WO2012009915A1 - 一种多频段天线装置及其应用终端 - Google Patents

一种多频段天线装置及其应用终端 Download PDF

Info

Publication number
WO2012009915A1
WO2012009915A1 PCT/CN2010/079048 CN2010079048W WO2012009915A1 WO 2012009915 A1 WO2012009915 A1 WO 2012009915A1 CN 2010079048 W CN2010079048 W CN 2010079048W WO 2012009915 A1 WO2012009915 A1 WO 2012009915A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
unit
radiating
feed
radiating unit
Prior art date
Application number
PCT/CN2010/079048
Other languages
English (en)
French (fr)
Inventor
薛元松
宦玉萍
刘川
邵永平
李超
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012009915A1 publication Critical patent/WO2012009915A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • Multi-band antenna device and application terminal thereof
  • the present invention relates to the field of mobile terminal antenna manufacturing, and more particularly to a multi-band antenna device and an application terminal thereof. Background technique
  • the frequency band used by mobile terminals has been increasing continuously, but the size of the terminal is limited by the shape of the whole machine, making it more and more difficult to design antennas supporting multiple frequency bands in the terminal.
  • the layout space is getting narrower and narrower, and only reasonable use of space can meet the design requirements of multi-band antennas.
  • the terminal antenna usually needs to support 800MHz/900MHz/1800MHz/l 900MHz, and GPS/Bluetooth and other frequency bands.
  • the antennas of these frequency bands are arranged on the same antenna bracket, if the space reserved for the structure is small, it can only be A few antennas of a few frequency bands are arranged in a limited space between the main board and the casing. If the antennas of all the frequency bands are forcibly arranged, the wiring space of the antenna is very narrow, and the bandwidth and the resonance frequency band cannot be satisfied. The performance is also greatly limited. Summary of the invention
  • the main object of the present invention is to provide a multi-band antenna device and an application terminal thereof, which solves the problem that it is difficult to provide a multi-frequency antenna in a limited space between the main board and the casing.
  • the present invention provides a multi-band antenna device, the device comprising: a first radiating unit, a second radiating unit, an antenna bracket, and a feed, wherein The first radiating unit is disposed on the antenna bracket and connected to the feed source; the second radiating unit is disposed in a clearance area below the antenna bracket, and is connected to the feed source;
  • the antenna holder is configured to fix the first radiation unit
  • the feed source is configured to feed the first radiating unit and the second radiating unit.
  • the first radiating unit uses an antenna unit of a low frequency band that requires a clearance area, and/or an antenna unit of a higher frequency band;
  • the second radiating element uses an intermediate high frequency antenna unit that requires a clearance area.
  • the feed pad of the feed directly extends to be connected to the second radiating element.
  • the antenna length and/or shape of the first radiating unit and the second radiating unit are adjusted according to performance requirements of the antenna
  • the routing direction of the second radiating element is opposite or the same as the routing direction of the end of the first radiating element.
  • the height of the antenna bracket is adjusted according to antenna performance requirements.
  • the invention also provides an application terminal of a multi-band antenna, comprising: a casing, a printed circuit board (PCB) main board; and a multi-band antenna device in the casing;
  • PCB printed circuit board
  • the multi-band antenna device includes a first radiating unit disposed on the antenna bracket and a second radiating unit disposed in a clearing area below the antenna bracket, wherein the first radiating unit and the second radiating unit are connected to a feed on the PCB main board. , complete the feed.
  • the first radiating unit uses an antenna unit of a low frequency band that requires a clearance area, and/or an antenna unit of a higher frequency band;
  • the second radiating element uses an intermediate high frequency antenna unit that requires a clearance area.
  • the feed pad of the feed directly extends to be connected to the second radiating element.
  • the multi-band antenna device and the application terminal thereof provided by the invention provide a second radiation unit through a clearance area under the antenna bracket provided with the first radiation unit, thereby reasonably utilizing printing
  • the clearance area of the Printed Circuit Board (PCB) motherboard solves the technical difficulty of not being able to set a multi-band antenna on the bracket due to insufficient space on the antenna bracket. Further, by adjusting the mutual position, size, shape, and the like of the plurality of antennas of the first radiating unit and the second radiating unit, the antenna performance can be improved, and the specific absorption rate of the antenna can be effectively improved. SAR), reducing the impact of the antenna device on the human body.
  • FIG. 1 is a schematic structural view showing an example of a dual-band antenna device in which a radiation unit is wired in the opposite direction;
  • FIG. 2 is a partial enlarged view showing an example of a dual-band antenna device in which the radiation unit has the opposite direction of the wiring;
  • FIG. 3 is a return loss diagram of a simulation experiment of a dual-band antenna device with opposite radiation directions in the radiation unit of the present invention
  • FIG. 4 is a schematic structural view showing an example of a dual-band antenna device in which the radiation unit has the same wiring direction;
  • FIG. 5 is a return loss diagram of a simulation experiment of a dual-band antenna device with the same radiation direction in the radiation unit of the present invention
  • FIG. 6 is a schematic structural diagram of an application terminal of a multi-band antenna according to the present invention. detailed description
  • the basic idea of the present invention is to design a multi-band antenna device, the device comprising a first radiating unit disposed on the antenna bracket and a second radiating unit disposed in the clearing area below the antenna bracket, the first radiating unit and The second radiating element is connected to the feed to complete the feeding.
  • FIG. 1 is a schematic structural diagram of an example of a dual-band antenna device in which a radiation unit of the present invention is opposite in direction.
  • the multi-band antenna device includes: a first radiating unit 11, a second radiating unit 12, and an antenna bracket 13. And feed 14, wherein
  • the first radiating unit 11 is disposed on the antenna bracket 13 and connected to the feed 14 for transmitting or receiving signals;
  • the first radiating unit 11 mainly includes: an antenna unit of a low frequency band, and/or an antenna unit of a higher frequency band.
  • the first radiating element 11 needs to take into account different low-band signals, for example, when the frequency bands are 800 MHz and 900 MHz, the required bandwidth is relatively wide, so the width of the first radiating element 11 also needs to be increased to satisfy the bandwidth. Design requirements.
  • an antenna unit of a higher frequency band can be formed thereon, for example, an antenna supporting a Bluetooth signal in the 2.4 GHz band.
  • the second radiating unit 12 is disposed in a clearance area below the antenna bracket 13 and is connected to the feed 14 for transmitting or receiving signals;
  • the second radiating unit 12 is disposed in a clearance area below the antenna holder 13, and the second radiating unit 12 mainly includes: an intermediate high frequency antenna unit.
  • an intermediate high frequency antenna unit For example: Antennas supporting the 1800MHz or 1900MHz bands.
  • the antenna holder 13 is configured to fix the first radiation unit 11;
  • the height of the antenna bracket 13 determines the distance between the first radiating element 11 and the second radiating element 12, and the mutual coupling of the two radiating elements in different routing directions is also different.
  • the coupling is large, it means that the two radiating elements need to be used together to meet the frequency requirements of the entire antenna device.
  • the coupling is small, it means that the two radiating elements do not need to be used together.
  • the design of the antenna mount 13 should be based on the antenna performance of the two radiating elements and the required frequency band requirements. With the corresponding adjustments, the basic principle is that the antennas that may interfere with each other are as far away as possible.
  • the direction of the line of the second radiating element 12 in FIG. 1 and the direction of the line of the end of the first radiating element 11 are opposite.
  • the feed 14 is for feeding the first radiating element 11 and the second radiating element 12.
  • both the first radiating unit 11 and the second radiating unit 12 are fed from the feed 14 while the signal is freely selected according to the size of the radiating unit to complete transmission or reception.
  • the first radiating element 11 on the antenna holder 13 is fed into contact with the feed 14 through the feed pad by means of a bullet or the like.
  • the second radiating element 12 is connected to the feed 14 in the same manner. Further, when the first radiating element 11 and the feed pad connected to the feed 14 are fabricated, the feed pad can be directly extended to connect the second radiating element 12.
  • the device further includes: a feed of the first radiating unit 21 and the second radiating unit The electric lead-out section 22, wherein the elastic foot 21 of the first radiating unit and the feeding lead-out section 22 of the second radiating unit are both connected to the feed 14.
  • the radio frequency signal outputted by the PCB main board of the terminal is output by the same radio frequency port, and the feeding pin 21 of the first radiating unit and the feeding lead-out section 22 of the second radiating unit are fed, and the radio frequency signal is according to the first radiating unit 11 and the Different sizes of the two radiating elements 12 are used to select different paths.
  • the first radiating element 11 is a low-band antenna and the second radiating element 12 is a high-band antenna
  • the signal of the low-frequency band is selected to be radiated by the first radiating element 11 having a longer antenna length
  • the signal of the high-frequency band is selected by the second radiating element 12 Radiation out.
  • the first radiating element 11 and the second radiating element 12 also receive signals in accordance with the same principle.
  • Figure 3 is a return loss diagram of the simulation experiment of the dual-band antenna device with the opposite direction of the radiation unit of the present invention.
  • the resistance of the feed is 50 Ohm, as shown in Fig. 3, the abscissa is the signal frequency of the antenna device simulation experiment (unit is Hz). ); the ordinate is the return loss value (in dB) of the corresponding signal of the antenna device.
  • the curve in the figure shows that the dual-band antenna device has two resonant frequency bands, thus achieving dual frequency Communication.
  • an antenna device supporting multiple frequency bands needs to be implemented, a designer may set corresponding antenna units on the first radiating unit 11 and the second radiating unit 12, and then according to data of the simulation test. Adjust the height of the antenna support, and / or the length of each antenna, and / or the shape of each antenna, and / or the placement of the antennas between each other to select the optimal solution to achieve the required number of antenna pairs
  • the matching of the frequency bands meets the frequency band requirements used by the device communication.
  • FIG. 4 is a schematic structural diagram of an example of a dual-band antenna device in which the radiation unit of the present invention has the same wiring direction. As shown in FIG. 4, the antenna device and the antenna device of FIG. 1 are different in the direction of the second radiation unit 42. The direction of the line of the end of the first radiating element 11 is the same. The location and function of the other units are the same as in Figure 1.
  • Figure 5 is a return loss diagram of a simulation experiment of a dual-band antenna device with the same radiation direction in the radiation unit of the present invention.
  • the resistance of the feed is 50 Ohm, as shown in Fig. 5, the abscissa is the signal frequency of the antenna device simulation experiment (unit: Hz) ); the ordinate is the return loss value (in dB) of the corresponding signal of the antenna device. Comparing the curves in the figure with Figure 3, it can be seen that in the case where the direction of the trace is the same and the direction of the trace is opposite, the resonance curve is just the opposite, but both have two resonance bands, thus achieving dual-frequency communication.
  • the application terminal of the multi-band antenna includes: a casing 61, a PCB main board 62, and a multi-band antenna device 63;
  • the multi-band antenna device 63 is located in the outer casing 61 and includes a first radiating unit disposed on the antenna bracket and a second radiating unit disposed in a clearing area below the antenna bracket, the first radiating unit and the second radiating unit
  • the feeds on the PCB main board 62 are connected to complete the feeding.
  • the first radiating unit mainly includes: an antenna unit of a low frequency band, and/or a higher Antenna unit in the band.
  • the first radiating element needs to take into account different low-band signals, for example: when the frequency bands are 800 MHz and 900 MHz, the required bandwidth is relatively wide, so the width of the first radiating element also needs to be increased to meet the bandwidth design. Claim.
  • an antenna unit of a higher frequency band can also be fabricated thereon, for example, an antenna supporting a Bluetooth signal in the 2.4 GHz band.
  • the second radiating element disposed in the clearance area below the antenna bracket mainly comprises: an intermediate high frequency antenna unit.
  • the height of the antenna holder determines the distance between the first radiating element and the second radiating element, and the mutual coupling of the two radiating elements in different routing directions is also different.
  • the coupling is large, it means that the two radiating elements need to be used together to meet the frequency requirements of the entire antenna device.
  • the coupling is small, it means that the two radiating elements do not need to be used together.
  • the design of the antenna bracket should be adjusted according to the antenna performance of the two radiating elements and the required frequency band requirements.
  • the basic principle is that the antennas that may interfere with each other are as far away as possible.
  • the routing direction of the second radiating element and the routing direction of the end of the first radiating unit may be the same or opposite.
  • the designer can set the corresponding antenna unit on the first radiating unit 11 and the second radiating unit 12, and then adjust the height of the antenna bracket according to the data of the simulation test, and/or the length of each antenna, and/or each The shape of the antennas, and/or the placement of the antennas between each other to select the optimal solution, to achieve the matching of the required antennas to multiple frequency bands, to meet the frequency band requirements for communication.
  • Both the first radiating unit and the second radiating unit are fed from a feed on the PCB main board 62, and the signal is freely selected according to the size of the radiating unit to complete transmission or reception.
  • the first radiating element on the antenna bracket is fed into contact with the feed through the feed pad by means of a connection such as a bullet.
  • the second radiating element is connected to the feed in the same manner. Further, when the first radiation unit and the feed pad connected to the feed source are fabricated, the feed pad connection can be directly extended. Second radiating element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种多频段天线装置,所述装置包括第一辐射单元、第二辐射单元、天线支架和馈源,其中,所述第一辐射单元,设置于天线支架上,并且与馈源相连;所述第二辐射单元,设置于天线支架下方的净空区域,并且与馈源相连;所述天线支架,用于固定所述第一辐射单元;所述馈源,用于为所述第一辐射单元和所述第二辐射单元馈电,本发明还公开了一种多频段天线的应用终端,通过所述装置和应用终端,能够合理利用了主板上的净空区域,解决了由于天线支架空间不足,无法在支架上设置多频段天线的技术难点。

Description

一种多频段天线装置及其应用终端 技术领域
本发明涉及移动终端天线制造领域, 特别是指一种多频段天线装置及 其应用终端。 背景技术
随着移动通信技术的发展, 移动终端所釆用的频段不断的增加, 但是 终端的尺寸却受整机造型的限制, 使得终端中支持多个频段的天线的设计 越来越困难。 对于尺寸要求很严格的天线来说, 布局空间越来越狭窄, 只 有合理的利用空间, 才能满足多频段天线的设计要求。
目前, 终端天线通常需要支持 800MHz/900MHz/1800MHz/l 900MHz、 以及 GPS/蓝牙等频段, 当把这些频段的天线布置于同一个天线支架上时, 如果结构预留的空间较小, 只能在主板以及壳体之间的有限空间内布置少 数的几个频段的天线, 如果强制的把所有的频段的天线都布置上, 天线的 走线空间非常狭窄, 无法满足带宽和谐振频带的要求, 天线的性能也受到 很大的限制。 发明内容
有鉴于此, 本发明的主要目的在于提供一种多频段天线装置及其应用 终端, 解决了在主板以及壳体之间的有限空间内, 设置多频天线比较困难 的问题。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种多频段天线装置, 所述装置包括: 第一辐射单元、 第二辐射单元、 天线支架和馈源, 其中, 所述第一辐射单元, 设置于天线支架上, 并且与馈源相连; 所述第二辐射单元, 设置于天线支架下方的净空区域, 并且与馈源相 连;
所述天线支架, 用于固定所述第一辐射单元;
所述馈源, 用于为所述第一辐射单元和所述第二辐射单元馈电。
其中, 所述第一辐射单元釆用需要净空区域的低频段的天线单元, 和 / 或较高频段的天线单元;
所述第二辐射单元釆用需要净空区域的中间高频的天线单元。
其中, 所述馈源的馈电焊盘直接延伸, 与第二辐射单元连接。
其中, 所述第一辐射单元和第二辐射单元的天线长度, 和 /或形状按照 天线的性能要求进行调整;
所述第二辐射单元的走线方向和第一辐射单元的末端的走线方向相反 或相同。
其中, 所述天线支架的高度根据天线性能要求进行调整。
本发明还提供了一种多频段天线的应用终端, 包括: 外壳、 印刷电路 板(PCB )主板; 还包括外壳内的多频段天线装置;
所述多频段天线装置包括设置于天线支架上的第一辐射单元和设置于 天线支架下方净空区域的第二辐射单元, 所述第一辐射单元和第二辐射单 元与 PCB主板上的馈源相连, 完成馈电。
其中, 所述第一辐射单元釆用需要净空区域的低频段的天线单元, 和 / 或较高频段的天线单元;
所述第二辐射单元釆用需要净空区域的中间高频的天线单元。
其中, 所述馈源的馈电焊盘直接延伸, 与第二辐射单元连接。
本发明所提供的多频段天线装置及其应用终端, 通过在设置了第一辐 射单元的天线支架下方的净空区域设置了第二辐射单元, 合理利用了印刷 电路板 ( Printed Circuit Board, PCB )主板的净空区域, 解决了由于天线支 架上空间不足, 无法在支架上设置多频段天线的技术难点。 进一步的, 通 过调整第一辐射单元和第二辐射单元的多个天线的相互位置和尺寸以及形 状等, 还可以起到提高天线性能的作用, 有效地改进天线的比吸收率 ( Specific Absorption Rate, SAR ) , 降低天线装置对人体的影响。 附图说明
图 1 为本发明辐射单元走线方向相反的双频段天线装置实例的结构示 意图;
图 2为本发明辐射单元走线方向相反的双频段天线装置实例的局部放 大图;
图 3 为本发明辐射单元走线方向相反的双频段天线装置模拟实验的回 损图;
图 4为本发明辐射单元走线方向相同的双频段天线装置实例的结构示 意图;
图 5 为本发明辐射单元走线方向相同的双频段天线装置模拟实验的回 损图;
图 6为本发明多频段天线的应用终端的结构示意图。 具体实施方式
本发明的基本思想是设计出一种多频段天线装置, 所述装置包括设置 于天线支架上的第一辐射单元和设置于天线支架下方净空区域的第二辐射 单元, 所述第一辐射单元和第二辐射单元与馈源相连, 完成馈电。
其中, 所述第一辐射单元和第二辐射单元都釆用需要净空区域的天线 形式, 例如: 单极或倒 F型天线。 对于不需要净空的天线形式、 如平面倒 F 天线不适用于本发明。 下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。 图 1 为本发明辐射单元走线方向相反的双频段天线装置实例的结构示 意图, 如图 1所示, 所述多频段天线装置包括: 第一辐射单元 11、 第二辐 射单元 12、 天线支架 13和馈源 14, 其中,
所述第一辐射单元 11 , 设置于天线支架 13上, 并且与馈源 14相连, 用于发送或接收信号;
具体的, 由于在天线支架 13上走线空间较大, 并且支持低频段信号的 天线长度较长, 因此第一辐射单元 11 主要包括: 低频段的天线单元, 和 / 或较高频段的天线单元。 其中, 当所述第一辐射单元 11需要兼顾不同的低 频段信号时, 例如: 兼顾频段为 800MHz和 900MHz时, 要求的带宽比较 宽, 因此第一辐射单元 11的宽度也需要增加, 才能满足带宽的设计要求。 进一步的, 如果天线支架 13能够提供的空间足够, 也可以在上面制作较高 频段的天线单元, 例如: 支持 2.4GHz频段的蓝牙信号的天线。
所述第二辐射单元 12 ,设置于天线支架 13下方的净空区域, 并且与馈 源 14相连, 用于发送或接收信号;
具体的, 在天线支架 13下方的净空区域设置第二辐射单元 12 , 所述第 二辐射单元 12主要包括: 中间高频的天线单元。 例如: 支持 1800MHz或 1900MHz频段的天线。
所述天线支架 13 , 用于固定所述第一辐射单元 11 ;
具体的, 所述天线支架 13的高度决定了第一辐射单元 11和第二辐射 单元 12之间的距离, 两个辐射单元的走线方向不同产生的相互耦合也是不 同的。 当耦合大时, 说明两个辐射单元需要配合使用, 才能满足整个天线 装置的频段要求; 当耦合小时, 说明两个辐射单元不需要配合使用, 当不 需要某个频段时, 可以拆除对应的辐射单元来降低制造成本。 因此, 天线 支架 13的设计应该根据两个辐射单元的天线性能, 以及所需要的频段要求 进行相应的调整, 基本的原则是可能相互干扰的天线尽量远离。 图 1 中的 第二辐射单元 12的走线方向和第一辐射单元 11 的末端的走线方向是相反 的。
所述馈源 14, 用于为所述第一辐射单元 11和所述第二辐射单元 12馈 电。
具体的, 第一辐射单元 11和第二辐射单元 12都从所述馈源 14馈电, 同时信号根据辐射单元的尺寸自由选择对应的辐射单元完成发射或接收。 所述天线支架 13上的第一辐射单元 11利用弹脚等连接方式与馈源 14通过 馈电焊盘接触馈电。 第二辐射单元 12利用相同的方式与馈源 14相连。 进 一步的, 在制作第一辐射单元 11和馈源 14连接的馈电焊盘时, 还可以直 接延伸馈电焊盘连接第二辐射单元 12。
图 2为本发明辐射单元走线方向相反的双频段天线装置实例的局部放 大图, 如图 2所示, 所述装置进一步还包括: 第一辐射单元的弹脚 21和第 二辐射单元的馈电引出段 22, 其中, 所述第一辐射单元的弹脚 21和第二辐 射单元的馈电引出段 22都连接在馈源 14上。 终端的 PCB主板输出的射频 信号由同一个射频口输出, 同时对第一辐射单元的弹脚 21和第二辐射单元 的馈电引出段 22进行馈电, 射频信号根据第一辐射单元 11和第二辐射单 元 12的不同尺寸来选择不同的路径。 在第一辐射单元 11为低频段天线, 第二辐射单元 12为高频段天线时, 低频段的信号选择天线长度较长的第一 辐射单元 11辐射出去, 高频段的信号选择第二辐射单元 12辐射出去。 反 之, 第一辐射单元 11和第二辐射单元 12也根据相同的原理接收信号。
图 3 为本发明辐射单元走线方向相反的双频段天线装置模拟实验的回 损图, 馈源的电阻为 50Ohm, 如图 3所示, 横坐标为天线装置模拟实验的 信号频率(单位为 Hz );纵坐标为天线装置对应信号的回损值(单位为 dB )。 图中曲线表明所述双频段天线装置具有两个谐振频带, 因此实现了双频的 通讯。
需要说明的是在具体实际应用中, 如果需要实现支持多频段的天线装 置, 设计人员可以在第一辐射单元 11和第二辐射单元 12上设置相应的天 线单元, 然后根据模拟仿真试验的数据来调整天线支架的高度, 和 /或每个 天线的长度, 和 /或每个天线的形状, 和 /或天线之间相互的摆放位置来选择 最优的方案, 以实现所需要的天线对多个频段的匹配, 满足装置通讯所使 用的频段需求。
图 4为本发明辐射单元走线方向相同的双频段天线装置实例的结构示 意图, 如图 4所示, 所述天线装置和图 1的天线装置的区别在于, 第二辐 射单元 42的走线方向和第一辐射单元 11 的末端的走线方向是相同的。 其 他单元的位置和功能都与图 1中相同。
图 5 为本发明辐射单元走线方向相同的双频段天线装置模拟实验的回 损图, 馈源的电阻为 50Ohm, 如图 5所示, 横坐标为天线装置模拟实验的 信号频率(单位为 Hz );纵坐标为天线装置对应信号的回损值(单位为 dB )。 图中曲线与图 3相比较可以看出, 在走线方向相同和走线方向相反的情况 下, 谐振曲线也刚好相反, 但是都具备两个谐振频带, 因此也实现了双频 的通讯。
图 6为本发明多频段天线的应用终端的结构示意图, 如图 6所示, 所 述多频段天线的应用终端, 包括: 外壳 61、 PCB主板 62和多频段天线装置 63;
所述多频段天线装置 63位于外壳 61 内, 并且包括设置于天线支架上 的第一辐射单元和设置于天线支架下方净空区域的第二辐射单元, 所述第 一辐射单元和第二辐射单元与 PCB主板 62上的馈源相连, 完成馈电。
具体的, 由于在天线支架上走线空间较大, 并且支持低频段信号的天 线长度较长, 因此第一辐射单元主要包括: 低频段的天线单元, 和 /或较高 频段的天线单元。 其中, 当所述第一辐射单元需要兼顾不同的低频段信号 时, 例如: 兼顾频段为 800MHz和 900MHz时, 要求的带宽比较宽, 因此 第一辐射单元的宽度也需要增加, 才能满足带宽的设计要求。 进一步的, 如果天线支架能够提供的空间足够, 也可以在上面制作较高频段的天线单 元, 例如: 支持 2.4GHz频段的蓝牙信号的天线。
在天线支架下方的净空区域设置的第二辐射单元主要包括: 中间高频 的天线单元。
所述天线支架的高度决定了第一辐射单元和第二辐射单元之间的距 离, 两个辐射单元的走线方向不同产生的相互耦合也是不同的。 当耦合大 时, 说明两个辐射单元需要配合使用, 才能满足整个天线装置的频段要求; 当耦合小时, 说明两个辐射单元不需要配合使用, 当不需要某个频段时, 可以拆除对应的辐射单元来降低制造成本。 因此, 天线支架的设计应该根 据两个辐射单元的天线性能, 以及所需要的频段要求进行相应的调整, 基 本的原则是可能相互干扰的天线尽量远离。 进一步需要说明的是, 第二辐 射单元的走线方向和第一辐射单元的末端的走线方向可以是相同的, 也可 以是相反的, 在实际应用中, 如果需要实现支持多频段的天线装置, 设计 人员可以在第一辐射单元 11和第二辐射单元 12上设置相应的天线单元, 然后根据模拟仿真试验的数据来调整天线支架的高度, 和 /或每个天线的长 度, 和 /或每个天线的形状, 和 /或天线之间相互的摆放位置来选择最优的方 案, 以实现所需要的天线对多个频段的匹配, 满足通讯所使用的频段需求。
所述第一辐射单元和第二辐射单元都从所述 PCB主板 62上的馈源馈 电, 同时信号根据辐射单元的尺寸自由选择对应的辐射单元完成发射或接 收。 所述天线支架上的第一辐射单元利用弹脚等连接方式与馈源通过馈电 焊盘接触馈电。 第二辐射单元利用相同的方式与馈源相连。 进一步的, 在 制作第一辐射单元和馈源连接的馈电焊盘时, 可以直接延伸馈电焊盘连接 第二辐射单元。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种多频段天线装置, 其特征在于, 所述装置包括: 第一辐射单元、 第二辐射单元、 天线支架和馈源, 其中,
所述第一辐射单元, 设置于天线支架上, 并且与馈源相连;
所述第二辐射单元, 设置于天线支架下方的净空区域, 并且与馈源相 连;
所述天线支架, 用于固定所述第一辐射单元;
所述馈源, 用于为所述第一辐射单元和所述第二辐射单元馈电。
2、 根据权利要求 1所述的装置, 其特征在于, 所述第一辐射单元釆用 需要净空区域的低频段的天线单元, 和 /或较高频段的天线单元;
所述第二辐射单元釆用需要净空区域的中间高频的天线单元。
3、 根据权利要求 1或 2所述的装置, 其特征在于, 所述馈源的馈电焊 盘直接延伸, 与第二辐射单元连接。
4、 根据权利要求 1或 2所述的装置, 其特征在于, 所述第一辐射单元 和第二辐射单元的天线长度和 /或形状按照天线的性能要求进行调整;
所述第二辐射单元的走线方向和第一辐射单元的末端的走线方向相反 或相同。
5、 根据权利要求 1或 2所述的装置, 其特征在于, 所述天线支架的高 度根据天线的性能要求进行调整。
6、 一种多频段天线的应用终端, 包括: 外壳、 印刷电路板(PCB )主 板; 其特征在于, 还包括外壳内的多频段天线装置;
所述多频段天线装置包括设置于天线支架上的第一辐射单元和设置于 天线支架下方净空区域的第二辐射单元, 所述第一辐射单元和第二辐射单 元与 PCB主板上的馈源相连, 完成馈电。
7、 根据权利要求 6所述的应用终端, 其特征在于, 所述第一辐射单元 釆用需要净空区域的低频段的天线单元, 和 /或较高频段的天线单元; 所述第二辐射单元采用需要净空区域的中间高频的天线单元。
8、 根据权利要求 6或 7所述的应用终端, 其特征在于, 所述馈源的馈 电焊盘直接延伸, 与第二辐射单元连接。
9、 根据权利要求 6或 7所述的应用终端, 其特征在于, 所述第一辐射 单元和第二辐射单元的天线长度和 /或形状按照天线的性能要求进行调整; 所述第二辐射单元的走线方向和第一辐射单元的末端的走线方向相反 或相同。
10、 根据权利要求 6或 7所述的应用终端, 其特征在于, 所述天线支 架的高度根据天线的性能要求进行调整。
PCT/CN2010/079048 2010-07-19 2010-11-24 一种多频段天线装置及其应用终端 WO2012009915A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010231457.5 2010-07-19
CN2010102314575A CN101950856A (zh) 2010-07-19 2010-07-19 一种多频段天线装置及其应用终端

Publications (1)

Publication Number Publication Date
WO2012009915A1 true WO2012009915A1 (zh) 2012-01-26

Family

ID=43454264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079048 WO2012009915A1 (zh) 2010-07-19 2010-11-24 一种多频段天线装置及其应用终端

Country Status (2)

Country Link
CN (1) CN101950856A (zh)
WO (1) WO2012009915A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545598B (zh) * 2012-07-11 2017-05-24 南京中兴新软件有限责任公司 一种天线及终端设备
CN102916253B (zh) * 2012-09-27 2016-08-03 中兴通讯股份有限公司 一种多输入多输出天线、系统及移动终端
CN103633443B (zh) * 2013-08-13 2016-05-25 北京航空航天大学 多频段小型化平面单极子天线
CN103441328B (zh) * 2013-09-02 2016-02-24 信维创科通信技术(北京)有限公司 小净空天线和具有它的便携式设备
CN203481370U (zh) * 2013-09-09 2014-03-12 中兴通讯股份有限公司 内置天线终端
CN104009281B (zh) * 2014-05-29 2016-07-06 东莞市信太通讯设备有限公司 一种多频手机天线
CN104577311A (zh) * 2015-01-05 2015-04-29 优能通信科技(杭州)有限公司 一种内置天线及其移动终端
CN204885426U (zh) * 2015-07-10 2015-12-16 西安中兴新软件有限责任公司 一种多输入多输出天线结构和终端
CN106505296A (zh) * 2016-10-25 2017-03-15 惠州Tcl移动通信有限公司 一种移动终端及其基于移动终端的天线组件
CN106684536A (zh) * 2017-02-28 2017-05-17 胡洁维 一种单极化振子
CN106684535A (zh) * 2017-02-28 2017-05-17 胡洁维 一种天线
CN109698399B (zh) * 2017-10-20 2021-04-20 深圳天珑无线科技有限公司 电子设备及其天线组件
CN110970706B (zh) * 2019-11-20 2021-04-09 珠海格力电器股份有限公司 多模天线、终端、多模天线的通信方法及装置及处理器
CN116845555A (zh) * 2023-08-03 2023-10-03 上海尚远通讯科技有限公司 一种smd形式的4g天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071901A (zh) * 2006-05-10 2007-11-14 富士康(昆山)电脑接插件有限公司 多频天线
CN101102007A (zh) * 2006-07-07 2008-01-09 富士康(昆山)电脑接插件有限公司 多频天线
CN101242034A (zh) * 2007-02-09 2008-08-13 宏达国际电子股份有限公司 小型化的多频天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071901A (zh) * 2006-05-10 2007-11-14 富士康(昆山)电脑接插件有限公司 多频天线
CN101102007A (zh) * 2006-07-07 2008-01-09 富士康(昆山)电脑接插件有限公司 多频天线
CN101242034A (zh) * 2007-02-09 2008-08-13 宏达国际电子股份有限公司 小型化的多频天线

Also Published As

Publication number Publication date
CN101950856A (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
WO2012009915A1 (zh) 一种多频段天线装置及其应用终端
US7187338B2 (en) Antenna arrangement and module including the arrangement
US7161543B2 (en) Antenna set for mobile devices
TWI435498B (zh) 多頻段雙極天線
CN102099962B (zh) 天线结构
KR100980774B1 (ko) 아이솔레이션 에이드를 구비한 내장형 mimo 안테나
US20070152881A1 (en) Multi-band antenna system
EP2381529B1 (en) Communications structures including antennas with separate antenna branches coupled to feed and ground conductors
CN107134633B (zh) 天线和包括该天线的天线模块
TWI487202B (zh) 天線模組
US20100309087A1 (en) Chip antenna device
KR20100133431A (ko) 안테나 캐리어 및 디바이스
JP2004530383A (ja) スロットアンテナを備える無線通信装置
KR101870760B1 (ko) 다중 대역 안테나 장치 및 이를 구비하는 전자기기
CN101283482A (zh) 超小型内置天线
TWI245452B (en) A multi-band monopole antenna with dual purpose
JP2010524324A (ja) 二重共振による広帯域アンテナ
CN102157794B (zh) 谐振产生的三频段天线
JP2006270575A (ja) アンテナ装置
TWI753595B (zh) 通訊模組及具有其之穿戴式裝置
TW202404185A (zh) 天線結構和通訊裝置
TWI583058B (zh) 天線結構及具有該天線結構的無線通訊裝置
TW200945664A (en) Dual-band antenna
US8659481B2 (en) Internal printed antenna
US20080129628A1 (en) Wideband antenna for mobile devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854945

Country of ref document: EP

Kind code of ref document: A1