン酸六アンモニウムまたはモリブデン酸アルカリ金属塩を含む発色剤を添加し、65℃から前記検査水の沸騰温度までの温度で所定時間加熱する工程Bと、
    を含むりん酸イオンの発色方法。
    A method for coloring phosphate ions contained in test water,
    Step A for setting the inspection water to contain sulfuric acid;
    At least one hydroxyl group-containing compound selected from the hydroxycarboxylic acid group and a hydroxyl group-containing compound group consisting of an alditol, a vanadium compound having a vanadium valence of 3 to 5, and an aldose having 5 carbon atoms with respect to the test water having undergone step A A saccharide compound selected from the group consisting of saccharide compounds comprising aldoses having 6 carbon atoms, ketoses having 6 carbon atoms and aldoses having 5 carbon atoms, aldoses having 6 carbon atoms, or oligosaccharide groups capable of producing ketoses having 6 carbon atoms by decomposition And adding a color former containing hexaammonium heptamolybdate or an alkali metal molybdate, and heating for a predetermined time at a temperature from 65 ° C. to the boiling temperature of the test water;
    Method for coloring phosphate ions containing
  6.  前記ヒドロキシカルボン酸群がクエン酸、リンゴ酸、アルダル酸およびアルドン酸からなり、前記オリゴ糖群がスクロース、マルトース、ラクトース、ラフィノース、ケストース、スタキオース、イソマルツロース、マルツロースおよびラクツロースからなり、前記バナジウム化合物が塩化バナジウム(III)、酸化硫酸バナジウム(IV)、メタバナジン(V)酸ナトリウムおよび酸化バナジウム(V)からなる群から選ばれたものである、請求項5に記載のりん酸イオンの発色方法。 The hydroxycarboxylic acid group consists of citric acid, malic acid, aldaric acid and aldonic acid, the oligosaccharide group consists of sucrose, maltose, lactose, raffinose, kestose, stachyose, isomaltulose, maltulose and lactulose, and the vanadium compound 6. The method for coloring phosphate ions according to claim 5, wherein is selected from the group consisting of vanadium chloride (III), vanadium oxide sulfate (IV), sodium metavanadate (V) and vanadium oxide (V).
  7.  前記発色剤はアンチモンの価数が3であるアンチモン化合物をさらに含む、請求項5に記載のりん酸イオンの発色方法。 6. The method for coloring phosphate ions according to claim 5, wherein the color former further comprises an antimony compound having an antimony valence of 3.
  8.  工程Aにおいて、前記検査水へペルオキソ二硫酸のアルカリ金属塩またはペルオキソ二硫酸アンモニウムと硫酸とを添加して65℃から前記検査水の沸騰温度までの温度で所定時間加熱し、前記検査水が硫酸を含むよう設定する、請求項5から7のいずれかに記載のりん酸イオンの発色方法。 In step A, an alkali metal salt of peroxodisulfuric acid or ammonium peroxodisulfate and sulfuric acid are added to the test water and heated at a temperature from 65 ° C. to the boiling temperature of the test water for a predetermined time. The method for coloring phosphate ions according to any one of claims 5 to 7, which is set to include.
  9.  工程Bにおいて、前記発色剤を2回以上に分けて間隔を設けながら添加する、請求項8に記載のりん酸イオンの発色方法。 The method for coloring phosphate ions according to claim 8, wherein in step B, the color former is added in two or more steps while providing an interval.
  10.  検査水に含まれるりん酸イオンの発色剤であって、
     ヒドロキシカルボン酸群およびアルジトールからなる水酸基含有化合物群から選ばれた少なくとも1つの水酸基含有化合物、バナジウムの価数が3~5のバナジウム化合物、炭素数5のアルドース、炭素数6のアルドース、炭素数6のケトースおよび分解により炭素数5のアルドース、炭素数6のアルドースまたは炭素数6のケトースを生成可能なオリゴ糖群からなる糖類化合物群から選ばれた糖類化合物並びに七モリブデン酸六アンモニウムまたはモリブデン酸アルカリ金属塩を含む水溶液からなる、
    りん酸イオンの発色剤。
    A coloring agent for phosphate ions contained in test water,
    At least one hydroxyl group-containing compound selected from the group consisting of a hydroxycarboxylic acid group and a hydroxyl group-containing compound comprising alditol, a vanadium compound having a valence of 3 to 5 vanadium, an aldose having 5 carbon atoms, an aldose having 6 carbon atoms, and 6 carbon atoms Saccharide compounds selected from the group of saccharide compounds consisting of aldoses having 5 carbon atoms, aldoses having 6 carbon atoms, or oligosaccharide groups capable of producing ketoses having 6 carbon atoms by ketose and decomposition of hexose, hexaammonium molybdate or alkali molybdate Consisting of an aqueous solution containing a metal salt,
    Phosphate ion coloring agent.
  11.  アンチモンの価数が3であるアンチモン化合物をさらに含む、請求項10に記載のりん酸イオンの発色剤。 11. The phosphate ion color former according to claim 10, further comprising an antimony compound having an antimony valence of 3.
  12.  前記ヒドロキシカルボン酸群がクエン酸、リンゴ酸、アルダル酸およびアルドン酸からなり、前記オリゴ糖群がスクロース、マルトース、ラクトース、ラフィノース、ケストース、スタキオース、イソマルツロース、マルツロースおよびラクツロースからなり、前記バナジウム化合物が塩化バナジウム(III)、酸化硫酸バナジウム(IV)、メタバナジン(V)酸ナトリウムおよび酸化バナジウム(V)からなる群から選ばれたものである、請求項10または11に記載のりん酸イオンの発色剤。 The hydroxycarboxylic acid group consists of citric acid, malic acid, aldaric acid and aldonic acid, the oligosaccharide group consists of sucrose, maltose, lactose, raffinose, kestose, stachyose, isomaltulose, maltulose and lactulose, and the vanadium compound The coloration of phosphate ions according to claim 10 or 11, wherein is selected from the group consisting of vanadium (III) chloride, vanadium oxide (IV) sulfate, sodium metavanadate (V) and vanadium (V) oxide. Agent.
  13.  前記糖類化合物がスクロース、ラフィノース、ケストースおよびスタキオースからなる群から選ばれた非還元性オリゴ糖である、請求項10または11に記載のりん酸イオンの発色剤。 The phosphate ion color former according to claim 10 or 11, wherein the saccharide compound is a non-reducing oligosaccharide selected from the group consisting of sucrose, raffinose, kestose and stachyose.
PCT/JP2011/000460 2010-07-30 2011-01-28 Total phosphorous quantity determination method WO2012014346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011526336A JP4821941B1 (en) 2010-07-30 2011-01-28 Determination of total phosphorus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/004834 WO2012014257A1 (en) 2010-07-30 2010-07-30 Total phosphorous quantity determination method
JPPCT/JP2010/004834 2010-07-30

Publications (1)

Publication Number Publication Date
WO2012014346A1 true WO2012014346A1 (en) 2012-02-02

Family

ID=45529509

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/004834 WO2012014257A1 (en) 2010-07-30 2010-07-30 Total phosphorous quantity determination method
PCT/JP2011/000460 WO2012014346A1 (en) 2010-07-30 2011-01-28 Total phosphorous quantity determination method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004834 WO2012014257A1 (en) 2010-07-30 2010-07-30 Total phosphorous quantity determination method

Country Status (1)

Country Link
WO (2) WO2012014257A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533391A (en) * 1976-06-30 1978-01-13 Wako Pure Chem Ind Ltd Determination reagent for inorganic phospher in body fluids
JPS56110050A (en) * 1980-02-05 1981-09-01 Toyo Roshi Kk Measuring method for density of phosphate anion in very small quantities in water
JPS58180949A (en) * 1982-04-16 1983-10-22 Kimoto Denshi Kogyo Kk Analysis of phosphoric acid
JPH11237373A (en) * 1998-02-20 1999-08-31 Toray Eng Co Ltd Method and apparatus for quantitatively determining phosphide or the like in solution
JP2004093509A (en) * 2002-09-03 2004-03-25 Dkk Toa Corp Total nitrogen/total phosphorus measuring device
JP2004257916A (en) * 2003-02-27 2004-09-16 Shimadzu Corp Method and instrument for measuring total phosphorus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533391A (en) * 1976-06-30 1978-01-13 Wako Pure Chem Ind Ltd Determination reagent for inorganic phospher in body fluids
JPS56110050A (en) * 1980-02-05 1981-09-01 Toyo Roshi Kk Measuring method for density of phosphate anion in very small quantities in water
JPS58180949A (en) * 1982-04-16 1983-10-22 Kimoto Denshi Kogyo Kk Analysis of phosphoric acid
JPH11237373A (en) * 1998-02-20 1999-08-31 Toray Eng Co Ltd Method and apparatus for quantitatively determining phosphide or the like in solution
JP2004093509A (en) * 2002-09-03 2004-03-25 Dkk Toa Corp Total nitrogen/total phosphorus measuring device
JP2004257916A (en) * 2003-02-27 2004-09-16 Shimadzu Corp Method and instrument for measuring total phosphorus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EIKO NAKAMURA ET AL.: "Heating effects on sample decomposition by peroxodisulfate for determination of total phosphorus in water", JOURNAL OF JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 35, no. 12, 5 December 1986 (1986-12-05), pages 124 - 129 *
KAZUKO MATSUMOTO ET AL.: "Formation of Molybdenum Blues and Its Application to Determination of Phosphorus (Kagaku eno Shotai)", CHEMICAL EDUCATION, vol. 35, no. 5, 20 October 1987 (1987-10-20), pages 420 - 423 *
KAZUO KUGA ET AL.: "Indirect Determination of Phosphorus by Graphite Furnace Atomic Absorption Spectrometry of Antimony and Molybdenum", JOURNAL OF JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 30, no. 3, 5 March 1981 (1981-03-05), pages 164 - 169 *
SHINGO FUJITA ET AL.: "Interference from chlorine and its elimination on the determination of total phosphorus in sea water by the peroxodisulfate digestion/molybdenum blue method", JOURNAL OF JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 53, no. 9, 5 September 2004 (2004-09-05), pages 1045 - 1049 *

Also Published As

Publication number Publication date
WO2012014257A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP4821941B1 (en) Determination of total phosphorus
JP5287814B2 (en) Determination of total phosphorus
JP5234053B2 (en) Determination of total phosphorus
JP4893864B2 (en) Determination of total phosphorus
JP5510066B2 (en) Determination of total phosphorus
Hunter et al. The micro-determination of bromide in presence of chloride
JP5141735B2 (en) Method for coloring and quantifying phosphate ion
WO2012014346A1 (en) Total phosphorous quantity determination method
JP5141728B2 (en) Determination of total phosphorus
JP2012032243A (en) Quantification method for total phosphorus
Palin The determination of free chlorine and of chloramine in water using p-aminodimethylaniline
JP5445639B2 (en) Quantitative method for total nitrogen
KR101346664B1 (en) Nitrate concentration measuring method
Ray et al. The optimum conditions for the formation of silica gels from alkali silicate solutions
JP2003344381A (en) Method and apparatus for measuring total nitrogen
JP2012112783A (en) Method for quantitating nitrite ion
JP2011242166A (en) Measuring method and measuring device of hydroxyl radical concentration
JP5668936B2 (en) Quantitative method for total nitrogen
Singh et al. KINETICS OF Ir (III)-CATALYSED OXIDATION OF D-XYLOSE BY SODIUM METAPERIODATE IN ALKALINE MEDIUM.
JP2013130476A (en) Coloring agent for quantitating nitrite ion
Westerman et al. Chemical analysis of vanadium pentoxide catalysts
Ananyev et al. Compounds of Xenon in the Chemistry of Actinides
JP4969920B2 (en) Calcium measuring reagent and measuring method
JP2013029329A (en) Quantity determination method for all nitrogen
Sharma et al. Determination of hydrogen peroxide by thallium (III) in the presence of iron (II)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011526336

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11811953

Country of ref document: EP

Kind code of ref document: A1