WO2012010776A1 - Procede d'epissures de fibres optiques et jonction obtenue par un tel procede - Google Patents
Procede d'epissures de fibres optiques et jonction obtenue par un tel procede Download PDFInfo
- Publication number
- WO2012010776A1 WO2012010776A1 PCT/FR2011/051658 FR2011051658W WO2012010776A1 WO 2012010776 A1 WO2012010776 A1 WO 2012010776A1 FR 2011051658 W FR2011051658 W FR 2011051658W WO 2012010776 A1 WO2012010776 A1 WO 2012010776A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- fibers
- bridge
- optical
- light
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/045—Light guides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2555—Alignment or adjustment devices for aligning prior to splicing
Definitions
- the invention relates to a method for splicing optical fibers and an optical fiber junction obtained by such a method.
- Optical fibers are filaments of transparent material, such as glass, that carry light along their main direction. They are used in particular in telecommunications to carry modulated signals over very long distances.
- the optical fibers comprise a core of a predetermined optical refractive index surrounded by a sheath of a lower refractive index.
- the light in the heart is reflected on the surface separating the heart from the sheath and thus remains confined in the heart.
- a welding technique is known for connecting optical fibers.
- the fibers are first prepared by cleaving and / or polishing the ends to be joined. Then the fibers are aligned end to end.
- An intake of heat melts the material that is welded without adding material.
- the heat is provided for example by an electric arc.
- WO 86/03599 shows for example a method of this type.
- the fibers are placed parallel to each other and face a mirror that reflects light from one fiber, focusing it on the end of the other fiber.
- the invention aims to provide an optical fiber splicing process that is simple to implement, reliable, inexpensive and whose junction achieved has low losses.
- the subject of the invention is a process for splicing two optical fibers according to which the following steps are carried out: the two fibers are aligned with one of their ends facing one of the two another, a photopolymerizable composition is placed in the interstice between the two ends, the composition having a larger optical refractive index when polymerized, light is provided to the composition by at least one of the fibers for forming a bridge of polymerized material between the ends of the two fibers, characterized in that the composition has a polymerization threshold for the light energy supplied beyond which the polymerization begins.
- the beam of light coming out of the end of a fiber has a Gaussian distribution of energy, centered on the center of the fiber core, ie it is stronger in the center than on edges.
- a polymerized portion begins to build from the center of the core of the light source fiber, that is, in an area that has received sufficient energy to exceed the polymerization threshold. and therefore for the polymerization to begin.
- the intensity of the incident beam and the exposure time are such that the polymerization threshold may not be reached throughout the area illuminated by the beam. It is reached first near the end of the fiber, since the beam is divergent, and in the axis of the heart.
- the zone being formed has the shape of a symmetrical tip of revolution and is quite distinct from the uncured zone.
- the forming zone forms an optical guide which concentrates the light at the end of the tip. The growth of this point continues until reaching the end of the other fiber, so as to form between the fiber cores a bridge of substantially cylindrical shape.
- a polymerization threshold allows an unpolymerized zone to remain around the tip and in which the refractive index does not evolve to form an optical guide with the tip.
- the peripheral zone to the guide no longer receives light and can not reach the threshold of polymerization.
- a polymerization threshold is explained in particular by the presence of dissolved oxygen in the composition. Indeed, the radicals excited by light react primarily with oxygen. When all the oxygen is consumed, the excited radicals react with the monomer to form a polymer chain. Oxygen therefore plays a role in neutralizing the formation of the polymer, and it is when the threshold of consumption of oxygen is exceeded that the polymerization can begin.
- the dissolved oxygen comes from the atmosphere and is incorporated into the composition during its preparation and storage.
- Polymerization inhibitors such as hydroquinone, t-butylhydroquinone, hydroquinone monoethyl ether, t-butylcatechol, phenothiazine or CC-naphthol could also be specifically used.
- the difference in optical refractive index between the unpolymerized composition and the polymer is greater than 0.028. It is found that this difference is sufficient for the phenomenon described above to occur.
- the composition comprises pentaerythritol triacrylate or pentaerythritol tetraacrylate (PETA).
- PETA pentaerythritol triacrylate
- This compound makes it possible to obtain a polymer with good transparency qualities and a refractive index close to those of the glass used for the optical fibers.
- the composition further comprises a fluorinated compound, such as, for example, heptafluorobutyl acrylate (HFBA).
- HFBA heptafluorobutyl acrylate
- PETA and HFBA together form a copolymer after polymerization.
- the dosage between PETA and HFBA makes it possible to adjust on demand the optical refractive index of the composition and the bridge polymer.
- the index of the polymer is chosen to be closest to that of the core of the fibers to be spliced.
- the composition further comprises eosin as a sensitizing agent of the composition to light.
- Eosin can initiate polymerization when exposed to visible light, particularly light emitted from a green laser diode at a wavelength of 532 nm.
- concentration By adjusting its concentration, the light intensity necessary to obtain the polymerization is modified. The higher the concentration, the more light is absorbed and the polymerization occurs rapidly.
- concentration of eosin is, for example, less than 0.2%.
- the composition also contains, for example, N-methyldiethanolamine (MDEA). It is found that this compound facilitates the polymerization.
- MDEA N-methyldiethanolamine
- eosin initiates the polymerization process by absorbing light. Then, eosin reacts with the MDEA leading from an unstable singlet excited state to a stable triplet state that generates free radicals. These free radicals, thus formed, react with the monomer (PETA) to form a crosslinked chain which forms the polymer.
- PETA monomer
- the unpolymerized composition is removed leaving the bridge, and replaced with a composition to form a sheath around the bridge.
- the sheath is thus reconstituted and can be maintained in a sustainable manner.
- a solvent such as ethanol
- the composition is photopolymerizable, it is illuminated by a radial light relative to the axis of the fibers.
- the composition forming the cladding, the optical refractive index of the polymer formed is polymerized. being lower than that of the bridge.
- the junction of the reconstituted sheath and the bridge constitutes a waveguide in the continuity of the optical fibers ensuring minimal losses.
- the composition is polymerized, it is durable and remains in place without significant aging.
- a heat treatment step is performed for the junction above a predetermined temperature threshold. This step makes it possible to stabilize the polymerization and to obtain a junction which remains stable over time, in particular in a hot environment.
- the invention also relates to a junction of two optical fibers placed end-to-end, a gap separating the ends of optical fibers comprising a bridge, characterized in that it is obtained by the splicing process described above.
- the junction comprises mechanical means for holding the fibers together. Forces exerted between the fibers are not transmitted to the bridge, but taken up by the mechanical means. The integrity of the bridge, attached to the end of the fibers, is preserved.
- the mechanical means comprise at least one optical window for activating the photopolymerization of the sheath around the bridge.
- Figure 1 is a view of a system for implementing a splicing method according to the invention
- FIG. 2 is a view of a first step of making a junction between two optical fibers according to the method according to the invention;
- Figures 3 and 4 are similar to Figure 2 of two following steps;
- Figure 5 is a perspective view of mechanical means for holding the fibers together
- FIG. 6 is an image taken under the microscope of a splice made according to the method of the invention.
- Fig. 7 is a diagram showing the insertion losses of an exemplary embodiment of the invention with monomode fibers compared to the prior art
- Figure 8 is a figure similar to Figure 7 for an embodiment with multimode fibers.
- An optical fiber splicing method 11, 12 conventionally comprising a core 111, 121 surrounded by a sheath 110, 120 is implemented in accordance with the invention with the mechanical holding means 2 as shown in FIG. 5.
- These mechanical means 2 serve to hold the optical fibers 11, 12 facing each other during and after the completion of the splice.
- the mechanical means 2 comprise a plate 20 serving as a base and levers 21 used to pinch the optical fibers 11, 12 against the plate 20.
- the plate 20 comprises in its middle two grooves 22 in aligned vee and intended to guide the fibers 11, 12 so that their ends 112, 122 are facing each other and that the cores 111, 112 of the fibers are coaxial.
- a notch 23 separates the two grooves 22.
- optical fibers 11, 12 whose ends have been removed from their protective jacket are placed in the extension of one another in the grooves 22 Vee.
- the optical fibers 11, 12 are of the monomode type at 1550 nm and are referred to as "SMF28e" at Corning.
- the heart of these fibers has a diameter of the order of 10 ym.
- a gap 13 is held between their ends 112, 122, with a width adjusted between 0 and 200 ⁇ m, but preferably between 10 and 100 ⁇ m.
- the first of the fibers 11 is connected at its end 112 opposite to a light source such as an argon laser 3, as shown in FIG. 1.
- the mechanical means 2 are placed on a microscope 4, so as to observe the gap 13 perpendicular to the axis of the fibers and to control the width of said gap 13.
- the laser connection is made via a shutter 5 which allows to pass on the laser beam to the first order optical fiber .
- a photopolymerizable composition is placed in the gap 13 between the ends 112, 122 of the fibers using a pipette.
- the composition is illuminated through the optical fiber by feeding the laser and leaving the shutter open for a predetermined time to build a bridge 131 between the two fibers.
- a composition is placed in the gap 13 to form a sheath around the bridge 131 in place of the remainder of the unpolymerized composition.
- composition is elaborated as follows:
- PETA pentaerythritol triacrylate or tetra-acrylate
- N-methyldiethanolamine is added using a pipette
- hepta-fluoro-butyl acrylate (HFBA) is added to the mixture by means of a pipette; a tip of mini powdered eosin spatula is removed and added to the mixture;
- composition is stirred for 12 hours, taking care to place the container away from the light;
- composition for bridge 131 is as follows:
- a similar composition is prepared according to the same procedure for producing the sheath 132 around the bridge 131.
- This composition has the following proportions: 54.5% of PETA, 41% of HFBA, 4.48% of MDEA and 0.02 % eosin.
- a refractive index of 1.41 is measured before polymerization and 1.44 for the polymerized material.
- the power of the laser is adjusted so that its output power of fiber is equal to 5 ⁇ W.
- the shutter 5 is placed in the closed position so as to close the laser beam.
- the laser beam is then sent into the first fiber 11 for one second, this exposure time being controlled by means of the shutter 5.
- the material exposed to light in the extension of the core 111 of the first fiber 11 polymerizes and first forms a tip 130, as shown in Figure 3, and a bridge 131 between the cores 111, 112 of the fibers 11, 12 of substantially cylindrical shape, as shown in FIG.
- the second composition is then placed in place of the first unpolymerized composition, around the bridge 131.
- This composition is exposed to light in order to polymerize it and forms a sheath 132 around the bridge 131, as shown in FIGS. and 6.
- a stabilization step can be added by subjecting the junction to a stabilized temperature, for example 90 ° C, so that temperature changes thereafter do not result in changes in the properties of the transmission.
- Insertion loss measurements have been made with the example as described above and are transcribed on curve C of the diagram of FIG. 7.
- the wavelength is 1550 nm.
- the results are compared with those obtained with a junction with simply air in gap 13 (curve A), or an index gel composed of pure PETA monomer (curve B). There is much better performance of the junction made according to the invention.
- multimode fibers were connected according to the method described above.
- the fibers have a heart of the order of 50 ⁇ m.
- Insertion loss measurements were made at a wavelength of 1550 nm.
- the results are presented in curve D of FIG. 8 and are compared with the losses in a junction with an index gel composed of pure PETA monomer in gap 13 (curve E). It is found that the losses are comparable up to a gap of 300 ⁇ m and are significantly lower for the invention at higher gap widths.
- the invention is not limited to the examples which have just been described.
- the bridge 131 can be formed by simultaneously illuminating the two fibers.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
Selon un procédé d'épissure de deux fibres optiques (11, 12), on procède aux étapes suivantes : on aligne les deux fibres (11, 12) avec une de leurs extrémités (112, 122) en vis-à-vis l'une de l'autre, on place une composition photopolymérisable dans l'interstice (13) entre les deux extrémités (112, 122), la composition ayant un indice de réfraction optique plus grand lorsqu'elle est polymérisée, on fournit de la lumière à la composition par au moins l'une des fibres (11, 12) pour former un pont (131) de matière polymérisée entre les extrémités (112, 122) des deux fibres. La composition a un seuil de polymérisation pour l'énergie lumineuse fournie au-delà duquel la polymérisation s'amorce. Jonction réalisée par ce procédé.
Description
Procédé d'épissure de fibres optiques et jonction obtenue par un tel procédé.
DOMAINE DE L' INVENTION
L'invention concerne un procédé d'épissure de fibres optiques et une jonction de fibres optiques obtenue par un tel procédé. TECHNIQUE ANTÉRIEURE
Les fibres optiques sont des filaments de matériau transparent, comme du verre, qui permettent de transporter de la lumière le long de leur direction principale. Elles sont utilisées en particulier dans les télécommunications pour transporter des signaux modulés sur de très longues distances.
Les fibres optiques comportent un cœur d'un indice de réfraction optique prédéterminé entouré d'une gaine d'un indice de réfraction inférieur. La lumière dans le cœur se réfléchit sur la surface séparant le cœur de la gaine et reste ainsi confinée dans le cœur.
Il est nécessaire de pouvoir raccorder deux fibres optiques afin d'assurer la continuité optique de ce guide d'une fibre à l'autre avec une perte la plus faible possible.
On connaît une technique de soudure pour raccorder des fibres optiques. Les fibres sont d'abord préparées en clivant et/ou en polissant les extrémités à raccorder. Puis les fibres sont alignées extrémité contre extrémité. Un apport de chaleur fait fondre le matériau qui se soude sans apport de matière. La chaleur est apportée par exemple par un arc électrique.
Cette technique est largement utilisée puisqu'elle permet d'obtenir une jonction avec de faibles pertes dans la transmission du signal, de l'ordre de 0,02 à 0,04 dB .
Cependant, il est nécessaire de préparer très soigneusement les extrémités de fibres afin que leur face soit bien plane et perpendiculaire à l'axe de la fibre. De plus, il est nécessaire de positionner très précisément les fibres l'une au bout de l'autre. Ceci nécessite un matériel onéreux et délicat à mettre en œuvre .
D'autres procédés d'épissure ont été proposés. Le principe de ces procédés est un maintien mécanique des fibres l'une en regard de l'autre. Un support comporte une rainure, par exemple une rainure en vé, et les fibres sont pincées sur le support pour être maintenues en place. Cependant, la lumière qui sort à une extrémité d'une fibre est divergente. La proportion de lumière qui est captée par la fibre en regard faiblit rapidement en fonction de l'espace entre les extrémités des fibres. Ici aussi, il est important que les faces d'extrémités soient de bonne qualité. De plus, le positionnement relatif des fibres doit être soigné pour ne pas subir de fortes pertes. Dans des versions perfectionnées, un gel de même indice de réfraction optique que le cœur de la fibre est ajouté dans l'espace entre les fibres. On constate couramment qu'il n'est pas possible d'obtenir de manière fiable des pertes de moins de 0,1 à 0,2 dB, ce qui est considéré comme trop important dans un certain nombre d' applications .
Le document WO 86/03599 montre par exemple un procédé de ce type. Les fibres sont placées parallèlement l'une à l'autre et font face à un miroir qui renvoie la lumière en provenance d'une fibre en la focalisant sur l'extrémité de l'autre fibre.
Dans le document WO03/012504, il est également proposé de placer une composition polymérisée dans l'interstice entre deux fibres optiques. Cette jonction est également très sensible au réglage de la largeur de 1 ' interstice .
Le document US 4,666,236-A montre un procédé de raccordement de fibres optiques entre elles ou avec une photodiode laser. Une composition photopolymérisable est placée entre les composants à raccorder, et la composition est soumise à un éclairement par le composant. La polymérisation se fait uniquement dans la zone éclairée. Cependant, par cette méthode, le guide reconstitué est divergent et présente les mêmes pertes qu'avec un procédé avec une composition non polymérisée. OBJECTIFS DE L' INVENTION
L'invention vise à fournir un procédé d'épissure de fibres optiques qui soit simple à mettre en œuvre, fiable, peu coûteux et dont la jonction réalisée présente de faibles pertes. EXPOSÉ DE L' INVENTION
Avec ces objectifs en vue, l'invention a pour objet un procédé d'épissure de deux fibres optiques selon lequel on procède aux étapes suivantes : on aligne les deux fibres avec une de leurs extrémités en vis-à-vis l'une de l'autre, on place une composition photopolymérisable dans l'interstice entre les deux extrémités, la composition ayant un indice de réfraction optique plus grand lorsqu'elle est polymérisée, on fournit de la lumière à la composition par au moins l'une des fibres pour former un pont de matière polymérisée entre les extrémités des deux fibres, caractérisé en ce que la composition a un seuil de polymérisation pour l'énergie lumineuse fournie au-delà duquel la polymérisation s'amorce.
On constate qu'avec une telle composition, le pont qui est constitué entre les extrémités des fibres ne diverge pas, mais reste sensiblement cylindrique. De ce fait, les pertes constatées lors de la transmission de la lumière par la jonction sont très faibles et d'un niveau
acceptable. Les inventeurs expliquent ce phénomène de la façon suivante :
Le faisceau de lumière qui sort de l'extrémité d'une fibre a une répartition gaussienne de l'énergie, centrée sur le centre du cœur de la fibre, c'est-à-dire qu'elle est plus forte au centre que sur les bords. Pendant la phase d' éclairement , une partie polymérisée commence à se construire à partir du centre du cœur de la fibre source de lumière, c'est-à-dire dans une zone qui a reçu suffisamment d'énergie pour dépasser le seuil de polymérisation et donc pour que la polymérisation commence. L'intensité du faisceau incident et le temps d'exposition sont tels que le seuil de polymérisation peut ne pas être atteint dans toute la zone éclairée par le faisceau. Il est atteint d'abord au plus près de l'extrémité de la fibre, puisque le faisceau est divergent, et dans l'axe du cœur. La zone en cours de formation a la forme d'une pointe en symétrie de révolution et se distingue assez nettement de la zone non polymérisée. Comme l'indice de réfraction de la zone polymérisée est plus élevé que celui de la composition avant polymérisation, la zone en formation forme un guide optique qui concentre la lumière à l'extrémité de la pointe. La croissance de cette pointe se poursuit jusqu'à atteindre l'extrémité de l'autre fibre, de manière à former entre les cœurs des fibres un pont de forme sensiblement cylindrique.
L'existence d'un seuil de polymérisation permet qu'une zone non polymérisée subsiste autour de la pointe et dans laquelle l'indice de réfraction n'évolue pas pour former une guide optique avec la pointe. Quand le guide optique a commencé à se former, la zone périphérique au guide ne reçoit plus de lumière et ne peut donc pas atteindre le seuil de polymérisation.
On constate que le procédé est tolérant vis-à-vis de la qualité de surface des extrémités, à tel point qu'une
simple cassure à l'aide d'une pince coupante est suffisante comme préparation de la fibre.
L'existence d'un seuil de polymérisation s'explique en particulier par la présence d'oxygène dissous dans la composition. En effet, les radicaux excités par la lumière réagissent prioritairement avec l'oxygène. Lorsque tout l'oxygène est consommé, les radicaux excités réagissent avec le monomère pour former une chaîne polymère. L'oxygène joue donc un rôle de neutralisation de la formation du polymère, et c'est quand le seuil de consommation de l'oxygène est dépassé que la polymérisation peut commencer. L'oxygène dissous provient de l'atmosphère et s'incorpore à la composition lors de sa préparation et son stockage. On pourrait aussi utiliser spécifiquement des inhibiteurs de polymérisation tels que l' hydroquinone, la t-butylhydroquinone, 1 ' hydroquinone-monoéthyl-éther , le t-butylcatéchol , la phénothiazine ou 1 ' CC-naphtol .
De manière particulière, la différence d'indice de réfraction optique entre la composition non polymérisée et le polymère est supérieure à 0,028. On constate que cette différence est suffisante pour que le phénomène décrit précédemment se produise.
Selon un mode de réalisation, la composition comporte du pentaérythritol tri-acrylate ou du penta-érythritol tétra-acrylate (PETA) . Ce composé permet d'obtenir un polymère avec de bonnes qualités de transparence et un indice de réfraction proche de ceux du verre utilisé pour les fibres optiques.
De manière complémentaire, la composition comporte en outre un composé fluoré, tel que par exemple de l'acrylate de heptafluoro-butyle (HFBA) . Le PETA et le HFBA forment ensemble un copolymère après polymérisation. Le dosage entre le PETA et le HFBA permet d'ajuster à la demande l'indice de réfraction optique de la composition
et du polymère du pont. On choisit l'indice du polymère au plus proche de celui du cœur des fibres à épisser.
De manière particulière, la composition comporte en outre de l'éosine comme agent de sensibilisation de la composition à la lumière. L'éosine permet d'amorcer la polymérisation lorsqu'elle est exposée à de la lumière visible, en particulier à de la lumière émise par une diode laser verte à une longueur d'onde de 532 nm. En ajustant sa concentration, on modifie l'intensité lumineuse nécessaire pour obtenir la polymérisation. Plus la concentration est importante, plus la lumière est absorbée et la polymérisation se produit rapidement. La concentration d'éosine est par exemple inférieure à 0,2%.
La composition contient par exemple également du N-méthyldiéthanolamine (MDEA) . On constate que ce composé facilite la polymérisation. Le photo-initiateur, l'éosine, amorce le processus de polymérisation en absorbant la lumière. Ensuite, l'éosine réagit avec le MDEA conduisant d'un état excité singulet instable vers un état triplet stable qui génère des radicaux libres. Ces radicaux libres, ainsi formés, réagissent avec le monomère (PETA) pour former une chaîne réticulée qui forme le polymère.
Dans une étape supplémentaire, on élimine la composition non polymérisée en laissant le pont, et on la remplace par une composition pour former une gaine autour du pont. La gaine est ainsi reconstituée et peut être maintenue de manière durable. Pour remplacer la composition, on peut rincer celle en place non polymérisée avec un solvant, tel que de l'éthanol, et mettre une composition, polymérisable par diverses méthodes. Si la composition est photopolymérisable, elle est éclairée par une lumière radiale par rapport à l'axe des fibres.
Par exemple, on polymérise la composition formant la gaine, l'indice de réfraction optique du polymère formé
étant inférieur à celui du pont. La jonction de la gaine reconstituée et du pont constitue un guide d' onde dans la continuité des fibres optiques assurant des pertes minimes. Comme la composition est polymérisée, elle est durable et reste en place sans vieillissement notable.
De manière particulière, on effectue une étape de traitement thermique de la jonction au-dessus d'un seuil prédéterminé de température. Cette étape permet de stabiliser la polymérisation et d'obtenir une jonction qui reste stable dans le temps, en particulier en ambiance chaude.
L'invention a aussi pour objet une jonction de deux fibres optiques placées bout-à-bout, un interstice séparant les extrémités des fibres optiques comportant un pont, caractérisée en ce qu'elle est obtenue selon le procédé d'épissure décrit précédemment.
Selon une disposition constructive, la jonction comporte des moyens mécaniques de maintien des fibres entre elles. Des efforts exercés entre les fibres ne sont pas transmis au pont, mais repris par les moyens mécaniques. L'intégrité du pont, accolé à l'extrémité des fibres, est donc préservée.
De manière particulière, les moyens mécaniques comportent au moins une fenêtre optique pour activer la photopolymérisation de la gaine autour du pont.
BRÈVE DESCRIPTION DES FIGURES
L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels :
la figure 1 est une vue d'un système pour la mise en œuvre d'un procédé d'épissure selon l'invention ;
la figure 2 est une vue d'une première étape de la réalisation d'une jonction entre deux fibres optiques selon le procédé conforme à l'invention ;
les figures 3 et 4 sont des figures similaires à la figure 2 de deux étapes suivantes ;
la figure 5 est une vue en perspective de moyens mécaniques de maintien des fibres entre elles ;
- la figure 6 est une image prise au microscope d'une épissure réalisée selon le procédé de l'invention ;
la figure 7 est un diagramme représentant les pertes d'insertion d'un exemple de réalisation de l'invention avec des fibres monomodes comparé à la technique antérieure ;
la figure 8 est une figure similaire à la figure 7 pour un mode de réalisation avec des fibres multimodes.
DESCRIPTION DETAILLEE
Un procédé d'épissure de fibres optiques 11, 12 comportant classiquement un cœur 111, 121 entouré d'une gaine 110, 120 est mis en œuvre conformément à l'invention avec les moyens mécaniques 2 de maintien tels que montrés sur la figure 5. Ces moyens mécaniques 2 servent à tenir les fibres optiques 11, 12 en regard l'une de l'autre pendant et après la réalisation de l'épissure. Les moyens mécaniques 2 comportent une platine 20 servant de base et des leviers 21 servant à pincer les fibres optiques 11, 12 contre la platine 20. La platine 20 comporte en son milieu deux rainures 22 en vé alignées et destinées à guider les fibres 11, 12 pour que leurs extrémités 112, 122 soient en regard l'une de l'autre et que les cœurs 111, 112 des fibres soient coaxiaux. Une entaille 23 sépare les deux rainures 22.
Dans une première étape du procédé, deux fibres optiques 11, 12 dont les bouts ont été débarrassés de leur jaquette de protection sont placées dans le prolongement l'une de l'autre dans les rainures 22 en vé . Les fibres optiques 11, 12 sont du type monomode à 1550 nm et ont pour référence « SMF28e » chez la société Corning. Le cœur de ces fibres a un diamètre de l'ordre
de 10 ym. Un interstice 13 est maintenu entre leurs extrémités 112, 122, avec une largeur ajustée entre 0 et 200 ym, mais de préférence entre 10 et 100 ym. La première des fibres 11 est connectée à son extrémité 112 opposée à une source de lumière telle qu'un laser 3 à l'argon, comme montré sur la figure 1. On place les moyens mécaniques 2 sur un microscope 4, de manière à observer l'interstice 13 de manière perpendiculaire à l'axe des fibres et à contrôler la largeur dudit interstice 13. La connexion au laser est faite par l'intermédiaire d'un obturateur 5 qui permet de laisser passer sur commande le rayon laser vers la première fibre optique .
Dans une deuxième étape, une composition photopolymérisable, détaillée ci-après, est placée dans l'interstice 13 entre les extrémités 112, 122 des fibres à l'aide d'une pipette.
Dans une troisième étape, on éclaire la composition à travers la fibre optique en alimentant le laser et en laissant ouvert l'obturateur pendant un temps prédéterminé pour construire un pont 131 entre les deux fibres .
Dans une quatrième étape, on place une composition dans l'interstice 13 pour former une gaine autour du pont 131 à la place du reste de composition non polymérisée.
Dans un exemple, la composition est élaborée de la manière suivante :
- on place dans un agitateur 5 mL de triacrylate ou tétra-acrylate de penta-érythritol (PETA) avec une pipette ;
- on ajoute du N-méthyldiéthanolamine (MDEA) à l'aide d'une pipette ;
- on agite la solution pendant une heure ;
on ajoute au mélange de 1 ' hepta-fluoro-butyle- acrylate (HFBA) à l'aide d'une pipette ;
- on prélève une pointe de mini spatule d'éosine en poudre et on l'ajoute au mélange ;
- on agite la composition durant 12 heures en prenant soin de placer le récipient à l'abri de la lumière ;
- puis on laisse reposer la composition 4h minimum de façon à éliminer les bulles d'air de la composition, toujours à l'abri de la lumière.
La composition pour le pont 131 est la suivante :
64,5 % de PETA, 31 % de HFBA, 4,48% de MDEA et 0,02% d'éosine. On mesure un indice de réfraction de 1,43 pour la composition, et de 1,46 pour le matériau polymérisé.
Une composition similaire est préparée selon la même procédure pour la réalisation de la gaine 132 autour du pont 131. Cette composition a les proportions suivantes : 54, 5 % de PETA, 41 % de HFBA, 4,48% de MDEA et 0,02% d'éosine. On mesure un indice de réfraction de 1,41 avant polymérisation et 1,44 pour le matériau polymérisé.
Avant le dépôt d'une goutte de solution photo- polymérisable, on règle la puissance du laser de façon à ce que sa puissance en sortie de fibre soit égale à 5 yW.
On place l'obturateur 5 en position fermée de façon à obturer le faisceau laser.
On vient ensuite déposer une goutte de solution photo-polymérisable qui va reconstruire le pont 131 dans l'interstice 13 entre les extrémités 112, 122 des fibres
11, 12, comme le montre la figure 2. On envoie alors le faisceau laser dans la première fibre 11 pendant une seconde, ce temps d'exposition étant contrôlé à l'aide de l'obturateur 5.
Comme expliqué précédemment, la matière exposée à la lumière dans le prolongement du cœur 111 de la première fibre 11 se polymérisé et forme d'abord une pointe 130, comme montré sur la figure 3, puis un pont 131 entre les cœurs 111, 112 des fibres 11, 12 de forme sensiblement cylindrique, comme montré sur la figure 4.
On place alors la deuxième composition à la place de la première composition non polymérisée, autour du pont 131. On expose cette composition à la lumière pour la polymériser et qu'elle forme une gaine 132 autour du pont 131, comme montré sur les figures 4 et 6.
On peut ajouter une étape de stabilisation en soumettant la jonction à une température stabilisée, par exemple 90 °C, pour que les variations de température par la suite ne se traduisent pas par des modifications de propriétés de la transmission.
Des mesures de pertes d' insertion ont été établies avec l'exemple tel que décrit précédemment et sont transcrits sur la courbe C du diagramme de la figure 7. La longueur d'onde est de 1550 nm. Les résultats sont comparés avec ceux obtenus avec une jonction avec simplement de l'air dans l'interstice 13 (courbe A), ou un gel d'indice composé de monomère PETA pur (courbe B) . On constate de bien meilleures performances de la jonction réalisée selon l'invention.
Dans un deuxième exemple, des fibres multimodes ont été raccordées selon la méthode décrite précédemment. Les fibres ont un cœur de l'ordre de 50 ym. Des mesures de pertes d'insertion ont été établies à une longueur d'onde de 1550 nm. Les résultats sont présentés sur la courbe D de la figure 8 et sont comparés avec les pertes dans une jonction avec un gel d'indice composé de monomère PETA pur dans l'interstice 13 (courbe E) . On constate que les pertes sont comparables jusqu'à un interstice de 300 ym et sont nettement plus faibles pour l'invention à des largeurs d'interstice supérieures.
L'invention n'est pas limitée aux exemples qui viennent d'être décrits. On pourra former le pont 131 en éclairant simultanément les deux fibres.
Claims
1. Procédé d'épissure de deux fibres optiques (11, 12) selon lequel on procède aux étapes suivantes : on aligne les deux fibres (11, 12) avec une de leurs extrémités (112, 122) en vis-à-vis l'une de l'autre, - on place une composition photopolymérisable dans l'interstice (13) entre les deux extrémités (112, 122), la composition ayant un indice de réfraction optique plus grand lorsqu'elle est polymérisée, on fournit de la lumière à la composition par au moins l'une des fibres (11, 12) pour former un pont
(131) de matière polymérisée entre les extrémités (112, 122) des deux fibres,
caractérisé en ce que la composition a un seuil de polymérisation pour l'énergie lumineuse fournie au-delà duquel la polymérisation s'amorce et en ce qu'on élimine la composition non polymérisée en laissant le pont (131), et on la remplace par une composition pour former une gaine (132) autour du pont (131) .
2. Procédé selon la revendication 1, selon lequel la différence d'indice de réfraction optique entre la composition non polymérisée et le polymère est supérieure à 0,028.
3. Procédé selon la revendication 1, selon lequel la composition comporte du pentaérythritol triacrylate ou du penta-érythritol tétra-acrylate (PETA) .
4. Procédé selon la revendication 3, selon lequel la composition comporte en outre un composé fluoré.
5. Procédé selon la revendication 4, selon lequel le composé fluoré est de l'acrylate de heptafluoro- butyle (HFBA) .
6. Procédé selon la revendication 3, selon lequel la composition comporte en outre de l'éosine comme agent de sensibilisation de la composition à la lumière .
7. Procédé selon la revendication 3, selon lequel la composition contient également du N-méthyldiéthanolamine (MDEA) .
8. Procédé selon la revendication 1, selon lequel la composition contient de l'oxygène dissous.
9. Procédé selon la revendication 1, selon lequel on polymérise la composition formant la gaine (132), l'indice de réfraction optique du polymère formé étant inférieur à celui du pont (131) .
10. Procédé selon la revendication 1, selon lequel on effectue une étape de traitement thermique de la jonction au-dessus d'un seuil prédéterminé de température.
11. Jonction de deux fibres optiques (11, 12) placées bout-à-bout, un interstice (13) séparant les extrémités (112, 122) des fibres optiques (11, 12) comportant un pont (131), caractérisée en ce qu'elle est obtenue selon le procédé d'épissure de l'une des revendications 1 à 10.
12. Jonction selon la revendication 11, caractérisée en ce qu'elle comporte des moyens mécaniques (2) de maintien des fibres entre elles.
13. Jonction selon la revendication 12, dans laquelle les moyens mécaniques (2) comportent au moins une fenêtre optique pour activer la photopolymérisation de la gaine (132) autour du pont (131) .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1055860 | 2010-07-19 | ||
FR1055860A FR2962814B1 (fr) | 2010-07-19 | 2010-07-19 | Procede d'epissure de fibres optiques et jonction obtenue par un tel procede |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012010776A1 true WO2012010776A1 (fr) | 2012-01-26 |
Family
ID=43708163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2011/051658 WO2012010776A1 (fr) | 2010-07-19 | 2011-07-12 | Procede d'epissures de fibres optiques et jonction obtenue par un tel procede |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2962814B1 (fr) |
WO (1) | WO2012010776A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017060759A1 (fr) | 2015-10-09 | 2017-04-13 | Wojskowa Akademia Techniczna Im. Jarosława Dąbrowskiego | Procédé pour produire un convertisseur polymère pour raccorder des fibres optiques, et convertisseur polymère pour raccorder des fibres optiques |
EP3182184A1 (fr) | 2015-12-17 | 2017-06-21 | Universite De Haute Alsace | Procédé de fabrication d'un guide optique autoaligné entre une source optique et une fibre optique, kit associé |
US10209447B2 (en) | 2015-09-11 | 2019-02-19 | Ii-Vi Incorporated | Micro splice protector |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4443494A (en) * | 1981-02-17 | 1984-04-17 | Dentsply Research And Development Corporation | Method for joining objects |
WO1986003599A1 (fr) | 1984-12-11 | 1986-06-19 | Amp Incorporated | Connecteur d'epissage de fibres optiques, son procede d'utilisation et boitier d'agencement |
US4666236A (en) | 1982-08-10 | 1987-05-19 | Omron Tateisi Electronics Co. | Optical coupling device and method of producing same |
EP0358476A2 (fr) * | 1988-09-08 | 1990-03-14 | Akzo Nobel N.V. | Systèmes optiques intégrés |
GB2272306A (en) * | 1992-11-09 | 1994-05-11 | Fujitsu Ltd | Coupling optical waveguides by fusion or photosensitive monomer-polymer compositions |
FR2827968A1 (fr) * | 2001-07-27 | 2003-01-31 | Renaud Bachelot | Perfectionnements aux fibres optiques lentillees par photopolymerisation et nouveaux composants optiques associes |
US20040209202A1 (en) * | 1998-01-20 | 2004-10-21 | Honeywell International Inc. | Fluorinated oxyvinyl compounds |
US20050013578A1 (en) * | 2001-08-13 | 2005-01-20 | Toyoda Gosei Co., Ltd. | Optical waveguide device manufacturing jig, method of manufacturing optical waveguide device by use of the same jig, and the same optical waveguide device |
EP1503231A1 (fr) * | 2002-04-26 | 2005-02-02 | Ibiden Co., Ltd. | Structure de transmission optique, guide optique, procede de fabrication d'un guide d'ondes optique et coupleur d'interconnexion optique |
US20070105973A1 (en) * | 1994-09-06 | 2007-05-10 | Ciba Vision Corporation | Extended Wear Ophthalmic Lens |
GB2459505A (en) * | 2008-04-25 | 2009-10-28 | Dublin Inst Of Technology | Optical component fabrication by depositing a polymerisation activator pattern |
-
2010
- 2010-07-19 FR FR1055860A patent/FR2962814B1/fr active Active
-
2011
- 2011-07-12 WO PCT/FR2011/051658 patent/WO2012010776A1/fr active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4443494A (en) * | 1981-02-17 | 1984-04-17 | Dentsply Research And Development Corporation | Method for joining objects |
US4666236A (en) | 1982-08-10 | 1987-05-19 | Omron Tateisi Electronics Co. | Optical coupling device and method of producing same |
WO1986003599A1 (fr) | 1984-12-11 | 1986-06-19 | Amp Incorporated | Connecteur d'epissage de fibres optiques, son procede d'utilisation et boitier d'agencement |
EP0358476A2 (fr) * | 1988-09-08 | 1990-03-14 | Akzo Nobel N.V. | Systèmes optiques intégrés |
GB2272306A (en) * | 1992-11-09 | 1994-05-11 | Fujitsu Ltd | Coupling optical waveguides by fusion or photosensitive monomer-polymer compositions |
US20070105973A1 (en) * | 1994-09-06 | 2007-05-10 | Ciba Vision Corporation | Extended Wear Ophthalmic Lens |
US20040209202A1 (en) * | 1998-01-20 | 2004-10-21 | Honeywell International Inc. | Fluorinated oxyvinyl compounds |
FR2827968A1 (fr) * | 2001-07-27 | 2003-01-31 | Renaud Bachelot | Perfectionnements aux fibres optiques lentillees par photopolymerisation et nouveaux composants optiques associes |
WO2003012504A2 (fr) | 2001-07-27 | 2003-02-13 | Universite De Technologie De Troyes | Perfectionnements aux fibres optiques lentillees |
US20050013578A1 (en) * | 2001-08-13 | 2005-01-20 | Toyoda Gosei Co., Ltd. | Optical waveguide device manufacturing jig, method of manufacturing optical waveguide device by use of the same jig, and the same optical waveguide device |
EP1503231A1 (fr) * | 2002-04-26 | 2005-02-02 | Ibiden Co., Ltd. | Structure de transmission optique, guide optique, procede de fabrication d'un guide d'ondes optique et coupleur d'interconnexion optique |
GB2459505A (en) * | 2008-04-25 | 2009-10-28 | Dublin Inst Of Technology | Optical component fabrication by depositing a polymerisation activator pattern |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10209447B2 (en) | 2015-09-11 | 2019-02-19 | Ii-Vi Incorporated | Micro splice protector |
WO2017060759A1 (fr) | 2015-10-09 | 2017-04-13 | Wojskowa Akademia Techniczna Im. Jarosława Dąbrowskiego | Procédé pour produire un convertisseur polymère pour raccorder des fibres optiques, et convertisseur polymère pour raccorder des fibres optiques |
EP3182184A1 (fr) | 2015-12-17 | 2017-06-21 | Universite De Haute Alsace | Procédé de fabrication d'un guide optique autoaligné entre une source optique et une fibre optique, kit associé |
US11054579B2 (en) | 2015-12-17 | 2021-07-06 | Centre National De La Recherche Scientifique | Method for making a self-aligned optical guide between an optical source and an optical fiber, and related kit |
Also Published As
Publication number | Publication date |
---|---|
FR2962814A1 (fr) | 2012-01-20 |
FR2962814B1 (fr) | 2013-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2699293A1 (fr) | Système optique monolithique comportant des moyens de couplage perfectionnés entre une fibre optique et un phototransducteur. | |
CA2775983C (fr) | Dispositif de transmission d'energie lumineuse et procede de transmission associe | |
FR2765348A1 (fr) | Dispositif optique et procede pour sa fabrication | |
FR2797058A1 (fr) | Dispositif du type a troncon de fibre et module optique l'utilisant et procede de fabrication d'un dispositif du type a troncon de fibre | |
FR2524989A1 (fr) | Procede d'epissurage a faible attenuation pour fibres optiques | |
WO1998039265A1 (fr) | Procede et dispositif d'assemblage de composants optiques ou d'un composant optique et d'un substrat | |
FR2502797A1 (fr) | Dispositif de transmission d'un faisceau laser et procede de fabrication d'un troncon de fibre optique a section variable du dispositif | |
FR2777359A1 (fr) | Connexion d'une fibre optique et d'un guide d'ondes optique par fusion | |
CA2935468A1 (fr) | Methode de fabrication d'un guide d'onde optique a structure << ridge >> a faibles pertes de couplage entre le guide d'onde optique a structure << ridge >> et une fibre optique, et guide d'onde optique a structure << ridge >> fabrique par cette methode | |
FR2514155A1 (fr) | Fibre optique monomode a faible dispersion | |
WO2012010776A1 (fr) | Procede d'epissures de fibres optiques et jonction obtenue par un tel procede | |
EP0677758B1 (fr) | Système optique pour coupler une fibre à mode circulaire et un phototransducteur à mode elliptique et son procédé de fabrication | |
FR2706633A1 (fr) | Dispositif optique comportant une fibre optique amorce et procédé pour sa fabrication. | |
WO2011048329A2 (fr) | Systeme de generation d'une lumiere polychromatique en regime continu par fibre optique microstructuree dopee. | |
FR2756054A1 (fr) | Coupleur optique a evolution modale et procede pour sa fabrication | |
FR2629219A1 (fr) | Coupleur de fibres optiques en etoile et de type actif | |
FR2699292A1 (fr) | Procédé de préparation par lentillage multiple d'une fibre optique en vue d'un couplage optimum avec un phototransducteur et système optique obtenu. | |
EP0890855A1 (fr) | Système optique à dispersion en longueur d'onde | |
FR2831674A1 (fr) | Systeme de couplage de fibre optique | |
FR2963113A1 (fr) | Guide d'onde planaire nanophotonique comportant une structure de couplage optique avec une fibre optique | |
EP2478409B1 (fr) | Systeme de controle de polarisation tout-optique a faisceau de pompe contra-propagatif | |
EP3295229A2 (fr) | Dispositif de traitement laser et station de travail comportant un tel dispositif | |
FR2903817A1 (fr) | Dispositif laser a fibre optique de puissance | |
FR3097334A1 (fr) | Procédé de fixation d’une fibre optique monomode et d’une fibre optique multimode, equipement de couplage optique et fibre optique pouvant être obtenue grace à un tel procédé | |
EP1183562B1 (fr) | Procede de realisation collective de micro-lentilles au bout d'un ensemble de fibres optiques du type ruban de fibres |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11743848 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11743848 Country of ref document: EP Kind code of ref document: A1 |