WO2012014319A1 - Wind speed measurement device - Google Patents

Wind speed measurement device Download PDF

Info

Publication number
WO2012014319A1
WO2012014319A1 PCT/JP2010/062920 JP2010062920W WO2012014319A1 WO 2012014319 A1 WO2012014319 A1 WO 2012014319A1 JP 2010062920 W JP2010062920 W JP 2010062920W WO 2012014319 A1 WO2012014319 A1 WO 2012014319A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind speed
bicycle
sound
sensor
sound pressure
Prior art date
Application number
PCT/JP2010/062920
Other languages
French (fr)
Japanese (ja)
Inventor
泰輝 児玉
隆二郎 藤田
岳彦 塩田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2012526262A priority Critical patent/JP5489135B2/en
Priority to PCT/JP2010/062920 priority patent/WO2012014319A1/en
Publication of WO2012014319A1 publication Critical patent/WO2012014319A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave

Definitions

  • the present invention relates to a wind speed measuring device.
  • the travel speed is used as an index of travel
  • the driver adjusts the number of rotations of the pedal so as to keep the travel speed constant. Therefore, even if the vehicle travels on the same course, a difference occurs in the work performed by the driver according to the strength of the wind.
  • work that exceeds the capacity for air resistance may be required. In this case, the driver cannot feel uncomfortable or humiliated because the running speed cannot be kept constant, as well as physical fatigue.
  • the air resistance caused by the wind affects the driver both mentally and physically, so it can be said that it is an important indicator for driving.
  • the distance traveled by the mobile person relative to the air (atmosphere) (hereinafter referred to as “the travel distance relative to the air”), which is related to the air resistance, is considered to be a new indicator for outdoor sports.
  • This “movement distance with respect to the air” can be calculated by integrating the “relative speed of the mobile person (sport performer) with respect to the air (atmosphere)”.
  • the wind speed measuring device described in Patent Document 1 includes a wind direction sensor and a cylindrical air guide tube, and a sensing unit constituting the wind direction sensor is disposed in the air guide tube.
  • Prior art 1 measures the axial component of the introduction pipe of the wind speed by letting the wind flow through the wind guide pipe.
  • a wind speed measuring device (hereinafter referred to as “prior art 2”) described in Patent Document 2 includes a first vortex body and a second vortex body that generate Karman vortices, and microphones attached to the vortex bodies. And a pressure conduit for transmitting the pressure fluctuation of the Karman vortex attached to each vortex body to the microphone.
  • Prior art 2 measures the wind speed by causing a wind to collide with the vortex and generating a Karman vortex.
  • Prior art 3 The wind speed measuring device described in Patent Document 3 (hereinafter referred to as “prior art 3”) is converted by an air flow / acoustic conversion unit that converts an air flow blown out from an opening into sound, and an air flow / acoustic conversion unit.
  • a microphone that collects sound and converts it into an electrical signal.
  • Prior art 3 measures the wind speed (air volume) by bringing the air stream (wind) into contact with the air stream / acoustic converter.
  • Prior art 1 is generally bi-directional and can measure the wind speed in a specific direction such as the traveling direction, but is expensive because it includes a wind speed sensor. In that respect, since the prior art 2 and the prior art 3 are equipped with a microphone, they are cheaper than the prior art 1, but also detect various sounds generated around cars, trains, creatures, etc. The accuracy of the measured value will decrease.
  • An object of the present invention is to provide an inexpensive wind speed measuring device that can suppress a decrease in accuracy in view of the above background.
  • a wind speed measuring device generates sound waves from an air flow attached to a moving body and detects sound waves, and is detected by the sound wave detection means. It has an extraction means for extracting a specific frequency component from a sound wave, and a wind speed calculation means for calculating a wind speed based on the specific frequency component extracted by the extraction means.
  • (A) is a side view of a bicycle to which a cycle computer having a wind speed measuring device is attached, and (b) is an enlarged view of a portion to which the cycle computer is attached in the bicycle of FIG. 1 (a).
  • (A) is a front view of the main part of the cycle computer
  • (b) is a rear view of the main part of the cycle computer
  • (c) is a longitudinal sectional view of the main part of the cycle computer
  • (d) is a diagram of FIG. It is AA sectional drawing.
  • It is an electrical block diagram of a cycle computer. It is a block diagram of a cycle computer. It is a flowchart showing the main process by a control apparatus. It is a flowchart showing the sound pressure level signal input interruption process by a control apparatus. It is a flowchart showing the mode change interruption process by a control apparatus. It is a flowchart showing the timer interruption process by a control apparatus.
  • FIG. 1A is an external view showing a state in which a cycle computer S in which the wind speed measuring device 1 of the present invention is incorporated and integrated with a device having other functions is attached to a bicycle B.
  • FIG. 2 is a diagram illustrating an example of a structural configuration of the cycle computer S including the wind speed measuring device 1 according to the first embodiment of the present invention.
  • the cycle computer S includes a wind speed measuring device 1 that measures a wind speed relative to the bicycle B, a display device 2 that displays predetermined information that is set in advance, an input device 3 that inputs predetermined information by an operation, and a predetermined external device.
  • a communication device 4 for communicating with (not shown), a sensor group 5 for measuring predetermined information, a control device 6 constituting a part of each device and responsible for main control of each device, these devices And a main body 7 for accommodating and integrating a part of the sensor group 5.
  • the main body 7 is made of synthetic resin such as plastic and has a substantially flat plate shape.
  • An attachment portion 7 ⁇ / b> A for attaching to the bicycle B is provided on one surface of the main body 7.
  • the attachment portion 7A is made of a synthetic resin such as plastic and has a structure that is fixed to the handle B1 in a state where the handle B1 of the bicycle B is gripped.
  • front surface opposite to the surface on which the mounting portion 7A is provided
  • rear surface the display unit 21 on which predetermined information is actually displayed and the operable operation A part 31 is provided.
  • the display unit 21 constitutes a part of the display device 2 and is realized by, for example, a liquid crystal panel.
  • the input unit 31 constitutes a part of the input device 3 and is realized by, for example, a button.
  • the cycle computer S is attached to the handle B1 of the bicycle B by the attachment portion 7A, the back surface of the main body 7 faces the ground, and the front surface of the main body 7 faces the atmosphere. Therefore, the driver can easily visually recognize the display unit 21 and the input unit 31.
  • the front surface and the back surface of the main body 7 are formed in parallel, and the shape and size thereof are the same, and an approximately oval shape or an approximately rhombus shape with different diagonal lengths is used.
  • the major axis direction of this surface coincides with the moving direction of the bicycle.
  • the display unit 21 and the input unit 31 are juxtaposed in the long axis direction.
  • the display unit 21 is located closer to the front of the bicycle B.
  • the input unit is located on the rear side of the bicycle B.
  • the wind speed measuring device 1 is provided between the mounting portion 7A, the display portion 21, and the input portion 31.
  • the wind speed measuring device 1 includes a flow path 11 through which an air flow such as wind flows, a sound wave sensor 12 that detects sound waves (vibration), and a detection port that generates sound waves (vibration) from the air flow upstream of the sound wave sensor 12. 13 is provided.
  • the flow passage 11 is configured by a hole that vertically cuts the main body 7 in the long axis direction of the main body 7. That is, the hole constituting the flow passage 11 penetrates from one end surface of the main body 7 to the other end surface. And the part of the hole currently formed in the front end (traveling direction side) end surface of the bicycle B constitutes the inflow port 11A of the flow passage 11, and is formed in the other rear end (reverse direction side) end surface.
  • the hole portion constitutes the outlet 11 ⁇ / b> B of the flow passage 11. Accordingly, an air flow such as wind moving from the front and rear of the bicycle B to the bicycle B flows into the flow passage 11 from the inflow port 11A, and flows out from the outflow port 11B through the flow passage 11.
  • the flow passage 11 is surrounded by the main body 7 in the entire circumferential direction with respect to the central axis C1 (length direction). Therefore, the inflow path 11 is shielded from an air flow such as wind moving from the measuring method of the bicycle B (direction orthogonal to the central axis C1) to the bicycle B.
  • a cross section perpendicular to the central axis C1 of the flow passage 11 (hereinafter, abbreviated as “cross section of the flow passage 11”) has a substantially rectangular shape, and gradually expands from the front side to the rear side of the bicycle B. Yes. That is, the outlet 11B is wider than the inlet 11A.
  • the height of the flow passage 11 (the length in the direction orthogonal to the front surface and the back surface of the main body 7) is constant, and the width of the flow passage 11 (the length of the front surface and the back surface in the minor axis direction). Only) is enlarged from the front side toward the rear side.
  • the central axis C1 of the flow passage 11 is parallel to the surface of the main body 7 and the like.
  • the cross section of the flow passage 11 has a rectangular shape, but the cross sectional shape of the flow passage 11 is not particularly limited. Further, only the length in the short axis direction such as the surface is enlarged from the front side toward the rear side, but the cross section of the flow passage 11 only needs to be enlarged in that direction, and the mode of expansion is particularly limited. Not.
  • the central axis C1 of the flow passage 11 is a straight line parallel to the surface or the like, but may be a straight line inclined to the surface or a curved line.
  • a sound wave sensor 12 is provided at the central portion of the main body 7 in the long axis direction. That is, the sonic sensor 12 is disposed between the surface of the main body 7 and the flow passage 11.
  • the sound wave sensor 12 is not particularly limited in its structure and shape as long as it can detect sound waves.
  • a MEMS microphone packaged in a flat plate shape is used as the acoustic wave sensor 12.
  • a detection port 13 is formed from a hole wall of the flow passage 11 to a mouth portion (not shown, hereinafter referred to as “sound port”) for collecting sound waves of the sound wave sensor 12, and the flow passage 11 and the sound port of the sound wave sensor 12 are detected. It communicates with the mouth 13 (spatial connection). Therefore, when an air flow such as wind relatively moving from the front and rear of the bicycle B toward the bicycle B flows into the flow passage 11 from the inflow port 11A and passes through the detection port 13, turbulent flow (so-called "" Wind noise ”) is generated, and moves in the detection port 13 toward the sound wave sensor 12. As a result, the sound wave sensor 12 detects turbulent flow generated by an air flow such as wind as sound waves (so-called “wind noise”).
  • the sound wave sensor 12 outputs sound pressure data obtained by converting the detected sound wave into an electric signal to the control device 6 described later.
  • the shape of the detection port 13 is not particularly limited, but if the detection port 13 has a columnar shape, attenuation of sound waves (vibration) due to bending loss can be suppressed, and therefore the detection port 13 has a columnar shape. Is desirable.
  • case 1 the cross section of the hollow portion of the hollow structure is enlarged along the direction of the air flow
  • case 2 the flow velocity of the air flow decreases toward the outlet of the hollow structure.
  • the air pressure immediately before the airflow flows into the hollow portion of the hollow structure is the same as the air pressure immediately after flowing out of the hollow portion of the hollow structure. It becomes. That is, the tendency of the flow velocity of the air flow in the hollow portion differs depending on whether the cross section of the hollow portion expands or contracts along the direction of the air flow.
  • the directivity of the acoustic wave sensor 12 is The direction from the rear of the bicycle B toward the bicycle B (the traveling direction of the bicycle B) is relatively stronger in the direction from the front of the bicycle B toward the bicycle B (retracting direction). The reason for this will be described below.
  • the pressure immediately after the exit of the cavity is the same as the atmospheric pressure, so the pressure in the cavity is generally directed toward the exit. Asymptotically approaches atmospheric pressure and converges to atmospheric pressure at the exit.
  • the flow velocity of the air flow immediately before the outlet is different.
  • case 1 the air that has flowed toward the outlet gradually increases in volume.
  • the atmospheric pressure is equal to the outside in the vicinity of the outlet, the air flow is discharged from the outlet while the flow velocity gradually increases.
  • the air that has flowed toward the outlet gradually decreases in volume.
  • the atmospheric pressure is equal to the outside in the vicinity of the outlet, the air flow is discharged from the outlet while the flow velocity gradually decreases.
  • the inlet 11A is narrower than the outlet 11B.
  • the velocity of the moving airflow at the detection port 13 is faster when the airflow flows into the flow passage 11 from the front of the bicycle B. That is, the directivity of the sound wave sensor 12 is strong in the direction from the front of the bicycle B toward the bicycle B.
  • the wind speed measuring device 1 measures the wind speed based on the sound wave detected by the sound wave sensor 12. As will be described later, the wind speed is measured by the control device 6 including a substrate on which a CPU 61 and a memory 62 described later are mounted.
  • the control device 6 is accommodated in the main body 7 (not shown) and is electrically connected to the sound wave sensor 12 by a predetermined cable.
  • the display part 21 and the input part 31 are also electrically connected to the control apparatus 6, and the control apparatus 6 also performs predetermined display control and input control. That is, the control device 6 constitutes part of the wind speed measuring device 1, the display device 2, and the input device 3.
  • FIG. 3 is a block diagram showing an electrical configuration of the cycle computer S including the wind speed measuring device 1 according to the first embodiment of the present invention.
  • the display device 2 includes a display unit 21 on which preset or selected information is displayed, and a display control circuit 22 that controls display on the display unit 21 according to an instruction from the CPU 61 described later.
  • the display unit 21 and the display control circuit 22 are electrically connected by a predetermined bus.
  • the input device 3 includes an operable input unit 31 for inputting predetermined information, and an input control circuit 32 that controls input in the input unit 31 according to an instruction from the CPU 61 described later.
  • the input unit 31 and the input control circuit 32 are electrically connected by a predetermined bus.
  • an input signal corresponding to the button type and operation mode is sent from the input unit 31 to an input control circuit (or a data input unit to be described later), and then the input signal is sent to the control device 6. Is output.
  • the input unit 31 is composed of three buttons arranged in parallel in the minor axis direction of the surface of the main body 7.
  • the input unit 31 includes a cross key, a trackball, and a joystick. It is also possible to use a pointing device such as Further, the structure of the input unit 31 may be a touch panel so as to be integrated with the display unit 21.
  • the communication device 4 includes a communication interface (I / F) 41 for transmitting and receiving various data to and from an external device (not shown) such as a mobile terminal such as a mobile phone, and the communication interface 41 according to instructions from the CPU 61 described later. And a communication control circuit 42 for performing control.
  • the communication interface 41 and the communication control circuit 42 are electrically connected by a predetermined bus.
  • the communication control circuit 42 outputs various data stored in the memory 62 to a predetermined external device (not shown) via the communication interface 41, and from the predetermined external device.
  • the communication interface 41 is realized by various antennas in the case of a wireless communication method, and is realized by a predetermined type of outlet or the like in the case of a wired communication method.
  • the sensor group 5 of the cycle computer S includes a speed sensor 51, a cadence sensor 52, an acceleration sensor 53, a power sensor 54, a tilt sensor 55, a temperature sensor 56, a humidity sensor 57, an atmospheric pressure sensor 58, and a GPS sensor. 59 and the sound wave sensor 12 of the wind speed measuring device 1.
  • Each sensor is appropriately attached to the inside or the outside of the cycle computer S according to each use.
  • Each sensor is electrically connected to an A / D converter and a serial I / F mounted on the control device 6 by a wireless communication method or a wired communication method.
  • the speed sensor 51 is a device that measures the absolute speed of the bicycle B.
  • the speed sensor 51 includes, for example, a magnet fixed to a spoke of the wheel of the bicycle B and a magnet detector attached to a chain stay or the like, and measures the number of times the magnet detector detects the magnet per unit time. Then, the speed data obtained by converting the measured value into an electric signal is output to the control device 6. Then, the CPU 61 of the control device 6 calculates the speed of the bicycle B by multiplying this number by the outer periphery of the tire.
  • the cadence sensor 52 is a device that measures the rotation speed (cadence) of the pedal of the bicycle B per unit time.
  • the cadence sensor 52 includes, for example, a magnet attached to a crank and a magnet detector attached to a chain stay or the like.
  • the cadence sensor 52 measures the number of times the magnet detector detects a magnet per unit time, and uses the measured value as an electrical value.
  • the cadence data converted into a signal is output to the control device 6. Then, the CPU 61 of the control device 6 calculates cadence.
  • the acceleration sensor 53 is composed of, for example, a MEMS element, measures the acceleration of the bicycle B, and outputs acceleration data obtained by converting the measurement value into an electric signal to the control device 6.
  • the acceleration data is switched between positive and negative, it is possible to infer road surface conditions such as uneven road surface or soft soil. Furthermore, this estimation result can be added to a map and displayed on a display unit comprising a monitor.
  • the power sensor 54 is a device that measures the output of the bicycle B built in the rear wheel hub or the like of the bicycle B, and outputs the power data obtained by converting the measured value into an electric signal to the control device 6. Is something.
  • a general power meter can measure the force applied to the sprocket. The force can be used as a criterion for evaluating the ability of the driver, and can also be used as an index for a training menu.
  • the tilt sensor 55 measures the tilt of the bicycle B with respect to the ground (horizontal plane), and outputs tilt data obtained by converting the measured value into an electric signal to the control device 6. For example, the control device 6 calculates the average inclination of the travel route on which the bicycle B traveled for a certain time.
  • the temperature sensor 56 measures the temperature around the bicycle B (for example, the temperature at a stopped position, the temperature during running, etc.), and outputs temperature data obtained by converting the measured value to an electrical signal to the control device 6. .
  • the humidity sensor 57 measures the humidity around the bicycle B (for example, humidity at a stopped position, humidity during running, etc.), and outputs humidity data obtained by converting the measured value to an electrical signal to the control device 6. .
  • the atmospheric pressure sensor 58 measures the atmospheric pressure around the bicycle B, and outputs the atmospheric pressure data obtained by converting the measured value into an electric signal to the control device 6. For example, the control device 6 calculates the altitude at which the bicycle B is located from the atmospheric pressure data.
  • the GPS sensor 59 is composed of a GPS chip antenna (not shown), and is incorporated into a predetermined positioning system such as a satellite, whereby the current time is acquired simultaneously with the position information of the bicycle B.
  • the GPS sensor 59 receives a signal transmitted from the satellite and transmits it to the control device 6.
  • the configuration of these sensor groups 5 is an example. Therefore, the information measured and acquired by a certain sensor is only required to be finally acquired, and can be calculated and acquired from the measured values measured by other sensors. For example, without using the inclination sensor 55, the distance traveled at a certain time is calculated by the GPS sensor 59 or the like, the height difference at the certain time required for the movement is calculated from the altitude information calculated by the atmospheric pressure sensor 58, and the distance and altitude It is also possible to calculate the average slope from the difference (elevation difference). Moreover, it may replace with the atmospheric
  • the control device 6 includes an A / D converter that converts electric signals output from various sensors into digital signals, a serial I / F, and a CPU 61 that controls the data and a memory 62 that stores data indicating various types of information. It has an I / F 63 that is a gathering, an RTC 64 that keeps track of the current time, and a crystal oscillator, and has an oscillation circuit 65 that serves as a signal for performing timer interrupt processing to be described later.
  • the control device 6 is connected to the display control circuit 22, the input control circuit 32, and the communication control circuit 42 through a bus.
  • the memory 62 is realized by an internal storage device such as a flash memory, a RAM, a ROM, a hard disk drive, or a non-volatile external memory such as a USB memory or a flash memory card.
  • the memory 62 temporarily or permanently stores information acquired by the sensor group 5 of the cycle computer S, calculation results calculated by the CPU 61, and the like.
  • additional information such as map information can be stored in the memory 62, a bicycle map can be created in association with the acquired / calculated data, and displayed on the display unit 21.
  • the band pass filter 14 constitutes the wind speed measuring device 1 and is interposed between the sound wave sensor 12 and the A / D converter.
  • the bandpass filter 14 is a bandpass filter using an operational amplifier, and passes only a frequency band of 1 to 4 kHz.
  • the frequency of engine sounds (sounds generated by running) of automobiles and motorcycles is distributed to 1 kHz or less, and the frequency of insect voices such as cicada calls is distributed to 4 kHz or more. In this way, even if a sound wave generated by an unnecessary engine such as an automobile that is not a measurement target or a bug is detected by the sound wave sensor 12, it is removed by the bandpass filter 14. As a result, it is possible to suppress a decrease in the accuracy of the wind speed measured by the wind speed measuring device 1.
  • FIG. 4 is a block diagram showing a controllable (or functional) configuration of the cycle computer S including the wind speed measuring device 1 according to the first embodiment of the present invention.
  • the cycle computer S includes a travel information acquisition unit S1, a driver / bicycle information acquisition unit S2, an environmental information acquisition unit S3, a sound pressure level calculation unit S4, an environmental mode setting unit 5, an abnormal value removal unit 6, a wind speed calculation unit S7, And a wind speed data output unit S8.
  • the travel information acquisition unit S1 has a function of acquiring information data related to bicycle travel (hereinafter referred to as “travel information data”).
  • the travel information acquisition unit S1 is a sensor that measures travel information of the bicycle B such as the sound wave sensor 12, the speed sensor 51, the cadence sensor 52, the acceleration sensor 53, the power sensor 54, and the GPS sensor 59, and these sensors. It is comprised by the control apparatus 6 etc. which calculate driving information based on the measured driving information and the predetermined data previously memorize
  • the predetermined data stored in the memory 62 includes data stored in advance in the ROM or data acquired by the input device 3 or the communication device 4 and stored in the RAM.
  • the driver / bicycle information acquisition unit S2 has a function of acquiring information data on the driver and the bicycle body (hereinafter referred to as “driver information data”). For example, the driver / information acquisition unit S2 detects an input target item related to the driver and the bicycle body selected by operating the input unit 31, and recognizes that the received data is related to the input target item.
  • the control device 6 that sets the input mode that is the period, and information such as the driver input by operating the input unit 31 during the input mode setting is detected, and the information is converted into an electrical signal and output to the control device 6. It consists of an input device 2 and the like.
  • the environment information acquisition unit S3 has a function of acquiring information data related to the external environment around the bicycle B (hereinafter referred to as “environment information data”).
  • the sensor group 5 includes sensors for measuring environmental information of the inclination sensor 55, the temperature sensor 56, the humidity sensor 57, and the atmospheric pressure sensor 58.
  • the sound pressure level calculation unit S4 is configured by the control device 6, and performs predetermined calculation processing using predetermined data acquired by the sensor group 5 or the like, so that the first sample time (in the present embodiment, 1) to calculate the effective value of the sound pressure level.
  • the environment mode setting unit S5 includes the control device 6 and has a function of internally setting an environment mode selected by operating the input unit 31.
  • the “environment mode” is a classification of the external environment, and in this embodiment, includes “town mode”, “coast mode”, and “mountain mode”. An abnormality determination value, which will be described later, is set differently for each environmental mode.
  • the abnormal value removing unit S6 is configured by the control device 6 and is abnormal among the effective values of the sound pressure level calculated by the sound pressure level calculating unit S4 based on the abnormality determination value set for each environmental mode. Has a function of detecting and deleting.
  • the detection target of the sound wave sensor 12 is a sound wave that is generated when an air flow that relatively moves from the front of the bicycle B toward the bicycle passes through the detection port 13.
  • various sound waves (corresponding to sounds for human hearing) are generated around the traveling bicycle B. Since the sound wave sensor 12 may detect sound waves other than the sound wave generated by the detection port 13, these sound waves become noise for the wind speed measuring device 1 and the cycle computer S.
  • noise that can be generated is also removed by the band-pass filter 14, but there are various sources of sound waves that become noise, and depending on the type of the source, noise that belongs to the passband of the band-pass filter 14 is also present.
  • the generation source varies depending on the external environment. For example, in the city, car engine sounds and horn sounds frequently occur. On the coast, wave sounds, bird sounds, ship sounds and horn sounds frequently occur. In mountains, insect sounds. Is occurring frequently. And each sound has a different loudness. Therefore, by providing an abnormal value determination value according to the external environment and removing sound pressure level data exceeding the abnormal value determination value, the accuracy of the wind speed measuring device 1 is improved.
  • the wind speed calculation unit S7 includes the control device 6, and performs a predetermined calculation process using the effective value of the sound pressure level calculated by the sound pressure level calculation unit S5 and not removed by the abnormal value removal unit S7. By performing, the average value (representative value) of the wind speed in the second sample time (10 seconds in the present embodiment) is calculated.
  • the wind speed data output unit S8 has a function of displaying a predetermined measurement value or calculated value, or input information input by an operation by the input unit 31, and is configured by the display device 2.
  • the wind speed data output unit S8 has a function of transmitting predetermined data to an external device (not shown), and includes the communication device 4 and the like.
  • step S101 the CPU 61 performs an initialization process.
  • the CPU 61 reads the activation program from the ROM in the memory 62, clears the RAM in the memory 62, and moves the process to step S102.
  • step S102 the CPU 61 sets the first sample time (1 second) to the first timer, and in step S103, sets the second sample time (10 seconds) to the second timer.
  • the first sample time refers to a period during which sound pressure data output by the sound wave sensor 12 and digitized by an A / D converter or the like via the bandpass filter 14 is sampled.
  • the first timer is a device that measures the first sampling time.
  • the second sample time is a period serving as a reference for calculating an average value per unit time of the sound pressure level subjected to effective value conversion, as will be described later.
  • the second timer is a device that measures the remaining time of the second sampling time. The first timer and the second timer are subtracted every 4 ms in step S201 described later.
  • step S104 the CPU 61 permits a predetermined interrupt process.
  • the predetermined interrupt process will be described.
  • step S201 the CPU 61 determines whether or not the electrical signal (sound pressure data) output from the sound wave sensor 12 is input. If the CPU 61 determines that the sound pressure data is not input, the CPU 61 ends the interruption process. If the CPU 61 determines that the sound pressure data is input, the CPU 61 converts the sound pressure data into the sound pressure data stored in the RAM of the memory 62 in step S203. The data is stored in the storage area, and the interrupt process is terminated.
  • the electrical signal sound pressure data
  • step S301 the CPU 61 determines whether or not an electrical signal (mode data) indicating the type of environmental mode output from the input control device 3 has been input. If the CPU 61 determines that mode data has not been input, the CPU 61 terminates the mode change interrupt process. If the CPU 61 determines that mode data has been input, in step S302, the mode associated with the type of mode indicated by the mode data. The flag is set in the mode flag storage area of the RAM of the memory 62, and the mode change interrupt process ends.
  • mode data electrical signal
  • three modes, “city mode”, “coast mode”, and “mountain mode”, are set as modes, and flags corresponding to each mode have a 2-byte configuration. “01H”, “02H”, and “03H” are set.
  • the timer interrupt process of the control device 6 will be described with reference to FIG.
  • the generation circuit 66 provided in the control device 6 generates a clock pulse every predetermined period (4 milliseconds), thereby executing a timer interrupt process described below.
  • step S401 the CPU 61 performs time control processing for updating the first timer and the second timer.
  • the values set in both timers are subtracted by 4 (ms).
  • step S402 the CPU 61 determines whether or not the first sampling time has elapsed, that is, whether or not the first timer is “0”. If the CPU 61 determines that the first sampling time has not elapsed, it moves the process to step S407, and if it determines that the first sampling time has elapsed, it moves the process to step S403.
  • step S403 the CPU 61 sets the first sampling time (1 second) to the first timer, and in step S404 converts the sound pressure data stored in the sound pressure data storage area of the RAM into an effective value.
  • the sound pressure level is calculated, and the sound pressure level that has undergone effective value conversion in step S405 is stored in a predetermined area of the RAM as sound pressure level effective value data.
  • the CPU 61 correlates the elapsed time (0 to 10 seconds) in the second sampling time with the electrical signal sent from the sound wave sensor 12 as a time. It is digitized (digitized) using two elements: progress and sound pressure level effective value data.
  • step S406 the CPU 61 clears the sound pressure data storage area and moves the process to step S407.
  • the sound pressure data is completely erased every time the first sampling time elapses.
  • the sound pressure data may be transferred to another storage device or another storage area of the RAM and stored continuously. Good.
  • the sound pressure data may be stored subsequent to the data stored at the previous first sampling time.
  • step S407 the CPU 61 determines whether or not the second sampling time has elapsed, that is, whether or not the second timer is “0”. If the CPU 61 determines that the second sampling time has not elapsed, the CPU 61 ends the timer interruption process. If the CPU 61 determines that the second sampling time has elapsed, the process proceeds to step S408.
  • step S408 the CPU 61 sets the second sampling time (10 seconds) in the second timer.
  • step S409 the CPU 61 sets the environmental mode flags (01H, 02H,%) Stored in the environmental mode flag storage area in the RAM of the memory 62. Or, 03H) is confirmed to recognize the current environment mode.
  • step S410 the CPU 61 detects an abnormal value from the sound pressure level effective value data stored in the RAM of the memory 62 at the second sampling time based on the environmental mode recognized in step S409. And the process proceeds to step S411. That is, the CPU 61 detects a sound pressure level effective value data stored during the second sampling time that is equal to or higher than the abnormality determination value associated with the environmental mode.
  • the abnormality determination value in the city mode corresponding to the city is the highest. Is set.
  • the coast and mountains there are not many automobiles running compared to the city, but the sound pressure level of sound waves caused by automobiles when a bicycle passes by a car cannot be ignored. Therefore, an abnormality determination value lower than that in the city mode is set for the coast mode and the mountain mode corresponding to the coast and mountains.
  • step S411 if the CPU 61 detects an abnormal value that is sound pressure level effective value data that exceeds the abnormal determination value in step S410, and determines that there is no abnormal value, the process proceeds to step S413, and there is an abnormal value. If it is determined that the sound pressure level effective value data related to the abnormal value is deleted from the sound pressure level effective value data storage area in step S412, the process proceeds to step S413.
  • step S413 the CPU 61 calculates an average value of sound pressure level effective values in the second sample time.
  • step S414 the CPU 61 converts a predetermined sound pressure level stored in advance in the ROM of the memory 62 into a wind speed or a predetermined value. The wind speed is calculated based on the conversion formula for converting the sound pressure level to the wind speed, and the process proceeds to step S415.
  • step S415 the CPU 61 displays the wind speed calculated in step S414 on the display unit 21 and stores it in the wind speed data storage area of the RAM 62 of the memory 62 as wind speed data in association with the current time that can be acquired by the RTC 64. Then, the process proceeds to step S416.
  • step S416 the CPU 61 clears the sound pressure level effective value data storage area, and ends the timer interrupt process.
  • the sound pressure level effective value data is completely deleted every time the second sampling time elapses, but it is transferred to other storage devices and other storage areas of the RAM so as to continue to be stored. It may be.
  • the sound pressure level effective value data may be stored subsequent to the data stored in the previous second sampling time.
  • the wind speed measuring device 1 is attached to the bicycle B and incorporated in the cycle computer S used for cycling.
  • the wind velocity measuring device 1 may be incorporated into a measuring device corresponding to the cycle computer S attached to the motorbike.
  • sound waves that are outside the detection target are frequently or continuously generated from the engine mounted on the motorcycle.
  • the abnormal value can be accurately removed by using the information in the abnormal value detection processing. .
  • a measurement device in which the wind speed measurement device 1 is integrated can be attached to the user himself and used for running and skiing and skating.
  • running sound waves that are outside the detection purpose are periodically generated when landing, but by detecting the landing timing with an acceleration sensor or impact sensor, the landing timing can be used for abnormal value detection processing. An abnormal value can be accurately removed.
  • skiing and skating sound waves that are outside the detection purpose are generated when the traveling direction is changed, but changes in the traveling direction can be detected by the acceleration sensor, so the detected change in the traveling direction is abnormal. It can be used in the value detection process to remove abnormal values with high accuracy.
  • the wind speed measuring device 1 is incorporated in the main body 7 of the cycle computer S.
  • a structure separated from the main body 7 may be used.
  • the wind speed measuring device 1 needs to be able to communicate with the control device 2.
  • the wind speed measuring device 1 (cycle computer S) displays the wind speed while the bicycle B is running, but does not have a display function and stores data such as wind speed data.
  • the data may be output to a fixed terminal such as a personal computer installed at home or the like and displayed on the screen.
  • the wind speed measuring device 1 is attached to the handle B1 of the bicycle B.
  • the directivity of the wind speed measuring device 1 is relatively strong in the direction from the front of the bicycle B to the bicycle B, the airflow moving from the rear of the bicycle B toward the bicycle B can be detected structurally.
  • the wind speed measuring device 1 is shielded by the driver from the air flow moving from the rear of the bicycle B toward the bicycle B. Therefore, for example, a sound wave detection means 1A (flow passage 11; a flow path 11, which detects sound waves by generating sound waves from the air flow of the wind speed measuring device 1 behind the driver of the bicycle B such as a frame into which the saddle of the bicycle B is inserted.
  • the performance of the cycle computer S can be improved by providing an equivalent to the acoustic wave sensor 12 and the detection port 13). The reason for this will be described below.
  • the sound wave detecting means that can communicate with the wind speed measuring device 1 is attached to the rear side of the driver of the bicycle B and the part corresponding to the inflow port 11A is directed to the rear side of the bicycle B.
  • the air flow (head wind) coming from the front of the bicycle B by the sound wave detection means of the wind speed measuring device 1 is accurately detected, and the air flow coming from the rear of the bicycle B by the one corresponding to the sound wave detection means is accurately obtained.
  • the cycle computer S can accurately measure not only the wind speed of the airflow that increases the load on the driver but also the wind speed of the airflow that reduces the load on the bicycle B.
  • the moving distance relative to the atmosphere it is possible to accurately calculate the “distance that the moving person moves relative to the atmosphere”.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

Disclosed is a low-cost wind speed measurement device capable of preventing accuracy loss. The disclosed wind speed measurement device is provided with a sound wave detection means (1A) which, attached to a moving body such as a bicycle (B), generates sound waves from an airflow (e.g. the wind) and detects said sound waves, an extraction means (band-pass filter) (14) which extracts a specific frequency component from the sound waves detected by the sound wave detection means (1A), and a wind speed calculation means (S7) which calculates the wind speed on the basis of the specific frequency component extracted by the extraction means (14).

Description

風速計測装置Wind speed measuring device
 本発明は、風速計測装置に関する。 The present invention relates to a wind speed measuring device.
 昨今の健康志向の高まりによって、世間では、ウォーキング、ランニング、サイクリング等のアウトドアスポーツが、趣味として広く行われている。このようなアウトドアスポーツを行う者の中には、移動速度や移動距離、又は、消費カロリーを計測する装置を利用する者もいる。すなわち、途中経過として移動距離や消費カロリー等をリアルタイムで確認する者、運動内容として移動速度をリアルタイムで確認する者、又は、実績として、移動距離や消費カロリーを確認若しくは記録する者がいる。このように、アウトドアスポーツを行う者は、所定の装置を活用して自分なりの指標を設けて測定することによって、アウトドアスポーツを楽しんでいる。 Due to the recent increase in health consciousness, outdoor sports such as walking, running, and cycling are widely used as hobbies. Some persons who perform such outdoor sports use a device that measures a movement speed, a movement distance, or calorie consumption. That is, there is a person who confirms the movement distance and calorie consumption in real time as the progress, a person who confirms the movement speed in real time as the exercise content, and a person who confirms or records the movement distance and calorie consumption as a result. As described above, a person who performs outdoor sports enjoys outdoor sports by using a predetermined device to set and measure his / her own indicators.
 ところで、ウォーキング等のアウトドアスポーツは、自然環境の中で行われるので、風の影響が大きい。例えば、自転車を走行している場合、向かい風が強くなる(向かい風の風速が大きくなる)と空気抵抗が大きくなるので、運転者の運動状態(運転者の走行に対する仕事)が一定であれば、走行速度は低下する。したがって、運転者の運動状態(例えば、ペダルの回転数)が走行の指標として用いられている場合、向かい風が吹くと、走行速度が低下してくる。この場合、運転者は、速度低下の原因が風にあったとしても、疲労度が増してきたので走行速度が低下したと勘違いし、快適に走行することができなくなる。なお、自転車の場合、30km/hを超えると、走行に対する抵抗のほとんどが空気抵抗となる。 By the way, outdoor sports such as walking are performed in the natural environment, so the influence of the wind is great. For example, when driving a bicycle, the air resistance increases when the head wind increases (the wind speed of the head wind increases). The speed is reduced. Therefore, when the driver's exercise state (for example, the number of rotations of the pedal) is used as an indicator of traveling, the traveling speed decreases when the headwind blows. In this case, even if the cause of the decrease in speed is in the wind, the driver misunderstands that the traveling speed has decreased because the degree of fatigue has increased, and the driver cannot travel comfortably. In the case of a bicycle, when it exceeds 30 km / h, most of the resistance to running becomes air resistance.
 また、走行速度が走行の指標として用いられる場合、風の変化に伴って空気抵抗も変化すると、運転手は、走行速度を一定に保つようにペダルの回転数等を調整する。したがって、同一コースを走行したとしても、風の強さに応じて、運転者が行う仕事に違いが生じる。強い向かい風の場合であれば、走行速度を一定に維持するためには、空気抵抗に対して能力以上の仕事を必要とすることもある。この場合、肉体的な疲労もさることながら、走行速度を一定に維持することができなくなるので、運転者は、不快感や屈辱感等を抱く。 Also, when the travel speed is used as an index of travel, if the air resistance also changes with the change of wind, the driver adjusts the number of rotations of the pedal so as to keep the travel speed constant. Therefore, even if the vehicle travels on the same course, a difference occurs in the work performed by the driver according to the strength of the wind. In the case of strong headwinds, in order to keep the running speed constant, work that exceeds the capacity for air resistance may be required. In this case, the driver cannot feel uncomfortable or humiliated because the running speed cannot be kept constant, as well as physical fatigue.
 このように、風に起因する空気抵抗は、精神的にも肉体的にも運転者に影響を及ぼすので、走行に関する重要な指標であるといえる。そして、空気抵抗と関連性を有する、移動者が空気(大気)に対して移動する距離(以下、「空気に対する移動距離」という)も、アウトドアスポーツの新たな指標になると考えられる。この「空気に対する移動距離」は、「空気(大気)に対する移動者(スポーツ実施者)の相対速度」を積算して算出することができる。 Thus, the air resistance caused by the wind affects the driver both mentally and physically, so it can be said that it is an important indicator for driving. The distance traveled by the mobile person relative to the air (atmosphere) (hereinafter referred to as “the travel distance relative to the air”), which is related to the air resistance, is considered to be a new indicator for outdoor sports. This “movement distance with respect to the air” can be calculated by integrating the “relative speed of the mobile person (sport performer) with respect to the air (atmosphere)”.
 特許文献1に記載の風速計測装置(以下、「先行技術1」という)は、風向センサーと筒状の導風管とを有し、風向センサーを構成するセンシング部が導風管の中に配置されている。先行技術1は、風を導風管の中に流すことで、風速の導入管の軸方向成分を計測する。 The wind speed measuring device described in Patent Document 1 (hereinafter referred to as “prior art 1”) includes a wind direction sensor and a cylindrical air guide tube, and a sensing unit constituting the wind direction sensor is disposed in the air guide tube. Has been. Prior art 1 measures the axial component of the introduction pipe of the wind speed by letting the wind flow through the wind guide pipe.
 特許文献2に記載の風速計測装置(以下、「先行技術2」という)は、カルマン渦を発生させる第1の造渦体及び第2の造渦体と、各造渦体に取り付けられたマイクと、各造渦体に取り付けられたカルマン渦の圧力変動をマイクに伝達する圧力導管とを有する。先行技術2は、風を造渦体に衝突させてカルマン渦を発生させることで、風速を計測する。 A wind speed measuring device (hereinafter referred to as “prior art 2”) described in Patent Document 2 includes a first vortex body and a second vortex body that generate Karman vortices, and microphones attached to the vortex bodies. And a pressure conduit for transmitting the pressure fluctuation of the Karman vortex attached to each vortex body to the microphone. Prior art 2 measures the wind speed by causing a wind to collide with the vortex and generating a Karman vortex.
 特許文献3に記載の風速計測装置(以下、「先行技術3」という)は、開口部から吹き出す空気流を音響に変換する空気流/音響変換部と、空気流/音響変換部により変換された音響を収集して電気信号に変換するマイクロフォンとを有する。先行技術3は、空気流(風)を空気流/音響変換部に接触させることで、風速(風量)を測定する。 The wind speed measuring device described in Patent Document 3 (hereinafter referred to as “prior art 3”) is converted by an air flow / acoustic conversion unit that converts an air flow blown out from an opening into sound, and an air flow / acoustic conversion unit. A microphone that collects sound and converts it into an electrical signal. Prior art 3 measures the wind speed (air volume) by bringing the air stream (wind) into contact with the air stream / acoustic converter.
特開平2000-162229号公報Japanese Unexamined Patent Publication No. 2000-162229 特開2004-317191号公報JP 2004-317191 A 特開平06-194374号公報Japanese Patent Laid-Open No. 06-194374
 先行技術1は、概ね双指向性を有し、進行方向等の特定方向に対する風速を計測することができるが、風速センサーを具備しているので、高価となる。その点、先行技術2及び先行技術3は、マイクを具備しているので、先行技術1に比べると安価であるが、自動車・列車や生き物等の周囲で発生する様々な音までも検出し、計測値の精度が低下してしまう。 Prior art 1 is generally bi-directional and can measure the wind speed in a specific direction such as the traveling direction, but is expensive because it includes a wind speed sensor. In that respect, since the prior art 2 and the prior art 3 are equipped with a microphone, they are cheaper than the prior art 1, but also detect various sounds generated around cars, trains, creatures, etc. The accuracy of the measured value will decrease.
 本発明の目的は、上記の背景を鑑みて、精度の低下を抑えることができ、且つ、安価な風速計測装置を提供することである。 An object of the present invention is to provide an inexpensive wind speed measuring device that can suppress a decrease in accuracy in view of the above background.
 上記課題を解決するために、本発明に係る風速計測装置は、移動体に取り付けられた、空気流から音波を発生させ、当該音波を検出する音波検出手段と、前記音波検出手段によって検出された音波から、特定の周波数成分を抽出する抽出手段と、前記抽出手段によって抽出された特定の周波数成分に基づいて、風速を算出する風速算出手段と、を有することを特徴とする。 In order to solve the above problems, a wind speed measuring device according to the present invention generates sound waves from an air flow attached to a moving body and detects sound waves, and is detected by the sound wave detection means. It has an extraction means for extracting a specific frequency component from a sound wave, and a wind speed calculation means for calculating a wind speed based on the specific frequency component extracted by the extraction means.
(a)は、風速測定装置を有するサイクルコンピュータが取り付けられた自転車の側面図、(b)は図1(a)の自転車におけるサイクルコンピュータが取り付けられている部分の拡大図である。(A) is a side view of a bicycle to which a cycle computer having a wind speed measuring device is attached, and (b) is an enlarged view of a portion to which the cycle computer is attached in the bicycle of FIG. 1 (a). (a)はサイクルコンピュータの主要部分の正面図、(b)はサイクルコンピュータの主要部分の背面図、(c)はサイクルコンピュータの主要部分の縦断面図、(d)は図2(c)のA-A断面図である。(A) is a front view of the main part of the cycle computer, (b) is a rear view of the main part of the cycle computer, (c) is a longitudinal sectional view of the main part of the cycle computer, and (d) is a diagram of FIG. It is AA sectional drawing. サイクルコンピュータの電気構成図である。It is an electrical block diagram of a cycle computer. サイクルコンピュータのブロック図である。It is a block diagram of a cycle computer. 制御装置によるメイン処理を表すフローチャートである。It is a flowchart showing the main process by a control apparatus. 制御装置による音圧レベル信号入力割込処理を表すフローチャートである。It is a flowchart showing the sound pressure level signal input interruption process by a control apparatus. 制御装置によるモード変更割込処理を表すフローチャートである。It is a flowchart showing the mode change interruption process by a control apparatus. 制御装置によるタイマー割込処理を表すフローチャートである。It is a flowchart showing the timer interruption process by a control apparatus.
(第1の実施の形態)
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。図1(a)は、本発明の風速計測装置1が組み込まれ、他の機能を有する装置と一体化されたサイクルコンピュータSが自転車Bに取り付けられている様子を表す外観図である。すなわち、本実施の形態では、本発明の風速計測装置1は単独で構成されておらず、サイクルコンピュータSの一部を構成している。
(First embodiment)
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1A is an external view showing a state in which a cycle computer S in which the wind speed measuring device 1 of the present invention is incorporated and integrated with a device having other functions is attached to a bicycle B. FIG. That is, in the present embodiment, the wind speed measuring device 1 of the present invention is not configured independently, but constitutes a part of the cycle computer S.
 図2は、本発明の第1の実施の形態に係る風速計測装置1を含むサイクルコンピュータSの構造的な構成の一例を表す図である。サイクルコンピュータSは、自転車Bに対する相対的な風速を計測する風速計測装置1、予め設定された所定の情報を表示する表示装置2、操作によって所定の情報を入力する入力装置3、所定の外部装置(不図示)と接続して通信するための通信装置4、所定の情報を測定するセンサー群5、各装置の一部を構成し、各装置の主な制御を担う制御装置6、これらの装置やセンサー群5の一部を収容して一体化させる本体7を具備する。 FIG. 2 is a diagram illustrating an example of a structural configuration of the cycle computer S including the wind speed measuring device 1 according to the first embodiment of the present invention. The cycle computer S includes a wind speed measuring device 1 that measures a wind speed relative to the bicycle B, a display device 2 that displays predetermined information that is set in advance, an input device 3 that inputs predetermined information by an operation, and a predetermined external device. A communication device 4 for communicating with (not shown), a sensor group 5 for measuring predetermined information, a control device 6 constituting a part of each device and responsible for main control of each device, these devices And a main body 7 for accommodating and integrating a part of the sensor group 5.
 本体7は、プラスチック等の合成樹脂からなり、略平板状を呈している。本体7の一の面には、自転車Bに取り付けられるための取付部7Aが設けられている。取付部7Aは、プラスチック等の合成樹脂からなり、自転車BのハンドルB1を掴んだ状態でそのハンドルB1に固定される構造を有する。取付部7Aが設けられている面(以下、「裏面」という)と反対側の面(以下、「表面」という)には、所定の情報が実際に表示される表示部21及び操作可能な操作部31が設けられている。表示部21は表示装置2の一部を構成し、例えば、液晶パネルで実現される。一方、入力部31は、入力装置3の一部を構成し、例えば、ボタンで実現される。取付部7AによってサイクルコンピュータSが自転車BのハンドルB1に取り付けられると、本体7の裏面が地面に臨み、本体7の表面が大気に臨む。よって、運転者は表示部21及び入力部31を容易に視認することができる。 The main body 7 is made of synthetic resin such as plastic and has a substantially flat plate shape. An attachment portion 7 </ b> A for attaching to the bicycle B is provided on one surface of the main body 7. The attachment portion 7A is made of a synthetic resin such as plastic and has a structure that is fixed to the handle B1 in a state where the handle B1 of the bicycle B is gripped. On the surface (hereinafter referred to as “front surface”) opposite to the surface on which the mounting portion 7A is provided (hereinafter referred to as “rear surface”), the display unit 21 on which predetermined information is actually displayed and the operable operation A part 31 is provided. The display unit 21 constitutes a part of the display device 2 and is realized by, for example, a liquid crystal panel. On the other hand, the input unit 31 constitutes a part of the input device 3 and is realized by, for example, a button. When the cycle computer S is attached to the handle B1 of the bicycle B by the attachment portion 7A, the back surface of the main body 7 faces the ground, and the front surface of the main body 7 faces the atmosphere. Therefore, the driver can easily visually recognize the display unit 21 and the input unit 31.
 なお、本実施の形態では、本体7の表面と裏面とは平行に形成されており、且つ、これらの形状・大きさは同一であり、略楕円状又は対角線の長さが異なる略菱形状を呈している。サイクルコンピュータSが適切に自転車BのハンドルB1に取り付けられた状態では、この面の長軸方向と自転車の移動方向とが一致している。そして、表示部21と入力部31とは、この長軸方向に並設されており、サイクルコンピュータSが適切に自転車BのハンドルB1に取り付けられた状態では、表示部21が自転車Bの前方寄りに、入力部が自転車Bの後方寄りに位置する。 In the present embodiment, the front surface and the back surface of the main body 7 are formed in parallel, and the shape and size thereof are the same, and an approximately oval shape or an approximately rhombus shape with different diagonal lengths is used. Presented. In a state where the cycle computer S is appropriately attached to the handle B1 of the bicycle B, the major axis direction of this surface coincides with the moving direction of the bicycle. The display unit 21 and the input unit 31 are juxtaposed in the long axis direction. When the cycle computer S is properly attached to the handle B1 of the bicycle B, the display unit 21 is located closer to the front of the bicycle B. In addition, the input unit is located on the rear side of the bicycle B.
 風速計測装置1は、取付部7Aと表示部21及び入力部31との間に設けられている。風速計測装置1は、風等の空気流を流通させる流通路11、音波(振動)を検出する音波センサー12、及び、音波センサー12の上流側で空気流から音波(振動)を発生させる検出口13を具備する。 The wind speed measuring device 1 is provided between the mounting portion 7A, the display portion 21, and the input portion 31. The wind speed measuring device 1 includes a flow path 11 through which an air flow such as wind flows, a sound wave sensor 12 that detects sound waves (vibration), and a detection port that generates sound waves (vibration) from the air flow upstream of the sound wave sensor 12. 13 is provided.
 流通路11は、本体7の長軸方向に本体7を縦断する孔で構成されている。すなわち、流通路11を構成する孔は、本体7の一方の端面から他方の端面まで貫通している。そして、自転車Bの前方側(進行方向側)の端面に形成されている孔の部分が流通路11の流入口11Aを構成し、他方の後方側(後退方向側)の端面に形成されている孔の部分が流通路11の流出口11Bを構成する。したがって、自転車Bの前方及び後方から自転車Bに移動してくる風等の空気流が流入口11Aから流通路11に流入し、流通路11を通って、流出口11Bから流出する。 The flow passage 11 is configured by a hole that vertically cuts the main body 7 in the long axis direction of the main body 7. That is, the hole constituting the flow passage 11 penetrates from one end surface of the main body 7 to the other end surface. And the part of the hole currently formed in the front end (traveling direction side) end surface of the bicycle B constitutes the inflow port 11A of the flow passage 11, and is formed in the other rear end (reverse direction side) end surface. The hole portion constitutes the outlet 11 </ b> B of the flow passage 11. Accordingly, an air flow such as wind moving from the front and rear of the bicycle B to the bicycle B flows into the flow passage 11 from the inflow port 11A, and flows out from the outflow port 11B through the flow passage 11.
 流通路11は、その中心軸C1(長さ方向)に対する周方向全体を本体7に囲まれている。したがって、流入路11は、自転車Bの測方(中心軸C1に直交する方向)から自転車Bに移動してくる風等の空気流から遮蔽される。 The flow passage 11 is surrounded by the main body 7 in the entire circumferential direction with respect to the central axis C1 (length direction). Therefore, the inflow path 11 is shielded from an air flow such as wind moving from the measuring method of the bicycle B (direction orthogonal to the central axis C1) to the bicycle B.
 流通路11の中心軸C1に直交する断面(以下、「流通路11の断面」と略称する)は略矩形状を呈しており、自転車Bの前方側から後方側に向かって徐々に拡大している。すなわち、流入口11Aより流出口11Bの方が広い。ただし、本実施の形態では、流通路11の高さ(本体7の表面及び裏面に直交する向きの長さ)は一定であり、流通路11の幅(表面及び裏面の短軸方向の長さ)のみが、前方側から後方側に向かって拡大している。なお、流通路11の中心軸C1は、本体7の表面等に平行である。 A cross section perpendicular to the central axis C1 of the flow passage 11 (hereinafter, abbreviated as “cross section of the flow passage 11”) has a substantially rectangular shape, and gradually expands from the front side to the rear side of the bicycle B. Yes. That is, the outlet 11B is wider than the inlet 11A. However, in the present embodiment, the height of the flow passage 11 (the length in the direction orthogonal to the front surface and the back surface of the main body 7) is constant, and the width of the flow passage 11 (the length of the front surface and the back surface in the minor axis direction). Only) is enlarged from the front side toward the rear side. The central axis C1 of the flow passage 11 is parallel to the surface of the main body 7 and the like.
 なお、実施の形態1では、流通路11の断面は矩形状を呈しているが、流通路11の断面形状は特に限定されない。また、表面等の短軸方向長さのみが、前方側から後方側に向かって拡大しているが、流通路11の断面がその方向に拡大していればよく、その拡大の態様は特に限定されない。また、流通路11の中心軸C1は、表面等に平行な直線であるが、その面に傾斜している直線でも、曲線でもよい。 In Embodiment 1, the cross section of the flow passage 11 has a rectangular shape, but the cross sectional shape of the flow passage 11 is not particularly limited. Further, only the length in the short axis direction such as the surface is enlarged from the front side toward the rear side, but the cross section of the flow passage 11 only needs to be enlarged in that direction, and the mode of expansion is particularly limited. Not. The central axis C1 of the flow passage 11 is a straight line parallel to the surface or the like, but may be a straight line inclined to the surface or a curved line.
 本体7の長軸方向中央部には、音波センサー12が設けられている。すなわち、本体7の表面と流通路11との間に音波センサー12が配設されている。音波センサー12は、音波を検出することができるものであれば、その構造、形状は特に限定されない。本実施の形態では、音波センサー12として、平板状にパッケージされたMEMSマイクが用いられている。 A sound wave sensor 12 is provided at the central portion of the main body 7 in the long axis direction. That is, the sonic sensor 12 is disposed between the surface of the main body 7 and the flow passage 11. The sound wave sensor 12 is not particularly limited in its structure and shape as long as it can detect sound waves. In the present embodiment, a MEMS microphone packaged in a flat plate shape is used as the acoustic wave sensor 12.
 流通路11の孔壁から音波センサー12の音波を収集する口部分(図示なし、以下、「音口」という)まで検出口13が形成され、流通路11と音波センサー12の音口とが検出口13によって連通している(空間的につながっている)。よって、相対的に自転車Bの前方及び後方から自転車Bに向かって移動する風等の空気流が、流入口11Aから流通路11に流入し、検出口13を通過すると、乱流(所謂、「風雑音」)が発生し、検出口13内を音波センサー12に向かって移動する。この結果、音波センサー12は、風等の空気流によって発生する乱流を音波(所謂、「風雑音」)として検出する。音波センサー12は、検出した音波を電気信号に変換した音圧データを、後述する制御装置6に出力する。なお、検出口13の形状は特に限定されないが、検出口13が柱状を呈していれば、曲がり損失による音波(振動)の減衰を抑えることができるので、検出口13は柱状を呈していることが望ましい。 A detection port 13 is formed from a hole wall of the flow passage 11 to a mouth portion (not shown, hereinafter referred to as “sound port”) for collecting sound waves of the sound wave sensor 12, and the flow passage 11 and the sound port of the sound wave sensor 12 are detected. It communicates with the mouth 13 (spatial connection). Therefore, when an air flow such as wind relatively moving from the front and rear of the bicycle B toward the bicycle B flows into the flow passage 11 from the inflow port 11A and passes through the detection port 13, turbulent flow (so-called "" Wind noise ”) is generated, and moves in the detection port 13 toward the sound wave sensor 12. As a result, the sound wave sensor 12 detects turbulent flow generated by an air flow such as wind as sound waves (so-called “wind noise”). The sound wave sensor 12 outputs sound pressure data obtained by converting the detected sound wave into an electric signal to the control device 6 described later. The shape of the detection port 13 is not particularly limited, but if the detection port 13 has a columnar shape, attenuation of sound waves (vibration) due to bending loss can be suppressed, and therefore the detection port 13 has a columnar shape. Is desirable.
 ここで、両端部が開放された出入口を有する中空構造体を大気中に配置した際の、空気流の挙動として、以下のことが実験的に又は経験的に知られている。中空構造体の空洞部の断面が空気流の流れの方向に沿って拡大している場合(以下、「ケース1」という)、空気流の流速が中空構造体の出口に向かって上昇する。一方、中空構造体の空洞部が空気流の流れの方向に沿って縮小している場合(以下、「ケース2」という)、空気流の流速が中空構造体の出口に向かって減少する。 Here, the following is experimentally or empirically known as the behavior of the air flow when a hollow structure having an inlet / outlet opened at both ends is arranged in the atmosphere. When the cross section of the hollow portion of the hollow structure is enlarged along the direction of the air flow (hereinafter referred to as “case 1”), the flow velocity of the air flow increases toward the outlet of the hollow structure. On the other hand, when the hollow portion of the hollow structure is contracted along the direction of the air flow (hereinafter referred to as “case 2”), the flow velocity of the air flow decreases toward the outlet of the hollow structure.
 ここで、中空構造体の空洞部の出入口付近であっても、入口直前及び出口直後は大気中であり、同一の大気圧下にある。したがって、ケース1の場合であってもケース2の場合であっても、空気流が中空構造体の空洞部へ流入する直前の気圧も、中空構造体の空洞部から流出する直後の気圧も同一となる。すなわち、空洞部の断面が、空気流の流れの方向に沿って、拡大するか縮小するかで、空洞部内の空気流の流速の傾向が異なる。 Here, even in the vicinity of the entrance / exit of the hollow portion of the hollow structure, it is in the atmosphere immediately before the entrance and immediately after the exit, and is under the same atmospheric pressure. Therefore, in both the case 1 and the case 2, the air pressure immediately before the airflow flows into the hollow portion of the hollow structure is the same as the air pressure immediately after flowing out of the hollow portion of the hollow structure. It becomes. That is, the tendency of the flow velocity of the air flow in the hollow portion differs depending on whether the cross section of the hollow portion expands or contracts along the direction of the air flow.
 この傾向からすれば、例えば、本実施の形態のように、流通路11の中心線C1に直交する断面が自転車Bの前方側から後方側に向かって拡大する場合、音波センサー12の指向性は、相対的に自転車Bの後方から自転車Bに向かう方向(自転車Bの進行方向)より、自転車Bの前方から自転車Bに向かう方向(後退方向)に強くなる。この理由を以下に説明する。 From this tendency, for example, when the cross section orthogonal to the center line C1 of the flow path 11 expands from the front side to the rear side of the bicycle B as in the present embodiment, the directivity of the acoustic wave sensor 12 is The direction from the rear of the bicycle B toward the bicycle B (the traveling direction of the bicycle B) is relatively stronger in the direction from the front of the bicycle B toward the bicycle B (retracting direction). The reason for this will be described below.
 上記の中空構造体の例では、いずれのケース(ケース1及びケース2)においても、空洞部の出口直後の圧力は大気圧と同一になるので、空洞部中の圧力は全体的に出口に向かって大気圧に漸近し、出口で大気圧に収束する。しかし、空気の流入量が異なるので、出口直前における空気流の流速が異なる。ケース1の場合、流入した空気は次第に体積を拡大させながら出口へ向かう。しかし、出口付近では外部と気圧が等しくなるため、空気流は流速が次第に上昇しながら出口から放出される。ケース2の場合、流入した空気は次第に体積を縮小させながら出口へ向かう。しかし、出口付近では外部と気圧が等しくなるため、空気流は流速が次第に減少しながら出口から放出される。 In the example of the hollow structure described above, in any case (case 1 and case 2), the pressure immediately after the exit of the cavity is the same as the atmospheric pressure, so the pressure in the cavity is generally directed toward the exit. Asymptotically approaches atmospheric pressure and converges to atmospheric pressure at the exit. However, since the inflow amount of air is different, the flow velocity of the air flow immediately before the outlet is different. In case 1, the air that has flowed toward the outlet gradually increases in volume. However, since the atmospheric pressure is equal to the outside in the vicinity of the outlet, the air flow is discharged from the outlet while the flow velocity gradually increases. In the case 2, the air that has flowed toward the outlet gradually decreases in volume. However, since the atmospheric pressure is equal to the outside in the vicinity of the outlet, the air flow is discharged from the outlet while the flow velocity gradually decreases.
 この空洞部における空気流の挙動の傾向を本実施の形態における流通路11を流れる空気流に当て嵌めると、流入口11Aの方が流出口11Bより狭いことから、同一の流速で自転車Bに向かって移動する空気流の検出口13での流速は、空気流が自転車Bの前方から流通路11に流入する場合の方が速い。すなわち、音波センサー12の指向性は、自転車Bの前方から自転車Bに向かう方向に強い。 When the tendency of the behavior of the air flow in the hollow portion is applied to the air flow flowing through the flow passage 11 in the present embodiment, the inlet 11A is narrower than the outlet 11B. The velocity of the moving airflow at the detection port 13 is faster when the airflow flows into the flow passage 11 from the front of the bicycle B. That is, the directivity of the sound wave sensor 12 is strong in the direction from the front of the bicycle B toward the bicycle B.
 なお、風速計測装置1は、音波センサー12によって検出された音波に基づいて風速を計測する。後述するように、風速の計測は、後述するCPU61やメモリ62が搭載された基板で構成される制御装置6が行う。この制御装置6は、本体7の内部に収容されており(図示せず)、音波センサー12と所定のケーブルで電気的に接続されている。また、本実施の形態では、表示部21及び入力部31も制御装置6に電気的に接続されており、制御装置6は、所定の表示制御及び入力制御も行う。すなわち、制御装置6は、風速計測装置1、表示装置2及び入力装置3の一部を構成している。 The wind speed measuring device 1 measures the wind speed based on the sound wave detected by the sound wave sensor 12. As will be described later, the wind speed is measured by the control device 6 including a substrate on which a CPU 61 and a memory 62 described later are mounted. The control device 6 is accommodated in the main body 7 (not shown) and is electrically connected to the sound wave sensor 12 by a predetermined cable. Moreover, in this Embodiment, the display part 21 and the input part 31 are also electrically connected to the control apparatus 6, and the control apparatus 6 also performs predetermined display control and input control. That is, the control device 6 constitutes part of the wind speed measuring device 1, the display device 2, and the input device 3.
 図3は、本発明の第1の実施の形態に係る風速計測装置1を含むサイクルコンピュータSの電気的な構成を示すブロック図である。 FIG. 3 is a block diagram showing an electrical configuration of the cycle computer S including the wind speed measuring device 1 according to the first embodiment of the present invention.
 表示装置2は、予め設定された又は選択された情報が表示される表示部21と、後述するCPU61の指示により表示部21における表示の制御を行う表示制御回路22とを具備する。なお、表示部21と表示制御回路22とは、所定のバスによって電気的に接続されている。 The display device 2 includes a display unit 21 on which preset or selected information is displayed, and a display control circuit 22 that controls display on the display unit 21 according to an instruction from the CPU 61 described later. The display unit 21 and the display control circuit 22 are electrically connected by a predetermined bus.
 入力装置3は、所定の情報を入力するための操作可能な入力部31と、後述するCPU61の指示により入力部31における入力の制御を行う入力制御回路32とを具備する。なお、入力部31と入力制御回路32とは、所定のバスによって電気的に接続されている。入力部31の操作によって、データ測定やデータ演算の開始/終了や後述する環境モードを選択したり、ユーザIDや身長・体重等の所定情報を入力することができる。入力部31が操作されると、入力部31からボタンの種類及び操作態様に対応する入力信号が一端入力制御回路(又は、後述するデータ入力部)に送られ、それから制御装置6に入力信号が出力される。なお、本実施の形態では、入力部31は、本体7の表面の短軸方向に3つ並設されたボタンで構成されているが、その構成として、ボタン以外に十字キー、トラックボール及びジョイスティック等のポインティングデバイスとすることも可能である。また、入力部31の構造をタッチパネルにして、表示部21と一体化するようにすることも可能である。 The input device 3 includes an operable input unit 31 for inputting predetermined information, and an input control circuit 32 that controls input in the input unit 31 according to an instruction from the CPU 61 described later. The input unit 31 and the input control circuit 32 are electrically connected by a predetermined bus. By operating the input unit 31, it is possible to start / end data measurement and data calculation, select an environment mode to be described later, and input predetermined information such as a user ID, height, and weight. When the input unit 31 is operated, an input signal corresponding to the button type and operation mode is sent from the input unit 31 to an input control circuit (or a data input unit to be described later), and then the input signal is sent to the control device 6. Is output. In the present embodiment, the input unit 31 is composed of three buttons arranged in parallel in the minor axis direction of the surface of the main body 7. In addition to the buttons, the input unit 31 includes a cross key, a trackball, and a joystick. It is also possible to use a pointing device such as Further, the structure of the input unit 31 may be a touch panel so as to be integrated with the display unit 21.
 通信装置4は、携帯電話等の移動端末といった外部装置(図示せず)との間で各種データを送受信するための通信インターフェイス(I/F)41と、後述するCPU61の指示により通信インターフェイス41の制御を行う通信制御回路42とを具備する。通信インターフェイス41と通信制御回路42とは所定のバスによって電気的に接続されている。通信制御回路42は、CPU61からの指示に応じて、メモリ62に記憶されている各種データ等を通信インターフェイス41を介して所定の外部装置(不図示)に出力し、又、所定の外部装置からのデータを通信インターフェイス41介して入力させる。なお、通信インターフェイス41は、無線通信方式である場合、各種アンテナで実現され、有線通信方式である場合、所定の型のコンセント等で実現される。 The communication device 4 includes a communication interface (I / F) 41 for transmitting and receiving various data to and from an external device (not shown) such as a mobile terminal such as a mobile phone, and the communication interface 41 according to instructions from the CPU 61 described later. And a communication control circuit 42 for performing control. The communication interface 41 and the communication control circuit 42 are electrically connected by a predetermined bus. In response to an instruction from the CPU 61, the communication control circuit 42 outputs various data stored in the memory 62 to a predetermined external device (not shown) via the communication interface 41, and from the predetermined external device. Are input via the communication interface 41. Note that the communication interface 41 is realized by various antennas in the case of a wireless communication method, and is realized by a predetermined type of outlet or the like in the case of a wired communication method.
 図3に示すように、サイクルコンピュータSのセンサー群5は、速度センサー51、ケイデンスセンサー52、加速度センサー53、パワーセンサー54、傾斜センサー55、温度センサー56、湿度センサー57、気圧センサー58、GPSセンサー59、及び、風速計測装置1の音波センサー12からなる。各センサーは、それぞれの使用に応じて、サイクルコンピュータSの内部或いは外部に適宜に取り付けられている。また、各センサーは、無線通信方式又は有線通信方式によって制御装置6に搭載されているA/D変換器やシリアルI/Fに電気的に接続されている。 As shown in FIG. 3, the sensor group 5 of the cycle computer S includes a speed sensor 51, a cadence sensor 52, an acceleration sensor 53, a power sensor 54, a tilt sensor 55, a temperature sensor 56, a humidity sensor 57, an atmospheric pressure sensor 58, and a GPS sensor. 59 and the sound wave sensor 12 of the wind speed measuring device 1. Each sensor is appropriately attached to the inside or the outside of the cycle computer S according to each use. Each sensor is electrically connected to an A / D converter and a serial I / F mounted on the control device 6 by a wireless communication method or a wired communication method.
 速度センサー51は、自転車Bの絶対的な速度を測定する装置である。速度センサー51は、例えば、自転車Bの車輪のスポーク等に固定されたマグネットと、チェーンステー等に装着されたマグネット検出器からなり、マグネット検出器が単位時間当たりにマグネットを検出する回数を測定して、測定値を電気信号に変換した速度データを制御装置6に出力する。そして、制御装置6のCPU61がこの回数にタイヤの外周を乗算して、自転車Bの速度を算出する。 The speed sensor 51 is a device that measures the absolute speed of the bicycle B. The speed sensor 51 includes, for example, a magnet fixed to a spoke of the wheel of the bicycle B and a magnet detector attached to a chain stay or the like, and measures the number of times the magnet detector detects the magnet per unit time. Then, the speed data obtained by converting the measured value into an electric signal is output to the control device 6. Then, the CPU 61 of the control device 6 calculates the speed of the bicycle B by multiplying this number by the outer periphery of the tire.
 ケイデンスセンサー52は、自転車Bのペダルの単位時間当たりの回転数(ケイデンス)を測定する装置である。ケイデンスセンサー52は、例えば、クランクに装着されたマグネットと、チェーンステー等に装着されたマグネット検出器からなり、マグネット検出器が単位時間当たりにマグネットを検出する回数を測定して、測定値を電気信号に変換したケイデンスデータを制御装置6に出力する。そして、制御装置6のCPU61がケイデンスを算出する。 The cadence sensor 52 is a device that measures the rotation speed (cadence) of the pedal of the bicycle B per unit time. The cadence sensor 52 includes, for example, a magnet attached to a crank and a magnet detector attached to a chain stay or the like. The cadence sensor 52 measures the number of times the magnet detector detects a magnet per unit time, and uses the measured value as an electrical value. The cadence data converted into a signal is output to the control device 6. Then, the CPU 61 of the control device 6 calculates cadence.
 加速度センサー53は、例えば、MEMS素子で構成されており、自転車Bの加速度を測定し、測定値を電気信号に変換した加速度データを制御装置6に出力する。当該加速度データの正負が激しく切り換わる場合は、路面が凹凸であり又は柔らかい土である等の路面状況を推測することできる。さらに、この推測結果を地図に付加して、モニタからなる表示部に表示することも可能である。 The acceleration sensor 53 is composed of, for example, a MEMS element, measures the acceleration of the bicycle B, and outputs acceleration data obtained by converting the measurement value into an electric signal to the control device 6. When the acceleration data is switched between positive and negative, it is possible to infer road surface conditions such as uneven road surface or soft soil. Furthermore, this estimation result can be added to a map and displayed on a display unit comprising a monitor.
 パワーセンサー54は、自転車Bの後輪ハブ等に内蔵された自転車Bの出力を測定し、測定値を電気信号に変換したパワーデータを制御装置6に出力する装置であり、パワーメーターがその代表的なものである。一般的なパワーメーターは、スプロケットに加わる力を計測することができる。その力は、運転者の能力の評価基準として用いることができ、又、トレーニングメニューの指標として用いることもできる。 The power sensor 54 is a device that measures the output of the bicycle B built in the rear wheel hub or the like of the bicycle B, and outputs the power data obtained by converting the measured value into an electric signal to the control device 6. Is something. A general power meter can measure the force applied to the sprocket. The force can be used as a criterion for evaluating the ability of the driver, and can also be used as an index for a training menu.
 傾斜センサー55は、自転車Bの地面(水平面)に対する傾斜を測定し、測定値を電気信号に変換した傾斜データを制御装置6に出力する。制御装置6は、例えば、自転車Bが一定時間で走行した走行経路の平均斜度を算出する。温度センサー56は、自転車Bの周りの気温(例えば、停止している位置での気温や走行中の気温等)を測定し、測定値を電気信号に変換した温度データを制御装置6に出力する。湿度センサー57は、自転車Bの周りの湿度(例えば、停止している位置での湿度や走行中の湿度等)を測定し、測定値を電気信号に変換した湿度データを制御装置6に出力する。また、気圧センサー58は、自転車Bの周囲の大気圧を測定し、測定値を電気信号に変換した気圧データを制御装置6に出力する。制御装置6は、例えば、気圧データから自転車Bが位置する標高を算出する。 The tilt sensor 55 measures the tilt of the bicycle B with respect to the ground (horizontal plane), and outputs tilt data obtained by converting the measured value into an electric signal to the control device 6. For example, the control device 6 calculates the average inclination of the travel route on which the bicycle B traveled for a certain time. The temperature sensor 56 measures the temperature around the bicycle B (for example, the temperature at a stopped position, the temperature during running, etc.), and outputs temperature data obtained by converting the measured value to an electrical signal to the control device 6. . The humidity sensor 57 measures the humidity around the bicycle B (for example, humidity at a stopped position, humidity during running, etc.), and outputs humidity data obtained by converting the measured value to an electrical signal to the control device 6. . Further, the atmospheric pressure sensor 58 measures the atmospheric pressure around the bicycle B, and outputs the atmospheric pressure data obtained by converting the measured value into an electric signal to the control device 6. For example, the control device 6 calculates the altitude at which the bicycle B is located from the atmospheric pressure data.
 GPSセンサー59は、GPS用チップアンテナ(図示せず)で構成されており、衛星等による所定の測位システムに組み込まれることで、当該自転車Bの位置情報と同時に現在の時刻が取得される。GPSセンサー59は、衛星から送信される信号を受信して、制御装置6に送信する。 The GPS sensor 59 is composed of a GPS chip antenna (not shown), and is incorporated into a predetermined positioning system such as a satellite, whereby the current time is acquired simultaneously with the position information of the bicycle B. The GPS sensor 59 receives a signal transmitted from the satellite and transmits it to the control device 6.
 なお、これらのセンサー群5の構成は一例である。したがって、あるセンサーによって測定されて取得する情報は、最終的に取得できればよいので、他のセンサーによって測定された測定値から算出して取得することもできる。例えば、傾斜センサー55を用いずに、GPSセンサー59等で一定時間における移動距離を算出し、気圧センサー58で算出した高度情報から移動に要した一定時間における高度差を算出して、距離と高度差(標高差)から平均斜度を算出するようにすることも可能である。また、気圧センサー58に代えてGPSセンサー59で標高に関する情報を取得したり、地図情報として高度情報を有する3次元地図情報を使用してもよい。 The configuration of these sensor groups 5 is an example. Therefore, the information measured and acquired by a certain sensor is only required to be finally acquired, and can be calculated and acquired from the measured values measured by other sensors. For example, without using the inclination sensor 55, the distance traveled at a certain time is calculated by the GPS sensor 59 or the like, the height difference at the certain time required for the movement is calculated from the altitude information calculated by the atmospheric pressure sensor 58, and the distance and altitude It is also possible to calculate the average slope from the difference (elevation difference). Moreover, it may replace with the atmospheric | air pressure sensor 58, the information regarding an altitude may be acquired with the GPS sensor 59, and the three-dimensional map information which has altitude information may be used as map information.
 制御装置6は、制御を司るCPU61、様々な情報を示すデータを記憶するメモリ62の他に、各種センサーから出力される電気信号をデジタル信号に変換するA/D変換器やシリアルI/Fの集まりであるI/F63、現在時刻を刻み続けるRTC64、及び、水晶振動子を具備し、後述するタイマー割込処理を行うための合図となる発振回路65を有する。なお、制御装置6はバスを介して、表示制御回路22、入力制御回路32、及び、通信制御回路42に接続されている。 The control device 6 includes an A / D converter that converts electric signals output from various sensors into digital signals, a serial I / F, and a CPU 61 that controls the data and a memory 62 that stores data indicating various types of information. It has an I / F 63 that is a gathering, an RTC 64 that keeps track of the current time, and a crystal oscillator, and has an oscillation circuit 65 that serves as a signal for performing timer interrupt processing to be described later. The control device 6 is connected to the display control circuit 22, the input control circuit 32, and the communication control circuit 42 through a bus.
 メモリ62は、フラッシュメモリ、RAM、ROM、ハードディスクドライブ等の内部記憶装置、又は、USBメモリ、フラッシュメモリカード等の不揮発性外部メモリ等で実現される。メモリ62には、サイクルコンピュータSのセンサー群5によって取得された情報や、CPU61によって演算された演算結果等が一時的又は永続的に記憶される。また、サイクルコンピュータSでは、メモリ62で地図情報等の付加情報を記憶しておき、取得・演算等されたデータと関連付けて自転車用地図を作成し、表示部21に表示することができる。 The memory 62 is realized by an internal storage device such as a flash memory, a RAM, a ROM, a hard disk drive, or a non-volatile external memory such as a USB memory or a flash memory card. The memory 62 temporarily or permanently stores information acquired by the sensor group 5 of the cycle computer S, calculation results calculated by the CPU 61, and the like. In the cycle computer S, additional information such as map information can be stored in the memory 62, a bicycle map can be created in association with the acquired / calculated data, and displayed on the display unit 21.
 バンドパスフィルタ14は、風速計測装置1を構成しており、音波センサー12とA/D変換器との間に介在している。本実施の形態では、バンドパスフィルタ14は、オペアンプによるバンドパスフィルタとなっており、1~4kHzの周波数帯域のみを通す。一般的に、自動車やバイクのエンジン音(走行により発生する音)の周波数は1kHz以下に分布し、セミの鳴き声等の虫の声の周波数は4kHz以上に分布している。このように、計測対象外である不要な自動車等のエンジンによって発生する音波や虫によって発生する音波が、音波センサー12によって検出されたとしても、バンドパスフィルタ14によって除去される。この結果、風速計測装置1が計測する風速の精度の低下を抑えることができる。 The band pass filter 14 constitutes the wind speed measuring device 1 and is interposed between the sound wave sensor 12 and the A / D converter. In the present embodiment, the bandpass filter 14 is a bandpass filter using an operational amplifier, and passes only a frequency band of 1 to 4 kHz. In general, the frequency of engine sounds (sounds generated by running) of automobiles and motorcycles is distributed to 1 kHz or less, and the frequency of insect voices such as cicada calls is distributed to 4 kHz or more. In this way, even if a sound wave generated by an unnecessary engine such as an automobile that is not a measurement target or a bug is detected by the sound wave sensor 12, it is removed by the bandpass filter 14. As a result, it is possible to suppress a decrease in the accuracy of the wind speed measured by the wind speed measuring device 1.
 図4は、本発明の第1の実施の形態に係る風速計測装置1を含むサイクルコンピュータSの制御的な(又は、機能的な)構成を示すブロック図である。サイクルコンピュータSは、走行情報取得部S1、運転者・自転車情報取得部S2、環境情報取得部S3、音圧レベル算出部S4、環境モード設定部5、異常値除去部6、風速算出部S7、及び、風速データ出力部S8を有する。 FIG. 4 is a block diagram showing a controllable (or functional) configuration of the cycle computer S including the wind speed measuring device 1 according to the first embodiment of the present invention. The cycle computer S includes a travel information acquisition unit S1, a driver / bicycle information acquisition unit S2, an environmental information acquisition unit S3, a sound pressure level calculation unit S4, an environmental mode setting unit 5, an abnormal value removal unit 6, a wind speed calculation unit S7, And a wind speed data output unit S8.
 走行情報取得部S1は、自転車の走行に関する情報のデータ(以下、「走行情報データ」という)を取得する機能を有する。走行情報取得部S1は、音波センサー12、速度センサー51、ケイデンスセンサー52、加速度センサー53、パワーセンサー54、及び、GPSセンサー59等の自転車Bの走行情報を測定するセンサー、及び、これらのセンサーによって測定された走行情報と予めメモリ62に記憶されている所定のデータとに基づいて走行情報を算出する制御装置6等によって構成される。なお、メモリ62に記憶されている所定のデータは、予めROMに記憶されているデータや入力装置3又は通信装置4によって取得されてRAMに記憶されているデータで構成される。 The travel information acquisition unit S1 has a function of acquiring information data related to bicycle travel (hereinafter referred to as “travel information data”). The travel information acquisition unit S1 is a sensor that measures travel information of the bicycle B such as the sound wave sensor 12, the speed sensor 51, the cadence sensor 52, the acceleration sensor 53, the power sensor 54, and the GPS sensor 59, and these sensors. It is comprised by the control apparatus 6 etc. which calculate driving information based on the measured driving information and the predetermined data previously memorize | stored in the memory 62. FIG. The predetermined data stored in the memory 62 includes data stored in advance in the ROM or data acquired by the input device 3 or the communication device 4 and stored in the RAM.
 運転者・自転車情報取得部S2は、運転者及び自転車の車体に関する情報のデータ(以下、「運転者等情報データ」という)を取得する機能を有する。運転者・情報取得部S2は、例えば、入力部31の操作によって選択された運転者及び自転車の車体に関する入力対象の項目を検知し、受け取るデータがその入力対象の項目に関するものであると認識する期間である入力モードを設定する制御装置6と、入力モード設定中に入力部31の操作によって入力された運転者等情報を検出し、その情報を電気信号に変換して制御装置6に出力する入力装置2等で構成される。 The driver / bicycle information acquisition unit S2 has a function of acquiring information data on the driver and the bicycle body (hereinafter referred to as “driver information data”). For example, the driver / information acquisition unit S2 detects an input target item related to the driver and the bicycle body selected by operating the input unit 31, and recognizes that the received data is related to the input target item. The control device 6 that sets the input mode that is the period, and information such as the driver input by operating the input unit 31 during the input mode setting is detected, and the information is converted into an electrical signal and output to the control device 6. It consists of an input device 2 and the like.
 環境情報取得部S3は、自転車Bの周囲の外部環境に関する情報のデータ(以下、「環境情報データ」という)を取得する機能を有する。センサー群5の傾斜センサー55、温度センサー56、湿度センサー57、並びに、気圧センサー58の環境情報を測定するセンサーで構成される。 The environment information acquisition unit S3 has a function of acquiring information data related to the external environment around the bicycle B (hereinafter referred to as “environment information data”). The sensor group 5 includes sensors for measuring environmental information of the inclination sensor 55, the temperature sensor 56, the humidity sensor 57, and the atmospheric pressure sensor 58.
 音圧レベル算出部S4は、制御装置6で構成され、センサー群5等によって取得された所定のデータを用いて、所定の演算処理を行うことで、第1サンプル時間(本実施の形態では、1秒)における音圧レベルの実効値を算出する機能を有する。 The sound pressure level calculation unit S4 is configured by the control device 6, and performs predetermined calculation processing using predetermined data acquired by the sensor group 5 or the like, so that the first sample time (in the present embodiment, 1) to calculate the effective value of the sound pressure level.
 環境モード設定部S5は、制御装置6で構成され、入力部31の操作によって選択される環境モードを内部的に設定する機能を有する。「環境モード」とは、外部環境の分類であり、本実施の形態では、「街中モード」、「海岸モード」及び「山岳モード」からなる。この環境モード毎に、後述する異常判定値が異なって設定されている。 The environment mode setting unit S5 includes the control device 6 and has a function of internally setting an environment mode selected by operating the input unit 31. The “environment mode” is a classification of the external environment, and in this embodiment, includes “town mode”, “coast mode”, and “mountain mode”. An abnormality determination value, which will be described later, is set differently for each environmental mode.
 異常値除去部S6は、制御装置6で構成され、環境モード毎に設定されている異常判定値に基づいて音圧レベル算出部S4によって算出される音圧レベルの実効値のなかで異常なものを探知すると共に、消去する機能を有する。上述したように、音波センサー12の検出対象は、相対的に自転車Bの前方から自転車に向かって移動する空気流が検出口13を通過する際に発生する音波であるが、外部環境の中を走行する自転車Bの周りでは、この音波以外にも様々な音波(人間の聴覚に対する音に相当)が発生している。音波センサー12がこの検出口13によって発生した音波以外の音波を、検出する可能性があるので、風速計測装置1及びサイクルコンピュータSにとっては、これらの音波はノイズとなる。 The abnormal value removing unit S6 is configured by the control device 6 and is abnormal among the effective values of the sound pressure level calculated by the sound pressure level calculating unit S4 based on the abnormality determination value set for each environmental mode. Has a function of detecting and deleting. As described above, the detection target of the sound wave sensor 12 is a sound wave that is generated when an air flow that relatively moves from the front of the bicycle B toward the bicycle passes through the detection port 13. In addition to this sound wave, various sound waves (corresponding to sounds for human hearing) are generated around the traveling bicycle B. Since the sound wave sensor 12 may detect sound waves other than the sound wave generated by the detection port 13, these sound waves become noise for the wind speed measuring device 1 and the cycle computer S.
 上述したように、発生し得るノイズは、バンドパスフィルタ14でも除去されるが、ノイズとなる音波の発生源は多様あり、その発生源の種類によってはバンドパスフィルタ14の通過帯域に属するノイズもある(例えば、警笛音)。そして、その発生源は、外部環境によって異なる。例えば、街中においては、自動車のエンジン音・警笛音が頻繁に発生し、海岸においては、波の音、鳥の声、船の音・警笛音が頻繁に発生し、山岳においては、虫の声が頻繁に発生している。そして、各音によって、音の大きさが異なる。そこで、外部環境に応じた異常値判定値を設け、この異常値判定値を超える音圧レベルデータを除去することで、風速計測装置1の精度が向上する。 As described above, noise that can be generated is also removed by the band-pass filter 14, but there are various sources of sound waves that become noise, and depending on the type of the source, noise that belongs to the passband of the band-pass filter 14 is also present. There is (for example, a horn sound). The generation source varies depending on the external environment. For example, in the city, car engine sounds and horn sounds frequently occur. On the coast, wave sounds, bird sounds, ship sounds and horn sounds frequently occur. In mountains, insect sounds. Is occurring frequently. And each sound has a different loudness. Therefore, by providing an abnormal value determination value according to the external environment and removing sound pressure level data exceeding the abnormal value determination value, the accuracy of the wind speed measuring device 1 is improved.
 風速算出部S7は、制御装置6で構成されており、音圧レベル算出部S5によって算出され、異常値除去部S7によって除去されなかった音圧レベルの実効値を用いて、所定の演算処理を行うことで、第2サンプル時間(本実施の形態では、10秒)における風速の平均値(代表値)を算出する。 The wind speed calculation unit S7 includes the control device 6, and performs a predetermined calculation process using the effective value of the sound pressure level calculated by the sound pressure level calculation unit S5 and not removed by the abnormal value removal unit S7. By performing, the average value (representative value) of the wind speed in the second sample time (10 seconds in the present embodiment) is calculated.
 風速データ出力部S8は、所定の測定値や算出値、又は入力部31による操作によって入力された入力情報を表示する機能を有し、表示装置2で構成される。また、風速データ出力部S8は、外部装置(図示せず)に所定のデータの送信する機能を有し、通信装置4等で構成される。 The wind speed data output unit S8 has a function of displaying a predetermined measurement value or calculated value, or input information input by an operation by the input unit 31, and is configured by the display device 2. The wind speed data output unit S8 has a function of transmitting predetermined data to an external device (not shown), and includes the communication device 4 and the like.
 次に、図5~図8を用いて、音圧レベルを計測する処理及び自転車Bに対する相対的な風速を計測する処理について説明する。 Next, a process for measuring the sound pressure level and a process for measuring the relative wind speed with respect to the bicycle B will be described with reference to FIGS.
 サイクルコンピュータSの電源がONされ、CPU61に電力が供給されると、CPU61にシステムリセットが発生し、CPU61は、以下のメイン処理を行う。 When the power source of the cycle computer S is turned on and power is supplied to the CPU 61, a system reset occurs in the CPU 61, and the CPU 61 performs the following main processing.
 まず、ステップS101において、CPU61は、初期化処理を行う。この処理において、CPU61は、メモリ62のROMから起動プログラムを読み込むとともに、メモリ62のRAMをクリアして、ステップS102に処理を移す。 First, in step S101, the CPU 61 performs an initialization process. In this process, the CPU 61 reads the activation program from the ROM in the memory 62, clears the RAM in the memory 62, and moves the process to step S102.
 CPU61は、ステップS102において、第1サンプル時間(1秒)を第1タイマーにセットし、ステップS103において、第2サンプル時間(10秒)を第2タイマーにセットする。第1サンプル時間とは、後述するように、音波センサー12によって出力され、バンドパスフィルタ14を介してA/D変換器等でデジタル化された音圧データをサンプリングする期間のことをいう。第1タイマーは、第1サンプリング時間を計測する装置である。一方、第2サンプル時間とは、ここでは、後述するように、実効値変換された音圧レベルの単位時間当たりの平均値を算出するための基準となる期間のことをいう。第2タイマーは、第2サンプリング時間の残り時間を計測する装置である。なお、第1タイマー及び第2タイマーは、後述するステップS201において4ms毎に減算処理される。 In step S102, the CPU 61 sets the first sample time (1 second) to the first timer, and in step S103, sets the second sample time (10 seconds) to the second timer. As will be described later, the first sample time refers to a period during which sound pressure data output by the sound wave sensor 12 and digitized by an A / D converter or the like via the bandpass filter 14 is sampled. The first timer is a device that measures the first sampling time. On the other hand, the second sample time is a period serving as a reference for calculating an average value per unit time of the sound pressure level subjected to effective value conversion, as will be described later. The second timer is a device that measures the remaining time of the second sampling time. The first timer and the second timer are subtracted every 4 ms in step S201 described later.
 CPU61は、ステップS104において、所定の割込処理を許可する。以下、所定の割込処理について説明する。 In step S104, the CPU 61 permits a predetermined interrupt process. Hereinafter, the predetermined interrupt process will be described.
 図6を用いて、音波検出割込処理について説明する。CPU61は、ステップS201において、音波センサー12から出力された電気信号(音圧データ)が入力したか否かを判定する。CPU61は、音圧データが入力していないと判定すると、当該割込処理を終了し、音圧データが入力したと判定すると、ステップS203において、音圧データを、メモリ62のRAMの音圧データ記憶領域に記憶し、当該割込処理を終了する。 The sound wave detection interrupt process will be described with reference to FIG. In step S201, the CPU 61 determines whether or not the electrical signal (sound pressure data) output from the sound wave sensor 12 is input. If the CPU 61 determines that the sound pressure data is not input, the CPU 61 ends the interruption process. If the CPU 61 determines that the sound pressure data is input, the CPU 61 converts the sound pressure data into the sound pressure data stored in the RAM of the memory 62 in step S203. The data is stored in the storage area, and the interrupt process is terminated.
 図7を用いて、制御装置6のモード変更割込処理を説明する。CPU61は、ステップS301において、入力制御装置3から出力された環境モードの種類を表す電気信号(モードデータ)が入力したか否かを判定する。CPU61は、モードデータが入力していないと判定すると、当該モード変更割込処理を終了し、モードデータが入力したと判定すると、ステップS302において、モードデータが示すモードの種類に対応付けられたモードフラグを、メモリ62のRAMのモードフラグ記憶領域にセットし、当該モード変更割込処理を終了する。 The mode change interrupt process of the control device 6 will be described with reference to FIG. In step S301, the CPU 61 determines whether or not an electrical signal (mode data) indicating the type of environmental mode output from the input control device 3 has been input. If the CPU 61 determines that mode data has not been input, the CPU 61 terminates the mode change interrupt process. If the CPU 61 determines that mode data has been input, in step S302, the mode associated with the type of mode indicated by the mode data. The flag is set in the mode flag storage area of the RAM of the memory 62, and the mode change interrupt process ends.
 本実施の形態では、モードとして、「街中モード」、「海岸モード」、及び、「山岳モード」の3種類のモードが設定されており、それぞれのモードに対応するフラグは、2バイト構成で、「01H」、「02H」、及び、「03H」と設定されている。なお、当該処理が行われる際に、既にモードフラグがモードフラグ記憶領域にセットされている場合、既存のモードフラグが新しいモードフラグに上書きされる。 In the present embodiment, three modes, “city mode”, “coast mode”, and “mountain mode”, are set as modes, and flags corresponding to each mode have a 2-byte configuration. “01H”, “02H”, and “03H” are set. When the process is performed, if the mode flag has already been set in the mode flag storage area, the existing mode flag is overwritten with the new mode flag.
 図8を用いて、制御装置6のタイマー割込処理を説明する。制御装置6に設けられた発生回路66によって、所定の周期(4ミリ秒)毎にクロックパルスが発生されることで、以下に述べるタイマー割込処理が実行される。 The timer interrupt process of the control device 6 will be described with reference to FIG. The generation circuit 66 provided in the control device 6 generates a clock pulse every predetermined period (4 milliseconds), thereby executing a timer interrupt process described below.
 まず、ステップS401において、CPU61は、第1タイマー、及び、第2タイマーを更新する時間制御処理を行う。この処理によって、両タイマーにセットされている値が、4(ms)減算処理される。 First, in step S401, the CPU 61 performs time control processing for updating the first timer and the second timer. By this process, the values set in both timers are subtracted by 4 (ms).
 CPU61は、ステップS402において、第1サンプリング時間が経過したか否か、すなわち、第1タイマーが「0」であるか否かを判定する。CPU61は、第1サンプリング時間が経過していないと判定すると、ステップS407に処理を移し、第1サンプリング時間が経過したと判定すると、ステップS403に処理を移す。 In step S402, the CPU 61 determines whether or not the first sampling time has elapsed, that is, whether or not the first timer is “0”. If the CPU 61 determines that the first sampling time has not elapsed, it moves the process to step S407, and if it determines that the first sampling time has elapsed, it moves the process to step S403.
 CPU61は、ステップS403において、第1サンプリング時間(1秒)を第1タイマーにセットし、ステップS404においてRAMの音圧データ記憶領域に記憶されている音圧データを実効値に変換することで、音圧レベルを算出し、ステップS405において実効値変換された音圧レベルを音圧レベル実効値データとしてRAMの所定領域に記憶する。ここで、CPU61は、音圧レベル実効値データをRAMに記憶する際、当該第2サンプリング時間における経過時間(0~10秒)に関連付けることで、音波センサー12から送られてきた電気信号を時間経過と音圧レベル実効値データという2つの要素を用いて数値化(デジタル化)する。 In step S403, the CPU 61 sets the first sampling time (1 second) to the first timer, and in step S404 converts the sound pressure data stored in the sound pressure data storage area of the RAM into an effective value. The sound pressure level is calculated, and the sound pressure level that has undergone effective value conversion in step S405 is stored in a predetermined area of the RAM as sound pressure level effective value data. Here, when the CPU 61 stores the sound pressure level effective value data in the RAM, the CPU 61 correlates the elapsed time (0 to 10 seconds) in the second sampling time with the electrical signal sent from the sound wave sensor 12 as a time. It is digitized (digitized) using two elements: progress and sound pressure level effective value data.
 CPU61は、ステップS406において、音圧データ記憶領域をクリアし、ステップS407に処理を移す。なお、本実施の形態では、音圧データは第1サンプリング時間が経過する度に完全に消去されるが、他の記憶装置やRAMの他の記憶領域に転送されて記憶され続けるようにしてもよい。また、第1サンプリング時間が経過しても、当該第1サンプリング時間で記憶されたデータは消去されず、次回の新たな第1サンプリング時間において、前回の第1サンプリング時間で記憶されたデータと区別できるように、前回の第1サンプリング時間で記憶されたデータに続けて音圧データを記憶するようにしてもよい。 In step S406, the CPU 61 clears the sound pressure data storage area and moves the process to step S407. In the present embodiment, the sound pressure data is completely erased every time the first sampling time elapses. However, the sound pressure data may be transferred to another storage device or another storage area of the RAM and stored continuously. Good. Further, even if the first sampling time elapses, the data stored at the first sampling time is not erased, and the next new first sampling time is distinguished from the data stored at the previous first sampling time. As possible, the sound pressure data may be stored subsequent to the data stored at the previous first sampling time.
 CPU61は、ステップS407において、第2サンプリング時間が経過したか否か、すなわち、第2タイマーが「0」であるか否かを判定する。CPU61は、第2サンプリング時間が経過していないと判定すると、当該タイマー割込処理を終了し、第2サンプリング時間が経過したと判定すると、ステップS408に処理を移す。 In step S407, the CPU 61 determines whether or not the second sampling time has elapsed, that is, whether or not the second timer is “0”. If the CPU 61 determines that the second sampling time has not elapsed, the CPU 61 ends the timer interruption process. If the CPU 61 determines that the second sampling time has elapsed, the process proceeds to step S408.
 CPU61は、ステップS408において、第2サンプリング時間(10秒)を第2タイマーにセットし、ステップS409において、メモリ62のRAMにおける環境モードフラグ記憶領域に記憶されている環境モードフラグ(01H、02H、又は、03H)を確認して、現在の環境モードを認識する。 In step S408, the CPU 61 sets the second sampling time (10 seconds) in the second timer. In step S409, the CPU 61 sets the environmental mode flags (01H, 02H,...) Stored in the environmental mode flag storage area in the RAM of the memory 62. Or, 03H) is confirmed to recognize the current environment mode.
 CPU61は、ステップS410において、ステップS409で認識した環境モードに基づいて、当該第2サンプリング時間においてメモリ62のRAMに記憶された音圧レベル実効値データの中から異常値を探知する異常値探知処理を行い、ステップS411に処理を移す。すなわち、CPU61は、当該第2サンプリング時間において記憶された音圧レベル実効値データの中から環境モードに対応付けられた異常判定値以上のものを探知する。 In step S410, the CPU 61 detects an abnormal value from the sound pressure level effective value data stored in the RAM of the memory 62 at the second sampling time based on the environmental mode recognized in step S409. And the process proceeds to step S411. That is, the CPU 61 detects a sound pressure level effective value data stored during the second sampling time that is equal to or higher than the abnormality determination value associated with the environmental mode.
 例えば、街中では、多くの自動車が走行しており、自転車の周囲で発生する音波の音圧レベル(音の大きさ)は非常に大きいので、街中に対応する街中モードの異常判定値が最も高く設定される。一方、海岸や山岳では、街中に比べて走行している自動車の数は多くないが、自転車が自動車とすれ違う際の自動車による音波の音圧レベルは無視できない。したがって、海岸や山岳に対応する海岸モード及び山岳モードに対しては、街中モードより低い異常判定値が設定される。このように、単に異常値を除去する処理が行われるだけでも、単発的で不要な音波の影響が軽減するので、風速計測装置1が計測する風速の精度の低下を抑えることができる。また、外部環境に応じた異常判定値が設定されることで、異常値の除去の精度が向上するので、さらに風速計測装置1が計測する風速の精度の低下を抑えることができる。 For example, in the city, many cars are running, and the sound pressure level (sound volume) of the sound wave generated around the bicycle is very high, so the abnormality determination value in the city mode corresponding to the city is the highest. Is set. On the other hand, on the coast and mountains, there are not many automobiles running compared to the city, but the sound pressure level of sound waves caused by automobiles when a bicycle passes by a car cannot be ignored. Therefore, an abnormality determination value lower than that in the city mode is set for the coast mode and the mountain mode corresponding to the coast and mountains. As described above, even if the process of simply removing the abnormal value is performed, the influence of a single and unnecessary sound wave is reduced, so that a decrease in accuracy of the wind speed measured by the wind speed measuring device 1 can be suppressed. Moreover, since the accuracy of removing the abnormal value is improved by setting the abnormality determination value according to the external environment, it is possible to further suppress a decrease in the accuracy of the wind speed measured by the wind speed measuring device 1.
 CPU61は、ステップS411において、ステップS410で異常判定値を超える音圧レベル実効値データである異常値を探知した結果、異常値がないと判定した場合、ステップS413に処理を移し、異常値があると判定した場合、ステップS412において異常値に係る音圧レベル実効値データを音圧レベル実効値データ記憶領域から消去し、ステップS413に処理を移す。 In step S411, if the CPU 61 detects an abnormal value that is sound pressure level effective value data that exceeds the abnormal determination value in step S410, and determines that there is no abnormal value, the process proceeds to step S413, and there is an abnormal value. If it is determined that the sound pressure level effective value data related to the abnormal value is deleted from the sound pressure level effective value data storage area in step S412, the process proceeds to step S413.
 CPU61は、ステップS413において第2サンプル時間における音圧レベル実効値の平均値を算出し、ステップS414において、予めメモリ62のROMに記憶されている所定の音圧レベルを風速に変換するテーブル又は所定の音圧レベルを風速に変換する変換式に基づいて、風速を算出し、ステップS415に処理を移す。 In step S413, the CPU 61 calculates an average value of sound pressure level effective values in the second sample time. In step S414, the CPU 61 converts a predetermined sound pressure level stored in advance in the ROM of the memory 62 into a wind speed or a predetermined value. The wind speed is calculated based on the conversion formula for converting the sound pressure level to the wind speed, and the process proceeds to step S415.
 CPU61は、ステップS415において、ステップS414で算出した風速を表示部21に表示させると共に、メモリ62のRAMの風速データ記憶領域に、RTC64によって取得することができる現在の時刻に関連付けて風速データとして記憶し、ステップS416に処理を移す。 In step S415, the CPU 61 displays the wind speed calculated in step S414 on the display unit 21 and stores it in the wind speed data storage area of the RAM 62 of the memory 62 as wind speed data in association with the current time that can be acquired by the RTC 64. Then, the process proceeds to step S416.
 CPU61は、ステップS416において、音圧レベル実効値データ記憶領域をクリアし、当該タイマー割込処理を終了する。なお、本実施の形態では、音圧レベル実効値データは第2サンプリング時間が経過する度に完全に消去されるが、他の記憶装置やRAMの他の記憶領域に転送されて記憶され続けるようにしてもよい。また、第2サンプリング時間が経過しても、当該第2サンプリング時間で記憶されたデータは消去されず、次回の新たな第2サンプリング時間において、前回の第2サンプリング時間で記憶されたデータと区別できるように、前回の第2サンプリング時間で記憶されたデータに続けて音圧レベル実効値データを記憶するようにしてもよい。 In step S416, the CPU 61 clears the sound pressure level effective value data storage area, and ends the timer interrupt process. In the present embodiment, the sound pressure level effective value data is completely deleted every time the second sampling time elapses, but it is transferred to other storage devices and other storage areas of the RAM so as to continue to be stored. It may be. In addition, even if the second sampling time has elapsed, the data stored at the second sampling time is not erased, and the next new second sampling time is distinguished from the data stored at the previous second sampling time. As can be done, the sound pressure level effective value data may be stored subsequent to the data stored in the previous second sampling time.
(その他の実施の形態)
 第1の実施の形態の他にも本発明の目的を達成できる範囲での変形、改良などは本発明に含まれる。例えば、風速計測装置1が、自転車Bに取り付けられ、サイクリングにおいて利用されているサイクルコンピュータSに組み込まれているが、例えば、モーターバイクに取り付けられるサイクルコンピュータSに相当する計測装置に組み込むこともできる。この場合においても、モーターバイクに搭載されているエンジンから検出目標外となる音波が頻繁に又は継続的に発生する。しかしながら、例えば、点火パルスや燃料消費量を検出することで、エンジンによる音波に関する情報を取得し、異常値探知処理の際にその情報を利用することで、精度よく異常値を除去することができる。
(Other embodiments)
In addition to the first embodiment, modifications and improvements as long as the object of the present invention can be achieved are included in the present invention. For example, the wind speed measuring device 1 is attached to the bicycle B and incorporated in the cycle computer S used for cycling. For example, the wind velocity measuring device 1 may be incorporated into a measuring device corresponding to the cycle computer S attached to the motorbike. . Even in this case, sound waves that are outside the detection target are frequently or continuously generated from the engine mounted on the motorcycle. However, for example, by detecting an ignition pulse and fuel consumption, information on sound waves by the engine is acquired, and the abnormal value can be accurately removed by using the information in the abnormal value detection processing. .
 また、風速計測装置1が一体化された計測装置を利用者本人に取り付け、ランニングやスキー・スケートにおいても利用することができる。ランニングの場合、着地にする際に検出目的外となる音波が周期的に発生するが、加速度センサーや衝撃センサーで着地タイミングを検出し、その着地タイミングを異常値探知処理の際に利用することで、精度よく異常値を除去することができる。一方、スキーやスケートの場合、進行方向を変更させる際に検出目的外となる音波が発生するが、進行方向の変化を加速度センサーで検出することができるので、検出された進行方向の変化を異常値検知処理の際に利用し、精度よく異常値を除去することができる。 In addition, a measurement device in which the wind speed measurement device 1 is integrated can be attached to the user himself and used for running and skiing and skating. In the case of running, sound waves that are outside the detection purpose are periodically generated when landing, but by detecting the landing timing with an acceleration sensor or impact sensor, the landing timing can be used for abnormal value detection processing. An abnormal value can be accurately removed. On the other hand, in the case of skiing and skating, sound waves that are outside the detection purpose are generated when the traveling direction is changed, but changes in the traveling direction can be detected by the acceleration sensor, so the detected change in the traveling direction is abnormal. It can be used in the value detection process to remove abnormal values with high accuracy.
 また、第1の実施の形態では、風速計測装置1はサイクルコンピュータSの本体7に組み込まれているが、本体7から分離している構造でも良い。この場合、風速計測装置1は制御装置2と通信可能であることが必要である。さらに、第1の実施の形態では、風速計測装置1(サイクルコンピュータS)は、自転車Bの走行中に風速を表示しているが、表示機能を有さず、風速データ等のデータが記憶されるだけで、自宅等に設置されているパーソナルコンピュータ等の固定端末にそのデータを出力し、その画面に表示させるようにしてもよい。 In the first embodiment, the wind speed measuring device 1 is incorporated in the main body 7 of the cycle computer S. However, a structure separated from the main body 7 may be used. In this case, the wind speed measuring device 1 needs to be able to communicate with the control device 2. Furthermore, in the first embodiment, the wind speed measuring device 1 (cycle computer S) displays the wind speed while the bicycle B is running, but does not have a display function and stores data such as wind speed data. The data may be output to a fixed terminal such as a personal computer installed at home or the like and displayed on the screen.
 さらに、第1の実施の形態では、風速計測装置1は、自転車BのハンドルB1に取り付けられている。風速計測装置1の指向性は、相対的に自転車Bの前方から自転車Bに向かう方向に強いが、構造上、自転車Bの後方から自転車Bに向かって移動する空気流も検出し得る。しかしながら、自転車Bに運転者が乗ると、風速計測装置1は運転者によって自転車Bの後方から自転車Bに向かって移動する空気流から遮蔽される。そこで、例えば、自転車Bのサドルが挿入されるフレーム等の自転車Bの運転者より後方に、風速計測装置1の空気流から音波を発生させ、音波を検出する音波検出手段1A(流通路11、音波センサー12及び検出口13)と同等のものを設けることで、サイクルコンピュータSの性能を向上させることできる。この理由を以下に説明する。 Furthermore, in the first embodiment, the wind speed measuring device 1 is attached to the handle B1 of the bicycle B. Although the directivity of the wind speed measuring device 1 is relatively strong in the direction from the front of the bicycle B to the bicycle B, the airflow moving from the rear of the bicycle B toward the bicycle B can be detected structurally. However, when the driver rides on the bicycle B, the wind speed measuring device 1 is shielded by the driver from the air flow moving from the rear of the bicycle B toward the bicycle B. Therefore, for example, a sound wave detection means 1A (flow passage 11; a flow path 11, which detects sound waves by generating sound waves from the air flow of the wind speed measuring device 1 behind the driver of the bicycle B such as a frame into which the saddle of the bicycle B is inserted. The performance of the cycle computer S can be improved by providing an equivalent to the acoustic wave sensor 12 and the detection port 13). The reason for this will be described below.
 風速計測装置1と通信可能な上記の音波検出手段に相当するものが、自転車Bの運転者より後方で、その流入口11Aに相当する部分が自転車Bの後方に向けられた状態で取り付けられているとする。この場合、風速計測装置1の音波検出手段によって自転車Bの前方から向かってくる空気流(向かい風)を、上記の音波検出手段に相当するものによって自転車Bの後方から向かってくる空気流を精度よく検出することができる。よって、サイクルコンピュータSは、運転者の負荷を増大する空気流の風速だけでなく、自転車Bの負荷を軽減する空気流の風速も精度よく計測することができる。この結果、「移動者が大気に対して移動する距離(以下、「大気に対する移動距離」という)」を精度よく算出することができる。 The sound wave detecting means that can communicate with the wind speed measuring device 1 is attached to the rear side of the driver of the bicycle B and the part corresponding to the inflow port 11A is directed to the rear side of the bicycle B. Suppose that In this case, the air flow (head wind) coming from the front of the bicycle B by the sound wave detection means of the wind speed measuring device 1 is accurately detected, and the air flow coming from the rear of the bicycle B by the one corresponding to the sound wave detection means is accurately obtained. Can be detected. Therefore, the cycle computer S can accurately measure not only the wind speed of the airflow that increases the load on the driver but also the wind speed of the airflow that reduces the load on the bicycle B. As a result, it is possible to accurately calculate the “distance that the moving person moves relative to the atmosphere” (hereinafter referred to as “the moving distance relative to the atmosphere”).
1    風速計測装置
1A   音波検出手段
2    表示装置
3    入力装置
4    通信装置
5    センサー群
6    制御装置
7    本体
7A   取付部
11   流通路
11A  流入口
11B  流出口
12   音波センサー
13   検出口
14   バンドパスフィルタ(抽出手段)
21   表示部
22   表示制御回路
31   入力部
32   入力制御回路
41   通信インターフェイス
42   通信制御回路
51   速度センサー
52   ケイデンスセンサー
53   加速度センサー
54   パワーセンサー
55   傾斜センサー
56   温度センサー
57   湿度センサー
58   気圧センサー
59   GPSセンサー
61   CPU
62   メモリ
63   インターフェース群
64   RTC
65   発振回路
B    自転車
B1   ハンドル
S1   走行情報取得部
S2   運転者・自転車情報取得部
S3   環境情報取得部
S4   音圧レベル算出部(音圧算出部)
S5   環境モード設定部
S6   異常値除去部(異常値探知部)
S7   風速算出部(風速算出手段)
S8   風速データ出力部
DESCRIPTION OF SYMBOLS 1 Wind speed measuring device 1A Sound wave detection means 2 Display apparatus 3 Input device 4 Communication apparatus 5 Sensor group 6 Control apparatus 7 Main body 7A Attachment part 11 Flow path 11A Inlet 11B Outlet 12 Sound wave sensor 13 Detection port 14 Band pass filter (extraction means) )
21 Display Unit 22 Display Control Circuit 31 Input Unit 32 Input Control Circuit 41 Communication Interface 42 Communication Control Circuit 51 Speed Sensor 52 Cadence Sensor 53 Acceleration Sensor 54 Power Sensor 55 Inclination Sensor 56 Temperature Sensor 57 Humidity Sensor 58 Air Pressure Sensor 59 GPS Sensor 61 CPU
62 Memory 63 Interface group 64 RTC
65 Oscillation circuit B Bicycle B1 Steering wheel S1 Travel information acquisition unit S2 Driver / bicycle information acquisition unit S3 Environmental information acquisition unit S4 Sound pressure level calculation unit (sound pressure calculation unit)
S5 Environment mode setting unit S6 Abnormal value removal unit (abnormal value detection unit)
S7 Wind speed calculation unit (wind speed calculation means)
S8 Wind speed data output section

Claims (2)

  1.  移動体に取り付けられ、空気流から音波を発生させ、当該音波を検出する音波検出手段と、
     前記音波検出手段によって検出された音波から、特定の周波数成分を抽出する抽出手段と、
     前記抽出手段によって抽出された特定の周波数成分に基づいて、風速を算出する風速算出手段と、を有することを特徴とする風速計測装置。
    A sound wave detecting means attached to the moving body, generating sound waves from the air flow, and detecting the sound waves;
    Extraction means for extracting a specific frequency component from the sound wave detected by the sound wave detection means;
    A wind speed measuring device comprising: wind speed calculating means for calculating a wind speed based on the specific frequency component extracted by the extracting means.
  2.  前記風速算出手段は、
     前記特定の周波数成分に基づいて、音圧レベルを算出する音圧算出部と、
     前記音圧算出部が音圧レベルを所定回数算出すると、あるいは、所定時間算出すると、当該音圧算出部が算出した算出値の中から、予め設定された条件を満たす異常値を探知する異常値探知部と、を有し、
     前記風速算出手段は、前記異常値探知部が前記異常値を検知した場合は、当該異常値を除いて風速を算出することを特徴とする請求項1に記載の風速計測装置。
    The wind speed calculating means is
    A sound pressure calculator that calculates a sound pressure level based on the specific frequency component;
    When the sound pressure calculating unit calculates the sound pressure level a predetermined number of times or for a predetermined time, an abnormal value for detecting an abnormal value that satisfies a preset condition from the calculated values calculated by the sound pressure calculating unit A detection unit, and
    The wind speed measuring device according to claim 1, wherein when the abnormal value detecting unit detects the abnormal value, the wind speed calculating unit calculates the wind speed by removing the abnormal value.
PCT/JP2010/062920 2010-07-30 2010-07-30 Wind speed measurement device WO2012014319A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012526262A JP5489135B2 (en) 2010-07-30 2010-07-30 Wind speed measuring device
PCT/JP2010/062920 WO2012014319A1 (en) 2010-07-30 2010-07-30 Wind speed measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062920 WO2012014319A1 (en) 2010-07-30 2010-07-30 Wind speed measurement device

Publications (1)

Publication Number Publication Date
WO2012014319A1 true WO2012014319A1 (en) 2012-02-02

Family

ID=45529562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062920 WO2012014319A1 (en) 2010-07-30 2010-07-30 Wind speed measurement device

Country Status (2)

Country Link
JP (1) JP5489135B2 (en)
WO (1) WO2012014319A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035673A1 (en) * 2017-08-17 2019-02-21 한국항공우주연구원 Multi-speed meter capable of performing wind speed measurement having self-correction function, wind speed measurement method having self-correction function, and traveling object having multi-speed meter installed therein
US11340382B1 (en) 2020-12-24 2022-05-24 Toyota Motor Engineering & Manufacturing North America, Inc. Sensor system on a line for measuring atmospheric conditions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022201680A1 (en) 2022-02-17 2023-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein SYSTEM WITH AN ACOUSTIC SENSOR AND METHOD FOR REAL-TIME ACQUISITION OF METEOROLOGICAL DATA

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210782A (en) * 1975-07-15 1977-01-27 Rion Co Ltd Simplified anemometer
JPH0814958A (en) * 1994-06-30 1996-01-19 Tokyo Gas Co Ltd Whistle-type flowmeter
JPH08233621A (en) * 1995-02-28 1996-09-13 Tokyo Gas Co Ltd Vortex whistle type current meter and vortex whistle type flow meter
JPH11326357A (en) * 1998-05-08 1999-11-26 Muneo Yamaguchi Speed measuring apparatus
JP2004317191A (en) * 2003-04-14 2004-11-11 Ntt Power & Building Facilities Inc Wind volume measuring method and apparatus
US6832574B1 (en) * 2003-03-20 2004-12-21 James Gregory Coconas Bicycle whistle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210782A (en) * 1975-07-15 1977-01-27 Rion Co Ltd Simplified anemometer
JPH0814958A (en) * 1994-06-30 1996-01-19 Tokyo Gas Co Ltd Whistle-type flowmeter
JPH08233621A (en) * 1995-02-28 1996-09-13 Tokyo Gas Co Ltd Vortex whistle type current meter and vortex whistle type flow meter
JPH11326357A (en) * 1998-05-08 1999-11-26 Muneo Yamaguchi Speed measuring apparatus
US6832574B1 (en) * 2003-03-20 2004-12-21 James Gregory Coconas Bicycle whistle
JP2004317191A (en) * 2003-04-14 2004-11-11 Ntt Power & Building Facilities Inc Wind volume measuring method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035673A1 (en) * 2017-08-17 2019-02-21 한국항공우주연구원 Multi-speed meter capable of performing wind speed measurement having self-correction function, wind speed measurement method having self-correction function, and traveling object having multi-speed meter installed therein
US11340382B1 (en) 2020-12-24 2022-05-24 Toyota Motor Engineering & Manufacturing North America, Inc. Sensor system on a line for measuring atmospheric conditions

Also Published As

Publication number Publication date
JPWO2012014319A1 (en) 2013-09-09
JP5489135B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5639168B2 (en) Work rate measuring device
US11408906B2 (en) Method and apparatus for monitoring fluid dynamic drag
JP4433061B2 (en) Driving support system
CN105677039B (en) Method and device for detecting driving state based on gesture and wearable device
WO1992006356A1 (en) Accumulating altimeter with ascent/descent accumulation thresholds
JP5489135B2 (en) Wind speed measuring device
CN106427826B (en) Automobile, user terminal, the prompting control method based on running data and system
US20160030823A1 (en) On-running landing position evaluation method, on-running landing position evaluation apparatus, detection method, detection apparatus, running motion evaluation method, and running motion evaluation apparatus
JP5625557B2 (en) Stop judgment method
CN205440729U (en) Intelligence handlebar
JP4954792B2 (en) Speedometer
JP2006039971A (en) Pedometer
JP5489136B2 (en) Wind detector
TWM625322U (en) Bicycle Power Monitoring Device
JP5489137B2 (en) Wind detector
CN208861440U (en) Driving safety reminds bracelet
WO2009142044A1 (en) Alcohol detection device and vehicle provided with the alcohol detection device
US11927505B2 (en) Aerodynamic characteristic estimation device, aerodynamic characteristic estimation method and program
JPH0642373U (en) Automotive heart sound detector
RU2807025C1 (en) Method for determining user weight
KR101548239B1 (en) Bicycle cadence sensor &amp; speed indicator using 3 axis accelerometer
JP6353198B2 (en) Electronics
JP2003016567A (en) Watch with information display function for bicycle
JP2003281682A (en) Traffic flow monitoring device
JP2004077398A (en) Touring meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855328

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526262

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855328

Country of ref document: EP

Kind code of ref document: A1