WO2012008656A1 - Lighting device and a projecting display device - Google Patents

Lighting device and a projecting display device Download PDF

Info

Publication number
WO2012008656A1
WO2012008656A1 PCT/KR2010/007023 KR2010007023W WO2012008656A1 WO 2012008656 A1 WO2012008656 A1 WO 2012008656A1 KR 2010007023 W KR2010007023 W KR 2010007023W WO 2012008656 A1 WO2012008656 A1 WO 2012008656A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
light source
layer
reflective cover
Prior art date
Application number
PCT/KR2010/007023
Other languages
French (fr)
Korean (ko)
Inventor
성면창
복기소
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2012008656A1 publication Critical patent/WO2012008656A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems

Definitions

  • the present invention relates to a lighting device and a display device using the same. More specifically, the present invention does not increase the etendue by using wavelength shift by the wavelength conversion layer formed in the lighting device and reflection of selective light by the dichroic coating layer. Etc.
  • the present invention relates to a lighting device and a projection display device, and more particularly, to a lighting device having a minimum etendue and a projection display device using the same.
  • an ultra-high pressure discharge lamp As a light source used in a conventional projector, an ultra-high pressure discharge lamp is typically used, and may be classified into a reflection type and a transmission type according to the type of panel.
  • the projector uses an ultra-high voltage discharge lamp as a light source, improves the light uniformity with an integrator or FEL (fly eye lens), illuminates the light through each lens through the lens of the illumination system, and uses a color wheel or a dichroic mirror. It has a structure that separates the colors by The etendue should be considered when using a light source for illumination.
  • the etendue cannot be reduced by using any optical system to which the Lagrange Invariant is applied. Therefore, lighting designers need to consider these because the etendue of the light source and the etendue of the light receiving unit limit the efficiency of the lighting device.
  • LED Light Emitting Diode
  • the LED has a characteristic of long life, miniaturization and light weight, fast response speed, low voltage driving, and wide color gamut.
  • a sufficient amount of light cannot be obtained by using one LED element. Therefore, there is an attempt to use a plurality of LEDs, but even in this case, there is a limit in increasing the efficiency of the device by increasing the etendue of the entire light source.
  • the present invention provides a lighting device and a projection display device that do not increase the etendue even when using a plurality of light sources.
  • the present invention is to provide an illumination device that minimizes the etendue by the surface is emitted is smaller than the sum of the surface area constituting the etendue of each light source.
  • the present invention provides a light source and a display device for projection that do not increase etendue by using wavelength shift and wavelength selective reflection.
  • Lighting device and a projection display device using the same comprises at least one light source consisting of a light emitting layer and a reflective layer;
  • the at least one light source includes an inner surface including the reflective layer, the at least one light source is mounted on the inner surface, and has an opening through which light emitted from the light source is output, and the at least one light is reflected or re-reflected.
  • a reflection cover surrounding the light source A dichroic coating layer for selectively reflecting light of a specific wavelength; And a wavelength conversion layer for converting light incident at the first wavelength into a second wavelength.
  • According to the present invention can increase the efficiency of the light emitted from the light source.
  • light output may be increased by using reflection and re-reflection of light emitted from a plurality of light sources.
  • FIG. 1 to 3 show a cross-sectional view and a perspective view of a lighting apparatus according to an embodiment of the present invention.
  • FIG. 4 to 6 show a cross-sectional view and a perspective view of a lighting apparatus according to another embodiment of the present invention.
  • FIG. 7 shows a sectional view and a light path of a conventional lighting device.
  • FIG 8 and 9 show a cross-sectional view and a light path of the lighting device according to an embodiment of the present invention.
  • FIG 10 shows the output light efficiency of the lighting apparatus according to an embodiment of the present invention.
  • FIG. 11 shows a lighting apparatus according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a lighting apparatus according to an embodiment of the present invention.
  • the right side of the lighting device 10 includes an opening through which light is output, a light source 12, and a reflective cover 11.
  • the inner surface of the reflective cover 11 has a high reflectance.
  • the reflective cover 11 may be formed in a cube shape having one side opening, and at least one light source 12 may be mounted on an inner surface thereof.
  • the light source may be an LED.
  • the inner surface of the reflective cover 11 may be formed of a metal or a mirror having high reflectance.
  • the reflectance of the inner surface of the reflective cover 11 may be 70% to 90%.
  • the area of the surface from which the light exits from the reflective cover 11 may be smaller than the sum of the total surface areas constituting the etendue of each of the total light sources mounted on the inner surface. Therefore, the etendue of the light source emitted from the opening may be smaller than the sum of the etendues of each of the light sources formed on the inner surface.
  • FIG. 2 shows a top view of a lighting device 10 according to an embodiment of the invention
  • FIG. 3 shows a perspective view of the lighting device 10 according to an embodiment of the invention.
  • 1, 2 and 3 show an example in which three light sources are mounted.
  • the number of light sources is not limited thereto, and the arrangement of the three light sources may also vary.
  • the light output from the opening may be white light, and when the white light is wavelength-converted in the reflection cover 11, light of another color may be output to the opening.
  • the mixed color outputted depends on the wavelength conversion ratio of the light in the reflective cover 11.
  • the three light sources may be configured as light sources that output different colors, that is, light of different wavelengths. For example, when two blue light sources and one green light source are mounted in the reflective cover 11, they may be output in a mixed color. In addition, when each of the blue, green, and red light sources is mounted, it may be output as white light.
  • FIG. 4 is a cross-sectional view and a perspective view of a lighting apparatus according to another embodiment of the present invention.
  • the right side of the lighting device 10 represents an opening through which light is output.
  • the lighting device 10 according to the present invention has a reflecting cover 11 having a reflectance, and the inner surface of the reflecting cover 11 has a reflectance.
  • the reflective cover 11 is formed in the shape of a trapezoid hexahedron having an opening on one surface thereof, and at least one light source 12 may be mounted on an inner surface thereof.
  • the shape of the reflective cover 11 as a trapezoidal hexahedron, the light emitted from the light source 12 can be reflected at a small proportion on the inner surface of the reflective cover 11. That is, the number of reflections on the inner surface can be reduced. Therefore, it is possible to reduce the energy of light lost when reflected on the inner surface.
  • the light emitted from the light source 12 may be reflected on the inner surface of the solid shape to reduce the angle emitted to the opening.
  • the reflective surface is continuously formed by forming the reflective cover 11 into a trapezoidal hexahedron
  • the area of the surface emitted from the light source 12 may be larger than the sum of the surface areas of all the light sources mounted on the inner surface.
  • the etendue of the light source emitted from the lighting device 10 can be made smaller than the etendue of all the light sources constituting the etendue of each of the light sources mounted on the inner surface. do. Therefore, the light efficiency can be further increased.
  • FIG. 5 shows a top view of a lighting device 10 according to another embodiment of the invention
  • FIG. 6 shows a perspective view of the lighting device 10 according to an embodiment of the invention.
  • 4, 5, and 6 show one example in which five light sources are mounted on the inner surface of the reflective cover 11, respectively.
  • the number of light sources is not limited thereto.
  • FIG. 7 shows a cross-sectional view and a light path of a conventional lighting device.
  • the wavelength conversion layer 13 is formed on the light source mounted on the reflective cover.
  • the wavelength conversion layer 13 may be formed by spraying phosphor particles.
  • the wavelength conversion layer 13 may convert the first wavelength of light emitted directly from the light source into another second wavelength.
  • the wavelength conversion layer 13 may convert wavelengths of at least a portion of incident light.
  • Light 51 emitted from the light source may be output to the outside through the opening of the reflective cover. In this case, optical energy loss due to reflection of light, wavelength conversion, and absorption into the reflection cover is minimized.
  • the other light 52 emitted from the light source is emitted toward the opposite reflective cover. Light 52 is reflected at the surface of the wavelength conversion layer 13 and outputted to the opening of the reflective cover.
  • the other light 53 emitted from the light source is absorbed by the opposite light source.
  • the light 53 absorbed is a loss of light.
  • the light 53 shown in FIG. 7 is absorbed by the light source, it may be absorbed by the inner surface of the reflective cover. This is because the reflectance of the inner surface of the reflective cover is not exactly 100%.
  • the other light 54 emitted from the light source is absorbed by another light source located on the bottom surface of the reflective cover.
  • the light 53 and 54 which are emitted from the light source of the illuminating device 20 are not all output through the opening of a reflection cover, and this brings about the fall of light output efficiency.
  • light may be absorbed by another light source or absorbed by an inner surface of the reflective cover to reduce the efficiency of light output.
  • FIG. 8 and 9 show a cross-sectional view and an optical path of a lighting device according to an embodiment of the present invention.
  • the lighting device 30 shows a sectional view and a light path of a lighting device 30 with a reflective cover of a cube box.
  • the lighting device 30 further includes a dichroic coating layer 14 between the light source and the wavelength conversion layer 13.
  • the reflective cover is a cube in which one surface is formed as an opening.
  • the light source 12 may be installed on an inner surface except for the opening.
  • the light source 12 has a surface facing the opening and three light sources are disposed on two of the four side surfaces. The installation of three light sources 12 is because the installation of the light source 12 located inside the reflective cover 11 is easy.
  • the three wavelength converting layers 13 shown in FIG. 8 may all have the same properties, and the three dichroic coating layers 14 may have the same properties.
  • the light source 12 may include a coating surface 12-1 having a high reflectance on a surface thereof.
  • the light source 12 may include a reflective layer 12-2 formed on a boundary with an inner surface of the reflective cover 11, and may include a light emitting layer 12-3 emitting light thereon.
  • the reflective layer 12-2 may be connected to the inner surface of the reflective cover 11 or may be included in the inner surface of the reflective cover 11.
  • the coating surface 12-1 and the reflective layer 12-2 prevent the absorption of light that is reflected in the reflective cover 11 and re-incident to the light source 12 to increase the light efficiency.
  • the light efficiency since light that is transmitted without being reflected by the coating surface 12-1 and the reflective layer 12-2 is reflected by the dichroic coating layer 14, the light efficiency may be further increased.
  • the dichroic coating layer 14 is a coating layer for reflecting light of a specific wavelength. Specifically, the dichroic coating layer 14 transmits light having a first wavelength emitted directly from the light source 12, and the second wavelength conversion layer 13 causes the second layer to have a second wavelength. It can reflect light converted into wavelength. Since the light having the second wavelength is reflected by the dichroic coating layer 14, it is possible to reduce the case where the light reflected or re-reflected in the reflective cover 11 is absorbed by the light source 12.
  • the dichroic coating layer 14 may cover all or part of the surface of the light source 12.
  • the dichroic coating layer 14 may cover all or part of the surface of the light emitting layer 12-3 of the light source 12.
  • the wavelength range of the light reflected by the dichroic coating layer 14 takes into account the first wavelength of light emitted directly from the light source 12 and the second wavelength of light converted by the wavelength conversion layer 13. Can be selected. Specifically, the first wavelength of light is emitted from the light source 12, the first wavelength is converted into the second wavelength by the wavelength conversion layer 13, and is reflected or re-reflected in the reflective cover 11 to be a dichroic coating layer. When returning to (14), it is preferable in light efficiency that the dichroic coating layer 14 reflects only light in the second wavelength range. Accordingly, the dichroic coating layer 14 may be manufactured to transmit light of the first wavelength and reflect light of the second wavelength.
  • the wavelength conversion layer 13 may convert wavelengths of a part of incident light.
  • the proportion of light to be wavelength-converted depends on the characteristics of the wavelength conversion layer 13, for example, the type, density, and thickness of particles constituting the wavelength conversion layer 13.
  • the light once wavelength-converted by the wavelength conversion layer 13 is not wavelength-converted again. Therefore, the reflection wavelength range of the dichroic coating layer 14 can be selected intensively.
  • the density of the particles constituting the wavelength conversion layer can be reduced and the thickness can be increased.
  • Light 53 ′ emitted from the light source on the left side of the drawing has a first wavelength range and passes through the dichroic coating layer 14 and the wavelength conversion layer 13. Light of the first wavelength passing through the wavelength conversion layer 13 is converted into light of the second wavelength. The light 53 'converted to the light of the second wavelength is directed to the opposite reflective cover 11 and then passes through the opposite wavelength converting layer 13 to reach the dichroic coating layer 14. In this case, the light 53 ′ may be reflected by selective reflection of the dichroic coating layer 14 reflecting light having a second wavelength. In contrast to conventional light absorbing device 20 is absorbed by the opposite light source.
  • the light 53 ′ of the second wavelength does not cause wavelength conversion even after passing through the wavelength conversion layer 13 again, it is reflected by the dichroic coating layer 14 in the reflection cover 11 and then opened. Exit to That is, the light 53 absorbed and lost in the conventional lighting device 20 may be utilized.
  • the light 54 ′ may be converted into the second wavelength through the dichroic coating layer 14 and the wavelength conversion layer 13.
  • the light 54 ⁇ converted to the second wavelength is reflected by the dichroic coating surface 14 located on the inner bottom surface of the reflective cover, and the wavelength converting layer 13 located on the right inner surface of the reflective cover 11. After being reflected by it, it can exit through the opening. That is, the light 54 absorbed and lost in the conventional lighting device 20 may be utilized.
  • Light emitted from the light source 12 may be incident toward the inner surface of the reflective cover 11.
  • the inner surface of the reflective cover 11 is formed of a metal material or a metal coating or mirror coating having high reflectance, the light incident on the inner surface of the reflective cover 11 is reflected and finally emitted through the opening. .
  • the lighting device 30 according to the present invention described above may further increase the light efficiency by further comprising a dichroic coating layer 14.
  • FIG. 9 shows a cross-sectional view and a light path of a lighting device 40 with a reflective cover of a trapezoidal cube box. Since the reflective cover 11 is the same as the illuminating device 30 of FIG. 8 except that the reflective cover 11 is a trapezoidal hexahedron, the description of the same parts will be omitted.
  • light 53 ′′ and light 54 ′′ are reflected by the dichroic coating layer 14 and exit from the opening.
  • the illumination device 40 is formed by the trapezoidal hexahedron reflection cover, the angle of the light emitted from the opening is further relaxed. That is, since the etendue of the light source emitted from the lighting device 40 may be smaller than the etendue of all light sources constituting the etendue of each light source mounted on the inner surface, the light efficiency may be further increased.
  • FIG 10 shows the output light efficiency of the lighting apparatus according to an embodiment of the present invention.
  • 10 is a result obtained by simulating the light output value of the reflection cover according to the reflectance of the wavelength conversion layer.
  • 10 is a light efficiency value for a lighting device in which a wavelength conversion layer is formed of a phosphor and three LED light sources are mounted on an inner surface of a reflection cover of a cube.
  • the reflectivity of the phosphor is 100%
  • the light output of 260% is measured, which is equivalent to 300% of the ideal light output. That is, it can be seen from the graph of FIG. 10 that the light efficiency of the lighting apparatus according to the embodiment of the present invention is measured higher.
  • FIG. 11 shows a lighting device 50 in which the reflective cover has a long rectangular parallelepiped shape. Referring to FIG. 11, by mounting more LED light sources 12 on the inner surface of the elongated reflective cover, the lighting device may be configured to output a higher amount of light.
  • the shape of the reflective cover is limited to rectangular and trapezoidal hexahedral shapes, but the scope of the present invention is not limited thereto, and the reflective cover may be formed in various shapes such as cylindrical, hemispherical, and polygonal shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The lighting device and the projecting display device using same according to the present invention can increase optical efficiency output from the opening of a reflective cover, by comprising: a dichroic coating layer for selectively reflecting light of a specific wavelength; and a wavelength-conversion layer for converting some of the light which falls incident at a first wavelength to a second wavelength.

Description

조명 장치 및 프로젝션용 디스플레이 장치Display Units for Lighting and Projection
본 발명은 조명 장치 및 이를 이용한 디스플레이 장치에 관한 것이다. 보다 구체적으로, 본 발명은 조명 장치에 형성된 파장 변환층에 의한 파장 변화(wavelength shift) 및 다이크로익(dichroic) 코팅층에 의한 선택적 빛의 반사를 이용하여 에텐듀(etendue)를 증가시키지 않는 조명 장치 등에 관한 것이다.The present invention relates to a lighting device and a display device using the same. More specifically, the present invention does not increase the etendue by using wavelength shift by the wavelength conversion layer formed in the lighting device and reflection of selective light by the dichroic coating layer. Etc.
본 발명은 조명 장치 및 프로젝션 디스플레이 장치에 관한 것으로, 특히 에텐듀(etendue)를 최소화한 조명 장치 및 이를 이용한 프로젝션 디스플레이 장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lighting device and a projection display device, and more particularly, to a lighting device having a minimum etendue and a projection display device using the same.
종래 프로젝터에 사용되는 광원으로는 대표적으로 초고압 방전 램프가 사용되고 있으며, 패널의 종류에 따라 반사형과 투과형으로 나눌 수 있다. 프로젝터는 초고압 방전 램프를 광원으로 사용하고, integrator 또는 FEL(fly eye lens)로 빛의 균일도를 높여주고, 조명계의 렌즈를 통해 각 패널에 조명광이 입사하며, 컬러 휠(color wheel) 혹은 dichroic mirror등에 의해 색을 분리해 주는 구성을 갖고 있다. 광원을 조명용으로 사용할 때 에텐듀(etendue)를 고려하여야 한다.As a light source used in a conventional projector, an ultra-high pressure discharge lamp is typically used, and may be classified into a reflection type and a transmission type according to the type of panel. The projector uses an ultra-high voltage discharge lamp as a light source, improves the light uniformity with an integrator or FEL (fly eye lens), illuminates the light through each lens through the lens of the illumination system, and uses a color wheel or a dichroic mirror. It has a structure that separates the colors by The etendue should be considered when using a light source for illumination.
광원의 면적이 넓고 출사하는 광이 큰 각을 이루고 방사할 경우 Lagrange Invariant가 적용되는 어떠한 광학계를 사용하더라도 에텐듀를 줄일 수 없다. 따라서, 광원의 에텐듀와 수광부의 에텐듀는 조명 장치의 효율을 제한하기 때문에 조명 설계자들은 이들을 고려할 필요가 있다.If the area of the light source is large and the emitted light is emitted at a large angle, the etendue cannot be reduced by using any optical system to which the Lagrange Invariant is applied. Therefore, lighting designers need to consider these because the etendue of the light source and the etendue of the light receiving unit limit the efficiency of the lighting device.
한편, 광원으로 LED(Light Emitting Diode)를 이용하는 것이 시도되고 있다. 상기 LED는 수명이 길고 소형화, 경량화가 가능하며 빠른 응답속도, 저전압 구동, 넓은 색 표현 범위가 가능하다는 특성을 갖고 있다. 그러나, 현재로서는 1개의 LED소자의 사용으로 충분한 광량을 얻을 수 없다. 따라서, 다수개의 LED를 사용하는 시도가 있으나 이경우에도 전체 광원의 에텐듀가 증가하여 장치의 효율을 높이는데 한계가 있다.On the other hand, the use of LED (Light Emitting Diode) as a light source has been attempted. The LED has a characteristic of long life, miniaturization and light weight, fast response speed, low voltage driving, and wide color gamut. However, at present, a sufficient amount of light cannot be obtained by using one LED element. Therefore, there is an attempt to use a plurality of LEDs, but even in this case, there is a limit in increasing the efficiency of the device by increasing the etendue of the entire light source.
상술한 문제점을 감안하여, 본 발명은 여러 개의 광원을 사용하여도 에텐듀를 증가시키지 않는 조명 장치 및 프로젝션 디스플레이 장치를 제공하도록 한다.In view of the above problems, the present invention provides a lighting device and a projection display device that do not increase the etendue even when using a plurality of light sources.
본 발명은 출사되는 면이 면적이 전체 광원 각각의 에텐듀를 구성하는 표면적의 합보다 작게 구성하여 에텐듀를 최소화하는 조명 장치를 제공하도록 한다.The present invention is to provide an illumination device that minimizes the etendue by the surface is emitted is smaller than the sum of the surface area constituting the etendue of each light source.
본 발명은 파장 변환(wavelength shift) 및 선택적 파장 반사(wavelength selective reflection)를 이용하여 에텐듀를 증가시키지 않는 프로젝션용 광원 및 디스플레이 장치를 제공하도록 한다.The present invention provides a light source and a display device for projection that do not increase etendue by using wavelength shift and wavelength selective reflection.
본 발명에 따른 조명 장치 및 이를 이용한 프로젝션용 디스플레이 장치는 발광층과 반사층으로 구성되는 적어도 하나 이상의 광원; 상기 반사층을 포함하는 내부면으로 구성되고, 상기 내부면에 상기 적어도 하나 이상의 광원이 실장되고, 상기 광원으로부터 출사되는 빛이 출력되는 개구를 가지며, 상기 출사되는 빛이 반사 또는 재반사되도록 상기 적어도 하나 이상의 광원을 둘러싸는 반사 커버; 특정 파장의 빛을 선택적으로 반사시키는 다이크로익(dichroic) 코팅층; 및 제1 파장으로 입사되는 빛을 제2 파장으로 변환시키는 파장 변환층을 포함한다.Lighting device and a projection display device using the same according to the present invention comprises at least one light source consisting of a light emitting layer and a reflective layer; The at least one light source includes an inner surface including the reflective layer, the at least one light source is mounted on the inner surface, and has an opening through which light emitted from the light source is output, and the at least one light is reflected or re-reflected. A reflection cover surrounding the light source; A dichroic coating layer for selectively reflecting light of a specific wavelength; And a wavelength conversion layer for converting light incident at the first wavelength into a second wavelength.
본 발명에 따르면 광원으로부터 출사되는 빛의 효율을 증가시킬 수 있다.According to the present invention can increase the efficiency of the light emitted from the light source.
또한, 본 발명에 따르면 다수 광원으로부터 출사되는 빛의 반사, 재반사를 이용하여 광 출력을 높일 수 있다.In addition, according to the present invention, light output may be increased by using reflection and re-reflection of light emitted from a plurality of light sources.
또한, 다수 개의 광원을 각각 다른 색의 광원으로 구성함으로써 원하는 색의 광을 출력하여 색 합성 장치가 필요한 조명 장치에서 기존의 색합성 장치를 대체할 수 있다.In addition, by configuring a plurality of light sources each with a light source of a different color, it is possible to replace the existing color combining device in the lighting device that requires a color synthesizing device by outputting light of a desired color.
도 1 내지 도3은 본 발명의 일 실시예에 따른 조명 장치의 단면도 및 사시도를 나타낸다.1 to 3 show a cross-sectional view and a perspective view of a lighting apparatus according to an embodiment of the present invention.
도 4 내지 도6은 본 발명의 다른 실시예에 따른 조명 장치의 단면도 및 사시도를 나타낸다.4 to 6 show a cross-sectional view and a perspective view of a lighting apparatus according to another embodiment of the present invention.
도 7 은 종래 조명 장치의 단면도 및 광 경로를 나타낸다.7 shows a sectional view and a light path of a conventional lighting device.
도 8 및 도9는 본 발명의 일 실시예에 따른 조명 장치의 단면도 및 광 경로를 나타낸다.8 and 9 show a cross-sectional view and a light path of the lighting device according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 조명 장치의 출력광 효율을 나타낸다.10 shows the output light efficiency of the lighting apparatus according to an embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 따른 조명 장치를 나타낸다.11 shows a lighting apparatus according to another embodiment of the present invention.
이하, 도면을 참조하여 본 발명의 실시예를 보다 상세히 설명한다.Hereinafter, with reference to the drawings will be described an embodiment of the present invention in more detail.
도 1은 본 발명의 일 실시예에 따른 조명 장치의 단면도를 나타낸다.1 is a cross-sectional view of a lighting apparatus according to an embodiment of the present invention.
도 1를 참조하면, 조명 장치(10)의 오른쪽은 빛이 출력되는 개구, 광원(12), 반사 커버(11)를 포함한다. 반사 커버(11)의 내부면은 높은 반사율을 갖는다. 또한 반사 커버(11)는 한면이 개구인 정육면체 형태로 형성되고, 그 내부면에 적어도 하나 이상의 광원(12)이 실장될 수 있다. 상기 광원은 LED가 사용될 수 있다.Referring to FIG. 1, the right side of the lighting device 10 includes an opening through which light is output, a light source 12, and a reflective cover 11. The inner surface of the reflective cover 11 has a high reflectance. In addition, the reflective cover 11 may be formed in a cube shape having one side opening, and at least one light source 12 may be mounted on an inner surface thereof. The light source may be an LED.
반사 커버(11)의 내부면은 반사율이 높은 금속이나 거울로 형성될 수 있다. 반사 커버(11)의 내부면의 반사율은 70 % 내지 90% 일 수 있다.The inner surface of the reflective cover 11 may be formed of a metal or a mirror having high reflectance. The reflectance of the inner surface of the reflective cover 11 may be 70% to 90%.
반사 커버(11)로부터 빛이 출사하는 면의 면적이 내부면에 장착되어 있는 전체 광원 각각의 에텐듀를 구성하는 전체 표면적의 합보다 작게 구성될 수 있다. 따라서, 개구에서 출사되는 광원의 에텐듀는 내부면에 형성된 광원 각각의 에텐듀의 합보다 작아질 수 있다.The area of the surface from which the light exits from the reflective cover 11 may be smaller than the sum of the total surface areas constituting the etendue of each of the total light sources mounted on the inner surface. Therefore, the etendue of the light source emitted from the opening may be smaller than the sum of the etendues of each of the light sources formed on the inner surface.
도 2는 본 발명의 일 실시예에 따른 조명 장치(10)의 상단면도를 나타내고, 도 3는 본 발명의 일 실시예에 따른 조명 장치(10)의 사시도를 나타낸다. 도 1, 도 2 및 도 3에는 3개의 광원이 실장된 예를 나타낸다. 그러나, 광원의 개수는 이에 제한되지 않고, 3개 광원의 배치도 달라질 수 있다.2 shows a top view of a lighting device 10 according to an embodiment of the invention, and FIG. 3 shows a perspective view of the lighting device 10 according to an embodiment of the invention. 1, 2 and 3 show an example in which three light sources are mounted. However, the number of light sources is not limited thereto, and the arrangement of the three light sources may also vary.
한편, 3개 광원이 모두 백색광인 경우 개구로부터 출력되는 광은 백색광일 수 있고, 백색광이 반사 커버(11) 내에서 파장 변환되면 다른 색의 광이 개구로 출력될 수 있다. 출력되는 혼합색은 반사 커버(11) 내의 빛의 파장 변환 비율에 의존적이다.On the other hand, when all three light sources are white light, the light output from the opening may be white light, and when the white light is wavelength-converted in the reflection cover 11, light of another color may be output to the opening. The mixed color outputted depends on the wavelength conversion ratio of the light in the reflective cover 11.
또한, 3개 광원이 각각 다른 색을 출력하는, 즉, 다른 파장의 빛을 출력하는 광원으로 구성될 수 있다. 예컨대, 청색 광원 2개와 녹색 광원 1개를 반사 커버(11) 내에 실장한 경우, 이들이 혼합된 색으로 출력될 수 있다. 또한, 청, 녹, 적색 광원 각각을 실장한 경우, 백색광으로서 출력될 수 있다.In addition, the three light sources may be configured as light sources that output different colors, that is, light of different wavelengths. For example, when two blue light sources and one green light source are mounted in the reflective cover 11, they may be output in a mixed color. In addition, when each of the blue, green, and red light sources is mounted, it may be output as white light.
결론적으로, 본 발명에 따른 조명 장치(10)의 반사 커버(11) 내에 실장되는 광원의 개수 및 출력 파장을 다양화함으로써 개구로부터 출력되는 혼합색의 종류를 조절할 수 있다.In conclusion, by varying the number of light sources and the output wavelengths mounted in the reflective cover 11 of the lighting device 10 according to the present invention, it is possible to adjust the type of mixed color output from the opening.
도 4는 본 발명의 다른 실시예에 따른 조명 장치의 단면도 및 사시도를 나타낸다. 4 is a cross-sectional view and a perspective view of a lighting apparatus according to another embodiment of the present invention.
도 4를 참조하면, 조명 장치(10)의 오른쪽은 빛이 출력되는 개구를 나타낸다. 본 발명에 따른 조명 장치(10)는 반사율을 갖는 반사 커버(11)를 가지고, 반사 커버(11)의 내부면은 반사율을 갖는다. 또한 반사 커버(11)는 한면이 개구인 사다리꼴 육면체 형태로 형성되고, 그 내부면에 적어도 하나 이상의 광원(12)이 실장될 수 있다. Referring to FIG. 4, the right side of the lighting device 10 represents an opening through which light is output. The lighting device 10 according to the present invention has a reflecting cover 11 having a reflectance, and the inner surface of the reflecting cover 11 has a reflectance. In addition, the reflective cover 11 is formed in the shape of a trapezoid hexahedron having an opening on one surface thereof, and at least one light source 12 may be mounted on an inner surface thereof.
반사 커버(11)의 형상을 사다리꼴 육면체로 구성함으로써, 광원(12)으로부터 출사된 빛이 반사 커버(11)의 내부면에서 적을 비율로 반사될 수 있다. 즉, 내부면에 반사하는 횟수를 감소시킬 수 있다. 따라서, 내부면에 반사될 때 손실되는 빛의 에너지를 줄일 수 있다. By configuring the shape of the reflective cover 11 as a trapezoidal hexahedron, the light emitted from the light source 12 can be reflected at a small proportion on the inner surface of the reflective cover 11. That is, the number of reflections on the inner surface can be reduced. Therefore, it is possible to reduce the energy of light lost when reflected on the inner surface.
또한, 광원(12)에서 출사되는 빛은 고깔 모양의 내부면에 반사되면서 개구쪽으로 출사되는 각도를 완화시킬 수 있다. 예컨대, 반사 커버(11)를 사다리꼴 육면체로 형성함으로서 반사면이 계속적으로 길어지게 되면, 내부면에 실장된 전체 광원의 표면적의 합보다 광원(12)에서 출사되는 면의 면적이 더욱 커질 수도 있다. 그러나, 개구쪽으로의 빛의 출사 각도를 완화시킴으로써 조명 장치(10)에서 출사되는 광원의 에텐듀는 내부면에 장착되어 있는 광원 각각의 에텐듀를 구성하는 전체 광원의 에텐듀보다 작게 형성할 수 있게 된다. 따라서 광 효율을 더욱 높일 수 있다.In addition, the light emitted from the light source 12 may be reflected on the inner surface of the solid shape to reduce the angle emitted to the opening. For example, if the reflective surface is continuously formed by forming the reflective cover 11 into a trapezoidal hexahedron, the area of the surface emitted from the light source 12 may be larger than the sum of the surface areas of all the light sources mounted on the inner surface. However, by relaxing the emission angle of the light toward the opening, the etendue of the light source emitted from the lighting device 10 can be made smaller than the etendue of all the light sources constituting the etendue of each of the light sources mounted on the inner surface. do. Therefore, the light efficiency can be further increased.
도 5는 본 발명의 다른 실시예에 따른 조명 장치(10)의 상단면도를 나타내고, 도 6는 본 발명의 일 실시예에 따른 조명 장치(10)의 사시도를 나타낸다. 도 4, 도 5 및 도 6에는 5개의 광원이 반사 커버(11)의 내부면에 각각 하나씩 실장되어 있는 일례를 나타낸다. 그러나, 광원의 개수는 이에 제한되지 않는다. 5 shows a top view of a lighting device 10 according to another embodiment of the invention, and FIG. 6 shows a perspective view of the lighting device 10 according to an embodiment of the invention. 4, 5, and 6 show one example in which five light sources are mounted on the inner surface of the reflective cover 11, respectively. However, the number of light sources is not limited thereto.
도 4 내지 도 6에서는 반사 커버(11)의 모양 및 광원(12)의 개수를 제외한 나머지 구성요소의 동작은 도 1 내지 도 3과 동일하다.4 to 6, the operation of the remaining components except for the shape of the reflective cover 11 and the number of the light sources 12 is the same as that of FIGS. 1 to 3.
도 7은 종래 조명 장치의 단면도 및 광 경로를 나타낸다.7 shows a cross-sectional view and a light path of a conventional lighting device.
도 1과 동일한 구성 요소인 광원, 반사 커버에 대해서는 도면 부호를 생략한다. 도 7을 참조하면, 반사 커버 위에 실장된 광원 위에 파장 변환층(13)이 형성되어 있다. 파장 변환층(13)은 형광체 입자를 분사시켜 형성될 수 있다. 파장 변환층(13)은 광원으로부터 직접 방출되는 빛의 제1 파장을 이와 다른 제2 파장으로 변환시킬 수 있다. 파장 변환층(13)은 입사되는 빛의 적어도 일부의 파장을 변환시킬 수 있다. Reference numerals are omitted for the light source and the reflective cover which are the same components as in FIG. 1. Referring to FIG. 7, the wavelength conversion layer 13 is formed on the light source mounted on the reflective cover. The wavelength conversion layer 13 may be formed by spraying phosphor particles. The wavelength conversion layer 13 may convert the first wavelength of light emitted directly from the light source into another second wavelength. The wavelength conversion layer 13 may convert wavelengths of at least a portion of incident light.
광원으로부터 출사되는 광(51)은 반사 커버의 개구를 통해 외부로 출력될 수 있다. 이 경우, 광의 반사, 파장 변환, 반사 커버에의 흡수에 의한 광 에너지 손실은 최소화된다. 광원으로부터 출사되는 다른 광(52)은 맞은편의 반사 커버를 향해 출사된다. 광(52)은 파장 변환층(13)의 표면에서 반사되어 반사 커버의 개구로 출력된다. 광원으로부터 출사되는 다른 광(53)은 맞은편의 광원에 흡수된다. 흡수되는 광(53)은 광의 손실이 된다. 도 7에서 나타내는 광(53)은 광원에 흡수되지만, 반사커버의 내부면에 흡수될 수 있다. 반사 커버의 내부면의 반사율이 정확히 100%가 아니기 때문이다. 또한, 광원으로부터 출사되는 다른 광(54)은 반사 커버 하면에 위치한 다른 광원에 흡수되고 있다. Light 51 emitted from the light source may be output to the outside through the opening of the reflective cover. In this case, optical energy loss due to reflection of light, wavelength conversion, and absorption into the reflection cover is minimized. The other light 52 emitted from the light source is emitted toward the opposite reflective cover. Light 52 is reflected at the surface of the wavelength conversion layer 13 and outputted to the opening of the reflective cover. The other light 53 emitted from the light source is absorbed by the opposite light source. The light 53 absorbed is a loss of light. Although the light 53 shown in FIG. 7 is absorbed by the light source, it may be absorbed by the inner surface of the reflective cover. This is because the reflectance of the inner surface of the reflective cover is not exactly 100%. In addition, the other light 54 emitted from the light source is absorbed by another light source located on the bottom surface of the reflective cover.
도 7에서 나타내는 바와 같이, 조명 장치(20)의 광원으로부터 출사되는 광(53, 54)이 반사 커버의 개구를 통하여 모두 출력되지 않는 경우가 있고, 이것은 광 출력 효율의 저하를 가져온다. 일반적으로, 다른 광원으로 빛이 흡수되거나, 반사 커버의 내부면에 흡수되어 광 출력의 효율을 저하시킬 수 있다.As shown in FIG. 7, the light 53 and 54 which are emitted from the light source of the illuminating device 20 are not all output through the opening of a reflection cover, and this brings about the fall of light output efficiency. In general, light may be absorbed by another light source or absorbed by an inner surface of the reflective cover to reduce the efficiency of light output.
도 8 및 도 9는 본 발명의 일 실시예에 따른 조명 장치의 단면도 및 광 경로를 나타낸다.8 and 9 show a cross-sectional view and an optical path of a lighting device according to an embodiment of the present invention.
도 8에서는 도 1 및 도 2의 광원 및 반사 커버를 동일한 구성요소로서 포함하고 있으므로, 광원과 반사 커버의 도면 부호를 생략한다. In FIG. 8, since the light source and the reflective cover of FIGS. 1 and 2 are included as the same components, reference numerals of the light source and the reflective cover are omitted.
도 8는 정육면체 상자의 반사 커버를 갖는 조명 장치(30)의 단면도 및 광 경로를 나타낸다. 도 8를 참조하면, 조명 장치(30)는 광원과 파장 변환층(13)의 사이에 다이크로익(dichroic) 코팅층(14)을 더 포함하고 있다. 8 shows a sectional view and a light path of a lighting device 30 with a reflective cover of a cube box. Referring to FIG. 8, the lighting device 30 further includes a dichroic coating layer 14 between the light source and the wavelength conversion layer 13.
상기 반사 커버는 1개의 면이 개구로 형성된 정육면체이다. 상기 개구를 제외한 내부면에 상기 광원(12)이 설치될 수 있다. 바람직하게는 상기 광원(12)은 개구와 마주보는 면과, 4개의 측면중 2개의 측면에 위치하여 3개의 광원이 설치될 수 있다. 광원(12)을 3개 설치하는 것은 반사 커버(11)의 내부에 위치하는 광원(12)의 설치가 용이하기 때문이다. The reflective cover is a cube in which one surface is formed as an opening. The light source 12 may be installed on an inner surface except for the opening. Preferably, the light source 12 has a surface facing the opening and three light sources are disposed on two of the four side surfaces. The installation of three light sources 12 is because the installation of the light source 12 located inside the reflective cover 11 is easy.
도 8에서 나타내는 상기 3개의 파장 변환층(13)은 모두 동일한 성질을 가지며 또한 상기 3개의 다이크로익 코팅층(14)은 모두 동일한 성질을 갖는 것으로 구성될 수 있다.The three wavelength converting layers 13 shown in FIG. 8 may all have the same properties, and the three dichroic coating layers 14 may have the same properties.
도 8을 참조하면, 광원(12)은 표면이 높은 반사율을 갖는 코팅면(12-1)을 포함할 수 있다. 또한 광원(12)은 반사 커버(11)의 내부면과의 경계에 형성된 반사층(12-2)을 포함하고, 그 위에 광을 출사하는 발광층(12-3)을 포함하도록 형성될 수 있다. 반사층(12-2)은 반사 커버(11)의 내부면에 연결되거나, 반사 커버(11)의 내부면에 포함될 수 있다. 상기 코팅면(12-1)과 반사층(12-2)은, 반사 커버(11) 내에서 반사되어 광원(12)으로 재입사하는 빛의 흡수를 방지하여 광 효율을 높인다. 또한, 상기 코팅면(12-1)과 반사층(12-2)에 의해서도 반사되지 않고 투과하는 빛은 다이크로익 코팅층(14)에서 반사되기 때문에 광 효율이 더욱 높아질 수 있다. Referring to FIG. 8, the light source 12 may include a coating surface 12-1 having a high reflectance on a surface thereof. In addition, the light source 12 may include a reflective layer 12-2 formed on a boundary with an inner surface of the reflective cover 11, and may include a light emitting layer 12-3 emitting light thereon. The reflective layer 12-2 may be connected to the inner surface of the reflective cover 11 or may be included in the inner surface of the reflective cover 11. The coating surface 12-1 and the reflective layer 12-2 prevent the absorption of light that is reflected in the reflective cover 11 and re-incident to the light source 12 to increase the light efficiency. In addition, since light that is transmitted without being reflected by the coating surface 12-1 and the reflective layer 12-2 is reflected by the dichroic coating layer 14, the light efficiency may be further increased.
다이크로익 코팅층(14)은 특정 파장의 빛을 반사시키기 위한 코팅층으로서, 구체적으로, 광원(12)으로부터 직접적으로 출사되는 제1 파장의 빛을 투과시키고, 파장 변환층(13)에 의해 제2 파장으로 변환된 빛을 반사시킬 수 있다. 다이크로익 코팅층(14)에 의해 제2 파장의 빛이 반사되기 때문에 반사 커버(11) 내에서 반사 또는 재반사된 빛이 광원(12)으로 흡수되는 경우를 줄일 수 있다. 다이크로익 코팅층(14)은 광원(12)의 전체 또는 일부 표면을 덮을 수 있다. 다이크로익 코팅층(14)은 광원(12)의 발광층(12-3)의 전체 또는 일부 표면을 덮을 수 있다. The dichroic coating layer 14 is a coating layer for reflecting light of a specific wavelength. Specifically, the dichroic coating layer 14 transmits light having a first wavelength emitted directly from the light source 12, and the second wavelength conversion layer 13 causes the second layer to have a second wavelength. It can reflect light converted into wavelength. Since the light having the second wavelength is reflected by the dichroic coating layer 14, it is possible to reduce the case where the light reflected or re-reflected in the reflective cover 11 is absorbed by the light source 12. The dichroic coating layer 14 may cover all or part of the surface of the light source 12. The dichroic coating layer 14 may cover all or part of the surface of the light emitting layer 12-3 of the light source 12.
또한, 다이크로익 코팅층(14)의 반사시키는 빛의 파장 범위는 광원(12)에서 직접적으로 출사되는 빛의 제1 파장, 파장 변환층(13)에 의해 파장 변환되는 빛의 제2 파장을 고려하여 선택될 수 있다. 구체적으로, 광원(12)에서 제1 파장 빛을 출사하고 파장 변환층(13)에 의해 제1 파장이 제2 파장으로 변환되고, 반사 커버(11) 내에서 반사 또는 재반사되어 다이크로익 코팅층(14)에 되돌아오는 경우, 다이크로익 코팅층(14)은 제2 파장 범위의 빛만을 반사시키는 것이 광 효율상 바람직하다. 따라서, 다이크로익 코팅층(14)은 제1 파장의 빛은 투과시키고 제2 파장의 빛은 반사시키도록 제작될 수 있다.In addition, the wavelength range of the light reflected by the dichroic coating layer 14 takes into account the first wavelength of light emitted directly from the light source 12 and the second wavelength of light converted by the wavelength conversion layer 13. Can be selected. Specifically, the first wavelength of light is emitted from the light source 12, the first wavelength is converted into the second wavelength by the wavelength conversion layer 13, and is reflected or re-reflected in the reflective cover 11 to be a dichroic coating layer. When returning to (14), it is preferable in light efficiency that the dichroic coating layer 14 reflects only light in the second wavelength range. Accordingly, the dichroic coating layer 14 may be manufactured to transmit light of the first wavelength and reflect light of the second wavelength.
파장 변환층(13)은 입사되는 빛의 일부의 파장을 변환시킬 수 있다. 파장 변환되는 빛의 비율은, 파장 변환층(13)의 특성, 예컨대 파장 변환층(13)을 구성하는 입자의 종류, 밀도, 두께에 의존적이다. 파장 변환층(13)에 의해 한번 파장 변환된 빛은 다시 파장 변환되지 않는다. 따라서, 다이크로익 코팅층(14)의 반사 파장 범위를 집약적으로 선택할 수 있다. 파장 변환층(13)의 파장 변환 비율을 높이기 위해 파장 변환층을 구성하는 입자의 밀도를 낮추고 두께는 크게 할 수 있다.The wavelength conversion layer 13 may convert wavelengths of a part of incident light. The proportion of light to be wavelength-converted depends on the characteristics of the wavelength conversion layer 13, for example, the type, density, and thickness of particles constituting the wavelength conversion layer 13. The light once wavelength-converted by the wavelength conversion layer 13 is not wavelength-converted again. Therefore, the reflection wavelength range of the dichroic coating layer 14 can be selected intensively. In order to increase the wavelength conversion ratio of the wavelength conversion layer 13, the density of the particles constituting the wavelength conversion layer can be reduced and the thickness can be increased.
이하에서 도 8의 광 경로를 설명한다. Hereinafter, the optical path of FIG. 8 will be described.
도면상 좌측의 광원으로부터 출사되는 광(53')은 제1 파장 범위를 갖고, 다이크로익 코팅층(14) 및 파장 변환층(13)을 투과한다. 파장 변환층(13)을 통과한 제1 파장의 빛은 제2 파장의 빛으로 변환된다. 제2 파장의 빛으로 변환된 광(53`)은, 맞은편의 반사 커버(11)를 향한 후, 맞은편 파장 변환층(13)을 통과하여 다이크로익 코팅층(14)에 도달한다. 이때 상기 광(53')은 제2 파장의 광은 반사시키는 다이크로익 코팅층(14)의 선택적 반사에 의해 반사될 수 있다. 종래 조명 장치(20)에서 맞은편 광원에 흡수되는 것과 대비된다. 제2 파장의 광(53`)은 파장 변환층(13)을 다시 통과하여도 파장 변환을 일으키지 않기 때문에 반사 커버(11) 내에서 다이크로익 코팅층(14)에 의해 2번 더 반사된 후 개구로 빠져나간다. 즉, 종래 조명 장치(20) 내에서 흡수되어 소실된 광(53)을 활용할 수 있다. Light 53 ′ emitted from the light source on the left side of the drawing has a first wavelength range and passes through the dichroic coating layer 14 and the wavelength conversion layer 13. Light of the first wavelength passing through the wavelength conversion layer 13 is converted into light of the second wavelength. The light 53 'converted to the light of the second wavelength is directed to the opposite reflective cover 11 and then passes through the opposite wavelength converting layer 13 to reach the dichroic coating layer 14. In this case, the light 53 ′ may be reflected by selective reflection of the dichroic coating layer 14 reflecting light having a second wavelength. In contrast to conventional light absorbing device 20 is absorbed by the opposite light source. Since the light 53 ′ of the second wavelength does not cause wavelength conversion even after passing through the wavelength conversion layer 13 again, it is reflected by the dichroic coating layer 14 in the reflection cover 11 and then opened. Exit to That is, the light 53 absorbed and lost in the conventional lighting device 20 may be utilized.
광(54`)는 광원(12)으로부터 출사된 후, 다이크로익 코팅층(14), 파장 변환층(13)을 거쳐 제2 파장으로 변환될 수 있다. 제2 파장으로 변환된 광(54`)은 반사 커버의 아래 내부면에 위치한 다이크로익 코팅면(14)에 의해 반사되고, 반사 커버(11)의 오른쪽 내부면에 위치한 파장 변환층(13)에 의해 반사된 후 개구를 통해 빠져나갈 수 있다. 즉, 종래 조명 장치(20) 내에서 흡수되어 소실된 광(54)을 활용할 수 있다.After the light 54 ′ is emitted from the light source 12, the light 54 ′ may be converted into the second wavelength through the dichroic coating layer 14 and the wavelength conversion layer 13. The light 54` converted to the second wavelength is reflected by the dichroic coating surface 14 located on the inner bottom surface of the reflective cover, and the wavelength converting layer 13 located on the right inner surface of the reflective cover 11. After being reflected by it, it can exit through the opening. That is, the light 54 absorbed and lost in the conventional lighting device 20 may be utilized.
상기 광원(12)에서 출사된 광은 반사 커버(11)의 내부면을 향해 입사할 수도 있다. 이 경우 반사 커버(11)의 내부면은 반사율이 높은 금속 재질 혹은 금속의 코팅 혹은 거울코팅으로 형성되어 있으므로, 반사커버(11)의 내부면에 입사된 광은 반사되어져 최종적으로 개구를 통해 출사된다.Light emitted from the light source 12 may be incident toward the inner surface of the reflective cover 11. In this case, since the inner surface of the reflective cover 11 is formed of a metal material or a metal coating or mirror coating having high reflectance, the light incident on the inner surface of the reflective cover 11 is reflected and finally emitted through the opening. .
이상, 도 8에 관한 설명에서는 좌측 광원으로부터 출사되는 광의 경로를 설명하였으나, 이러한 동작은 설명되지 않은 다른 광원에서 출사된 광에 대해서도 동일한 방법으로 반사되어 개구로 출사될 수 있다. In the above description with reference to FIG. 8, the path of the light emitted from the left light source has been described. However, the operation may be reflected and emitted to the aperture in the same manner with respect to the light emitted from another light source that is not described.
이상에서 설명된 본 발명에 따른 조명 장치(30)는 다이크로익 코팅층(14)을 더 포함함으로써 광 효율을 높일 수 있다.The lighting device 30 according to the present invention described above may further increase the light efficiency by further comprising a dichroic coating layer 14.
도 9는 사다리꼴 육면체 상자의 반사 커버를 갖는 조명 장치(40)의 단면도 및 광 경로를 나타낸다. 반사 커버(11)가 사다리꼴 육면체인 것을 제외하고 도 8 의 조명 장치(30)와 동일하므로 동일 부분에 대한 설명을 생략한다. 도 9에서도 광(53") 및 광(54")이 다이크로익 코팅층(14)에 의해 반사되어 개구로부터 빠져나가고 있다. 도 9에서는 사다리꼴 육면체의 반사 커버로 조명 장치(40)를 형성하고 있기 때문에, 개구로부터 출사되는 빛의 각도가 좀더 완화되고 있다. 즉, 조명 장치(40)에서 출사되는 광원의 에텐듀는 내부면에 장착되어 있는 광원 각각의 에텐듀를 구성하는 전체 광원의 에텐듀보다 작게 형성할 수 있으므로, 광 효율이 더욱 높아질 수 있다.9 shows a cross-sectional view and a light path of a lighting device 40 with a reflective cover of a trapezoidal cube box. Since the reflective cover 11 is the same as the illuminating device 30 of FIG. 8 except that the reflective cover 11 is a trapezoidal hexahedron, the description of the same parts will be omitted. In FIG. 9, light 53 ″ and light 54 ″ are reflected by the dichroic coating layer 14 and exit from the opening. In FIG. 9, since the illumination device 40 is formed by the trapezoidal hexahedron reflection cover, the angle of the light emitted from the opening is further relaxed. That is, since the etendue of the light source emitted from the lighting device 40 may be smaller than the etendue of all light sources constituting the etendue of each light source mounted on the inner surface, the light efficiency may be further increased.
도 10는 본 발명의 일 실시예에 따른 조명 장치의 출력광 효율을 나타낸다.10 shows the output light efficiency of the lighting apparatus according to an embodiment of the present invention.
도 10의 그래프는 파장 변환층의 반사율에 따른 반사 커버의 광 출력값을 시뮬레이션하여 얻은 결과값이다. 도 10는, 파장 변환층을 형광체로 형성하고, 3개의 LED 광원을 정육면체의 반사 커버 내부면에 실장한 조명 장치에 대한 광 효율값이다. 형광체의 반사율이 100%일때 이상적인 광 출력값인 300%에 상당한 260%의 광 출력율이 측정되고 있다. 즉, 도 10의 그래프를 통해 본 발명의 일 실시예에 따른 조명 장치의 광 효율이 더욱 높게 측정되고 있음을 알 수 있다.10 is a result obtained by simulating the light output value of the reflection cover according to the reflectance of the wavelength conversion layer. 10 is a light efficiency value for a lighting device in which a wavelength conversion layer is formed of a phosphor and three LED light sources are mounted on an inner surface of a reflection cover of a cube. When the reflectivity of the phosphor is 100%, the light output of 260% is measured, which is equivalent to 300% of the ideal light output. That is, it can be seen from the graph of FIG. 10 that the light efficiency of the lighting apparatus according to the embodiment of the present invention is measured higher.
도 11은 반사 커버가 긴 직육면체 형태를 갖는 조명 장치(50)를 나타낸다. 도 11을 참조하면, 긴 형태의 반사 커버 내부면에 더 많은 LED 광원(12)을 실장함으로써, 보다 높은 광량이 출력되도록 조명 장치를 구성할 수도 있다. 11 shows a lighting device 50 in which the reflective cover has a long rectangular parallelepiped shape. Referring to FIG. 11, by mounting more LED light sources 12 on the inner surface of the elongated reflective cover, the lighting device may be configured to output a higher amount of light.
또한, 상술한 실시예에서 반사 커버의 형태를 직사각형 및 사다리꼴 육면체 모양으로 한정하고 있으나, 본 발명의 범위는 이에 한정되지 않고, 원통형, 반구형, 다각형 등의 다양한 모양으로 반사 커버를 형성할 수도 있다.In addition, in the above-described embodiment, the shape of the reflective cover is limited to rectangular and trapezoidal hexahedral shapes, but the scope of the present invention is not limited thereto, and the reflective cover may be formed in various shapes such as cylindrical, hemispherical, and polygonal shapes.
이상, 본 발명의 조명 장치 및 프로젝션용 디스플레이 장치에 대해 설명하였으나, 본 발명의 핵심적인 내용을 포함하는 영상 재생 장치 등에 대해서도 본 발명이 적용될 수 있다.In the foregoing description, the lighting apparatus and the display apparatus of the present invention have been described, but the present invention can be applied to an image reproducing apparatus including the essential contents of the present invention.
또한, 상술한 본 발명의 실시예로 인해 본 발명의 범위가 제한되지 않으며 본 발명의 범위는 특허청구범위의 해석에 의해 정해진다. 전술한 실시예들에는 다양한 변형이 가능하며, 이들 변형예들 모두 본 발명의 범위에 포함된다.In addition, the scope of the present invention is not limited by the embodiments of the present invention described above, the scope of the present invention is defined by the interpretation of the claims. Various modifications are possible in the above-described embodiments, all of which are included in the scope of the invention.

Claims (10)

  1. 발광층과 반사층으로 구성되는 적어도 하나 이상의 광원;At least one light source composed of a light emitting layer and a reflective layer;
    상기 반사층을 포함하는 내부면으로 구성되고, 상기 내부면에 상기 적어도 하나 이상의 광원이 실장되고, 상기 광원으로부터 출사되는 빛이 출력되는 개구를 가지며, 상기 출사되는 빛이 반사 또는 재반사되도록 상기 적어도 하나 이상의 광원을 둘러싸는 반사 커버;The at least one light source includes an inner surface including the reflective layer, the at least one light source is mounted on the inner surface, and has an opening through which light emitted from the light source is output, and the at least one light is reflected or re-reflected. A reflection cover surrounding the light source;
    특정 파장의 빛을 선택적으로 반사시키는 다이크로익(dichroic) 코팅층; 및A dichroic coating layer for selectively reflecting light of a specific wavelength; And
    제1 파장으로 입사되는 빛을 제2 파장으로 변환시키는 파장 변환층을 포함하는 조명 장치.And a wavelength conversion layer for converting light incident at the first wavelength into a second wavelength.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 파장은 상기 발광층으로부터 직접적으로 입사되는 빛의 파장이고,The first wavelength is a wavelength of light incident directly from the light emitting layer,
    상기 다이크로익 코팅층은 상기 제2 파장의 빛을 반사시키는 조명 장치.The dichroic coating layer reflects light of the second wavelength.
  3. 제1항에 있어서, The method of claim 1,
    상기 다이크로익 코팅층은 상기 발광층의 전체 또는 일부 표면을 덮는 조명 장치.The dichroic coating layer covers the whole or part of the surface of the light emitting layer.
  4. 제1항에 있어서, The method of claim 1,
    상기 파장 변환층은 상기 다이크로익 코팅층의 전체 또는 일부 표면을 덮는 조명 장치.The wavelength conversion layer covers the whole or part of the surface of the dichroic coating layer.
  5. 제1항에 있어서,The method of claim 1,
    상기 파장 변환층은 형광 입자를 포함하는 조명 장치.The wavelength conversion layer comprises a fluorescent device.
  6. 제1항에 있어서,The method of claim 1,
    상기 반사 커버는 육면체 형상이고, 5개 내부면으로 구성되며,The reflective cover has a hexahedron shape, and consists of five inner surfaces.
    상기 적어도 하나 이상의 광원 중 하나는 상기 5개 내부면 중 상기 개구와 마주보는 내부면에 실장되는 조명 장치.One of the at least one light source is mounted on an inner surface of the five inner surface facing the opening.
  7. 제6항에 있어서,The method of claim 6,
    상기 반사 커버는 직육면체 형상이거나 사다리꼴 육면체 형상인 조명 장치.The reflective cover is a rectangular parallelepiped or trapezoidal hexahedral shape.
  8. 제1항에 있어서,The method of claim 1,
    상기 적어도 하나 이상의 광원 각각은 같은 또는 다른 파장의 빛을 발광하는 조명 장치.And each of said at least one light source emits light of the same or different wavelength.
  9. 제1항에 있어서,The method of claim 1,
    상기 내부면은 복수 개이고, 적어도 하나 이상의 내부면에는 복수 개의 광원이 실장되는 조명 장치.The inner surface is a plurality, the at least one inner surface is a lighting device mounted on a plurality of light sources.
  10. 제1항 내지 제9항의 조명 장치를 이용한 프로젝션용 디스플레이 장치.A display apparatus for projection using the lighting apparatus of claim 1.
PCT/KR2010/007023 2010-07-15 2010-10-14 Lighting device and a projecting display device WO2012008656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100068392A KR20120007721A (en) 2010-07-15 2010-07-15 Illumination device and projection type display device
KR10-2010-0068392 2010-07-15

Publications (1)

Publication Number Publication Date
WO2012008656A1 true WO2012008656A1 (en) 2012-01-19

Family

ID=45469632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007023 WO2012008656A1 (en) 2010-07-15 2010-10-14 Lighting device and a projecting display device

Country Status (2)

Country Link
KR (1) KR20120007721A (en)
WO (1) WO2012008656A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010107125A (en) * 2000-05-25 2001-12-07 구자홍 Illumination optical system for reflection type LCD projector
KR20060115139A (en) * 2005-05-04 2006-11-08 엘지전자 주식회사 Optical apparatus of reflection type in the projection system
KR20070095688A (en) * 2006-03-22 2007-10-01 엘지전자 주식회사 Optical lighting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010107125A (en) * 2000-05-25 2001-12-07 구자홍 Illumination optical system for reflection type LCD projector
KR20060115139A (en) * 2005-05-04 2006-11-08 엘지전자 주식회사 Optical apparatus of reflection type in the projection system
KR20070095688A (en) * 2006-03-22 2007-10-01 엘지전자 주식회사 Optical lighting system

Also Published As

Publication number Publication date
KR20120007721A (en) 2012-01-25

Similar Documents

Publication Publication Date Title
EP1645906B1 (en) LED illumination unit for an image display apparatus
US7267441B2 (en) Projection display
CN106523955B (en) Lighting system and projection arrangement
US7331694B2 (en) Illuminating unit and projection type image display apparatus using the same
US8052281B2 (en) Dual DMD projector having a modular heat dissipation device
CN102812569B (en) There is the projector equipment of multiple short formula light source mutually
US7530709B2 (en) Illumination apparatus having a light-transmitting frame
US20060256562A1 (en) Systems and methods for integrating light
US20050259229A1 (en) Projection display
US20200326595A1 (en) Led backlight module
EP2548055A1 (en) A light mixing module, and a luminaire comprising such a light mixing module
CA2705863A1 (en) Light source device and projection display device for projection system
US7775669B2 (en) Illumination system
WO2013151265A1 (en) Light-emitting diode lighting apparatus
JP2014522081A (en) Lighting module
US20150323156A1 (en) Light source device
US10520803B2 (en) Projector device
RU2597792C2 (en) Luminaire emitting light of different colours
WO2013081351A1 (en) Indirect lighting apparatus
US8450675B2 (en) Image projector having a photo sensor providing measurement values necessary for a color calibration
US7382963B2 (en) Lighting apparatus and projection display apparatus using the same
EP2092758A1 (en) Projection display with led-based illumination module
WO2012008656A1 (en) Lighting device and a projecting display device
US8517586B2 (en) Illumination device having light-aggregation, light-mix and light-absorbing components
CN112799234A (en) Color combination device and method and lighting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854778

Country of ref document: EP

Kind code of ref document: A1