WO2012008639A1 - Method for manufacturing flexible planar light-emitting body using optical fibers having enhanced light-emitting efficiency - Google Patents

Method for manufacturing flexible planar light-emitting body using optical fibers having enhanced light-emitting efficiency Download PDF

Info

Publication number
WO2012008639A1
WO2012008639A1 PCT/KR2010/004935 KR2010004935W WO2012008639A1 WO 2012008639 A1 WO2012008639 A1 WO 2012008639A1 KR 2010004935 W KR2010004935 W KR 2010004935W WO 2012008639 A1 WO2012008639 A1 WO 2012008639A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical fibers
light emitting
luminous efficiency
emitting body
Prior art date
Application number
PCT/KR2010/004935
Other languages
French (fr)
Korean (ko)
Inventor
최기승
이종찬
허인성
Original Assignee
금호전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호전기주식회사 filed Critical 금호전기주식회사
Publication of WO2012008639A1 publication Critical patent/WO2012008639A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre

Definitions

  • the present invention relates to a method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency. More particularly, the optical fiber is mounted on a fixed frame, and the optical fiber is deformed to improve luminous efficiency, and silicon is injected into the fixed frame. By removing the fixing frame when fixed, the present invention relates to a method of manufacturing a flexible flat light emitting body using an optical fiber with improved luminous efficiency that can be applied to a vehicle seat, a sofa, a chair, and the like that require elasticity and elasticity.
  • an optical fiber is an optical fiber in which light passing through the central glass is totally reflected using a glass having a high refractive index at the center and a glass having a low refractive index at the outside. Due to the very low energy loss, the loss rate of the data to be transmitted and received is low and has little influence from the outside.
  • the structure of the optical fiber has a double cylinder shape in which a portion called a core is wrapped around a portion called cladding.
  • both the core and the cladding are called optical fiber (POF-Plastic Optical Fiber), the optical fiber made of light-transmissive plastic material, it is superior in flexibility (flexible), and resistant to vibration and bending of the optical fiber made of glass.
  • the distance between the light source and the end of the optical fiber should be about 10 to 50 meters, so it should be easy to install, and the plastic optical fiber is suitable because it can effectively transmit light to a long distance.
  • the lighting effect it is very difficult to apply the lighting effect to the body contact material such as fabric or leather, so that the optical fiber is applied to products such as clothes, sofas, chairs, car seats, interior materials for cars, etc. It is difficult to produce the lighting effect.
  • the optical fiber in order to achieve the lighting effect using the optical fiber in the plane, the optical fiber should be installed perpendicular to the plane so that the ends of the optical fiber are in the plane. In this case, the optical fiber must be folded because the internal material is increased due to the optical fiber inserted vertically. .
  • there is a limit to bending so it is necessary to adjust the bending of the radius appropriately.
  • the conventional optical fiber has a limit in the luminous efficiency by vertically cutting the end of the optical fiber, the emission angle is 120 degrees or less.
  • halogen lamps, metal halide lamps and the like are used as the main light source in the conventional optical fiber lighting device.
  • the characteristics of these two light sources are not only lit at any time but also excellent in color rendering properties, which is advantageous for lighting using optical fibers.
  • the light source used in the conventional optical fiber lighting device has a lifespan of about 2000 hours for halogen lamps and about 5000 to 6000 hours for metal halide lamps, and the width * length * height is about 300mm * 250mm * 150mm
  • the light source device of 1Kw class and the discharge light source lamp are included in the light source device of the degree, which causes considerable heat generation.
  • the present invention was created in order to solve the above-described problems, the lighting angle can be adjusted in a desired direction, the illumination using the optical fiber in products such as clothing, sofas, chairs, car seats, interior materials for cars made of fabric or leather material It is an object of the present invention to provide a method of producing a flexible planar light emitting body that can produce an effect.
  • an object of the present invention is to provide a method for producing a flexible planar light emitting body having high luminous efficiency by thermoforming an end of an optical fiber or by widely modifying a surface area on which an optical fiber is mounted.
  • another object of the present invention is to provide a method for manufacturing a fiber optic lighting apparatus capable of reproducing various colors desired by a user, and excellent in heat generation and impact resistance.
  • a method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency comprising: mounting a plurality of optical fibers in a fixed frame, deforming the mounted plurality of optical fibers, and Implanting silicon into the fixing frame to fix the plurality of optical fibers to generate an optical fiber structure, and detaching the fixing frame from the optical fiber structure.
  • the fixing frame may include a lower plate, a side frame, and an upper plate, and the lower plate and the upper plate may have a space having a cross-sectional size of the optical fiber to mount the optical fiber.
  • the upper plate may be moved to the left and right or back and forth so that the angle between the lower plate and the optical fiber is 40 degrees to 70 degrees.
  • thermoforming the mounted plurality of optical fiber ends, and the thermoforming may be performed by expanding a light emitting angle of the plurality of optical fiber ends by using a forming rod, or the fixing frame.
  • the ends of the plurality of optical fibers attached to the annular shape may be deformed and surface treatment may be performed on the annular portion of the optical fiber.
  • the method of manufacturing a flexible flat light emitting body using the optical fiber with improved luminous efficiency according to the present invention may further comprise attaching a fabric or leather to one surface of the optical fiber structure.
  • the method for manufacturing a flexible planar light emitting body using the optical fiber with improved luminous efficiency may further include connecting a light source unit to the optical fiber structure and generating various light source colors through a control unit for controlling the light source unit.
  • the light source unit may be an LED module, and the LED module may include at least one of a white light LED module and a multicolor light emitting LED module.
  • the controller may include any one of a color converter for converting the color of the LED module or a timing part for adjusting the color conversion time of the LED module, or may include a color converter and a timing part.
  • the present invention is composed of a plurality of optical fibers through which light passes and the silicon embedded in the plurality of optical fibers to expose the ends of the plurality of optical fibers, the ends of the plurality of optical fibers so that the emission angle can be expanded It includes a flexible planar light emitting body using an optical fiber with improved luminous efficiency, characterized in that molded.
  • the flexible flat light emitting body using the optical fiber having improved luminous efficiency may attach a fabric or leather to one surface of the silicon exposed ends of the plurality of optical fibers.
  • the present invention is composed of a plurality of optical fibers through which light passes and the silicon containing the plurality of optical fibers to expose the ends of the plurality of optical fibers, and the ends of the optical fiber and the optical fiber so that the emission area can be expanded It includes a flexible planar light emitting body using the optical fiber with improved luminous efficiency, characterized in that the angle of the exposed surface is 40 degrees to 70 degrees.
  • the flexible flat light emitting body using the optical fiber having improved luminous efficiency may attach a fabric or leather to one surface of the silicon exposed ends of the plurality of optical fibers.
  • thermoforming the end of the optical fiber there is no need for a separate optical system, thereby improving the luminous efficiency while reducing the cost.
  • thermoforming the ends of the optical fiber in various forms it is possible to design a variety of optical performance and characteristics.
  • the optical fiber light is cold light, so there is no heat generation, so it is possible to reduce energy costs, and it is efficient to make an illumination point with one light source.
  • FIG. 1 is a flowchart of a method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency.
  • FIG. 2 is a perspective view of an embodiment of a fixing frame for mounting a plurality of optical fibers
  • FIG 3 illustrates an embodiment in which the upper plate moves to the right to change the angle formed by the lower plate and the optical fiber
  • FIG. 6 is a side view of an optical fiber end thermoformed with a forming rod
  • FIG. 7 is a side view of a forming rod and an optical fiber end thermoformed by the forming rod
  • FIG. 10 illustrates an embodiment in which a flexible flat light emitter using an optical fiber having improved luminous efficiency is used for an automobile seat.
  • FIG. 11 illustrates an embodiment in which a flexible flat light emitter using an optical fiber is used for a vehicle mat.
  • the optical fiber includes both a glass fiber (GOF-Glass Optical Fiber: optical fiber made of quartz as the main material) and a plastic optical fiber (POF-Plastic Optical Fiber: optical fiber made of PMMA (Poly MethylMeth Acrylate) as the main material).
  • a glass fiber optical fiber made of quartz as the main material
  • POF-Plastic Optical Fiber optical fiber made of PMMA (Poly MethylMeth Acrylate) as the main material.
  • the plastic optical fiber consists of a core made of high purity acrylic resin (PMMA-Poly Methylmethacrylate) and a thin cladding layer made of special fluoropolymer (F-PMMA-Fluorinated Poly Methylmethacrylate). Since the refractive index of the cladding is lower than that of the core, light from one end of the optical fiber causes total reflection at the interface between the core and the cladding and exits through the core to the other fiber end. Plastic optical fibers have a very high ratio of cores to cross-sections, resulting in very high light transmission efficiency.
  • the plastic optical fiber Since the plastic optical fiber has high light transmission efficiency and more flexibility than glass fiber, it is preferable to use a plastic optical fiber when a large amount of flexibility is required.
  • the plastic optical fiber will be described as an embodiment.
  • FIG. 1 is a flowchart of a method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency, and a method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency will be described with reference to the drawing.
  • a plurality of optical fibers are mounted on the fixed frame (S10).
  • FIG. 2 is a perspective view of an embodiment of a fixing frame for mounting a plurality of optical fibers.
  • the fixed frame 100 is composed of a lower plate 110, a side frame 120, the upper plate 130, the lower plate 110 and the upper plate 130 is a space of the cross-sectional size of the optical fiber 200 (hereinafter, The opening 140 may be formed to mount the optical fiber 200.
  • each component of the fixed frame 100 may be configured in a form that is configured separately and combined, respectively, each component may be formed in one or a whole integral shape to form the fixed frame 100. have.
  • the central portion is open to facilitate surface treatment and silicon solidification of the optical fiber 200 to be described as the ' ⁇ ' shaped frame 100.
  • the upper plate 130 may be moved left and right or back and forth so that the angle formed by the lower plate 110 and the optical fiber 200 is 40 degrees to 70 degrees.
  • Figure 3 shows an embodiment in which the upper plate is moved to the right to change the angle between the lower plate and the optical fiber.
  • the optical fiber 200 is installed perpendicular to the plane so that the end of the optical fiber 200 is located in the plane.
  • the sheet thickness may be thick because there is a thickness inherent to the sheet and a limit of bending of the optical fiber 200. Therefore, in this case, since the embedded material of the sheet increases due to the optical fiber 200 inserted vertically, it is preferable to reduce the thickness of the entire sheet by folding the optical fiber 200. However, there is a limit to bending, so it is necessary to adjust the bending of the radius appropriately.
  • the angle of bending is preferably 40 to 70 degrees. Therefore, as shown in FIG. 3, the upper plate 130 may be moved left and right or back and forth so that the angle formed by the lower plate 100 and the optical fiber 200 is 40 to 70 degrees. In addition, the upper plate 130 is fixed, the lower plate 110 may move to the left and right or back and forth.
  • the optical fiber 200 is formed vertically with respect to one surface to which the end of the optical fiber 200 is exposed, and thus, the optical fiber 200 is bent at an angle of 40 to 70 degrees to increase the cross-sectional area of light emitted, thereby increasing the light emission efficiency.
  • the mounted plurality of optical fibers 200 is deformed (S20).
  • the first method of deforming the plurality of optical fibers 200 is a method of thermoforming the end of the optical fiber 200 (S30).
  • the thermoforming enlarges the emission angles of the ends of the plurality of optical fibers 200 by using the forming rod 300. (S40-Y)
  • FIG. 5 is a side view of a conventional optical fiber end.
  • the light emission angle is 120 degrees or less, which limits the light emission efficiency.
  • Figure 4 shows an embodiment of thermoforming the optical fiber end with a forming rod, in the present invention by using the heated forming rod 300, as shown in Figure 4 by thermoforming the end of the optical fiber 200 Solved the problem.
  • FIG. 6 is a side view of an optical fiber end thermoformed with a molding rod. As shown in FIG. 6, when the end of the optical fiber 200 is thermoformed using the molding rod 300, the light emission angle is increased, thereby improving light emission efficiency.
  • the forming rod 300 is provided with a metal material having excellent thermal conductivity, and is bonded to the end of the optical fiber 200 mounted at the opening 140 of the upper plate 130 at a constant speed so as to form a specific shape.
  • the temperature is preferably between 562 ° C ⁇ 600 ° C, the speed of descending to bond to the end of the optical fiber 200 is preferably 0.83 m / min ⁇ 0.89 m / min.
  • FIG. 7 illustrates a side view of a forming rod and an optical fiber end that are thermoformed by a forming rod, and may have various shapes of the forming portion 310, which is an end of the forming rod 300, and the shape of the forming portion 310. Accordingly, the ends of the optical fiber 200 may be molded in various forms.
  • the optical performance and characteristics can be designed in various ways. Especially, when the fiber ends are widely molded, there is an additional effect of preventing the deviating from the product.
  • FIG. 8 illustrates an embodiment in which the optical fiber is deformed to have a ring shape.
  • the surface area to be emitted becomes wider, thereby improving luminous efficiency.
  • the plastic optical fiber of the light emitted from the cylindrical surface portion through the cladding out of the core can be a long and thin light source.
  • the surface emitting plastic optical fiber manufactured in this way can be used as a light source by connecting light to a general plastic optical fiber and emitting light only in a specific part.
  • the surface treatment of the optical fiber that physically damages the cladding surface for light emission may be applied to the annular portion of the optical fiber 200, and an abrasive may be used separately for the surface treatment.
  • the abrasive may be any material that can cause physical damage to the cladding surface of the optical fiber and cause high frequency vibration on the abrasive to cause surface treatment or to reciprocate the abrasive to damage the cladding of the optical fiber.
  • FIG. 9 illustrates an optical fiber deformed into a ring shape according to the above method and subjected to surface treatment.
  • the end of the optical fiber is bent to make the ring shape as shown in FIG. 9, light from the light source exits through the optical fiber end. Attaching a material capable of reflecting light to the ends of the optical fiber 200 before making the annular shape, the light is reflected back to the annular portion, so that the luminous efficiency becomes better.
  • silicon is injected into the fixed frame 100 to adjust the plurality of optical fibers 200 to generate an optical fiber structure (S50).
  • silicon refers to a polymer in which the silicon (organosilicone) containing the organic group and oxygen and the like is connected to each other by a chemical bond. Silicone is a unique chemical that combines organic and inorganic properties, and is applied in many forms, and is positioned as an essential functional material in most industrial fields.
  • Liquid silicone rubber (RTV silicone rubber) in the silicone has a rubber elasticity of the organic characteristics, is maintained in the temperature range of -70 ° C ⁇ 200 ° C, excellent electrical properties and weather resistance and the like.
  • the liquid silicone rubber is injected into a container in a sealed form according to the manufacturing form, and then solidified at room temperature to form a silicone rubber.
  • the light source unit is connected to the optical fiber structure (S70), and various light source colors are generated through the control unit controlling the light source unit (S80).
  • the light source unit may be an LED module, and the LED module may include at least one of a white light LED module and a multicolor light emitting LED module, and the controller may be a color converter or a color of an LED module for converting the color of the LED module. It may include any one of the timing unit for adjusting the conversion time, or may include a color converter and a timing unit.
  • the LED module is a light source of the optical fiber lighting apparatus according to the present embodiment, and a light emitting chip is mounted therein. That is, the LED module has a structure in which a light emitting chip is mounted to emit light by an external power source, for example, a structure in which a light emitting chip electrically connected to an electrode pattern is mounted on a substrate on which an electrode pattern is formed.
  • the LED module may emit various colors depending on the type of the light emitting chip and the phosphor.
  • the controller is for operating the LED module, and includes a power supply therein.
  • the control unit operates by selectively supplying externally applied power to the LED module, and an on-off switch may be provided to selectively supply such external power to the LED module.
  • the color converter of the controller changes the color of the light source. For example, when three LED modules emitting red (R), green (G), and blue (B) are provided as a light source by providing a switch in the color conversion unit, the red (R) and green (G) switches are used as the light source. Using blue (B), the user may make a color desired.
  • the color conversion unit may be exposed to the outside so that the user can operate it.
  • the timing unit of the control unit automatically performs on-off of the LED module by a program. That is, for example, when using three LED modules emitting red (R), green (G), and blue (B) as a light source, red (R) is emitted for the first 5 seconds and green for the next 5 seconds. (G) can be emitted, and blue (B) can be emitted for the next 5 seconds.
  • the time-controlled tabbing of the control unit and the emission color thereof may also be variously changed according to a user's request.
  • the LED module in the optical fiber lighting device there is no need for a motor to rotate the existing multi-color filter, and thus there is no problem with the heat generated from the motor.
  • the components of the optical fiber lighting apparatus are simplified as described above, the size of the optical fiber lighting apparatus may be greatly reduced.
  • LED module as the light source itself, it is possible to remove the multicolor filter of the conventional optical fiber lighting device, additional motors such as a motor for rotating it and a fan for dissipating heat generated inside the optical fiber lighting device to the outside.
  • additional motors such as a motor for rotating it and a fan for dissipating heat generated inside the optical fiber lighting device to the outside.
  • LED modules are smaller than halogen lamps or metal halide lamps, the size and weight of optical fiber lighting devices can be greatly reduced.
  • the problem of failure can be minimized by eliminating components such as a motor, which is a major cause of failure.
  • a fabric or leather may be attached to one surface of the optical fiber structure.
  • the fabric is a flat cloth of any width, with warp and weft yarns interweaved up and down to each other, and is used for interior decoration, medical use, transportation and industrial materials according to the development and development of new fabrics as well as cloth.
  • the uses include everything from consumer goods to production goods.
  • the fabric as a cloth must not only have functional properties such as thermal insulation, moisture absorption, flexibility, and elasticity, but also it is easier to have a self-protecting light emitting means having a function of lighting and blinking in functional clothes such as fire fighting suits. Therefore, as an embodiment of the present invention it is possible to produce a functional clothing by producing a clothes that emit light by using the fabric as a cloth. It is applied to clothing such as mannequins and fire fighting suits to make them look like police officers in the dark night, which has the effect of improving performance.
  • a flexible flat light emitter using the optical fiber of the present invention may be inserted under the seat or ceiling to obtain an aesthetic effect using lighting effects.
  • the leather to the fixing frame can be installed as a car seat or ceiling.
  • an adhesive is required to attach a fabric or leather to one surface of the optical fiber structure, and the adhesive may include an epoxy resin and an aromatic first amine compound.
  • the silicon portion and the fabric or leather may be attached without directly attaching the optical fiber 200 and the fabric or the leather.
  • FIG. 10 illustrates an embodiment in which a flexible flat light emitter using an optical fiber having improved luminous efficiency is used for a car seat.
  • a logo of an automobile company may be applied to a seat, or a light emitting effect may be generated in a car seat through an air vent of the car seat. can do.
  • FIG. 11 illustrates an embodiment in which a flexible flat light emitter using an optical fiber is used for a vehicle mat, and may be implemented to emit light in a vehicle mat or emit light in the shape of a car logo.
  • the flexible flat light emitting body using the optical fiber with improved luminous efficiency is composed of a plurality of optical fibers through which light passes and silicon containing the plurality of optical fibers to expose the ends of the plurality of optical fibers, the emission angle is Ends of the plurality of optical fibers are thermoformed so as to be enlarged.
  • the fabric or leather may be attached to one surface of the silicon exposed ends of the plurality of optical fibers.
  • the flexible flat light emitting body using the optical fiber with improved luminous efficiency according to the present invention is composed of a plurality of optical fibers through which light passes and silicon containing the plurality of optical fibers to expose the ends of the plurality of optical fibers, the emission area is The angle between the optical fiber and the surface exposed end of the optical fiber is 40 to 70 degrees so as to be enlarged.
  • the fabric or leather may be attached to one surface of the silicon exposed ends of the plurality of optical fibers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The present invention relates to a method for manufacturing a flexible planar light-emitting body using optical fibers having enhanced light-emitting efficiency, and more specifically, to a method for manufacturing a flexible planar light-emitting body using optical fibers having enhanced light-emitting efficiency, wherein the optical fibers are attached to a holding frame and then deformed, thereby resulting in enhanced light-emitting efficiency, and wherein silicone is inserted into the holding frame, the optical fibers are fixed, and then the holding frame is removed, and thus the optical fibers can be applied to car seats, sofas, and chairs that require elasticity and flexibility.

Description

발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법Method for manufacturing flexible planar light emitting body using optical fiber with improved luminous efficiency
본 발명은 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법에 관한 것으로, 보다 상세하게는 광섬유를 고정 프레임에 장착한 후 광섬유를 변형시켜 발광 효율을 향상시키고, 상기 고정 프레임에 실리콘을 주입하여 고정이 되면 고정 프레임을 제거함으로써, 신축성 및 탄력성을 필요로 하는 차량 시트, 소파, 의자 등에 적용이 가능한 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency. More particularly, the optical fiber is mounted on a fixed frame, and the optical fiber is deformed to improve luminous efficiency, and silicon is injected into the fixed frame. By removing the fixing frame when fixed, the present invention relates to a method of manufacturing a flexible flat light emitting body using an optical fiber with improved luminous efficiency that can be applied to a vehicle seat, a sofa, a chair, and the like that require elasticity and elasticity.
일반적으로, 광섬유(Optical fiber)는 중심부에는 굴절율이 높은 유리, 바깥 부분은 굴절률이 낮은 유리를 사용하여 중심부 유리를 통과하는 빛이 전반사가 일어나도록 한 광학적 섬유이다. 에너지 손실이 매우 적어 송수신하는 데이터의 손실률도 낮고 외부의 영향을 거의 받지 않는다는 장점이 있다.In general, an optical fiber is an optical fiber in which light passing through the central glass is totally reflected using a glass having a high refractive index at the center and a glass having a low refractive index at the outside. Due to the very low energy loss, the loss rate of the data to be transmitted and received is low and has little influence from the outside.
상기 광섬유의 구조는 보통 중앙의 코어(core)라고 하는 부분을 주변에서 클래딩(cladding)이라고 하는 부분이 감싸고 있는 이중원기둥 모양을 하고 있다. 이때 코어와 클래딩 모두 광투과성의 플라스틱 재료로 된 광섬유를 플라스틱 광섬유(POF-Plastic Optical Fiber)라고 하고, 유리를 재료로 하는 광섬유에 비해 유연성(flexible)이 우수하고, 진동이나 굽힘에 강하다. The structure of the optical fiber has a double cylinder shape in which a portion called a core is wrapped around a portion called cladding. At this time, both the core and the cladding are called optical fiber (POF-Plastic Optical Fiber), the optical fiber made of light-transmissive plastic material, it is superior in flexibility (flexible), and resistant to vibration and bending of the optical fiber made of glass.
또한, 건축조명 분야에서 광원과 광섬유 끝단까지의 거리가 10~50 미터 정도가 되므로 설치가 용이해야 하는데, 플라스틱 광섬유를 이용하면 빛을 먼 거리까지 효과적으로 전달할 수 있어 플라스틱 광섬유가 이에 적합하다. In addition, in the field of architectural lighting, the distance between the light source and the end of the optical fiber should be about 10 to 50 meters, so it should be easy to install, and the plastic optical fiber is suitable because it can effectively transmit light to a long distance.
하지만, 종래의 광섬유를 이용한 조명 기구는 일체형 파이프의 내부에 광섬유케이블을 삽입하는 방식으로 설치되어 있으므로, 조명기구의 설치가 완료되면 그 조명각도를 원하는 방향으로 조절하기 어려운 문제가 있다. However, since the conventional lighting fixture using the optical fiber is installed in such a way that the optical fiber cable is inserted into the integrated pipe, it is difficult to adjust the lighting angle in a desired direction when the installation of the lighting fixture is completed.
또한, 단단히 고정되는 형태로 구성되어 직물 또는 피혁과 같은 인체 접촉 소재에 대한 조명 효과의 적용은 매우 힘들어 직물 또는 피혁 소재로 되어 있는 의류, 소파, 의자, 자동차 시트, 차량용 내장재 등의 제품에 광섬유를 이용한 조명 효과를 내기는 어려운 문제가 있다.In addition, it is very difficult to apply the lighting effect to the body contact material such as fabric or leather, so that the optical fiber is applied to products such as clothes, sofas, chairs, car seats, interior materials for cars, etc. It is difficult to produce the lighting effect.
또한, 평면상에서 광섬유를 이용한 조명 효과를 내기 위해서는 광섬유의 끝단이 평면에 위치하도록 광섬유가 평면에 대해서 수직으로 설치되어야 하는데, 이 경우 수직으로 삽입된 광섬유로 인하여 내장 물질이 많아지므로 광섬유를 꺾어줘야 한다. 하지만, 꺾이는 굴곡에 한계가 있기 때문에 꺾이는 반경 굴곡을 적절하게 조절해 줄 필요가 있다. In addition, in order to achieve the lighting effect using the optical fiber in the plane, the optical fiber should be installed perpendicular to the plane so that the ends of the optical fiber are in the plane. In this case, the optical fiber must be folded because the internal material is increased due to the optical fiber inserted vertically. . However, there is a limit to bending, so it is necessary to adjust the bending of the radius appropriately.
또한, 종래의 광섬유는 광섬유의 끝을 수직으로 절단하여 발광 효율에 한계가 있었고, 발광 각도가 120도 이하이다. 이러한 특성을 개선하기 위해 부가적인 광학계를 사용할 경우 단가 상응의 요인이 되는 문제가 있다. In addition, the conventional optical fiber has a limit in the luminous efficiency by vertically cutting the end of the optical fiber, the emission angle is 120 degrees or less. When using an additional optical system to improve these characteristics there is a problem that becomes a factor of unit cost correspondence.
한편, 종래 광섬유 조명장치에는 할로겐 램프, 메탈할라이드 램프 등이 주 광원으로 사용되고 있다. 이러한 두 가지 광원의 특징은 수시 점등이 잘 될 뿐만 아니라 색을 연출하는 특성이 뛰어나서 광섬유를 이용한 조명에 유리하다.On the other hand, halogen lamps, metal halide lamps and the like are used as the main light source in the conventional optical fiber lighting device. The characteristics of these two light sources are not only lit at any time but also excellent in color rendering properties, which is advantageous for lighting using optical fibers.
그러나, 상기와 같이 기존의 광섬유 조명장치에 사용되는 광원은 그 수명이 할로겐 램프의 경우 2000시간, 메탈할라이트 램프의 경우 5000 내지 6000 시간 정도이고, 가로*세로*높이가 약 300mm*250mm*150mm 정도의 광원 장치에 1Kw급의 발광 광원 램프와 방전 광원램프가 들어가 있어 상당한 발열을 일으킨다. However, as described above, the light source used in the conventional optical fiber lighting device has a lifespan of about 2000 hours for halogen lamps and about 5000 to 6000 hours for metal halide lamps, and the width * length * height is about 300mm * 250mm * 150mm The light source device of 1Kw class and the discharge light source lamp are included in the light source device of the degree, which causes considerable heat generation.
또한, 내부 반사경을 이용하는 등 에너지 효율이 그리 높지 않고, 많은 부품에 의해 광원장치의 구조물이 무겁고 부피가 크며, 주 광원 자체가 유리로 제작되어 외부의 진동에 취약한 문제점이 있다. In addition, there is a problem that the energy efficiency is not very high, such as using an internal reflector, and the structure of the light source device is heavy and bulky by many components, and the main light source itself is made of glass, which is vulnerable to external vibration.
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 조명 각도를 원하는 방향으로 조절할 수 있고, 직물 또는 피혁 소재로 되어 있는 의류, 소파, 의자, 자동차 시트, 차량용 내장재 등의 제품에 광섬유를 이용한 조명 효과를 낼 수 있는 유연한 평면 발광체를 생성하는 방법을 제공하는 데에 목적이 있다.The present invention was created in order to solve the above-described problems, the lighting angle can be adjusted in a desired direction, the illumination using the optical fiber in products such as clothing, sofas, chairs, car seats, interior materials for cars made of fabric or leather material It is an object of the present invention to provide a method of producing a flexible planar light emitting body that can produce an effect.
또한, 본 발명은 광섬유의 끝단을 열성형하거나, 광섬유가 장착되는 표면적을 넓게 변형하여 발광 효율을 높인 유연한 평면 발광체를 생성하는 방법을 제공하는 데에 목적이 있다. In addition, an object of the present invention is to provide a method for producing a flexible planar light emitting body having high luminous efficiency by thermoforming an end of an optical fiber or by widely modifying a surface area on which an optical fiber is mounted.
또한, 본 발명은 사용자가 원하는 다양한 색 재현이 가능하고, 저발열 및 내충격이 우수한 광섬유 조명장치를 제조하는 방법을 제공하는 데 또 다른 목적이 있다. In addition, another object of the present invention is to provide a method for manufacturing a fiber optic lighting apparatus capable of reproducing various colors desired by a user, and excellent in heat generation and impact resistance.
상기의 목적을 달성하기 위한 본 발명에 따른 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법은, 고정 프레임에 복수 개의 광섬유를 장착하는 단계와 상기 장착된 복수 개의 광섬유를 변형시키는 단계와 상기 고정 프레임에 실리콘을 주입하여 상기 복수 개의 광섬유를 고정시켜 광섬유 구조체를 생성하는 단계 및 상기 고정 프레임을 상기 광섬유 구조체로부터 탈착하는 단계를 포함한다.According to an aspect of the present invention, there is provided a method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency, the method comprising: mounting a plurality of optical fibers in a fixed frame, deforming the mounted plurality of optical fibers, and Implanting silicon into the fixing frame to fix the plurality of optical fibers to generate an optical fiber structure, and detaching the fixing frame from the optical fiber structure.
또한, 상기 고정 프레임은, 하판, 측면틀, 상판으로 구성되고, 상기 하판과 상판은 상기 광섬유의 단면 크기의 공간이 형성되어 광섬유를 장착할 수 있다. The fixing frame may include a lower plate, a side frame, and an upper plate, and the lower plate and the upper plate may have a space having a cross-sectional size of the optical fiber to mount the optical fiber.
또한, 상기 상판은, 좌우 또는 전후로 이동하여 상기 하판과 상기 광섬유가 이루는 각도가 40도 내지 70도가 되도록 할 수 있다.In addition, the upper plate may be moved to the left and right or back and forth so that the angle between the lower plate and the optical fiber is 40 degrees to 70 degrees.
한편, 상기 장착된 복수 개의 광섬유를 변형시키는 단계에서는, 상기 장착된 복수 개의 광섬유 끝단을 열성형하고, 상기 열성형은 성형봉을 이용하여 상기 복수 개의 광섬유 끝단의 발광 각도를 확대하거나, 상기 고정 프레임에 장착된 복수 개의 광섬유의 끝단을 고리 형상으로 변형하고, 상기 광섬유의 고리 형상 부분에 표면처리를 할 수 있다. Meanwhile, in the deforming of the mounted plurality of optical fibers, thermoforming the mounted plurality of optical fiber ends, and the thermoforming may be performed by expanding a light emitting angle of the plurality of optical fiber ends by using a forming rod, or the fixing frame. The ends of the plurality of optical fibers attached to the annular shape may be deformed and surface treatment may be performed on the annular portion of the optical fiber.
또한, 본 발명에 따른 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법은 상기 광섬유 구조체의 일면에 직물 또는 피혁을 부착하는 단계를 더 포함할 수 있다. In addition, the method of manufacturing a flexible flat light emitting body using the optical fiber with improved luminous efficiency according to the present invention may further comprise attaching a fabric or leather to one surface of the optical fiber structure.
또한, 본 발명에 따른 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법은 상기 광섬유 구조체에 광원부를 접속하는 단계 및 상기 광원부를 제어하는 제어부를 통하여 다양한 광원색을 생성하는 단계를 더 포함할 수 있다. In addition, the method for manufacturing a flexible planar light emitting body using the optical fiber with improved luminous efficiency according to the present invention may further include connecting a light source unit to the optical fiber structure and generating various light source colors through a control unit for controlling the light source unit. have.
또한, 상기 광원부는 LED 모듈인 것을 특징으로 하고, 상기 LED 모듈은 백색광 LED 모듈, 다색 발광 LED 모듈 중 적어도 하나를 포함할 수 있다. The light source unit may be an LED module, and the LED module may include at least one of a white light LED module and a multicolor light emitting LED module.
또한, 상기 제어부는 상기 LED 모듈의 색을 변환시키기 위한 색 변환부 또는 LED 모듈의 색변환 시간을 조절하기 위한 타이밍부 중 어느 하나를 포함하거나, 색 변환부 및 타이밍부를 포함할 수 있다. The controller may include any one of a color converter for converting the color of the LED module or a timing part for adjusting the color conversion time of the LED module, or may include a color converter and a timing part.
한편, 본 발명은 빛을 통과시키는 복수 개의 광섬유 및 상기 복수 개의 광섬유의 끝단이 노출되도록 상기 복수 개의 광섬유를 내장하고 있는 실리콘으로 구성되고, 발광 각도가 확대될 수 있도록 상기 복수 개의 광섬유의 끝단은 열성형한 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 포함한다. On the other hand, the present invention is composed of a plurality of optical fibers through which light passes and the silicon embedded in the plurality of optical fibers to expose the ends of the plurality of optical fibers, the ends of the plurality of optical fibers so that the emission angle can be expanded It includes a flexible planar light emitting body using an optical fiber with improved luminous efficiency, characterized in that molded.
또한, 상기 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체는 상기 복수 개의 광섬유의 끝단이 노출된 상기 실리콘의 일면에 직물 또는 피혁을 부착할 수 있다. In addition, the flexible flat light emitting body using the optical fiber having improved luminous efficiency may attach a fabric or leather to one surface of the silicon exposed ends of the plurality of optical fibers.
한편, 본 발명은 빛을 통과시키는 복수 개의 광섬유 및 상기 복수 개의 광섬유의 끝단이 노출되도록 상기 복수 개의 광섬유를 내장하고 있는 실리콘으로 구성되고, 발광 면적이 확대될 수 있도록 상기 광섬유와 상기 광섬유의 끝단이 노출되는 면이 이루는 각도가 40도 내지 70도인 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 포함한다. On the other hand, the present invention is composed of a plurality of optical fibers through which light passes and the silicon containing the plurality of optical fibers to expose the ends of the plurality of optical fibers, and the ends of the optical fiber and the optical fiber so that the emission area can be expanded It includes a flexible planar light emitting body using the optical fiber with improved luminous efficiency, characterized in that the angle of the exposed surface is 40 degrees to 70 degrees.
또한, 상기 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체는 상기 복수 개의 광섬유의 끝단이 노출된 상기 실리콘의 일면에 직물 또는 피혁을 부착할 수 있다. In addition, the flexible flat light emitting body using the optical fiber having improved luminous efficiency may attach a fabric or leather to one surface of the silicon exposed ends of the plurality of optical fibers.
본 발명에 따른 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법에 의하면,According to the method of manufacturing a flexible flat light emitting body using the optical fiber with improved luminous efficiency according to the present invention,
첫째, 광섬유 끝단을 열성형함으로써 별도 광학계에 대한 장치가 필요 없어 비용이 절감시키면서 발광 효율을 개선할 수 있다.First, by thermoforming the end of the optical fiber, there is no need for a separate optical system, thereby improving the luminous efficiency while reducing the cost.
둘째, 광섬유 끝단을 다양한 형태로 열성형함으로써 광학 성능과 특성을 다양하게 설계할 수 있다.Second, by thermoforming the ends of the optical fiber in various forms, it is possible to design a variety of optical performance and characteristics.
셋째, 광섬유의 끝단을 넓게 성형할 경우 제품에서 이탈되는 현상을 방지할 수 있다. Third, when the end of the optical fiber is formed to a wide range it can prevent the phenomenon from being separated from the product.
넷째, 광섬유의 외피에 실리콘을 주입하여 유연성을 극대화시킴으로써 신축성, 탄력성을 필요로 하는 장소에 조명으로 사용할 수 있다. Fourth, by injecting silicon into the outer shell of the optical fiber to maximize flexibility, it can be used as a lighting in the place that needs elasticity, elasticity.
다섯째, 플라스틱 광섬유의 유연한 성질을 이용하여 조명 각도를 원하는 방향으로 조절할 수 있는 조명 기구를 제조할 수 있다.Fifth, it is possible to manufacture a lighting fixture that can adjust the lighting angle in a desired direction using the flexible nature of the plastic optical fiber.
여섯째, 광원으로 LED 모듈을 사용하여 광섬유 조명 장치의 구조를 간소화하여 부피 및 무게를 줄일 수 있는 광섬유 조명 장치를 제공할 수 있다.Sixth, it is possible to provide an optical fiber lighting device that can reduce the volume and weight by simplifying the structure of the optical fiber lighting device using the LED module as a light source.
일곱째, 본 발명을 이용하여 발광 효율이 향상된 유연한 평면 발광체를 생산 할 경우 균일한 평면 발광체를 양상할 수 있으며, 고정 프레임을 각 공정 장비에 그대로 사용할 수 있어 공정의 단순화를 통해서 생산비 절감 효과를 얻을 수 있다. Seventh, when producing a flexible flat light emitting body having improved luminous efficiency by using the present invention can be a uniform flat light emitting body, it is possible to use a fixed frame in each process equipment as it is possible to obtain a production cost reduction effect through a simplified process have.
여덟째, 광섬유 조명은 냉광(Cold Light) 조명으로 발열이 없기 때문에 에너지 비용을 절감할 수 있고, 한 개의 광원으로 조명점을 만들 수 있어서 효율적이다. Eighth, the optical fiber light is cold light, so there is no heat generation, so it is possible to reduce energy costs, and it is efficient to make an illumination point with one light source.
도 1은 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법의 흐름도이고,1 is a flowchart of a method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency.
도 2는 복수 개의 광섬유를 장착하는 고정 프레임의 실시 예의 사시도이고,2 is a perspective view of an embodiment of a fixing frame for mounting a plurality of optical fibers,
도 3은 상판이 오른쪽으로 이동하여 하판과 광섬유가 이루는 각도가 변형되는 실시 예를 도시한 것이고,3 illustrates an embodiment in which the upper plate moves to the right to change the angle formed by the lower plate and the optical fiber,
도 4는 성형봉으로 광섬유 끝단을 열성형하는 실시 예를 도시한 것이고,4 illustrates an embodiment of thermoforming an optical fiber end with a forming rod,
도 5는 종래 광섬유 끝단의 측면도이고,5 is a side view of a conventional optical fiber end,
도 6은 성형봉으로 열성형을 한 광섬유 끝단의 측면도이고,6 is a side view of an optical fiber end thermoformed with a forming rod,
도 7은 성형봉에 의해 열성형되는 성형봉과 광섬유 끝단의 측면도이고,7 is a side view of a forming rod and an optical fiber end thermoformed by the forming rod,
도 8은 광섬유를 변형시켜 고리 형상으로 만든 실시 예를 도시한 것이고,8 illustrates an embodiment in which the optical fiber is deformed to have a ring shape,
도 9는 고리 형상으로 변형하여 표면처리를 한 광섬유를 도시한 것이고,9 illustrates an optical fiber deformed into a ring shape and subjected to surface treatment;
도 10은 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체가 자동차 시트에 사용되는 실시 예를 도시한 것이고,FIG. 10 illustrates an embodiment in which a flexible flat light emitter using an optical fiber having improved luminous efficiency is used for an automobile seat.
도 11은 광섬유를 이용한 유연한 평면 발광체가 차량용 매트에 사용되는 실시 예를 도시한 것이다.FIG. 11 illustrates an embodiment in which a flexible flat light emitter using an optical fiber is used for a vehicle mat.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
본 발명에서 광섬유는 유리 광섬유(GOF-Glass Optical Fiber : 석영을 주재료로 만든 광섬유)와 플라스틱 광섬유(POF-Plastic Optical Fiber : PMMA(Poly MethylMeth Acrylate)을 주재료로 만든 광섬유)를 모두 포함한다. In the present invention, the optical fiber includes both a glass fiber (GOF-Glass Optical Fiber: optical fiber made of quartz as the main material) and a plastic optical fiber (POF-Plastic Optical Fiber: optical fiber made of PMMA (Poly MethylMeth Acrylate) as the main material).
플라스틱 광섬유는 고순도 아크릴 레진(PMMA-Poly Methylmethacrylate)으로 된 코어와 특수 불소 폴리머(F-PMMA-Fluorinated Poly Methylmethacrylate)로 만들어진 얇은 클래딩층으로 구성되어 있다. 클래딩의 굴절율이 코어보다 낮으므로 광섬유의 한쪽 끝단으로부터 들어온 빛은 코어와 클래딩의 접속면에서 전반사(Total Reflection)를 일으켜 코어를 통하여 다른 광섬유 끝단으로 나간다. 플라스틱 광섬유는 단면적 대비 코어의 비율이 매우 커서 빛 전달 효율이 매우 높다. The plastic optical fiber consists of a core made of high purity acrylic resin (PMMA-Poly Methylmethacrylate) and a thin cladding layer made of special fluoropolymer (F-PMMA-Fluorinated Poly Methylmethacrylate). Since the refractive index of the cladding is lower than that of the core, light from one end of the optical fiber causes total reflection at the interface between the core and the cladding and exits through the core to the other fiber end. Plastic optical fibers have a very high ratio of cores to cross-sections, resulting in very high light transmission efficiency.
이처럼 플라스틱 광섬유가 빛 전달 효율이 높고 유리 섬유보다 유연성이 더 좋으므로, 유연성이 많이 필요로 하는 경우는 플라스틱 광섬유를 사용하는 것이 바람직하며, 본 발명에서는 플라스틱 광섬유를 실시 예로 들어 설명한다. Since the plastic optical fiber has high light transmission efficiency and more flexibility than glass fiber, it is preferable to use a plastic optical fiber when a large amount of flexibility is required. In the present invention, the plastic optical fiber will be described as an embodiment.
먼저, 도 1은 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법의 흐름도로, 상기 도면을 참조하여 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법을 설명한다. First, FIG. 1 is a flowchart of a method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency, and a method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency will be described with reference to the drawing.
먼저, 고정 프레임에 복수 개의 광섬유를 장착한다(S10).First, a plurality of optical fibers are mounted on the fixed frame (S10).
도 2는 복수 개의 광섬유를 장착하는 고정 프레임의 실시 예의 사시도이다.2 is a perspective view of an embodiment of a fixing frame for mounting a plurality of optical fibers.
상기 고정 프레임(100)은 하판(110), 측면틀(120), 상판(130)으로 구성되고, 상기 하판(110)과 상판(130)은 상기 광섬유(200)의 단면 크기의 공간(이하, '개구부(140)'라고 한다)이 형성되어 광섬유(200)를 장착할 수 있다. The fixed frame 100 is composed of a lower plate 110, a side frame 120, the upper plate 130, the lower plate 110 and the upper plate 130 is a space of the cross-sectional size of the optical fiber 200 (hereinafter, The opening 140 may be formed to mount the optical fiber 200.
또한, 상기 하판(110)과 측면틀(120) 또는 측면틀(120)과 상판(130)은 연결되어 일체의 형상으로 형성될 수 있다. 즉, 상기 고정 프레임(100)의 각 구성요소는 각각 별개로 구성되어 조합되는 형태로 구성될 수 있고, 각 구성요소들이 부분적 또는 전체적으로 일체의 형상으로 형성되어 상기 고정 프레임(100)을 구성할 수도 있다. In addition, the lower plate 110 and the side frame 120 or the side frame 120 and the upper plate 130 may be connected to form an integral shape. That is, each component of the fixed frame 100 may be configured in a form that is configured separately and combined, respectively, each component may be formed in one or a whole integral shape to form the fixed frame 100. have.
실시 예에서는 'ㅁ'자 형태의 고정 프레임(100)으로 설명할 광섬유(200)의 표면처리와 실리콘 고형화가 용이하도록 중앙 부분은 개방된 형태이다. In the embodiment, the central portion is open to facilitate surface treatment and silicon solidification of the optical fiber 200 to be described as the 'ㅁ' shaped frame 100.
또한, 상기 상판(130)은 좌우 또는 전후로 이동하여 상기 하판(110)과 상기 광섬유(200)가 이루는 각도가 40도 내지 70도가 되도록 할 수 있다. 도 3은 상판이 오른쪽으로 이동하여 하판과 광섬유가 이루는 각도가 변형되는 실시 예를 도시한 것이다. In addition, the upper plate 130 may be moved left and right or back and forth so that the angle formed by the lower plate 110 and the optical fiber 200 is 40 degrees to 70 degrees. Figure 3 shows an embodiment in which the upper plate is moved to the right to change the angle between the lower plate and the optical fiber.
평면상에서 광섬유(200)를 이용한 조명 효과를 내기 위해서는 광섬유(200)의 끝단이 평면에 위치하도록 광섬유(200)가 평면에 대해서 수직으로 설치된다. 다만, 자동차 시트 등에 본 발명을 실시하는 경우, 시트 고유의 두께도 있고 광섬유(200)의 굴곡의 한계도 있기 때문에 시트 두께가 두꺼워질 수 있다. 따라서, 이 경우에 수직으로 삽입된 광섬유(200)로 인하여 시트의 내장 물질이 많아지므로 광섬유(200)를 꺾어서 시트 전체의 두께를 줄이는 것이 바람직하다. 하지만, 꺾이는 굴곡에 한계가 있기 때문에 꺾이는 반경 굴곡을 적절하게 조절해 줄 필요가 있다. In order to produce the lighting effect using the optical fiber 200 on the plane, the optical fiber 200 is installed perpendicular to the plane so that the end of the optical fiber 200 is located in the plane. However, when the present invention is applied to an automobile seat or the like, the sheet thickness may be thick because there is a thickness inherent to the sheet and a limit of bending of the optical fiber 200. Therefore, in this case, since the embedded material of the sheet increases due to the optical fiber 200 inserted vertically, it is preferable to reduce the thickness of the entire sheet by folding the optical fiber 200. However, there is a limit to bending, so it is necessary to adjust the bending of the radius appropriately.
즉, 광섬유(200)를 많이 꺾을수록 차지하는 부피가 줄어드는 효과가 있지만 꺾이는 굴곡에 한계가 있으므로 꺾이는 각도는 40도 내지 70도가 되도록 함이 바람직하다. 따라서 도 3에 도시된 바와 같이 상기 상판(130)을 좌우 또는 전후로 이동하여 상기 하판(100)과 상기 광섬유(200)가 이루는 각도가 40 내지 70도가 되도록 할 수 있다. 또한, 상판(130)은 고정되어 있고, 하판(110)이 좌우 또는 전후로 이동할 수도 있을 것이다. That is, the more the optical fiber 200 is folded, the more the volume occupies is reduced. However, since the bending is limited, the angle of bending is preferably 40 to 70 degrees. Therefore, as shown in FIG. 3, the upper plate 130 may be moved left and right or back and forth so that the angle formed by the lower plate 100 and the optical fiber 200 is 40 to 70 degrees. In addition, the upper plate 130 is fixed, the lower plate 110 may move to the left and right or back and forth.
이처럼 광섬유(200)를 광섬유(200)의 끝단이 노출되는 일면에 대해서 수직으로 형성하는 경우 이외에도 40도 내지 70도의 각도로 꺾어서 형성함으로써 발광되는 단면적을 더 넓혀 발광 효율이 더 높아지게 하는 효과도 있다.As described above, the optical fiber 200 is formed vertically with respect to one surface to which the end of the optical fiber 200 is exposed, and thus, the optical fiber 200 is bent at an angle of 40 to 70 degrees to increase the cross-sectional area of light emitted, thereby increasing the light emission efficiency.
고정 프레임(100)에 복수 개의 광섬유(200)를 장착한 뒤에는 상기 장착된 복수 개의 광섬유(200)를 변형시킨다(S20). After mounting the plurality of optical fibers 200 to the fixed frame 100, the mounted plurality of optical fibers 200 is deformed (S20).
복수 개의 광섬유(200)를 변형시키는 첫 번째 방법으로 광섬유(200)의 끝단을 열성형 시키는 방법이 있다(S30). 상기 열성형은 성형봉(300)을 이용하여 상기 복수 개의 광섬유(200) 끝단의 발광 각도를 확대시킨다.(S40-Y) The first method of deforming the plurality of optical fibers 200 is a method of thermoforming the end of the optical fiber 200 (S30). The thermoforming enlarges the emission angles of the ends of the plurality of optical fibers 200 by using the forming rod 300. (S40-Y)
도 5는 종래 광섬유 끝단의 측면도이다. 도 5에 도시한 바와 같이 일반적으로 광섬유(200)의 끝을 수직으로 절단하면 발광 각도가 120도 이하가 되어 발광 효율에 한계가 있다. 이러한 특성을 개선하기 위해 부가적인 광학계를 사용할 경우 단가 상응의 요인이 되는 문제가 있다. 5 is a side view of a conventional optical fiber end. Generally, as shown in FIG. 5, when the end of the optical fiber 200 is vertically cut, the light emission angle is 120 degrees or less, which limits the light emission efficiency. When using an additional optical system to improve these characteristics there is a problem that becomes a factor of unit cost correspondence.
도 4는 성형봉으로 광섬유 끝단을 열성형하는 실시 예를 도시한 것이고, 본 발명에서는 도 4에 도시된 바와 같이 가열된 성형봉(300)을 이용하여 광섬유(200)의 끝단을 열성형하여 상기의 문제점을 해결하였다.Figure 4 shows an embodiment of thermoforming the optical fiber end with a forming rod, in the present invention by using the heated forming rod 300, as shown in Figure 4 by thermoforming the end of the optical fiber 200 Solved the problem.
도 6은 성형봉으로 열성형을 한 광섬유 끝단의 측면도로, 도시된 바와 같이 성형봉(300)을 이용하여 광섬유(200)의 끝단을 열성형하면 발광각도가 커져서 발광 효율이 더 좋아지게 된다. FIG. 6 is a side view of an optical fiber end thermoformed with a molding rod. As shown in FIG. 6, when the end of the optical fiber 200 is thermoformed using the molding rod 300, the light emission angle is increased, thereby improving light emission efficiency.
상기 성형봉(300)은 열전도성이 우수한 금속재질로 구비되고, 일정한 속도로 상판(130)의 개구부(140)에 장착된 광섬유(200)의 끝단에 접합하여 용융시켜 특정한 형상이 형성되도록 한다. 온도는 562°C ~ 600°C 사이가 바람직하며, 광섬유(200)의 끝단에 접합하기 위해 하강하는 속도는 0.83m/min ~ 0.89 m/min이 바람직하다. The forming rod 300 is provided with a metal material having excellent thermal conductivity, and is bonded to the end of the optical fiber 200 mounted at the opening 140 of the upper plate 130 at a constant speed so as to form a specific shape. The temperature is preferably between 562 ° C ~ 600 ° C, the speed of descending to bond to the end of the optical fiber 200 is preferably 0.83 m / min ~ 0.89 m / min.
도 7은 성형봉에 의해 열성형되는 성형봉과 광섬유 끝단의 측면도를 도시한 것으로, 성형봉(300)의 끝단인 성형부(310)의 형태가 다양할 수 있고, 상기 성형부(310)의 형태에 따라서 광섬유(200) 끝단도 다양한 형태로 성형할 수 있다. 이처럼 광섬유 끝단을 다양한 형태로 열성형함으로써 광학 성능과 특성을 다양하게 설계할 수 있고, 특히 광섬유 끝단을 넓게 성형할 경우 제품에서 이탈되는 현상을 방지는 부가적인 효과도 생긴다. FIG. 7 illustrates a side view of a forming rod and an optical fiber end that are thermoformed by a forming rod, and may have various shapes of the forming portion 310, which is an end of the forming rod 300, and the shape of the forming portion 310. Accordingly, the ends of the optical fiber 200 may be molded in various forms. By thermoforming the fiber ends in various forms, the optical performance and characteristics can be designed in various ways. Especially, when the fiber ends are widely molded, there is an additional effect of preventing the deviating from the product.
복수 개의 광섬유(200)를 변형시키는 두 번째 방법으로 광섬유(200)의 끝단을 고리 형상으로 변형하고, 상기 광섬유(200)의 고리 형상 부분에 표면처리를 하는 방법이 있다(S40-N). As a second method of deforming the plurality of optical fibers 200, there is a method of deforming the ends of the optical fiber 200 in a ring shape, and surface treatment on the annular portion of the optical fiber 200 (S40-N).
도 8은 광섬유를 변형시켜 고리 형상으로 만든 실시 예를 도시한 것으로, 이처럼 고리 형상으로 변형시키게 되면 발광되는 표면적이 더 넓어져서 발광 효율이 좋아지는 효과가 있다. FIG. 8 illustrates an embodiment in which the optical fiber is deformed to have a ring shape. When the fiber is deformed in this ring shape, the surface area to be emitted becomes wider, thereby improving luminous efficiency.
일반적으로 광섬유(200)에서 코어 쪽에서 진행하는 빛은 클래딩을 통과하여 클래딩 표면을 통해 외부로 나올 수 없다. 그런데 장식, 조명 등의 분야에서는, 빛이 코어를 벗어나 클래딩을 통과하여 원통 표면부에서 발광하는 형태의 플라스틱 광섬유로써 길고 가느다란 형태의 광원이 될 수 있다. In general, light traveling from the core side of the optical fiber 200 cannot pass through the cladding and come out through the cladding surface. By the way, in the field of decoration, lighting, etc., the plastic optical fiber of the light emitted from the cylindrical surface portion through the cladding out of the core can be a long and thin light source.
그러한 효과를 얻기 위해서는 코어 내부에 빛을 산란시킬 수 있는 기포와 같은 불순물을 넣거나 코어와 클래딩 표면에 기계적으로 혹은 열적으로 불균일성 즉, 물리적 손상을 주어 빛을 산란시킨다. 이렇게 제작된 표면 방출 플라스틱 광섬유는 일반 플라스틱 광섬유와 연결되어 특정한 부분에서만 빛을 발광시켜 광원으로 사용할 수 있다. To achieve such an effect, light is scattered by adding impurities, such as bubbles, that can scatter light inside the core or mechanically or thermally non-uniform, ie physical damage, to the core and cladding surface. The surface emitting plastic optical fiber manufactured in this way can be used as a light source by connecting light to a general plastic optical fiber and emitting light only in a specific part.
따라서, 발광을 위하여 클래딩 표면에 물리적 손상을 가하는 광섬유의 표면처리를 상기 광섬유(200)의 고리 형상 부분에 하고, 상기 표면처리를 위하여 연마재를 별도로 사용할 수 있다. 상기 연마재는 광섬유의 클래딩 표면에 물리적 손상을 줄 수 있는 소재는 모두 가능하며 연마재에 고주파 진동을 일으켜 표면처리를 하거나 연마재를 왕복운동시켜 광섬유의 클래딩을 손상시킨다.Therefore, the surface treatment of the optical fiber that physically damages the cladding surface for light emission may be applied to the annular portion of the optical fiber 200, and an abrasive may be used separately for the surface treatment. The abrasive may be any material that can cause physical damage to the cladding surface of the optical fiber and cause high frequency vibration on the abrasive to cause surface treatment or to reciprocate the abrasive to damage the cladding of the optical fiber.
도 9는 상기 방법에 따라 고리 형상으로 변형하여 표면처리를 한 광섬유를 도시한 것으로, 도 9에서와 같이 고리 형상으로 만들기 위하여 광섬유의 끝단을 구부리면 광원에서 나온 빛이 광섬유 끝단을 통해 나가버리게 되므로, 고리 형상으로 만들기 이전에 광섬유(200) 끝단에 빛을 반사할 수 있는 소재를 부착하면 빛이 다시 반사되어 고리 형상 부분으로 진행하므로 발광 효율이 더 좋아지게 된다. 9 illustrates an optical fiber deformed into a ring shape according to the above method and subjected to surface treatment. When the end of the optical fiber is bent to make the ring shape as shown in FIG. 9, light from the light source exits through the optical fiber end. Attaching a material capable of reflecting light to the ends of the optical fiber 200 before making the annular shape, the light is reflected back to the annular portion, so that the luminous efficiency becomes better.
상기 복수 개의 광섬유(200)의 변형이 완료되면 고정 프레임(100)에 실리콘을 주입하여 상기 복수 개의 광섬유(200)를 조정시켜 광섬유 구조체를 생성한다(S50). When the deformation of the plurality of optical fibers 200 is completed, silicon is injected into the fixed frame 100 to adjust the plurality of optical fibers 200 to generate an optical fiber structure (S50).
일반적으로, 실리콘(Sillicone)은 유기기를 함유한 규소(organosilicone)와 산소 등이 화학결합으로 서로 연결된 모양으로 된 폴리머를 의미한다. 실리콘은 유기성과 무기성을 겸비한 독특한 화학재로서 여러 형태로 응용되어지며, 대부분의 모든 산업분야에서 필수적인 고기능 재료로서 위치를 점하고 있다. In general, silicon (Sillicone) refers to a polymer in which the silicon (organosilicone) containing the organic group and oxygen and the like is connected to each other by a chemical bond. Silicone is a unique chemical that combines organic and inorganic properties, and is applied in many forms, and is positioned as an essential functional material in most industrial fields.
상기 실리콘 중에 액상 실리콘 고무(RTV 실리콘 고무)은 유기적 특성인 고무 탄성이 있고, 섭씨 -70°C ~ 200°C의 넒은 온도 범위에서 유지되고, 전기적 성질 및 내후성 등이 우수하다.Liquid silicone rubber (RTV silicone rubber) in the silicone has a rubber elasticity of the organic characteristics, is maintained in the temperature range of -70 ° C ~ 200 ° C, excellent electrical properties and weather resistance and the like.
이러한, 액상 실리콘 고무는 제조형태에 따라 밀봉된 형태의 용기에 담아서 주입한 후 상온에서 고형화되어 실리콘 고무 형태로 형성된다. The liquid silicone rubber is injected into a container in a sealed form according to the manufacturing form, and then solidified at room temperature to form a silicone rubber.
따라서, 실리콘(특히 액상 실리콘 고무)을 주입하여 플라스틱 광섬유의 외피 형태로 고형화시키면, 플라스틱 광섬유의 전기적인 신호를 효율적으로 전달하는 특성을 유지하면서, 열가소성에 따른 피복이 어려운 문제점을 해결할 수 있다. Therefore, when the silicon (particularly liquid silicone rubber) is injected and solidified in the form of the outer shell of the plastic optical fiber, it is possible to solve the problem that the coating by the thermoplastic is difficult while maintaining the property of efficiently transmitting the electrical signal of the plastic optical fiber.
따라서, 복수 개의 광섬유(200)를 배열한 상태에서 액상의 실리콘 고무를 주입하여 고형화되면 상기 실리콘 내부에 광섬유가 내장되면서 고정되어 광섬유 구조체를 생성하고, 상기 광섬유 구조체로부터 상기 고정 프레임(100)을 탈착한다(S60).Therefore, when the liquid silicone rubber is injected and solidified in a state in which the plurality of optical fibers 200 are arranged, the optical fiber is embedded while being fixed inside the silicon to generate an optical fiber structure, and the fixing frame 100 is detached from the optical fiber structure. (S60).
그 이후에 상기 광섬유 구조체에 광원부를 접속하고(S70), 상기 광원부를 제어하는 제어부를 통하여 다양한 광원색을 생성한다(S80).After that, the light source unit is connected to the optical fiber structure (S70), and various light source colors are generated through the control unit controlling the light source unit (S80).
상기 광원부는 LED 모듈일 수 있고, 상기 LED 모듈은 백색광 LED 모듈, 다색 발광 LED 모듈 중 적어도 하나를 포함할 수 있으며, 상기 제어부는 상기 LED 모듈의 색을 변환시키기 위한 색 변환부 또는 LED 모듈의 색변환 시간을 조절하기 위한 타이밍부 중 어느 하나를 포함하거나, 색 변환부 및 타이밍부를 포함할 수 있다. The light source unit may be an LED module, and the LED module may include at least one of a white light LED module and a multicolor light emitting LED module, and the controller may be a color converter or a color of an LED module for converting the color of the LED module. It may include any one of the timing unit for adjusting the conversion time, or may include a color converter and a timing unit.
상기 LED 모듈은 본 실시 예에 따른 광섬유 조명장치의 광원으로서, 그 내부에는 발광칩이 실장된다. 즉, 상기 LED 모듈은 발광칩이 실장되어 외부 전원에 의해 발광될 수 있는 구조, 예를 들어, 전극 패턴이 형성된 기판 상에 전극 패턴과 전기적으로 연결된 발광칩이 실장된 구조를 갖는다. LED 모듈은 이러한 발광칩 및 형광체의 종류에 따라 여러 가지 색이 발광될 수 있다. The LED module is a light source of the optical fiber lighting apparatus according to the present embodiment, and a light emitting chip is mounted therein. That is, the LED module has a structure in which a light emitting chip is mounted to emit light by an external power source, for example, a structure in which a light emitting chip electrically connected to an electrode pattern is mounted on a substrate on which an electrode pattern is formed. The LED module may emit various colors depending on the type of the light emitting chip and the phosphor.
상기 제어부는 상기 LED 모듈을 작동시키기 위한 것으로서, 그 내부에 전원부를 포함한다. 상기 제어부는 외부에서 인가된 전원을 LED 모듈에 선택적으로 공급하여 작동시키며, 상기와 같은 외부 전원을 LED 모듈에 선택적으로 공급하기 위해 온-오프(on-off) 스위치가 마련될 수 있다. The controller is for operating the LED module, and includes a power supply therein. The control unit operates by selectively supplying externally applied power to the LED module, and an on-off switch may be provided to selectively supply such external power to the LED module.
상기 제어부의 색 변환부는 광원의 색을 변화시킨다. 예를 들어, 상기 색 변환부에 스위치를 마련하여 적색(R), 녹색(G), 청색(B)을 발하는 3개의 LED 모듈을 광원으로 사용할 경우 상기 스위치로 적색(R), 녹색(G), 청색(B)을 이용하여 사용자가 원하는 색을 발하도록 할 수 있다. The color converter of the controller changes the color of the light source. For example, when three LED modules emitting red (R), green (G), and blue (B) are provided as a light source by providing a switch in the color conversion unit, the red (R) and green (G) switches are used as the light source. Using blue (B), the user may make a color desired.
또한, 여러 개의 광원을 동시에 제어하여 다양한 색깔 조명의 효과를 연출하거나, 수백 개의 광섬유를 한 개의 광원에 연결시켜, 천정이나 바닥에 연출하는 하늘에 별이 반짝이는 조명을 연출할 수도 있다. In addition, by controlling several light sources at the same time to produce a variety of color lighting effects, or by connecting hundreds of optical fibers to a single light source, it is possible to produce a light that shines stars in the sky to create a ceiling or floor.
그리고, 이러한 색 변환부는 사용자가 조작할 수 있도록 외부에 노출될 수도 있다.In addition, the color conversion unit may be exposed to the outside so that the user can operate it.
상기 제어부의 타이밍부는 LED 모듈의 온-오프를 프로그램에 의해 자동으로 수행하게 한다. 즉, 예를 들어, 적색(R), 녹색(G), 청색(B)을 발하는 3개의 LED 모듈을 광원으로 사용할 경우 처음 5초 동안은 적색(R)을 발하게 하고, 다음 5초 동안은 녹색(G)을 발하게 하고, 다음 5초 동안은 청색(B)을 발하게 할 수 있다. 이러한 제어부의 시간 제어 타이빙 및 그에 따른 발광 색 역시 사용자의 요구에 따라 다양하게 변화될 수 있다. The timing unit of the control unit automatically performs on-off of the LED module by a program. That is, for example, when using three LED modules emitting red (R), green (G), and blue (B) as a light source, red (R) is emitted for the first 5 seconds and green for the next 5 seconds. (G) can be emitted, and blue (B) can be emitted for the next 5 seconds. The time-controlled tabbing of the control unit and the emission color thereof may also be variously changed according to a user's request.
이처럼, 광섬유 조명 장치에 LED 모듈을 사용함으로써, 기존의 다색필터를 회전시키는 모터가 필요 없고, 이로 인해 모터에서 발생되는 열에 대한 문제점도 발생하지 않는다. 또한 상기와 같이 광섬유 조명 장치의 구성요소가 간소화됨에 따라 광섬유 조명 장치의 크기를 대폭 감소시킬 수 있다. As such, by using the LED module in the optical fiber lighting device, there is no need for a motor to rotate the existing multi-color filter, and thus there is no problem with the heat generated from the motor. In addition, as the components of the optical fiber lighting apparatus are simplified as described above, the size of the optical fiber lighting apparatus may be greatly reduced.
즉, 광원 자체를 LED 모듈을 사용하여 종래 광섬유 조명 장치의 다색필터 및 이를 회전시키기 위한 모터와 광섬유 조명 장치의 내부에 발생되는 열을 외부로 방출시키기 위한 팬과 같은 부가적인 장치를 제거할 수 있으며, LED 모듈이 할로겐 램프 또는 메탈할라이드 램프보다 소형이므로 광섬뮤 조명 장치의 크기 및 무게를 크게 줄일 수 있다. 또한, 고장의 주된 요인인 모터와 같은 구성요소를 제거하여 고장에 대한 문제도 최소화할 수 있다. That is, using the LED module as the light source itself, it is possible to remove the multicolor filter of the conventional optical fiber lighting device, additional motors such as a motor for rotating it and a fan for dissipating heat generated inside the optical fiber lighting device to the outside. Because LED modules are smaller than halogen lamps or metal halide lamps, the size and weight of optical fiber lighting devices can be greatly reduced. In addition, the problem of failure can be minimized by eliminating components such as a motor, which is a major cause of failure.
한편, 도 1에 도시하지는 않았지만, 상기 고정 프레임(100)을 제거한 후에는, 상기 광섬유 구조체의 일면에 직물 또는 피혁을 부착할 수 있다. 상기 직물은 경사(날실)와 위사(씨실)가 서로 위아래로 교차하여 짜여져 어떤 넓이의 평면체가 된 천으로, 옷감뿐만 아니라 새로운 직물의 개발 및 용도 개발에 따라 실내장식용·의료용·운송용·산업자재용 등 그 용도가 소비재인 것부터 생산재인 것까지 다 포함한다.Although not shown in FIG. 1, after removing the fixing frame 100, a fabric or leather may be attached to one surface of the optical fiber structure. The fabric is a flat cloth of any width, with warp and weft yarns interweaved up and down to each other, and is used for interior decoration, medical use, transportation and industrial materials according to the development and development of new fabrics as well as cloth. The uses include everything from consumer goods to production goods.
특히 옷감으로서의 직물은 보온·흡습·유연·탄력 등 착용상 기능성을 지녀야함은 물론이거니와, 소방기능복과 같은 기능성 옷에는 점등 및 점멸등 기능을 갖는 호신 발광수단이 있으면 더 용이하다. 따라서 본 발명의 실시 예로서 상기 직물을 옷감으로하여 발광이 되는 옷을 제작하여 기능복을 생산할 수 있다. 어두운 밤에 경찰관처럼 보이도록 하는 마네킹, 소방기능복 등 의류 쪽에 실시하여 기능의 수행성을 높이는 효과가 있다. In particular, the fabric as a cloth must not only have functional properties such as thermal insulation, moisture absorption, flexibility, and elasticity, but also it is easier to have a self-protecting light emitting means having a function of lighting and blinking in functional clothes such as fire fighting suits. Therefore, as an embodiment of the present invention it is possible to produce a functional clothing by producing a clothes that emit light by using the fabric as a cloth. It is applied to clothing such as mannequins and fire fighting suits to make them look like police officers in the dark night, which has the effect of improving performance.
또한, 자동차 시트나 자동차 천장 등과 같이 공간이 좁아서 장식을 하기 위해서 공간상의 제약이 있는 경우, 시트나 천장 아래 본 발명의 광섬유를 이용한 유연한 평면 발광체를 삽입하여 조명 효과를 이용한 심미적 효과를 얻을 수도 있다. 이때에 고정 프레임에 피혁을 부착하여 자동차 시트나 천장으로 설치를 할 수도 있다.In addition, when space is limited in order to decorate a narrow space such as a car seat or a car ceiling, a flexible flat light emitter using the optical fiber of the present invention may be inserted under the seat or ceiling to obtain an aesthetic effect using lighting effects. At this time, by attaching the leather to the fixing frame can be installed as a car seat or ceiling.
다만, 이때에 광섬유 구조체의 일면에 직물 또는 피혁을 부착하기 위하여 접착제가 필요하며, 상기 접착제는 에폭시(epoxy) 수지와 방향족 제1 아민(amine) 화합물을 포함할 수 있다. 물론 광섬유(200)와 직물 또는 피혁을 직접적으로 부착하지 않고, 실리콘 부분과 직물 또는 피혁을 부착할 수도 있다. However, at this time, an adhesive is required to attach a fabric or leather to one surface of the optical fiber structure, and the adhesive may include an epoxy resin and an aromatic first amine compound. Of course, the silicon portion and the fabric or leather may be attached without directly attaching the optical fiber 200 and the fabric or the leather.
도 10은 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체가 자동차 시트에 사용되는 실시 예를 도시한 것으로, 이처럼 자동자 회사의 로고를 시트에 적용한다거나, 자동차 시트의 통풍구를 통해서 자동차 시트에서 발광 효과가 나도록 할 수 있다. FIG. 10 illustrates an embodiment in which a flexible flat light emitter using an optical fiber having improved luminous efficiency is used for a car seat. Thus, a logo of an automobile company may be applied to a seat, or a light emitting effect may be generated in a car seat through an air vent of the car seat. can do.
도 11 광섬유를 이용한 유연한 평면 발광체가 차량용 매트에 사용되는 실시 예를 도시한 것으로, 차량용 매트에 발광 효과가 나도록 하거나, 자동차 로고 형상으로 발광이 나도록 실시할 수 있다. 11 illustrates an embodiment in which a flexible flat light emitter using an optical fiber is used for a vehicle mat, and may be implemented to emit light in a vehicle mat or emit light in the shape of a car logo.
한편, 본 발명에 따른 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체는 빛을 통과시키는 복수 개의 광섬유 및 상기 복수 개의 광섬유의 끝단이 노출되도록 상기 복수 개의 광섬유를 내장하고 있는 실리콘으로 구성되고, 발광 각도가 확대될 수 있도록 상기 복수 개의 광섬유의 끝단은 열성형한 것을 특징으로 한다. 이때, 상기 복수 개의 광섬유의 끝단이 노출된 상기 실리콘의 일면에 직물 또는 피혁을 부착할 수 있다. On the other hand, the flexible flat light emitting body using the optical fiber with improved luminous efficiency according to the present invention is composed of a plurality of optical fibers through which light passes and silicon containing the plurality of optical fibers to expose the ends of the plurality of optical fibers, the emission angle is Ends of the plurality of optical fibers are thermoformed so as to be enlarged. In this case, the fabric or leather may be attached to one surface of the silicon exposed ends of the plurality of optical fibers.
또한, 본 발명에 따른 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체는 빛을 통과시키는 복수 개의 광섬유 및 상기 복수 개의 광섬유의 끝단이 노출되도록 상기 복수 개의 광섬유를 내장하고 있는 실리콘으로 구성되고, 발광 면적이 확대될 수 있도록 상기 광섬유와 상기 광섬유의 끝단이 노출되는 면이 이루는 각도가 40도 내지 70도인 것을 특징으로 한다. 이때, 상기 복수 개의 광섬유의 끝단이 노출된 상기 실리콘의 일면에 직물 또는 피혁을 부착할 수 있다. In addition, the flexible flat light emitting body using the optical fiber with improved luminous efficiency according to the present invention is composed of a plurality of optical fibers through which light passes and silicon containing the plurality of optical fibers to expose the ends of the plurality of optical fibers, the emission area is The angle between the optical fiber and the surface exposed end of the optical fiber is 40 to 70 degrees so as to be enlarged. In this case, the fabric or leather may be attached to one surface of the silicon exposed ends of the plurality of optical fibers.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (15)

  1. 고정 프레임에 복수 개의 광섬유를 장착하는 단계;Mounting a plurality of optical fibers in a fixed frame;
    상기 장착된 복수 개의 광섬유를 변형시키는 단계;Deforming the mounted plurality of optical fibers;
    상기 고정 프레임에 실리콘을 주입하여 상기 복수 개의 광섬유를 고정시켜 광섬유 구조체를 생성하는 단계; 및Implanting silicon into the fixing frame to fix the plurality of optical fibers to generate an optical fiber structure; And
    상기 고정 프레임을 상기 광섬유 구조체로부터 탈착하는 단계;를 포함하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법.And detaching the fixed frame from the optical fiber structure.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 고정 프레임은,The fixed frame,
    하판, 측면틀, 상판으로 구성되고,It consists of the bottom plate, side frame, and top plate,
    상기 하판과 상판은 상기 광섬유의 단면 크기의 공간이 형성되어 광섬유를 장착할 수 있는 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법.The lower plate and the upper plate is a method of manufacturing a flexible planar light emitting body using the optical fiber with improved luminous efficiency, characterized in that the space of the cross-sectional size of the optical fiber is formed can be mounted.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 상판은,The top plate,
    좌우 또는 전후로 이동하여 상기 하판과 상기 광섬유가 이루는 각도가 40도 내지 70도가 되도록 하는 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법.A method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency, characterized in that the angle between the lower plate and the optical fiber is 40 to 70 degrees by moving from side to side or back and forth.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 장착된 복수 개의 광섬유를 변형시키는 단계는,Deforming the mounted plurality of optical fibers,
    상기 장착된 복수 개의 광섬유 끝단을 열성형 하는 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법.A method of manufacturing a flexible planar light emitting body using the optical fiber with improved luminous efficiency, characterized in that the thermoforming of the mounted plurality of optical fiber ends.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 열성형은 성형봉을 이용하여 상기 복수 개의 광섬유 끝단의 발광 각도를 확대하는 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법.The thermoforming method of manufacturing a flexible flat light emitting body using the optical fiber with improved luminous efficiency, characterized in that for expanding the light emitting angle of the ends of the plurality of optical fibers by using a forming rod.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 장착된 복수 개의 광섬유를 변형시키는 단계는,Deforming the mounted plurality of optical fibers,
    상기 고정 프레임에 장착된 복수 개의 광섬유의 끝단을 고리 형상으로 변형하고, 상기 광섬유의 고리 형상 부분에 표면처리를 하는 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법.And deforming the ends of the plurality of optical fibers mounted on the fixed frame into a ring shape, and surface-treating the annular portion of the optical fiber.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 광섬유 구조체의 일면에 직물 또는 피혁을 부착하는 단계;를 더 포함하는 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법.Attaching a fabric or leather to one surface of the optical fiber structure; Method of manufacturing a flexible planar light emitting body using the optical fiber with improved luminous efficiency further comprising.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 광섬유 구조체에 광원부를 접속하는 단계;를 더 포함하는 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법.Connecting a light source unit to the optical fiber structure; the method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 광원부를 제어하는 제어부를 통하여 다양한 광원색을 생성하는 단계;를 더 포함하는 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법. Generating a variety of light source colors through the control unit for controlling the light source unit; Method for manufacturing a flexible flat light emitting body using the optical fiber with improved luminous efficiency further comprising.
  10. 제 8 항 또는 제 9 항에 있어서,The method according to claim 8 or 9,
    상기 광원부는 LED 모듈인 것을 특징으로 하고,The light source unit is characterized in that the LED module,
    상기 LED 모듈은 백색광 LED 모듈, 다색 발광 LED 모듈 중 적어도 하나를 포함하는 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법.The LED module is a method of manufacturing a flexible flat light emitting body using the optical fiber with improved luminous efficiency, characterized in that it comprises at least one of a white light LED module, a multi-color light emitting LED module.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 제어부는 상기 LED 모듈의 색을 변환시키기 위한 색 변환부 또는 LED 모듈의 색변환 시간을 조절하기 위한 타이밍부 중 어느 하나를 포함하거나,The control unit includes any one of a color conversion unit for converting the color of the LED module or a timing unit for adjusting the color conversion time of the LED module,
    색 변환부 및 타이밍부를 포함하는 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체를 제조하는 방법.A method of manufacturing a flexible planar light emitting body using an optical fiber having improved luminous efficiency, comprising a color converting unit and a timing unit.
  12. 빛을 통과시키는 복수 개의 광섬유; 및A plurality of optical fibers for passing light; And
    상기 복수 개의 광섬유의 끝단이 노출되도록 상기 복수 개의 광섬유를 내장하고 있는 실리콘으로 구성되고,Consists of silicon containing the plurality of optical fibers to expose the ends of the plurality of optical fibers,
    발광 각도가 확대될 수 있도록 상기 복수 개의 광섬유의 끝단은 열성형한 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체. Flexible planar light emitting body using the optical fiber with improved luminous efficiency, characterized in that the ends of the plurality of optical fibers are thermoformed so that the light emission angle can be expanded.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 복수 개의 광섬유의 끝단이 노출된 상기 실리콘의 일면에 직물 또는 피혁을 부착한 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체.Flexible planar light emitting body using the optical fiber with improved luminous efficiency, characterized in that the fabric or leather attached to one surface of the silicon exposed ends of the plurality of optical fibers.
  14. 빛을 통과시키는 복수 개의 광섬유; 및A plurality of optical fibers for passing light; And
    상기 복수 개의 광섬유의 끝단이 노출되도록 상기 복수 개의 광섬유를 내장하고 있는 실리콘으로 구성되고,Consists of silicon containing the plurality of optical fibers to expose the ends of the plurality of optical fibers,
    발광 면적이 확대될 수 있도록 상기 광섬유와 상기 광섬유의 끝단이 노출되는 면이 이루는 각도가 40도 내지 70도인 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체. Flexible plane light-emitting body using an optical fiber with improved luminous efficiency, characterized in that the angle between the optical fiber and the surface exposed end of the optical fiber is 40 to 70 degrees so that the light emitting area can be expanded.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 복수 개의 광섬유의 끝단이 노출된 상기 실리콘의 일면에 직물 또는 피혁을 부착한 것을 특징으로 하는 발광 효율이 향상된 광섬유를 이용한 유연한 평면 발광체.Flexible planar light emitting body using the optical fiber with improved luminous efficiency, characterized in that the fabric or leather attached to one surface of the silicon exposed ends of the plurality of optical fibers.
PCT/KR2010/004935 2010-07-15 2010-07-27 Method for manufacturing flexible planar light-emitting body using optical fibers having enhanced light-emitting efficiency WO2012008639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0068225 2010-07-15
KR1020100068225A KR101127871B1 (en) 2010-07-15 2010-07-15 Method for manufacturing a flexible lighting device using optical fiber with enhanced luminescence efficiency

Publications (1)

Publication Number Publication Date
WO2012008639A1 true WO2012008639A1 (en) 2012-01-19

Family

ID=45469617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004935 WO2012008639A1 (en) 2010-07-15 2010-07-27 Method for manufacturing flexible planar light-emitting body using optical fibers having enhanced light-emitting efficiency

Country Status (2)

Country Link
KR (1) KR101127871B1 (en)
WO (1) WO2012008639A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112955794A (en) * 2018-10-26 2021-06-11 浜松光子学株式会社 Fiber structure, pulse laser device, and supercontinuum light source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
KR102191485B1 (en) 2020-07-02 2020-12-15 국방과학연구소 Optical fiber display for camouflage with improved luminance and flexibility and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890000903A (en) * 1987-06-12 1989-03-17 조재정 Method of obtaining a bright light source by heat-treating the optical fiber (plastic optical fiber)
KR20080072300A (en) * 2007-02-02 2008-08-06 황임규 Silicone rubber solid including plastic optical fiber and manufacture method of thereof
KR20090008778A (en) * 2007-07-19 2009-01-22 한국과학기술원 Tactile sensor using microbending optical fiber sensors and producing method thereof and measurement device for load distribution
KR20100030757A (en) * 2008-09-11 2010-03-19 주식회사 엘티전자 Screen using optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890000903A (en) * 1987-06-12 1989-03-17 조재정 Method of obtaining a bright light source by heat-treating the optical fiber (plastic optical fiber)
KR20080072300A (en) * 2007-02-02 2008-08-06 황임규 Silicone rubber solid including plastic optical fiber and manufacture method of thereof
KR20090008778A (en) * 2007-07-19 2009-01-22 한국과학기술원 Tactile sensor using microbending optical fiber sensors and producing method thereof and measurement device for load distribution
KR20100030757A (en) * 2008-09-11 2010-03-19 주식회사 엘티전자 Screen using optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112955794A (en) * 2018-10-26 2021-06-11 浜松光子学株式会社 Fiber structure, pulse laser device, and supercontinuum light source
CN112955794B (en) * 2018-10-26 2023-03-21 浜松光子学株式会社 Fiber structure, pulse laser device, and supercontinuum light source

Also Published As

Publication number Publication date
KR20120007603A (en) 2012-01-25
KR101127871B1 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2011040724A2 (en) Led lighting apparatus having block assembling structure
WO2011155688A2 (en) Lighting device
WO2017142181A1 (en) Lamp and vehicle having same
WO2011025244A2 (en) Lighting module
WO2013039317A2 (en) Led lighting engine adopting an icicle type diffusion unit
WO2014168379A1 (en) Doubly-sealed waterproof floodlight and method for same
WO2012008639A1 (en) Method for manufacturing flexible planar light-emitting body using optical fibers having enhanced light-emitting efficiency
WO2011078485A2 (en) Led lighting device
WO2013073744A1 (en) Led lighting, and light source device for backlight unit
WO2011028029A2 (en) Illumination lamp using optical fiber fabric, and preparation method thereof
CN207394558U (en) A kind of easy to install and dismounting LED panel lamps and lanterns
WO2018192362A1 (en) Mirror lamp
TW201221843A (en) Lighting module and LED lamp using LED as light source
WO2012050318A2 (en) Led lamp capable of detachable coupling
WO2014025134A1 (en) Led lighting apparatus
KR101165624B1 (en) Method for manufacturing a flexible lighting device using optical fiber
CN210601304U (en) Reflective LED lamp based on diffuse reflection nano spinning
WO2012141510A2 (en) Multicolor indoor lamp using leds
CN206176077U (en) Flat optic fibre leaded light lighting device
CN212273728U (en) LED point light source
WO2017034366A1 (en) Electric bulb
WO2012081891A2 (en) Led complex heat radiation plate and led lighting including same
CN103822129B (en) LED panel lamp and production method thereof
WO2012033304A2 (en) Pyramidally stacked heat sink plate for an led light, and led light having same
CN208703759U (en) A kind of antistatic high-power LED ceiling lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854761

Country of ref document: EP

Kind code of ref document: A1