WO2012013878A1 - Dispositif permettant le contrôle non destructif de structures et comportant un drone et une sonde de mesure embarquee - Google Patents

Dispositif permettant le contrôle non destructif de structures et comportant un drone et une sonde de mesure embarquee Download PDF

Info

Publication number
WO2012013878A1
WO2012013878A1 PCT/FR2011/051444 FR2011051444W WO2012013878A1 WO 2012013878 A1 WO2012013878 A1 WO 2012013878A1 FR 2011051444 W FR2011051444 W FR 2011051444W WO 2012013878 A1 WO2012013878 A1 WO 2012013878A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
probe
measuring probe
contact
connecting means
Prior art date
Application number
PCT/FR2011/051444
Other languages
English (en)
Inventor
Pierre-Yves Pallier
Original Assignee
Cofice
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cofice filed Critical Cofice
Publication of WO2012013878A1 publication Critical patent/WO2012013878A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/40Modular UAVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/25UAVs specially adapted for particular uses or applications for manufacturing or servicing
    • B64U2101/26UAVs specially adapted for particular uses or applications for manufacturing or servicing for manufacturing, inspections or repairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0214Airborne

Definitions

  • the present invention relates to the field of non-destructive and remote control of structures, and in particular large metal structures or composite material. It relates more particularly, but not exclusively, remote measurement of the thickness of a structure at different points by means of a drone and an onboard measurement probe.
  • a measuring probe which is applied to the structure to be controlled, or which is positioned near the structure to be controlled.
  • the measurement probe emits a signal, which may especially be of ultrasonic or electromagnetic type, which signal propagates in the material of the structure, and is at least partially reflected by the structure.
  • the probe captures this signal reflected by the material of the structure.
  • This signal reflected and captured by the probe is converted into a measurement signal to characterize the structure, and for example to measure the local thickness of the structure.
  • a probe-type probe that is to say a probe to be applied in contact with the structure, such as for example an ultrasonic measurement probe
  • the probe must be stationary and in contact with the structure.
  • the contact time of the probe with the structure is typically at least of the order of 2 seconds.
  • This technical solution requires the implementation of means for adhering the robot to the wall of the structure, while allowing it to move by sliding or rolling in contact with the wall of the structure.
  • this solution can be implemented only to control structures having a continuous wall with a simple geometry, such as for example the hull of a ship, which makes it possible to guide the robot during its movements to the measuring point .
  • This solution is not suitable for the non-destructive testing of complex structures (for example structures comprising a beam assembly, structures with uneven or highly irregular surfaces).
  • a structure inspection system comprising a plurality of independent mobile vehicles, such as for example drones, which are equipped for example with camera (s) and sensor (s) (including ultrasonic sensors) and which are designed to deploy autonomously (without manual control) and at the same time on the structure.
  • independent mobile vehicles such as for example drones, which are equipped for example with camera (s) and sensor (s) (including ultrasonic sensors) and which are designed to deploy autonomously (without manual control) and at the same time on the structure.
  • the present invention aims to propose a new technical solution for non-destructive testing of a structure by means of at least one measuring probe to be applied in contact with a surface of the structure, which technical solution has at least the following advantages :
  • the invention thus relates to a device for the non-destructive testing of structures, which device comprises a drone having a hovering capacity, and a measurement probe on board and connected to the drone by connecting means which, by driving the drone, temporarily position and immobilize the measurement probe in contact with a surface of a structure to be controlled.
  • the term "drone” means any aircraft that can load a board and does not include an onboard human pilot.
  • the drone can be controlled automatically, either by an electronic control unit boarded and appropriately programmed, or remotely by a remote control unit and appropriately programmed, to perform automatically, and without intervention of an operator, a predefined flight plan allowing an automatic measurement of a structure.
  • the drone is preferably an aircraft remotely controllable manually by an operator by means of a remote control.
  • the drone has a hovering capacity, that is to say can be controlled to substantially maintain a substantially stable position in the air.
  • the measuring probe may be any probe comprising a contact sensor, that is to say any measurement probe before its operation to be brought into contact with the structure to be controlled.
  • the device of the invention may comprise one and / or the other of the following optional features, taken separately or in combination with each other:
  • the drone can be remote controlled manually by an operator by means of a remote control
  • the connecting means make it possible to decouple the measurement probe and the drone so as to allow, once the measurement probe positioned in contact with a surface, movements and / or displacements of the drone without modifying the position and the orientation the measuring probe in relation to the surface;
  • the connecting means are designed to decouple the measurement probe and the drone, so as to allow, once the measurement probe is positioned in contact with a surface, pitching movements of the drone without modifying the position and the orientation the measuring probe in relation to the surface;
  • the connecting means comprise means for damping the pitching movements of the drone
  • the connecting means are designed to decouple the measurement probe and the drone, so as to allow, once the measurement probe is positioned in contact with a surface, movements of roll of the drone without changing the position and orientation of the measuring probe in relation to the surface;
  • the connecting means comprise means for damping the rolling movements of the drone
  • the connecting means are designed to decouple the measurement probe and the drone, so as to allow, once the measurement probe positioned in contact with a surface, yaw movements of the drone without modifying the position and the orientation the measuring probe in relation to the surface;
  • the connecting means comprise means for damping yaw movements of the drone
  • the damping means comprise fasteners made of viscoelastic material
  • the connecting means are designed to decouple the measurement probe and the drone, so as to allow, once the measurement probe positioned in contact with a surface, vertical displacements of the drone without modifying the position and orientation of the the measuring probe with respect to the surface;
  • the connecting means are designed to decouple the measurement probe and the drone, so as to allow, once the measurement probe positioned in contact with a surface, lateral displacements of the drone without modifying the position and orientation of the drone, the measuring probe with respect to the surface;
  • connection means between the measurement probe and the drone comprise a probe support on which is fixed the measurement probe, a frame in at least two parts, a first part being fixed to the drone and a second part being secured to the support; probe, and the two parts of the chassis being interconnected by connecting means allowing movements of the first part relative to the second part of the chassis so as to decouple the measurement probe of the drone and allow, once the measurement probe is positioned in contact with a surface, pitching and / or rolling and / or yawing movements of the drone without modifying the position and orientation of the measurement probe with respect to the surface;
  • the connecting means between the two parts of the frame allow damping pitching movements and / or roll and / or yaw of the drone;
  • the connecting means between the two parts of the frame comprise fasteners of viscoelastic material
  • connection means between the measurement probe and the drone comprise a pole head on which the measurement probe is fixed, and which is articulated so as to have at least two degrees of freedom in rotation along two axes of rotation which are perpendicular to each other;
  • said two axes of rotation of the pole head define a plane substantially parallel to the plane defined by the two axes of pitch and yaw of the drone;
  • the device comprises a probe in which is fixed at least said measuring probe, said probe defining a contact plane and said measuring probe flush with the contact plane of the probe;
  • the probe comprises a front face, which is flat and which defines said contact plane.
  • the orientation of the contact plane of the probe relative to the drone is adjustable
  • connection means between the measurement probe and the drone comprise a pole at the end of which is fixed the measurement probe;
  • connection means between the measuring probe and the drone are designed so that the probe is movable and guided in translation on a limited stroke relative to the drone between a retracted position in which the distance between the measuring probe and the drone is minimal, and an extended position in which the distance between the measuring probe and the drone is maximum, and the connecting means between the measuring probe and the drone comprise elastic return means exerting a restoring force which returns the measurement probe in the deployed position when the measurement probe is not not in contact with a surface;
  • the device further comprises fixing means which, when the measuring probe is positioned in contact with a surface, to temporarily fix said measuring probe in contact with this surface;
  • said fixing means are fixed to the feeler
  • said fixing means comprise one or more magnets
  • the measurement probe is an ultrasonic probe
  • connection means between the measurement probe and the drone comprise bearing means which make it possible to detach the measuring probe from a surface by tilting the drone bearing on the surface by means of said support means ;
  • the device further comprises injection means which are embedded on the drone, and which, when the measuring probe is applied against a surface, to inject a coupling agent between the measuring probe and said surface;
  • the injection means are remotely controllable
  • the device further comprises at least one contact sensor for detecting whether the measurement probe is in contact or not with a surface;
  • the device comprises onboard control means on the drone which make it possible to automatically control the means injection from at least the detection signal delivered by said contact sensor;
  • said injection means comprise a reservoir, which contains the coupling agent, and which is removable so that it can be replaced.
  • the invention also relates to the use of the device referred to above, to perform a non-destructive control of a structure.
  • the non-destructive control of the structure consists, for example, in locally measuring the thickness of the structure
  • FIG. 1 is a perspective representation of a control device, according to a first variant embodiment of the invention, and comprising in particular a helicopter-type drone and a retractable rectilinear pole, which is integral with the drone, and at the end of which is fixed a probe integrating at least one measuring probe,
  • FIG. 2 is a side view of the control device of FIG. 1, in the approach phase of a surface of a structural wall to be tested, the measurement probe being in the deployed position and not being in contact with said surface,
  • FIG. 3 is a side view of the control device of FIG. 1, in measurement phase for the control of a structure wall, the measurement probe being applied in contact with the surface of the wall and being in retracted position,
  • FIG. 4 is a partial perspective view of the device of FIG. FIG. 1 showing in detail the frame of the device and the mounting of the pole on this frame,
  • FIG. 5 is a perspective representation of an exemplary embodiment of a boom with an articulated pole head and a coupling agent injection system
  • FIG. 6 is a side view of the pole of FIG. 5,
  • FIG. 7 is a side view of a control device of the invention, according to a second embodiment, and comprising in particular a helicopter-type drone, and a 90 ° bent pole, which is integral with the drone , and at the end of which is fixed a probe incorporating at least one measuring probe.
  • the device 1 for the non-destructive inspection of structures comprises:
  • a pole 3 carrying at one end a sensor element 5 in which at least one measuring probe 6 is housed
  • a chassis 4 on which the drone 2 is fixed and on which the pole 3 is mounted cantilevered.
  • the drone 2 is an aircraft, which has a hovering capacity, and which in the usual manner is remotely maneuverable remotely by an operator by means of a remote control.
  • the drone 2 is an aircraft, which comprises in a manner known per se:
  • FIG. 1 shows the roll axis R, the pitch axis T and the yaw axis L of the drone 2.
  • the invention is not limited to this particular type of drone 2. Non-exhaustively, it could for example implement a helicopter type drone comprising a central rotor or a multi-rotor drone such as for example that described in French patent application FR 2 909 972. The drone could also be an airship type aircraft, remotely controllable.
  • the central cell 23 serves as housing including:
  • an electronic acquisition equipment for acquiring the measurement data acquired by means of the sensors of the probe 5, of which at least the measuring probe 6,
  • radio telecommunication means which make it possible in particular to communicate remotely with said electronic acquisition equipment and to transmit to a remote measurement station the measurement data acquired by the device
  • the pole 3 comprises a rectilinear tubular support 30, of longitudinal axis 30a ( Figure 2) substantially parallel to the roll axis R of the drone 2, and a pole head 31 ( Figures 1 and 2) which is mounted at one end of the tube 30, so as to be offset relative to the drone 2 and not to be positioned below the blades 22 of the drone 2.
  • the tube 30 may more generally be formed by any support allowing to deport the pole head 31, and thus the probe 5 integrating the measurement probe 6, outside the volume of space of the drone 2.
  • the tube 30 should have sufficient flexural strength to avoid deflection of the tube 30, and is preferably as light as possible. For a good compromise between these two constraints, one chooses for example a rigid tube 30 of pultruded carbon, of suitable diameter.
  • the feeler 5 is fixed on the pole head 31, and is in the form of a cylindrical block in which are integrated ( Figure 5) the aforementioned measuring probe 6, several magnets 51 and optionally a sensor additional 7, such as for example a temperature sensor.
  • This additional sensor 7 may be a sensor requiring, as for the measurement probe 6, a contact with a surface S of the structure to be controlled, or be a proximity sensor of the infrared sensor type.
  • the cylindrical block of the probe 5 comprises (FIGS. 2 and 5) a flat front face 5a, at which the measurement probe 6 is flush with the magnets 51 and, if appropriate, the sensor 7.
  • This front face 5a plane defines a plane P. contact of the probe 5 with a surface of a structure to be controlled.
  • the feeler 5 does not necessarily have a flat front face 5a, but may more generally comprise on the front face at least three contact points defining a contact plane P of the feeler 5, at which the measurement probe 6 is flush with the magnets 51 and if necessary the sensor 7.
  • the measurement probe 6 must, for a measurement, be applied against a surface S, while being held stationary, for a minimum period necessary for the measurement.
  • the measurement probe 6 is an ultrasonic probe that allows the local thickness measurement of the structure to be controlled or that allows the detection of cracks in the structure.
  • the measurement probe 6 may be any probe comprising at least one contact sensor, that is to say any measurement probe before its operation to be brought into contact with the structure to be controlled.
  • the contact sensor of the measuring probe 6 is not necessarily a sensor ultrasound, but can for example be a contact temperature sensor, an electromagnetic contact sensor, etc.
  • FIG. 2 diagrammatically shows the drone 2 in the approach phase (arrow D) of a wall P1 of a structure to be controlled.
  • the feeler 5 is not in contact with the surface S of the wall P1.
  • FIG. 3 diagrammatically shows the drone 2 in the hovering position with respect to a wall P1 of a structure to be inspected.
  • the axis 30a of the tube 30 of the pole 3 is substantially perpendicular to the surface S of the wall, and the pole head 31 is abutted against the surface S of the wall P1, so that the front face 5a of the probe 5 is in plane support on its entire surface with the surface S of the wall P1.
  • the measuring probe 6 is positioned in contact with the surface S of the wall P being correctly oriented with respect to the surface S and can be used to make a measurement.
  • the wall P1 is vertical and the X, Y, Z axes are substantially parallel respectively to the roll axis R, the pitch axis T and the yaw axis L of the drone 2.
  • the front face 5a of the probe 5, which defines the contact plane P of the measuring probe 6, is substantially perpendicular to the roll axis R.
  • the support 30 of the head of Boom 31 could be designed such that the contact plane P of the measuring probe 6 is substantially perpendicular to the yaw axis L of the drone 2, as in the example illustrated in FIG. 7.
  • the support 30 of the pole 3 is a tube bent upwards at an angle A of 90 °. This variant allows for example to easily perform a measurement by means of the probe 6 on a substantially horizontal wall surface S.
  • the pole 3 is designed so that the angle A is adjustable, so as to adjust the orientation of the contact plane P of the measuring probe 6 relative to the drone 2. This is obtained by implementing for example a bend 30b forming an adjustable joint.
  • the orientation of the contact plane P of the measurement probe 6 (front face 5a of the probe 5) with respect to the roll axes R, pitch T and yaw L of the drone 2 may be different from the two particular examples of orientation illustrated respectively in Figures 1 and 7.
  • the support 30 and the pole head 31 may also be designed so as to allow manual adjustment of the initial orientation of the contact plane P of the measurement probe 6 with respect to the roll axes R, pitching T and yaw L of the drone 2.
  • an operator controls the flight of the drone 2 by manually and remotely controlling the drone 2 by means of its remote control so as to position the probe 5 at contact of the area of the surface S of the structure to be checked.
  • This piloting can be totally manual or assisted.
  • the area to be controlled can advantageously be located at a point that is difficult to access or inaccessible for the operator, and in particular at height, and the measurement operations can advantageously be performed without any risk to the operator.
  • the operator pilots the drone hovering so as to constantly maintain the probe 5 in the contact position of Figure 3 for a minimum period necessary for the measurement.
  • the magnets 51 are useful when the surface S of the structure to be tested is metallic and for example made of steel. They are however inoperative when the surface S is not metallic. They make it possible to temporarily fix (for the time necessary for the measurement) the probe 5, and thereby the measurement probe 6, against a metal surface S.
  • the magnets 51 may be permanent magnets or electromagnets.
  • the magnets 51 of the pole head 31 draw the pole head 31 into contact with the surface S and make it possible to fix temporarily and reliably (for the time necessary for the measurement) the probe 5, and thus the measuring probe 6 , against the metal surface S.
  • This magnetization facilitates the piloting of the drone 2 to obtain the contacting and a contacting of the probe 5 with the surface S, and facilitates the hovering control of the drone 2 during the measurement phase of FIG. 3.
  • the magnets 51 could be replaced by other temporary fixing means fulfilling the same function, and for example by suction-type fixing means, which have the advantage over the magnets of allowing the temporary fixing of the measuring probe. 6 in contact with the surface S, whatever the material constituting this surface S.
  • the operator controls the drone 2 so as to move the pole head 31 away from the surface S.
  • each bearing edge 31 1 comprises at least one portion 31 1 a (FIG. 6) substantially rectilinear or with a large radius of curvature, which is positioned in the contact plane P of the feeler 5, and which is extended by at least one portion Curve 31 1b positioned outside the contact plane P of the probe 5.
  • each front support edge 31 1 has a central portion 31 1 extended on either side by curved portions 31 1 b.
  • the front edges 31 1 of the two lateral flanges 310 are in contact with the surface S, substantially at their central portion 31 1 a.
  • the operator controls the drone 2 so as to tilt slightly the contact plane P of the probe 5 with respect to the surface S. In the particular example of FIG. this is achieved by tilting the pole head 31 up or down in the vertical plane (X, Z). During this movement, the pole head 31 bears on the surface S via the curved portions 31 1b of the front bearing edges 31 1, which allows to exert on the probe 5, a force contributing advantageously at the detachment of the magnets 51 of the surface S.
  • the implementation of the flanges 310 with front support edge 31 1 for detachment of the probe 5 is mainly useful when the fastening means 51 have a permanent effect, such as for example permanent magnets or suction cups.
  • the fastening means 51 with a non-permanent effect such as by As an example of the electromagnets, it is advantageously possible to assist the detachment of the probe 5 by remotely controlling the electromagnets or the like so as to stop the magnetization effect once the measurement has been made by means of the probe 6.
  • the drone 2 may, depending for example on the accuracy of the steering of the hover by the operator and / or under the effect of a side wind or a flow of ascending or descending air, moving vertically (upwards or downwards) and / or laterally (to the right or to the left).
  • the pole head 31 is articulated with respect to the tube 30 so as to have at least two degrees of freedom in rotation relative to the tube 30 along two axes of rotation ( R1, R2) which are perpendicular to each other and define a plane substantially parallel to the plane defined by the two axes pitch T and yaw L (Figure 5).
  • the pole head 31 comprises a plate 312 on which the two lateral flanges 310 are rotatably mounted by means of a first axis 313 defining a first axis of rotation. R1.
  • the probe 5 is fixed rigidly to the two flanges 310.
  • the plate 312 is mounted free to rotate relative to the tube 30 by means of a second axis 314 defining a second axis of rotation R2 perpendicular to the first axis
  • the rotational movement of the pole head 31 around the axis of rotation R1 is limited by high stops 315 and low 316.
  • the rotational movement of the pole head 31 around the axis of rotation R2 is limited by right and left lateral stops (not visible in the accompanying figures).
  • the maximum amplitude of the horizontal displacements (to the right or to the left) that can undergo the drone 2, without modifying the orientation of the contact plane P of the probe 5 bearing against a surface S depends respectively on the total angle of displacement in rotation of the pole head 31 around the axis of rotation R2.
  • the angle of total rotational movement of the pole head 31 about the axis of rotation R1 and the total angle of rotation displacement of the pole head 31 about the axis of rotation R2 are for example less than or equal to 30 °.
  • the articulation in rotation of the pole head 31 relative to the tube 30 could be achieved by means of a pivot type connection.
  • the drone 2 when the drone 2 is hovering, it can undergo rotational movements around its pitch axis T, and / or its roll axis R and / or its yaw axis L ( pitching and / or rolling movements, and / or yawing). These movements can prejudicially result in oscillations of the drone 2 around one or other of these axes, and cause a premature tilting or detachment of the measurement probe 6 with respect to the surface S, and preventing or to falsify the measurement by means of the probe 6.
  • the frame 4 of the device 1 comprises two rigid parts 41 and 42 mechanically connected to each other by viscoelastic connection means 43.
  • the first portion 41 comprises an upper plate 410, which is fixed rigidly on its periphery to four vertical feet 41 1.
  • This upper plate 410 serves as support for the drone 2, the central cell 23 of the drone 2 being rigidly fixed to the upper plate 410.
  • the second portion 42 of the frame 4 comprises a lower plate 421 which is fixed rigidly on its periphery to a median plate 422 by means of four vertical legs 423.
  • the viscoelastic connection means 43 are mounted between each leg 41 1 of the first portion 41 and each foot vis-à-vis 423 of the second portion 42. More particularly, between each foot 41 1 of the first part 41 and each foot vis-à-vis 423 of the second part 42 are mounted two fasteners 430 of viscoelastic material.
  • These viscoelastic connection means 43 make it possible to decouple the second part 42 of the first part 41 and to dampen the pitch, roll and the yaw of the drone 2 with respect to the pole 3, when the pole head 31 is applied in contact with a surface S (position of FIG. 3).
  • These dampings are made by shearing and compression / elongation of the viscoelastic fasteners 430.
  • the choice of the viscoelastic material of the fasteners 430 will be carried out, in a manner known per se by those skilled in the art, in particular as a function of the loads loaded on the two parts 41 and 42 of the frame 4, and the desired damping.
  • the viscoelastic connection means 43 could be replaced by any other connecting means making it possible to decouple the measurement probe 6 from the drone 2 by damping the pitching movement and / or the rolling movement and / or the yawing movement of the drone 2 by relative to the probe 6. Absorption of the reaction force of the wall
  • the pole head 31 undergoes a reaction force more or less important in contact with the surface S. If the mechanical connection between the pole 3 and the drone 2 is too rigid, this reaction force can cause detrimentally a phenomenon of rebound of the device relative to the surface S, and / or damage the device, despite the bonding forces of the magnets 51 in the case of a metal surface S. This rebound phenomenon makes it more difficult to apply and hold the measuring probe 6 for a sufficient length of time in contact with the surface S, which complicates and slows down the measurements.
  • the drone 2 can be displaced in translation towards the probe 6 so as to absorb the reaction force experienced by the measurement probe 6 in contact with the Once the measurement is made, when the measurement probe 6 is detached from the surface S, it automatically resumes its deployed position automatically being separated from the drone 2 by the elastic return means.
  • the deployed position of the measuring probe 6 is preferably defined so as to optimize the position of the center of gravity of the device 1 to obtain a very good stability in flight of the control device 1.
  • the middle plate 422 and the lower plate 421 are connected by front 424 and rear spacers 425 having a through hole.
  • the tube 30 of the pole 3 is integral with the middle plates 422 and lower 421 being threaded into the through holes of the spacers 424, 425 and can slide relative to the median plates 422 and lower 421 being guided in translation along a axis parallel to its longitudinal axis 30a and in the two opposite directions.
  • the boom 3 is thus retractable relative to the drone 2.
  • the elastic return means of the boom 3 in the deployed position are constituted by four elastics 428 (FIG. 4) which are fixed between the front spacer 424 and a rear piece 427 fixed on the tube 30 of the boom 3.
  • a movable stop 426 is fixed on the tube 30.
  • This movable stop 426 cooperates with the front spacer 424 with fixed stop function, so as to limit the stroke in translation of the drone 2 relative to the pole 3, when the drone 2 is moved in translation towards the probe 6 which bears against a surface S.
  • This movable stop 426 cooperates with the rear spacer 425 with stop function fixed, so as to limit the travel in translation of the pole 3 relative to the drone 2, when the probe 6 is not resting against a surface and that the pole 3 is elastically biased in the extended position of FIG. positions of the two stops 426 and 424 make it possible to define the maximum retracted position (FIG. 3) of the measurement probe with respect to the drone 2, and the position of the two stops 426 and 425 make it possible to define the maximum deployed position e (FIG. 2) of the measurement probe with respect to the drone 2.
  • the injection system 8 comprises: - a removable cartridge 80 comprising a reservoir 800, which contains a coupling agent under pressure, and which is equipped in the rear part of a valve 801 pressurizing; the pressurizing valve 801 is used to initially set the pressure in the tank 800, - a distribution block 81 positioned at the front of the tank 800 and coupled to the tank 800 for its supply of coupling agent; preferably the coupling between the tank 800 and the distribution block 81 is made by means of a quick coupling 82 making it possible to easily adapt the cartridge 80 to the distribution block 81 or to easily separate the cartridge 80 from the distribution block 81 .
  • the distribution block 81 is equipped with a solenoid valve 810 which makes it possible to feed the distribution block 81, at each measurement, with a predefined small amount of coupling agent from the tank 800.
  • the device may comprise remote remote control means of the solenoid valve 810, so as to allow an operator to manually and remotely control the solenoid valve 810 at each measurement.
  • the device may comprise automatic control means of the solenoid valve 810 which are embedded on the drone 2 and which automatically control the solenoid valve 810, at each measurement.
  • these automatic control means may comprise one or more sensors 9 (FIG. 5), of all or nothing type, which are for example mounted on the pole head 31, and which make it possible to detect whether the pole head 31 is in contact or not with a surface S.
  • Each sensor 9 delivers a detection sign which is processed by electronic means which are embedded on the drone 2, and which automatically control the solenoid valve 810 depending on the state of each detection signal delivered by the sensor (s) 9.
  • the outlet of the distribution block 81 is connected to the end of a flexible tubing 83 (FIG. 6), which is housed in the tube 30.
  • This tubing 83 is connected at its other end to a coupling agent supply channel. , which passes through the pole head 31 and opens into the front face 5a of the probe 5, so as to allow the injection at each measurement of a small predetermined amount of coupling agent between the measurement probe 6 and the surface S of the wall P1 against which the measurement probe 6 is applied.
  • This injection of coupling agent makes it possible, during a measurement, to avoid the presence of air between the measurement probe 6 and the surface S, despite, for example, the presence of irregularities in the surface S of the wall P1 .
  • the coupling agent is chosen according to the type of signals to be transmitted between the measurement probe 6 and the wall P1.
  • the coupling agent is for example a liquid such as water or a suitable gel.
  • the injection system 8 is more particularly equipped with a pressure sensor 81 1 (FIG. 5) directly or indirectly measuring the pressure in the tank 800 during the process. 'injection.
  • this pressure sensor 81 1 directly measures the pressure at the outlet of the tank 800.
  • an alert signal (light and / or sound) is emitted for example automatically to inform the operator that the tank 800 does not contains more than enough coupling agent and needs to be changed.
  • an alert signal (light and / or sound) is emitted for example automatically to inform the operator that the tank 800 does not contains more than enough coupling agent and needs to be changed.
  • the operator removes the used cartridge 80 and replaces it with a new cartridge 80 comprising a reservoir 800 filled with coupling agent.
  • the used cartridge is either discarded or refilled by filling its reservoir 800 with coupling agent.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

Le dispositif (1) permet le contrôle non destructif de structures, et par exemple la mesure d'épaisseurs de structures au moyen d'une sonde ultrasonore. Il comporte un drone (2) qui a une capacité de vol stationnaire,et qui est de préférence pilotable à distance de manière manuelle par un opérateur au moyen d'une télécommande, et une sonde de mesure (6) embarquée et reliée au drone (2) par des moyens de liaison (3; 4). Les moyens de liaison (3; 4) permettent, en pilotant le drone, de positionner et immobiliser temporairement la sonde de mesure (6) au contact d'une surface d'une structure à contrôler.

Description

DISPOSITIF PERMETTANT LE CONTRÔLE NON DESTRUCTIF DE STRUCTURES ET COMPORTANT UN DRONE ET UNE SONDE DE
MESURE EMBARQUEE Domaine technique
La présente invention concerne le domaine du contrôle non destructif et à distance de structures, et en particulier de grandes structures métalliques ou en matériau composite. Elle concerne plus particulièrement, mais non exclusivement, la mesure à distance de l'épaisseur d'une structure en différents points au moyen d'un drone et d'une sonde de mesure embarquée.
Art antérieur
Pour réaliser le contrôle non destructif de structures, il est usuel d'utiliser une sonde de mesure qui est appliquée sur la structure à contrôler, ou qui est positionnée à proximité de la structure à contrôler. Par exemple, la sonde de mesure émet un signal, qui peut notamment être de type ultrasonore ou électromagnétique, lequel signal se propage dans la matière de la structure, et est au moins en partie réfléchi par la structure. La sonde capte ce signal réfléchi par la matière de la structure. Ce signal réfléchi et capté par la sonde est converti en un signal de mesure permettant de caractériser la structure, et par exemple de mesurer l'épaisseur locale de la structure. En procédant à plusieurs mesures en différents points de la structure, il est possible de cartographier la structure en ces différents points de mesure avec cette caractéristique contrôlée (par exemple l'épaisseur) et/ou de détecter par exemple des faiblesses ou anomalies dans la structure.
Plus particulièrement, lorsque le contrôle non destructif est réalisé avec une sonde de type palpeur, c'est-à-dire une sonde devant être appliquée au contact de la structure, tel que par exemple une sonde de mesure ultrasonore, il est indispensable de s'assurer du bon positionnement de la sonde au contact de la structure pendant une durée suffisamment longue pour pouvoir effectuer une mesure correcte. Pendant cette mesure, la sonde doit être immobile et en contact avec la structure. A titre purement indicatif, dans le cas d'une sonde de mesure ultrasonore permettant une mesure d'épaisseur, la durée de mise en contact de la sonde avec la structure est typiquement au moins de l'ordre de 2 secondes.
La manière la plus simple de procéder à ce contrôle non destructif de structures est de faire positionner manuellement par un operateur la sonde de mesure par rapport à la structure. Cette méthode manuelle pose des problèmes lorsque les parties de la structure à contrôler sont difficiles d'accès pour l'opérateur, et notamment lorsque les parties de la structure à contrôler sont situées en hauteur, comme par exemple des parties en hauteur de grands ouvrages (ponts, tours, bâtiments, ...). En outre, cette méthode manuelle occasionne des risques de chute pour l'opérateur lorsque les parties de la structure à contrôler sont situées en hauteur.
Pour pallier ce problème, on a déjà proposé dans la demande de brevet français FR 2861457 d'utiliser un robot mobile téléguidé, embarquant une ou plusieurs sondes de mesure, et apte à rouler ou glisser sur une paroi de la structure. Le robot comporte des moyens lui permettant d'adhérer à la paroi de la structure. La sonde de mesure est appliquée sur la paroi de la structure à contrôler par exemple par aimantation.
Cette solution technique oblige à mettre en œuvre des moyens permettant de faire adhérer le robot à la paroi de la structure, tout en lui permettant de se déplacer en glissant ou en roulant au contact de la paroi de la structure. En pratique, cette solution peut être mise en œuvre uniquement pour contrôler des structures présentant une paroi continue à géométrie simple, telle que par exemple la coque d'un navire, qui permet de guider le robot lors de ses déplacements jusqu'au point de mesure. Cette solution n'est pas adaptée pour le contrôle non destructif de structures complexes (par exemple structures comportant un assemblage de poutres, structures présentant des surfaces accidentées ou fortement irrégulières).
On a également proposé dans la demande de brevet internationale WO2009/142933 un système d'inspection de structures comportant une pluralité de véhicules mobiles indépendants, tels que par exemple des drones, qui sont équipés par exemple de caméra(s) et de capteur(s) (notamment de capteurs ultrasonores) et qui sont conçus pour se déployer de manière autonome (sans pilotage manuel) et en même temps sur la structure.
Objectif de l'invention
La présente invention vise à proposer une nouvelle solution technique de contrôle non destructif d'une structure au moyen d'au moins une sonde de mesure devant être appliquée au contact d'une surface de la structure, laquelle solution technique présente au moins les avantages suivants :
- elle permet de réaliser des contrôles non destructifs d'une partie d'une structure qui peut être difficilement accessible, et qui est par exemple située en hauteur, et ce notamment sans risque d'accident pour un opérateur,
- elle permet de réaliser des contrôles non destructifs et à distance d'une structure, quelle que soit la complexité de la structure.
Résumé de l'invention
L'invention a ainsi pour objet un dispositif pour le contrôle non destructif de structures, lequel dispositif comporte un drone ayant une capacité de vol stationnaire, et une sonde de mesure embarquée et reliée au drone par des moyens de liaison qui permettent, en pilotant le drone, de positionner et immobiliser temporairement la sonde de mesure au contact d'une surface d'une structure à contrôler.
Dans le présent texte, on désigne par « drone » tout aéronef pouvant embarquer une charge et ne comportant pas de pilote humain embarqué. Dans le cadre de l'invention, le drone peut être piloté de manière automatique, soit par une unité électronique de commande embarquée et programmée de manière appropriée, soit à distance par une unité de commande déportée et programmée de manière appropriée, afin d'effectuer automatiquement, et sans intervention d'un opérateur, un plan de vol prédéfini permettant une prise de mesure automatique sur une structure. Néanmoins, le drone est de préférence un aéronef pilotable à distance de manière manuelle par un opérateur au moyen d'une télécommande.
Dans le dispositif de l'invention, le drone présente une capacité de vol stationnaire, c'est-à-dire peut être contrôlé de manière à sensiblement conserver une même position sensiblement stable dans l'air.
Dans le cadre de l'invention, la sonde de mesure peut être toute sonde comportant un capteur à contact, c'est-à-dire toute sonde de mesure devant pour son fonctionnement être mise en contact avec la structure à contrôler.
De manière optionnelle, le dispositif de l'invention peut comporter l'une et/ou l'autre des caractéristiques facultatives suivantes, prises isolément ou en combinaison l'une avec l'autre :
- le drone est pilotable à distance de manière manuelle par un opérateur au moyen d'une télécommande ;
- les moyens de liaison permettent de découpler la sonde de mesure et le drone de manière à permettre, une fois la sonde de mesure positionnée au contact d'une surface, des mouvements et/ou déplacements du drone sans modifier la position et l'orientation de la sonde de mesure par rapport à la surface ;
- les moyens de liaison sont conçus pour découpler la sonde de mesure et le drone, de manière à permettre, une fois la sonde de mesure positionnée au contact d'une surface, des mouvements de tangage du drone sans modifier la position et l'orientation de la sonde de mesure par rapport à la surface ;
- les moyens de liaison comportent des moyens d'amortissement des mouvements de tangage du drone ;
- les moyens de liaison sont conçus pour découpler la sonde de mesure et le drone, de manière à permettre, une fois la sonde de mesure positionnée au contact d'une surface, des mouvements de roulis du drone sans modifier la position et l'orientation de la sonde de mesure par rapport à la surface ;
- les moyens de liaison comportent des moyens d'amortissement des mouvements de roulis du drone ;
- les moyens de liaison sont conçus pour découpler la sonde de mesure et le drone, de manière à permettre, une fois la sonde de mesure positionnée au contact d'une surface, des mouvements de lacet du drone sans modifier la position et l'orientation de la sonde de mesure par rapport à la surface ;
- les moyens de liaison comportent des moyens d'amortissement des mouvements de lacet du drone ;
- les moyens d'amortissement comportent des attaches en matériau viscoélastique ;
- les moyens de liaison sont conçus pour découpler la sonde de mesure et le drone, de manière à permettre, une fois la sonde de mesure positionnée au contact d'une surface, des déplacements verticaux du drone sans modifier la position et l'orientation de la sonde de mesure par rapport à la surface ;
- les moyens de liaison sont conçus pour découpler la sonde de mesure et le drone, de manière à permettre, une fois la sonde de mesure positionnée au contact d'une surface, des déplacements latéraux du drone sans modifier la position et l'orientation de la sonde de mesure par rapport à la surface ;
- les moyens de liaison entre la sonde de mesure et le drone comportent un support de sonde sur lequel est fixée la sonde de mesure, un châssis en au moins deux parties, une première partie étant fixée au drone et une deuxième partie étant solidaire du support de sonde, et les deux parties du châssis étant reliées entre elles par des moyens de liaison permettant des mouvements de la première partie par rapport à la deuxième partie du châssis de manière à découpler la sonde de mesure du drone et permettre, une fois la sonde de mesure positionnée au contact d'une surface, des mouvements de tangage et/ou de roulis et/ou de lacet du drone sans modifier la position et l'orientation de la sonde de mesure par rapport à la surface ;
- les moyens de liaison entre les deux parties du châssis permettent d'amortir les mouvements de tangage et/ou de roulis et/ou de lacet du drone ;
- les moyens de liaison entre les deux parties du châssis comportent des attaches en matériau viscoélastique ;
- les moyens de liaison entre la sonde de mesure et le drone comportent une tête de perche sur laquelle est fixée la sonde de mesure, et qui est articulée de manière à posséder au moins deux degrés de liberté en rotation suivant deux axes de rotation qui sont perpendiculaires entre eux ;
- lesdits deux axes de rotation de la tête de perche définissent un plan sensiblement parallèle au plan défini par les deux axes de tangage et lacet du drone ;
- le débattement en rotation de la tête de perche autour desdits deux axes est limité par des butées ;
- le dispositif comporte un palpeur dans lequel est fixée au moins ladite sonde de mesure, ledit palpeur définissant un plan de contact et ladite sonde de mesure affleurant au niveau du plan de contact du palpeur ;
- le palpeur comporte une face avant, qui est plane et qui définit ledit plan de contact.
- l'orientation du plan de contact du palpeur par rapport au drone est réglable ;
- les moyens de liaison entre la sonde de mesure et le drone comportent une perche à l'extrémité de laquelle est fixée la sonde dé mesure ;
les moyens de liaison entre la sonde de mesure et le drone sont conçus de telle sorte que la sonde est mobile et guidée en translation sur une course limitée par rapport au drone entre une position rétractée dans laquelle la distance entre la sonde de mesure et le drone est minimale, et une position déployée dans laquelle la distance entre la sonde de mesure et le drone est maximale, et les moyens de liaison entre la sonde de mesure et le drone comportent des moyens de rappel élastique exerçant une force de rappel qui ramène la sonde de mesure en position déployée lorsque la sonde de mesure n'est pas en contact avec une surface ;
- Le dispositif comporte en outre des moyens de fixation qui permettent, lorsque la sonde de mesure est positionnée au contact d'une surface, de fixer temporairement ladite sonde de mesure au contact de cette surface ;
- lesdits moyens de fixation sont fixés au palpeur ;
- lesdits moyens de fixation comportent un ou plusieurs aimants ;
- la sonde de mesure est une sonde ultrasonore ;
- les moyens de liaison entre la sonde de mesure et le drone comportent des moyens d'appui qui permettent de décoller la sonde de mesure d'une surface en faisant basculer le drone en appui sur la surface par l'intermédiaire desdits moyens d'appui ;
- le dispositif comporte en outre des moyens d'injection qui sont embarqués sur le drone, et qui permettent, lorsque la sonde de mesure est appliquée contre une surface, d'injecter un agent couplant entre la sonde de mesure et ladite surface ;
- les moyens d'injection sont télécommandables ;
- le dispositif comporte en outre au moins un capteur de contact permettant de détecter si la sonde de mesure est en contact ou non avec une surface ;
- le dispositif comporte des moyens de commande embarqués sur le drone qui permettent de commander automatiquement les moyens d'injection à partir au moins du signal de détection délivré par ledit capteur de contact ;
- lesdits moyens d'injection comportent un réservoir, qui contient l'agent couplant, et qui est amovible de manière à pouvoir être remplacé.
L'invention a également pour objet l'utilisation du dispositif visé précédemment, pour réaliser un contrôle non destructif d'une structure.
Plus particulièrement, mais non exclusivement, le contrôle non destructif de la structure consiste par exemple à mesurer localement l'épaisseur de la structure
Brèves description des dessins
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description détaillée ci-après de plusieurs variantes de réalisation d'un dispositif de l'invention qui ne sont pas limitatives, ni exhaustives, de l'invention, laquelle description est faite en référence aux dessins annexés sur lesquels :
- La figure 1 est une représentation en perspective d'un dispositif de contrôle, conforme à une première variante de réalisation de l'invention, et comportant notamment un drone de type hélicoptère, et une perche rectiligne rétractable, qui est solidaire du drone, et à l'extrémité de laquelle est fixé un palpeur intégrant au moins une sonde de mesure,
- La figure 2 est une vue de côté du dispositif de contrôle de la figure 1 , en phase d'approche d'une surface d'une paroi de structure à contrôler, la sonde de mesure étant en position déployée et n'étant pas en contact avec ladite surface,
- La figure 3 est une vue de côté du dispositif de contrôle de la figure 1 , en phase de prise de mesure pour le contrôle d'une paroi de structure, la sonde de mesure étant appliquée au contact de la surface de la paroi et étant en position rétractée,
- la figure 4 est une vue partielle en perspective du dispositif de la figure 1 montrant en détail le châssis du dispositif et le montage de la perche sur ce châssis,
- la figure 5 est une représentation en perspective d'un exemple de réalisation d'une perche avec tête de perche articulée et système d'injection d'un agent couplant,
- la figure 6 est une vue de côté de la perche de la figure 5,
- la figure 7 est une vue de côté d'un dispositif de contrôle de l'invention, conforme à une deuxième variante de réalisation, et comportant notamment un drone de type hélicoptère, et une perche coudée à 90°, qui est solidaire du drone, et à l'extrémité de laquelle est fixé un palpeur intégrant au moins une sonde de mesure.
Description détaillée
En référence à la figure 1 , le dispositif 1 de contrôle non destructif de structures comporte :
- un drone 2,
- une perche 3 portant à une extrémité un élément palpeur 5 dans lequel est logée au moins une sonde de mesure 6,
- un système d'injection 8 d'agent couplant, fixé à l'autre extrémité de la perche 3,
- un châssis 4, sur lequel est fixé le drone 2 et sur lequel la perche 3 est montée en porte-à-faux.
Drone 2
Le drone 2 est un aéronef, qui a une capacité de vol stationnaire, et qui de manière usuelle est pilotable manuellement à distance par un opérateur au moyen d'une télécommande.
Dans l'exemple particulier illustré, le drone 2 est un aéronef, qui comporte de manière connue en soi :
- quatre rotors 21 d'axe vertical équipés chacun de deux pales 22, et
- une cellule centrale 23.
On a représenté sur la figure 1 , l'axe de roulis R, l'axe de tangage T et l'axe de lacet L du drone 2. L'invention n'est pas limitée à ce type particulier de drone 2. De manière non exhaustive, on pourrait par exemple mettre en œuvre un drone de type hélicoptère comportant un rotor central ou un drone à plusieurs rotors tel que par exemple celui décrit dans la demande de brevet français FR 2 909 972. Le drone pourrait également être un aéronef de type dirigeable, pilotable à distance.
La cellule centrale 23 sert de logement notamment :
- au moteur et au mécanisme d'entraînement du rotor 21 ,
- à une carte électronique permettant la télécommande du drone 2, pour le contrôle manuel à distance du vol du drone 2 par un opérateur,
à un équipement électronique d'acquisition permettant d'acquérir les données de mesure acquises au moyen des capteurs du palpeur 5, dont au moins la sonde de mesure 6,
- à des moyens de télécommunication radio, qui permettent notamment de dialoguer à distance avec ledit équipement électronique d'acquisition et de transmettre vers un poste de mesure distant les données de mesures acquises par le dispositif,
- à un équipement électronique de contrôle et commande du système d'injection 8, lequel équipement est de préférence télécommandable à distance par un opérateur au moyen d'une télécommande adaptée. Perche 3 - élément palpeur 5
Dans la variante particulière de réalisation des figures 1 à 6, la perche 3 comporte un support tubulaire rectiligne 30, d'axe longitudinal 30a (figure 2) sensiblement parallèle à l'axe de roulis R du drone 2, et une tête de perche 31 (figures 1 et 2) qui est montée à une extrémité du tube 30, de manière à être déportée par rapport au drone 2 et à ne pas être positionnée au dessous des pales 22 du drone 2. Le tube 30 peut plus généralement être constitué par tout support permettant de déporter la tête de perche 31 , et de ce fait le palpeur 5 intégrant la sonde de mesure 6, en dehors du volume d'encombrement du drone 2. Le tube 30 doit présenter une résistance à la flexion suffisante pour éviter une flèche du tube 30, et est de préférence le plus léger possible. Pour un bon compromis entre ces deux contraintes, on choisit par exemple un tube 30 rigide en carbone pultrudé, de diamètre adapté.
Plus particulièrement, le palpeur 5 est fixé sur la tête de perche 31 , et se présente sous la forme d'un bloc cylindrique dans lequel sont intégrés (figure 5) la sonde de mesure précitée 6, plusieurs aimants 51 et de manière optionnelle un capteur supplémentaire 7, tel que par exemple un capteur de température. Ce capteur supplémentaire 7 peut être un capteur nécessitant, comme pour la sonde de mesure 6, une mise en contact avec une surface S de la structure à contrôler, ou être un capteur de proximité du type capteur infrarouge.
Le bloc cylindrique du palpeur 5 comporte (figures 2 et 5) une face avant 5a plane, au niveau de laquelle affleurent la sonde de mesure 6, les aimants 51 et le cas échéant le capteur 7. Cette face avant 5a plane définit un plan P de contact du palpeur 5 avec une surface d'une structure à contrôler.
Le palpeur 5 ne comporte pas nécessairement une face avant 5a plane, mais peut plus généralement comporter en face avant au moins trois points de contact définissant un plan de contact P du palpeur 5, au niveau duquel affleurent la sonde de mesure 6, les aimants 51 et le cas échéant le capteur 7.
La sonde de mesure 6 doit, pour effectuer une mesure, être appliquée contre une surface S, en étant maintenue immobile, pendant une durée minimale nécessaire à la mesure. Par exemple, la sonde de mesure 6 est une sonde ultrasonore qui permet la mesure d'épaisseur locale de la structure à contrôler ou qui permet la détection de fissures dans la structure.
La sonde de mesure 6 peut être toute sonde comportant au moins un capteur à contact, c'est-à-dire toute sonde de mesure devant pour son fonctionnement être mise en contact avec la structure à contrôler. Le capteur à contact de la sonde de mesure 6 n'est pas nécessairement un capteur ultrasonore, mais peut par exemple être capteur de température à contact, un capteur électromagnétique à contact,...
On a représenté de manière schématique sur la figure 2, le drone 2 en phase d'approche (flèche D) d'une paroi P1 d'une structure à contrôler. Sur cette figure 2, le palpeur 5 n'est pas en contact avec la surface S de la paroi P1 .
On a représenté de manière schématique sur la figure 3, le drone 2 en position de vol stationnaire par rapport à une paroi P1 d'une structure à contrôler. Sur cette figure 3, l'axe 30a du tube 30 de la perche 3 est sensiblement perpendiculaire à la surface S de la paroi, et la tête de perche 31 est appliquée en butée contre la surface S de la paroi P1 , de telle sorte que la face avant 5a du palpeur 5 est en appui plan sur toute sa surface avec la surface S de la paroi P1 . Il en résulte que la sonde de mesure 6 est positionnée au contact de la surface S de la paroi P en étant correctement, orientée par rapport à la surface S et peut être utilisée pour effectuer une mesure. Pour effectuer une prise de mesure correcte au moyen de la sonde de mesure 6, il est nécessaire d'immobilier le palpeur 5 dans cette position de contact de la figure 3 pendant une durée minimale, qui dépend de la technologie de la sonde de mesure 6 et qui est par exemple typiquement d'au moins 2 secondes pour une sonde ultrasonore. Si pendant la phase de prise de mesure, la face avant 5a du palpeur 5 n'est pas maintenue en permanence en contact sur toute sa surface avec la surface S, la position et/ou l'orientation de la sonde de mesure 6 par rapport à la surface S sont modifiées et la mesure est faussée ou impossible.
Dans la variante particulière de mise en œuvre des figures 2 et 3, la paroi P1 est verticale et les axes X, Y, Z sont sensiblement parallèles respectivement aux axes de roulis R, de tangage T et de lacet L du drone 2. Dans cette variante particulière de réalisation, la face avant 5a du palpeur 5, qui définit le plan de contact P de la sonde de mesure 6, est sensiblement perpendiculaire à l'axe R de roulis. Ceci n'est toutefois pas limitatif de l'invention. Dans une autre variante, le support 30 de la tête de perche 31 pourrait être conçu de telle sorte que le plan de contact P de la sonde de mesure 6 est sensiblement perpendiculaire à l'axe L de lacet du drone 2, tel que dans l'exemple illustré sur la figure 7. A cet effet, sur cette figure 7, le support 30 de la perche 3 est un tube coudé vers le haut suivant un angle A de 90°. Cette variante permet par exemple d'effectuer facilement une mesure au moyen de la sonde 6 sur une surface S de paroi sensiblement horizontale.
De préférence dans la variante de la figure 7, la perche 3 est conçue de sorte que l'angle A est réglable, de manière à régler l'orientation du plan de contact P de la sonde de mesure 6 par rapport au drone 2. Ceci est obtenu en mettant en œuvre par exemple un coude 30b formant une articulation réglable.
Dans une autre variante de réalisation, l'orientation du plan P de contact de la sonde de mesure 6 (face avant 5a du palpeur 5) par rapport aux axes de roulis R, tangage T et lacet L du drone 2 peut être différente des deux exemples particuliers d'orientation illustrés respectivement sur les figures 1 et 7.
Dans une variante perfectionnée, le support 30 et la tête de perche 31 peuvent également être conçus de manière à permettre un réglage manuel de l'orientation initiale du plan P de contact de la sonde de mesure 6 par rapport aux axes de roulis R, tangage T et lacet L du drone 2.
Pour positionner la sonde de mesure 6 contre la surface S (position de la figure 3), un opérateur commande le vol du drone 2 en pilotant manuellement et à distance le drone 2 au moyen de sa télécommande, de manière à positionner le palpeur 5 au contact de la zone de la surface S de la structure à contrôler. Ce pilotage peut être totalement manuel ou être assisté. La zone à contrôler peut avantageusement être située en un point difficilement accessible ou inaccessible pour l'opérateur, et notamment en hauteur, et les opérations de mesure peuvent avantageusement être réalisées sans aucun risque corporel pour l'opérateur. Pendant la mesure, l'opérateur pilote le drone en vol stationnaire de manière à constamment maintenir le palpeur 5 dans la position de contact de la figure 3 pendant une durée minimale nécessaire à la prise de mesure.
Tête de perche 31 - aimants 51
Dans la variante particulière de réalisation des figures annexées, les aimants 51 sont utiles lorsque la surface S de la structure à contrôler est métallique et par exemple en acier. Ils sont en revanche inopérants lorsque la surface S n'est pas métallique. Ils permettent de fixer temporairement (pendant la durée nécessaire à la mesure) le palpeur 5, et par là-même la sonde de mesure 6, contre une surface S métallique.
Les aimants 51 peuvent être des aimants permanents ou des électroaimants.
Lorsque la surface S est métallique, il suffit à l'opérateur de piloter le drone 2 de manière à positionner, en vol stationnaire, la tête de perche 31 à proximité de la paroi S. Une fois ce vol d'approche réalisé, les aimants 51 de la tête de perche 31 attirent la tête de perche 31 au contact de la surface S et permettent de fixer temporairement et de manière fiable (pendant la durée nécessaire à la mesure) le palpeur 5, et de ce fait la sonde de mesure 6, contre la surface S métallique. Cette aimantation facilite le pilotage du drone 2 pour obtenir la mise en contact et un maintien en contact du palpeur 5 avec la surface S, et facilite le pilotage en vol stationnaire du drone 2 pendant la phase de mesure de la figure 3.
Les aimants 51 pourraient être remplacés par d'autres moyens de fixation temporaire remplissant la même fonction, et par exemple par des moyens de fixation de type ventouses, qui présentent l'avantage par rapport aux aimants de permettre la fixation temporaire de la sonde de mesure 6 au contact la surface S, quelle que soit le matériau constitutif de cette surface S.
Décollement du palpeur 5 par rapport à la surface S
Une fois la mesure effectuée, l'opérateur pilote le drone 2 de manière à écarter la tête de perche 31 de la surface S.
Lorsque le palpeur 5 porté par tête de perche 31 est fixé au contact de la surface S par des moyens de fixation temporaire, tels que les aimants 51 ou équivalents, le mouvement de retrait du drone 2 doit être suffisant pour décoller le palpeur 5 de la surface S, malgré la force d'attraction exercée par les aimants 51 .
Dans la variante particulière de réalisation des figures annexées, pour aider au décollement du palpeur 5 de la paroi P1 , la tête de perche 31 est équipée de deux flasques latéraux 310 (figure 5) présentant chacun un bord d'appui avant 31 1 . Chaque bord d'appui 31 1 comporte au moins une portion 31 1 a (figure 6) sensiblement rectiligne ou à grand rayon de courbure, qui est positionnée dans le plan de contact P du palpeur 5, et qui est prolongée par au moins une portion courbe 31 1 b positionnée en dehors du plan de contact P du palpeur 5. Dans la variante particulière illustrée (figure 6), chaque bord d'appui avant 31 1 comporte une portion centrale 31 1 a prolongée de part et d'autre par des portions courbes 31 1 b.
Lorsque le palpeur 5 est appliqué au contact d'une surface S, les bords avant 31 1 des deux flasques latéraux 310 sont au contact de la surface S, sensiblement au niveau de leur partie centrale 31 1 a. Pour décoller la tête de perche 31 de la surface S, l'opérateur pilote le drone 2 de manière à faire basculer légèrement le plan de contact P du palpeur 5 par rapport à la surface S. Dans l'exemple particulier de la figure 3, ceci est obtenu en faisant basculer la tête de perche 31 vers le haut ou vers le bas dans le plan vertical (X,Z). Lors de ce mouvement, la tête de perche 31 prend appui sur la surface S par l'intermédiaire des portions courbes 31 1 b des bords d'appui avant 31 1 , ce qui permet d'exercer sur le palpeur 5, une force contribuant avantageusement au décollement des aimants 51 de la surface S.
On notera que la mise en œuvre des flasques 310 avec bord d'appui avant 31 1 pour le décollement du palpeur 5 est utile principalement lorsque les moyens de fixation 51 ont un effet permanent, tel que par exemple des aimants permanent ou des ventouses. En revanche, lorsqu'on utilise des moyens de fixation 51 à effet non permanent, tels que par exemple des électroaimants, il est avantageusement possible d'aider au décollement du palpeur 5 en commandant à distance les électroaimants ou équivalent de manière à faire cesser l'effet d'aimantation une fois la mesure effectuée au moyen de la sonde 6.
Articulation de la tête de perche 31
Pendant une mesure au moyen de la sonde 6, le drone 2 peut, en fonction par exemple de la précision du pilotage du vol stationnaire par l'operateur et/ou sous l'effet d'un vent latéral ou d'un flux d'air ascendant ou descendant, subir des déplacements verticaux (vers le haut ou vers le bas) et/ou latéraux (vers la droite ou vers la gauche).
Lorsque la tête de perche 31 est fixée rigidement à l'extrémité du tube 30, sans aucun degré de liberté par rapport au tube 30, ces déplacements peuvent contribuer à décoller prématurément de la surface S la face avant 5a du palpeur 5 pendant une mesure, et de ce fait à modifier prématurément la position ou l'orientation de la sonde de mesure 6 par rapport à la surface S, ce qui peut empêcher ou fausser la mesure au moyen la sonde 6.
Pour pallier notamment ce problème, selon une caractéristique optionnelle de l'invention, la tête de perche 31 est articulée par rapport au tube 30 de manière à posséder au moins deux degrés de liberté en rotation par rapport au tube 30 suivant deux axes de rotation (R1 , R2) qui sont perpendiculaires entre eux et définissent un plan sensiblement parallèle au plan défini par les deux axes tangage T et lacet L (figure 5).
A cet effet, dans la variante particulière de réalisation de la figure 5, la tête de perche 31 comporte une platine 312 sur laquelle les deux flasques latéraux 310 sont montés libres en rotation au moyen d'un premier axe 313 définissant un premier axe de rotation R1 . Le palpeur 5 est fixé rigidement aux deux flasques 310. La platine 312 est montée libre en rotation par rapport au tube 30 au moyen d'un deuxième axe 314 définissant un deuxième axe de rotation R2 perpendiculaire au premier axe
R1 , les deux axes de rotation R1 , R2 étant sensiblement parallèles au plan de contact P de la sonde de mesure 6. La course en rotation de la tête de perche 31 autour de l'axe de rotation R1 est limitée par des butées haute 315 et basse 316. La course en rotation de la tête de perche 31 autour de l'axe de rotation R2 est limitée par des butées latérales droite et gauche (non visibles sur les figures annexées).
Ces débattements limités en rotation de la tête de perche 31 par rapport au tube 30 autour desdits deux axes de rotation R1 , R2, permettent de compenser dans une certaine mesure des déplacements verticaux (vers le haut ou vers le bas) et/ou latéraux (vers la droite ou vers la gauche) du drone 2 sans modifier l'orientation du plan de contact P du palpeur 5, la sonde de mesure 6 restant ainsi en permanence correctement positionnée et orientée par rapport à la surface S de la structure à contrôler. En outre, cette articulation de la tête de perche 31 permet également d'adapter l'orientation du plan de contact P de la sonde de mesure par rapport aux axes de roulis R, tangage T et lacet L et ainsi de contrôler plus facilement des parois P1 de structure ayant des orientations diverses par rapport au drone 2.
Dans une variante de réalisation, il est possible de prévoir un rappel élastique en rotation de la tête de perche 31 autour de l'axe R1 et/ou de l'axe R2.
L'amplitude maximale des déplacements verticaux (vers le haut ou vers le bas) que peut subir le drone 2, sans modifier l'orientation du plan de contact P du palpeur 5 en appui contre une surface S, dépend respectivement de l'angle total de débattement en rotation de la tête de perche 31 autour de l'axe de rotation R1 . L'amplitude maximale des déplacements horizontaux (vers la droite ou vers la gauche) que peut subir le drone 2, sans modifier l'orientation du plan de contact P du palpeur 5 en appui contre une surface S, dépend respectivement de l'angle total de débattement en rotation de la tête de perche 31 autour de l'axe de rotation R2. L'angle de total de débattement en rotation de la tête de perche 31 autour de l'axe de rotation R1 et l'angle de totale de débattement en rotation de la tête de perche 31 autour de l'axe de rotation R2 sont par exemple inférieurs ou égaux à 30°.
Dans une autre variante de réalisation, l'articulation en rotation de la tête de perche 31 par rapport au tube 30 pourrait être réalisée au moyen d'une liaison de type pivot.
Amortissement des mouvements de tangage, roulis et lacet
Au cours d'une mesure, lorsque le drone 2 est en vol stationnaire, il peut subir des mouvements de rotation autour de son axe de tangage T, et/ou de son axe de roulis R et/ou de son axe de lacet L (mouvements de tangage et/ou roulis, et/ou lacet). Ces mouvements peuvent de manière préjudiciable se traduire par des oscillations du drone 2 autour de l'un ou l'autre de ces axes, et occasionner un basculement ou décollement prématuré de la sonde de mesure 6 par rapport à la surface S, et empêcher ou fausser la prise de mesure au moyen de la sonde 6.
Pour pallier ce problème, et en référence à la figure 4, le châssis 4 du dispositif 1 comporte deux parties rigides 41 et 42 reliés mécaniquement entre elles par des moyens de liaison viscoélastiques 43.
Plus particulièrement, la première partie 41 comporte un plateau supérieur 410, qui est fixé rigidement sur sa périphérie à quatre pieds 41 1 verticaux. Ce plateau supérieur 410 sert de support au drone 2, la cellule centrale 23 du drone 2 étant fixée rigidement à ce plateau supérieur 410.
La deuxième partie 42 du châssis 4 comporte un plateau inférieur 421 qui est fixé rigidement sur sa périphérie à un plateau médian 422 au moyen de quatre pieds 423 verticaux. Dans cet exemple particulier de réalisation, les moyens de liaison viscoélastiques 43 sont montés entre chaque pied 41 1 de la première partie 41 et chaque pied en vis-à-vis 423 de la deuxième partie 42. Plus particulièrement, entre chaque pied 41 1 de la première partie 41 et chaque pied en vis-à-vis 423 de la deuxième partie 42 sont montées deux attaches 430 en matériau viscoélastique. Ces moyens de liaison viscoélastiques 43 permettent de découpler la deuxième partie 42 de la première partie 41 et d'amortir les mouvements de tangage, roulis et lacet du drone 2 par rapport à la perche 3, lorsque la tête de perche 31 est appliquée au contact d'une surface S (position de la figure 3). Ces amortissements sont réalisés par cisaillement et compression/ allongement des attaches viscoélastiques 430. Le choix du matériau viscoélastique des attaches 430 sera effectué, de manière connue en soi par l'homme du métier, en fonction notamment des charges embarquées sur les deux parties 41 et 42 du châssis 4, et de l'amortissement souhaité.
Les moyens de liaison viscoélastiques 43 pourraient être remplacés par tout autre moyen de liaison permettant de découpler la sonde de mesure 6 du drone 2 en amortissant le mouvement de tangage et/ou le mouvement de roulis et/ou le mouvement de lacet du drone 2 par rapport à la sonde 6. Absorption de la force de réaction de la paroi
En phase d'approche de la surface S, lorsque l'opérateur pilote le drone 2 de manière à amener le plan de contact P de la sonde de mesure 6 en appui contre la surface S, la tête de perche 31 subit une force de réaction plus ou moins importante au contact de la surface S. Si la liaison mécanique entre la perche 3 et le drone 2 est trop rigide, cette force de réaction peut occasionner de manière préjudiciable un phénomène de rebond du dispositif par rapport à la surface S, et/ou endommager le dispositif, et ce malgré les forces de collage des aimants 51 dans le cas d'une surface S métallique. Ce phénomène de rebond rend plus difficile l'application et le maintien prolongé pendant une durée suffisante de la sonde de mesure 6 au contact de la surface S, ce qui complique et ralentit les prises de mesure.
Afin d'éviter ce phénomène de rebond, les moyens de liaison mécanique entre la sonde de mesure 6 et le drone 2 sont conçus de telle sorte que la sonde 6 est mobile et guidée en translation sur une course limitée par rapport au drone 2 entre une position rétractée dans laquelle la distance d entre la sonde de mesure 6 et le drone 2 est minimale ( figure 3 / d=dmin), et une position déployée dans laquelle la distance d entre la sonde de mesure 6 et le drone 2 est maximale ( figure 2 / d= dmax ) ; les moyens de liaison mécanique entre la sonde de mesure 6 et le drone 2 comportent en outre des moyens de rappel élastique exerçant une force de rappel qui ramène la sonde de mesure 6 en position déployée lorsque la sonde de mesure 6 n'est pas en contact avec une surface S.
Ainsi, lorsque la sonde de mesure 6 est appliquée au contact d'une surface S, le drone 2 peut être déplacé en translation en direction de la sonde 6 de manière absorber la force de réaction subie par la sonde de mesure 6 au contact de la surface S. Une fois la mesure effectuée, lorsque la sonde de mesure 6 est décollée de la surface S, elle reprend automatiquement sa position déployée en étant automatiquement écartée du drone 2 par les moyens de rappel élastique. La position déployée de la sonde de mesure 6 est de préférence définie de manière à optimiser la position du centre de gravité du dispositif 1 pour obtenir une très bonne stabilité en vol du dispositif de contrôle 1 .
Plus particulièrement, dans la variante de réalisation de la figure 4, le plateau médian 422 et le plateau inférieur 421 sont reliés par des entretoises avant 424 et arrière 425 comportant un orifice traversant. Le tube 30 de la perche 3 est solidaire des plateaux médian 422 et inférieur 421 en étant enfilé dans les orifices traversants des entretoises 424, 425 et peut coulisser par rapport aux plateaux médian 422 et inférieur 421 en étant guidé en translation le long d'un axe parallèle à son axe longitudinal 30a et dans les deux directions opposées. La perche 3 est ainsi rétractable par rapport au drone 2. Les moyens de rappel élastique de la perche 3 en position déployée sont constitués par quatre élastiques 428 (figure 4) qui sont fixés entre l'entretoise avant 424 et une pièce arrière 427 fixée sur le tube 30 de la perche 3. Lorsque le palpeur 5 est décollé de la surface S et que le drone 2 est à distance suffisante de la paroi P1 , les moyens de rappel élastique 428 repoussent la perche 3 en position déployée tel qu'illustré sur la figure 2.
Une fois le palpeur 5 (incorporant la sonde de mesure 6) positionné en appui plan au contact de la surface S de la paroi P1 , il est possible de piloter le drone 2 de manière à le rapprocher en direction de la paroi P1 (figure 3 dans la direction X), grâce au mouvement de translation de la perche 3 vers l'arrière en direction du drone 2.
Afin de délimiter ce mouvement de translation de la perche par rapport au drone 2, une butée mobile 426 est fixée sur le tube 30. Cette butée mobile 426 coopère avec l'entretoise avant 424 à fonction de butée fixe, de manière à limiter la course en translation du drone 2 par rapport à la perche 3, lorsque le drone 2 est déplacé en translation en direction de la sonde 6 qui est en appui contre une surface S. Cette butée mobile 426 coopère avec l'entretoise arrière 425 à fonction de butée fixe, de manière à limiter la course en translation de la perche 3 par rapport au drone 2, lorsque la sonde 6 n'est pas en appui contre une surface et que la perche 3 est rappelée élastiquement en position déployée de la figure 2. Les positions de des deux butées 426 et 424 permettent de définir la position rétractée maximale (figure 3) de la sonde de mesure par rapport au drone 2, et la position des deux butées 426 et 425 permettent de définir la position déployée maximale (figure 2) de la sonde de mesure par rapport au drone 2. Système d'injection 8
En référence aux figures 5 et 6, le système d'injection 8 comporte : - une cartouche amovible 80 comprenant un réservoir 800, qui contient un agent couplant sous pression, et qui est équipé en partie arrière d'une valve 801 de pressurisation ; la valve de pressurisation 801 permet de régler initialement la pression dans le réservoir 800, - un bloc de distribution 81 positionné à l'avant du réservoir 800 et couplé au réservoir 800 pour son alimentation en agent couplant ; de préférence le couplage entre le réservoir 800 et le bloc de distribution 81 est réalisé au moyen d'un raccord rapide 82 permettant de facilement adapter la cartouche 80 sur le bloc de distribution 81 ou de facilement séparer la cartouche 80 du le bloc de distribution 81 .
Le bloc de distribution 81 est équipé d'une électrovanne 810 qui permet d'alimenter le bloc de distribution 81 , à chaque prise de mesure, avec une faible quantité prédéfinie d'agent couplant en provenance du réservoir 800.
Plus particulièrement, le dispositif peut comporter des moyens de télécommande à distance de l'électrovanne 810, de manière à permettre à un opérateur de commander manuellement et à distance l'électrovanne 810 à chaque prise de mesure.
Plus particulièrement, le dispositif peut comporter des moyens de commande automatique de l'électrovanne 810 qui sont embarqués sur le drone 2 et qui permettent de commander automatiquement l'électrovanne 810, à chaque prise de mesure. En particulier, ces moyens de commande automatique peuvent comporter un ou plusieurs capteurs 9 (figure 5), de type tout ou rien, qui sont par exemple montés sur la tête de perche 31 , et qui permettent de détecter si la tête de perche 31 est en contact ou non avec une surface S. Chaque capteur 9 délivre un signe de détection qui est traité par des moyens électroniques qui sont embarqués sur le drone 2, et qui permettent de commander automatiquement l'électrovanne 810 en fonction de l'état de chaque signal de détection délivré par le ou les capteurs 9.
La sortie du bloc de distribution 81 est raccordée à l'extrémité d'une tubulure souple 83 (figure 6), qui est logée dans le tube 30. Cette tubulure 83 est raccordée à son autre extrémité à un canal d'alimentation en agent couplant, qui traverse la tête de perche 31 et débouche dans la face avant 5a du palpeur 5, de manière à permettre l'injection à chaque prise de mesure d'une faible quantité prédéfinie d'agent couplant entre la sonde de mesure 6 et la surface S de la paroi P1 contre laquelle la sonde de mesure 6 est appliquée. Cette injection d'agent couplant permet d'éviter, au cours d'une mesure, la présence d'air entre la sonde de mesure 6 et la surface S, malgré par exemple la présence d'irrégularités dans la surface S de la paroi P1 . Une telle présence d'air peut en effet être préjudiciable à la transmission des signaux entre la sonde de mesure 6 et la paroi P1 et empêcher une mesure correcte. Grâce à l'injection d'agent couplant, et indépendamment de l'état de surface de la paroi P1 de la structure à contrôler, on assure une très bonne transmission, entre la sonde de mesure 6 et la paroi P1 , du signal émis par la sonde de mesure 6 dans la paroi P1 , et du signal de mesure qui est réfléchi par la paroi P1 et capté par la sonde 6.
L'agent couplant est choisi en fonction du type de signaux à transmettre entre la sonde de mesure 6 et la paroi P1 . Lorsqu'il s'agit d'ondes ultrasonores, l'agent couplant est par exemple un liquide tel que de l'eau ou un gel adapté.
Afin de contrôler le volume d'agent couplant contenu dans le réservoir 800, le système d'injection 8 est plus particulièrement équipé d'un capteur de pression 81 1 (figure 5) mesurant directement ou indirectement la pression dans le réservoir 800 en cours d'injection. Dans l'exemple illustré, ce capteur de pression 81 1 mesure directement la pression en sortie du réservoir 800.
Lorsque la pression mesurée par le capteur 81 1 est trop faible (pression inférieure à un seuil prédéfini), un signal d'alerte (lumineux et/ou sonore) est par exemple émis automatiquement afin d'informer l'opérateur que le réservoir 800 ne contient plus suffisamment d'agent couplant et doit être changé. Lorsque le réservoir 800 ne contient plus suffisamment d'agent couplant, l'operateur retire la cartouche 80 usagée et la remplace par une cartouche 80 neuve comportant un réservoir 800 rempli d'agent couplant. La cartouche usagée est soit jetée, soit rechargée en remplissant son réservoir 800 avec de l'agent couplant.

Claims

REVENDICATIONS
1 . Dispositif (1 ) pour le contrôle non destructif de structures, caractérisé en ce qu'il comporte un drone (2) ayant une capacité de vol stationnaire, et une sonde de mesure (6) embarquée et reliée au drone (2) par des moyens de liaison (3 ; 4 ; 5) qui permettent, en pilotant le drone, de positionner et immobiliser temporairement la sonde de mesure (6) au contact d'une surface (S) d'une structure à contrôler.
2. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de liaison (3 ; 4 ; 5) permettent de découpler la sonde de mesure (6) et le drone (2) de manière à permettre, une fois la sonde de mesure (6) positionnée au contact d'une surface (S), des mouvements et/ou déplacements du drone sans modifier la position et l'orientation de la sonde de mesure (6) par rapport à la surface (S).
3. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de liaison (3 ; 4 ; 5) sont conçus pour découpler la sonde de mesure (6) et le drone (2), de manière à permettre, une fois la sonde de mesure (6) positionnée au contact d'une surface (S), des mouvements de tangage du drone (2) sans modifier la position et l'orientation de la sonde de mesure (6) par rapport à la surface (S).
4. Dispositif selon la revendication 3, dans lequel les moyens de liaison comportent des moyens (43) d'amortissement des mouvements de tangage du drone (2).
5. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de liaison (3 ; 4 ; 5) sont conçus pour découpler la sonde de mesure (6) et le drone (2), de manière à permettre, une fois la sonde de mesure (6) positionnée au contact d'une surface (S), des mouvements de roulis du drone (2) sans modifier la position et l'orientation de la sonde de mesure (6) par rapport à la surface (S).
6. Dispositif selon la revendication 5, dans lequel les moyens de liaison comportent des moyens (43) d'amortissement des mouvements de roulis du drone (2).
7. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de liaison (3 ; 4 ; 5) sont conçus pour découpler la sonde de mesure (6) et le drone (2), de manière à permettre, une fois la sonde de mesure (6) positionnée au contact d'une surface (S), des mouvements de lacet du drone (2) sans modifier la position et l'orientation de la sonde de mesure (6) par rapport à la surface (S).
8. Dispositif selon la revendication 7, dans lequel les moyens de liaison comportent des moyens (43) d'amortissement des mouvements de lacet du drone (2).
9. Dispositif selon l'une quelconque des revendications 4, 6 ou 8 dans lesquels les moyens d'amortissement (43) comportent des attaches (430) en matériau viscoélastique.
10. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de liaison (3 ; 4 ; 5) sont conçus pour découpler la sonde de mesure (6) et le drone (2), de manière à permettre, une fois la sonde de mesure (6) positionnée au contact d'une surface (S), des déplacements verticaux du drone (2) sans modifier la position et l'orientation de la sonde de mesure (6) par rapport à la surface (S).
1 1 . Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de liaison (3 ; 4 ; 5) sont conçus pour découpler la sonde de mesure (6) et le drone (2), de manière à permettre, une fois la sonde de mesure (6) positionnée au contact d'une surface (S), des déplacements latéraux du drone (2) sans modifier la position et l'orientation de la sonde de mesure (6) par rapport à la surface (S).
12. Dispositif selon la revendication 2, dans lequel les moyens de liaison (3 ; 4 ; 5) entre la sonde de mesure (6) et le drone (2) comportent un support (3) de sonde sur lequel est fixée la sonde de mesure (6), un châssis (4) en au moins deux parties (41 ; 42), une première partie (41 ) étant fixée au drone (2) et une deuxième partie (42) étant solidaire du support (3) de sonde (6), et les deux parties (41 ; 42) du châssis étant reliées entre elles par des moyens de liaison (43) permettant des mouvements de la première partie (41 ) par rapport à la deuxième partie (42) du châssis de manière à découpler la sonde de mesure (6) du drone (2) et permettre, une fois la sonde de mesure (6) positionnée au contact d'une surface (S), des mouvements de tangage et/ou de roulis et/ou de lacet du drone (2) sans modifier la position et l'orientation de la sonde de mesure (6) par rapport à la surface (S).
13. Dispositif selon la revendication 12, dans lequel les moyens de liaison (43) entre les deux parties (41 ; 42) du châssis permettent d'amortir les mouvements de tangage et/ou de roulis et/ou de lacet du drone (2).
14. Dispositif selon la revendication 13, dans lequel les moyens de liaison (43) entre les deux parties (41 ; 42) du châssis comportent des attaches (430) en matériau viscoélastique.
15. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de liaison (3 ; 4 ; 5) entre la sonde de mesure (6) et le drone (2) comportent une tête de perche (31 ) sur laquelle est fixée la sonde de mesure (6), et qui est articulée de manière à posséder au moins deux degrés de liberté en rotation suivant deux axes de rotation (R1 , R2) qui sont perpendiculaires entre eux.
16. Dispositif selon la revendication 15, dans lequel les deux axes de rotation (R1 , R2) de la tête de perche (31 ) définissent un plan sensiblement parallèle au plan défini par les deux axes de tangage (T) et lacet (L) du drone (2).
17. Dispositif selon la revendication 15 ou la revendication 16, dans lequel le débattement en rotation de la tête de perche (31 ) autour des deux axes (R1 , R2) est limité par des butées.
18. Dispositif selon l'une quelconque des revendications précédentes, comportant un palpeur (5) dans lequel est fixée au moins ladite sonde de mesure (6), ledit palpeur (5) définissant un plan de contact (P) et ladite sonde de mesure (6) affleurant au niveau du plan de contact (P) du palpeur (5).
19. Dispositif selon la revendication 18, dans lequel le palpeur (5) comporte une face avant (3a), qui est plane et qui définit ledit plan de contact (P).
20. Dispositif selon l'une quelconque des revendications 18 ou 19, dans lequel l'orientation du plan de contact (P) du palpeur (5) par rapport au drone (2) est réglable.
21 . Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de liaison (3 ; 4 ; 5) entre la sonde de mesure (6) et le drone (2) comportent une perche (3) à l'extrémité de laquelle est fixée la sonde de mesure (6).
22. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de liaison (3 ; 4 ; 5) entre la sonde de mesure (6) et le drone (2) sont conçus de telle sorte que la sonde (6) est mobile et guidée en translation sur une course limitée par rapport au drone (2) entre une position rétractée dans laquelle la distance entre la sonde de mesure (6) et le drone (2) est minimale, et une position déployée dans laquelle la distance entre la sonde de mesure (6) et le drone (2) est maximale, et les moyens de liaison (3 ; 4) entre la sonde de mesure (6) et le drone
(2) comportent des moyens de rappel élastique (428) exerçant une force de rappel qui ramène la sonde de mesure (6) en position déployée lorsque la sonde de mesure (6) n'est pas en contact avec une surface (S).
23. Dispositif selon l'une quelconque des revendications précédentes, comportant en outre des moyens de fixation (51 ) qui permettent, lorsque la sonde de mesure (6) est positionnée au contact d'une surface (S), de fixer temporairement ladite sonde de mesure au contact de cette surface (S).
24. Dispositif selon les revendications 18 et 23, dans lequel les moyens de fixation (51 ) sont fixés au palpeur (5).
25. Dispositif selon la revendication 19 ou la revendication 20, dans lequel les moyens de fixation comportent un ou plusieurs aimants (51 ).
26. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la sonde de mesure (6) est une sonde ultrasonore.
27. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de liaison (3 ; 4 ; 5) entre la sonde de mesure (6) et le drone (2) comportent des moyens d'appui (31 1 ) qui permettent de décoller la sonde de mesure (6) d'une surface (S) en faisant basculer le drone (2) en appui sur la surface (S) par l'intermédiaire desdits moyens d'appui (31 1 ).
28. Dispositif selon l'une quelconque des revendications précédentes, comportant en outre des moyens d'injection (8) qui sont embarqués sur le drone (2), et qui permettent, lorsque la sonde de mesure (40) est appliquée contre une surface (S), d'injecter un agent couplant entre la sonde de mesure (6) et ladite surface (S).
29. Dispositif selon la revendication 28, dans lequel les moyens d'injection (8) sont télécommandables.
30. Dispositif selon l'une quelconque des revendications précédentes, comportant en outre au moins un capteur de contact (9) permettant de détecter si la sonde de mesure (6) est en contact ou non avec une surface.
31 . Dispositif selon les revendications 28 et 30, comportant des moyens de commande embarqués sur le drone (2) qui permettent de commander automatiquement les moyens d'injection (8) à partir au moins du signal de détection délivré par ledit capteur de contact (9).
32. Dispositif selon l'une quelconque des revendications 28, 29, ou 31 , dans lequel lesdits moyens d'injection (8) comportent un réservoir (18), qui contient l'agent couplant, et qui est amovible de manière à pouvoir être remplacé.
33. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le drone (2) est pilotable à distance de manière manuelle par un opérateur au moyen d'une télécommande.
34. Utilisation du dispositif visé à l'une quelconque des revendications précédentes pour réaliser un contrôle non destructif d'une structure.
35. Utilisation selon la revendication 34, dans laquelle le contrôle non destructif de la structure consiste à mesurer localement l'épaisseur de la structure.
PCT/FR2011/051444 2010-07-27 2011-06-23 Dispositif permettant le contrôle non destructif de structures et comportant un drone et une sonde de mesure embarquee WO2012013878A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1056167 2010-07-27
FR1056167A FR2963431B1 (fr) 2010-07-27 2010-07-27 Dispositif permettant le controle non destructif de structures et comportant un drone et une sonde de mesure embarquee

Publications (1)

Publication Number Publication Date
WO2012013878A1 true WO2012013878A1 (fr) 2012-02-02

Family

ID=43623354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051444 WO2012013878A1 (fr) 2010-07-27 2011-06-23 Dispositif permettant le contrôle non destructif de structures et comportant un drone et une sonde de mesure embarquee

Country Status (2)

Country Link
FR (1) FR2963431B1 (fr)
WO (1) WO2012013878A1 (fr)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103984339A (zh) * 2014-05-20 2014-08-13 西南交通大学 用于旋翼飞行器的机械故障调试装置
EP2826711A1 (fr) * 2013-07-18 2015-01-21 OIC-GmbH Aéronef destiné au transport d'un ou plusieurs appareils d'enregistrement dans les airs
JP2015219028A (ja) * 2014-05-14 2015-12-07 日東建設株式会社 構造物の打音検査装置
US20160047850A1 (en) * 2014-08-14 2016-02-18 AVAILON GmbH Unmanned aerial device and method for performing a lightning protection measurement at a wind turbine
EP2879952A4 (fr) * 2012-08-02 2016-04-13 Neurosciences Res Found Véhicule pouvant stabiliser une charge utile lorsqu'il est en mouvement
ES2572181A1 (es) * 2014-11-28 2016-05-30 Univ Vigo Sistema de acoplamiento entre vehículos aéreos no tripulados y estructuras tipo viga para medición por contacto
FR3036381A1 (fr) * 2015-05-19 2016-11-25 Airbus Operations Sas Drone volant
KR20170021491A (ko) * 2015-08-18 2017-02-28 대우조선해양 주식회사 부력체와 프로펠러를 지닌 비행로봇
ES2614994A1 (es) * 2016-11-02 2017-06-02 Fundación Andaluza Para El Desarrollo Aeroespacial Aeronave con dispositivo de contacto
KR20170086029A (ko) * 2015-07-31 2017-07-25 광저우 엑스에어크래프트 테크놀로지 씨오 엘티디 무인기 및 무용기에 이용되는 기체
EP3211226A1 (fr) * 2016-02-26 2017-08-30 Mitsubishi Heavy Industries, Ltd. Procédé de test d'un récepteur d'éolienne
WO2017161326A1 (fr) * 2016-03-18 2017-09-21 Oceaneering International Inc Utilisation de véhicules aériens sans pilote pour inspections de cnd
CN107380420A (zh) * 2017-08-23 2017-11-24 南京市特种设备安全监督检验研究院 一种基于无人机机械臂的起重机金属结构检测装置及方法
EP3273266A1 (fr) 2016-07-21 2018-01-24 Grupo Empresarial Copisa, S.L. Système et procédé de contrôle aérien de surface
DE102016214655A1 (de) * 2016-08-08 2018-02-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zum zerstörungsfreien Untersuchen eines über wenigstens eine frei zugängliche Oberfläche verfügenden dreidimensionalen Objektes
WO2018069477A1 (fr) * 2016-10-12 2018-04-19 Tyco Fire & Security Gmbh Système de test robotique pour détecteur
CN107957545A (zh) * 2017-12-25 2018-04-24 苏州睿艾迪汽车科技有限公司 Fct探针测试仪器
EP3315406A1 (fr) * 2016-10-31 2018-05-02 The Boeing Company Procédé et système de test non destructif au moyen d'un véhicule aérien sans pilote
EP3267189A4 (fr) * 2015-03-04 2018-11-07 Nec Corporation Dispositif ainsi que procédé d'inspection de défauts, et programme
WO2018212891A1 (fr) * 2017-05-19 2018-11-22 Saudi Arabian Oil Company Méthodologie de détection de corrosion sous isolation en deux stades et véhicule modulaire à doubles systèmes de capteurs de locomotion
CN109313166A (zh) * 2016-06-16 2019-02-05 日本电气株式会社 检查系统、移动机器人设备和检查方法
WO2019050401A1 (fr) 2017-09-11 2019-03-14 Ronik Inspectioneering B.V. Véhicule aérien sans pilote destiné à être positionné contre une paroi
FR3077057A1 (fr) * 2018-01-19 2019-07-26 Aeromodel Acces Action Drone Inspection Drone dote d'une sonde a ultrasons mesurant l'epaisseur d'une paroi et d'un dispositif d'ejection d'un couplant, et procede de prise de mesure associe
KR102083132B1 (ko) * 2019-12-12 2020-02-28 우현선박기술 주식회사 초음파 두께 측정 기술과 영상 송출 기능을 탑재한 선박검사 및 측정용 드론 시스템
WO2020055930A1 (fr) * 2018-09-10 2020-03-19 Scantech Instruments, Inc. Scanner d'évaluation non destructive déployé par drone aérien
KR20200038126A (ko) * 2018-10-02 2020-04-10 주식회사 숨비 플랜트 검사용 드론봇 장치
US10620002B2 (en) 2017-11-14 2020-04-14 Saudi Arabian Oil Company Incorporate wall thickness measurement sensor technology into aerial visual inspection intrinsically safe drones
EP3677518A1 (fr) * 2019-01-02 2020-07-08 The Boeing Company Inspection non destructive à l'aide d'un véhicule aérien sans pilote
CN113252689A (zh) * 2021-05-14 2021-08-13 南京市特种设备安全监督检验研究院 一种大型钢结构无损检测装置
CN113291482A (zh) * 2021-05-24 2021-08-24 厦门市汉飞鹰航空科技有限公司 一种能够改善无人机气动特性的物探设备安装结构及方法
US20210356255A1 (en) * 2020-05-12 2021-11-18 The Boeing Company Measurement of Surface Profiles Using Unmanned Aerial Vehicles
US20220026397A1 (en) * 2020-07-21 2022-01-27 Voliro Ag Structural wall inspection system using drones to perform nondestructive testing (ndt)
KR20220014429A (ko) * 2020-07-27 2022-02-07 경운대학교 산학협력단 도장면 두께측정용 드론시스템
WO2022051261A1 (fr) * 2020-09-01 2022-03-10 Alarm.Com Incorporated Techniques de surveillance thermique assistée par drone
IT202100028253A1 (it) 2021-11-05 2023-05-05 Flyability Sa Aeromobile senza equipaggio (UAV)
DE102016124311B4 (de) 2016-04-07 2023-05-17 Google LLC (n.d.Ges.d. Staates Delaware) Autonomes Freileitungskabel-Inspektionssystem
KR102680490B1 (ko) * 2024-01-02 2024-07-03 주식회사 서림 콘크리트 균열 측정용 드론, 이를 이용한 콘크리트 균열 측정 방법 및 콘크리트 균열 측정용 드론을 포함하는 콘크리트 균열 측정 시스템
DE102014211721B4 (de) 2014-06-18 2024-08-01 Robert Bosch Gmbh Unbemanntes Luftfahrzeug und Verfahren zum Betrieb eines unbemannten Luftfahrzeugs
US12103130B2 (en) 2018-10-19 2024-10-01 National Research Council Of Canada Base attachment module for small aerial vehicles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087271B1 (fr) * 2018-10-12 2021-04-23 Soudure Inst De Dispositif aerien de controle non destructif
FR3097528B1 (fr) * 2019-06-18 2022-02-11 Total Sa Drone équipé d’un capteur à ultrasons
FR3111954A1 (fr) * 2020-06-26 2021-12-31 Supairvision Aérogyre télécommandé de mesure par établissement de points de contact

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030089183A1 (en) * 2001-11-13 2003-05-15 Jacobsen Robert A. Apparatus and method for non-destructive inspection of large structures
FR2861457A1 (fr) 2003-10-28 2005-04-29 Marc Serge Brussieux Systeme de controle non destructif
FR2909972A1 (fr) 2006-12-18 2008-06-20 Novadem Sarl Aeronef a decollage vertical
WO2009142933A2 (fr) 2008-05-21 2009-11-26 The Boeing Company Système et procédé pour l'inspection de structures et d'objets par un essaim de véhicules sans conducteur à distance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030089183A1 (en) * 2001-11-13 2003-05-15 Jacobsen Robert A. Apparatus and method for non-destructive inspection of large structures
FR2861457A1 (fr) 2003-10-28 2005-04-29 Marc Serge Brussieux Systeme de controle non destructif
FR2909972A1 (fr) 2006-12-18 2008-06-20 Novadem Sarl Aeronef a decollage vertical
WO2009142933A2 (fr) 2008-05-21 2009-11-26 The Boeing Company Système et procédé pour l'inspection de structures et d'objets par un essaim de véhicules sans conducteur à distance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALBERS A ET AL: "Semi-autonomous flying robot for physical interaction with environment", 2010 IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM 2010) 28-30 JUNE 2010 SINGAPORE, SINGAPORE, June 2010 (2010-06-01), 2010 IEEE Conference on Robotics, Automation and Mechatronics (RAM 2010) IEEE Piscataway, NJ, USA, pages 441 - 446, XP002626666, ISBN: 978-1-4244-6503-3, DOI: DOI:10.1109/RAMECH.2010.5513152 *

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2879952A4 (fr) * 2012-08-02 2016-04-13 Neurosciences Res Found Véhicule pouvant stabiliser une charge utile lorsqu'il est en mouvement
EP2826711A1 (fr) * 2013-07-18 2015-01-21 OIC-GmbH Aéronef destiné au transport d'un ou plusieurs appareils d'enregistrement dans les airs
JP2015219028A (ja) * 2014-05-14 2015-12-07 日東建設株式会社 構造物の打音検査装置
CN103984339A (zh) * 2014-05-20 2014-08-13 西南交通大学 用于旋翼飞行器的机械故障调试装置
DE102014211721B4 (de) 2014-06-18 2024-08-01 Robert Bosch Gmbh Unbemanntes Luftfahrzeug und Verfahren zum Betrieb eines unbemannten Luftfahrzeugs
US9612264B2 (en) * 2014-08-14 2017-04-04 AVAILON GmbH Unmanned aerial device and method for performing a lightning protection measurement at a wind turbine
US20160047850A1 (en) * 2014-08-14 2016-02-18 AVAILON GmbH Unmanned aerial device and method for performing a lightning protection measurement at a wind turbine
ES2572181A1 (es) * 2014-11-28 2016-05-30 Univ Vigo Sistema de acoplamiento entre vehículos aéreos no tripulados y estructuras tipo viga para medición por contacto
EP3267189A4 (fr) * 2015-03-04 2018-11-07 Nec Corporation Dispositif ainsi que procédé d'inspection de défauts, et programme
FR3036381A1 (fr) * 2015-05-19 2016-11-25 Airbus Operations Sas Drone volant
KR20170086029A (ko) * 2015-07-31 2017-07-25 광저우 엑스에어크래프트 테크놀로지 씨오 엘티디 무인기 및 무용기에 이용되는 기체
KR101989258B1 (ko) * 2015-07-31 2019-09-30 광저우 엑스에어크래프트 테크놀로지 씨오 엘티디 무인기 및 무인기에 이용되는 기체
KR102372845B1 (ko) * 2015-08-18 2022-03-10 대우조선해양 주식회사 부력체와 프로펠러를 지닌 비행로봇
KR20170021491A (ko) * 2015-08-18 2017-02-28 대우조선해양 주식회사 부력체와 프로펠러를 지닌 비행로봇
EP3211226A1 (fr) * 2016-02-26 2017-08-30 Mitsubishi Heavy Industries, Ltd. Procédé de test d'un récepteur d'éolienne
US10401414B2 (en) 2016-02-26 2019-09-03 Mitsubishi Heavy Industries, Ltd. Method of testing wind-turbine receptor
EP3445654A4 (fr) * 2016-03-18 2019-09-18 Oceaneering International Inc. Utilisation de véhicules aériens sans pilote pour inspections de cnd
WO2017161326A1 (fr) * 2016-03-18 2017-09-21 Oceaneering International Inc Utilisation de véhicules aériens sans pilote pour inspections de cnd
DE102016124311B4 (de) 2016-04-07 2023-05-17 Google LLC (n.d.Ges.d. Staates Delaware) Autonomes Freileitungskabel-Inspektionssystem
CN109313166A (zh) * 2016-06-16 2019-02-05 日本电气株式会社 检查系统、移动机器人设备和检查方法
EP3273266A1 (fr) 2016-07-21 2018-01-24 Grupo Empresarial Copisa, S.L. Système et procédé de contrôle aérien de surface
DE102016214655A1 (de) * 2016-08-08 2018-02-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zum zerstörungsfreien Untersuchen eines über wenigstens eine frei zugängliche Oberfläche verfügenden dreidimensionalen Objektes
WO2018029138A1 (fr) 2016-08-08 2018-02-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Aéronef sans pilote servant au contrôle non destructif d'une structure tridimensionnelle
WO2018069477A1 (fr) * 2016-10-12 2018-04-19 Tyco Fire & Security Gmbh Système de test robotique pour détecteur
AU2017219137B2 (en) * 2016-10-31 2022-12-22 The Boeing Company Method and system for non-destructive testing using an unmanned aerial vehicle
EP3315406A1 (fr) * 2016-10-31 2018-05-02 The Boeing Company Procédé et système de test non destructif au moyen d'un véhicule aérien sans pilote
ES2614994A1 (es) * 2016-11-02 2017-06-02 Fundación Andaluza Para El Desarrollo Aeroespacial Aeronave con dispositivo de contacto
US10139372B1 (en) 2017-05-19 2018-11-27 Saudi Arabian Oil Company Two-stage corrosion under insulation detection methodology and modular vehicle with dual locomotion sensory systems
KR20200018454A (ko) * 2017-05-19 2020-02-19 사우디 아라비안 오일 컴퍼니 2단계 단열재하 부식 검출 방법론 및 2중 이동 센서 시스템을 갖는 모듈식 운송수단
WO2018212891A1 (fr) * 2017-05-19 2018-11-22 Saudi Arabian Oil Company Méthodologie de détection de corrosion sous isolation en deux stades et véhicule modulaire à doubles systèmes de capteurs de locomotion
CN110892259A (zh) * 2017-05-19 2020-03-17 沙特阿拉伯石油公司 两阶段绝缘下腐蚀检测方法以及具有双运动感觉系统的模块化载具
US10697935B2 (en) 2017-05-19 2020-06-30 Saudi Arabian Oil Company Two-stage corrosion under insulation detection methodology and modular vehicle with dual locomotion sensory systems
KR102341881B1 (ko) 2017-05-19 2021-12-22 사우디 아라비안 오일 컴퍼니 2단계 단열재하 부식 검출 방법론 및 2중 이동 센서 시스템을 갖는 모듈식 운송수단
CN107380420A (zh) * 2017-08-23 2017-11-24 南京市特种设备安全监督检验研究院 一种基于无人机机械臂的起重机金属结构检测装置及方法
US11577833B2 (en) 2017-09-11 2023-02-14 Terra Inspectioneering B.V. Unmanned aerial vehicle for positioning against a wall
WO2019050401A1 (fr) 2017-09-11 2019-03-14 Ronik Inspectioneering B.V. Véhicule aérien sans pilote destiné à être positionné contre une paroi
US10620002B2 (en) 2017-11-14 2020-04-14 Saudi Arabian Oil Company Incorporate wall thickness measurement sensor technology into aerial visual inspection intrinsically safe drones
CN107957545A (zh) * 2017-12-25 2018-04-24 苏州睿艾迪汽车科技有限公司 Fct探针测试仪器
FR3077057A1 (fr) * 2018-01-19 2019-07-26 Aeromodel Acces Action Drone Inspection Drone dote d'une sonde a ultrasons mesurant l'epaisseur d'une paroi et d'un dispositif d'ejection d'un couplant, et procede de prise de mesure associe
WO2020055930A1 (fr) * 2018-09-10 2020-03-19 Scantech Instruments, Inc. Scanner d'évaluation non destructive déployé par drone aérien
KR102137316B1 (ko) * 2018-10-02 2020-08-13 주식회사 숨비 플랜트 검사용 드론봇 장치
KR20200038126A (ko) * 2018-10-02 2020-04-10 주식회사 숨비 플랜트 검사용 드론봇 장치
US12103130B2 (en) 2018-10-19 2024-10-01 National Research Council Of Canada Base attachment module for small aerial vehicles
US11220356B2 (en) 2019-01-02 2022-01-11 The Boeing Company Non-destructive inspection using unmanned aerial vehicle
EP3677518A1 (fr) * 2019-01-02 2020-07-08 The Boeing Company Inspection non destructive à l'aide d'un véhicule aérien sans pilote
KR102083132B1 (ko) * 2019-12-12 2020-02-28 우현선박기술 주식회사 초음파 두께 측정 기술과 영상 송출 기능을 탑재한 선박검사 및 측정용 드론 시스템
US20210356255A1 (en) * 2020-05-12 2021-11-18 The Boeing Company Measurement of Surface Profiles Using Unmanned Aerial Vehicles
US11555693B2 (en) * 2020-05-12 2023-01-17 The Boeing Company Measurement of surface profiles using unmanned aerial vehicles
US20220026397A1 (en) * 2020-07-21 2022-01-27 Voliro Ag Structural wall inspection system using drones to perform nondestructive testing (ndt)
KR102386261B1 (ko) * 2020-07-27 2022-04-14 경운대학교 산학협력단 도장면 두께측정용 드론시스템
KR20220014429A (ko) * 2020-07-27 2022-02-07 경운대학교 산학협력단 도장면 두께측정용 드론시스템
WO2022051261A1 (fr) * 2020-09-01 2022-03-10 Alarm.Com Incorporated Techniques de surveillance thermique assistée par drone
US12039774B2 (en) 2020-09-01 2024-07-16 Alarm.Com Incorporated Drone-assisted thermal monitoring techniques
CN113252689A (zh) * 2021-05-14 2021-08-13 南京市特种设备安全监督检验研究院 一种大型钢结构无损检测装置
CN113291482A (zh) * 2021-05-24 2021-08-24 厦门市汉飞鹰航空科技有限公司 一种能够改善无人机气动特性的物探设备安装结构及方法
IT202100028253A1 (it) 2021-11-05 2023-05-05 Flyability Sa Aeromobile senza equipaggio (UAV)
WO2023079523A1 (fr) 2021-11-05 2023-05-11 Flyability Sa Engin volant sans pilote embarqué
KR102680490B1 (ko) * 2024-01-02 2024-07-03 주식회사 서림 콘크리트 균열 측정용 드론, 이를 이용한 콘크리트 균열 측정 방법 및 콘크리트 균열 측정용 드론을 포함하는 콘크리트 균열 측정 시스템

Also Published As

Publication number Publication date
FR2963431A1 (fr) 2012-02-03
FR2963431B1 (fr) 2013-04-12

Similar Documents

Publication Publication Date Title
WO2012013878A1 (fr) Dispositif permettant le contrôle non destructif de structures et comportant un drone et une sonde de mesure embarquee
EP3210660B1 (fr) Drone avec bras de liaison pliables
EP3210658B1 (fr) Drone muni de supports de drone relevables
EP2584355B1 (fr) Dispositif d'acquisition pour la réalisation de mesures et/ou le prélèvement d'échantillons dans un liquide
WO2014135522A1 (fr) Systeme et procede de recuperation d'un engin sous-marin autonome
CA2813835C (fr) Dispositif de test electromagnetique d'un objet
EP3309043B1 (fr) Système autonome de transport pour tunnel
FR3063671A1 (fr) Imprimante 3d beton
WO2010092253A1 (fr) Ameliorations aux aerodynes captifs
EP2468621B1 (fr) Dispositif de mise à l'eau et de récupération d'un engin submersible ou de surface
EP1874607B1 (fr) Dispositif de support avec autocentrage latéral et immobilisation sur une structure ferroviaire du pivot d ' attelage d ' une semi-remorque .
FR2745905A1 (fr) Appareil de detection acoustique de defauts dans une bande en defilement
FR2700023A1 (fr) Dispositif de maintien et de guidage pour collimateur.
FR3084485A1 (fr) Engin volant motorise de mesure du relief de surfaces d'un objet predetermine et procede de commande d'un tel engin
FR2941922A1 (fr) Systeme de lancement et de reception d'un aerodyne captif
EP1418443B1 (fr) Procédé et dispositif pour la localisation d'un rebord disposé à la jonction de deux surfaces globalement planes
FR2941921A1 (fr) Aerodyne captif et son procede de recuperation
EP2939015B1 (fr) Dispositif de contrôle non destructif automatisé de raidisseurs d'une structure composite d'aéronef
FR2941920A1 (fr) Systeme et procede de controle de la position d'un aerodyne captif
EP3748281B1 (fr) Dispositif et procédé de contrôle de la géométrie d'une sonde d'incidence
CA2551516C (fr) Dispositif de test pour portique detecteur de metaux
WO2017103408A2 (fr) Dispositif de mesure et de contrôle de conformité d'un impact sur une structure
EP3182097B1 (fr) Dispositif de contrôle par tomographie en cohérence optique notamment dans un congé d'une pièce composite
EP0010498B1 (fr) Procédé et dispositif d'évaluation de la déformation d'une chaussée sous l'action d'une charge
FR2941914A1 (fr) Ameliorations aux aerodynes captifs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11738008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11738008

Country of ref document: EP

Kind code of ref document: A1