WO2012010124A1 - Device for reducing jet noise - Google Patents

Device for reducing jet noise Download PDF

Info

Publication number
WO2012010124A1
WO2012010124A1 PCT/DE2011/001310 DE2011001310W WO2012010124A1 WO 2012010124 A1 WO2012010124 A1 WO 2012010124A1 DE 2011001310 W DE2011001310 W DE 2011001310W WO 2012010124 A1 WO2012010124 A1 WO 2012010124A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
nozzle
actuating
ring segments
actuating ring
Prior art date
Application number
PCT/DE2011/001310
Other languages
German (de)
French (fr)
Inventor
Michael Bauer
Lars Pannier
Sigurd HÄUSLER
Original Assignee
Eads Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eads Deutschland Gmbh filed Critical Eads Deutschland Gmbh
Publication of WO2012010124A1 publication Critical patent/WO2012010124A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/82Jet pipe walls, e.g. liners
    • F02K1/827Sound absorbing structures or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/46Nozzles having means for adding air to the jet or for augmenting the mixing region between the jet and the ambient air, e.g. for silencing
    • F02K1/48Corrugated nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/184Two-dimensional patterned sinusoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/40Movement of components
    • F05D2250/41Movement of components with one degree of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • F05D2260/962Preventing, counteracting or reducing vibration or noise by means of "anti-noise"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/17Purpose of the control system to control boundary layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/64Hydraulic actuators

Definitions

  • the invention relates to a device for reducing jet noise generated by a nozzle, in particular by a gas turbine nozzle, which comprises oscillating ring segments arranged on the nozzle inner wall and distributed on the circumference.
  • Nozzle flows generally have a two-part construction. This results from the fact that in general the fluid exiting a nozzle, for example combustion gases, has a different velocity than the fluid surrounding the nozzle, in particular ambient air, so that a boundary layer in the form of an annular conical shear layer forms accordingly around a tighter core flow sets.
  • This shear layer has the properties of a free anisotropic turbulent flow, the separation of which from the core flow is the reason for a significant noise of gas turbine engines. As the distance from the nozzle exit increases, the diameter of the core flow decreases until the free jet has fully developed.
  • a generic device for reducing the nozzle noise is known from DE 10 2008 025 826 AI, are arranged in the axially or radially movable edge elements on the nozzle inner side, which are oscillatingly movable. These serve to oscillate the nozzle cross-section, so that the change in cross-section is accompanied by an influence on the turbulence in the boundary-layer flow.
  • the oscillatingly movable edge elements influence the turbulent nozzle flow, in particular that part of the nozzle flow which flows in the boundary or shear layer.
  • pressure fluctuations which are apt to cause an overlap with the pressure fluctuations in the turbulent boundary or shear layer, which can lead to a substantial reduction or even extinction of the pressure fluctuations.
  • CONFIRMATION COPY l Reduction or extinction of the pressure fluctuations inevitably results in a significantly reduced noise. Furthermore, not only a quenching but also a shift of the acoustic energy can be effected in a less critical for the radiation into the environment frequency range, which also leads to a noise reduction in the environment. In addition, it is possible to influence the directional characteristic of the radiated sound by correspondingly phased control of the edge elements.
  • the object of the invention is therefore to provide a generic device that allows a reduction of jet noise, is built purely mechanically, structurally simple and at the same time is less susceptible to operation and also the ruling in the nozzle area high gas temperatures can be exposed to long term.
  • this object is achieved in that for generating the oscillating movement of the ring segments a radially outside the nozzle arranged, rotatable actuating ring is provided, the inner contour has a sinoidal contour and the ring segments comprise outwardly directed actuation supports whose free ends on the sinoidal Run inside contour of the actuating ring.
  • This training has the advantage that an effective noise reduction without additional electrical energy and thus Bonded mass (eg amplifier) can be reached and no structurally complex control devices are needed.
  • Bonded mass eg amplifier
  • the device is structurally simple and temperature fluctuations or high temperatures have little effect.
  • the device according to the invention also does not result in a noticeable power loss of the engine.
  • the system is very robust against harsh environmental conditions, especially high temperatures.
  • the number of maxima (or minima) of the sinusoidal contour of the actuating ring corresponds to the number of ring segments, so that the confirmation posts each lie on adjacent areas of the sinoidal contour, for example on the maxima or in the minima.
  • the actuating ring is pneumatically driven. This is preferably done by means of a turbine wheel, which can either be driven by the gas jet or by the surrounding air flow (bypass flow). Alternatively, it is possible to hydraulically drive the actuating ring.
  • FIG. 1 a shows a schematic longitudinal section through a nozzle region with ring segments in a first position
  • FIG. 1b shows a schematic longitudinal section through a nozzle region with ring segments in a second position
  • Figure 2 is a schematic axial view of the actuating ring
  • Figure 3 two schematic Axialans Chten the device, left corresponding to the position according to Figure la and right according to the position of Figure lb.
  • FIGS. 1a and 1b a nozzle 10 of a gas turbine engine is shown in each case in a schematic longitudinal section.
  • the nozzle 10 comprises a nozzle outer wall 12 and a nozzle inner wall 14, and the arrow 16 shows the gas flow direction in the nozzle 10.
  • a plurality of ring segments 18 are arranged, whose respective upstream ends are fixed in the region 20 hinged to the nozzle inner wall 14 and can be pivoted in the radial direction about the pivot axes 20 inwardly.
  • the ring segments 18 are shown in a first position, in which these rest substantially on the nozzle inner wall 14 and thus the cross section of the nozzle 10 is largely unchanged.
  • the ring segments 18 are shown in their respective radially inner end position, whereby the flow cross-section of the nozzle 10 is narrower. In operation, the ring segments 18 will oscillate between the end positions illustrated in FIGS. 1a and 1b.
  • the oscillation frequency depends on the frequency range of the noise vibrations and the size of the nozzle and is preferably in the range of 10 to 400 Hz.
  • the pivoting range of the ring segments 18 is shown greatly enlarged for reasons of representability in all figures, in reality, this pivoting range of the ring segments 18 is in the range of a few degrees.
  • the ring segments 18 have radially outwardly directed actuating supports 22, which can be seen better in FIG.
  • the free ends of the actuation supports 22 run on the sinoidal nenkontur 26 of an actuating ring 24.
  • This actuating ring 24 is shown enlarged in Figure 2 in an axial view.
  • the sinusoidal inner contour 26 of the actuating ring 24 has in the illustrated embodiment, eight inner and outer reversal points or minima and maxima and is particularly suitable for driving the same number - ie eight - ring segments 18 ( Figure 3).
  • r denotes the mean radius and d denotes the stroke range of the oscillation movement generated by the actuating ring 24, which is transmitted to the actuating supports 22 during the rotation of the sinoidal contour during the rotation thereof.
  • the ratio d / r is in the range of about 0.3 - 2%.
  • the oscillation angle of the ring segments 18 depends on the one hand on the size of the stroke d but also on the distance of the actuation supports 22 from the articulation points 20.
  • is the wavelength of the sinoidal contour.
  • the oscillation frequency f of the ring segments is given by the number of revolutions ü of the operating ring 24 according to the following equation
  • the circumferential distance 1 x ⁇ x r / n between the ring segments is ⁇ , where n is the number of ring segments 18. It is also possible to choose this distance 1 different from ⁇ , whereby special phase relationships between the movement of the individual ring segments 18 can be achieved.
  • the actuating ring 24 is preferably hydraulically or pneumatically rotated, so that the actuating posts 22 along the sinusoidal corrugated inner contour 26 of the actuating ring 24 move sinusoidally along and thus transmit this oscillating motion to the ring segments 18.
  • the nozzle cross section changes in an oscillating manner with the speed specified by the rotational speed of the actuating ring 24.
  • An amendment is made tion of the nozzle cross section in the range of a few millimeters.
  • actuating posts 22 are preferably guided via air bearings on the inner contour 26 of the actuating ring 24.
  • sliding or rolling bearings are applicable.
  • spring members may be provided to move the ring segments 18 to a rest position, particularly to force them outwardly toward the nozzle inner wall 14 when the engine is not in operation.
  • the device according to the invention can preferably be operated without a closed loop.
  • a control is based on the speed of the engine.
  • an air inlet valve of a drive turbine for the actuating ring 24 is preferably used on the basis of the rotational speed, possibly also taking into account operating conditions such as "takeoff”, “cruise”, “approach” for driving the actuating ring 24.

Abstract

The invention relates to a device for reducing jet noise produced by a gas turbine nozzle (10), comprising ring segments (18), which are arranged on the inner nozzle wall (14) and distributed on the circumference and can be oscillated, wherein a rotatable actuating ring arranged radially outside the nozzle (10) is provided in order to produce the oscillating motion of the ring segments (18). The inside of the actuating ring has a sinusoidal contour. The ring segments comprise actuating supports (22) directed outwardly. The free ends of the actuating supports run on the sinusoidal inner contour of the actuating ring. This has the advantage that effective noise reduction can be achieved without additional electrical energy and mass associated therewith and no structurally complex control devices are required.

Description

Vorrichtung zur Reduzierung von Strahllärm  Device for reducing jet noise
Die Erfindung betrifft eine Vorrichtung zur Reduzierung von durch eine Düse, insbesondere durch eine Gasturbinendüse, erzeugtem Strahllärm, die an der Düseninnenwand angeordnete, am Umfang verteilte oszillierende Ringsegmente umfasst. The invention relates to a device for reducing jet noise generated by a nozzle, in particular by a gas turbine nozzle, which comprises oscillating ring segments arranged on the nozzle inner wall and distributed on the circumference.
Düsenströmungen weisen im allgemeinen einen zweigeteilten Aufbau auf. Dies resultiert aus der Tatsache, dass im allgemeinen das aus einer Düse austretende Fluid, beispielsweise Verbrennungsgase, eine andere Geschwindigkeit als das die Düse umgebende Fluid, insbesondere Umgebungsluft , besitzt, so dass sich dementsprechend eine Grenzschicht in Form einer ringförmigen konischen Scherschicht bildet, welche sich um eine engere Kernströmung legt . Diese Scherschicht besitzt die Eigenschaften einer freien anisotropischen turbulenten Strömung, deren Ablösung von der Kernströmung der Grund für eine erhebliche Geräuschentwicklung von Gasturbinendtriebwerken darstellt. Im zunehmenden Abstand vom Düsenausgang nimmt der Durchmesser der Kernströmung ab, bis sich der Freistrahl vollständig entwickelt hat.  Nozzle flows generally have a two-part construction. This results from the fact that in general the fluid exiting a nozzle, for example combustion gases, has a different velocity than the fluid surrounding the nozzle, in particular ambient air, so that a boundary layer in the form of an annular conical shear layer forms accordingly around a tighter core flow sets. This shear layer has the properties of a free anisotropic turbulent flow, the separation of which from the core flow is the reason for a significant noise of gas turbine engines. As the distance from the nozzle exit increases, the diameter of the core flow decreases until the free jet has fully developed.
Eine gattungsgemäße Vorrichtung zur Reduzierung des Düsenlärmes ist aus der DE 10 2008 025 826 AI bekannt, bei der axial oder radial bewegbare Randelemente auf der Düseninnenseite angeordnet sind, die oszillierend bewegbar sind. Diese dienen dazu, den Düsenquerschnitt oszillierend zu verändern, so dass mit der Querschnittsveränderung eine Beeinflussung der Turbulenz in der GrenzSchichtStrömung einhergeht. Durch die oszillierend bewegbaren Randelemente erfolgt eine Beeinflussung der turbulenten Düsenströmung, insbesondere desjenigen Teils der Düsenströmung, der in der Grenz- oder Scherschicht strömt. Somit ist es möglich, Druckschwankungen zu erzeugen, welche geeignet sind, eine Überlagerung mit den Druckschwankungen in der turbulenten Grenz- oder Scherschicht hervorzurufen, was zu einer weitgehenden Reduzierung oder sogar Auslöschung der Druckschwankungen führen kann. Aus einer solchen  A generic device for reducing the nozzle noise is known from DE 10 2008 025 826 AI, are arranged in the axially or radially movable edge elements on the nozzle inner side, which are oscillatingly movable. These serve to oscillate the nozzle cross-section, so that the change in cross-section is accompanied by an influence on the turbulence in the boundary-layer flow. The oscillatingly movable edge elements influence the turbulent nozzle flow, in particular that part of the nozzle flow which flows in the boundary or shear layer. Thus, it is possible to generate pressure fluctuations which are apt to cause an overlap with the pressure fluctuations in the turbulent boundary or shear layer, which can lead to a substantial reduction or even extinction of the pressure fluctuations. Out of such
BESTÄTIGUNGSKOPIE l Reduzierung bzw. Auslöschung der Druckschwankungen resultiert zwangsläufig eine deutlich verminderte Geräuschentwicklung. Ferner kann nicht nur eine Auslöschung sondern auch eine Verschiebung der akustischen Energie in einen für die Abstrah- lung in die Umgebung weniger kritischen Frequenzbereich bewirkt werden, was ebenfalls zu einer Geräuschreduzierung in der Umgebung führt. Ausserdem ist durch entsprechend phasengesteuerte Ansteuerung der Randelemente eine Beeinflussung der Richtcharachteristik des abgestrahlten Schalls möglich. CONFIRMATION COPY l Reduction or extinction of the pressure fluctuations inevitably results in a significantly reduced noise. Furthermore, not only a quenching but also a shift of the acoustic energy can be effected in a less critical for the radiation into the environment frequency range, which also leads to a noise reduction in the environment. In addition, it is possible to influence the directional characteristic of the radiated sound by correspondingly phased control of the edge elements.
Angesicht der im Düsenbereich herrschenden hohen Temperaturen ist die technische Gestaltung einer derartigen Vorrichtung zur Strahllärmreduzierung jedoch schwierig zu realisieren. Ansätze mit elektronischer Betätigung, beispielsweise über Piezoeinrichtungen, sind daher problematisch. However, in view of the high temperatures prevailing in the nozzle area, the technical design of such a device for jet noise reduction is difficult to realize. Approaches with electronic actuation, for example via piezo devices, are therefore problematic.
Aufgabe der Erfindung ist es daher, eine gattungsgemäße Vorrichtung bereit zu stellen, die eine Reduzierung von Strahllärm ermöglicht, rein mechanisch aufgebaut ist, baulich einfach und gleichzeitig im Betrieb wenig anfällig ist und auch den im Düsenbereich herrschenden hohen Gastemperaturen langfristig ausgesetzt werden kann. The object of the invention is therefore to provide a generic device that allows a reduction of jet noise, is built purely mechanically, structurally simple and at the same time is less susceptible to operation and also the ruling in the nozzle area high gas temperatures can be exposed to long term.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass zur Erzeugung der oszillierende Bewegung der Ringsegmente ein radial außerhalb der Düse angeordneter, drehbarer Betätigungs- ring vorgesehen ist, dessen Innenkontur eine sinoidale Kontur aufweist und die Ringsegmente nach außen gerichtete Betätigungsstützen umfassen, deren freie Enden auf der sinoidalen Innenkontur des Betätigungsrings laufen.  According to the invention this object is achieved in that for generating the oscillating movement of the ring segments a radially outside the nozzle arranged, rotatable actuating ring is provided, the inner contour has a sinoidal contour and the ring segments comprise outwardly directed actuation supports whose free ends on the sinoidal Run inside contour of the actuating ring.
Sofern im Rahmen dieser Anmeldung von „sinoidal" die Rede ist, wird darunter eine Kontur verstanden, die der Sinuskurve entspricht oder ähnelt. Es umfasst ausdrücklich auch Konturen, die von der reinen Sinusfunktion abweichen. Vorzugsweise entspricht die Kurve jedoch der reinen Sinusfunktion. If "sinoidal" is used in the context of this application, it is understood to mean a contour that corresponds or resembles the sine curve, and explicitly includes contours that deviate from the pure sine function, but preferably the curve corresponds to the pure sine function.
Diese Ausbildung hat den Vorteil, dass eine wirksame Lärmreduzierung ohne zusätzliche elektrische Energie und damit ver- bundene Masse (z.B. Verstärker) erreichbar ist und keine baulich aufwändigen Regeleinrichtungen benötigt werden. Die Einrichtung ist baulich einfach gestaltet und Temperaturschwankungen oder hohe Temperaturen haben geringe Auswirkungen.This training has the advantage that an effective noise reduction without additional electrical energy and thus Bonded mass (eg amplifier) can be reached and no structurally complex control devices are needed. The device is structurally simple and temperature fluctuations or high temperatures have little effect.
Ferner wird kein merklicher Verlust von Massestrom durch das Triebwerk bzw. einen Bypass produziert, wie dies beispielsweise bei Vorrichtungen der Fall ist, die zur Geräuschreduzierung Gasströme injizieren (sog. micro jet injection) . Daher hat die erfindungsgemäße Vorrichtung auch keinen merklichen Leistungsverlust des Triebwerks zur Folge. Darüber hinaus ist das System sehr robust gegenüber aggressiven Umgebungsbedingungen, insbesondere hohen Temperaturen. Furthermore, no significant loss of mass flow through the engine or a bypass is produced, as is the case for example in devices which inject gas streams for noise reduction (so-called micro-jet injection). Therefore, the device according to the invention also does not result in a noticeable power loss of the engine. In addition, the system is very robust against harsh environmental conditions, especially high temperatures.
Gemäß einer vorteilhaften Weiterbildung der Erfindung entspricht die Anzahl der Maxima (bzw. Minima) der Sinuskontur des Betätigungsrings der Anzahl der Ringsegmente, so dass die Bestätigungsstützen jeweils auf nebeneinander liegenden Bereichen der sinoidalen Kontur, beispielsweise auf den Maxima bzw. in den Minima liegen.  According to an advantageous development of the invention, the number of maxima (or minima) of the sinusoidal contour of the actuating ring corresponds to the number of ring segments, so that the confirmation posts each lie on adjacent areas of the sinoidal contour, for example on the maxima or in the minima.
Gemäß noch einer vorteilhaften Weiterbildung der Erfindung ist der Betätigungsring pneumatisch antreibbar. Vorzugsweise geschieht dies mittels eines Turbinenrades, das entweder vom Gasstrahl angetrieben werden kann oder vom umgebenden Luft- strom (Bypass -Strom) . Alternativ ist es möglich, den Betätigungsring hydraulisch anzutreiben. According to yet an advantageous embodiment of the invention, the actuating ring is pneumatically driven. This is preferably done by means of a turbine wheel, which can either be driven by the gas jet or by the surrounding air flow (bypass flow). Alternatively, it is possible to hydraulically drive the actuating ring.
Die Erfindung wird nachfolgend anhand eines bevorzugten Aus- führungsbeispiels unter Bezugnahme auf die beigefügten Zeichnungen erläutert. Dabei zeigt:  The invention will be explained below with reference to a preferred embodiment with reference to the accompanying drawings. Showing:
Figur la: einen schematischen Längsschnitt durch einen Düsenbereich mit Ringsegmenten in einer ersten Stellung;  FIG. 1 a shows a schematic longitudinal section through a nozzle region with ring segments in a first position;
Figur 1b: einen schematischen Längsschnitt durch einen Düsenbereich mit Ringsegmenten in einer zweiten Stellung; Figur 2: eine schematische Axialansicht des Betätigungsrings; FIG. 1b shows a schematic longitudinal section through a nozzle region with ring segments in a second position; Figure 2 is a schematic axial view of the actuating ring;
Figur 3: zwei schematische Axialans chten der Vorrichtung, links entsprechend der Stellung gemäß Figur la und rechts gemäß der Stellung von Figur lb. Figure 3: two schematic Axialans Chten the device, left corresponding to the position according to Figure la and right according to the position of Figure lb.
In den Figuren 1a und lb ist eine Düse 10 eines Gasturbinentriebwerks jeweils in einem schematischen Längsschnitt dargestellt. Die Düse 10 umfasst eine Düsenaußenwand 12 und eine Düseninnenwand 14 und mit dem Pfeil 16 ist die Gasströmungs- richtung in der Düse 10 dargestellt. In der Düse 10 sind über dem Umfang verteilt mehrere Ringsegmente 18 angeordnet, deren jeweils stromaufwärtige Enden im Bereich 20 gelenkig an der Düseninnenwand 14 befestigt sind und sich in radialer Richtung um die Schwenkachsen 20 nach innen verschwenken lassen. In Figur la sind die Ringsegmente 18 in einer ersten Stellung dargestellt, bei der diese im wesentlichen an der Düseninnenwand 14 anliegen und somit der Querschnitt der Düse 10 weitgehend unverändert ist. In Figur lb sind die Ringsegmente 18 in ihrer jeweils radial inneren Endstellung dargestellt, wodurch der Strömungsquerschnitt der Düse 10 enger ist. Im Betrieb werden die Ringsegmente 18 zwischen den in den Figuren la und lb dargestellten Endstellungen oszillieren. Die Oszillationsfrequenz hängt dabei vom Frequenzbereich der Lärmschwingungen und von der Größe der Düse ab und liegt vorzugsweise im Bereich von 10 bis 400 Hz. In FIGS. 1a and 1b, a nozzle 10 of a gas turbine engine is shown in each case in a schematic longitudinal section. The nozzle 10 comprises a nozzle outer wall 12 and a nozzle inner wall 14, and the arrow 16 shows the gas flow direction in the nozzle 10. In the nozzle 10 are distributed over the circumference a plurality of ring segments 18 are arranged, whose respective upstream ends are fixed in the region 20 hinged to the nozzle inner wall 14 and can be pivoted in the radial direction about the pivot axes 20 inwardly. In Figure la, the ring segments 18 are shown in a first position, in which these rest substantially on the nozzle inner wall 14 and thus the cross section of the nozzle 10 is largely unchanged. In Figure lb, the ring segments 18 are shown in their respective radially inner end position, whereby the flow cross-section of the nozzle 10 is narrower. In operation, the ring segments 18 will oscillate between the end positions illustrated in FIGS. 1a and 1b. The oscillation frequency depends on the frequency range of the noise vibrations and the size of the nozzle and is preferably in the range of 10 to 400 Hz.
Der Schwenkbereich der Ringsegmente 18 ist aus Gründen der Darstellbarkeit in allen Figuren stark vergrößert dargestellt, in Wirklichkeit liegt dieser Schwenkbereich der Ringsegmente 18 im Bereich weniger Grad. The pivoting range of the ring segments 18 is shown greatly enlarged for reasons of representability in all figures, in reality, this pivoting range of the ring segments 18 is in the range of a few degrees.
Um diese oszillierende Bewegung zu erzeugen, weisen die Ringsegmente 18 nach radial außen gerichtete Betätigungsstützen 22 auf, die besser in Figur 3 zu erkennen sind. Die freien Enden der Betätigungsstützen 22 laufen auf der sinoidalen In- nenkontur 26 eines Betätungsrings 24. Dieser Betätigungsring 24 ist in Figur 2 vergrößert in einer axialen Ansicht dargestellt. Die sinusförmige Innenkontur 26 des Betätigungsrings 24 weist im dargestellten Ausführungsbeispiel acht innere und äußere Umkehrpunkte bzw. Minima und Maxima auf und eignet sich insbesondere zum Antrieb der gleichen Anzahl - also acht - Ringsegmenten 18 (Figur 3) . In Figur 2 ist mit r der mittlere Radius und mit d der Hubbereich der durch den Betätigungsring 24 erzeugten Oszillationsbewegung bezeichnet, der bei der Rotation desselben auf die Betätigungsstützen 22 beim Ablaufen der sinoidalen Kontur übertragen wird. Das Verhältnis d/r liegt im Bereich von ca. 0,3 - 2%. In order to produce this oscillating movement, the ring segments 18 have radially outwardly directed actuating supports 22, which can be seen better in FIG. The free ends of the actuation supports 22 run on the sinoidal nenkontur 26 of an actuating ring 24. This actuating ring 24 is shown enlarged in Figure 2 in an axial view. The sinusoidal inner contour 26 of the actuating ring 24 has in the illustrated embodiment, eight inner and outer reversal points or minima and maxima and is particularly suitable for driving the same number - ie eight - ring segments 18 (Figure 3). In FIG. 2, r denotes the mean radius and d denotes the stroke range of the oscillation movement generated by the actuating ring 24, which is transmitted to the actuating supports 22 during the rotation of the sinoidal contour during the rotation thereof. The ratio d / r is in the range of about 0.3 - 2%.
Der Schwingungswinkel der Ringsegmente 18 hängt zum einen von der Größe des Hubes d ab aber auch von der Entfernung der Betätigungsstützen 22 von den Anlenkpunkten 20. Mit λ ist die Wellenlänge der sinoidalen Kontur bezeichnet. Die Oszillationsfrequenz f der Ringsegmente ergibt sich aus der Umdrehungszahl ü des Betätungsrings 24 gemäß folgender Gleichung
Figure imgf000007_0001
The oscillation angle of the ring segments 18 depends on the one hand on the size of the stroke d but also on the distance of the actuation supports 22 from the articulation points 20. λ is the wavelength of the sinoidal contour. The oscillation frequency f of the ring segments is given by the number of revolutions ü of the operating ring 24 according to the following equation
Figure imgf000007_0001
Allgemein ist die Umfangsentfernung 1 x π x r/n zwischen den Ringsegmenten gleich λ, wobei n die Anzahl der Ringsegmente 18 ist. Es ist auch möglich diese Entfernung 1 abweichend von λ zu wählen, wodurch besondere Phasenbeziehungen zwischen der Bewegung der einzelnen Ringsegmente 18 erzielbar sind.  Generally, the circumferential distance 1 x π x r / n between the ring segments is λ, where n is the number of ring segments 18. It is also possible to choose this distance 1 different from λ, whereby special phase relationships between the movement of the individual ring segments 18 can be achieved.
Im Betrieb wird der Betätigungsring 24 vorzugsweise hydraulisch oder pneumatisch in Rotation versetzt, so dass sich die Betätigungsstützen 22 entlang der sinusförmig gewellten Innenkontur 26 des Betätigungsrings 24 sinusförmig entlang bewegen und damit diese oszillierende Bewegung auf die Ringsegmente 18 übertragen. Im Ergebnis ändert sich der Düsenquerschnitt oszillierend mit der durch die Drehzahl des Betätigungsrings 24 vorgegebenen Drehzahl. Dabei erfolgt eine Ände- rung des Düsenquerschnitts im Bereich von wenigen Millimetern . In operation, the actuating ring 24 is preferably hydraulically or pneumatically rotated, so that the actuating posts 22 along the sinusoidal corrugated inner contour 26 of the actuating ring 24 move sinusoidally along and thus transmit this oscillating motion to the ring segments 18. As a result, the nozzle cross section changes in an oscillating manner with the speed specified by the rotational speed of the actuating ring 24. An amendment is made tion of the nozzle cross section in the range of a few millimeters.
Die freien Enden der Betätigungsstützen 22 werden bevorzugt über Luftlager auf der Innenkontur 26 des Betätigungsrings 24 geführt. Alternativ sind Gleit- oder Wälzlager anwendbar. Auch können (nicht dargestellte) Federelemente vorgesehen werden, um die Ringsegmente 18 in eine Ruhestellung zu bewegen, insbesondere um diese nach außen zur Düseninnenwand 14 hin zu drücken, wenn das Triebwerk nicht im Betrieb ist. The free ends of the actuating posts 22 are preferably guided via air bearings on the inner contour 26 of the actuating ring 24. Alternatively, sliding or rolling bearings are applicable. Also, spring members (not shown) may be provided to move the ring segments 18 to a rest position, particularly to force them outwardly toward the nozzle inner wall 14 when the engine is not in operation.
Die erfindungsgemäße Vorrichtung kann vorzugsweise ohne geschlossenen Regelkreis betrieben werden. Vorzugsweise erfolgt eine Steuerung anhand der Drehzahl des Triebwerkes . Dazu wird vorzugsweise ein Lufteinlassventil einer Antriebsturbine für den Betätigungsring 24 anhand der Drehzahl, gegebenenfalls zusätzlich unter Berücksichtigung von Betriebszuständen wie „takeoff", „cruise", „approach" zur Ansteuerung des Betätigungsrings 24 verwendet werden. The device according to the invention can preferably be operated without a closed loop. Preferably, a control is based on the speed of the engine. For this purpose, an air inlet valve of a drive turbine for the actuating ring 24 is preferably used on the basis of the rotational speed, possibly also taking into account operating conditions such as "takeoff", "cruise", "approach" for driving the actuating ring 24.
Alternativ ist es auch möglich, einen oder mehrere Sensoren vorzusehen, welche die auftretenden Schallsignale erfassen und eine gezielte Ansteuerung des Betätigungsrings 24 im geschlossenen Regelkreis bewirken. Alternatively, it is also possible to provide one or more sensors which detect the occurring sound signals and effect a targeted control of the actuating ring 24 in the closed loop.

Claims

Ansprüche claims
Vorrichtung zur Reduzierung von durch eine Düse (10) , insbesondere durch eine Gasturbinendüse, erzeugtem Strahllärm, die an der Düseninnenwand (14) angeordnete, am Umfang verteilte oszillierbare Ringsegmente (18) um- fasst, dadurch gekennzeichnet, dass zur Erzeugung der oszillierenden Bewegung der Ringsegmente (18) ein radial außerhalb der Düse (10) angeordneter, drehbarer Betätigungsring (24) vorgesehen ist, dessen Innenseite (26) eine sinoidale Kontur aufweist und die Ringsegmente (18) nach außen gerichtete Betätigungsstützen (22) umfassen, deren freie Enden auf der sinoidalen Innenkontur (26) des Betätigungsrings (24) laufen. Device for reducing jet noise generated by a nozzle (10), in particular by a gas turbine nozzle, which comprises circumferentially distributed oscillatable ring segments (18) arranged on the nozzle inner wall (14), characterized in that the oscillating movement is generated by the oscillating movement Ring segments (18) a radially outside of the nozzle (10) arranged rotatable actuating ring (24) is provided, the inside (26) has a sinoidal contour and the ring segments (18) outwardly directed actuating supports (22), the free ends the sinoidal inner contour (26) of the actuating ring (24) run.
Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Erhebungen bzw. Senken der sinoidalen Kontur (22) des Betätigungsrings (24) der Anzahl an Ringsegmenten (18) entspricht. Apparatus according to claim 1, characterized in that the number of elevations or depressions of the sinoidal contour (22) of the actuating ring (24) corresponds to the number of ring segments (18).
Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Betätigungsring (24) pneumatisch antreibbar ist.  Apparatus according to claim 1, characterized in that the actuating ring (24) is pneumatically driven.
Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Betätigungsring (18) mittels eines Turbinenrades antreibbar ist. Apparatus according to claim 3, characterized in that the actuating ring (18) can be driven by means of a turbine wheel.
Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Turbinenrad vom Gasstrahl antreibbar ist. Apparatus according to claim 4, characterized in that the turbine wheel is driven by the gas jet.
Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Turbinenrad vom umgebenden Luftstrom antreibbar ist.Apparatus according to claim 4, characterized in that the turbine wheel is driven by the surrounding air flow.
Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Betätigungsring (24) hydraulisch antreibbar ist. Apparatus according to claim 1, characterized in that the actuating ring (24) is hydraulically driven.
Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Ringsegmente mit einer Frequenz von 10 bis 400 Hz oszillierbar sind. Device according to one of the preceding claims, characterized in that the ring segments are oscillatable with a frequency of 10 to 400 Hz.
9. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Drehzahl des Betätigungsrings (24) als Funktion der Triebwerksdrehzahl einstellbar ist.9. Device according to one of the preceding claims, characterized in that the rotational speed of the actuating ring (24) is adjustable as a function of engine speed.
10. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Verhältnis des Oszillationshubbereichs d zum mittleren Radius r des Oszillationsbereichs zwischen 0,3 und 2% liegt. 10. Device according to one of the preceding claims, characterized in that the ratio of the Oszillationshubbereichs d to the mean radius r of the oscillation range is between 0.3 and 2%.
PCT/DE2011/001310 2010-06-24 2011-06-17 Device for reducing jet noise WO2012010124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010025014.7A DE102010025014B4 (en) 2010-06-24 2010-06-24 Device for reducing jet noise
DE102010025014.7 2010-06-24

Publications (1)

Publication Number Publication Date
WO2012010124A1 true WO2012010124A1 (en) 2012-01-26

Family

ID=44913137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2011/001310 WO2012010124A1 (en) 2010-06-24 2011-06-17 Device for reducing jet noise

Country Status (2)

Country Link
DE (1) DE102010025014B4 (en)
WO (1) WO2012010124A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737019A (en) * 1953-08-14 1956-03-06 Louis S Billman Variable area convergent-divergent diffuser
US3780827A (en) * 1972-12-19 1973-12-25 Nasa Gas turbine exhaust nozzle
US20020061110A1 (en) * 2000-11-20 2002-05-23 National Aerospace Laboratory Of Japan Actively-controlled sound absorption panel system using movement-controlled reflective plate
US20020125340A1 (en) * 2001-03-03 2002-09-12 Birch Nigel T. Gas turbine engine exhaust nozzle
WO2006055217A1 (en) * 2004-11-12 2006-05-26 The Boeing Company Shape changing structure in a jet engine nacelle nozzle and corresponding jet engine and operating method
EP1703114A1 (en) * 2005-03-15 2006-09-20 Rolls-Royce plc Engine noise
EP1878877A2 (en) * 2006-07-15 2008-01-16 Rolls-Royce plc Shape memory material actuator
DE102008025826A1 (en) 2008-05-29 2009-12-10 Eads Deutschland Gmbh Device for reduction of jet noise generated by nozzle, particularly by jet engine, has nozzle, where one or more units are provided for active boundary layer impact of nozzle flow before leaving nozzle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0608093D0 (en) * 2006-04-25 2006-05-31 Short Brothers Plc Variable area exhaust nozzle
FR2934875B1 (en) * 2008-08-06 2010-08-13 Aircelle Sa NACELLE OF TURBOREACTEUR MOBILE CHEVRONS.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737019A (en) * 1953-08-14 1956-03-06 Louis S Billman Variable area convergent-divergent diffuser
US3780827A (en) * 1972-12-19 1973-12-25 Nasa Gas turbine exhaust nozzle
US20020061110A1 (en) * 2000-11-20 2002-05-23 National Aerospace Laboratory Of Japan Actively-controlled sound absorption panel system using movement-controlled reflective plate
US20020125340A1 (en) * 2001-03-03 2002-09-12 Birch Nigel T. Gas turbine engine exhaust nozzle
WO2006055217A1 (en) * 2004-11-12 2006-05-26 The Boeing Company Shape changing structure in a jet engine nacelle nozzle and corresponding jet engine and operating method
EP1703114A1 (en) * 2005-03-15 2006-09-20 Rolls-Royce plc Engine noise
EP1878877A2 (en) * 2006-07-15 2008-01-16 Rolls-Royce plc Shape memory material actuator
DE102008025826A1 (en) 2008-05-29 2009-12-10 Eads Deutschland Gmbh Device for reduction of jet noise generated by nozzle, particularly by jet engine, has nozzle, where one or more units are provided for active boundary layer impact of nozzle flow before leaving nozzle

Also Published As

Publication number Publication date
DE102010025014B4 (en) 2020-10-01
DE102010025014A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
EP2840012B1 (en) Steering stop
DE3717128C2 (en)
DE1523510B2 (en) Error measuring circle
DE102013215371A1 (en) Apparatus and method for blowing off compressor air in an engine
EP3009683A1 (en) Device and method for bleeding compressor air in an engine
WO1986007417A1 (en) Device for transforming a fluid flow
EP1900499A2 (en) Apparatus for continuously bonding and/or consolidating of web material by ultrasonics
DE10196736B4 (en) Variable speed PIG for piping applications
DE102008063212A1 (en) Shaft unit for turbocharger, has shaft which is arranged in bearing bush unit, where shaft unit is connected with lever element at side, and one or multiple sealing devices are provided between lever element and bearing bush unit
DE2133422A1 (en) Pressure reducing valve
EP2516806B1 (en) Laval nozzle
DE102010025014B4 (en) Device for reducing jet noise
EP2501921B1 (en) Positioning device for converting a rotary motion into a linear motion
EP3059409B1 (en) Exhaust gas treatment device
WO2019166139A1 (en) Device for applying a viscous material to workpieces
DE102015011410A1 (en) Exhaust system for an internal combustion engine
DE102014001034B4 (en) flow machine
DE102011114706A1 (en) Free-jet turbine for wave power station, has nozzle assembly which discharges free jet of liquid such that radial distance of point of impact of free jet to turbine wheel is changeable
EP3394480B1 (en) Underwater drive unit
DE1272732B (en) Roller bearing pair with automatic compensation of the bearing play, especially for jet deflectors on aircraft engines
DE2658619B2 (en) Method for reducing noise in the flow control of a pipe flow and flow control valve
DE102012208716A1 (en) Device for modification of gas flow i.e. effluent stream, of combustion engine of sports vehicle, has throttle element arranged rotatable over rotational axis and delegated to main flow axis of gas stream placed in gas guide portion
EP3394479B1 (en) Hydrodynamic converter
DE10210954A1 (en) Gearbox e.g. for stepper motor, has cylindrical drive element enclosing cylindrical driven element, and radial spoke elements joined to center via which traction force is exerted on contact region to cause deformation
EP0770452B1 (en) Pivotable actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11779561

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application