WO2012009935A1 - 充电电路管理装置及无线终端 - Google Patents

充电电路管理装置及无线终端 Download PDF

Info

Publication number
WO2012009935A1
WO2012009935A1 PCT/CN2010/080385 CN2010080385W WO2012009935A1 WO 2012009935 A1 WO2012009935 A1 WO 2012009935A1 CN 2010080385 W CN2010080385 W CN 2010080385W WO 2012009935 A1 WO2012009935 A1 WO 2012009935A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging circuit
battery
voltage
voltage converter
converter
Prior art date
Application number
PCT/CN2010/080385
Other languages
English (en)
French (fr)
Inventor
王继红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10854965.0A priority Critical patent/EP2528186B1/en
Priority to US13/580,151 priority patent/US8378626B2/en
Publication of WO2012009935A1 publication Critical patent/WO2012009935A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode

Definitions

  • the present invention relates to the field of linear charging circuit management and control technologies, and in particular, to a charging circuit management device and a wireless terminal. Background technique
  • the prior art discloses the following technical solution: adding a dynamic feedback control circuit to the charger to adjust the output voltage to improve the transient change of the load, so that the output voltage of the charger is close to the battery voltage, thereby reducing power.
  • the purpose of consumption discloses the following technical solutions: TL494 (pulse width modulation control circuit) pulse width modulation component for controlling output voltage and current, adopting improved constant current charging, initial large current and low voltage, gradually reducing current increase Voltage, avoid overcharging. It can be seen from the prior art 1 and the prior art 2 that both solutions start from the charger, adjust the charging voltage or the charging current, and improve the charging efficiency.
  • USB Universal Serial Bus
  • More and more electronic products with charging function use USB interface as charging interface.
  • Portable wireless communication terminals such as mobile phones, use linear charging circuits, generally It can be charged with the adapter or the USB interface of the PC. If a high-efficiency charging device is placed on an electronic product, the efficiency will increase whether it is charged by an adapter or charged by a USB interface of a PC.
  • the battery When the battery is low, the voltage is low. As the power increases, the battery voltage also rises.
  • the input voltage and the battery voltage have a varying voltage difference. This voltage difference mainly falls on the charging tube device, causing unnecessary This energy loss, especially in the case of a large charging current, is greater. Summary of the invention
  • the invention provides a charging circuit management device and a wireless terminal, which solve the problems of excessive energy consumption loss and low charging efficiency in the charging process in the prior art.
  • the present invention provides a charging circuit management apparatus and a wireless terminal, and the technical solution is as follows:
  • a charging circuit management device includes: a power management module, a step-down switching voltage converter, and a linear charging circuit
  • the power management module comprises: an adjustable linear buck voltage converter and a digital to analog converter
  • the output of the adjustable linear buck converter of the power management module is connected to the feedback end of the buck switching voltage converter through a first preset resistor, and the input of the digital-to-analog converter of the power management module
  • the terminal is connected to the positive pole of the battery, the control end of the power management module is connected to the control end of the linear charging circuit; the output end of the step-down switching voltage converter is connected to the input end of the linear charging circuit;
  • An output of the linear charging circuit is coupled to the positive terminal of the battery.
  • the digital-to-analog converter of the power management module compares the battery power, and when the battery is valid and the battery power is not full, the battery voltage is adjustable. An output voltage of the linear buck voltage converter is fed back to the step-down switching voltage converter, and the prong-type switching voltage converter outputs a voltage to the linear charging circuit according to a feedback result, and the linear charging circuit is in the The battery is charged under the control of the power management module. Further, the relationship between the step-down switching voltage converter output voltage Vvdc_out and the adjustable linear buck voltage converter output voltage Vldo_Ctrl is:
  • Vfb the voltage of the feedback terminal of the step-down switching voltage converter
  • VI the resistance of the first preset resistor
  • V2 is the resistance of the second preset resistor
  • V3 is the resistance of the third preset resistor
  • a wireless terminal comprising: a charging circuit management device; the charging circuit management device comprises: a power management module, a step-down switching voltage converter and a linear charging circuit, wherein the power management module comprises: an adjustable linear step-down voltage a converter and a digital-to-analog converter; wherein an output end of the adjustable linear buck converter of the power management module is connected to a feedback end of the buck switching voltage converter through a preset resistor, the power supply An input end of the digital-to-analog converter of the management module is connected to a positive pole of the battery, and a control end of the power management module is connected to a control end of the linear charging circuit; an output end of the step-down switching voltage converter An input end of the linear charging circuit is connected; an output end of the linear charging circuit is connected to the positive electrode of the battery.
  • the digital-to-analog converter of the power management module compares the battery power, and when the battery is valid and the battery power is not full, the battery voltage is adjustable. An output voltage of the linear buck voltage converter is fed back to the buck switching voltage converter, and the buck switching voltage converter outputs a voltage to the linear charging circuit according to a feedback result, where the linear charging circuit is The battery is charged under the control of the power management module.
  • Vfb the voltage at the feedback terminal of the step-down switching voltage converter
  • VI the resistance of the first preset resistor
  • V2 For the resistance of the second preset resistor
  • V3 is the resistance of the third preset resistor.
  • the invention increases the step-down switching voltage converter and utilizes the power management module
  • the adjustable linear step-down voltage converter can automatically adjust the charging voltage and reduce the voltage drop on the charging tube, which reduces the energy loss, thus reducing the power consumption of the whole machine, thus improving the heat generation of the whole machine.
  • FIG. 1 is a structural diagram of a charging circuit management apparatus provided by the present invention.
  • FIG. 2 is a schematic diagram of the principle of a linear charging circuit provided by the present invention.
  • FIG. 3 is a schematic diagram of a charging voltage automatic adjustment circuit provided by the present invention.
  • a first embodiment of the present invention provides a charging circuit management device, as shown in FIG. 1, comprising: a power management module, a step-down switching voltage converter, and a linear charging circuit
  • the power management module includes: an adjustable linear buck a voltage converter and a digital-to-analog converter; wherein an output of the adjustable linear buck converter of the power management module is connected to a feedback end of the buck switching voltage converter through a preset resistor, the power management module
  • the input end of the digital-to-analog converter is connected to the positive pole of the battery, and the control end of the power management module is connected to the control end of the linear charging circuit; the output end of the step-down switching voltage converter and the input of the linear charging circuit Connected to the terminal; the output of the linear charging circuit is connected to the positive terminal of the battery;
  • the digital-to-analog converter of the power management module compares the battery power, and when determining that the battery is valid and the battery power is not full, the adjustable linear step-down voltage converter according to the battery voltage The output voltage is fed back to the step-down switching voltage converter, and the step-down switching voltage converter outputs a voltage to the linear charging circuit according to the feedback result, and the linear charging The circuit charges the battery under the control of the power management module.
  • Vfb the voltage of the feedback terminal of the step-down switching voltage converter
  • VI the resistance of the first preset resistor
  • V2 is the resistance of the second preset resistor
  • V3 is the resistance of the third preset resistor
  • the charging circuit management apparatus includes a hardware circuit portion and a software control portion, wherein the hardware circuit portion includes: a power management module, a step-down switching voltage converter, and Linear charging circuit.
  • the conventional linear charging circuit is composed of a PNP charging tube, a sense resistor, and a P-type MOSFET (P-type Metal-Oxide-Semiconductor, PMOS) control tube.
  • the emission set of the PNP charging tube is the input end of the charging circuit.
  • the voltage of the collector is similar to the battery voltage. When the difference between the charging voltage and the battery voltage is large, the voltage drop across the PNP charging tube is large.
  • the linear charging circuit shown in Fig. 2 is only for the sake of example, and the protection range of the present invention is not limited thereto.
  • the power management module includes a tunable linear buck converter (Low Dropout (LDO) Linear Regulator) and an analog-to-digital converter (Analog-to-Digtial Conventor).
  • the step-down switching voltage converter is the core of the present invention, and uses a high-efficiency step-down switching voltage converter to control the buck by the output voltage of the adjustable linear buck converter inside the power management module.
  • the feedback terminal of the switched-mode voltage converter achieves its output voltage adjustable purpose.
  • the Qualcomm PM7540 power management module is taken as an example, and the protection scope of the present invention is not limited thereto.
  • the output voltage of the adjustable linear buck converter of the power management module is set according to the battery voltage, which constitutes a feedback control circuit, which adjusts the output voltage of the buck switching voltage converter in real time according to the battery voltage.
  • the battery is charged. Automatic according to battery voltage
  • the output voltage of the step-down switching voltage converter is usually about 0.3V higher than the battery voltage, and this output voltage can be used as an input to the charging circuit.
  • the voltage drop of the PMOS control tube and the sense resistor is about 0.1V, and the saturation voltage of the PNP charging tube can be up to 0.08V. Therefore, the voltage difference between the input voltage of the charging circuit and the battery voltage is 0.3V. To ensure normal charging, the voltage drop across the charging circuit is approximately 0.3V.
  • the charging voltage is constant at 5V, and the lithium battery voltage is 3.7V, so the voltage drop on the charging circuit is about 1.3V.
  • the normal operating voltage range is 3.3V ⁇ 4.2V, and the voltage drop across the PNP charging tube is a dynamic range. It should be noted that the voltage difference of the step-down switching voltage converter and the charging circuit of 0.3 V is only a preferred value, and the scope of protection of the present invention is not limited thereto.
  • the step-down switching voltage converter is the core of the invention. As shown in Fig. 3, the output voltage adjustable voltage converter is improved on the basis of the conventional fixed output step-down switching voltage converter. It is the core of the circuit and constitutes a control system that automatically adjusts the charging voltage according to the battery voltage.
  • the feedback voltage is affected by the internal adjustable LDO output voltage (VBAT-CTRL) and the dynamic output voltage (VDC-OUT) of the power management module. Select the appropriate feedback resistor to get the output of the suitable step-down switching voltage converter chip. voltage range.
  • the voltage converter is based on a low-cost high-efficiency step-down switching voltage converter.
  • the ZU 153 step-down type is used.
  • the switching voltage converter chip is taken as an example.
  • the use scenario of the chip in the present invention is that the input voltage is 5 V ⁇ 10%, the output voltage is 3.5 to 4.4 V, and the output current is about 700 mA, which can be obtained from the device data. It is known that the power supply efficiency is above 90%; the feedback threshold voltage is 0.6V (Vfb), and the feedback input bias current is less than 30nA, which is equivalent to the virtual break, and the output voltage is determined by the voltage divider resistor. As can be seen from Fig.
  • the resistor R34 in addition to the resistor R26, the resistor R34 constitutes a divided voltage, and the resistor R62 is added to control the feedback terminal.
  • the voltage at the R62 terminal is output by the adjustable LDO voltage converter built into the power management module.
  • the output voltage of the LDO voltage converter is set according to the battery voltage. Select the appropriate resistance for the above three resistors (at least 1% accuracy), the output voltage range of the step-down switching voltage converter can meet the charging requirements.
  • the resistance values selected for resistors R26, R34, and R62 are 121K ohms, 19.1K ohms, and 121K ohms, respectively.
  • the input current of the feedback terminal of the step-down switching voltage converter chip is less than 30 nA, and the current flowing through the three resistors is several tens of microamps, the current flowing into the feedback terminal can be ignored.
  • the resistor R62 is the first preset resistor
  • the resistor R34 is the second preset resistor
  • the resistor R26 is the third preset resistor
  • the value thereof is not limited to the above resistance value, and the value of Vfb depends on the used value. Step-down switching voltage converter chip.
  • the output range of the adjustable LDO voltage converter is between 0.75 and 1.5V, so the output voltage of the step-down switching voltage converter is also determined. For example, if the output voltage of the adjustable LDO voltage converter is set to 1.5V, then the output voltage of the step-down switching voltage converter is 3.5V. Set the LDO voltage converter output to 0.75V, then the output voltage of the step-down switching voltage converter is 4.25V.
  • the battery voltage is between 3.2 and 3.95V, which can be set to a constant current state of charge.
  • the output voltage of the step-down switching voltage converter is adjusted within 3.5 ⁇ 4.25V.
  • the battery voltage is between 3.95 and 4.2V, and can be set to a constant voltage state or a pulse state. In this state of charge, the output of the adjustable LDO voltage converter is turned off, which is equivalent to the step-down switching voltage converter chip. The feedback side is disconnected.
  • the adjustable LDO voltage converter built into the power management module has no output yet. At this time, the output voltage of the step-down switching voltage converter is 4.4V, which satisfies the startup requirement.
  • step SO The implementation of the adjustable output voltage of the step-down switching voltage converter requires software control.
  • the software control process is shown in Figure 4.
  • the built-in adjustable LDO voltage converter of the power management module has no output voltage, and the output voltage of the step-down switching voltage converter is 4.4V, which can supply power to the whole machine normally. Finish booting.
  • the ADC of the power management module detects the battery ID and samples the battery voltage (step S1).
  • the output voltage of the LDO voltage converter can be adjusted according to the battery voltage (steps) S2), the change of the output voltage of the adjustable LDO voltage converter is fed back to the step-down switching voltage converter, thereby completing the automatic adjustment of the output voltage of the step-down switching voltage converter (step S4). Then, it is detected whether the charging current and the voltage are within the allowable range (step S5). If normal, the battery is normally charged (step S7), the battery voltage continues to increase, and the output voltage setting of the adjustable LDO voltage converter is gradually decreased.
  • Table 1 The corresponding relationship between the output voltage of the LDO voltage converter and the output voltage of the step-down switching voltage converter is shown in Table 1, which is convenient for programming.
  • step S3 If it is detected that the battery voltage reaches 4.2V (ie, full) or the battery ID is invalid, the output of the adjustable LDO voltage converter is turned off, which ensures that the whole machine is powered externally, does not consume battery power, and has both battery life and safety. benefit.
  • step S3 the step-down switching type voltage converter outputs a fixed voltage (step S3), and then the charging is completed or the charging is abnormally terminated (step S6).
  • the battery voltage is a change, and the output of the adjustable LDO voltage converter follows the change, thereby automatically adjusting the output voltage of the step-down switching voltage converter so that the charging voltage is higher than the battery voltage and remains A certain difference, which can meet the charging requirements, can reduce the loss of the PNP charging tube, and achieve the best charging efficiency in the entire charging system.
  • the efficiency of the step-down switching voltage converter is above 90%, and the output voltage of the step-down switching voltage converter is used as an input of the charging circuit, and the typical value is 4.0V (battery voltage 3.7V+0.3V)
  • the efficiency of combining the two parts of the circuit is 90% of the efficiency of the charging circuit of the invention.
  • X 92.5% 83.25%.
  • the ratio of the voltage is a
  • the MIFI product has a working current of more than 600mA. Since the USB interface current output capability is 500mA, the conventional charging circuit uses USB power supply, which may cause insufficient current, because If the supply current is insufficient, the battery will be discharged, the battery voltage will decrease, and the output voltage of the step-down switching voltage converter will also decrease.
  • the battery voltage will be automatically turned off when the voltage is lower than 3.3V.
  • the output voltage of the profiled switching voltage converter is at least 3.6V to ensure normal operation. ⁇ Using the invention, step-down switching voltage conversion
  • the second embodiment of the present invention further provides a wireless terminal, including: a charging circuit management device;
  • the charging circuit management device includes: a power management module, a step-down switching voltage converter, and a linear charging circuit
  • the power management module includes: An adjustable linear buck voltage converter and a digital to analog converter; wherein, the output of the adjustable linear buck converter of the power management module passes the feedback of the first preset resistor and the buck switching voltage converter Connected to the terminal, the input end of the digital-to-analog converter of the power management module is connected to the positive pole of the battery, and the control end of the power management module is connected to the control end of the linear charging circuit; the output end of the step-down switching voltage converter Connected to the input end of the linear charging circuit; the output end of the linear charging circuit is connected to the positive electrode of the battery; when the battery is charged, the digital-to-analog converter of the power management module samples the battery, and determines When the battery is valid and the battery is not full, the output of the adjustable linear
  • Vfb the voltage of the feedback terminal of the step-down switching voltage converter
  • VI the resistance of the first preset resistor
  • V2 is the resistance of the second preset resistor
  • V3 is the resistance of the third preset resistor
  • the invention can automatically adjust the charging voltage by increasing the step-down switching voltage converter and using the adjustable linear step-down voltage converter in the power management module, thereby reducing the voltage drop on the charging tube, that is, reducing the energy loss. , thus reducing the power consumption of the whole machine, thus improving the whole The machine is hot.

Description

充电电路管理装置及无线终端 技术领域
本发明涉及线性充电电路管理控制技术领域, 特别涉及一种充电电路 管理装置及无线终端。 背景技术
随着电子产品功能越来越复杂, 而电子产品的外观日趋向小型化、 便 携式方向发展, 特别是随着无线通讯终端的广泛应用, 给设计者提出了更 高的要求: 比如要求功耗要低, 整机发热要少, 而可靠性要更高。 实际上, 产品小型化非常不利于散热, 而散热不良又会导致产品的可靠性降低, 因 此, 降低电子产品整机功率可以有效减少整机发热, 提高可靠性。
无线终端便携式产品一般自身具有充电功能, 因此对线性充电电路进 行深入研究, 对于提高充电效率, 具有重要意义。 目前, 针对上述问题, 现有技术一公开了如下技术方案: 在充电器中增加动态反馈控制电路调节 输出电压来提高负载的瞬态变化, 使充电器的输出电压接近电池电压, 从 而达到减少功率消耗的目的。 现有技术二公开了如下技术方案: 釆用控制 输出电压和电流的 TL494 (脉宽调制控制电路)脉宽调制组件, 釆取了改 进型恒流充电, 初期大电流低电压, 逐渐减少电流提高电压, 避免过充电。 从现有技术一和现有技术二中可以看出, 两种方案都是从充电器着手, 调 整充电电压或者充电电流, 提高充电效率。
目前, 由于通用串行总线 ( USB , Universal Serial BUS )接口具有优 良的数据传输能力以及可以对外设供电, 使用方便, 应用广, 越来越多有 充电功能的电子产品釆用 USB接口作为充电接口,使得数据接口和充电接 口达到统一。 便携式无线通讯终端如手机等都是釆用线性充电电路, 一般 可以用适配器或者 PC机的 USB接口充电。 如果把高效率的充电装置放在 电子产品上, 那么不管是用适配器充电还是 PC机的 USB接口充电, 效率 都会提高。 电池电量低时电压低, 随着电量增加, 电池电压也升高, 在充 电过程中, 输入电压和电池电压有一个变化的电压差, 这个电压差主要落 在充电管器件上, 造成不必要的能量损耗, 特别是充电电流比较大的情况 下, 这种能量损耗会更大。 发明内容
本发明提供了一种充电电路管理装置及无线终端, 以解决现有技术中 充电过程中能耗损耗过大和充电效率低的问题。
为了解决上述问题, 本发明提供了充电电路管理装置及无线终端, 技 术方案如下:
一种充电电路管理装置, 包括: 电源管理模块、 降压型开关式电压转 换器和线性充电电路, 所述电源管理模块包括: 可调线性降压电压转换器 和数模转换器; 其中, 所述电源管理模块的可调线性降压电压转换器的输 出端通过第一预设电阻与所述降压型开关式电压转换器的反馈端相连, 所 述电源管理模块的数模转换器的输入端与电池的正极相连, 所述电源管理 模块的控制端与所述线性充电电路的控制端相连; 所述降压型开关式电压 转换器的输出端与所述线性充电电路的输入端相连; 所述线性充电电路的 输出端与所述电池正极相连。
进一步地, 在对所述电池进行充电时, 所述电源管理模块的数模转换 器对所述电池电量进行釆样, 在判断所述电池有效和电池电量未满时, 根 据电池电压将可调线性降压电压转换器的输出电压反馈到所述降压型开关 式电压转换器, 所述压型开关式电压转换器根据反馈结果向所述线性充电 电路输出电压, 所述线性充电电路在所述电源管理模块的控制下对所述电 池进行充电。 进一步地, 所述降压型开关式电压转换器输出电压 Vvdc— out与所述可 调线性降压电压转换器输出电压 Vldo— Ctrl的关系是:
( Vvdc out-Vfb ) /V3+ ( Vldo ctrl-Vfb ) /Vl=Vfb/V2, 其中, Vfb 为 降压型开关式电压转换器的反馈端的电压, VI为所述第一预设电阻的阻值, V2为第二预设电阻的阻值, V3为第三预设电阻的阻值。
一种无线终端, 包括: 充电电路管理装置; 所述充电电路管理装置包 括: 电源管理模块、 降压型开关式电压转换器和线性充电电路, 所述电源 管理模块包括: 可调线性降压电压转换器和数模转换器; 其中, 所述电源 管理模块的可调线性降压电压转换器的输出端通过预设电阻与所述降压型 开关式电压转换器的反馈端相连, 所述电源管理模块的数模转换器的输入 端与电池的正极相连, 所述电源管理模块的控制端与所述线性充电电路的 控制端相连; 所述降压型开关式电压转换器的输出端与所述线性充电电路 的输入端相连; 所述线性充电电路的输出端与所述电池正极相连。
进一步地, 在对所述电池进行充电时, 所述电源管理模块的数模转换 器对所述电池电量进行釆样, 在判断所述电池有效和电池电量未满时, 根 据电池电压将可调线性降压电压转换器的输出电压反馈到所述降压型开关 式电压转换器, 所述降压型开关式电压转换器根据反馈结果向所述线性充 电电路输出电压, 所述线性充电电路在所述电源管理模块的控制下对所述 电池进行充电。
进一步地, 所述降压型开关式电压转换器输出电压 Vvdc— out与所述可 调线性降压电压转换器输出电压 Vldo— Ctrl的关系是:
( Vvdc out-Vfb ) /V3+ ( Vldo ctrl-Vfb ) /Vl=Vfb/V2, 其中, Vfb为降 压型开关式电压转换器的反馈端的电压, VI 为第一预设电阻的阻值, V2 为第二预设电阻的阻值, V3为第三预设电阻的阻值。
本发明通过增加降压型开关式电压转换器, 并利用电源管理模块中的 可调线性降压电压转换器, 可以实现自动调整充电电压, 降低了充电管上 的压降, 即减少了能量损耗, 因此降低了整机功耗, 从而很好地改善了整 机发热。 附图说明
图 1是本发明提供的充电电路管理装置的结构图;
图 2是本发明提供的线性充电电路的原理示意图;
图 3是本发明提供的充电电压自动调节电路原理图;
图 4是本发明提供的充电控制的流程图。 具体实施方式
为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚、 明白, 以下结合附图和实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
本发明实施例一提供了一种充电电路管理装置, 如图 1 所示, 包括: 电源管理模块、 降压型开关式电压转换器和线性充电电路, 该电源管理模 块包括: 可调线性降压电压转换器和数模转换器; 其中, 该电源管理模块 的可调线性降压电压转换器的输出端通过预设电阻与该降压型开关式电压 转换器的反馈端相连, 该电源管理模块的数模转换器的输入端与电池的正 极相连, 该电源管理模块的控制端与该线性充电电路的控制端相连; 该降 压型开关式电压转换器的输出端与该线性充电电路的输入端相连; 该线性 充电电路的输出端与该电池正极相连;
在对该电池进行充电时, 该电源管理模块的数模转换器对该电池电量 进行釆样, 在判断该电池有效和电池电量未满时, 根据电池电压将可调线 性降压电压转换器的输出电压反馈到该降压型开关式电压转换器, 降压型 开关式电压转换器根据反馈结果向该线性充电电路输出电压, 该线性充电 电路在该电源管理模块的控制下对该电池进行充电。
其中, 该降压型开关式电压转换器输出电压 Vvdc— out与该可调线性降 压电压转换器输出电压 Vldo— Ctrl的关系是:
( Vvdc out-Vfb ) /V3+ ( Vldo ctrl-Vfb ) /Vl=Vfb/V2, 其中, Vfb为降 压型开关式电压转换器的反馈端的电压, VI为所述第一预设电阻的阻值, V2为第二预设电阻的阻值, V3为第三预设电阻的阻值。
下面结合附图对本发明自动调整充电电压的控制方法进行说明, 该充 电电路管理装置包括硬件电路部分和软件控制部分, 其中, 硬件电路部分 包括: 电源管理模块、 降压型开关式电压转换器和线性充电电路。
其中, 如图 2所示, 传统的线性充电电路由 PNP充电管, sense电阻以 及 P沟道增强型场效应管 (P type Metal-Oxide-Semiconductor, PMOS )控 制管等组成。 PNP 充电管的发射集就是充电电路的输入端, 集电极的电压 近似于电池电压, 当充电电压与电池电压的差值较大时, PNP 充电管上的 压降也就较大。 其中, 图 2所示的线性充电电路只是为了举例需要, 本发 明的保护范围并不限于此。
其中, 电源管理模块包括可调线性降压电压转换器 (Low Dropout ( LDO ) Linear Regulator )和模数转换器 ( Analog-to-Digtial Conventor )。 其中, 降压型开关式电压转换器是本发明的核心, 使用高效率的降压型开 关式电压转换器, 由电源管理模块内部的可调线性降压电压转换器的输出 电压来控制降压型开关式电压转换器的反馈端, 达到其输出电压可调目的。 需要说明的是, 本实施例中是以高通 PM7540型电源管理模块为例, 本发 明的保护范围并不限于此。
电源管理模块的可调线性降压电压转换器的输出电压是根据电池电压 来设置的, 这样就构成了一个反馈控制电路, 根据电池电压实时调整降压 型开关式电压转换器的输出电压从而对电池进行充电。 根据电池电压自动 调整降压型开关式电压转换器的输出电压通常比电池电压高 0.3V左右, 可 以利用此输出电压作为充电电路的输入。恒流充电时, PMOS控制管和 sense 电阻合在一起的压降约 0.1V, PNP充电管的饱和电压最大可为 0.08V, 因 此充电电路的输入电压与电池电压的压差为 0.3V即可保证正常充电, 那么 充电电路上的压降近似 0.3V。 而传统充电方式, 充电电压恒定为 5V, 锂电 池电压为 3.7V,那么充电电路上的压降为 1.3V左右。根据锂电池的电特性, 正常工作电压范围是 3.3V~4.2V, PNP充电管上的压降为一个动态范围。需 要说明的是, 降压型开关式电压转换器和充电电路的压差 0.3V只是一个优 选地数值, 本发明的保护范围并不限于此。
降压型开关式电压转换器为本发明的核心, 如图 3 所示, 输出电压可 调的电压转换器是在传统固定输出的降压型开关式电压转换器基础上改进 的, 反馈端的控制是该电路的核心, 组成了根据电池电压自动调节充电电 压的控制系统。 反馈电压受电源管理模块内部可调 LDO 输出电压 ( VBAT— CTRL )和动态输出电压 (VDC— OUT ) 的共同影响, 选取恰当的 反馈电阻可以得到合适的降压型开关式电压转换器芯片的输出电压范围。
下面对电压转换器的输出电压可调节的工作原理进行详细说明: 电压转换器是以低成本高效率降压型开关式电压转换器为基础的, 在 本实施例中以 ZU 153 降压型开关式电压转换器芯片为例进行说明, 此芯片 在本发明的使用场景是, 输入电压为 5 V ± 10%, 输出电压为 3.5~4.4V, 输 出电流在 700mA左右, 从器件资料上可以得知, 电源效率在 90%以上; 反 馈端门限电压是 0.6V ( Vfb ), 反馈输入偏置电流小于 30nA, 相当于虚断, 输出电压由分压电阻决定的。 从图 3可以看出, 除了电阻 R26, 电阻 R34 构成分压外, 另外增加了电阻 R62控制反馈端。 电阻 R62—端的电压由电 源管理模块内置的可调 LDO电压转换器输出, 此 LDO电压转换器的输出 电压是根据电池电压进行设置的。 对以上三个电阻选择合适的阻值(至少 1%精度 ), 降压型开关式电压转换器的输出电压范围可以满足充电要求。 如图 3所示 , 电阻 R26 , R34和 R62所选取的阻值分别是 121K欧姆, 19.1K欧姆, 121K欧姆。 由于降压型开关式电压转换器芯片反馈端的输入 电流小于 30nA, 而流过三个电阻的电流是在几十微安, 可以把流入反馈端 的电流忽略。 由 KCL 定律得知, 降压型开关式电压转换器输出电压 ( Vvdc out )与可调 LDO电压转换器输出电压 (Vldo— Ctrl ) 的关系是: ( Vvdc out-Vfb ) /VR26+ ( Vldo ctrl-Vfb ) /VR62=Vfb/VR34 ( 1 ) 其中, Vfb为降压型开关式电压转换器的反馈端的电压, VR26为电阻 R26的阻值, VR34为电阻 R34的阻值, VR62为电阻 R62的阻值。
其中, 电阻 R62即为第一预设电阻, 电阻 R34即为第二预设电阻, 电 阻 R26即为第三预设电阻, 它们的取值不限于上述的阻值, Vfb的值取决 于所用的降压型开关式电压转换器芯片。
根据关系式(1 ), 将本实施例选取的参数代入, 可得到化简后的关系 式为 Vvdc—out=5.0- Vldo— Ctrl, 因此 Vvdc— out与 Vldo— Ctrl是单调递减关系。 可调 LDO电压转换器的输出范围是 0.75~1.5V之间, 从而降压型开关式电 压转换器的输出电压也随之确定。 例如设置可调 LDO电压转换器输出电压 为 1.5V, 那么降压型开关式电压转换器的输出电压就是 3.5V。 设置 LDO 电压转换器输出 0.75V , 那么降压型开关式电压转换器的输出电压就是 4.25V。 电池电压在 3.2~3.95V之间, 可以设置为恒流充电状态, 此时降压 型开关式电压转换器的输出电压在 3.5~4.25V内调节。电池电压在 3.95~4.2V 之间, 可以设置为恒压充电状态或者脉冲充电状态, 在此充电状态下关掉 可调 LDO电压转换器的输出, 相当于与降压型开关式电压转换器芯片的反 馈端断开。这时降压型开关式电压转换器的输出电压仅由 R26和 R34决定, 输出电压为 Vvdc— out=Vfbx ( 1+R26/R34 ) =0.6x ( 1+121K/19.1K ) =4.4V。 在整机上电过程中,电源管理模块内置的可调 LDO电压转换器还没有输出, 此时降压型开关式电压转换器的输出电压为 4.4V, 满足开机要求。
降压型开关式电压转换器输出电压可调的实现需要软件控制, 软件控 制流程如图 4所示。 在硬件上电开机(步骤 SO )过程中, 电源管理模块的 内置可调 LDO电压转换器还没有输出电压, 降压型开关式电压转换器的输 出电压为 4.4V, 可以正常为整机供电, 完成开机。 等软件启动后, 电源管 理模块的 ADC检测电池 ID和对电池电压进行釆样 (步骤 S1 ), 如果 ID有 效且电池电量未满, 则根据电池电压设置可调 LDO电压转换器的输出电压 (步骤 S2 ) , 可调 LDO电压转换器输出电压的变化反馈到降压型开关式电 压转换器, 从而完成降压型开关式电压转换器输出电压的自动调整(步骤 S4 )。 然后检测充电电流和电压是否在容许范围内 (步骤 S5 ), 如果正常, 则对电池进行正常充电 (步骤 S7 ), 电池电压在持续增加, 可调 LDO电压 转换器的输出电压设置逐渐降低, 可调 LDO电压转换器设置输出电压与降 压型开关式电压转换器输出电压的对应关系如表 1所示, 方便编程实现。
Figure imgf000010_0001
表 1 如果检测到电池电压达到 4.2V (即充满 )或者电池 ID无效, 则关闭可 调 LDO电压转换器的输出, 这样可保证整机是外供电, 不消耗电池电量, 对电池寿命和安全性都有好处。 同时, 降压型开关式电压转换器输出固定 电压(步骤 S3 ), 然后充电完成或充电异常终止(步骤 S6 )。 在整个充电控 制过程中,电池电压是一个变化量,可调 LDO电压转换器的输出跟随变化, 从而自动调整降压型开关式电压转换器的输出电压, 使得充电电压高于电 池电压, 并保持一定的差值, 这样既能满足充电要求, 又能减少 PNP充电 管的损耗, 在整个充电系统中达到最佳的充电效率。
在本发明中, 降压型开关式电压转换器的效率在 90%以上, 降压型开 关式电压转换器的输出电压作为充电电路的输入, 典型值是 4.0V (电池电 压 3.7V+0.3V ), 充电电路效率为 3.7V/4V=92.5%, 把两部分电路组合起来 的效率即为本发明充电电路的效率 90% X 92.5%=83.25%, 需要说明的是, 电压的比值, 是一个动态过程, 可以取一个典型值为 3.7V/5V=74%。 对比 两者的效率, 可以看出提高了 83.25%-74%=9.75%。 由于电池的容量是一定 的, 充电效率的提高, 必然带来输入功率的减少, 从而降低了整机功率。
对于新兴的 MIFI产品, 要求可以长时间边工作边充电, 产品的小型化 给整机发热提出了挑战, 而终端产品解决发热问题最好的办法是降低整机 功耗, 利用本发明的充电电路可以有效降低整机发热。 除此同时还带来了 另外一个好处, MIFI产品在最坏情况下的工作电流在 600mA 以上, 由于 USB接口电流输出能力是 500mA,传统充电电路用 USB供电会存在电流不 够用的情况, 因为外供电电流不够用情况下会导致电池放电, 电池电压降 低, 降压型开关式电压转换器的输出电压也跟随降低, 而一般是电池电压 低于 3.3V会自动关机, 根据上文介绍, 那么降压型开关式电压转换器的输 出电压至少是 3.6V才能保证正常工作。 釆用本发明, 降压型开关式电压转 换器电流输出能力最大约为 5Vx500mAx90%/3.6V=625mA, 可以大大降低 电流不够用的概率。
本发明实施例二还提供了一种无线终端, 包括: 充电电路管理装置; 该充电电路管理装置包括: 电源管理模块、 降压型开关式电压转换器和线 性充电电路, 该电源管理模块包括: 可调线性降压电压转换器和数模转换 器; 其中, 该电源管理模块的可调线性降压电压转换器的输出端通过第一 预设电阻与该降压型开关式电压转换器的反馈端相连, 该电源管理模块的 数模转换器的输入端与电池的正极相连, 该电源管理模块的控制端与该线 性充电电路的控制端相连; 该降压型开关式电压转换器的输出端与该线性 充电电路的输入端相连; 该线性充电电路的输出端与该电池正极相连; 在对该电池进行充电时, 该电源管理模块的数模转换器对该电池进行 釆样, 在判断该电池有效和电池电量未满时, 根据电池电压将可调线性降 压电压转换器的输出电压反馈到该降压型开关式电压转换器, 降压型开关 式电压转换器根据反馈向该线性充电电路输出电压, 该线性充电电路在该 电源管理模块的控制下对该电池进行充电。
其中, 该降压型开关式电压转换器输出电压 Vvdc— out与该可调线性降 压电压转换器输出电压 Vldo— Ctrl的关系是:
( Vvdc out-Vfb ) /V3+ ( Vldo ctrl-Vfb ) /Vl=Vfb/V2, 其中, Vfb为降 压型开关式电压转换器的反馈端的电压, VI为所述第一预设电阻的阻值, V2为第二预设电阻的阻值, V3为第三预设电阻的阻值。
其中, 关于充电电路管理装置可以参照实施例一的相应描述, 在此不 再赘述。
本发明通过增加降压型开关式电压转换器, 并利用电源管理模块中的 可调线性降压电压转换器, 可以实现自动调整充电电压, 降低了充电管上 的压降, 即减少了能量损耗, 因此降低了整机功耗, 从而很好地改善了整 机发热。
上述说明示出并描述了本发明的一个优选实施例, 但如前所述, 应当 理解本发明并非局限于本文所披露的形式, 不应看作是对其他实施例的排 除, 而可用于各种其他组合、 修改和环境, 并能够在本文所述发明构想范 围内, 通过上述教导或相关领域的技术或知识进行改动。 而本领域人员所 进行的改动和变化不脱离本发明的精神和范围, 则都应在本发明所附权力 要求的保护范围内。

Claims

权利要求书
1、 一种充电电路管理装置, 其特征在于, 包括: 电源管理模块、 降压 型开关式电压转换器和线性充电电路, 所述电源管理模块包括: 可调线性 降压电压转换器和数模转换器; 其中, 所述电源管理模块的可调线性降压 电压转换器的输出端通过第一预设电阻与所述降压型开关式电压转换器的 反馈端相连, 所述电源管理模块的数模转换器的输入端与电池的正极相连, 所述电源管理模块的控制端与所述线性充电电路的控制端相连; 所述降压 型开关式电压转换器的输出端与所述线性充电电路的输入端相连; 所述线 性充电电路的输出端与所述电池正极相连。
2、 根据权利要求 1所述的充电电路管理装置, 其特征在于, 在对所述 电池进行充电时, 所述电源管理模块的数模转换器对所述电池电量进行釆 样, 在判断所述电池有效和电池电量未满时, 根据电池电压将可调线性降 压电压转换器的输出电压反馈到所述降压型开关式电压转换器, 所述降压 型开关式电压转换器根据反馈结果向所述线性充电电路输出电压, 所述线 性充电电路在所述电源管理模块的控制下对所述电池进行充电。
3、 根据权利要求 1所述的充电电路管理装置, 其特征在于, 所述降压 型开关式电压转换器输出电压 Vvdc— out与所述可调线性降压电压转换器输 出电压 Vldo— Ctrl的关系是:
( Vvdc out-Vfb ) /V3+ ( Vldo ctrl-Vfb ) /Vl=Vfb/V2, 其中, Vfb 为 降压型开关式电压转换器的反馈端的电压, VI为所述第一预设电阻的阻值, V2为第二预设电阻的阻值, V3为第三预设电阻的阻值。
4、 一种无线终端, 其特征在于, 包括: 充电电路管理装置; 所述充电 电路管理装置包括: 电源管理模块、 降压型开关式电压转换器和线性充电 电路, 所述电源管理模块包括: 可调线性降压电压转换器和数模转换器; 其中, 所述电源管理模块的可调线性降压电压转换器的输出端通过预设电 阻与所述降压型开关式电压转换器的反馈端相连, 所述电源管理模块的数 模转换器的输入端与电池的正极相连, 所述电源管理模块的控制端与所述 线性充电电路的控制端相连; 所述降压型开关式电压转换器的输出端与所 述线性充电电路的输入端相连; 所述线性充电电路的输出端与所述电池正 极相连。
5、 根据权利要求 4所述的无线终端, 其特征在于, 在对所述电池进行 充电时, 所述电源管理模块的数模转换器对所述电池电量进行釆样, 在判 断所述电池有效和电池电量未满时, 居电池电压将可调线性降压电压转 换器的输出电压反馈到所述降压型开关式电压转换器, 所述降压型开关式 电压转换器根据反馈结果向所述线性充电电路输出电压, 所述线性充电电 路在所述电源管理模块的控制下对所述电池进行充电。
6、 根据权利要求 4所述的无线终端, 其特征在于, 所述降压型开关式 电压转换器输出电压 Vvdc— out 与所述可调线性降压电压转换器输出电压 Vldo— Ctrl的关系是:
( Vvdc out-Vfb ) /V3+ ( Vldo ctrl-Vfb ) /Vl=Vfb/V2, 其中, Vfb为降 压型开关式电压转换器的反馈端的电压, VI 为第一预设电阻的阻值, V2 为第二预设电阻的阻值, V3为第三预设电阻的阻值。
PCT/CN2010/080385 2010-07-23 2010-12-28 充电电路管理装置及无线终端 WO2012009935A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10854965.0A EP2528186B1 (en) 2010-07-23 2010-12-28 Management device for charging circuit and wireless terminal
US13/580,151 US8378626B2 (en) 2010-07-23 2010-12-28 Management device for charging circuit and wireless terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010239150.X 2010-07-23
CN201010239150.XA CN101902043B (zh) 2010-07-23 2010-07-23 充电电路管理装置及无线终端

Publications (1)

Publication Number Publication Date
WO2012009935A1 true WO2012009935A1 (zh) 2012-01-26

Family

ID=43227340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080385 WO2012009935A1 (zh) 2010-07-23 2010-12-28 充电电路管理装置及无线终端

Country Status (4)

Country Link
US (1) US8378626B2 (zh)
EP (1) EP2528186B1 (zh)
CN (1) CN101902043B (zh)
WO (1) WO2012009935A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108720797A (zh) * 2018-05-30 2018-11-02 山东煜和堂药业有限公司 可视喉镜开关机、插入充电器自动开机及视频供电电路

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902043B (zh) 2010-07-23 2014-06-04 中兴通讯股份有限公司 充电电路管理装置及无线终端
CN102075088B (zh) * 2011-01-31 2014-10-29 复旦大学 一种开关电压转换器和线性稳压器级联的方法
CN102185348A (zh) * 2011-04-28 2011-09-14 天津理工大学 微电能收集及转换电路器
CN102891923A (zh) * 2011-07-25 2013-01-23 深圳市福智软件技术有限公司 移动终端及其电源自动切换方法
CN102291489B (zh) * 2011-08-10 2014-11-05 惠州Tcl移动通信有限公司 手机及其电压校准方法
CN103647318B (zh) * 2013-12-04 2016-03-02 华为终端有限公司 通讯终端、充电控制方法、装置及电路
US9973017B2 (en) 2014-09-19 2018-05-15 Samsung Electronics Co., Ltd. Charger circuit including a plurality of charging paths
TWI580152B (zh) * 2014-11-08 2017-04-21 立錡科技股份有限公司 高效率充電系統與應用於其中之充電電路
DE102015221101B4 (de) 2015-10-28 2022-12-08 Dialog Semiconductor (Uk) Limited Batterieladeregler, Ladegerät zum Laden einer Batterie, tragbare elektronische Vorrichtung mit Ladegerät und Verfahren für einen Betrieb eines Ladegeräts
CN105391286B (zh) * 2015-11-06 2018-05-01 上海斐讯数据通信技术有限公司 一种基于高通平台的电源供电电路
EP3605781B1 (en) * 2017-04-07 2023-08-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging apparatus and method, and device to be charged
JP6938810B2 (ja) * 2017-09-26 2021-09-22 株式会社三社電機製作所 検査装置
CN111279574B (zh) * 2018-04-25 2024-03-22 Oppo广东移动通信有限公司 终端设备和充电控制方法
CN108896911B (zh) * 2018-04-26 2021-04-30 广东小天才科技有限公司 一种电子设备的充电异常检测方法及装置
CN110718944B (zh) * 2018-07-12 2023-08-04 中兴通讯股份有限公司 一种双电池充放电的方法、装置、终端和存储介质
US10969809B2 (en) * 2018-08-02 2021-04-06 Microchip Technology Incorporated Dual input LDO voltage regulator
CN112968498A (zh) * 2021-03-11 2021-06-15 成都芯源系统有限公司 从充电系统接收供电的方法及充电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252564A1 (en) * 2006-04-14 2007-11-01 Atmel Corporation Method and circuit for a voltage supply for real time clock circuitry based on voltage regulated charge pump
CN101154821A (zh) * 2007-09-21 2008-04-02 中兴通讯股份有限公司 一种用于镍氢电池的快速充电装置及方法
US20090021228A1 (en) * 2007-07-20 2009-01-22 Frank Carr Integrated cmos dc-dc converter implementation in low-voltage cmos technology using ldo regulator
TW200937161A (en) * 2007-12-17 2009-09-01 Nvidia Corp Improved power management efficiency using DC-DC and linear regulators in conjunction
CN101902043A (zh) * 2010-07-23 2010-12-01 中兴通讯股份有限公司 充电电路管理装置及无线终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW269727B (en) * 1995-04-03 1996-02-01 Electrosource Inc Battery management system
US6348744B1 (en) * 1998-04-14 2002-02-19 Conexant Systems, Inc. Integrated power management module
FR2777715B1 (fr) * 1998-04-15 2000-06-09 Agence Spatiale Europeenne Module convertisseur d'alimentation electrique et systeme le comprenant
US6057607A (en) * 1999-07-16 2000-05-02 Semtech Corporation Method and apparatus for voltage regulation in multi-output switched mode power supplies
GB2369458B (en) * 2000-11-22 2004-08-04 Nec Technologies Linear regulators
US7872454B2 (en) * 2003-08-21 2011-01-18 Marvell World Trade Ltd. Digital low dropout regulator
US7064531B1 (en) * 2005-03-31 2006-06-20 Micrel, Inc. PWM buck regulator with LDO standby mode
US7145316B1 (en) * 2005-06-06 2006-12-05 Micrel, Inc. Control circuit for monitoring and maintaining a bootstrap voltage in an N-channel buck regulator
CN100392942C (zh) * 2005-10-31 2008-06-04 中兴通讯股份有限公司 一种对电池充电过程进行控制的装置及方法
US20080100143A1 (en) * 2006-11-01 2008-05-01 O2Micro Inc. Power management system with charger/boost controller
US7834600B2 (en) * 2006-12-14 2010-11-16 Linear Technology Corporation Regulated power supply system and an operating method therefore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252564A1 (en) * 2006-04-14 2007-11-01 Atmel Corporation Method and circuit for a voltage supply for real time clock circuitry based on voltage regulated charge pump
US20090021228A1 (en) * 2007-07-20 2009-01-22 Frank Carr Integrated cmos dc-dc converter implementation in low-voltage cmos technology using ldo regulator
CN101154821A (zh) * 2007-09-21 2008-04-02 中兴通讯股份有限公司 一种用于镍氢电池的快速充电装置及方法
TW200937161A (en) * 2007-12-17 2009-09-01 Nvidia Corp Improved power management efficiency using DC-DC and linear regulators in conjunction
CN101902043A (zh) * 2010-07-23 2010-12-01 中兴通讯股份有限公司 充电电路管理装置及无线终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108720797A (zh) * 2018-05-30 2018-11-02 山东煜和堂药业有限公司 可视喉镜开关机、插入充电器自动开机及视频供电电路

Also Published As

Publication number Publication date
US8378626B2 (en) 2013-02-19
EP2528186A4 (en) 2013-10-09
EP2528186A1 (en) 2012-11-28
CN101902043B (zh) 2014-06-04
EP2528186B1 (en) 2014-08-13
US20120319643A1 (en) 2012-12-20
CN101902043A (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
WO2012009935A1 (zh) 充电电路管理装置及无线终端
Muniandi et al. A 97% maximum efficiency fully automated control turbo boost topology for battery chargers
US11689029B2 (en) Terminal with charging circuit and device thereof
EP3905477A1 (en) Discharging circuit and electronic device
US7615965B2 (en) Power management system
CN103107569B (zh) 执行系统电源管理的方法及装置
US9136724B2 (en) Method for limiting battery discharging current in battery charger and discharger circuit
CN1741345B (zh) 电源管理系统
CN103501023B (zh) 充电电路
CN109510272B (zh) 一种充电控制方法及充电电路
WO2017128619A1 (zh) 一种支持多电池快速充电的设备、装置及方法
US9620975B2 (en) Methods and apparatus for battery characteristic conversion
WO2019242020A1 (zh) 充电装置、移动终端和充电控制方法
TWI633739B (zh) 具有調節迴路之電池充電系統及充電方法
CN101795014B (zh) 一种移动终端对外部设备的供电装置及方法
US20180145525A1 (en) Charging managment method and system thereof
EP2852021B1 (en) Charging circuit and control method therefor
CN210517858U (zh) 终端电源电路及终端
CN112332472B (zh) 充电电路、电子设备及闪光灯控制方法
EP2164150B1 (en) Power supply circuit and method for providing output voltage
US10903676B2 (en) Semiconductor device
EP2430739A1 (en) Dc-dc converter for the control of a battery charge current in portable electronic devices
CN111430824B (zh) 一种充电方法、装置和电子设备
CN103647334A (zh) 一种可调节电流的电池充电电路
CN116388350B (zh) 充电控制方法、储能设备和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854965

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13580151

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010854965

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE