WO2012011280A1 - Film forming apparatus - Google Patents

Film forming apparatus Download PDF

Info

Publication number
WO2012011280A1
WO2012011280A1 PCT/JP2011/004104 JP2011004104W WO2012011280A1 WO 2012011280 A1 WO2012011280 A1 WO 2012011280A1 JP 2011004104 W JP2011004104 W JP 2011004104W WO 2012011280 A1 WO2012011280 A1 WO 2012011280A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming apparatus
base material
peripheral surface
outer peripheral
film
Prior art date
Application number
PCT/JP2011/004104
Other languages
French (fr)
Japanese (ja)
Inventor
大園 修司
一也 斎藤
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Publication of WO2012011280A1 publication Critical patent/WO2012011280A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Definitions

  • the present invention relates to a film forming apparatus capable of continuously forming a film on a film-like substrate.
  • Catalytic chemical vapor is used as a film formation method in which a source gas is brought into contact with a catalyst wire in a chamber and decomposition species (deposition species) generated by using a catalytic reaction or thermal decomposition reaction of the source gas are deposited on a film formation substrate.
  • a phase growth method (CAT-CVD: catalytic-Chemical Vapor Deposition) is known.
  • CAT-CVD catalytic-Chemical Vapor Deposition
  • the shorter the relative distance between the base material and the catalyst wire the higher the film formation rate and the higher the productivity.
  • a base material with low heat resistance such as a plastic film causes thermal deformation, making it difficult to perform desired film formation. Therefore, there is a need for a technique that can efficiently form a film while protecting the substrate from the heat of the catalyst wire.
  • an object of the present invention is to provide a film forming apparatus capable of continuously forming a film-like substrate without causing thermal deformation.
  • a film forming apparatus includes a chamber, a main roller, a gas supply source, and a plurality of catalyst wires.
  • the main roller has a rotation shaft and an outer peripheral surface around which a film-like base material is wound, and the chamber is rotated around the rotation shaft so as to cool the base material wound around the outer peripheral surface.
  • the gas supply source is for supplying a source gas to the base material wound around the outer peripheral surface, and is disposed to face the outer peripheral surface.
  • the plurality of catalyst wires are installed between the outer peripheral surface and the gas supply source, and can generate heat at the decomposition temperature of the source gas.
  • FIG. 1 is a schematic cross-sectional view of a film forming apparatus according to a first embodiment of the present invention. It is a schematic perspective view of the principal part of the film-forming apparatus shown in FIG. It is a schematic plan view of the principal part of the film-forming apparatus shown in FIG. It is a schematic front view of the principal part of the film-forming apparatus which concerns on the 2nd Embodiment of this invention. It is a schematic perspective view of the principal part of the film-forming apparatus shown in FIG. It is a schematic front view of the principal part of the film-forming apparatus which concerns on the 3rd Embodiment of this invention. It is a schematic perspective view of the principal part of the film-forming apparatus shown in FIG. It is a schematic perspective view of the principal part of the film-forming apparatus which concerns on the 4th Embodiment of this invention.
  • a film forming apparatus includes a chamber, a main roller, a gas supply source, and a plurality of catalyst wires.
  • the main roller has a rotation shaft and an outer peripheral surface around which a film-like base material is wound, and the chamber is rotated around the rotation shaft so as to cool the base material wound around the outer peripheral surface.
  • the gas supply source is for supplying a source gas to the base material wound around the outer peripheral surface, and is disposed to face the outer peripheral surface.
  • the plurality of catalyst wires are installed between the outer peripheral surface and the gas supply source, and can generate heat at the decomposition temperature of the source gas.
  • the raw material gas supplied from the gas supply source toward the base material is decomposed by coming into contact with the plurality of heat-generated catalyst wires, and the decomposition species is deposited on the surface of the base material on the main roller.
  • the main roller continuously conveys the base material by rotating around the rotation shaft while cooling the base material wound around the outer peripheral surface thereof to prevent thermal deformation of the base material. Thereby, it becomes possible to form a film continuously on the base material while protecting the base material from the heat of the catalyst wire.
  • the chamber is typically a vacuum chamber that can maintain a reduced pressure atmosphere. Inside the chamber, an unwinding roller for unwinding the base material and a winding roller for winding the base material are installed, and the main roller is on the transport path of the base material from the unwinding roller to the winding roller. Be placed.
  • the arrangement form of the catalyst wire is not particularly limited, but by forming the catalyst wire so as to be opposed to the base material on the main roller in a wide area range, uniform film formation on the base material is possible.
  • the main roller may be disposed with the rotation axis directed in the horizontal direction.
  • each of the plurality of catalyst wires is suspended inside the chamber in a state of being folded in the vertical direction, and is arranged at intervals in the horizontal direction.
  • a catalyst wire can be arrange
  • each of the plurality of catalyst wires may be folded in the vertical direction so as to sandwich the main roller.
  • each catalyst wire can be made to oppose a base material along the peripheral direction of the outer peripheral surface of a main roller, it can form into a film efficiently on the base material on a main roller.
  • each of the plurality of catalyst wires may be arranged so that both ends connected to the power source face each other in the horizontal direction.
  • a catalyst wire can be arrange
  • each of the plurality of catalyst wires extends along the horizontal direction and is spaced in the circumferential direction of the outer peripheral surface. It may be arranged.
  • each catalyst wire can be made to oppose a base material along the width direction and peripheral direction of the outer peripheral surface of a main roller, it can form into a film efficiently on the base material on a main roller.
  • the main roller may be arranged with the rotation axis in the vertical direction.
  • each of the plurality of catalyst wires is suspended in the chamber while being folded back in the vertical direction, and is arranged at intervals in the circumferential direction of the outer peripheral surface.
  • FIG. 1 is a schematic view showing a film forming apparatus according to the first embodiment of the present invention.
  • the X-axis direction and the Y-axis direction indicate horizontal directions orthogonal to each other, and the Z-axis direction indicates a vertical direction (vertical direction) orthogonal to the X-axis and Y-axis, respectively.
  • the film forming apparatus 1 according to the present embodiment includes a vacuum chamber 10 and forms a deposited film on the substrate F while transporting the film-like substrate F inside the vacuum chamber 10.
  • the inside of the vacuum chamber 10 is divided by a partition plate 15 into a first chamber R1 and a second chamber R2.
  • first chamber R1 an unwinding roller 11 for continuously unwinding the film-like substrate F and a take-up roller 12 for winding the film-like substrate F are respectively installed.
  • second chamber R2 a cooling roller 13 (main roller) and a film forming source are installed.
  • the first chamber R1 and the second chamber R2 are configured to be evacuated to a predetermined pressure by the vacuum pump P1 and the vacuum pump P2.
  • the unwinding roller 11 and the winding roller 12 are respectively connected to drive motors (not shown) installed outside the vacuum chamber 10, and can be rotated around rotation shafts 11a and 12a parallel to the X axis.
  • the unwinding roller 11 supports the roll body of the base material F cut to a predetermined width, and continuously feeds the base material F by rotating in the arrow direction in the figure.
  • the take-up roller 12 takes up the substrate F fed from the take-up roller 11 in a roll shape by rotating in the direction of the arrow in the drawing.
  • the base material F is not particularly limited as long as it has a flexible film shape.
  • the base material F may be an insulating plastic film such as PET (polyethylene terephthalate), OPP (stretched polypropylene), PPS (polyphenylene sulfite), or the like.
  • PET polyethylene terephthalate
  • OPP stretched polypropylene
  • PPS polyphenylene sulfite
  • a composite plastic film on which a metal film or an insulating film is formed is applicable.
  • the cooling roller 13 is arranged on the way of transporting the base material F from the unwinding roller 11 to the winding roller 12 in the second chamber R2.
  • the cooling roller 13 has a rotating shaft 13a parallel to the X axis and an outer peripheral surface 13b around which the substrate F is wound.
  • a cooling mechanism in which a cooling medium such as cooling water circulates is provided inside the cooling roller 13, whereby the outer peripheral surface 13 b is cooled to a predetermined temperature or lower.
  • the rotating shaft 13a of the cooling roller 13 is rotationally driven by a driving motor (not shown) installed outside the vacuum chamber 10.
  • the outer peripheral surface 13 b has a width larger than the width of the base material F, and is in close contact with the non-film-forming surface of the base material F.
  • the cooling roller 13 rotates in the direction indicated by the arrow in FIG. 1 around the rotation shaft 13a, thereby transporting the substrate F in the vacuum chamber 10 while cooling the substrate F wound around the outer peripheral surface 13b.
  • the partition plate 15 is formed with an opening through which the base material F can pass.
  • the opening of the partition plate 15 conveys the base material F from the unwinding roller 11 to the cooling roller 13 and the cooling roller.
  • a pair of guide rollers 14 for guiding the conveyance of the base material F from 13 to the take-up roller 12 are provided.
  • the guide roller 14 can adjust the tension applied to the base material F and prevent the formation of wrinkles on the base material F.
  • the film formation source includes a gas supply source 16 for supplying a raw material gas for film formation, a catalyst wire 17 for decomposing the raw material gas, and a deposition plate 18.
  • the gas supply source 16 includes a plurality of nozzle units 160 arranged along the circumferential direction of the outer peripheral surface 13 b so as to face the base material F on the cooling roller 13.
  • Each nozzle unit 160 includes a nozzle body 161 that discharges the source gas, and a guide tube 162 that surrounds the periphery of the nozzle body 161.
  • the catalyst wire 17 is installed between the outer peripheral surface 13b of the cooling roller 13 and the gas supply source 16, and is formed of a heating element capable of generating heat at the decomposition temperature of the raw material gas.
  • the deposition preventing plate 18 is formed to be bent in a substantially arc shape so as to surround the periphery of the gas supply source 16, and is fixed to the inner surface of the vacuum chamber 10 via the mounting rib 18a.
  • the deposition preventing plate 18 has a function of preventing the deposition material from adhering to the inner wall surface of the vacuum chamber 10.
  • each nozzle unit 160 extends along the axial direction of the cooling roller 13 and is arranged on the inner peripheral surface of the deposition preventing plate 18 with an interval in the circumferential direction.
  • the nozzle body 161 of the nozzle unit 160 has a gas discharge port on the deposition preventing plate 18 side. The gas discharged from the discharge port is reflected by the inner surfaces of the deposition preventing plate 18 and the guide tube 162 toward the cooling roller 13.
  • the gas supply source 16 efficiently decomposes the source gas by supplying the source gas uniformly to the catalyst wire 17, and the source material is evenly distributed over the entire film forming surface of the substrate F on the cooling roller 13.
  • Supply gas decomposition species The number of nozzle units 160 arranged, the arrangement interval, the shape of the guide tube 162, and the like are set as appropriate so that the source gas is uniformly supplied to the catalyst wire 17 and the film formation surface of the substrate F.
  • the deposition preventing plate 18 and the guide tube 162 also have a function as a deposition preventing member that prevents the decomposition species of the source gas from adhering to the discharge port of the nozzle body 161.
  • the source gas is appropriately selected according to the type of material to be deposited on the substrate F.
  • a mixed gas of silane (SiH 4 ) and hydrogen (H 2 ) is used as a source gas.
  • silane, hydrogen, ammonia (NH 3 ) or the like is used as a source gas, and when forming a silicon oxide film, silane, hydrogen, oxygen, dinitrogen monoxide, or the like is used. It is done.
  • the catalyst wire 17 is formed of a metal wire capable of generating heat by Joule heat generated by energization, and is formed of a high melting point metal such as tungsten, molybdenum, or tantalum.
  • the catalyst line 17 is heated to a temperature at which the source gas can be decomposed (for example, 1700 ° C. or higher), thereby thermally decomposing the source gas supplied from the gas supply source 16 and depositing species deposited on the substrate F Is generated.
  • the diameter, length, number, arrangement interval, etc. of the catalyst wires 17 are appropriately set according to the required film quality.
  • FIG. 2 is a perspective view of the cooling roller 13 and shows an arrangement relationship between the cooling roller 13 and the catalyst wire 17.
  • a plurality of catalyst wires 17 are provided around the cooling roller 13 at regular intervals along the axial direction (X-axis direction) of the cooling roller 13.
  • each of the plurality of catalyst wires 17 is suspended inside the vacuum chamber 10 in a state of being folded in the vertical direction (Z-axis direction) so as to sandwich the cooling roller 13.
  • the base material F is made to oppose the catalyst wire 17 on the outer peripheral surface 13 b of the cooling roller 13.
  • each catalyst wire 17 is connected to the first power supply terminal 191, and the other end is connected to the second power supply terminal 192.
  • a plurality of first and second power supply terminals 191 and 192 are installed corresponding to the individual catalyst wires 17 and connected to power supply units (not shown) installed outside the vacuum chamber 10.
  • the power supply method for the catalyst wire 17 is not particularly limited, and may be direct current or alternating current.
  • the power supply terminals 191 and 192 are installed on the partition plate 15 so as to face each other in the Y-axis direction. Instead, the power supply terminals 191 and 192 are supported and extend in the horizontal direction.
  • a member to be installed may be installed inside the vacuum chamber 10.
  • the terminal cover 193 is installed in such a way that it penetrates the partition plate 15 from the power supply terminals 191 and 192 of the first chamber R1 and protrudes toward the second chamber R2.
  • the terminal cover 193 covers the periphery of the side surface of each catalyst wire 17 suspended through the terminal cover 193 over a distance of about 50 mm to 100 mm in the vertical direction in the chamber R2.
  • the terminal cover 193 prevents the source gas from coming into contact with the base of the catalyst wire 17, so that even if the temperature of each catalyst wire 17 changes due to heat radiation from the power supply terminals 191 and 192, The embrittlement of the catalyst wire 17 can be prevented without generating a reaction product of 17 and the source gas.
  • each catalyst wire 17 is adjusted such that the distance from the outer peripheral surface 13b of the cooling roller 13 is constant or substantially constant in the circumferential direction of the cooling roller 13. Thereby, the film forming rate on the base material F can be kept constant with respect to the circumferential direction of the cooling roller 13.
  • the power supply terminal 191 and the power supply terminal 192 that respectively support the both ends of the catalyst wire 17 are not limited to being disposed so as to face each other in the direction parallel to the Y axis. For example, as schematically shown in FIG. 3, either one may be arranged shifted in the X-axis direction so as not to face each other. Thereby, the uniformity of the film thickness can be improved in the width direction of the substrate F.
  • the roll body of the base material F is attached to the unwinding roller 11, and the base material F is bridged to the winding roller 12 via the cooling roller 13 and the guide roller 14.
  • Each chamber R1, R2 of the vacuum chamber 10 is evacuated to a predetermined pressure by vacuum pumps P1, P2.
  • Each catalyst wire 17 is energized through power supply terminals 191 and 192 and is heated to a high temperature of, for example, 1700 ° C. or higher.
  • the cooling roller 13 is cooled to a temperature at which the outer peripheral surface 13b is prevented from being thermally deformed by circulating and supplying a cooling medium therein.
  • the source gas discharged from each nozzle unit 160 of the gas supply source 16 is thermally decomposed by being close to or in contact with the heated catalyst wire 17.
  • the deposited species generated by the thermal decomposition adhere and deposit on the substrate F.
  • the unwinding roller 11, the winding roller 12, and the cooling roller 13 rotate at respective equal speeds in the directions indicated by the arrows in the drawing around the respective rotating shafts.
  • the substrate F is continuously fed out from the unwinding roller 11, and after being subjected to a film forming process while being wound around the outer peripheral surface 13 b of the cooling roller 13, the substrate F is wound up onto the winding roller 12.
  • the base material F since the base material F is maintained in close contact with the outer peripheral surface 13b of the cooling roller 13, thermal deformation due to radiant heat from the catalyst wire 17 is prevented, and stable film formation on the base material F is achieved. Secured. And since film-forming to the base material F is implemented on the cooling roller 13 rotated around the rotating shaft 13a, the film-forming process can be continuously performed on the long film-like base material F, Productivity can be improved.
  • the gas discharge port of the nozzle body 161 constituting the nozzle unit 160 faces the deposition plate 18 side opposite to the cooling roller 13 side.
  • the source gas is uniformly supplied to the catalyst wire 17 to efficiently decompose the source gas, and the source gas decomposition species is uniformly supplied to the entire film forming surface of the base material F on the cooling roller 13. be able to.
  • the probability that the reaction product of the raw material gas generated by the contact with the catalyst wire 17 adheres to the gas discharge port of the nozzle body 161 can be reduced, the supply of the raw material gas from the gas supply source 16 can be performed for a long time. It can be kept stable.
  • FIG. 4 is a front view of the main part showing the positional relationship between the cooling roller and the catalyst wire
  • FIG. It is a perspective view of the principal part which shows.
  • the description of the same parts as those of the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.
  • the film forming apparatus 2 of the present embodiment includes a vacuum chamber having a first chamber R1 and a second chamber R2, a cooling roller 13 installed in the second chamber R2, and a plurality of It has a gas supply source 26 and a plurality of catalyst wires 27.
  • the gas supply source 26 is disposed to face the outer peripheral surface 13 b of the cooling roller 13.
  • the gas supply source 26 is for supplying source gas to the base material F wound around the outer peripheral surface 13b, and has a plurality of nozzle units 260 configured in the same manner as in the first embodiment.
  • the gas supply sources 26 are arranged on both sides of the cooling roller 13 so as to face each other in the Y-axis direction so as to sandwich the cooling roller 13, and each nozzle unit 260 extends in parallel with the X-axis direction and extends in the Z-axis direction. Are arranged in each.
  • Each nozzle unit 260 is supported by the deposition preventing plate 28.
  • Each of the catalyst wires 27 is suspended in the vacuum chamber in a state of being folded in the vertical direction (Z-axis direction), and a plurality of the catalyst wires 27 are provided on both sides of the cooling roller 13 in the axial direction (X-axis direction). Are installed at regular intervals.
  • Each catalyst line 27 is installed between the gas supply source 26 and the cooling roller 13 and is heated to a temperature equal to or higher than the decomposition temperature of the source gas.
  • the diameter, length, number, arrangement interval, etc. of the catalyst wire 27 are appropriately set according to the required film formation quality.
  • the folding intervals and the arrangement intervals of the catalyst wires 27 are set to be approximately the same size so that the catalyst wires 27 are equally spaced in the width direction of the base material F. Thereby, the uniformity of the film-forming to the base material F can be improved.
  • Both ends of each of the catalyst wires 27 are arranged so as to face each other in the axial direction (X-axis direction) of the cooling roller 13. Thereby, since the distance between each catalyst line 27 and the cooling roller 13 becomes constant, uniform film formation in the width direction of the base material F is possible. Further, with respect to the conveying direction of the base material F on the cooling roller 13, the catalyst wire 27 located on the upstream side and the catalyst wire 27 located on the downstream side may be arranged to face each other in the Y-axis direction. You may arrange
  • the same effects as those of the first embodiment described above can be obtained. That is, since the base material F is maintained in close contact with the outer peripheral surface 13b of the cooling roller 13, thermal deformation due to radiant heat from the catalyst wire 27 is prevented, and stable film formation on the base material F is ensured. . Further, since the film formation on the base material F is performed on the cooling roller 13 rotating around the rotation shaft 13a, the film formation processing can be continuously performed on the long film-shaped base material F, Productivity can be improved.
  • the catalyst wire 27 is suspended in the vacuum chamber while being hung down by its own weight, the fluctuation of the relative position with the cooling roller 13 due to the extension of the catalyst wire 27 is suppressed. And stable film formation is possible over a long period of time.
  • FIG. 6 and 7 show a film forming apparatus according to the third embodiment of the present invention.
  • FIG. 6 is a front view of the main part showing the arrangement relationship between the cooling roller and the catalyst wire, and FIG. 7 shows the relationship therebetween. It is a perspective view of the principal part which shows.
  • the description of the same parts as those of the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.
  • the film forming apparatus 3 includes a vacuum chamber having a first chamber R1 and a second chamber R2, a cooling roller 13 installed in the second chamber R2, and a gas supply.
  • a source 36 and a plurality of catalyst wires 37 are provided.
  • the gas supply source 36 is disposed to face the outer peripheral surface 13 b of the cooling roller 13.
  • the gas supply source 36 is for supplying source gas to the base material F wound around the outer peripheral surface 13b, and has a plurality of nozzle units 360 configured in the same manner as in the first embodiment.
  • Each nozzle unit 360 extends in parallel to the X-axis direction and is arranged so as to surround the cooling roller 13 along the circumferential direction of the cooling roller 13.
  • Each nozzle unit 360 is supported by the deposition preventing plate 38.
  • each of the plurality of catalyst wires 37 extends along the axial direction (X-axis direction) of the cooling roller 13 and is arranged at intervals in the circumferential direction of the cooling roller 13.
  • Each catalyst line 27 is installed between the gas supply source 26 and the cooling roller 13 and is heated to a temperature equal to or higher than the decomposition temperature of the source gas.
  • the diameter, length, number, arrangement interval, etc. of the catalyst wire 37 are appropriately set according to the required film quality.
  • Both ends of the catalyst wire 37 are connected to power supply terminals (not shown).
  • the power supply terminal may be fixed to the inner wall of the vacuum chamber, or may be fixed to an arbitrary structure installed inside the vacuum chamber.
  • an elastic member such as a spring may be interposed between both ends of the catalyst wire 37 and the power supply terminal.
  • the same effects as those of the first embodiment can be obtained. That is, since the base material F is maintained in close contact with the outer peripheral surface 13b of the cooling roller 13, thermal deformation due to radiant heat from the catalyst wire 37 is prevented, and stable film formation on the base material F is ensured. . Further, since the film formation on the base material F is performed on the cooling roller 13 rotating around the rotation shaft 13a, the film formation processing can be continuously performed on the long film-shaped base material F, Productivity can be improved.
  • FIG. 8 is a perspective view of the main part showing the positional relationship between the cooling roller and the catalyst wire in the film forming apparatus according to the third embodiment of the present invention.
  • the description of the same parts as those of the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.
  • the film forming apparatus 4 of the present embodiment includes a vacuum chamber having a first chamber R1 and a second chamber R2, a cooling roller 43 installed in the second chamber R2, a gas supply A source and a plurality of catalyst wires 47.
  • the cooling roller 43 has a cylindrical shape having a rotating shaft 43a arranged along the vertical direction (Z-axis direction), and the base material is wound around the outer peripheral surface thereof.
  • the gas supply source is for supplying the source gas to the base material F wound around the outer peripheral surface of the cooling roller 43, and includes a plurality of nozzle units configured in the same manner as in the first embodiment. Have. Each nozzle unit extends in parallel to the Z-axis direction and is arranged so as to surround the cooling roller 43 along the circumferential direction of the cooling roller 13.
  • Each catalyst wire 47 is installed between the gas supply source and the cooling roller 43, and is heated to a temperature equal to or higher than the decomposition temperature of the raw material gas.
  • the wire diameter, length, number, arrangement interval and the like of the catalyst wire 47 are appropriately set according to the required film formation quality.
  • the folding interval and the arrangement interval of the catalyst wires 47 are set to the same size so that the catalyst wires 47 are equally spaced with respect to the longitudinal direction (conveying direction) of the base material F. Thereby, the uniformity of the film-forming to the base material F can be improved.
  • each catalyst wire 47 is suspended inside the vacuum chamber in a state of being folded in the vertical direction (Z-axis direction), and is installed at a certain interval along the circumferential direction of the cooling roller 43.
  • Z-axis direction the vertical direction
  • each catalyst wire 47 can be made to oppose a base material along the width direction and the circumferential direction of the outer peripheral surface of the cooling roller 43, film formation can be efficiently performed on the base material on the cooling roller 43.
  • the same operational effects as those of the first embodiment can be obtained. That is, thermal deformation of the base material due to radiant heat from the catalyst wire 47 is prevented, and stable film formation on the base material F is ensured.
  • the film since the film is formed on the base material on the cooling roller 43 that rotates around the rotation shaft 43a, the film forming process can be continuously performed on the long film-like base material. Can be improved.
  • the catalyst wire 47 is suspended in the vacuum chamber while being hung down by its own weight, the fluctuation of the relative position with the cooling roller 43 due to the extension of the catalyst wire 47 is suppressed. And stable film formation is possible over a long period of time.
  • the length of the catalyst wire 47 is set so that the folded portion 47 a of the catalyst wire 47 is located below the lower end of the cooling roller 43.
  • the straight portion of the catalyst wire 47 can be opposed. Thereby, the film-forming material particles activated by the catalyst wire 47 can be radiated almost uniformly on the substrate in terms of density.
  • a silicon-based thin film such as a silicon film, a silicon oxide film, or a silicon nitride film is formed has been described as an example. It is.
  • a film forming apparatus by combining the above-described embodiments.
  • a film forming apparatus in which the catalyst wire described in the first embodiment and the catalyst wire described in the second embodiment and / or the third embodiment are mixed may be configured.

Abstract

Provided is a film forming apparatus which can continuously form a film without causing thermal deformation of a film-shaped base material. A film forming apparatus (1) comprises a chamber (10), a cooling roller (13), a gas supply source (16), and a plurality of catalytic wires (17). The cooling roller (13) is rotated about a rotation axis (13a) to thereby cool a film-shaped base material (F) wound around an outer peripheral surface (13b) and to convey the base material (F) inside the chamber (10). The gas supply source (16) supplies a source gas to the base material (F) wound around the outer peripheral surface (13b), and is disposed facing the outer peripheral surface (13b). The catalytic wires (17) are disposed between the outer peripheral surface (13b) and the gas supply source (16) and can be heated to the decomposition temperature of the source gas. As a result, a film can be continuously formed on the base material (F) while the base material (F) is protected from the heat of the catalytic wires (17).

Description

成膜装置Deposition equipment
 本発明は、フィルム状の基材に連続的に成膜することができる成膜装置に関する。 The present invention relates to a film forming apparatus capable of continuously forming a film on a film-like substrate.
 チャンバ内の触媒線に原料ガスを接触させ、原料ガスの触媒反応もしくは熱分解反応を利用して生成した分解種(堆積種)を被成膜基板上に堆積させる成膜法として、触媒化学気相成長法(CAT-CVD:catalytic-Chemical Vapor Deposition)が知られている。例えば下記特許文献1には、触媒CVD室の天板に設置された複数本の触媒線を通電により加熱し、触媒CVD室へSiH4およびNH3ガスを導入することで、基板上にSiN膜を形成する触媒化学気相成長装置が記載されている。 Catalytic chemical vapor is used as a film formation method in which a source gas is brought into contact with a catalyst wire in a chamber and decomposition species (deposition species) generated by using a catalytic reaction or thermal decomposition reaction of the source gas are deposited on a film formation substrate. A phase growth method (CAT-CVD: catalytic-Chemical Vapor Deposition) is known. For example, in the following Patent Document 1, a plurality of catalyst wires installed on a top plate of a catalytic CVD chamber are heated by energization, and SiH 4 and NH 3 gases are introduced into the catalytic CVD chamber, whereby a SiN film is formed on the substrate. Has been described.
特許第4035011号公報Japanese Patent No. 4035011
 触媒化学気相成長装置においては、基材と触媒線との間の相対距離を短くするほど成膜レートが向上し、生産性を高めることが可能となる。しかしながら、プラスチックフィルムのような耐熱性の低い基材では熱変形が生じてしまい、所望の成膜を行うことが困難となる。したがって、触媒線の熱から基材を保護しつつ効率よく成膜できる技術が求められている。 In the catalytic chemical vapor deposition apparatus, the shorter the relative distance between the base material and the catalyst wire, the higher the film formation rate and the higher the productivity. However, a base material with low heat resistance such as a plastic film causes thermal deformation, making it difficult to perform desired film formation. Therefore, there is a need for a technique that can efficiently form a film while protecting the substrate from the heat of the catalyst wire.
 以上のような事情に鑑み、本発明の目的は、フィルム状の基材に熱変形を生じさせることなく連続的に成膜することが可能な成膜装置を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a film forming apparatus capable of continuously forming a film-like substrate without causing thermal deformation.
 上記目的を達成するため、本発明の一形態に係る成膜装置は、チャンバと、メインローラと、ガス供給源と、複数の触媒線とを具備する。
 上記メインローラは、回転軸と、フィルム状の基材が巻き付けられる外周面とを有し、上記回転軸のまわりに回転することで上記外周面に巻き付けられた上記基材を冷却しつつ上記チャンバ内で搬送する。
 上記ガス供給源は、上記外周面に巻き付けられた上記基材へ原料ガスを供給するためのものであり、上記外周面に対向して配置される。
 上記複数の触媒線は、上記外周面と上記ガス供給源との間に設置され、上記原料ガスの分解温度に発熱可能である。
In order to achieve the above object, a film forming apparatus according to one embodiment of the present invention includes a chamber, a main roller, a gas supply source, and a plurality of catalyst wires.
The main roller has a rotation shaft and an outer peripheral surface around which a film-like base material is wound, and the chamber is rotated around the rotation shaft so as to cool the base material wound around the outer peripheral surface. Carry in.
The gas supply source is for supplying a source gas to the base material wound around the outer peripheral surface, and is disposed to face the outer peripheral surface.
The plurality of catalyst wires are installed between the outer peripheral surface and the gas supply source, and can generate heat at the decomposition temperature of the source gas.
本発明の第1の実施形態に係る成膜装置の概略断面図である。1 is a schematic cross-sectional view of a film forming apparatus according to a first embodiment of the present invention. 図1に示す成膜装置の要部の概略斜視図である。It is a schematic perspective view of the principal part of the film-forming apparatus shown in FIG. 図1に示す成膜装置の要部の概略平面図である。It is a schematic plan view of the principal part of the film-forming apparatus shown in FIG. 本発明の第2の実施形態に係る成膜装置の要部の概略正面図である。It is a schematic front view of the principal part of the film-forming apparatus which concerns on the 2nd Embodiment of this invention. 図4に示す成膜装置の要部の概略斜視図である。It is a schematic perspective view of the principal part of the film-forming apparatus shown in FIG. 本発明の第3の実施形態に係る成膜装置の要部の概略正面図である。It is a schematic front view of the principal part of the film-forming apparatus which concerns on the 3rd Embodiment of this invention. 図5に示す成膜装置の要部の概略斜視図である。It is a schematic perspective view of the principal part of the film-forming apparatus shown in FIG. 本発明の第4の実施形態に係る成膜装置の要部の概略斜視図である。It is a schematic perspective view of the principal part of the film-forming apparatus which concerns on the 4th Embodiment of this invention.
 本発明の一実施形態に係る成膜装置は、チャンバと、メインローラと、ガス供給源と、複数の触媒線とを具備する。
 上記メインローラは、回転軸と、フィルム状の基材が巻き付けられる外周面とを有し、上記回転軸のまわりに回転することで上記外周面に巻き付けられた上記基材を冷却しつつ上記チャンバ内で搬送する。
 上記ガス供給源は、上記外周面に巻き付けられた上記基材へ原料ガスを供給するためのものであり、上記外周面に対向して配置される。
 上記複数の触媒線は、上記外周面と上記ガス供給源との間に設置され、上記原料ガスの分解温度に発熱可能である。
A film forming apparatus according to an embodiment of the present invention includes a chamber, a main roller, a gas supply source, and a plurality of catalyst wires.
The main roller has a rotation shaft and an outer peripheral surface around which a film-like base material is wound, and the chamber is rotated around the rotation shaft so as to cool the base material wound around the outer peripheral surface. Carry in.
The gas supply source is for supplying a source gas to the base material wound around the outer peripheral surface, and is disposed to face the outer peripheral surface.
The plurality of catalyst wires are installed between the outer peripheral surface and the gas supply source, and can generate heat at the decomposition temperature of the source gas.
 上記成膜装置において、ガス供給源から上記基材へ向けて供給された原料ガスは、発熱した複数の触媒線に接触することで分解し、その分解種がメインローラ上の基材の表面に堆積する。メインローラは、その外周面に巻き付けられた基材を冷却することで基材の熱変形を防止しつつ、回転軸のまわりに回転することで基材を連続的に搬送する。これにより、基材を触媒線の熱から保護しつつ、基材に連続的に成膜することが可能となる。 In the film forming apparatus, the raw material gas supplied from the gas supply source toward the base material is decomposed by coming into contact with the plurality of heat-generated catalyst wires, and the decomposition species is deposited on the surface of the base material on the main roller. accumulate. The main roller continuously conveys the base material by rotating around the rotation shaft while cooling the base material wound around the outer peripheral surface thereof to prevent thermal deformation of the base material. Thereby, it becomes possible to form a film continuously on the base material while protecting the base material from the heat of the catalyst wire.
 チャンバは、典型的には、減圧雰囲気を維持できる真空チャンバで構成される。チャンバの内部には、基材を巻き出す巻出しローラと、基材を巻き取る巻取りローラとが設置され、メインローラは、上記巻出しローラから巻取りローラへ向かう基材の搬送経路上に配置される。触媒線の配置形態は特に限定されないが、メインローラ上の基材に広い面積範囲で対向し得るように触媒線を設置することで、基材に対して一様な成膜が可能となる。 The chamber is typically a vacuum chamber that can maintain a reduced pressure atmosphere. Inside the chamber, an unwinding roller for unwinding the base material and a winding roller for winding the base material are installed, and the main roller is on the transport path of the base material from the unwinding roller to the winding roller. Be placed. The arrangement form of the catalyst wire is not particularly limited, but by forming the catalyst wire so as to be opposed to the base material on the main roller in a wide area range, uniform film formation on the base material is possible.
 例えば、上記メインローラは、上記回転軸を水平方向に向けて配置されることができる。この場合、上記複数の触媒線の各々は、鉛直方向に折り返された状態で上記チャンバの内部に吊り下げられ、上記水平方向に間隔をおいて配列される。
 これにより、メインローラの外周面に巻き付けられる基材の幅方向に沿って触媒線を配置することができるため、基材に対して幅方向に一様な成膜が可能となる。
For example, the main roller may be disposed with the rotation axis directed in the horizontal direction. In this case, each of the plurality of catalyst wires is suspended inside the chamber in a state of being folded in the vertical direction, and is arranged at intervals in the horizontal direction.
Thereby, since a catalyst wire can be arrange | positioned along the width direction of the base material wound around the outer peripheral surface of a main roller, the film-forming uniform in the width direction with respect to a base material is attained.
 このとき、上記複数の触媒線の各々は、上記メインローラを挟むように鉛直方向に折り返されてもよい。これにより、メインローラの外周面の周方向に沿って各触媒線を基材に対向させることができるため、メインローラ上の基材に効率よく成膜を行うことができる。 At this time, each of the plurality of catalyst wires may be folded in the vertical direction so as to sandwich the main roller. Thereby, since each catalyst wire can be made to oppose a base material along the peripheral direction of the outer peripheral surface of a main roller, it can form into a film efficiently on the base material on a main roller.
 あるいは、上記複数の触媒線の各々は、電源に接続される両端部を上記水平方向に相互に対向させるようにして配置されてもよい。これにより、メインローラの外周面の幅方向に沿って触媒線を配置することができるため、基材に対して幅方向に一様な成膜が可能となる。 Alternatively, each of the plurality of catalyst wires may be arranged so that both ends connected to the power source face each other in the horizontal direction. Thereby, since a catalyst wire can be arrange | positioned along the width direction of the outer peripheral surface of a main roller, uniform film-forming in the width direction with respect to a base material is attained.
 さらに、上記メインローラが上記回転軸を水平方向に向けて配置される場合、上記複数の触媒線の各々は、上記水平方向に沿って延在し、上記外周面の周方向に間隔をおいて配列されてもよい。これにより、メインローラの外周面の幅方向および周方向に沿って各触媒線を基材に対向させることができるため、メインローラ上の基材に効率よく成膜を行うことができる。 Further, when the main roller is arranged with the rotation shaft directed in the horizontal direction, each of the plurality of catalyst wires extends along the horizontal direction and is spaced in the circumferential direction of the outer peripheral surface. It may be arranged. Thereby, since each catalyst wire can be made to oppose a base material along the width direction and peripheral direction of the outer peripheral surface of a main roller, it can form into a film efficiently on the base material on a main roller.
 一方、上記メインローラは、上記回転軸を鉛直方向に向けて配置されてもよい。この場合、上記複数の触媒線の各々は、鉛直方向に折り返された状態で上記チャンバの内部に吊り下げられ、上記外周面の周方向に間隔をおいて配列される。これにより、メインローラの外周面の幅方向および周方向に沿って各触媒線を基材に対向させることができるため、メインローラ上の基材に効率よく成膜を行うことができる。 On the other hand, the main roller may be arranged with the rotation axis in the vertical direction. In this case, each of the plurality of catalyst wires is suspended in the chamber while being folded back in the vertical direction, and is arranged at intervals in the circumferential direction of the outer peripheral surface. Thereby, since each catalyst wire can be made to oppose a base material along the width direction and peripheral direction of the outer peripheral surface of a main roller, it can form into a film efficiently on the base material on a main roller.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<第1の実施形態>
 図1は、本発明の第1の実施形態に係る成膜装置を示す概略図である。図においてX軸方向およびY軸方向は相互に直交する水平方向を示し、Z軸方向はX軸およびY軸にそれぞれ直交する垂直方向(鉛直方向)を示している。本実施形態の成膜装置1は、真空チャンバ10を有し、真空チャンバ10の内部でフィルム状の基材Fを搬送しつつ、基材F上に蒸着膜を形成する。
<First Embodiment>
FIG. 1 is a schematic view showing a film forming apparatus according to the first embodiment of the present invention. In the figure, the X-axis direction and the Y-axis direction indicate horizontal directions orthogonal to each other, and the Z-axis direction indicates a vertical direction (vertical direction) orthogonal to the X-axis and Y-axis, respectively. The film forming apparatus 1 according to the present embodiment includes a vacuum chamber 10 and forms a deposited film on the substrate F while transporting the film-like substrate F inside the vacuum chamber 10.
 真空チャンバ10の内部は、仕切り板15によって第1の室R1と第2の室R2とに分割されている。第1の室R1には、フィルム状の基材Fを連続的に巻き出すための巻出しローラ11と、フィルム状の基材Fを巻き取るための巻取りローラ12とがそれぞれ設置されている。第2の室R2には、冷却ローラ13(メインローラ)と、成膜源とがそれぞれ設置されている。第1の室R1および第2の室R2は、真空ポンプP1および真空ポンプP2によってそれぞれ所定の圧力に真空排気されることが可能に構成されている。 The inside of the vacuum chamber 10 is divided by a partition plate 15 into a first chamber R1 and a second chamber R2. In the first chamber R1, an unwinding roller 11 for continuously unwinding the film-like substrate F and a take-up roller 12 for winding the film-like substrate F are respectively installed. . In the second chamber R2, a cooling roller 13 (main roller) and a film forming source are installed. The first chamber R1 and the second chamber R2 are configured to be evacuated to a predetermined pressure by the vacuum pump P1 and the vacuum pump P2.
 巻出しローラ11および巻取りローラ12は、真空チャンバ10の外部に設置された図示しない駆動モータにそれぞれ接続されており、X軸に平行な回転軸11a,12aのまわりにそれぞれ回転可能である。巻出しローラ11は、所定幅に裁断された基材Fのロール体を支持し、図中矢印方向へ回転することで基材Fを連続的に送り出す。巻取りローラ12は、図中矢印方向へ回転することによって巻出しローラ11から繰り出された基材Fをロール状に巻き取る。 The unwinding roller 11 and the winding roller 12 are respectively connected to drive motors (not shown) installed outside the vacuum chamber 10, and can be rotated around rotation shafts 11a and 12a parallel to the X axis. The unwinding roller 11 supports the roll body of the base material F cut to a predetermined width, and continuously feeds the base material F by rotating in the arrow direction in the figure. The take-up roller 12 takes up the substrate F fed from the take-up roller 11 in a roll shape by rotating in the direction of the arrow in the drawing.
 基材Fとしては、フレキシブル性を有するフィルム状であれば特に制限されず、例えばPET(ポリエチレンテレフタレート)、OPP(延伸ポリプロピレン)、PPS(ポリフェニレンサルファイト)等の絶縁性プラスチックフィルムのほか、表面に金属膜や絶縁膜が形成された複合プラスチックフィルムなどが適用可能である。 The base material F is not particularly limited as long as it has a flexible film shape. For example, the base material F may be an insulating plastic film such as PET (polyethylene terephthalate), OPP (stretched polypropylene), PPS (polyphenylene sulfite), or the like. A composite plastic film on which a metal film or an insulating film is formed is applicable.
 冷却ローラ13は、巻出しローラ11から巻取りローラ12へ向かう基材Fの第2の室R2における搬送途上に配置されている。冷却ローラ13は、X軸に平行な回転軸13aと、基材Fが巻き付けられる外周面13bとを有する。冷却ローラ13の内部には、冷却水等の冷却媒体が循環する冷却機構が設けられており、これにより外周面13bが所定温度以下に冷却されている。 The cooling roller 13 is arranged on the way of transporting the base material F from the unwinding roller 11 to the winding roller 12 in the second chamber R2. The cooling roller 13 has a rotating shaft 13a parallel to the X axis and an outer peripheral surface 13b around which the substrate F is wound. A cooling mechanism in which a cooling medium such as cooling water circulates is provided inside the cooling roller 13, whereby the outer peripheral surface 13 b is cooled to a predetermined temperature or lower.
 冷却ローラ13の回転軸13aは、真空チャンバ10の外部に設置された図示しない駆動モータによって回転駆動される。外周面13bは、基材Fの幅よりも大きな幅を有しており、基材Fの非成膜面に密着する。冷却ローラ13は、回転軸13aのまわりに図1において矢印で示す方向へ回転することで、外周面13bに巻き付けられた基材Fを冷却しつつ、真空チャンバ10内で基材Fを搬送する。 The rotating shaft 13a of the cooling roller 13 is rotationally driven by a driving motor (not shown) installed outside the vacuum chamber 10. The outer peripheral surface 13 b has a width larger than the width of the base material F, and is in close contact with the non-film-forming surface of the base material F. The cooling roller 13 rotates in the direction indicated by the arrow in FIG. 1 around the rotation shaft 13a, thereby transporting the substrate F in the vacuum chamber 10 while cooling the substrate F wound around the outer peripheral surface 13b. .
 なお、仕切り板15には、基材Fが通過可能な開口が形成されており、仕切り板15の開口には、巻出しローラ11から冷却ローラ13への基材Fの搬送、および、冷却ローラ13から巻取りローラ12への基材Fの搬送をそれぞれガイドする一対のガイドローラ14が設置されている。ガイドローラ14によって、基材Fにかかる張力を調節し、基材F上へのしわの形成を防止できる。 The partition plate 15 is formed with an opening through which the base material F can pass. The opening of the partition plate 15 conveys the base material F from the unwinding roller 11 to the cooling roller 13 and the cooling roller. A pair of guide rollers 14 for guiding the conveyance of the base material F from 13 to the take-up roller 12 are provided. The guide roller 14 can adjust the tension applied to the base material F and prevent the formation of wrinkles on the base material F.
 上記成膜源は、成膜用の原料ガスを供給するガス供給源16と、原料ガスを分解する触媒線17と、防着プレート18とを有する。ガス供給源16は、冷却ローラ13上の基材Fに対向するように外周面13bの周方向に沿って配列された複数のノズルユニット160を備える。各々のノズルユニット160は、原料ガスを吐出するノズル本体161と、ノズル本体161の周囲を囲むガイド筒162とを有する。触媒線17は、冷却ローラ13の外周面13bとガス供給源16との間に設置され、原料ガスの分解温度に発熱可能な発熱体で形成される。防着プレート18は、ガス供給源16の周囲を囲むように略円弧状に折り曲げて形成されており、取付リブ18aを介して真空チャンバ10の内面に固定される。防着プレート18は、真空チャンバ10の内壁面に成膜材料が付着することを防止する機能を有する。 The film formation source includes a gas supply source 16 for supplying a raw material gas for film formation, a catalyst wire 17 for decomposing the raw material gas, and a deposition plate 18. The gas supply source 16 includes a plurality of nozzle units 160 arranged along the circumferential direction of the outer peripheral surface 13 b so as to face the base material F on the cooling roller 13. Each nozzle unit 160 includes a nozzle body 161 that discharges the source gas, and a guide tube 162 that surrounds the periphery of the nozzle body 161. The catalyst wire 17 is installed between the outer peripheral surface 13b of the cooling roller 13 and the gas supply source 16, and is formed of a heating element capable of generating heat at the decomposition temperature of the raw material gas. The deposition preventing plate 18 is formed to be bent in a substantially arc shape so as to surround the periphery of the gas supply source 16, and is fixed to the inner surface of the vacuum chamber 10 via the mounting rib 18a. The deposition preventing plate 18 has a function of preventing the deposition material from adhering to the inner wall surface of the vacuum chamber 10.
 本実施形態において、各々のノズルユニット160は、冷却ローラ13の軸方向に沿って延在し、周方向に間隔をあけて防着プレート18の内周面上に配列されている。ノズルユニット160のノズル本体161は、防着プレート18側にガスの吐出口を有する。上記吐出口から吐出されたガスは、冷却ローラ13に向かって防着プレート18およびガイド筒162の各々の内面で反射される。 In the present embodiment, each nozzle unit 160 extends along the axial direction of the cooling roller 13 and is arranged on the inner peripheral surface of the deposition preventing plate 18 with an interval in the circumferential direction. The nozzle body 161 of the nozzle unit 160 has a gas discharge port on the deposition preventing plate 18 side. The gas discharged from the discharge port is reflected by the inner surfaces of the deposition preventing plate 18 and the guide tube 162 toward the cooling roller 13.
 このようにガス供給源16は、触媒線17に原料ガスをむらなく供給することで効率的に原料ガスを分解し、冷却ローラ13上の基材Fの成膜面全域に対して均等に原料ガスの分解種を供給する。ノズルユニット160の配列数、配列間隔、ガイド筒162の形状等は、触媒線17や基材Fの成膜面に対して原料ガスが均一に供給されるように適宜設定される。防着プレート18およびガイド筒162は、ノズル本体161の吐出口への原料ガスの分解種の付着を防止する防着部材としての機能をも有する。 In this way, the gas supply source 16 efficiently decomposes the source gas by supplying the source gas uniformly to the catalyst wire 17, and the source material is evenly distributed over the entire film forming surface of the substrate F on the cooling roller 13. Supply gas decomposition species. The number of nozzle units 160 arranged, the arrangement interval, the shape of the guide tube 162, and the like are set as appropriate so that the source gas is uniformly supplied to the catalyst wire 17 and the film formation surface of the substrate F. The deposition preventing plate 18 and the guide tube 162 also have a function as a deposition preventing member that prevents the decomposition species of the source gas from adhering to the discharge port of the nozzle body 161.
 原料ガスは、基材Fに成膜すべき材料の種類に応じて適宜選択される。例えば、シリコン(Si)膜を形成する場合、原料ガスには、シラン(SiH)と水素(H)の混合ガスが用いられる。シリコン窒化膜を形成する場合、原料ガスには、シラン、水素、アンモニア(NH)等が用いられ、シリコン酸化膜を形成する場合には、シラン、水素、酸素、一酸化二窒素等が用いられる。 The source gas is appropriately selected according to the type of material to be deposited on the substrate F. For example, when forming a silicon (Si) film, a mixed gas of silane (SiH 4 ) and hydrogen (H 2 ) is used as a source gas. When forming a silicon nitride film, silane, hydrogen, ammonia (NH 3 ) or the like is used as a source gas, and when forming a silicon oxide film, silane, hydrogen, oxygen, dinitrogen monoxide, or the like is used. It is done.
 触媒線17は、通電によるジュール熱で発熱可能な金属線で形成され、例えばタングステン、モリブデン、タンタル等の高融点金属で形成される。触媒線17は、原料ガスを分解可能な温度(例えば1700℃以上)に加熱されることで、ガス供給源16から供給される原料ガスを熱分解させ、基材F上に堆積される堆積種を生成する。触媒線17の線径、長さ、本数、配列間隔等は、要求される成膜品質に応じて適宜設定される。 The catalyst wire 17 is formed of a metal wire capable of generating heat by Joule heat generated by energization, and is formed of a high melting point metal such as tungsten, molybdenum, or tantalum. The catalyst line 17 is heated to a temperature at which the source gas can be decomposed (for example, 1700 ° C. or higher), thereby thermally decomposing the source gas supplied from the gas supply source 16 and depositing species deposited on the substrate F Is generated. The diameter, length, number, arrangement interval, etc. of the catalyst wires 17 are appropriately set according to the required film quality.
 図2は、冷却ローラ13の斜視図であり、冷却ローラ13と触媒線17との配置関係を示している。触媒線17は、冷却ローラ13の周囲に複数本、冷却ローラ13の軸方向(X軸方向)に沿って一定の間隔をあけて設置されている。本実施形態において複数の触媒線17の各々は、冷却ローラ13を挟むように鉛直方向(Z軸方向)に折り返された状態で真空チャンバ10の内部に吊り下げられている。これにより、基材Fは、冷却ローラ13の外周面13b上で触媒線17と対向させられる。 FIG. 2 is a perspective view of the cooling roller 13 and shows an arrangement relationship between the cooling roller 13 and the catalyst wire 17. A plurality of catalyst wires 17 are provided around the cooling roller 13 at regular intervals along the axial direction (X-axis direction) of the cooling roller 13. In the present embodiment, each of the plurality of catalyst wires 17 is suspended inside the vacuum chamber 10 in a state of being folded in the vertical direction (Z-axis direction) so as to sandwich the cooling roller 13. Thereby, the base material F is made to oppose the catalyst wire 17 on the outer peripheral surface 13 b of the cooling roller 13.
 図1に示すように、各触媒線17の一方の端部は第1の給電端子191に接続され、他方の端部は第2の給電端子192に接続されている。第1および第2の給電端子191,192の各々は、個々の触媒線17に対応して複数設置され、真空チャンバ10の外部に設置された図示しない電源ユニットにそれぞれ接続されている。触媒線17に対する給電方法は特に限定されず、直流でもよいし交流でもよい。図1の例では、給電端子191,192はY軸方向に相互に対向するように仕切り板15に設置されているが、これに代えて、給電端子191,192を支持し水平方向に延在する部材が真空チャンバ10の内部に設置されてもよい。 As shown in FIG. 1, one end of each catalyst wire 17 is connected to the first power supply terminal 191, and the other end is connected to the second power supply terminal 192. A plurality of first and second power supply terminals 191 and 192 are installed corresponding to the individual catalyst wires 17 and connected to power supply units (not shown) installed outside the vacuum chamber 10. The power supply method for the catalyst wire 17 is not particularly limited, and may be direct current or alternating current. In the example of FIG. 1, the power supply terminals 191 and 192 are installed on the partition plate 15 so as to face each other in the Y-axis direction. Instead, the power supply terminals 191 and 192 are supported and extend in the horizontal direction. A member to be installed may be installed inside the vacuum chamber 10.
 また、第1の室R1の給電端子191,192それぞれから仕切り板15を貫通し、第2の室R2に向けて突出した形で、端子カバー193が設置される。端子カバー193を通して懸吊された各々の触媒線17の側面周囲を、端子カバー193が室R2内で鉛直方向に向かって距離50mm~100mm程度にわたって覆っている。この端子カバー193により、触媒線17の根元に原料ガスが接触しなくなるため、各々の触媒線17の温度が給電端子191,192からの放熱により変化しても、触媒線17の根元に触媒線17と原料ガスとの反応物が生成されることなく、触媒線17の脆化が防止できる。 Further, the terminal cover 193 is installed in such a way that it penetrates the partition plate 15 from the power supply terminals 191 and 192 of the first chamber R1 and protrudes toward the second chamber R2. The terminal cover 193 covers the periphery of the side surface of each catalyst wire 17 suspended through the terminal cover 193 over a distance of about 50 mm to 100 mm in the vertical direction in the chamber R2. The terminal cover 193 prevents the source gas from coming into contact with the base of the catalyst wire 17, so that even if the temperature of each catalyst wire 17 changes due to heat radiation from the power supply terminals 191 and 192, The embrittlement of the catalyst wire 17 can be prevented without generating a reaction product of 17 and the source gas.
 各々の触媒線17の懸吊状態は、冷却ローラ13の周方向に関して、冷却ローラ13の外周面13bとの距離が一定またはほぼ一定となるように調整される。これにより、冷却ローラ13の周方向に関して、基材Fへの成膜レートを一定に維持することができる。また、触媒線17の両端部をそれぞれ支持する給電端子191および給電端子192は、Y軸と平行な方向に相互に対向するように配置される場合に限られない。例えば図3に模式的に示すように、相互に対向しないように何れか一方がX軸方向にシフトして配置されてもよい。これにより、基材Fの幅方向に関して膜厚の均一性を向上させることができる。 The suspension state of each catalyst wire 17 is adjusted such that the distance from the outer peripheral surface 13b of the cooling roller 13 is constant or substantially constant in the circumferential direction of the cooling roller 13. Thereby, the film forming rate on the base material F can be kept constant with respect to the circumferential direction of the cooling roller 13. Further, the power supply terminal 191 and the power supply terminal 192 that respectively support the both ends of the catalyst wire 17 are not limited to being disposed so as to face each other in the direction parallel to the Y axis. For example, as schematically shown in FIG. 3, either one may be arranged shifted in the X-axis direction so as not to face each other. Thereby, the uniformity of the film thickness can be improved in the width direction of the substrate F.
 次に、以上のように構成される本実施形態の成膜装置1の動作について説明する。 Next, the operation of the film forming apparatus 1 of the present embodiment configured as described above will be described.
 巻出しローラ11には基材Fのロール体が取り付けられ、基材Fが冷却ローラ13およびガイドローラ14を介して、巻取りローラ12へ架け渡される。真空チャンバ10の各室R1,R2は、真空ポンプP1,P2によって所定の圧力にまで真空排気される。各々の触媒線17は、給電端子191,192を介して通電され、例えば1700℃以上の高温に加熱される。冷却ローラ13は、内部に冷却媒体を循環供給されることで、外周面13bを基材Fの熱変形を防止する温度にまで冷却される。ガス供給源16の各ノズルユニット160から吐出された原料ガスは、発熱した触媒線17に近接あるいは接触することで熱分解する。そして、熱分解により生成された堆積種は、基材F上に付着、堆積する。 The roll body of the base material F is attached to the unwinding roller 11, and the base material F is bridged to the winding roller 12 via the cooling roller 13 and the guide roller 14. Each chamber R1, R2 of the vacuum chamber 10 is evacuated to a predetermined pressure by vacuum pumps P1, P2. Each catalyst wire 17 is energized through power supply terminals 191 and 192 and is heated to a high temperature of, for example, 1700 ° C. or higher. The cooling roller 13 is cooled to a temperature at which the outer peripheral surface 13b is prevented from being thermally deformed by circulating and supplying a cooling medium therein. The source gas discharged from each nozzle unit 160 of the gas supply source 16 is thermally decomposed by being close to or in contact with the heated catalyst wire 17. The deposited species generated by the thermal decomposition adhere and deposit on the substrate F.
 巻出しローラ11、巻取りローラ12および冷却ローラ13は、各々の回転軸のまわりに図中矢印で示す方向へそれぞれ等速度で回転する。これにより、基材Fは巻出しローラ11から連続的に送り出され、冷却ローラ13の外周面13bに巻き付けられた状態で成膜処理を受けた後、巻取りローラ12へ巻き取られる。 The unwinding roller 11, the winding roller 12, and the cooling roller 13 rotate at respective equal speeds in the directions indicated by the arrows in the drawing around the respective rotating shafts. As a result, the substrate F is continuously fed out from the unwinding roller 11, and after being subjected to a film forming process while being wound around the outer peripheral surface 13 b of the cooling roller 13, the substrate F is wound up onto the winding roller 12.
 本実施形態において、基材Fは、冷却ローラ13の外周面13bへの密着状態が維持されるため、触媒線17からの輻射熱による熱変形が防止され、基材Fへの安定した成膜が確保される。そして、回転軸13aのまわりに回転する冷却ローラ13上で基材Fへの成膜が実施されるため、長尺のフィルム状の基材Fへ連続的に成膜処理を施すことができ、生産性を向上させることができる。 In this embodiment, since the base material F is maintained in close contact with the outer peripheral surface 13b of the cooling roller 13, thermal deformation due to radiant heat from the catalyst wire 17 is prevented, and stable film formation on the base material F is achieved. Secured. And since film-forming to the base material F is implemented on the cooling roller 13 rotated around the rotating shaft 13a, the film-forming process can be continuously performed on the long film-like base material F, Productivity can be improved.
 また、本実施形態においては、ノズルユニット160を構成するノズル本体161のガス吐出口が、冷却ローラ13側とは反対側の防着プレート18側に対向している。これにより触媒線17に原料ガスをむらなく供給することで効率的に原料ガスを分解し、冷却ローラ13上の基材Fの成膜面全域に対して均等に原料ガスの分解種を供給することができる。また、触媒線17との接触により生成された原料ガスの反応生成物がノズル本体161のガス吐出口へ付着する確率を低減することができるので、ガス供給源16による原料ガスの供給を長期にわたって安定に維持することができる。 Further, in the present embodiment, the gas discharge port of the nozzle body 161 constituting the nozzle unit 160 faces the deposition plate 18 side opposite to the cooling roller 13 side. As a result, the source gas is uniformly supplied to the catalyst wire 17 to efficiently decompose the source gas, and the source gas decomposition species is uniformly supplied to the entire film forming surface of the base material F on the cooling roller 13. be able to. In addition, since the probability that the reaction product of the raw material gas generated by the contact with the catalyst wire 17 adheres to the gas discharge port of the nozzle body 161 can be reduced, the supply of the raw material gas from the gas supply source 16 can be performed for a long time. It can be kept stable.
 さらに、本実施形態においては、触媒線17は、その自重により垂れ下げられた状態で真空チャンバ10内に懸吊されているため、触媒線17の伸びによる冷却ローラ13との相対位置の変動を抑制でき、長期にわたり安定した成膜が可能となる。 Furthermore, in this embodiment, since the catalyst wire 17 is suspended in the vacuum chamber 10 while being hung down by its own weight, the relative position with respect to the cooling roller 13 due to the extension of the catalyst wire 17 is changed. Therefore, stable film formation can be achieved over a long period of time.
<第2の実施形態>
 図4および図5は本発明の第2の実施形態に係る成膜装置を示しており、図4は冷却ローラと触媒線との配置関係を示す要部の正面図、図5はそれらの関係を示す要部の斜視図である。本実施形態では、第1の実施形態の構成および作用と同様な部分についてはその説明を省略または簡略化し、第1の実施形態と異なる部分を中心に説明する。
<Second Embodiment>
4 and 5 show a film forming apparatus according to the second embodiment of the present invention. FIG. 4 is a front view of the main part showing the positional relationship between the cooling roller and the catalyst wire, and FIG. It is a perspective view of the principal part which shows. In the present embodiment, the description of the same parts as those of the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.
 本実施形態の成膜装置2は、図1に示したように第1の室R1および第2の室R2を有する真空チャンバと、第2の室R2に設置された冷却ローラ13と、複数のガス供給源26および複数本の触媒線27とを有する。 As shown in FIG. 1, the film forming apparatus 2 of the present embodiment includes a vacuum chamber having a first chamber R1 and a second chamber R2, a cooling roller 13 installed in the second chamber R2, and a plurality of It has a gas supply source 26 and a plurality of catalyst wires 27.
 ガス供給源26は、冷却ローラ13の外周面13bに対向して配置されている。ガス供給源26は、外周面13bに巻き付けられた基材Fへ原料ガスを供給するためのもので、第1の実施形態と同様に構成された複数のノズルユニット260を有する。ガス供給源26は、冷却ローラ13を挟むようにY軸方向に対向するように冷却ローラ13の両側にそれぞれ配置され、各ノズルユニット260は、X軸方向に平行に延在し、Z軸方向に各々配列されている。各ノズルユニット260は、防着プレート28にそれぞれ支持されている。 The gas supply source 26 is disposed to face the outer peripheral surface 13 b of the cooling roller 13. The gas supply source 26 is for supplying source gas to the base material F wound around the outer peripheral surface 13b, and has a plurality of nozzle units 260 configured in the same manner as in the first embodiment. The gas supply sources 26 are arranged on both sides of the cooling roller 13 so as to face each other in the Y-axis direction so as to sandwich the cooling roller 13, and each nozzle unit 260 extends in parallel with the X-axis direction and extends in the Z-axis direction. Are arranged in each. Each nozzle unit 260 is supported by the deposition preventing plate 28.
 触媒線27の各々は、鉛直方向(Z軸方向)に折り返された状態で真空チャンバの内部に吊り下げられ、冷却ローラ13の両側に複数本ずつ、冷却ローラ13の軸方向(X軸方向)に沿って一定の間隔をあけてそれぞれ設置されている。各触媒線27は、ガス供給源26と冷却ローラ13との間に設置され、原料ガスの分解温度以上に加熱される。触媒線27の線径、長さ、本数、配列間隔等は、要求される成膜品質に応じて適宜設定される。図5の例では、基材Fの幅方向に関して触媒線27が等間隔となるように、触媒線27の折り返し間隔と配列間隔とが略同一の大きさに設定されている。これにより、基材Fへの成膜の均一性を高めることができる。 Each of the catalyst wires 27 is suspended in the vacuum chamber in a state of being folded in the vertical direction (Z-axis direction), and a plurality of the catalyst wires 27 are provided on both sides of the cooling roller 13 in the axial direction (X-axis direction). Are installed at regular intervals. Each catalyst line 27 is installed between the gas supply source 26 and the cooling roller 13 and is heated to a temperature equal to or higher than the decomposition temperature of the source gas. The diameter, length, number, arrangement interval, etc. of the catalyst wire 27 are appropriately set according to the required film formation quality. In the example of FIG. 5, the folding intervals and the arrangement intervals of the catalyst wires 27 are set to be approximately the same size so that the catalyst wires 27 are equally spaced in the width direction of the base material F. Thereby, the uniformity of the film-forming to the base material F can be improved.
 触媒線27の各々の両端部は、冷却ローラ13の軸方向(X軸方向)に相互に対向するように配置されている。これにより、各触媒線27と冷却ローラ13との間の距離が一定となるため、基材Fの幅方向に一様な成膜が可能となる。また、冷却ローラ13上の基材Fの搬送方向に関して、上流側に位置する触媒線27と下流側に位置する触媒線27とはY軸方向に相互に対向して配置されてもよいが、相互に対向しないように配置されてもよい。これにより、冷却ローラ13の外周面13bの幅方向に沿って触媒線27を配置することができるため、基材Fの幅方向に関して膜厚の均一化を図ることが可能となる。 Both ends of each of the catalyst wires 27 are arranged so as to face each other in the axial direction (X-axis direction) of the cooling roller 13. Thereby, since the distance between each catalyst line 27 and the cooling roller 13 becomes constant, uniform film formation in the width direction of the base material F is possible. Further, with respect to the conveying direction of the base material F on the cooling roller 13, the catalyst wire 27 located on the upstream side and the catalyst wire 27 located on the downstream side may be arranged to face each other in the Y-axis direction. You may arrange | position so that it may not mutually oppose. Thereby, since the catalyst wire 27 can be arrange | positioned along the width direction of the outer peripheral surface 13b of the cooling roller 13, it becomes possible to aim at the uniformity of a film thickness regarding the width direction of the base material F. FIG.
 以上のように構成される本実施形態の成膜装置2においても、上述の第1の実施形態と同様の作用効果を得ることができる。すなわち、基材Fは、冷却ローラ13の外周面13bへの密着状態が維持されるため、触媒線27からの輻射熱による熱変形が防止され、基材Fへの安定した成膜が確保される。また、回転軸13aのまわりに回転する冷却ローラ13上で基材Fへの成膜が実施されるため、長尺のフィルム状の基材Fへ連続的に成膜処理を施すことができ、生産性を向上させることができる。 Also in the film forming apparatus 2 of the present embodiment configured as described above, the same effects as those of the first embodiment described above can be obtained. That is, since the base material F is maintained in close contact with the outer peripheral surface 13b of the cooling roller 13, thermal deformation due to radiant heat from the catalyst wire 27 is prevented, and stable film formation on the base material F is ensured. . Further, since the film formation on the base material F is performed on the cooling roller 13 rotating around the rotation shaft 13a, the film formation processing can be continuously performed on the long film-shaped base material F, Productivity can be improved.
 さらに、本実施形態においては、触媒線27は、その自重により垂れ下げられた状態で真空チャンバ内に懸吊されているため、触媒線27の伸びによる冷却ローラ13との相対位置の変動を抑制でき、長期にわたり安定した成膜が可能となる。 Furthermore, in this embodiment, since the catalyst wire 27 is suspended in the vacuum chamber while being hung down by its own weight, the fluctuation of the relative position with the cooling roller 13 due to the extension of the catalyst wire 27 is suppressed. And stable film formation is possible over a long period of time.
<第3の実施形態>
 図6および図7は本発明の第3の実施形態に係る成膜装置を示しており、図6は冷却ローラと触媒線との配置関係を示す要部の正面図、図7はそれらの関係を示す要部の斜視図である。本実施形態では、第1の実施形態の構成および作用と同様な部分についてはその説明を省略または簡略化し、第1の実施形態と異なる部分を中心に説明する。
<Third Embodiment>
6 and 7 show a film forming apparatus according to the third embodiment of the present invention. FIG. 6 is a front view of the main part showing the arrangement relationship between the cooling roller and the catalyst wire, and FIG. 7 shows the relationship therebetween. It is a perspective view of the principal part which shows. In the present embodiment, the description of the same parts as those of the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.
 本実施形態の成膜装置3は、図1に示したように第1の室R1および第2の室R2を有する真空チャンバと、第2の室R2に設置された冷却ローラ13と、ガス供給源36と、複数本の触媒線37とを有する。 As shown in FIG. 1, the film forming apparatus 3 according to the present embodiment includes a vacuum chamber having a first chamber R1 and a second chamber R2, a cooling roller 13 installed in the second chamber R2, and a gas supply. A source 36 and a plurality of catalyst wires 37 are provided.
 ガス供給源36は、冷却ローラ13の外周面13bに対向して配置されている。ガス供給源36は、外周面13bに巻き付けられた基材Fへ原料ガスを供給するためのもので、第1の実施形態と同様に構成された複数のノズルユニット360を有する。各ノズルユニット360は、X軸方向に平行に延在し、冷却ローラ13の周方向に沿って冷却ローラ13を囲むように配列されている。各ノズルユニット360は、防着プレート38にそれぞれ支持されている。 The gas supply source 36 is disposed to face the outer peripheral surface 13 b of the cooling roller 13. The gas supply source 36 is for supplying source gas to the base material F wound around the outer peripheral surface 13b, and has a plurality of nozzle units 360 configured in the same manner as in the first embodiment. Each nozzle unit 360 extends in parallel to the X-axis direction and is arranged so as to surround the cooling roller 13 along the circumferential direction of the cooling roller 13. Each nozzle unit 360 is supported by the deposition preventing plate 38.
 一方、複数の触媒線37の各々は、冷却ローラ13の軸方向(X軸方向)に沿って延在し、冷却ローラ13の周方向に間隔をおいて配列されている。各触媒線27は、ガス供給源26と冷却ローラ13との間に設置され、原料ガスの分解温度以上に加熱される。触媒線37の線径、長さ、本数、配列間隔等は、要求される成膜品質に応じて適宜設定される。 On the other hand, each of the plurality of catalyst wires 37 extends along the axial direction (X-axis direction) of the cooling roller 13 and is arranged at intervals in the circumferential direction of the cooling roller 13. Each catalyst line 27 is installed between the gas supply source 26 and the cooling roller 13 and is heated to a temperature equal to or higher than the decomposition temperature of the source gas. The diameter, length, number, arrangement interval, etc. of the catalyst wire 37 are appropriately set according to the required film quality.
 触媒線37の両端部は、図示しない給電端子にそれぞれ接続される。上記給電端子は、真空チャンバの内壁に固定されてもよいし、真空チャンバの内部に設置された任意の構造体に固定されてもよい。また、触媒線37の両端部と給電端子との間にスプリング等の弾性部材を介挿してもよい。これにより、触媒線37の自重あるいは熱による伸びが上記弾性部材によって吸収され、触媒線37の撓みによる形状変化を抑制することができる。 Both ends of the catalyst wire 37 are connected to power supply terminals (not shown). The power supply terminal may be fixed to the inner wall of the vacuum chamber, or may be fixed to an arbitrary structure installed inside the vacuum chamber. Further, an elastic member such as a spring may be interposed between both ends of the catalyst wire 37 and the power supply terminal. Thereby, the extension of the catalyst wire 37 due to its own weight or heat is absorbed by the elastic member, and the shape change due to the deflection of the catalyst wire 37 can be suppressed.
 以上のように構成される本実施形態の成膜装置3においても、上述の第1の実施形態と同様の作用効果を得ることができる。すなわち、基材Fは、冷却ローラ13の外周面13bへの密着状態が維持されるため、触媒線37からの輻射熱による熱変形が防止され、基材Fへの安定した成膜が確保される。また、回転軸13aのまわりに回転する冷却ローラ13上で基材Fへの成膜が実施されるため、長尺のフィルム状の基材Fへ連続的に成膜処理を施すことができ、生産性を向上させることができる。 Also in the film forming apparatus 3 of the present embodiment configured as described above, the same effects as those of the first embodiment can be obtained. That is, since the base material F is maintained in close contact with the outer peripheral surface 13b of the cooling roller 13, thermal deformation due to radiant heat from the catalyst wire 37 is prevented, and stable film formation on the base material F is ensured. . Further, since the film formation on the base material F is performed on the cooling roller 13 rotating around the rotation shaft 13a, the film formation processing can be continuously performed on the long film-shaped base material F, Productivity can be improved.
<第4の実施形態>
 図8は、本発明の第3の実施形態に係る成膜装置における冷却ローラと触媒線との配置関係を示す要部の斜視図である。本実施形態では、第1の実施形態の構成および作用と同様な部分についてはその説明を省略または簡略化し、第1の実施形態と異なる部分を中心に説明する。
<Fourth Embodiment>
FIG. 8 is a perspective view of the main part showing the positional relationship between the cooling roller and the catalyst wire in the film forming apparatus according to the third embodiment of the present invention. In the present embodiment, the description of the same parts as those of the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.
 本実施形態の成膜装置4は、図1に示したように第1の室R1および第2の室R2を有する真空チャンバと、第2の室R2に設置された冷却ローラ43と、ガス供給源と、複数本の触媒線47とを有する。 As shown in FIG. 1, the film forming apparatus 4 of the present embodiment includes a vacuum chamber having a first chamber R1 and a second chamber R2, a cooling roller 43 installed in the second chamber R2, a gas supply A source and a plurality of catalyst wires 47.
 本実施形態では、冷却ローラ43は、鉛直方向(Z軸方向)に沿って配置された回転軸43aを有する円筒形状を有し、その外周面に基材が巻き付けられる。ガス供給源は、図示せずとも、冷却ローラ43の外周面に巻き付けられた基材Fへ原料ガスを供給するためのもので、第1の実施形態と同様に構成された複数のノズルユニットを有する。各ノズルユニットは、Z軸方向に平行に延在し、冷却ローラ13の周方向に沿って冷却ローラ43を囲むように配列されている。 In the present embodiment, the cooling roller 43 has a cylindrical shape having a rotating shaft 43a arranged along the vertical direction (Z-axis direction), and the base material is wound around the outer peripheral surface thereof. Although not shown, the gas supply source is for supplying the source gas to the base material F wound around the outer peripheral surface of the cooling roller 43, and includes a plurality of nozzle units configured in the same manner as in the first embodiment. Have. Each nozzle unit extends in parallel to the Z-axis direction and is arranged so as to surround the cooling roller 43 along the circumferential direction of the cooling roller 13.
 各触媒線47は、ガス供給源と冷却ローラ43との間に設置され、原料ガスの分解温度以上に加熱される。触媒線47の線径、長さ、本数、配列間隔等は、要求される成膜品質に応じて適宜設定される。図8の例では、基材Fの長手方向(搬送方向)に関して触媒線47が等間隔となるように、触媒線47の折り返し間隔と配列間隔とが同一の大きさに設定されている。これにより、基材Fへの成膜の均一性を高めることができる。 Each catalyst wire 47 is installed between the gas supply source and the cooling roller 43, and is heated to a temperature equal to or higher than the decomposition temperature of the raw material gas. The wire diameter, length, number, arrangement interval and the like of the catalyst wire 47 are appropriately set according to the required film formation quality. In the example of FIG. 8, the folding interval and the arrangement interval of the catalyst wires 47 are set to the same size so that the catalyst wires 47 are equally spaced with respect to the longitudinal direction (conveying direction) of the base material F. Thereby, the uniformity of the film-forming to the base material F can be improved.
 本実施形態において、各触媒線47は、鉛直方向(Z軸方向)に折り返された状態で真空チャンバの内部に吊り下げられ、冷却ローラ43の周方向に沿って一定の間隔をあけてそれぞれ設置されている。これにより、冷却ローラ43の外周面の幅方向および周方向に沿って各触媒線47を基材に対向させることができるため、冷却ローラ43上の基材に効率よく成膜を行うことができる。 In the present embodiment, each catalyst wire 47 is suspended inside the vacuum chamber in a state of being folded in the vertical direction (Z-axis direction), and is installed at a certain interval along the circumferential direction of the cooling roller 43. Has been. Thereby, since each catalyst wire 47 can be made to oppose a base material along the width direction and the circumferential direction of the outer peripheral surface of the cooling roller 43, film formation can be efficiently performed on the base material on the cooling roller 43. .
 以上のように構成される本実施形態の成膜装置4においても、上述の第1の実施形態と同様の作用効果を得ることができる。すなわち、触媒線47からの輻射熱による基材の熱変形が防止され、基材Fへの安定した成膜が確保される。また、回転軸43aのまわりに回転する冷却ローラ43上で基材への成膜が実施されるため、長尺のフィルム状の基材へ連続的に成膜処理を施すことができ、生産性を向上させることができる。 Also in the film forming apparatus 4 of the present embodiment configured as described above, the same operational effects as those of the first embodiment can be obtained. That is, thermal deformation of the base material due to radiant heat from the catalyst wire 47 is prevented, and stable film formation on the base material F is ensured. In addition, since the film is formed on the base material on the cooling roller 43 that rotates around the rotation shaft 43a, the film forming process can be continuously performed on the long film-like base material. Can be improved.
 さらに、本実施形態においては、触媒線47は、その自重により垂れ下げられた状態で真空チャンバ内に懸吊されているため、触媒線47の伸びによる冷却ローラ43との相対位置の変動を抑制でき、長期にわたり安定した成膜が可能となる。 Furthermore, in this embodiment, since the catalyst wire 47 is suspended in the vacuum chamber while being hung down by its own weight, the fluctuation of the relative position with the cooling roller 43 due to the extension of the catalyst wire 47 is suppressed. And stable film formation is possible over a long period of time.
 なお、図8に示すように、触媒線47の折り返し部47aが冷却ローラ43の下端よりも下方に位置するように触媒線47の長さを設定することにより、冷却ローラ43上の基材に対して触媒線47のストレート部のみを対向させることができる。これにより、触媒線47によって活性化された成膜材料粒子を密度的にほぼ均一に基材上に放射させることができる。 As shown in FIG. 8, the length of the catalyst wire 47 is set so that the folded portion 47 a of the catalyst wire 47 is located below the lower end of the cooling roller 43. On the other hand, only the straight portion of the catalyst wire 47 can be opposed. Thereby, the film-forming material particles activated by the catalyst wire 47 can be radiated almost uniformly on the substrate in terms of density.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various deformation | transformation is possible based on the technical idea of this invention.
 例えば以上の実施形態では、シリコン膜、シリコン酸化膜、シリコン窒化膜等のシリコン系の薄膜を形成する場合を例に挙げて説明したが、シリコン系以外の薄膜の形成にも本発明は適用可能である。 For example, in the above-described embodiment, the case where a silicon-based thin film such as a silicon film, a silicon oxide film, or a silicon nitride film is formed has been described as an example. It is.
 また、上述した複数の実施形態を組み合わせて成膜装置を構成することも可能である。例えば、第1の実施形態で説明した触媒線と、第2実施形態および/または第3の実施形態で説明した触媒線とを混在させた成膜装置が構成されてもよい。 It is also possible to configure a film forming apparatus by combining the above-described embodiments. For example, a film forming apparatus in which the catalyst wire described in the first embodiment and the catalyst wire described in the second embodiment and / or the third embodiment are mixed may be configured.
 1、2、3、4…成膜装置
 10…真空チャンバ
 13、43…冷却ローラ
 13a、43a…回転軸
 13b…外周面
 16、26、36…ガス供給源
 17、27、37、47…触媒線
 F…基材
DESCRIPTION OF SYMBOLS 1, 2, 3, 4 ... Film-forming apparatus 10 ... Vacuum chamber 13, 43 ... Cooling roller 13a, 43a ... Rotating shaft 13b ... Outer peripheral surface 16, 26, 36 ... Gas supply source 17, 27, 37, 47 ... Catalyst wire F ... Base material

Claims (8)

  1.  チャンバと、
     回転軸と、フィルム状の基材が巻き付けられる外周面とを有し、前記回転軸のまわりに回転することで前記外周面に巻き付けられた前記基材を冷却しつつ前記チャンバ内で搬送するように構成されたメインローラと、
     前記外周面に対向して配置され、前記外周面に巻き付けられた前記基材へ原料ガスを供給するためのガス供給源と、
     前記外周面と前記ガス供給源との間に設置され、前記原料ガスの分解温度に発熱可能な複数の触媒線と
     を具備する成膜装置。
    A chamber;
    A rotating shaft and an outer peripheral surface around which the film-like base material is wound, and the substrate wound around the outer peripheral surface is conveyed in the chamber while being cooled by rotating around the rotating shaft. A main roller configured in
    A gas supply source for supplying a source gas to the base material, which is disposed to face the outer peripheral surface and is wound around the outer peripheral surface;
    A film forming apparatus comprising a plurality of catalyst wires installed between the outer peripheral surface and the gas supply source and capable of generating heat at a decomposition temperature of the source gas.
  2.  請求項1に記載の成膜装置であって、
     前記メインローラは、前記回転軸を水平方向に向けて配置され、
     前記複数の触媒線の各々は、鉛直方向に折り返された状態で前記チャンバの内部に吊り下げられ、前記水平方向に間隔をおいて配列される成膜装置。
    The film forming apparatus according to claim 1,
    The main roller is disposed with the rotating shaft directed in the horizontal direction,
    Each of the plurality of catalyst wires is suspended in the chamber in a state of being folded back in the vertical direction, and is deposited in the horizontal direction at intervals.
  3.  請求項2に記載の成膜装置であって、
     前記複数の触媒線の各々は、前記メインローラを挟むように鉛直方向に折り返される成膜装置。
    The film forming apparatus according to claim 2,
    Each of the plurality of catalyst wires is a film forming apparatus that is folded in a vertical direction so as to sandwich the main roller.
  4.  請求項2に記載の成膜装置であって、
     前記複数の触媒線の各々は、電源に接続される両端部を有し、前記両端部は、前記水平方向に相互に対向する成膜装置。
    The film forming apparatus according to claim 2,
    Each of the plurality of catalyst wires has both end portions connected to a power source, and the both end portions face each other in the horizontal direction.
  5.  請求項1に記載の成膜装置であって、
     前記メインローラは、前記回転軸を水平方向に向けて配置され、
     前記複数の触媒線の各々は、前記水平方向に沿って延在し、前記外周面の周方向に間隔をおいて配列される成膜装置。
    The film forming apparatus according to claim 1,
    The main roller is disposed with the rotating shaft directed in the horizontal direction,
    Each of the plurality of catalyst wires extends in the horizontal direction, and is a film forming apparatus that is arranged at intervals in the circumferential direction of the outer peripheral surface.
  6.  請求項1に記載の成膜装置であって、
     前記メインローラは、前記回転軸を鉛直方向に向けて配置され、
     前記複数の触媒線の各々は、鉛直方向に折り返された状態で前記チャンバの内部に吊り下げられ、前記外周面の周方向に間隔をおいて配列される成膜装置。
    The film forming apparatus according to claim 1,
    The main roller is arranged with the rotation axis directed in the vertical direction,
    Each of the plurality of catalyst wires is suspended in the chamber in a state of being folded in the vertical direction, and is deposited in the circumferential direction of the outer peripheral surface at intervals.
  7.  請求項1に記載の成膜装置であって、
     前記ガス供給源は、
     前記外周面の周方向に配列された複数のノズルユニットと、
     前記複数のノズルユニットの周囲を囲む防着部材とを含む
     成膜装置。
    The film forming apparatus according to claim 1,
    The gas supply source is:
    A plurality of nozzle units arranged in the circumferential direction of the outer peripheral surface;
    A film forming apparatus including an adhesion preventing member surrounding the plurality of nozzle units.
  8.  請求項7に記載の成膜装置であって、
     前記複数のノズルユニットは各々、前記防着部材側にガスの吐出口を有する
     成膜装置。
    The film forming apparatus according to claim 7,
    Each of the plurality of nozzle units has a gas discharge port on the deposition member side.
PCT/JP2011/004104 2010-07-22 2011-07-20 Film forming apparatus WO2012011280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010164532A JP2013209675A (en) 2010-07-22 2010-07-22 Film forming apparatus
JP2010-164532 2010-07-22

Publications (1)

Publication Number Publication Date
WO2012011280A1 true WO2012011280A1 (en) 2012-01-26

Family

ID=45496712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004104 WO2012011280A1 (en) 2010-07-22 2011-07-20 Film forming apparatus

Country Status (3)

Country Link
JP (1) JP2013209675A (en)
TW (1) TW201209220A (en)
WO (1) WO2012011280A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303182A (en) * 1999-04-16 2000-10-31 Anelva Corp Chemical vapor deposition device
JP2002069644A (en) * 2000-08-29 2002-03-08 Sony Corp Device and method for producing thin film
WO2007119700A1 (en) * 2006-04-13 2007-10-25 Ulvac, Inc. Catalyst body chemical vapor phase growing apparatus
JP2009127100A (en) * 2007-11-26 2009-06-11 Ulvac Japan Ltd Film deposition system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303182A (en) * 1999-04-16 2000-10-31 Anelva Corp Chemical vapor deposition device
JP2002069644A (en) * 2000-08-29 2002-03-08 Sony Corp Device and method for producing thin film
WO2007119700A1 (en) * 2006-04-13 2007-10-25 Ulvac, Inc. Catalyst body chemical vapor phase growing apparatus
JP2009127100A (en) * 2007-11-26 2009-06-11 Ulvac Japan Ltd Film deposition system

Also Published As

Publication number Publication date
JP2013209675A (en) 2013-10-10
TW201209220A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5665290B2 (en) Deposition equipment
JP5486249B2 (en) Deposition method
US20090277386A1 (en) Catalytic chemical vapor deposition apparatus
US20130089665A1 (en) Self-limiting reaction deposition apparatus and self-limiting reaction deposition method
JP5542488B2 (en) Deposition equipment
JP2012052170A (en) Method of producing functional film
JP4999737B2 (en) Deposition equipment
JP2009280873A (en) Method of manufacturing gas barrier film
JP2009209381A (en) Film-forming apparatus, gas barrier film, and method for producing gas barrier film
JP5562723B2 (en) Film forming method, film forming apparatus, and gas barrier film manufacturing method
CN110168130B (en) Film forming method and winding type film forming apparatus
US20090229523A1 (en) Film depositing apparatus
WO2012011280A1 (en) Film forming apparatus
JP5450202B2 (en) Deposition equipment
JP4558810B2 (en) Deposition equipment
JP5484846B2 (en) Functional membrane manufacturing apparatus and manufacturing method
KR101622449B1 (en) Method for manufacturing functional film
JP6569685B2 (en) Film forming apparatus and gas barrier film manufacturing method
US20140186527A1 (en) Device and method for processing strip-type substrates
JP2011179084A (en) Atmospheric plasma apparatus
JP2004197209A (en) Hot wire cvd system
JP4913947B2 (en) Protective gas shield device
JP5901554B2 (en) Film forming apparatus and film forming method
EP3118349B1 (en) Deposition source, deposition apparatus and method of operating thereof
JP4498032B2 (en) Heating element CVD apparatus and heating element CVD method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP