WO2012010052A1 - Structure topologique de connexion au réseau d'un générateur éolien ne comportant pas de transformateur à base de mmc - Google Patents

Structure topologique de connexion au réseau d'un générateur éolien ne comportant pas de transformateur à base de mmc Download PDF

Info

Publication number
WO2012010052A1
WO2012010052A1 PCT/CN2011/076845 CN2011076845W WO2012010052A1 WO 2012010052 A1 WO2012010052 A1 WO 2012010052A1 CN 2011076845 W CN2011076845 W CN 2011076845W WO 2012010052 A1 WO2012010052 A1 WO 2012010052A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
power
power grid
wind power
Prior art date
Application number
PCT/CN2011/076845
Other languages
English (en)
Chinese (zh)
Inventor
张跃平
李太峰
魏西平
杨洋
赵淑玉
张坤
胡涛
王振
Original Assignee
荣信电力电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣信电力电子股份有限公司 filed Critical 荣信电力电子股份有限公司
Publication of WO2012010052A1 publication Critical patent/WO2012010052A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the invention relates to a wind turbine grid-connecting technology, in particular to a transformerless wind power grid-connected topology based on an MMC modular multilevel converter (Modular Multilevel Converter). Background technique
  • China's wind energy resources are very rich. According to the National Meteorological Administration, the surface wind power energy that can be developed and utilized within 10 m in China is about 1 billion kW, of which 250 million kW is land and 750 million kW is sea. If it is extended to 50 ⁇ 60 m or more. Height, wind resources will be expected to expand to 20 to 2.5 billion kW. Therefore, wind power generation is a realistic and important choice for the sustainable development of China's energy.
  • Wind turbines basically use a common frequency converter to make their phase the same as the grid.
  • the step-up transformer is used to connect to the grid. This results in the need for a step-up transformer for each wind turbine.
  • the step-up transformer is bulky, heavy in weight, high in cost, and complicated in structure.
  • each wind turbine has only 3 levels, the harmonic content is very large, and the multi-grid pollution is serious.
  • the control is difficult, the control is cumbersome, and it is difficult to form a large-scale, super-large wind farm control.
  • Wind power output is two-level or three-level, and the harmonic content is large. After boosting, it cannot be directly integrated into the power grid, and an output filtering device is needed. Summary of the invention
  • the object of the present invention is to provide an MMC-based transformerless wind power grid-connected topology, which outputs a high voltage through a series connection of power units; and saves a step-up transformer when a general wind power is connected to the grid, which saves a lot of cost.
  • the multi-level waveform can be output through the modulation algorithm to reduce the output harmonic content and reduce the pollution of the power grid to the power grid.
  • the MMC-based transformerless wind power grid-connected topology includes a wind turbine, a rectifier module, and an inverter module.
  • the wind turbine generates low-voltage alternating current, and is rectified by a rectifier module to obtain a DC voltage, which is used as a power unit of the inverter module.
  • the DC side voltage supply power supply; the inverter module inverts the AC voltage after the DC voltage is inverted through the power unit in series to form an AC high voltage from the AC side through the buffered inductor output, and is integrated into the power grid.
  • the inverter module is three-phase, each phase is formed by connecting even number of n power units in series, and is divided into two groups, the number of power units in each group is n/2, and the output phase voltage level step number is n. /2+l, the line voltage level is n+1; the output of each phase is at the midpoint of the two sets of cells, and the output is connected with each group of cells with a coupled or uncoupled buffer inductor; The AC high voltage is output at the midpoint of the two sets of cells.
  • the power unit is a half bridge structure, and the switching device IGBT1 and IGBT2 are connected in series, and then the DC capacitor C is connected in parallel. And the switching devices IGBT1 and IGBT2 are respectively anti-parallel diodes D1, D2; the common ends of IGBT1 and IGBT2, the common ends of capacitors C and IGBT2 are used as the output ends of each unit, and are connected to other units.
  • the rectifier module is composed of a diode uncontrollable full bridge.
  • the wind turbine generates low-voltage alternating current, which is rectified by the rectifier module to obtain a DC voltage.
  • the DC voltage is used as the DC-side voltage supply power of the inverter module power unit; the inverter module converts the DC voltage after the DC voltage is inverted into a DC through the power unit.
  • the high voltage is output from the DC side and integrated into the grid.
  • the modulation method adopts the carrier phase shifting method to generate a multi-step sine wave and obtain a better output voltage waveform with a smaller switching frequency
  • the entire wind farm can be connected in series to an AC high voltage, which is directly output from the AC side;
  • the entire wind farm can be connected in series to a DC high voltage, which is directly output from the DC side;
  • Figure 1 is a schematic diagram of a grid-connected topology of a transformerless wind power generation based on MMC;
  • Figure 2 is a basic power unit structure diagram of a grid-connected topology of a transformerless wind power generation based on MMC;
  • Figure 3-1 is a current flow diagram of the power unit output state being 0 state
  • Figure 3-2 is a current flow diagram of the power unit output state being 0 state
  • Figure 3-3 is a current flow diagram of the power unit output state being 1 state
  • Figure 3-4 shows the current flow diagram for the power unit output state.
  • MMC-based transformerless wind power grid-connected topology including wind turbine, rectifier module, inverter module, wind turbine generating low-voltage alternating current, rectified by rectifier module to obtain DC voltage, the DC voltage as an inverter
  • the DC side voltage supply power of the module power unit the inverter module converts the AC voltage after the DC voltage is inverted into an AC high voltage through the power unit, and is output from the U, V, W sides of the AC via the buffer inductor L, and is integrated into the grid.
  • the inverter module can also convert the DC voltage after the DC voltage is inverted into a DC high voltage directly from the DC unit.
  • the A and B sides output DC high voltage and are integrated into the grid.
  • the topology inverter module is a three-phase, each phase is composed of an even number of n power units connected in series, comprising a total of 3 ⁇ power units, each power unit is powered by a wind turbine and passed through a three-phase uncontrollable full-bridge rectification to the power unit. Capacitor C is powered.
  • Each phase of the inverter module is formed by connecting even numbers of n power units in series, and is divided into two groups.
  • the number of power units in each group is ⁇ /2, and the number of output phase voltage levels is ⁇ /2+1.
  • the number of line voltage levels is ⁇ +1 ;
  • the output of each phase is two sets of units At the midpoint, and the output is connected to each group of cells with a coupled or uncoupled buffer inductor; at the output, the AC high voltage is output at the midpoint of the two sets of cells.
  • the inverter side of the power unit is a half-bridge structure, the switching devices IGBT1 and IGBT2 are connected in series, and then the DC capacitor C is connected in parallel, and the switching devices IGBT1 and IGBT2 are respectively anti-parallel diodes D11 and D22; the common ends of IGBT1 and IGBT2, capacitor
  • the common end of C and IGBT 2 serves as the output of each unit and is connected to other units.
  • the rectifier side consists of diodes Dl, D2, D3, D4, D5, and D6 that form an uncontrollable full bridge.
  • the topology utilizes a wind turbine as an energy relay pool to power the unit DC bus and combines certain modulation methods to produce the required multi-level variable sine wave.
  • the inverter module consists of three phases, each phase consisting of an even number of n power units connected in series. The number of series units is called the unit level.
  • the DC high voltage can be directly output on the B side, or the AC high voltage can be output on the U, V, and w sides.
  • the AC high voltage contains less harmonics and less pollution to the grid.
  • Controlling the gate voltage of the IGBT to turn it on or off allows the cell to have different circuit states.
  • the current flows from A to B via IGBT2, and the power unit output level of the half-bridge inverter circuit is "0".
  • the current flows through the freewheeling diode D2 from B to A, and the power unit output level of the half-bridge inverter circuit is "0".
  • the current flows through the freewheeling diode D1, and then flows from A to B through the DC-side capacitor C.
  • the power unit output level of the half-bridge inverter circuit is "1".
  • the current flows through IGBT1 and then through DC-side capacitor C, from B to A.
  • the power unit output level of the half-bridge inverter circuit is "1".
  • the output voltage can reach the grid level, and the voltage waveform synchronized with the grid can be issued according to the grid voltage, and the output harmonics can meet the requirements, and then the grid can be directly connected to generate electricity.
  • n (n is an even number) is determined by the voltage level required to be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Inverter Devices (AREA)

Abstract

L'invention concerne une structure topologique de connexion au réseau d'un générateur éolien ne comportant pas de transformateur à base de MMC, comprenant un générateur électrique éolien, un module redresseur et un module onduleur. Le générateur génère un courant alternatif (AC) basse tension devant être redressé par le module redresseur en un courant continu (DC); le courant continu est quant à lui utilisé en tant qu'alimentation électrique du côté à courant continu d'une unité d'alimentation électrique d'un module onduleur. Un courant alternatif ondulé généré par un onduleur à partir du courant continu et connecté en série à l'unité d'alimentation électrique est délivré par le module onduleur depuis un côté à courant alternatif à travers une inductance tampon (L) et est intégré à un réseau électrique. Un avantage de cette méthode est qu'en connectant en série des unités d'alimentation électrique afin de produire une sortie de courant à haute tension, on élimine un transformateur élévateur de tension habituellement utilisé dans la connexion de générateurs éoliens au réseau électrique, cela permettant de réduire notablement les coûts. De plus, en utilisant de multiples générateurs électriques connectés en série pour délivrer une haute tension, on peut utiliser un algorithme de modulation produisant une forme d'onde de sortie à niveaux multiples, cela réduisant le contenu en harmoniques de sortie et la contamination du réseau électrique par les générateurs éoliens.
PCT/CN2011/076845 2010-07-22 2011-07-05 Structure topologique de connexion au réseau d'un générateur éolien ne comportant pas de transformateur à base de mmc WO2012010052A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010233699.8 2010-07-22
CN2010102336998A CN102013694A (zh) 2010-07-22 2010-07-22 基于mmc的无变压器风力发电并网拓扑结构

Publications (1)

Publication Number Publication Date
WO2012010052A1 true WO2012010052A1 (fr) 2012-01-26

Family

ID=43843761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076845 WO2012010052A1 (fr) 2010-07-22 2011-07-05 Structure topologique de connexion au réseau d'un générateur éolien ne comportant pas de transformateur à base de mmc

Country Status (2)

Country Link
CN (1) CN102013694A (fr)
WO (1) WO2012010052A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762861A (zh) * 2014-01-28 2014-04-30 华南理工大学 N输入单相2n+2开关组mmc整流器及其控制方法
CN103762870A (zh) * 2014-01-28 2014-04-30 华南理工大学 双输入单相六开关组mmc整流器及其控制方法
CN104753082A (zh) * 2015-03-12 2015-07-01 华南理工大学 一种用于风电场并网的柔性直流输电换流器拓扑
US10411469B2 (en) 2017-12-07 2019-09-10 Inventus Holdings, Llc Reactive power control integrated with renewable energy power invertor
CN113489333A (zh) * 2021-07-08 2021-10-08 国网辽宁省电力有限公司营口供电公司 一种基于串联数字化稳压器的电能路由器交流侧调制方法
US11159354B2 (en) * 2017-05-12 2021-10-26 Qualcomm Incorporated Increasing reference signal density in wireless communications
CN114362208A (zh) * 2022-01-07 2022-04-15 阳光电源股份有限公司 一种储能风电变流器及其控制方法
CN115001027A (zh) * 2022-07-19 2022-09-02 东南大学溧阳研究院 一种基于混合子模块串联升压的海上风电直流汇集系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013694A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构
CN102136729B (zh) * 2011-02-22 2014-08-06 西安交通大学 一种基于移相多绕组整流变压器的串联多电平svg拓扑结构及其控制方法
CN102663174B (zh) * 2012-03-23 2014-01-01 浙江大学 一种mmc的仿真方法及应用
DE102012216469A1 (de) * 2012-09-14 2014-03-20 Robert Bosch Gmbh Energieversorgungssystem und Verfahren zum Ansteuern von Koppeleinrichtungen einer Energiespeichereinrichtung
CN103427657B (zh) * 2013-08-01 2015-11-18 南京南瑞继保电气有限公司 一种高压直流-直流变换设备
CN103762874B (zh) * 2014-01-28 2017-01-11 华南理工大学 双负载三相九开关组mmc逆变器及其控制方法
CN103780113B (zh) * 2014-01-28 2017-01-18 华南理工大学 N输出三相3n+3开关组mmc逆变器及其控制方法
CN103825488B (zh) * 2014-01-28 2016-06-22 华南理工大学 双输出单相六开关组mmc逆变器及其控制方法
CN103904910B (zh) * 2014-03-27 2016-09-21 华南理工大学 单相六开关组mmc ac-ac变换器及其控制方法
CN107404233B (zh) * 2017-07-24 2021-04-16 中国电力科学研究院 一种直流传输系统
ES2824579A1 (es) * 2019-11-12 2021-05-12 Univ Valladolid Estructura de conexion de aerogeneradores
CN113809768A (zh) * 2020-06-11 2021-12-17 新疆金风科技股份有限公司 直流风力发电机组以及直流风电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291071A (zh) * 2008-06-18 2008-10-22 张皓 一种风力发电直接并网电力变换装置
CN101548458A (zh) * 2006-12-08 2009-09-30 西门子公司 具有分布式储能器的模块化变流器的控制
WO2009135728A2 (fr) * 2008-05-07 2009-11-12 Siemens Aktiengesellschaft Parc éolien comprenant plusieurs installations éoliennes
CN201774271U (zh) * 2010-07-22 2011-03-23 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构
CN102013694A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075350A (en) * 1998-04-24 2000-06-13 Lockheed Martin Energy Research Corporation Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548458A (zh) * 2006-12-08 2009-09-30 西门子公司 具有分布式储能器的模块化变流器的控制
WO2009135728A2 (fr) * 2008-05-07 2009-11-12 Siemens Aktiengesellschaft Parc éolien comprenant plusieurs installations éoliennes
CN101291071A (zh) * 2008-06-18 2008-10-22 张皓 一种风力发电直接并网电力变换装置
CN201774271U (zh) * 2010-07-22 2011-03-23 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构
CN102013694A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 基于mmc的无变压器风力发电并网拓扑结构

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762861A (zh) * 2014-01-28 2014-04-30 华南理工大学 N输入单相2n+2开关组mmc整流器及其控制方法
CN103762870A (zh) * 2014-01-28 2014-04-30 华南理工大学 双输入单相六开关组mmc整流器及其控制方法
CN104753082A (zh) * 2015-03-12 2015-07-01 华南理工大学 一种用于风电场并网的柔性直流输电换流器拓扑
US11159354B2 (en) * 2017-05-12 2021-10-26 Qualcomm Incorporated Increasing reference signal density in wireless communications
US10411469B2 (en) 2017-12-07 2019-09-10 Inventus Holdings, Llc Reactive power control integrated with renewable energy power invertor
CN113489333A (zh) * 2021-07-08 2021-10-08 国网辽宁省电力有限公司营口供电公司 一种基于串联数字化稳压器的电能路由器交流侧调制方法
CN114362208A (zh) * 2022-01-07 2022-04-15 阳光电源股份有限公司 一种储能风电变流器及其控制方法
CN115001027A (zh) * 2022-07-19 2022-09-02 东南大学溧阳研究院 一种基于混合子模块串联升压的海上风电直流汇集系统

Also Published As

Publication number Publication date
CN102013694A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012010052A1 (fr) Structure topologique de connexion au réseau d'un générateur éolien ne comportant pas de transformateur à base de mmc
CN110149065B (zh) 一种升降压开关电容多电平逆变器及其调制方法
WO2012010063A1 (fr) Topologie de réseau fondée sur l'énergie éolienne sans transformateur à montage en pont en h
CN102856916B (zh) 一种单相光伏逆变器无功控制方法及电路
CN105162350B (zh) 一种高效率宽负载范围的三相微逆变器及其控制方法
CN101291071A (zh) 一种风力发电直接并网电力变换装置
WO2012010064A1 (fr) Topologie d'alimentation haute tension à quatre quadrants sans transformateur fondée sur mmc
CN101345423B (zh) 用于风力发电系统的五电平h桥级联背靠背变流器
Nayanasiri et al. Half-wave cycloconverter-based photovoltaic microinverter topology with phase-shift power modulation
WO2012024984A1 (fr) Topologie de stockage d'énergie de batterie sans transformateur fondée sur un convertisseur multiniveaux modulaire
CN102522910B (zh) 用于三相并网逆变器的混合式svpwm控制方法
WO2017197629A1 (fr) Système d'onduleur de source de courant et dispositif d'onduleur
CN106877371B (zh) 一种具有储能功能的模块化多电平变流器的控制方法
WO2012010054A1 (fr) Topologie d'onduleur solaire sans transformateur fondée sur un convertisseur modulaire multiniveau
WO2012010068A1 (fr) Topologie de production d'énergie électrique et d'intégration au réseau électrique de centrale hydraulique sans transformateur
Yusof et al. A comparative study of 5-level and 7-level multilevel inverter connected to the grid
CN103337962B (zh) 海上风电场直流汇聚用三电平变换器及其控制方法
CN104242341A (zh) 基于mmc和双极式直流传输结构的直驱风电变流结构
CN102857132B (zh) 交错并联反激光伏逆变装置
WO2012010055A1 (fr) Topologie de stockage d'énergie inductive sans transformateur fondée sur un convertisseur modulaire multiniveau (mmc)
CN201774271U (zh) 基于mmc的无变压器风力发电并网拓扑结构
CN102957167A (zh) 基于模块化多电平变流器的风力发电与并网系统
CN102738825A (zh) 基于模块化多电平变流器的新型光伏并网系统
CN201515320U (zh) 一种并网逆变器
CN202014100U (zh) 一种光伏电站并网逆变器动态无功补偿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809240

Country of ref document: EP

Kind code of ref document: A1