WO2012008617A1 - Fibrous fabric and manufacturing method for same - Google Patents

Fibrous fabric and manufacturing method for same Download PDF

Info

Publication number
WO2012008617A1
WO2012008617A1 PCT/JP2011/066639 JP2011066639W WO2012008617A1 WO 2012008617 A1 WO2012008617 A1 WO 2012008617A1 JP 2011066639 W JP2011066639 W JP 2011066639W WO 2012008617 A1 WO2012008617 A1 WO 2012008617A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
core
sheath
fiber fabric
component
Prior art date
Application number
PCT/JP2011/066639
Other languages
French (fr)
Japanese (ja)
Inventor
俊弘 坪田
克彦 柳
宏泰 清水
智仁 齋藤
Original Assignee
セーレン株式会社
Kbセーレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セーレン株式会社, Kbセーレン株式会社 filed Critical セーレン株式会社
Priority to JP2012524620A priority Critical patent/JP5854997B2/en
Publication of WO2012008617A1 publication Critical patent/WO2012008617A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/08Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent

Definitions

  • the present invention relates to a fiber fabric and a method for producing the fiber fabric.
  • the present invention relates to a fiber fabric having a portion in which yarn is partially decomposed and removed, and a method for producing the fiber fabric. More specifically, the sharpness of the boundary between the decomposed part and the undecomposed part is excellent, and the design is formed by the difference between the decomposed part and the undecomposed part, or the functionality (stretchability) is partially changed.
  • the present invention relates to a fiber fabric and a method for producing the fiber fabric.
  • a fiber fabric having a fiber-decomposed pattern pattern expresses a design by forming a pattern based on a difference between a decomposed portion and an undecomposed portion by removing specific fibers by fiber decomposition.
  • the fiber fabric having such a fiber-decomposed pattern has been attracting attention as having a three-dimensional feeling, a high-class feeling, or a refreshing feeling among high-design fiber cloths.
  • fiber fabrics whose stretchability is controlled by fiber decomposition have attracted attention in the field of functional compression wear that improves athletic ability.
  • Such a fiber fabric can be manufactured by, for example, applying a fiber decomposition processing agent or the like to decompose specific fibers to form a fiber decomposition pattern.
  • a fiber decomposition processing agent As a method for applying a fiber decomposition processing agent, a roller printing method or a screen printing method has been conventionally known. In recent years, an inkjet method has attracted attention.
  • an ink-processed fiber decomposition processing agent is applied, and only one type of these fibers is decomposed, so-called opal-like. It is known that a sense of sheer can be expressed on a fiber fabric. Since these processing methods vary depending on various conditions such as the type of fiber to be decomposed and the configuration of the yarn or fiber fabric, there are actually various methods.
  • processing using a fiber decomposition processing agent containing alkali as a main component is generally widely used particularly for fiber fabrics made of polyester fibers.
  • a typical processed cloth there may be mentioned one in which only a polyester fiber is decomposed from a composite fiber cloth including a polyester fiber, and a fiber-decomposed pattern pattern is formed while leaving other fibers.
  • Patent Document 1 describes a method of decomposing only specific fibers of a fiber fabric including two or more polyester fibers having different fiber decomposition rates.
  • the texture and stitches are displaced or frayed (filament breakage) at the boundary between the decomposed portion after fiber decomposition and the undecomposed portion. May occur. Thereby, the quality of the boundary portion between the decomposed portion and the undecomposed portion is lowered.
  • the strength of the decomposed portion particularly the tear strength, tends to be lowered.
  • Patent Document 2 describes a method of decomposing only fibers having a specific decomposability in a fiber fabric using a yarn in which fibers having different degradability are combined by twisting, entanglement, covering, or the like. ing.
  • fraying filament breakage
  • the quality of the boundary portion between the fiber decomposition portion and the fiber undecomposed portion is lowered.
  • Patent Document 3 describes a composite fiber for discharge processing using a core-sheath type composite fiber having a core-sheath structure with two types of polyester components having different fiber decomposition rates by modification of the polyester fiber. Has been. However, in the conjugate fiber of Patent Document 3, it is necessary to control the degree of fiber decomposition, so that the processing conditions are difficult, and depending on the conditions, there is a problem that the polyester fiber in the core part is also decomposed, leading to a decrease in strength.
  • Patent Document 4 describes a method in which a knitted structure is made into an atlas knitted structure or a two-dimensional knitted structure for the purpose of improving the strength of the fiber fabric and improving the displacement and fraying of the stitches.
  • the strength is improved, but the fraying improvement is not sufficient.
  • the method of Patent Document 4 has a problem that the elongation of the fiber fabric is restricted and the texture becomes hard.
  • the object of the present invention is excellent in sharpness at the boundary between the decomposed part and the undecomposed part, and forms a high-quality design due to the difference between the decomposed part and the undecomposed part, or is partially functional (stretchable) ) Can be effectively changed, and a method for producing the fiber fabric is provided.
  • a first aspect of the present invention is a fiber fabric that is entirely or partially constituted by yarns composed of a core-sheath type composite fiber, wherein the core part of the core-sheath type composite fiber is made of a polyamide component, and the sheath part is a polyester.
  • a fiber fabric comprising a component and having a portion where the polyester component of the sheath portion is removed by the fiber decomposition processing agent and a portion where the polyester component is not removed.
  • the present invention provides the fiber fabric according to the first aspect, wherein the cross-sectional area ratio of the polyamide component and the polyester component is 20/80 to 80/20 in the cross section of the core-sheath conjugate fiber. .
  • the present invention provides the fiber fabric according to the first or second aspect, wherein in the cross section of the core-sheath composite fiber, a part of the polyamide component of the core is exposed on the fiber surface.
  • the present invention provides the above-mentioned first to third, wherein the core-sheath conjugate fiber comprises a modified polyester copolymer in which the polyester component in the sheath is modified with a compound having an alkali metal sulfonic acid group.
  • the fiber fabric according to any one of the above.
  • the present invention provides the polyester component which has not been decomposed and / or removed, and / or the polyamide component in the portion where the polyester component has been decomposed and removed, wherein the color pattern is imparted. It is a fiber fabric.
  • the present invention provides the fiber fabric according to any one of the first to fifth aspects, wherein the polyamide-based polymer constituting the polyamide component has a relative viscosity of 1.5 to 6.0.
  • the present invention provides the fiber fabric according to any one of the first to sixth aspects, wherein the polyester polymer constituting the polyester component has an intrinsic viscosity of 0.4 to 1.0.
  • the present invention relates to a method for producing a fiber fabric, all or part of which is constituted by yarns composed of core-sheath type composite fibers, wherein the core part of the core-sheath type composite fibers is made of a polyamide component,
  • a method for producing a fiber fabric comprising: applying a fiber decomposition processing agent mainly composed of an alkali to a fiber fabric having a polyester part in a pattern, and partially removing the polyester component in the sheath part. is there.
  • the ninth aspect of the present invention is the method for producing a fiber fabric according to the eighth aspect, wherein the method for applying the fiber decomposition processing agent is a textile printing method or an ink jet method.
  • the tenth aspect of the present invention is the tenth or ninth aspect, in which a colorant capable of coloring a polyester component and / or a colorant capable of coloring a polyamide component is added simultaneously with the fiber decomposition processing agent. It is a manufacturing method of a fiber fabric.
  • the present invention is the method for producing a fiber fabric according to any one of the eighth to tenth aspects, wherein the fiber decomposition processing agent is a guanidine weak acid salt.
  • the present invention is the method for producing a fiber fabric according to the eleventh aspect, wherein the guanidine weak acid salt is guanidine carbonate.
  • the sharpness of the boundary part between the decomposed part and the undecomposed part by the fiber decomposition processing agent is excellent, and a high-quality design can be formed by the difference between the decomposed part and the undecomposed part. It is possible to provide a fiber fabric that can effectively change the functionality (stretchability).
  • the fiber fabric and the method for producing the fiber fabric of the present invention will be described in detail below.
  • Examples of the form of the fiber fabric of the present invention include, but are not particularly limited to, a woven fabric, a knitted fabric, and a non-woven fabric.
  • Examples of the woven fabric include plain weave, twill weave and satin weave.
  • Examples of the knitted fabric include weft knitting such as plain knitting, rubber knitting and pearl knitting, tricot knitting, cord knitting, atlas knitting, chain knitting, inlay knitting and the like, but the function and effect of the present invention are inhibited. If it is the range which does not carry out, it will not specifically limit to these.
  • the fiber fabric is preferably a knitted fabric.
  • the fiber fabric of the present invention is a fiber fabric composed entirely or partly of yarn comprising a core-sheath type composite fiber obtained by composite spinning of a polyamide component in the core and a polyester component in the sheath.
  • the component used for the core part of the core-sheath type composite fiber is a polyamide polymer, for example, nylon 6, nylon 66, nylon 46, nylon 7, nylon 9, nylon 610, nylon 11, nylon 12, nylon 612, polymetaxylene. Conventionally known materials such as adipamide can be used.
  • a compound having an amide-forming functional group and a copolymerized polyamide containing a copolymer component such as laurolactam, sebacic acid, terephthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid can be used.
  • These polyamide polymers may be used alone or in combination.
  • nylon 6 and nylon 66 are preferable from the viewpoint of versatility and colorability.
  • the relative viscosity of the polyamide-based polymer is preferably 1.5 to 6.0 when measured at a concentration of 1% in 98% sulfuric acid and a temperature of 25 ° C. according to JIS K 6810. If the relative viscosity is less than 1.5, the mechanical strength tends to be insufficient, and if it exceeds 6.0, the workability tends to be lowered. Furthermore, the relative viscosity of the polyamide-based polymer is preferably 2.0 to 5.0, particularly preferably 2.9 to 4.5 from the viewpoint of obtaining good processability and maintaining the burst strength of the fiber fabric. When there are a plurality of polyamide-based polymers to be used, the relative viscosity of the mixture is preferably within the above range.
  • the component used for the sheath part of the core-sheath type composite fiber is a polyester-based polymer.
  • a polyester-based polymer For example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid Or modified polyester copolymers containing these as a main component.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • polylactic acid Or modified polyester copolymers containing these as a main component may be used alone or in combination.
  • the modified polyester copolymer is preferable in that when alkali is used for decomposition and removal, the decomposition can be accelerated and the time required for dissolution and removal can be shortened.
  • a polyester whose main repeating unit is ethylene terephthalate is preferable,
  • a preferred first modifying component is a compound having an alkali metal sulfonic acid group.
  • a modified polyester copolymer modified with a compound having an alkali metal sulfonic acid group is particularly preferred in view of decomposition and removability.
  • a modified polyester copolymer modified with isophthalic acid having an alkali metal sulfonic acid group (SIP component) is preferable, and more specifically, a polyester modified with 1.0 to 5.0 mol% of SIP component is preferable.
  • Preferable examples of the SIP component include 5-sodium sulfoisophthalic acid.
  • a preferred second modifying component is polyalkylene glycol. More specifically, a modified polyester copolymer modified with 1.0 to 20% by mass of polyalkylene glycol is preferable. Further, the specific modification ratio is preferably 1.0 to 5.0% by mass when the molecular weight of the polyalkylene glycol is 100 to 1000, and 5.0 to 20.0% by mass when the molecular weight is 1000 to 10,000. As such a polyalkylene glycol, polyethylene glycol (PEG) is particularly preferable.
  • PEG polyethylene glycol
  • a preferred third modifying component is diethylene glycol (DEG). More specifically, a modified polyester copolymer modified with 1.0 to 10.0 mol% of DEG is preferable.
  • a modified polyester copolymer in which the main repeating unit modified with 1.0 to 5.0 mol% of the SIP component is ethylene terephthalate is preferable.
  • the above modified polyester copolymer modified with 0 to 5.0% by mass or 5.0 to 20.0% by mass of PEG having a molecular weight of 1000 to 10,000 is preferable, and in addition, 1.0 to 10.0 mol of DEG.
  • the modified polyester copolymer modified with about% is more preferred.
  • the use of the modified polyester copolymer as described above accelerates the decomposition of alkali, and the productivity is improved when the alkali is decomposed and removed.
  • the alkali concentration and temperature conditions can be relaxed and the treatment time can be shortened, damage to fibers that cannot be decomposed is reduced, and a high-quality fiber fabric can be obtained.
  • 0.4 to 1.0 is preferable. This is because if the intrinsic viscosity is less than 0.4, the mechanical strength tends to be insufficient, and if it exceeds 1.0, the workability is lowered and the yarn-making property is deteriorated.
  • the intrinsic viscosity of the polyester polymer is more preferably 0.5 to 0.8. When a plurality of polyester polymers are used, it is preferable that the intrinsic viscosity of the mixture is within the above range.
  • the fiber fabric used in the present invention is preferably constituted by the core-sheath type composite fiber of the present invention alone or in combination with the core-sheath type composite fiber and the polyamide fiber and / or the polyester fiber.
  • fibers other than polyamide fibers and polyester fibers may be included that do not decompose by application of a fiber decomposition processing agent such as polyurethane fibers and acrylic fibers.
  • the fibers that are not decomposed by the application of the fiber decomposition processing agent can be combined by a method such as blending, blending, knitting, knitting or knitting.
  • the ratio of the core-sheath type composite fiber is not particularly limited as long as it is a ratio at which a desired design expression and expansion / contraction characteristic change are manifested by decomposition and removal of the polyester component, preferably 30. ⁇ 100% by mass. If the ratio of the core-sheath type composite fiber is less than 30% by mass, there is a possibility that the design expression and the functional (stretchability) change due to the difference between the decomposed part and the undecomposed part cannot be obtained sufficiently.
  • the outer shape of the core-sheath composite fiber may be any of a round cross section, a polygonal cross section, a multileaf cross section, and other known cross sectional shapes in the fiber cross section.
  • the shape of the core may be any of a round cross section, a polygonal cross section, an irregular cross section, and other known cross sectional shapes.
  • the core part may be in the central part of the whole, or may be an eccentricity that is not the central part. Further, the number of cores may be a single core or a multi-core structure such as a 2-core or 3-core as long as the required strength can be maintained.
  • the fiber cross section (a) has a round cross section for both the core and the sheath, and the core has a concentric shape that is not exposed on the fiber surface.
  • the fiber cross section (b) has a shape in which the core portion is eccentric in the fiber cross section (a).
  • the fiber cross section (c) has a multilobal core in the fiber cross section (a).
  • the fiber cross section (d) is a fiber cross section (a) in which the sheath is multilobed.
  • the fiber cross section (e) has a shape in which a part of the core is exposed on the fiber surface in the fiber cross section (a) and the sheath forms a C shape.
  • the outer shape of the sheath portion is polygonal, and the core portion becomes narrower toward the fiber surface when the core portion is exposed through the sheath portion.
  • the fiber cross section (g) has a multi-core core in the fiber cross section (f).
  • the fiber cross section (h) has a multi-lobed core and is exposed on the fiber surface.
  • the fiber cross section (i) is an example in which the core of the fiber cross section (b) is exposed on the fiber surface.
  • a fiber cross-sectional shape in which both the polyamide component and the polyester component can be dyed is preferable.
  • a cross-sectional shape in which a part of the polyamide component of the core part is exposed on the fiber surface as in (f), (g), (h) and (i) is particularly preferable.
  • the interface between the polyamide component and the polyester component has poor affinity, the polyamide component is exposed on the fiber surface, so that the fiber decomposition processing agent can easily penetrate into the interface and promote the decomposition.
  • the core-sheath type composite fiber used in the present invention is usually produced by a melt composite spinning method.
  • the cross-sectional area ratio between the core part and the sheath part (hereinafter referred to as the core-sheath ratio) is preferably set to a ratio of 20/80 to 80/20, particularly 30/70 to 70/30.
  • the ratio of the cross-sectional area of the core is less than 20%, the fiber strength after the fibers in the sheath are decomposed and removed may be insufficient.
  • the ratio of the cross-sectional area of the core portion exceeds 80%, the difference between the decomposed portion and the undecomposed portion cannot be obtained even after the fiber decomposition processing, and there is a concern that it is difficult to express the design.
  • the degree of fiber decomposition is small, there is a possibility that a change in functionality (stretchability) may not be obtained for the purpose of controlling stretchability by fiber decomposition.
  • the core-sheath type composite fiber used in the present invention is preferably such that, in its cross-sectional shape, a part of the polyamide component of the core part is exposed on the fiber surface, that is, the sheath part.
  • the ratio at which the core part is exposed to the sheath part can maintain the strength after fiber decomposition processing, and the design expression and functionality (stretchability) change due to the difference between the decomposed part and the undecomposed part can be obtained. If it is, it will not specifically limit, but 1 to 40% on the outer periphery of a sheath part is preferable, and 1 to 30% is further more preferable.
  • both the core part and the sheath part are made of a polyester component, and the core part is composed of the same polyester component as the sheath part even if there is a difference in the degradability between the polyester polymer of the core part and the polyester polymer of the sheath part.
  • the core portion may also be decomposed, which causes a decrease in strength.
  • the polyester component is strongly damaged, so that there is a high possibility that the strength of the core portion is reduced.
  • disassembly condition setting is difficult and the danger of strength deterioration becomes high.
  • by making the core portion a polyamide component it becomes easy to set the decomposition conditions of the polyester component of the sheath portion, and it is also possible to avoid the risk of strength deterioration due to the decomposition of the core portion.
  • the core-sheath type composite fiber is processed into a processed yarn such as a taslan yarn, a covering yarn, or a false twist to the extent that does not affect the degradability of the polyester component due to fiber decomposition, and the fiber fabric of the present invention. May be used.
  • a processed yarn such as a taslan yarn, a covering yarn, or a false twist to the extent that does not affect the degradability of the polyester component due to fiber decomposition
  • the fiber fabric of the present invention May be used.
  • the core-sheath type composite fiber used in the present invention is preferably used as a multifilament yarn, and the single yarn fineness is usually 1 to 10 dtex, more preferably 1 to 4 dtex, and further preferably 1 to 2 dtex. . If the single yarn fineness is less than 1 dtex, the strength of the fiber fabric may be greatly reduced after fiber decomposition processing. If the single yarn fineness exceeds 10 dtex, the polyester fiber cannot be sufficiently decomposed and removed, and may remain as a residue, causing problems such as uneven dyeing in a later step.
  • the total fineness of the multifilament yarn by the core-sheath type composite fiber used in the present invention is usually 10 to 220 dtex, preferably 33 to 110 dtex. If the total fineness is less than 10 dtex, it may be difficult to form a fiber fabric such as weaving or knitting, and the strength of the fiber fabric may be greatly reduced after fiber decomposition processing. Conversely, if the total fineness exceeds 220 dtex, the spinning operability may be deteriorated. Moreover, there exists a possibility that it cannot fully decompose and remove in a fiber decomposition
  • the yarn constituting the fiber fabric is not cut as a result of the decomposition.
  • the fiber fabric is excellent in sharpness at the boundary portion between the decomposed portion and the undecomposed portion.
  • the production method of the core-sheath type composite fiber used in the present invention is not particularly limited as long as it is a production method to be a core-sheath type composite fiber.
  • two extrusions for forming a sheath part and for forming a core part It can be obtained using a melt compound spinning machine constituted by a machine. That is, first, the polyamide chip for forming the core part and the polyester chip for forming the sheath part are dried.
  • a known apparatus such as a vacuum dryer or a hopper dryer can be appropriately selected and used.
  • tip for core formation it is preferable to use the polyamide chip
  • tip for sheath part formation it is preferable to use the polyester chip
  • Each dried polymer is put into an extruder for forming the sheath and forming the core.
  • Each polymer is melted and kneaded by an extruder, introduced into a spinning head so that polyamide becomes a core and polyester becomes a sheath, and melt-spun from a core-sheath type composite nozzle.
  • the spun fiber is cooled and solidified, and after cooling and solidification, a spinning oil agent is applied using an oil supply applying device. Thereafter, the fiber is wound up by a scissor to obtain a core-sheath type composite undrawn yarn.
  • the scraping speed is not particularly limited, but is preferably in the range of 400 to 2000 m / min.
  • the obtained undrawn yarn is subjected to a drawing treatment with a twisting machine.
  • a drawing treatment with a twisting machine.
  • the desired core-sheath type composite fiber is set by setting the draw ratio to 2.5 to 5.0 times, the draw speed to 300 to 1000 m / min, and the temperature to 25 to 160 ° C. Can be obtained. It is also possible to obtain by a direct spinning drawing method or a higher-order processing such as false twisting as necessary after making a POY yarn.
  • the fiber decomposition processing step Application of the fiber decomposition processing agent to the fiber fabric is preferably performed by a printing method or an inkjet method.
  • a printing method a printing paste containing a fiber decomposition processing agent in a paste is printed on a desired portion of the fiber fabric.
  • ink containing the fiber decomposition processing agent hereinafter referred to as a fiber degradable ink. Is applied to a desired portion of the fiber fabric by an inkjet method.
  • the fiber decomposition processing agent used in the present invention is not particularly limited as long as the non-degradable fiber (polyamide component) is less damaged and the decomposed fiber (polyester component) is decomposed, but aluminum nitrate, sodium sulfate, guanidine weak acid
  • examples thereof include known fiber decomposition processing agents such as salts, polyhydric alcohol ethylene oxide adducts obtained by adding 2 mol or more of ethylene oxide to polyhydric alcohols, and polyhydric alcohol ethylene oxide adducts and quaternary ammonium salts.
  • guanidine weak acid salt is preferred because it has a large fiber degradation effect and is excellent in terms of environment and safety.
  • the pH of the aqueous solution is as low as 10 to 13, and the safety of work and the device are less likely to be corroded.
  • guanidine carbonate is particularly preferable. The reason why the polyester component is decomposed by the guanidine carbonate is presumably because the guanidine carbonate is decomposed into urea and ammonia in the heat treatment step performed after the application of the guanidine carbonate, so that it changes into a strong alkali. it is conceivable that.
  • Fiber decomposition processing agent decomposes and removes the polyester component of the sheath by the application to form a desired pattern composed of a region (part) where the polyamide component of the core part is exposed and a region (part) where it is not. Is granted as follows.
  • a commonly used printing machine such as a roller printing machine or a screen printing machine is used.
  • Printing of the printing paste on the fiber fabric is performed by a commonly used printing method such as roller printing or screen printing.
  • the paste is not particularly limited, and known pastes are used, and natural, processed, semi-synthetic and synthetic pastes such as wheat starch, tragacanth gum, locust bean gum, polyvinyl alcohol and sodium polyacrylate are used alone. Alternatively, two or more kinds can be mixed and used.
  • the fiber is decomposed by dry heat or wet heat treatment, and the fiber component of the present invention can be produced by removing the polyester component decomposed by the printing paste and washing treatment.
  • a dye and / or polyamide fiber capable of coloring the polyester fiber (including the polyester component of the core-sheath type composite fiber used in the present invention). It is also possible to simultaneously apply a dye capable of coloring (including the polyamide component of the core-sheath type composite fiber used). That is, the above-mentioned fiber decomposing agent, polyester fiber dye and polyamide fiber dye can be used alone or in combination, mixed with printing paste, and printed, allowing the colored pattern to be colored on the surface of the decomposed part on the same fiber fabric. Thus, only various processes such as the decomposition process, the decomposition process, the coloring process of the decomposition part, and the coloring process of the undecomposed part can be performed at the same time.
  • the depth and width of the decomposition part can be freely adjusted by using an ink jet method as a method for applying the fiber decomposition processing agent.
  • a precise design at the level of one pixel can be freely expressed without restrictions on the pattern as in the textile printing type.
  • a large amount of drainage is not discharged, so it can be said that it is excellent in terms of environment.
  • the ink jet printing apparatus used when applying the fiber decomposition processing agent by the ink jet method is not particularly limited as long as it does not thermally decompose the fiber decomposition processing agent and the dye ink used as the coloring ink.
  • any of a continuous method such as a charge modulation method, a charge ejection method, a micro dot method and an ink mist method, an on-demand method such as a piezo conversion method and an electrostatic suction method can be adopted.
  • the piezo conversion method is preferable because it is excellent in stability of ink discharge amount and continuous discharge property and can be manufactured at a relatively low cost.
  • the amount of the fiber decomposition processing agent applied is preferably in the range of 1 to 50 g / m 2 , more preferably 5 to 30 g / m 2 .
  • the applied amount is less than 1 g / m 2 , it tends not to be decomposed.
  • it exceeds 50 g / m 2 the amount becomes more than necessary, and therefore the cost tends to increase.
  • the concentration of the fiber decomposition processing agent is preferably in the range of 10 to 35% by mass, and more preferably in the range of 15 to 30% by mass. If it is less than 10% by mass, it tends not to be sufficiently decomposed. On the other hand, if it exceeds 35% by mass, the fiber decomposition processing agent is close to the solubility limit in water, which may cause nozzle clogging such as the occurrence of precipitates, and tends to be unable to discharge stably for a long time.
  • the viscosity of the fiber-decomposable ink is preferably 1 to 10 cps, more preferably 1 to 5 cps at 25 ° C. If it is less than 1 cps, the ejected ink droplets are split during the flight, and it is difficult for the ink to land at the target location, so that the boundary between the decomposed portion and the undecomposed portion tends to be difficult to understand. On the other hand, if it exceeds 10 cps, it tends to be difficult to eject ink from the nozzle due to high viscosity.
  • the ink receiving layer instantaneously receives the fiber-decomposable ink ejected from the nozzle and appropriately holds it, so that bleeding of the fiber-decomposable ink can be prevented.
  • the ink receiving layer is usually formed of an ink receiving agent mainly composed of a water-soluble polymer.
  • the water-soluble polymer include sodium alginate, methyl cellulose, hydroxymethyl cellulose, carboxymethyl cellulose, starch, guar gum, polyvinyl alcohol, and polyacrylic acid. Two or more of these may be used in combination. Among them, it is preferable to use carboxymethylcellulose which is excellent in alkali resistance, low in cost and fluidity.
  • the ink-receiving layer can contain a reduction inhibitor, a surfactant, a preservative, a light resistance improver, and the like as necessary.
  • the ink receiving agent is preferably applied in an amount of 1 to 20 g / m 2 in terms of solid content, and more preferably 2 to 10 g / m 2 .
  • the applied amount is less than 1 g / m 2 , the ink receiving ability is inferior, so that the ink tends to bleed or fall through.
  • it exceeds 20 g / m 2 the fiber fabric becomes hard, and therefore the transportability in the ink jet printer tends to be poor, and the acceptor tends to easily fall off from the fiber fabric during handling.
  • examples of the application method include a dip nip method, a rotary screen method, a knife coater method, a kiss roll coater method, and a gravure roll coater method.
  • the dip nip method is preferable in that an ink receiving layer can be applied not only to the surface of the fiber fabric but also to the entire fiber fabric, and a fiber fabric having excellent ink receiving ability can be produced.
  • an ink capable of coloring polyester fibers and / or an ink capable of coloring polyamide fibers simultaneously with the fiber decomposition processing agent. That is, by preparing an ink set including the fiber-decomposable ink, the polyester fiber-colored ink, and the polyamide fiber-colored ink, and appropriately selecting and printing the ink, the colored pattern is colored on the decomposed portion on the same fiber material. It is possible to perform various processes such as only the decomposition process, the decomposition process, the coloring process of the decomposed part, and the coloring process of the undecomposed part at the same time. In addition to the fiber-degradable ink, a drying inhibitor, a preservative, a water-soluble dye, and the like can be added as necessary.
  • a colorant including colored ink, dye, and pigment
  • decomposition disassembly processing is not required and when coloring only a polyester fiber, a polyester fiber colorant is selected and provided. Decomposition is not required, and when only the polyamide fiber is colored, a polyamide fiber colorant is selected and printed.
  • the polyamide fiber in the core needs to be exposed in the sheath.
  • the resulting color pattern may have unevenness or white blurring, resulting in poor quality.
  • each colorant is printed at the same location, and the polyester fiber and the polyamide fiber are colored simultaneously.
  • polyester fiber colorant a colorant in which a disperse dye excellent in fastness, sharpness and color developability is dispersed in water can be mainly used.
  • a colorant in which a pigment is dispersed in water or a cationic dyeable polyester fiber a colorant in which a cationic dye is dissolved or dispersed in water can be used.
  • the polyamide fiber colorant a colorant in which a reactive dye, an acid dye or a metal complex dye is dissolved in water can be used.
  • the reactive dye is preferably a reactive dye having at least one selected from a monochlorotriazine group, a monofluorotriazine group, a difluoromonochloropyrimidine group, a trichloropyrimidine group, and the like as a reactive group.
  • Reactive dyes having other reactive groups are prone to hydrolysis in an alkaline atmosphere, and when mixed with an ink containing a fiber decomposition processing agent on a fiber fabric, the reactive groups decompose and color the polyamide fiber. Concentration is likely to decrease.
  • a colorant capable of coloring the fibers can be appropriately selected and printed.
  • a preferable heat treatment condition for decomposing the polyester component of the core-sheath composite fiber is 160 to 190 ° C. for about 10 minutes.
  • the polyester component may be insufficiently decomposed, and when a colored ink is applied by an ink jet method, particularly the polyester fiber may be insufficiently colored.
  • the temperature exceeds 190 ° C., the polyamide fiber is insufficiently colored, and a phenomenon such as yellowing of the fiber due to thermal deterioration tends to occur.
  • the heat treatment may be either dry heat treatment or wet heat treatment.
  • the ink receiving layer remaining on the fiber cloth is not fixed.
  • a washing treatment is preferably performed for the purpose of removing the dye.
  • the conditions for the washing treatment are not particularly limited.
  • the treatment may be carried out using a fiber decomposition accelerator 1 to 5 g / L at a hot water treatment temperature of 70 to 100 ° C. for 10 to 60 minutes. Further, it may be treated with 2 to 15 g / L NaOH aqueous solution.
  • the fiber degradation accelerator examples include aliphatic amine salt cationic surfactants, quaternary ammonium salt cationic surfactants of aliphatic amine salts, aromatic quaternary ammonium salt cationic surfactants, and heterocyclic quaternary ammonium salts.
  • a cationic surfactant or the like can be used.
  • the polyester component can be completely decomposed and removed by heat treatment and washing treatment after applying the fiber-degradable processing agent.
  • the burst strength of the fiber decomposition portion of the fiber fabric of the present invention is not particularly limited as long as the strength of the fabric according to the intended use can be maintained. When emphasizing the expression of detailed design, it may be 150 kPa or less, but it is preferably 200 kPa or more when it is desired to express functionality due to stretchability or power difference in inner applications such as underwear.
  • the strength of the core-sheath composite fiber at the disassembly portion when the yarn constituting the fiber fabric of the present invention is extracted is preferably 2.5 to 5.0 cN / dtex.
  • the strength of the core-sheath composite fiber in the decomposed portion is preferably 120 cN or more, and the strength of the core-sheath composite fiber in the undecomposed portion is preferably 200 cN or more in order to develop a strength difference from that after decomposition. Furthermore, when the ratio of the strength of the decomposed portion to the strength of the undecomposed portion (the strength of the core-sheath composite fiber of the decomposed portion / the strength of the core-sheath composite fiber of the undecomposed portion) ⁇ 100) is 30% or more, A difference in strength is easily developed, and it is easy to obtain an inner use or the like having a difference in pressure.
  • the present invention it is possible to obtain a fiber fabric excellent in sharpness of the boundary, in which no deterioration in quality due to fraying of the yarn (filament breakage) occurs at the boundary between the decomposed portion and the undecomposed portion.
  • the disintegrated part has improved elasticity because the tissue becomes loose. Since physical expression such as expansion / contraction difference, strength difference, air permeability difference, etc. is possible between the decomposed part and the undecomposed part, a fiber fabric rich in variations can be obtained by combining the decomposed part and the undecomposed part. .
  • the fiber fabric of the present invention has the above-described excellent effects, it is particularly preferably used for sports applications such as swimwear and fitness clothing and inner uses such as spats, girdles, shorts and brassieres.
  • the sheath component is a copolymerized polyethylene terephthalate composed of terephthalic acid, ethylene glycol, 5-sodium sulfoisophthalic acid (1.5 mol% with respect to the acid component), DEG 4.8 mol% and PEG 3.0 mass% with a molecular weight of 600 ( A core-sheath type composite fiber (fineness: 100 dtex / 48f, strength: 3.5 cN / dtex, elongation: 44.5%, core, except that the melting point is 237 ° C. and the intrinsic viscosity is 0.60) The degree of exposure was 0%, and the strength of only the core portion was 2.7 cN / dtex).
  • ⁇ Fiber c> The core-sheath composite fiber (fineness: 70 dtex / 48f, strength: 4.0 cN / dtex, elongation: 44.) except that the fineness is changed by changing the core-sheath ratio to 67/33. 2%, core exposure: 0%, strength of core only: 2.7 cN / dtex).
  • the core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3) is the same as the fiber b except that the fiber cross-sectional shape is (i) in the fiber cross-section shown in FIG. 1 and the core exposure is 8.9%.
  • ⁇ Fiber e> A core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3.4 cN / dtex, elongation: 37.5%, strength of the core only, except that the core exposure is 5.2%) : 3.1 cN / dtex).
  • the sheath component was copolymerized polyethylene terephthalate (melting point 241) composed of terephthalic acid, ethylene glycol, 5-sodium sulfoisophthalic acid (2.3 mol% with respect to the acid component), DEG 4.8 mol%, and molecular weight 8000 PEG 10% by mass.
  • the core-sheath type composite fiber fineness: 100 dtex / 48f, strength: 3.4 cN / dtex, elongation: 42.3%, core exposure) : 0%, strength of core part only: 2.6 cN / dtex).
  • the core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3.2 cN / dtex, elongation: 32.4) is the same as the fiber b. %, Core part exposure: 0%, strength of core part only: 3.8 cN / dtex).
  • the core-sheath composite fiber (fineness: 100 ctex / 48f, strength: 4.4 cN / dtex, elongation: 49.2) is the same as the fiber b except that the core-sheath ratio of the core-sheath composite fiber is changed to 90/10. %, Core exposure: 0%, strength of core only 4.3 cN / dtex).
  • the core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3.1 cN / dtex, elongation: 30.4) is the same as the fiber d. %, Core exposure: 8.9%, strength of core only: 5.4 cN / dtex).
  • the core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 4.0 cN / dtex, elongation: 42.8) is the same as the fiber d except that the core-sheath ratio of the core-sheath composite fiber is changed to 80/20. %, Core exposure degree 8.9%, strength of core only: 3.8 cN / dtex).
  • the core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3.7 cN / dtex, elongation: 38.4) is the same as the fiber d, except that the core exposure of the core-sheath composite fiber is changed to 40%. %, Core exposure 40%, strength of core only: 3.3 cN / dtex).
  • the core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3.6 cN / dtex, elongation: 36.6) is the same as the fiber d except that the core-part exposed degree of the core-sheath composite fiber is changed to 50%. %, Core exposure: 50%, strength of core only: 3.3 cN / dtex).
  • the sheath component is a copolymerized polyethylene terephthalate composed of terephthalic acid, ethylene glycol, 5-sodium sulfoisophthalic acid (1.5 mol% with respect to the acid component), DEG 4.8 mol% and PEG 3.0 mass% with a molecular weight of 600 ( A core-sheath type composite fiber (fineness: 100 dtex / min) as in the case of the fiber a except that the melting point is 237 ° C. and the intrinsic viscosity is 0.60) and the core component is unmodified polyethylene terephthalate (melting point 256 ° C. and the intrinsic viscosity is 0.63). 48f, strength: 4.2 cN / dtex, elongation: 32.0%).
  • a core-sheath type composite fiber (fineness: 100 dtex / 48 f, strength: 4.2 cN / dtex) is the same as the fiber b except that the core component is nylon 6 (melting point: 225 ° C., relative viscosity: 2.98) and it is melted at 270 ° C. , Elongation: 48%, core exposure: 0%, strength of core only: 4.2 cN / dtex).
  • a core-sheath type composite fiber (fineness: 100 dtex / 48 f, strength: 4.8 cN / dtex) is the same as the fiber b except that the core component is nylon 6 (melting point: 225 ° C., relative viscosity: 3.37) and it is melted at 280 ° C. , Elongation: 36%, core exposure: 0%, strength of core only: 4.7 cN / dtex).
  • ⁇ Fiber p> 1 except that the core component is nylon 6 (melting point: 225 ° C., relative viscosity: 2.98) and melts at 270 ° C.
  • a core-sheath composite fiber fineness: 100 dtex / 48f, strength: 4.1 cN / dtex, elongation: 48%, strength of the core only: 4.0 cN / dtex) with a part exposure of 8.9% was obtained. .
  • the fiber cross-sectional shape is the same as the fiber d in the fiber cross-section shown in FIG.
  • a core-sheath composite fiber fineness: 100 dtex / 48f, strength: 4.8 cN / dtex, elongation: 36%, strength of the core only: 4.7 cN / dtex
  • the core component is nylon 6 (melting point 225 ° C., relative viscosity 2.98) and melted at 270 ° C., while the sheath component is terephthalic acid, ethylene glycol, 5-sodium sulfoisophthalic acid (1.5 mol with respect to the acid component) %), DEG 4.8 mol%, and copolymerized polyethylene terephthalate (melting point: 237 ° C., intrinsic viscosity: 0.595) composed of PEG of 4.8 mol% and molecular weight of 600, terephthalic acid, ethylene glycol, 5-sodium sulfoisophthalic acid (acid) 2.3 mol%), DEG 4.8 mol%, and copolymerized polyethylene terephthalate (melting point 241 ° C., intrinsic viscosity 0.770) composed of 10% by mass of PEG having a molecular weight of 8000 were mixed at a weight ratio of 6/4
  • the fiber shown in FIG. 1 has the same cross-sectional shape as the fiber d except that it melts at 290 ° C.
  • the core-sheath composite fiber having a core exposure degree of 8.9% in the cross section (fineness: 100 dtex / 48f, strength: 4.2 cN / dtex, elongation: 40%, strength of the core only: 4) .1 cN / dtex).
  • a knitted fabric A (thickness: 1 mm) having a Kanoko structure was obtained using the fiber a prepared above. Further, the obtained knitted fabric A was scoured and set under general conditions.
  • Inkjet printing was performed under the following conditions so as to obtain a predetermined pattern.
  • Printing device On-demand serial scanning ink jet printing device Nozzle diameter: 50 ⁇ m Drive voltage: 100V Frequency: 5kHz Resolution: 360 dpi Fibre-degradable ink printing amount: 40 g / m 2
  • Example 2 shows the evaluation of the obtained fiber fabric.
  • Example 2 The fiber fabric of Example 2 was obtained in the same manner as in Example 1 except that the fiber b created above was used.
  • Example 3 shows the evaluation of the obtained fiber fabric.
  • Example 3 The fiber fabric of Example 3 was obtained in the same manner as in Example 1 except that the fiber c created above was used.
  • Example 4 shows the evaluation of the obtained fiber fabric.
  • Example 4 The fiber fabric of Example 4 was obtained in the same manner as in Example 1 except that the fiber d created above was used.
  • Example 5 shows the evaluation of the obtained fiber fabric.
  • Example 5 The fiber fabric of Example 5 was obtained in the same manner as in Example 1 except that the fiber e created above was used.
  • Example 6 The fiber fabric of Example 6 was obtained in the same manner as in Example 1 except that the fiber f created above was used.
  • Example 7 The fiber fabric of Example 7 was obtained in the same manner as in Example 1 except that the fiber g prepared above was used.
  • Example 8 All were manufactured in the same process as Example 1 except having used the fiber h created above, and the fiber fabric of Example 8 was obtained.
  • Example 9 The fiber fabric of Example 9 was obtained in the same manner as in Example 1 except that the fiber i created above was used.
  • Example 10 A fiber fabric of Example 10 was obtained in the same manner as in Example 1 except that the fiber j created above was used. Further, when the core-sheath composite fiber constituting the obtained fiber fabric of Example 10 was extracted, the strength of the decomposed portion was 301.4 cN, and the strength of the undecomposed portion was 402.3 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 75%. Table 2 shows the evaluation of the obtained fiber fabric.
  • Example 11 shows the evaluation of the obtained fiber fabric.
  • Example 12 Except for using the fiber k prepared above, all were manufactured in the same process as in Example 1 to obtain a fiber fabric of Example 11. Further, when the core-sheath composite fiber constituting the obtained fiber fabric of Example 11 was extracted, the strength of the decomposed portion was 165.8 cN, and the strength of the undecomposed portion was 374.3 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 44%. Table 2 shows the evaluation of the obtained fiber fabric.
  • Example 12 shows the evaluation of the obtained fiber fabric.
  • Example 13 Except for using the fiber l prepared above, all were manufactured in the same process as in Example 1 to obtain a fiber fabric of Example 12. Further, when the core-sheath composite fiber constituting the obtained fiber fabric of Example 12 was extracted, the strength of the decomposed portion was 164.7 cN, and the strength of the undecomposed portion was 358.1 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 46%. Table 2 shows the evaluation of the obtained fiber fabric. Example 13
  • the knitted fabric A using the fiber a prepared above was subjected to fiber decomposition processing according to the following method.
  • the composition of the following prescription 3 was mixed, and the viscosity was adjusted to 40000-50000 cps by adding water and a paste to obtain the intended fiber decomposition processing agent.
  • the obtained fiber decomposition processing agent was applied by a rotary printing machine so that the coating amount after drying was about 4 g / m 2 per unit area.
  • the knitted fabric was dried at 110 ° C. for 2 minutes, and then wet-heat treated at 110 ° C. for 10 minutes using an HT steamer. Furthermore, in a soaping bath containing 2 g / L of Tripol TK (Daiichi Kogyo Seiyaku Co., Ltd., nonionic surfactant), 2 g / L of soda ash, and 1 g / L of hydrosulfite at 80 ° C. for 10 minutes. After the treatment and washing, the fiber fabric of Example 13 having a decomposed part and an undecomposed part was obtained by washing with water and drying. Table 2 shows the evaluation of the obtained fiber fabric.
  • Example 14 A fiber fabric of Example 14 was obtained in the same manner as in Example 1 except that the fiber a created above was used instead of a knitted fabric of Kanoko structure and a twill textured fabric was used. Table 2 shows the evaluation of the obtained fiber fabric.
  • Example 15 A fiber fabric of Example 14 was obtained in the same manner as in Example 1 except that the fiber a created above was used instead of a knitted fabric of Kanoko structure and a twill textured fabric was used. Table 2 shows the evaluation of the obtained fiber fabric.
  • Example 15 A fiber fabric of Example 14 was obtained in the same manner as in Example 1 except that the fiber a created above was used instead of a knitted fabric of Kanoko structure and a twill textured fabric was used. Table 2 shows the evaluation of the obtained fiber fabric.
  • Example 15 A fiber fabric of Example 14 was obtained in the same manner as in Example 1 except that the fiber a created above was used instead of a knitted fabric of Kanoko structure and a twill textured fabric was used. Table 2 shows the evaluation of the obtained fiber fabric.
  • Example 15 The fiber fabric of Example 15 was obtained in the same manner as in Example 1 except that the fiber n created above was used.
  • Example 16 The fiber fabric of Example 16 was obtained in the same manner as in Example 1 except that the fiber o created above was used.
  • Example 17 shows the evaluation of the obtained fiber fabric.
  • Example 17 The fiber fabric of Example 17 was obtained in the same manner as in Example 1 except that the fiber p created above was used.
  • Example 18 shows the evaluation of the obtained fiber fabric.
  • Example 18 The fiber fabric of Example 18 was obtained in the same manner as in Example 1 except that the fiber q created above was used.
  • Example 19 shows the evaluation of the obtained fiber fabric.
  • Example 19 The fiber fabric of Example 19 was obtained in the same manner as in Example 1 except that the fiber r created above was used.
  • Each of the fiber fabrics of Examples 1 to 19 is excellent in sharpness at the boundary between the decomposed portion and the undecomposed portion by the fiber decomposition processing agent, and forms a high-quality design due to the difference between the decomposed portion and the undecomposed portion.
  • the fiber fabrics of Comparative Examples 1 to 3 were inferior in sharpness at the boundary portion between the decomposed portion and the undecomposed portion, and a high-quality design could not be formed.
  • Examples 4, 5, 9, 10, 17 to 19, in the fiber cross section a part of the polyamide component is exposed on the fiber surface and the core portion exposure is 1 to 30%. The sheath part was excellent in removability, and the boundary quality between the decomposed part and the undecomposed part and the design expression were excellent.
  • the present invention is based on Japanese Patent Application No. 2010-160025 filed on July 14, 2010.
  • the specification of the Japanese Patent Application 2010-160025, claims, and the entire drawing are incorporated in the present specification.
  • the present invention is excellent in the sharpness of the boundary portion between the decomposed portion and the undecomposed portion, and is suitable for a fiber fabric suitable for imparting design properties and partial functionality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Multicomponent Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Decoration Of Textiles (AREA)
  • Knitting Of Fabric (AREA)
  • Woven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The disclosed fibrous fabric is either all or partly constructed from thread formed from core-in-sheet composite fibres. Therein, the core portion of the core-in-sheath composite fibres is formed from polyamide components, the sheath portion is formed from polyester components, and there are portions wherein the polyester components of the sheath portion have been removed by means of a fibre degradation processing agent and portions wherein said components have not been removed. The fibrous fabric has excellent sharpness in the boundary sections between the portions wherein the polyester components of the sheath portion have been removed by means of the fibre degradation processing agent and the portions wherein said components have not been removed, and is suited to providing design and partial functionalities, for example elasticity.

Description

繊維布帛及び繊維布帛の製造方法Fiber fabric and method for producing fiber fabric
 本発明は、繊維布帛及び繊維布帛の製造方法に関する。特に、糸が部分的に分解除去された部分を有する繊維布帛及び繊維布帛の製造方法に関する。さらに詳しくは、分解部分と未分解部分との境界部分のシャープ性に優れ、分解部分と未分解部分との差異により意匠を形成する、または、部分的に機能性(伸縮性)を変化させることが可能な繊維布帛及び繊維布帛の製造方法に関する。 The present invention relates to a fiber fabric and a method for producing the fiber fabric. In particular, the present invention relates to a fiber fabric having a portion in which yarn is partially decomposed and removed, and a method for producing the fiber fabric. More specifically, the sharpness of the boundary between the decomposed part and the undecomposed part is excellent, and the design is formed by the difference between the decomposed part and the undecomposed part, or the functionality (stretchability) is partially changed. The present invention relates to a fiber fabric and a method for producing the fiber fabric.
 近年、様々な手法を用いた高意匠性繊維布帛が開発されている。かかる高意匠性繊維布帛は、スポーツ分野、ファッション分野、インナー分野等への利用が拡大している。繊維分解柄模様を有する繊維布帛は、繊維分解により特定の繊維を取り除くことによって、分解部分と未分解部分との差異により模様を形成して意匠を表現するものである。このような繊維分解柄模様を有する繊維布帛は、高意匠性繊維布帛の中でも、立体感、高級感あるいは清涼感のあるものとして注目されている。また、繊維分解により伸縮性をコントロールした繊維布帛は、運動能力を向上させる機能性コンプレッションウェアの分野においても注目されている。 Recently, high-design fiber fabrics using various techniques have been developed. Such high-design fiber fabrics are increasingly used in the sports field, fashion field, inner field, and the like. A fiber fabric having a fiber-decomposed pattern pattern expresses a design by forming a pattern based on a difference between a decomposed portion and an undecomposed portion by removing specific fibers by fiber decomposition. The fiber fabric having such a fiber-decomposed pattern has been attracting attention as having a three-dimensional feeling, a high-class feeling, or a refreshing feeling among high-design fiber cloths. In addition, fiber fabrics whose stretchability is controlled by fiber decomposition have attracted attention in the field of functional compression wear that improves athletic ability.
 このような繊維布帛は、例えば、繊維分解加工剤等を付与することで特定の繊維を分解して繊維分解柄模様を形成して製造することができる。繊維分解加工剤を付与する方法としては、従来からローラ捺染またはスクリーン捺染方式が知られている。また、近年では、インクジェット方式が注目されている。これらの方式により、2種類以上の繊維を使用した繊維布帛において、インク化した繊維分解加工剤を塗布し、それらの繊維のうちの1種類の繊維のみを分解する加工を行い、いわゆるオパール調の透け感を繊維布帛上に表現できることが知られている。これらの加工の方法は、分解させる繊維の種類や、糸または繊維布帛の構成等の諸条件により、その使用する薬剤や加工条件が異なるため、実に様々な方法が存在する。 Such a fiber fabric can be manufactured by, for example, applying a fiber decomposition processing agent or the like to decompose specific fibers to form a fiber decomposition pattern. As a method for applying a fiber decomposition processing agent, a roller printing method or a screen printing method has been conventionally known. In recent years, an inkjet method has attracted attention. By using these methods, in a fiber fabric using two or more types of fibers, an ink-processed fiber decomposition processing agent is applied, and only one type of these fibers is decomposed, so-called opal-like. It is known that a sense of sheer can be expressed on a fiber fabric. Since these processing methods vary depending on various conditions such as the type of fiber to be decomposed and the configuration of the yarn or fiber fabric, there are actually various methods.
 中でも、特にポリエステル系繊維からなる繊維布帛に対して、アルカリを主成分とした繊維分解加工剤を利用した加工が、一般的に広く利用されている。代表的な加工布としては、ポリエステル系繊維を含む複合繊維布帛からポリエステル系繊維のみを分解させ、他の繊維を残して繊維分解柄模様を形成したものが挙げられる。 In particular, processing using a fiber decomposition processing agent containing alkali as a main component is generally widely used particularly for fiber fabrics made of polyester fibers. As a typical processed cloth, there may be mentioned one in which only a polyester fiber is decomposed from a composite fiber cloth including a polyester fiber, and a fiber-decomposed pattern pattern is formed while leaving other fibers.
 具体的な加工方法としては、上記アルカリを主成分とし、必要に応じて分解促進剤を添加した繊維分解加工剤を、ポリエステル系繊維布帛上の繊維分解領域に付与した後、加熱処理し、ついで、洗浄等を施すことにより、その領域の繊維を除去する方法が知られている。この方法により、繊維布帛上において、繊維分解加工剤を付与した領域のポリエステル繊維のみが分解除去される。一方、繊維分解加工剤を付与しなかった領域の繊維は繊維布帛上に残る。これにより、繊維分解柄模様を有する複合繊維布帛が得られる。 As a specific processing method, after applying a fiber decomposition processing agent containing the above alkali as a main component and adding a decomposition accelerator as necessary to a fiber decomposition region on a polyester fiber fabric, heat treatment is performed, A method for removing fibers in the region by washing or the like is known. By this method, only the polyester fiber in the region to which the fiber decomposition processing agent has been applied is decomposed and removed on the fiber fabric. On the other hand, the fiber of the area | region which did not provide a fiber decomposition processing agent remains on a fiber fabric. Thereby, the composite fiber fabric which has a fiber decomposition pattern is obtained.
 特許文献1には、繊維分解速度の異なる2種以上のポリエステル系繊維を含む繊維布帛の特定の繊維だけを分解させる方法について記載されている。しかし、特許文献1の方法では、透け感を繊維布帛上に表現する際に、繊維分解加工後の分解部分と未分解部分との境界部分で織目や編目のずれ、ほつれ(フィラメントのバラケ)が起きる場合がある。これにより、分解部分と未分解部分との境界部分の品位が低下する。また、分解部分の強度、特に引裂強度が低下しやすくなる等の問題がある。 Patent Document 1 describes a method of decomposing only specific fibers of a fiber fabric including two or more polyester fibers having different fiber decomposition rates. However, in the method of Patent Document 1, when expressing a sense of sheerness on a fiber fabric, the texture and stitches are displaced or frayed (filament breakage) at the boundary between the decomposed portion after fiber decomposition and the undecomposed portion. May occur. Thereby, the quality of the boundary portion between the decomposed portion and the undecomposed portion is lowered. In addition, there is a problem that the strength of the decomposed portion, particularly the tear strength, tends to be lowered.
 特許文献2には、分解性の違いを有する繊維同士を合撚、交絡、カバーリング等により複合化した糸を使用した繊維布帛において、特定の分解性を有する繊維のみを分解させる方法について記載されている。しかし、特許文献2の方法であっても、ほつれ(フィラメントのバラケ)が起きる場合があり、繊維分解部分と繊維未分解部分との境界部分の品位が低下する等の問題がある。 Patent Document 2 describes a method of decomposing only fibers having a specific decomposability in a fiber fabric using a yarn in which fibers having different degradability are combined by twisting, entanglement, covering, or the like. ing. However, even with the method of Patent Document 2, fraying (filament breakage) may occur, and there is a problem that the quality of the boundary portion between the fiber decomposition portion and the fiber undecomposed portion is lowered.
 特許文献3には、ポリエステル繊維の改質により繊維分解速度に違いを持たせた2種のポリエステル成分を芯鞘構造とした芯鞘型複合繊維を用いた、抜蝕加工用の複合繊維について記載されている。しかし、特許文献3の複合繊維では、繊維分解の度合いをコントロールする必要があるため加工の条件が難しく、条件によっては芯部のポリエステル繊維も分解して、強度低下に繋がる等の問題がある。 Patent Document 3 describes a composite fiber for discharge processing using a core-sheath type composite fiber having a core-sheath structure with two types of polyester components having different fiber decomposition rates by modification of the polyester fiber. Has been. However, in the conjugate fiber of Patent Document 3, it is necessary to control the degree of fiber decomposition, so that the processing conditions are difficult, and depending on the conditions, there is a problem that the polyester fiber in the core part is also decomposed, leading to a decrease in strength.
 特許文献4には、繊維布帛の強度向上及び編目のずれ、ほつれを改善する目的で編組織をアトラス編や二目編組織とする方法が記載されている。しかし、特許文献4の方法では、強度は向上するが、ほつれの改善については十分とはなっていない。また、特許文献4の方法では、繊維布帛の伸びが制限され、風合いが硬くなる等の問題もあった。 Patent Document 4 describes a method in which a knitted structure is made into an atlas knitted structure or a two-dimensional knitted structure for the purpose of improving the strength of the fiber fabric and improving the displacement and fraying of the stitches. However, in the method of Patent Document 4, the strength is improved, but the fraying improvement is not sufficient. Further, the method of Patent Document 4 has a problem that the elongation of the fiber fabric is restricted and the texture becomes hard.
特公昭61−27518号公報Japanese Examined Patent Publication No. 61-27518 特開2000−282362号公報JP 2000-282362 A 特開平6−248515号公報JP-A-6-248515 特開2007−119946号公報Japanese Patent Laid-Open No. 2007-119946
 本発明の目的は、分解部分と未分解部分との境界部分のシャープ性に優れ、分解部分と未分解部分との差異により高品位の意匠を形成する、または、部分的に機能性(伸縮性)を効果的に変化させることが可能な繊維布帛及び繊維布帛の製造方法を提供することにある。 The object of the present invention is excellent in sharpness at the boundary between the decomposed part and the undecomposed part, and forms a high-quality design due to the difference between the decomposed part and the undecomposed part, or is partially functional (stretchable) ) Can be effectively changed, and a method for producing the fiber fabric is provided.
 本発明は、第1に、芯鞘型複合繊維からなる糸によって全部または一部が構成されている繊維布帛であって、芯鞘型複合繊維の芯部がポリアミド成分からなり、鞘部がポリエステル成分からなり、鞘部のポリエステル成分が繊維分解加工剤によって除去されている部分と除去されていない部分とを持つことを特徴とする繊維布帛である。 A first aspect of the present invention is a fiber fabric that is entirely or partially constituted by yarns composed of a core-sheath type composite fiber, wherein the core part of the core-sheath type composite fiber is made of a polyamide component, and the sheath part is a polyester. A fiber fabric comprising a component and having a portion where the polyester component of the sheath portion is removed by the fiber decomposition processing agent and a portion where the polyester component is not removed.
 本発明は、第2に、前記芯鞘型複合繊維の横断面において、ポリアミド成分とポリエステル成分の横断面積比率が、20/80~80/20である、上記第1に記載の繊維布帛である。
 本発明は、第3に、前記芯鞘型複合繊維の横断面において、芯部のポリアミド成分の一部が繊維表面に露出している、上記第1または第2に記載の繊維布帛である。
Secondly, the present invention provides the fiber fabric according to the first aspect, wherein the cross-sectional area ratio of the polyamide component and the polyester component is 20/80 to 80/20 in the cross section of the core-sheath conjugate fiber. .
Thirdly, the present invention provides the fiber fabric according to the first or second aspect, wherein in the cross section of the core-sheath composite fiber, a part of the polyamide component of the core is exposed on the fiber surface.
 本発明は、第4に、前記芯鞘型複合繊維の、鞘部のポリエステル成分がアルカリ金属スルホン酸基を有する化合物により変性された変性ポリエステル共重合体からからなる、上記第1~第3のいずれかに記載の繊維布帛である。
 本発明は、第5に、分解除去されていないポリエステル成分及び/またはポリエステル成分が分解除去された部分のポリアミド成分に色柄が付与されている、上記第1~第4のいずれかに記載の繊維布帛である。
Fourthly, the present invention provides the above-mentioned first to third, wherein the core-sheath conjugate fiber comprises a modified polyester copolymer in which the polyester component in the sheath is modified with a compound having an alkali metal sulfonic acid group. The fiber fabric according to any one of the above.
Fifth, the present invention provides the polyester component which has not been decomposed and / or removed, and / or the polyamide component in the portion where the polyester component has been decomposed and removed, wherein the color pattern is imparted. It is a fiber fabric.
 本発明は、第6に、前記ポリアミド成分を構成するポリアミド系ポリマーの相対粘度が、1.5~6.0である、上記第1~第5のいずれかに記載の繊維布帛である。
 本発明は、第7に、前記ポリエステル成分を構成するポリエステル系ポリマーの固有粘度が、0.4~1.0である、上記第1~第6のいずれかに記載の繊維布帛である。
Sixth, the present invention provides the fiber fabric according to any one of the first to fifth aspects, wherein the polyamide-based polymer constituting the polyamide component has a relative viscosity of 1.5 to 6.0.
Seventhly, the present invention provides the fiber fabric according to any one of the first to sixth aspects, wherein the polyester polymer constituting the polyester component has an intrinsic viscosity of 0.4 to 1.0.
 本発明は、第8に、芯鞘型複合繊維からなる糸によって全部または一部が構成されている繊維布帛の製造方法であって、芯鞘型複合繊維の芯部がポリアミド成分からなり、鞘部がポリエステル成分からなる繊維布帛に、模様状に、アルカリを主成分とする繊維分解加工剤を付与し、鞘部のポリエステル成分を部分的に除去することを特徴とする繊維布帛の製造方法である。 Eighthly, the present invention relates to a method for producing a fiber fabric, all or part of which is constituted by yarns composed of core-sheath type composite fibers, wherein the core part of the core-sheath type composite fibers is made of a polyamide component, A method for producing a fiber fabric, comprising: applying a fiber decomposition processing agent mainly composed of an alkali to a fiber fabric having a polyester part in a pattern, and partially removing the polyester component in the sheath part. is there.
 本発明は、第9に、前記繊維分解加工剤を付与する方式が、捺染方式またはインクジェット方式である、上記第8に記載の繊維布帛の製造方法である。
 本発明は、第10に、前記繊維分解加工剤と同時に、ポリエステル成分の着色が可能な着色剤及び/またはポリアミド成分の着色が可能な着色剤を付与する、上記第8または第9に記載の繊維布帛の製造方法である。
The ninth aspect of the present invention is the method for producing a fiber fabric according to the eighth aspect, wherein the method for applying the fiber decomposition processing agent is a textile printing method or an ink jet method.
The tenth aspect of the present invention is the tenth or ninth aspect, in which a colorant capable of coloring a polyester component and / or a colorant capable of coloring a polyamide component is added simultaneously with the fiber decomposition processing agent. It is a manufacturing method of a fiber fabric.
 本発明は、第11に、前記繊維分解加工剤がグアニジン弱酸塩である、上記第8~第10のいずれかに記載の繊維布帛の製造方法である。
 本発明は、第12に、前記グアニジン弱酸塩が炭酸グアニジンである、上記第11に記載の繊維布帛の製造方法である。
Eleventhly, the present invention is the method for producing a fiber fabric according to any one of the eighth to tenth aspects, wherein the fiber decomposition processing agent is a guanidine weak acid salt.
Twelfth, the present invention is the method for producing a fiber fabric according to the eleventh aspect, wherein the guanidine weak acid salt is guanidine carbonate.
 本発明により、繊維分解加工剤による分解部分と未分解部分との境界部分のシャープ性に優れ、分解部分と未分解部分との差異により高品位の意匠を形成することができ、また、部分的に機能性(伸縮性)を効果的に変化させることのできる繊維布帛を提供することが可能となる。 According to the present invention, the sharpness of the boundary part between the decomposed part and the undecomposed part by the fiber decomposition processing agent is excellent, and a high-quality design can be formed by the difference between the decomposed part and the undecomposed part. It is possible to provide a fiber fabric that can effectively change the functionality (stretchability).
本発明の芯鞘型複合繊維の繊維横断面の例を示す図である。It is a figure which shows the example of the fiber cross section of the core-sheath-type composite fiber of this invention.
 本発明の繊維布帛及び繊維布帛の製造方法について、以下に詳細に説明する。
 本発明の繊維布帛の形態としては、例えば、織物、編物、不織布等を挙げることができるが、これらに特に限定されるものではない。織物としては、例えば、平織、綾織及び朱子織等が挙げられる。編物としては、例えば、平編、ゴム編及びパール編等の緯編、トリコット編、コード編、アトラス編、鎖編及びインレイ編等の経編が挙げられるが、本発明の作用・効果を阻害しない範囲であればこれらに特に限定されるものではない。尚、繊維布帛に伸縮特性変化の効果を得たい場合、繊維布帛の形態としては編物であることが好ましい。
The fiber fabric and the method for producing the fiber fabric of the present invention will be described in detail below.
Examples of the form of the fiber fabric of the present invention include, but are not particularly limited to, a woven fabric, a knitted fabric, and a non-woven fabric. Examples of the woven fabric include plain weave, twill weave and satin weave. Examples of the knitted fabric include weft knitting such as plain knitting, rubber knitting and pearl knitting, tricot knitting, cord knitting, atlas knitting, chain knitting, inlay knitting and the like, but the function and effect of the present invention are inhibited. If it is the range which does not carry out, it will not specifically limit to these. In addition, when it is desired to obtain the effect of changing the stretch characteristics of the fiber fabric, the fiber fabric is preferably a knitted fabric.
 本発明の繊維布帛は、全部または一部が、芯部のポリアミド成分と鞘部のポリエステル成分を複合紡糸して得られる芯鞘型複合繊維からなる糸により構成された繊維布帛である。
 芯鞘型複合繊維の芯部に使用する成分はポリアミド系ポリマーであり、例えばナイロン6、ナイロン66、ナイロン46、ナイロン7、ナイロン9、ナイロン610、ナイロン11、ナイロン12、ナイロン612、ポリメタキシレンアジパミド等従来から知られているものが利用できる。あるいはそれらとアミド形成官能基を有する化合物、例えばラウロラクタム、セバシン酸、テレフタル酸、イソフタル酸、5−ナトリウムスルホイソフタル酸等の共重合成分を含有する共重合ポリアミドが挙げられる。これらのポリアミド系ポリマーは単独で用いてもよいし、複数を組合せて用いてもよい。中でも、汎用性、着色性の観点からナイロン6、ナイロン66が好ましい。
The fiber fabric of the present invention is a fiber fabric composed entirely or partly of yarn comprising a core-sheath type composite fiber obtained by composite spinning of a polyamide component in the core and a polyester component in the sheath.
The component used for the core part of the core-sheath type composite fiber is a polyamide polymer, for example, nylon 6, nylon 66, nylon 46, nylon 7, nylon 9, nylon 610, nylon 11, nylon 12, nylon 612, polymetaxylene. Conventionally known materials such as adipamide can be used. Alternatively, a compound having an amide-forming functional group and a copolymerized polyamide containing a copolymer component such as laurolactam, sebacic acid, terephthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid can be used. These polyamide polymers may be used alone or in combination. Among these, nylon 6 and nylon 66 are preferable from the viewpoint of versatility and colorability.
 ポリアミド系ポリマーの相対粘度は、JIS K 6810に従い、98%硫酸中濃度1%、温度25℃における測定で、好ましくは1.5~6.0である。相対粘度が1.5未満であると機械的強度が不十分となりやすく、6.0を超えると加工性が低下しやすい。さらに、ポリアミド系ポリマーの相対粘度は、良好な加工性を得る点、繊維布帛の破裂強度を維持する点から2.0~5.0が好ましく、特に2.9~4.5が好ましい。
 使用するポリアミド系ポリマーが複数である場合は、それらの混合物の相対粘度が上記の範囲内にあることが好ましい。
The relative viscosity of the polyamide-based polymer is preferably 1.5 to 6.0 when measured at a concentration of 1% in 98% sulfuric acid and a temperature of 25 ° C. according to JIS K 6810. If the relative viscosity is less than 1.5, the mechanical strength tends to be insufficient, and if it exceeds 6.0, the workability tends to be lowered. Furthermore, the relative viscosity of the polyamide-based polymer is preferably 2.0 to 5.0, particularly preferably 2.9 to 4.5 from the viewpoint of obtaining good processability and maintaining the burst strength of the fiber fabric.
When there are a plurality of polyamide-based polymers to be used, the relative viscosity of the mixture is preferably within the above range.
 芯鞘型複合繊維の鞘部に使用する成分はポリエステル系ポリマーであり、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸等のポリエステル類、またはこれらを主成分とする変性ポリエステル共重合体が挙げられる。これらのポリエステル系ポリマーは単独で用いてもよいし、複数を組合せて用いてもよい。このうち、変性ポリエステル共重合体は、分解除去にアルカリを用いる場合、分解を促進させて、溶解除去に要する時間を短くできる等の点で好ましい。なかでも、主たる繰り返し単位がエチレンテレフタレートであるポリエステルが好ましく、さらに分解除去性や着色性を向上させるように変性した共重合ポリエチレンテレフタレートがより好ましい。 The component used for the sheath part of the core-sheath type composite fiber is a polyester-based polymer. For example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid Or modified polyester copolymers containing these as a main component. These polyester polymers may be used alone or in combination. Among these, the modified polyester copolymer is preferable in that when alkali is used for decomposition and removal, the decomposition can be accelerated and the time required for dissolution and removal can be shortened. Of these, a polyester whose main repeating unit is ethylene terephthalate is preferable, and a copolymerized polyethylene terephthalate modified so as to improve decomposition removal and colorability is more preferable.
 好ましい第1の変性成分としては、アルカリ金属スルホン酸基を有する化合物がある。アルカリ金属スルホン酸基を有する化合物により変性された変性ポリエステル共重合体が分解除去性及び染色性の面において特に好ましい。
 なかでも、アルカリ金属スルホン酸基を有するイソフタル酸(SIP成分)で変性された変性ポリエステル共重合体が好ましく、より具体的には1.0~5.0mol%のSIP成分で変性されたポリエステルが好ましい。SIP成分の好適な例として、5−ナトリウムスルホイソフタル酸等が挙げられる。
A preferred first modifying component is a compound having an alkali metal sulfonic acid group. A modified polyester copolymer modified with a compound having an alkali metal sulfonic acid group is particularly preferred in view of decomposition and removability.
Among them, a modified polyester copolymer modified with isophthalic acid having an alkali metal sulfonic acid group (SIP component) is preferable, and more specifically, a polyester modified with 1.0 to 5.0 mol% of SIP component is preferable. preferable. Preferable examples of the SIP component include 5-sodium sulfoisophthalic acid.
 好ましい第2の変性成分としては、ポリアルキレングリコールがある。より具体的には、1.0~20質量%のポリアルキレングリコールで変性された変性ポリエステル共重合体が好ましい。さらに具体的な変性割合としては、ポリアルキレングリコールの分子量が100~1000の場合は1.0~5.0質量%、1000~10000の場合は5.0~20.0質量%が好ましい。このようなポリアルキレングリコールとしては、ポリエチレングリコール(PEG)が特に好ましい。 A preferred second modifying component is polyalkylene glycol. More specifically, a modified polyester copolymer modified with 1.0 to 20% by mass of polyalkylene glycol is preferable. Further, the specific modification ratio is preferably 1.0 to 5.0% by mass when the molecular weight of the polyalkylene glycol is 100 to 1000, and 5.0 to 20.0% by mass when the molecular weight is 1000 to 10,000. As such a polyalkylene glycol, polyethylene glycol (PEG) is particularly preferable.
 好ましい第3の変性成分としては、ジエチレングリコール(DEG)がある。より具体的には、1.0~10.0mol%のDEGで変性された変性ポリエステル共重合体が好ましい。 A preferred third modifying component is diethylene glycol (DEG). More specifically, a modified polyester copolymer modified with 1.0 to 10.0 mol% of DEG is preferable.
 変性成分の組合せ好適例としては、SIP成分1.0~5.0mol%で変性された主たる繰り返し単位がエチレンテレフタレートである変性ポリエステル共重合体が好ましく、加えて分子量100~1000のPEGの1.0~5.0質量%または分子量が1000~10000のPEGの5.0~20.0質量%で変性された上記変性ポリエステル共重合体が好ましく、さらに加えてDEGの1.0~10.0mol%程度で変性された上記変性ポリエステル共重合体がより好ましい。 As a suitable combination of the modifying components, a modified polyester copolymer in which the main repeating unit modified with 1.0 to 5.0 mol% of the SIP component is ethylene terephthalate is preferable. The above modified polyester copolymer modified with 0 to 5.0% by mass or 5.0 to 20.0% by mass of PEG having a molecular weight of 1000 to 10,000 is preferable, and in addition, 1.0 to 10.0 mol of DEG. The modified polyester copolymer modified with about% is more preferred.
 未変性のポリエチレンテレフタレートと比較して、上記のような変性ポリエステル共重合体を用いることでアルカリに対する分解が促進され、アルカリ分解除去する場合に生産性が向上する。またアルカリ濃度、温度条件を緩和し、処理時間を短くできるため、分解できない繊維へのダメージが低くなり、品質のよい繊維布帛を得ることができる。 Compared with unmodified polyethylene terephthalate, the use of the modified polyester copolymer as described above accelerates the decomposition of alkali, and the productivity is improved when the alkali is decomposed and removed. In addition, since the alkali concentration and temperature conditions can be relaxed and the treatment time can be shortened, damage to fibers that cannot be decomposed is reduced, and a high-quality fiber fabric can be obtained.
 ポリエステル系ポリマーの固有粘度は、フェノール/テトラクロロエタン=6/4(重量比)混合液50mlに0.5gのポリマーを溶解して、温度20℃においてオストワルド型粘度計を用いて測定した値であり、0.4~1.0であることが好ましい。固有粘度が0.4未満であると機械的強度が不十分となりやすく、1.0を超えると加工性が低下して、製糸性が悪化するためである。ポリエステル系ポリマーの固有粘度は、0.5~0.8であることがより好ましい。使用するポリエステル系ポリマーが複数である場合は、それらの混合物の固有粘度が上記の範囲内にあることが好ましい。 The intrinsic viscosity of the polyester-based polymer is a value measured using an Ostwald viscometer at a temperature of 20 ° C. by dissolving 0.5 g of the polymer in 50 ml of a phenol / tetrachloroethane = 6/4 (weight ratio) mixture. 0.4 to 1.0 is preferable. This is because if the intrinsic viscosity is less than 0.4, the mechanical strength tends to be insufficient, and if it exceeds 1.0, the workability is lowered and the yarn-making property is deteriorated. The intrinsic viscosity of the polyester polymer is more preferably 0.5 to 0.8. When a plurality of polyester polymers are used, it is preferable that the intrinsic viscosity of the mixture is within the above range.
 本発明で使用される繊維布帛は本発明の芯鞘型複合繊維単独または、芯鞘型複合繊維とポリアミド繊維及び/またはポリエステル繊維と組み合わせて構成することが望ましいが、本発明の作用・効果を阻害しない範囲であれば、ポリアミド繊維及びポリエステル繊維以外の、ポリウレタン系繊維やアクリル繊維等の繊維分解加工剤の付与により分解しない繊維を含んでいても構わない。繊維分解加工剤の付与により分解しない繊維は、混紡、混繊、交撚、交織または交編等の方法により組み合わせることができる。 The fiber fabric used in the present invention is preferably constituted by the core-sheath type composite fiber of the present invention alone or in combination with the core-sheath type composite fiber and the polyamide fiber and / or the polyester fiber. As long as it does not inhibit, fibers other than polyamide fibers and polyester fibers may be included that do not decompose by application of a fiber decomposition processing agent such as polyurethane fibers and acrylic fibers. The fibers that are not decomposed by the application of the fiber decomposition processing agent can be combined by a method such as blending, blending, knitting, knitting or knitting.
 本発明で使用される繊維布帛において、芯鞘型複合繊維の割合は、ポリエステル成分の分解、除去により目的とする意匠表現、伸縮特性変化が発現する割合であれば特に限定されないが、好ましくは30~100質量%である。芯鞘型複合繊維の割合が30質量%より少ないと、分解部分と未分解部分との差異による意匠表現や機能性(伸縮性)変化が十分に得られないおそれがある。 In the fiber fabric used in the present invention, the ratio of the core-sheath type composite fiber is not particularly limited as long as it is a ratio at which a desired design expression and expansion / contraction characteristic change are manifested by decomposition and removal of the polyester component, preferably 30. ~ 100% by mass. If the ratio of the core-sheath type composite fiber is less than 30% by mass, there is a possibility that the design expression and the functional (stretchability) change due to the difference between the decomposed part and the undecomposed part cannot be obtained sufficiently.
 芯鞘型複合繊維の外形は、繊維横断面において丸断面、多角断面、多葉断面、その他公知の断面形状のいずれであってもよい。芯部の形状も丸断面、多角断面、異形断面、その他公知の断面形状のいずれであってもよい。芯部は全体の中央部にあってもよく、中央部ではない偏芯であってもよい。また、芯部の数も単芯の他、必要とする強度が維持できる範囲であれば、2芯、3芯といった多芯構造であってもよい。鞘部のポリエステル成分の分解、除去性の面からは、丸断面形状が好ましく、さらに単芯であることが好ましい。好適な繊維横断面の例を図1に示す。
 図1に示される繊維横断面のうち繊維横断面(a)は、芯部も鞘部も丸断面であり、芯部は繊維表面に露出していない同心円状である。繊維横断面(b)は、繊維横断面(a)において芯部が偏芯の形状である。繊維横断面(c)は、繊維横断面(a)において芯部が多葉状のものである。また、繊維横断面(d)は、繊維横断面(a)において鞘部が多葉状になっているものである。また、繊維横断面(e)は繊維横断面(a)において一部の芯部が繊維表面に露出しているものであり、鞘部がC型を形成している形状である。繊維横断面(f)は、繊維横断面(e)において、鞘部の外形が多角形であり、芯部が鞘部を介して露出する際に芯部が繊維表面に向かって狭くなっているものである。また、繊維横断面(g)は繊維横断面(f)の芯が多芯のものである。繊維横断面(h)は芯部が多葉状で、繊維表面に露出するものである。また、繊維横断面(i)は繊維横断面(b)の芯部が繊維表面に露出している例である。
The outer shape of the core-sheath composite fiber may be any of a round cross section, a polygonal cross section, a multileaf cross section, and other known cross sectional shapes in the fiber cross section. The shape of the core may be any of a round cross section, a polygonal cross section, an irregular cross section, and other known cross sectional shapes. The core part may be in the central part of the whole, or may be an eccentricity that is not the central part. Further, the number of cores may be a single core or a multi-core structure such as a 2-core or 3-core as long as the required strength can be maintained. From the viewpoint of decomposition and removability of the polyester component in the sheath, a round cross-sectional shape is preferable, and a single core is preferable. An example of a suitable fiber cross section is shown in FIG.
Of the fiber cross sections shown in FIG. 1, the fiber cross section (a) has a round cross section for both the core and the sheath, and the core has a concentric shape that is not exposed on the fiber surface. The fiber cross section (b) has a shape in which the core portion is eccentric in the fiber cross section (a). The fiber cross section (c) has a multilobal core in the fiber cross section (a). Moreover, the fiber cross section (d) is a fiber cross section (a) in which the sheath is multilobed. The fiber cross section (e) has a shape in which a part of the core is exposed on the fiber surface in the fiber cross section (a) and the sheath forms a C shape. In the fiber cross section (f), in the fiber cross section (e), the outer shape of the sheath portion is polygonal, and the core portion becomes narrower toward the fiber surface when the core portion is exposed through the sheath portion. Is. The fiber cross section (g) has a multi-core core in the fiber cross section (f). The fiber cross section (h) has a multi-lobed core and is exposed on the fiber surface. The fiber cross section (i) is an example in which the core of the fiber cross section (b) is exposed on the fiber surface.
 染色において濃染性が求められる場合は、ポリアミド成分とポリエステル成分の両方が染色可能な繊維断面形状が好ましく、具体的には、図1に示される繊維横断面のうち繊維横断面(e)、(f)、(g)、(h)及び(i)のように芯部のポリアミド成分の一部が繊維表面に露出している断面形状が特に好ましい。また、ポリアミド成分とポリエステル成分との界面は親和性が乏しいため、ポリアミド成分が繊維表面に露出することで界面に繊維分解加工剤が浸透しやすくなり分解を促進する効果がある。 When deep dyeability is required in dyeing, a fiber cross-sectional shape in which both the polyamide component and the polyester component can be dyed is preferable. Specifically, among the fiber cross-sections shown in FIG. A cross-sectional shape in which a part of the polyamide component of the core part is exposed on the fiber surface as in (f), (g), (h) and (i) is particularly preferable. In addition, since the interface between the polyamide component and the polyester component has poor affinity, the polyamide component is exposed on the fiber surface, so that the fiber decomposition processing agent can easily penetrate into the interface and promote the decomposition.
 但し、サイドバイサイド型のような断面形状とした場合、ポリアミド成分とポリエステル成分との密着性が不十分であることから、未分解部分においてポリアミド成分とポリエステル成分の剥離による糸割れの不具合が生じるおそれがある。上記のような断面形状とすることで、ポリアミド成分とポリエステル成分との両方が染色可能となり、さらに前述しているようなポリアミド成分とポリエステル成分との剥離による糸割れの不具合が起こり難くなる。 However, in the case of a cross-sectional shape such as a side-by-side type, the adhesion between the polyamide component and the polyester component is insufficient, and therefore there is a risk that a problem of yarn cracking due to peeling of the polyamide component and the polyester component in the undecomposed portion may occur. is there. By setting it as the above cross-sectional shape, both a polyamide component and a polyester component can be dye | stained, and also the malfunction of the thread crack by peeling with a polyamide component and a polyester component as mentioned above does not occur easily.
 本発明で使用される芯鞘型複合繊維は、通常溶融複合紡糸法により製造される。芯部と鞘部の横断面積比率(以下、芯鞘比率という)は、20/80~80/20の割合、特に30/70~70/30の割合に設定することが好ましい。芯部の横断面積の割合が20%未満であると、鞘部の繊維を分解除去した後の繊維強度が不十分となるおそれがある。一方、芯部の横断面積の割合が80%を超えると、繊維分解加工後においても分解部分と未分解部分との差異が得られず意匠の表現が困難となるおそれがある。また、繊維の分解度合いが少ないため、繊維の分解により伸縮性をコントロールする目的においても機能性(伸縮性)変化が得られないおそれがある。 The core-sheath type composite fiber used in the present invention is usually produced by a melt composite spinning method. The cross-sectional area ratio between the core part and the sheath part (hereinafter referred to as the core-sheath ratio) is preferably set to a ratio of 20/80 to 80/20, particularly 30/70 to 70/30. When the ratio of the cross-sectional area of the core is less than 20%, the fiber strength after the fibers in the sheath are decomposed and removed may be insufficient. On the other hand, if the ratio of the cross-sectional area of the core portion exceeds 80%, the difference between the decomposed portion and the undecomposed portion cannot be obtained even after the fiber decomposition processing, and there is a concern that it is difficult to express the design. In addition, since the degree of fiber decomposition is small, there is a possibility that a change in functionality (stretchability) may not be obtained for the purpose of controlling stretchability by fiber decomposition.
 本発明で使用される芯鞘型複合繊維は、前記したように、その横断面形状において、芯部のポリアミド成分の一部が繊維表面、即ち鞘部に露出しているものが好ましい。その場合、芯部が鞘部に露出する割合は、繊維分解加工後の強度が維持できるもので、分解部分と未分解部分との差異による意匠表現や機能性(伸縮性)変化が得られるものであれば特に限定されるものではないが、鞘部の外周上の1~40%が好ましく、1~30%がさらに好ましい。40%を超えると、ポリエステル成分とポリアミド成分の界面で剥離が生じ易くなり、いわゆる糸割れが発生して、製織、編成において不具合を引き起こすおそれがある。また、繊維布帛とした際に目面が悪くなり、耐摩耗性に劣るおそれがある。 As described above, the core-sheath type composite fiber used in the present invention is preferably such that, in its cross-sectional shape, a part of the polyamide component of the core part is exposed on the fiber surface, that is, the sheath part. In that case, the ratio at which the core part is exposed to the sheath part can maintain the strength after fiber decomposition processing, and the design expression and functionality (stretchability) change due to the difference between the decomposed part and the undecomposed part can be obtained. If it is, it will not specifically limit, but 1 to 40% on the outer periphery of a sheath part is preferable, and 1 to 30% is further more preferable. If it exceeds 40%, peeling tends to occur at the interface between the polyester component and the polyamide component, so-called thread cracking occurs, and there is a risk of causing problems in weaving and knitting. Moreover, when it is set as a fiber fabric, a visual surface worsens and there exists a possibility that it may be inferior to abrasion resistance.
 本発明において、芯部がポリアミド成分、鞘部がポリエステル成分の芯鞘型複合繊維とすることにより、鞘部のポリエステル成分を分解除去する工程において、芯部を形成するポリアミド成分の分解制御を必要としない。このため、分解の条件設定が容易となる。例えば芯部と鞘部を共にポリエステル成分として、芯部のポリエステル系ポリマーと鞘部のポリエステル系ポリマーの分解性に差を設けたとしても、芯部が鞘部と同じポリエステル成分で構成されているので、アルカリ性の繊維分解加工剤を使用し、分解が速く進行する条件とした場合は、芯部の分解も生じるおそれがあり、強度低下を引き起こす要因となる。特に繊維分解加工剤として、後述する炭酸グアニジンを用いるとポリエステル成分が強くダメージを受けるため芯部の強度低下を生じる可能性が高くなる。またそのような不具合を避けるため、ポリエステル成分の分解を高い精度で制御する必要があり、分解条件設定が難しく、強度劣化の危険性が高くなる。これに対し、芯部をポリアミド成分とすることで、鞘部のポリエステル成分の分解条件設定が容易となるほか、芯部の分解による強度劣化のおそれも回避可能となる。 In the present invention, it is necessary to control the decomposition of the polyamide component forming the core portion in the step of decomposing and removing the polyester component in the sheath portion by using a core-sheath type composite fiber in which the core portion is a polyamide component and the sheath portion is a polyester component. And not. For this reason, it is easy to set conditions for disassembly. For example, both the core part and the sheath part are made of a polyester component, and the core part is composed of the same polyester component as the sheath part even if there is a difference in the degradability between the polyester polymer of the core part and the polyester polymer of the sheath part. Therefore, when an alkaline fiber decomposition processing agent is used and the conditions are such that the decomposition proceeds quickly, the core portion may also be decomposed, which causes a decrease in strength. In particular, when guanidine carbonate, which will be described later, is used as the fiber decomposition processing agent, the polyester component is strongly damaged, so that there is a high possibility that the strength of the core portion is reduced. Moreover, in order to avoid such a malfunction, it is necessary to control decomposition | disassembly of a polyester component with high precision, a decomposition | disassembly condition setting is difficult and the danger of strength deterioration becomes high. On the other hand, by making the core portion a polyamide component, it becomes easy to set the decomposition conditions of the polyester component of the sheath portion, and it is also possible to avoid the risk of strength deterioration due to the decomposition of the core portion.
 尚、繊維分解によるポリエステル成分の分解性に影響を与えない範囲で、芯鞘型複合繊維を、タスラン糸、カバーリング糸、または仮撚り等の加工糸に加工して、本発明の繊維布帛に使用してもよい。これらの加工により、繊維布帛にバリエーションを与えることができ、様々な用途にあわせて使用することができる。 In addition, the core-sheath type composite fiber is processed into a processed yarn such as a taslan yarn, a covering yarn, or a false twist to the extent that does not affect the degradability of the polyester component due to fiber decomposition, and the fiber fabric of the present invention. May be used. By these processes, variations can be given to the fiber fabric, and it can be used for various purposes.
 本発明で使用される芯鞘型複合繊維はマルチフィラメント糸として使用することが好ましく、単糸繊度は通常1~10dtexであり、より好ましくは1~4dtexであり、さらに好ましくは1~2dtexである。
 単糸繊度が1dtex未満であると繊維分解加工後に繊維布帛の強度が大きく低下するおそれがある。単糸繊度が10dtexを超えるとポリエステル繊維が十分に分解除去できず、残渣として残るおそれがあり、後の工程で染色ムラ等の不具合の原因となる。
The core-sheath type composite fiber used in the present invention is preferably used as a multifilament yarn, and the single yarn fineness is usually 1 to 10 dtex, more preferably 1 to 4 dtex, and further preferably 1 to 2 dtex. .
If the single yarn fineness is less than 1 dtex, the strength of the fiber fabric may be greatly reduced after fiber decomposition processing. If the single yarn fineness exceeds 10 dtex, the polyester fiber cannot be sufficiently decomposed and removed, and may remain as a residue, causing problems such as uneven dyeing in a later step.
 そして、本発明で使用される芯鞘型複合繊維によるマルチフィラメント糸の総繊度は通常10~220dtexであり、好ましくは33~110dtexである。総繊度が10dtex未満であると、製織、編成等の繊維布帛の形成が困難になるおそれがあり、繊維分解加工後に繊維布帛の強度が大きく低下するおそれがある。逆に、総繊度が220dtexを超えると、紡糸操業性が悪くなるおそれがある。また、繊維分解工程において十分に分解除去できないおそれがある。 And the total fineness of the multifilament yarn by the core-sheath type composite fiber used in the present invention is usually 10 to 220 dtex, preferably 33 to 110 dtex. If the total fineness is less than 10 dtex, it may be difficult to form a fiber fabric such as weaving or knitting, and the strength of the fiber fabric may be greatly reduced after fiber decomposition processing. Conversely, if the total fineness exceeds 220 dtex, the spinning operability may be deteriorated. Moreover, there exists a possibility that it cannot fully decompose and remove in a fiber decomposition | disassembly process.
 本発明で使用される芯鞘型複合繊維では繊維分解加工剤で処理された部分の鞘部のポリエステル成分のみが除去されるため、繊維布帛を組織する糸が分解の結果として切断されない。これにより、分解部分と未分解部分との境界部分において糸のほつれ(フィラメントのバラケ)に伴う品位低下が発生しない。そのため、分解部分と未分解部分との境界部分においてシャープ性に優れた繊維布帛となる。また、これまで糸のほつれ(フィラメントのバラケ)のために表現が難しかった細線による意匠表現(3mm以下、好ましくは1mm以下の細い幅での繊維分解加工)も可能となる。 In the core-sheath type composite fiber used in the present invention, since only the polyester component in the sheath portion of the portion treated with the fiber decomposition processing agent is removed, the yarn constituting the fiber fabric is not cut as a result of the decomposition. As a result, there is no deterioration in quality due to fraying of the yarn (filament breakage) at the boundary between the decomposed portion and the undecomposed portion. Therefore, the fiber fabric is excellent in sharpness at the boundary portion between the decomposed portion and the undecomposed portion. Further, it is also possible to express a design by a thin line that has been difficult to express due to yarn fraying (filament breakage) (fiber decomposition processing with a narrow width of 3 mm or less, preferably 1 mm or less).
 本発明で使用される芯鞘型複合繊維の製造方法としては、芯鞘型複合繊維となる製造方法であれば特に限定されないが、例えば、鞘部成形用及び芯部成形用の2台の押出機で構成される溶融複合紡糸機を用いて得ることができる。すなわち、まず、芯部形成用のポリアミドチップ及び鞘部形成用のポリエステルチップを乾燥する。ポリマーの乾燥には真空乾燥機、ホッパードライヤー等の公知の装置を適宜選択して使用することができる。なお、芯部形成用のポリアミドチップを用いる場合は、チップの含有水分率が100ppm以下(100mg/kg以下)のポリアミドチップを用いることが好ましい。鞘部形成用のポリエステルチップを用いる場合は、チップの含有水分率が20ppm以下(20mg/kg以下)のポリエステルチップを用いることが好ましい。このように、チップの含有水分率を一定以下にしたものを用いることにより、紡糸操業性がより向上する。 The production method of the core-sheath type composite fiber used in the present invention is not particularly limited as long as it is a production method to be a core-sheath type composite fiber. For example, two extrusions for forming a sheath part and for forming a core part It can be obtained using a melt compound spinning machine constituted by a machine. That is, first, the polyamide chip for forming the core part and the polyester chip for forming the sheath part are dried. For drying the polymer, a known apparatus such as a vacuum dryer or a hopper dryer can be appropriately selected and used. In addition, when using the polyamide chip | tip for core formation, it is preferable to use the polyamide chip | tip whose moisture content of a chip | tip is 100 ppm or less (100 mg / kg or less). When using the polyester chip | tip for sheath part formation, it is preferable to use the polyester chip | tip whose moisture content of a chip | tip is 20 ppm or less (20 mg / kg or less). Thus, by using a chip having a moisture content of a certain level or less, spinning operability is further improved.
 乾燥したそれぞれのポリマーを鞘部成形用及び芯部成形用の押出機に投入する。押出機にてそれぞれのポリマーを溶融・混練して、ポリアミドが芯部に、ポリエステルが鞘部となるように紡糸ヘッドに導入し、芯鞘型複合ノズルから溶融紡出される。紡出された繊維は冷却固化され、冷却固化後に給油付与装置を用いて紡糸油剤を付与する。この後、繊維は捲取機に捲き取られて芯鞘型複合の未延伸糸を得ることができる。捲取速度も特に限定されるものではないが、400~2000m/minの範囲が好ましい。 Each dried polymer is put into an extruder for forming the sheath and forming the core. Each polymer is melted and kneaded by an extruder, introduced into a spinning head so that polyamide becomes a core and polyester becomes a sheath, and melt-spun from a core-sheath type composite nozzle. The spun fiber is cooled and solidified, and after cooling and solidification, a spinning oil agent is applied using an oil supply applying device. Thereafter, the fiber is wound up by a scissor to obtain a core-sheath type composite undrawn yarn. The scraping speed is not particularly limited, but is preferably in the range of 400 to 2000 m / min.
 さらに得られた未延伸糸を延撚機で延伸処理を実施する。延撚条件も特に限定されるものではなく、延伸倍率2.5~5.0倍、延伸速度300~1000m/min、温度を25~160℃に設定して、目的とする芯鞘型複合繊維を得ることができる。直接紡糸延伸法、POY糸を製糸してその後必要に応じた仮撚加工等の高次加工により得ることも可能である。 Further, the obtained undrawn yarn is subjected to a drawing treatment with a twisting machine. There are no particular restrictions on the twisting conditions, and the desired core-sheath type composite fiber is set by setting the draw ratio to 2.5 to 5.0 times, the draw speed to 300 to 1000 m / min, and the temperature to 25 to 160 ° C. Can be obtained. It is also possible to obtain by a direct spinning drawing method or a higher-order processing such as false twisting as necessary after making a POY yarn.
 次に、繊維分解加工工程について述べる。
 前記繊維布帛への繊維分解加工剤の付与は、捺染方式またはインクジェット方式による付与が好ましい。
 捺染方式においては、糊剤に繊維分解加工剤を含有させた捺染糊を繊維布帛の所望の部分に印捺し、インクジェット方式においては、繊維分解加工剤を含むインク(以下、繊維分解性インクという)をインクジェット方式により繊維布帛の所望の部分に付与する。
Next, the fiber decomposition processing step will be described.
Application of the fiber decomposition processing agent to the fiber fabric is preferably performed by a printing method or an inkjet method.
In the printing method, a printing paste containing a fiber decomposition processing agent in a paste is printed on a desired portion of the fiber fabric. In the ink jet method, ink containing the fiber decomposition processing agent (hereinafter referred to as a fiber degradable ink). Is applied to a desired portion of the fiber fabric by an inkjet method.
 本発明で用いる繊維分解加工剤としては、非分解繊維(ポリアミド成分)のダメージが少なく、分解繊維(ポリエステル成分)が分解されるものであれば特に限定されないが、硝酸アルミニウム、硫酸ナトリウム、グアニジン弱酸塩、多価アルコールにエチレンオキシドを2モル以上付加した多価アルコールエチレンオキシド付加物、多価アルコールエチレンオキシド付加物と第四級アンモニウム塩を用いたもの等の公知の繊維分解加工剤等が挙げられる。なかでも、繊維分解効果が大きく、環境及び安全面で優れている点で、グアニジン弱酸塩が好ましい。そのなかでも、苛性ソーダ等の他の強アルカリに比べて、水溶液のpHが10~13と低く、作業の安全性や装置が腐蝕されにくい点、繊維を着色する場合に、使用する着色剤への影響が少ない点等から、特に炭酸グアニジンが好ましい。この炭酸グアニジンにより、ポリエステル成分が分解される理由としては、推測するに、炭酸グアニジンの付与後に行なわれる熱処理の工程で、炭酸グアニジンが尿素とアンモニアに分解されることで強アルカリへと変化するためと考えられる。 The fiber decomposition processing agent used in the present invention is not particularly limited as long as the non-degradable fiber (polyamide component) is less damaged and the decomposed fiber (polyester component) is decomposed, but aluminum nitrate, sodium sulfate, guanidine weak acid Examples thereof include known fiber decomposition processing agents such as salts, polyhydric alcohol ethylene oxide adducts obtained by adding 2 mol or more of ethylene oxide to polyhydric alcohols, and polyhydric alcohol ethylene oxide adducts and quaternary ammonium salts. Of these, guanidine weak acid salt is preferred because it has a large fiber degradation effect and is excellent in terms of environment and safety. Among them, compared to other strong alkalis such as caustic soda, the pH of the aqueous solution is as low as 10 to 13, and the safety of work and the device are less likely to be corroded. In view of little influence, guanidine carbonate is particularly preferable. The reason why the polyester component is decomposed by the guanidine carbonate is presumably because the guanidine carbonate is decomposed into urea and ammonia in the heat treatment step performed after the application of the guanidine carbonate, so that it changes into a strong alkali. it is conceivable that.
 繊維分解加工剤の付与は、その付与により鞘部のポリエステル成分が分解除去されて芯部のポリアミド成分が露出した領域(部分)とそうでない領域(部分)とからなる所望の模様が形成されるように付与される。 Application of the fiber decomposition processing agent decomposes and removes the polyester component of the sheath by the application to form a desired pattern composed of a region (part) where the polyamide component of the core part is exposed and a region (part) where it is not. Is granted as follows.
 繊維分解加工剤を捺染方式にて付与する場合に使用される捺染装置としては、ローラ捺染機やスクリーン捺染機等の一般に用いられている捺染機が用いられる。繊維布帛への、捺染糊の印捺は、ローラ捺染やスクリーン捺染等一般に行われている捺染方法で行われる。糊剤としては特に限定するものではなく公知の糊剤が用いられ、小麦澱粉、トラガントガム、ローカストビーンガム、ポリビニルアルコール、ポリアクリル酸ソーダ等の天然、加工、半合成、合成の糊剤を単独でまたは2種以上混合して用いることができる。また、使用する捺染糊の粘度、及び付与量は、対象となる繊維布帛の厚みや組織等の条件により、都度調整して使用すればよい。捺染機による捺染糊の付与後、乾熱または湿熱処理により繊維の分解を行い、さらに洗浄処理で捺染糊と分解したポリエステル成分を取り除くことで本発明の繊維布帛が製造できる。 As a printing apparatus used when applying the fiber decomposition processing agent by a printing method, a commonly used printing machine such as a roller printing machine or a screen printing machine is used. Printing of the printing paste on the fiber fabric is performed by a commonly used printing method such as roller printing or screen printing. The paste is not particularly limited, and known pastes are used, and natural, processed, semi-synthetic and synthetic pastes such as wheat starch, tragacanth gum, locust bean gum, polyvinyl alcohol and sodium polyacrylate are used alone. Alternatively, two or more kinds can be mixed and used. Moreover, what is necessary is just to adjust and use the viscosity of the printing paste to be used, and the amount of provision according to conditions, such as the thickness and structure | tissue of the target fiber fabric. After applying the printing paste with a printing machine, the fiber is decomposed by dry heat or wet heat treatment, and the fiber component of the present invention can be produced by removing the polyester component decomposed by the printing paste and washing treatment.
 また、糊剤付与の工程において繊維分解加工剤と同時に、ポリエステル繊維(本発明で使用される芯鞘型複合繊維のポリエステル成分を含む)の着色が可能な染料及び/またはポリアミド繊維(本発明で使用される芯鞘型複合繊維のポリアミド成分を含む)の着色が可能な染料を同時に付与することも可能である。すなわち、前記繊維分解加工剤とポリエステル繊維用染料及びポリアミド繊維用染料を単独または組み合せて捺染糊に混合し、印捺することで、同一繊維布帛上において、分解部面へ色柄の着色が可能となり、分解加工のみ、分解加工及び分解部分の着色加工、未分解部分の着色加工等の各種加工を同時に行うことができる。 In addition, in the paste application step, simultaneously with the fiber decomposition processing agent, a dye and / or polyamide fiber (in the present invention) capable of coloring the polyester fiber (including the polyester component of the core-sheath type composite fiber used in the present invention). It is also possible to simultaneously apply a dye capable of coloring (including the polyamide component of the core-sheath type composite fiber used). That is, the above-mentioned fiber decomposing agent, polyester fiber dye and polyamide fiber dye can be used alone or in combination, mixed with printing paste, and printed, allowing the colored pattern to be colored on the surface of the decomposed part on the same fiber fabric. Thus, only various processes such as the decomposition process, the decomposition process, the coloring process of the decomposition part, and the coloring process of the undecomposed part can be performed at the same time.
 次に、繊維分解加工剤を付与する方法としてインクジェット方式を用いることで、分解部分の深さや幅を自由に調整することができる。捺染型のような柄の制約もなく、1ピクセルレベルの緻密な意匠を自由に表現することができる。また、時間、コスト及び作業性に加え、大量の排水を出さないことから、環境の面においても優れているといえる。 Next, the depth and width of the decomposition part can be freely adjusted by using an ink jet method as a method for applying the fiber decomposition processing agent. A precise design at the level of one pixel can be freely expressed without restrictions on the pattern as in the textile printing type. Moreover, in addition to time, cost, and workability, a large amount of drainage is not discharged, so it can be said that it is excellent in terms of environment.
 繊維分解加工剤をインクジェット方式にて付与する場合に使用されるインクジェット印捺装置は、繊維分解加工剤及び着色用インクとして使用する染料インクを加熱分解しない方式であれば特に限定されない。例えば、荷電変調方式、帯電噴射方式、マイクロドット方式及びインクミスト方式等の連続方式、ピエゾ変換方式及び静電吸引方式等のオンデマンド方式等、いずれも採用可能である。なかでも、インク吐出量の安定性及び連続吐出性に優れ、比較的安価で製造できる点で、ピエゾ変換方式が好ましい。 The ink jet printing apparatus used when applying the fiber decomposition processing agent by the ink jet method is not particularly limited as long as it does not thermally decompose the fiber decomposition processing agent and the dye ink used as the coloring ink. For example, any of a continuous method such as a charge modulation method, a charge ejection method, a micro dot method and an ink mist method, an on-demand method such as a piezo conversion method and an electrostatic suction method can be adopted. Among them, the piezo conversion method is preferable because it is excellent in stability of ink discharge amount and continuous discharge property and can be manufactured at a relatively low cost.
 インクジェット方式において繊維分解加工剤の付与量としては、1~50g/mの範囲が好ましく、さらには5~30g/mが好ましい。付与量が1g/m未満であると、分解されない傾向にある。一方、50g/mを超えると、必要以上の量となるため、コスト高になる傾向にある。 In the ink jet system, the amount of the fiber decomposition processing agent applied is preferably in the range of 1 to 50 g / m 2 , more preferably 5 to 30 g / m 2 . When the applied amount is less than 1 g / m 2 , it tends not to be decomposed. On the other hand, if it exceeds 50 g / m 2 , the amount becomes more than necessary, and therefore the cost tends to increase.
 また、長時間安定した吐出が可能となる点で、繊維分解加工剤は水溶解させて使用することが好ましい。その場合、繊維分解加工剤の濃度としては、10~35質量%の範囲が好ましく、さらには15~30質量%の範囲が好ましい。10質量%未満であると、充分分解されない傾向にある。一方、35質量%を超えると、繊維分解加工剤の水への溶解限度に近くなるため、析出物が発生する等ノズル詰まりの原因となり、長時間安定した吐出が不可能となる傾向にある。 In addition, it is preferable to use the fiber decomposition processing agent after dissolving it in water in that stable discharge is possible for a long time. In this case, the concentration of the fiber decomposition processing agent is preferably in the range of 10 to 35% by mass, and more preferably in the range of 15 to 30% by mass. If it is less than 10% by mass, it tends not to be sufficiently decomposed. On the other hand, if it exceeds 35% by mass, the fiber decomposition processing agent is close to the solubility limit in water, which may cause nozzle clogging such as the occurrence of precipitates, and tends to be unable to discharge stably for a long time.
 繊維分解性インクの粘度は、25℃において、1~10cpsであることが好ましく、1~5cpsであることがより好ましい。1cps未満では吐出したインク滴が飛翔中に分裂し、目的の場所にインクが着弾し難くなるため分解部分と未分解部分の境界部分が判り難くなる傾向にある。一方、10cpsを超えると、高粘度のため、ノズルからのインクの吐出が困難となる傾向にある。 The viscosity of the fiber-decomposable ink is preferably 1 to 10 cps, more preferably 1 to 5 cps at 25 ° C. If it is less than 1 cps, the ejected ink droplets are split during the flight, and it is difficult for the ink to land at the target location, so that the boundary between the decomposed portion and the undecomposed portion tends to be difficult to understand. On the other hand, if it exceeds 10 cps, it tends to be difficult to eject ink from the nozzle due to high viscosity.
 ここで、繊維布帛に繊維分解加工剤をインクジェット方式にて付与する工程の前に、繊維布帛にインク受容層を形成する工程を含むことが好ましい。これにより形成されたインク受容層が、ノズルから吐出された繊維分解性インクを瞬時に受け止め、適度に保持するため、繊維分解性インクの滲みを防止することができる。 Here, it is preferable to include a step of forming an ink receiving layer on the fiber fabric before the step of applying the fiber decomposition processing agent to the fiber fabric by the ink jet method. The ink receiving layer thus formed instantaneously receives the fiber-decomposable ink ejected from the nozzle and appropriately holds it, so that bleeding of the fiber-decomposable ink can be prevented.
 インク受容層は、通常、水溶性高分子を主成分としたインク受容剤により形成される。
 水溶性高分子としては、例えば、アルギン酸ナトリウム、メチルセルロース、ヒドロキシメチルセルロース、カルボキシメチルセルロース、でんぷん、グアガム、ポリビニルアルコール及びポリアクリル酸等を挙げることができる。これらは2種類以上組み合わせて用いてもよい。なかでも、耐アルカリ性に優れ、低価格及び流動性に優れるカルボキシメチルセルロースを用いることが好ましい。インク受容層には、必要に応じて、還元防止剤、界面活性剤、防腐剤、耐光向上剤等を含有させることができる。
The ink receiving layer is usually formed of an ink receiving agent mainly composed of a water-soluble polymer.
Examples of the water-soluble polymer include sodium alginate, methyl cellulose, hydroxymethyl cellulose, carboxymethyl cellulose, starch, guar gum, polyvinyl alcohol, and polyacrylic acid. Two or more of these may be used in combination. Among them, it is preferable to use carboxymethylcellulose which is excellent in alkali resistance, low in cost and fluidity. The ink-receiving layer can contain a reduction inhibitor, a surfactant, a preservative, a light resistance improver, and the like as necessary.
 インク受容剤は、固形分換算で1~20g/m付与されることが好ましく、2~10g/m付与されることがより好ましい。付与量が1g/m未満であると、インク受容能力に劣るため、インクが滲んだり、裏抜けしたりする傾向にある。一方、20g/mを超えると、繊維布帛が硬くなることから、インクジェットプリンタでの搬送性が不良となったり、取り扱い時に受容剤が繊維布帛から脱落し易くなったりする傾向にある。 The ink receiving agent is preferably applied in an amount of 1 to 20 g / m 2 in terms of solid content, and more preferably 2 to 10 g / m 2 . When the applied amount is less than 1 g / m 2 , the ink receiving ability is inferior, so that the ink tends to bleed or fall through. On the other hand, if it exceeds 20 g / m 2 , the fiber fabric becomes hard, and therefore the transportability in the ink jet printer tends to be poor, and the acceptor tends to easily fall off from the fiber fabric during handling.
 また、その付与方法は、ディップニップ法、ロータリースクリーン法、ナイフコーター法、キスロールコーター法及びグラビアロールコーター法等が挙げられる。なかでも、繊維布帛表面だけでなく、繊維布帛全体にインク受容層を付与することができ、インク受容能力に優れる繊維布帛の製造が可能となる点で、ディップニップ法が好ましい。 Further, examples of the application method include a dip nip method, a rotary screen method, a knife coater method, a kiss roll coater method, and a gravure roll coater method. Of these, the dip nip method is preferable in that an ink receiving layer can be applied not only to the surface of the fiber fabric but also to the entire fiber fabric, and a fiber fabric having excellent ink receiving ability can be produced.
 インクジェット方式の場合においても、繊維分解加工剤と同時に、ポリエステル繊維の着色が可能なインク及び/またはポリアミド繊維の着色が可能なインクを付与することも可能である。すなわち、前記繊維分解性インク、ポリエステル繊維着色インク及びポリアミド繊維着色インクを備えるインクセットを準備し、インクを適宜選択して印捺することで、同一繊維素材上において、分解部分へ色柄の着色が可能となり、分解加工のみ、分解加工及び分解部分の着色加工、未分解部分の着色加工等の各種加工を同時に行うことができる。
 繊維分解性インクには、その他、必要に応じて乾燥防止剤、防腐剤及び水溶性色素等を添加することができる。
In the case of the ink jet system, it is also possible to apply an ink capable of coloring polyester fibers and / or an ink capable of coloring polyamide fibers simultaneously with the fiber decomposition processing agent. That is, by preparing an ink set including the fiber-decomposable ink, the polyester fiber-colored ink, and the polyamide fiber-colored ink, and appropriately selecting and printing the ink, the colored pattern is colored on the decomposed portion on the same fiber material. It is possible to perform various processes such as only the decomposition process, the decomposition process, the coloring process of the decomposed part, and the coloring process of the undecomposed part at the same time.
In addition to the fiber-degradable ink, a drying inhibitor, a preservative, a water-soluble dye, and the like can be added as necessary.
 前記したように、捺染方式においても、インクジェット方式においても、繊維分解加工剤の付与と同時に着色剤(着色インク、染料、顔料を含む)を付与できるが、より詳しくは、分解部分に色柄を表現する場合は、ポリアミド繊維着色剤を選択し、繊維分解加工剤と同一箇所に付与することが好ましい。また、分解加工は必要とせず、ポリエステル繊維のみを着色させる場合は、ポリエステル繊維着色剤を選択し、付与する。分解加工は必要とせず、ポリアミド繊維のみ着色させる場合は、ポリアミド繊維着色剤を選択し、印捺する。この場合、分解加工されない芯鞘型複合繊維の、芯部であるポリアミド繊維を着色させるには、芯部のポリアミド繊維が鞘部に露出している必要がある。使用する繊維布帛によっては、いずれか一方の繊維のみを着色すると、得られた色柄の目ムキや白ボケ等が生じ、品質的に不良となる場合がある。そのような場合は、それぞれの着色剤を同一箇所に印捺し、ポリエステル繊維とポリアミド繊維とを同時に着色する。 As described above, in both the textile printing method and the ink jet method, a colorant (including colored ink, dye, and pigment) can be applied simultaneously with the application of the fiber decomposition processing agent. When expressed, it is preferable to select a polyamide fiber colorant and apply it to the same location as the fiber decomposition processing agent. Moreover, decomposition | disassembly processing is not required and when coloring only a polyester fiber, a polyester fiber colorant is selected and provided. Decomposition is not required, and when only the polyamide fiber is colored, a polyamide fiber colorant is selected and printed. In this case, in order to color the polyamide fiber as the core of the core-sheath type composite fiber that is not decomposed, the polyamide fiber in the core needs to be exposed in the sheath. Depending on the fiber fabric used, if only one of the fibers is colored, the resulting color pattern may have unevenness or white blurring, resulting in poor quality. In such a case, each colorant is printed at the same location, and the polyester fiber and the polyamide fiber are colored simultaneously.
 ポリエステル繊維着色剤としては、堅牢度、鮮明性及び発色性に優れる分散染料を水分散させた着色剤を主に使用することができる。その他、顔料を水分散させた着色剤、または、カチオン可染型ポリエステル繊維を使用する場合は、カチオン染料を水溶解または水分散させた着色剤を使用することができる。 As the polyester fiber colorant, a colorant in which a disperse dye excellent in fastness, sharpness and color developability is dispersed in water can be mainly used. In addition, when using a colorant in which a pigment is dispersed in water or a cationic dyeable polyester fiber, a colorant in which a cationic dye is dissolved or dispersed in water can be used.
 前記ポリアミド繊維着色剤としては、反応性染料、酸性染料または金属錯塩型染料を水溶解させた着色剤が使用可能である。反応性染料の種類は、反応基として、モノクロロトリアジン基、モノフロロトリアジン基、ジフロロモノクロロピリミジン基及びトリクロロピリミジン基等から選択される1種を少なくとも1つ有する反応性染料が好ましい。
 その他の反応基を持つ反応性染料は、アルカリ雰囲気下で加水分解を起こし易く、繊維分解加工剤を含むインクと繊維布帛上で混合された場合に、反応基が分解し、ポリアミド繊維への着色濃度が低下する可能性が高い。
 ポリエステル繊維及びポリアミド繊維以外の繊維を含んでいる場合は、その繊維を着色可能な着色剤を適宜選択して印捺することができる。
As the polyamide fiber colorant, a colorant in which a reactive dye, an acid dye or a metal complex dye is dissolved in water can be used. The reactive dye is preferably a reactive dye having at least one selected from a monochlorotriazine group, a monofluorotriazine group, a difluoromonochloropyrimidine group, a trichloropyrimidine group, and the like as a reactive group.
Reactive dyes having other reactive groups are prone to hydrolysis in an alkaline atmosphere, and when mixed with an ink containing a fiber decomposition processing agent on a fiber fabric, the reactive groups decompose and color the polyamide fiber. Concentration is likely to decrease.
When fibers other than polyester fibers and polyamide fibers are included, a colorant capable of coloring the fibers can be appropriately selected and printed.
 インクジェット方式の場合においても繊維布帛に繊維分解加工剤を付与した後、熱処理が必要である。熱処理することにより、繊維が分解除去され、着色インクを付与した場合は、繊維への着色が行なわれる。 Even in the case of the inkjet method, heat treatment is necessary after applying a fiber decomposition processing agent to the fiber fabric. By heat treatment, the fibers are decomposed and removed, and when colored ink is applied, the fibers are colored.
 芯鞘型複合繊維のポリエステル成分を分解するための好ましい熱処理条件は、160~190℃にて約10分間程度である。160℃未満であると、ポリエステル成分の分解が不十分となるおそれがあり、また、インクジェット方式にて着色インクを付与した場合は、特にポリエステル繊維への着色も不十分となるおそれがある。190℃を超えると、ポリアミド繊維への着色が不十分となる、繊維が熱劣化して黄変する等の現象が発生しやすくなる。熱処理は、乾熱処理または湿熱処理のいずれでもよい。 A preferable heat treatment condition for decomposing the polyester component of the core-sheath composite fiber is 160 to 190 ° C. for about 10 minutes. When the temperature is lower than 160 ° C., the polyester component may be insufficiently decomposed, and when a colored ink is applied by an ink jet method, particularly the polyester fiber may be insufficiently colored. When the temperature exceeds 190 ° C., the polyamide fiber is insufficiently colored, and a phenomenon such as yellowing of the fiber due to thermal deterioration tends to occur. The heat treatment may be either dry heat treatment or wet heat treatment.
 熱処理をした後、繊維の分解物を繊維布帛から脱落させることを目的として、また、インクジェット方式にて着色インクを付与した場合においては、繊維布帛上に残留しているインク受容層、未固着の染料を脱落させることを目的として、洗浄処理を行うことが好ましい。これにより、さらに鮮明な分解部分と未分解部分との差異による意匠表現の形成が可能となる。 After the heat treatment, for the purpose of removing the degradation product of the fiber from the fiber cloth, and when the colored ink is applied by the ink jet method, the ink receiving layer remaining on the fiber cloth is not fixed. A washing treatment is preferably performed for the purpose of removing the dye. As a result, it is possible to form a design expression based on a difference between a clearer part and an undecomposed part.
 洗浄処理の条件としては、特に限定されるものではないが、例えば、繊維分解促進剤1~5g/Lを用いて、熱水処理温度70~100℃で、10~60分間処理すればよい。さらにNaOH水溶液2~15g/Lを用いて処理してもよい。 The conditions for the washing treatment are not particularly limited. For example, the treatment may be carried out using a fiber decomposition accelerator 1 to 5 g / L at a hot water treatment temperature of 70 to 100 ° C. for 10 to 60 minutes. Further, it may be treated with 2 to 15 g / L NaOH aqueous solution.
 繊維分解促進剤としては、脂肪族アミン塩陽イオン界面活性剤、脂肪族アミン塩の四級アンモニウム塩陽イオン界面活性剤、芳香族四級アンモニウム塩陽イオン界面活性剤及び複素環四級アンモニウム塩陽イオン界面活性剤等が使用できる。
 このように、繊維分解性加工剤を付与した後、熱処理及び洗浄処理することで、完全にポリエステル成分を分解除去することができる。
Examples of the fiber degradation accelerator include aliphatic amine salt cationic surfactants, quaternary ammonium salt cationic surfactants of aliphatic amine salts, aromatic quaternary ammonium salt cationic surfactants, and heterocyclic quaternary ammonium salts. A cationic surfactant or the like can be used.
As described above, the polyester component can be completely decomposed and removed by heat treatment and washing treatment after applying the fiber-degradable processing agent.
 本発明の繊維布帛の、繊維分解部分の破裂強度としては、使用する用途に応じた布帛の強度を維持できれば特に限定するものではない。細部の意匠性を表現することを重視する際には、150kPa以下でもよいが、加圧下着等のインナー用途で伸縮性やパワー差による機能性を表現したい場合は200kPa以上であることが好ましい。
 本発明の繊維布帛を構成する糸を抜き出した際の、分解部分の芯鞘型複合繊維の強度としては、2.5~5.0cN/dtexが好ましい。また、分解部分の芯鞘複合繊維の強力としては、120cN以上が好ましく、未分解部分の芯鞘型複合繊維の強力としては、分解後との強力差を発現させるためには200cN以上が好ましい。さらに、未分解部分の強力に対する分解部分の強力の比率((分解部分の芯鞘型複合繊維の強力/未分解部分の芯鞘型複合繊維の強力)×100)が30%以上であると、強度差が発現しやすく、インナー用途等で、着圧差を有するものを得やすい。なお、このような強度差があるものは、ポリウレタン弾性糸等の弾性を有する糸と組み合わせたり、伸縮性のある編成としたりする等、自由度のある組織とすることにより、分解部分の組織がルーズになりやすく、布帛として優れた伸縮性を得やすくなる。
The burst strength of the fiber decomposition portion of the fiber fabric of the present invention is not particularly limited as long as the strength of the fabric according to the intended use can be maintained. When emphasizing the expression of detailed design, it may be 150 kPa or less, but it is preferably 200 kPa or more when it is desired to express functionality due to stretchability or power difference in inner applications such as underwear.
The strength of the core-sheath composite fiber at the disassembly portion when the yarn constituting the fiber fabric of the present invention is extracted is preferably 2.5 to 5.0 cN / dtex. Further, the strength of the core-sheath composite fiber in the decomposed portion is preferably 120 cN or more, and the strength of the core-sheath composite fiber in the undecomposed portion is preferably 200 cN or more in order to develop a strength difference from that after decomposition. Furthermore, when the ratio of the strength of the decomposed portion to the strength of the undecomposed portion (the strength of the core-sheath composite fiber of the decomposed portion / the strength of the core-sheath composite fiber of the undecomposed portion) × 100) is 30% or more, A difference in strength is easily developed, and it is easy to obtain an inner use or the like having a difference in pressure. In addition, what has such a difference in strength is combined with an elastic yarn such as a polyurethane elastic yarn, or formed into a stretchable knitted structure, so that the structure of the decomposed portion is reduced. It becomes easy to loosen, and it becomes easy to obtain excellent stretchability as a fabric.
 本発明によれば、分解部分と未分解部分の境界において糸のほつれ(フィラメントのバラケ)に伴う品位低下が発生しない、境界のシャープ性に優れた繊維布帛を得ることができる。 According to the present invention, it is possible to obtain a fiber fabric excellent in sharpness of the boundary, in which no deterioration in quality due to fraying of the yarn (filament breakage) occurs at the boundary between the decomposed portion and the undecomposed portion.
 また、分解部分は組織がルーズになるため伸縮性が向上する。分解部分と未分解部分とでは伸縮差、強度差、通気度差等の物理的表現も可能となるため、分解部分と未分解部分の組合せによって、よりバリエーションに富んだ繊維布帛を得ることができる。 In addition, the disintegrated part has improved elasticity because the tissue becomes loose. Since physical expression such as expansion / contraction difference, strength difference, air permeability difference, etc. is possible between the decomposed part and the undecomposed part, a fiber fabric rich in variations can be obtained by combining the decomposed part and the undecomposed part. .
 本発明の繊維布帛は、前記した優れた効果をもつことから、水着、フィットネス衣料等のスポーツ用途やスパッツ、ガードル、ショーツ、ブラジャー等のインナー用途に特に好ましく用いられる。 Since the fiber fabric of the present invention has the above-described excellent effects, it is particularly preferably used for sports applications such as swimwear and fitness clothing and inner uses such as spats, girdles, shorts and brassieres.
 以下、本発明の実施例を比較例と共にあげ、本発明を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。各評価項目は、以下の方法に従って評価を行った。 Examples of the present invention will be described below together with comparative examples to specifically describe the present invention, but the present invention is not limited to the following examples. Each evaluation item was evaluated according to the following method.
(評価項目)
(1)糸の強度、伸度及び強力
 JIS L 1013に準じ、島津製作所(株)製、AGS 1KNGオートグラフ引張試験機を用い、試料糸長20cm、引張速度20cm/minの条件で試料が伸長破断したときの強度(cN/dtex)、伸度(%)及び強力(cN)を求めた。
(Evaluation item)
(1) Strength, elongation and strength of yarn According to JIS L 1013, using an AGS 1KNG autograph tensile tester manufactured by Shimadzu Corporation, the sample stretches under the conditions of a sample yarn length of 20 cm and a tensile speed of 20 cm / min. The strength (cN / dtex), elongation (%), and strength (cN) when fractured were determined.
(2)分解部分と未分解部分の境界の品位
 分解部分と未分解部分の境界の品位を、拡大鏡を用いて下記基準に従って目視判定した。
 ◎:分解部分と未分解部分の境界が鮮明で、毛羽等糸のほつれが全く認められない。
 ○:分解部分と未分解部分の境界が鮮明で、毛羽等糸のほつれがほとんど認められない。
 △:分解部分と未分解部分の境界は鮮明であるが、毛羽等糸のほつれが若干認められる。
 ×:分解部分と未分解部分の境界は不鮮明であり、毛羽等糸のほつれが認められる。
(2) Quality of the boundary between the decomposed part and the undecomposed part The quality of the boundary between the decomposed part and the undecomposed part was visually determined using a magnifying glass according to the following criteria.
A: The boundary between the decomposed part and the undecomposed part is clear, and fraying of yarn such as fluff is not observed at all.
○: The boundary between the decomposed part and the undecomposed part is clear, and fraying of fluff and the like is hardly observed.
(Triangle | delta): Although the boundary of a decomposition | disassembly part and an undecomposition | disassembly part is clear, fraying of yarns, such as fluff, is recognized a little.
X: The boundary between the decomposed part and the undecomposed part is unclear, and fraying of yarn such as fluff is observed.
(3)未分解部分の表面品位〈繊維の糸割れ〉
 未分解部分の表面品位を、拡大鏡を用いて下記基準に従って目視判定した。
 ◎:未分解部分の、繊維割れが全く発生しておらず目面の品位がよい。
 ○:未分解部分の、繊維割れがほとんど発生しておらず目面の品位がよい。
 △:未分解部分の、繊維割れがわずかに発生している。
 ×:未分解部分の、繊維割れが多く発生しており目面の品位が悪い。
(3) Surface quality of undecomposed part <Fiber thread cracking>
The surface quality of the undecomposed portion was visually determined using a magnifying glass according to the following criteria.
(Double-circle): The fiber crack of the undecomposed part does not generate | occur | produce at all and the quality of a face is good.
○: The fiber cracking of the undecomposed portion hardly occurs and the quality of the eye surface is good.
(Triangle | delta): The fiber crack of the undecomposed part has generate | occur | produced slightly.
X: Many fiber cracks occur in the undecomposed portion, and the quality of the eye surface is poor.
(4)分解の有無による表現性
 分解部分と未分解部分との差異によって意匠性が表現されているかについて、拡大鏡を用いて下記基準に従って目視判定した。
 ◎:分解部分の透け感が極めてよく、意匠性が表現されている。
 ○:分解部分の透け感がよく、意匠性が表現されている。
 △:分解部分の透け感は少ないが、意匠性は表現されている。
 ×:分解部分の透け感が悪く、意匠性が表現されていない。
(4) Expressability by the presence or absence of decomposition Whether or not the designability is expressed by the difference between the decomposed portion and the undecomposed portion was visually determined using a magnifying glass according to the following criteria.
(Double-circle): The translucent feeling of a decomposition | disassembly part is very good, and the designability is expressed.
○: The sense of sheerness of the disassembled part is good and the design is expressed.
(Triangle | delta): Although there is little translucency of a decomposition | disassembly part, the designability is expressed.
X: The sense of sheerness of the decomposed part is poor, and the design properties are not expressed.
(5)破裂強度
 ミューレン型破裂試験機により、JIS L 1018A法に準拠して測定し、下記基準で判定した。
 ◎:250kPa以上
 ○:200kPa以上250kPa未満
 △:200kPa未満
(5) Burst strength Measured by a Murren burst tester according to the JIS L 1018A method, and determined according to the following criteria.
◎: 250 kPa or more ○: 200 kPa or more and less than 250 kPa Δ: Less than 200 kPa
(6)ナイロン系ポリマーの相対粘度
 ポリアミド系ポリマーの相対粘度の測定は、JIS K 6810に従って98%硫酸中濃度1%、温度25℃において測定した。
(6) Relative viscosity of nylon-based polymer The relative viscosity of polyamide-based polymer was measured at a concentration of 1% in 98% sulfuric acid and a temperature of 25 ° C. according to JIS K6810.
(7)ポリエステル系ポリマーの固有粘度
 ポリエステル系ポリマーの固有粘度の測定は、溶媒にフェノール/テトラクロロエタン=6/4(重量比)混合液50mlに0.5gのポリマーを溶解して、オストワルド型粘度計を用いて、温度20℃において測定した。
(7) Intrinsic viscosity of polyester polymer Intrinsic viscosity of polyester polymer was measured by dissolving 0.5 g of polymer in 50 ml of a mixture of phenol / tetrachloroethane = 6/4 (weight ratio) in a solvent, and Ostwald viscosity. The measurement was performed at a temperature of 20 ° C. using a meter.
(芯鞘型複合繊維の製造)
<繊維a>
 複合紡糸機を用いて、未変性のポリエチレンテレフタレート(融点256℃、固有粘度0.63)を290℃で溶融し鞘成分とし、ナイロン6(融点224℃、相対粘度2.47)を260℃で溶融し芯成分として、紡糸温度280℃、芯鞘比率50/50で芯鞘型溶融紡糸口金から吐出後、冷却して油剤を付与し、巻取り速度800m/minで巻取り未延伸糸を得た。次いで紡出した未延伸糸を延撚機にてロールヒーター65℃、延伸倍率3.3倍、プレートヒーター150℃、延伸速度800m/minで延伸し、図1に示す繊維横断面のうち(a)の繊維横断面の芯鞘型複合繊維(繊度:100dtex/48f、強度:3.8cN/dtex、伸度:43.5%、芯部露出度:0%、芯部のみの強度:2.9cN/dtex)を得た。
(Manufacture of core-sheath type composite fiber)
<Fiber a>
Using a compound spinning machine, unmodified polyethylene terephthalate (melting point 256 ° C., intrinsic viscosity 0.63) was melted at 290 ° C. to form a sheath component, and nylon 6 (melting point 224 ° C., relative viscosity 2.47) was heated at 260 ° C. As melted core component, after discharging from the core-sheath melt spinneret at a spinning temperature of 280 ° C. and a core-sheath ratio of 50/50, it is cooled to give an oil agent, and an undrawn yarn wound at a winding speed of 800 m / min is obtained. It was. Next, the spun undrawn yarn was drawn at a roll heater at 65 ° C., a draw ratio of 3.3 times, a plate heater at 150 ° C., and a drawing speed of 800 m / min. ) Core-sheath type composite fiber (fineness: 100 dtex / 48 f, strength: 3.8 cN / dtex, elongation: 43.5%, core exposure: 0%, strength of core only: 2. 9 cN / dtex).
<繊維b>
 鞘成分を、テレフタル酸、エチレングリコール、5−ナトリウムスルホイソフタル酸(酸成分に対して1.5mol%)、DEG4.8mol%及び分子量600のPEG3.0質量%から構成される共重合ポリエチレンテレフタレート(融点237℃、固有粘度0.60)とする以外は、繊維aと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:3.5cN/dtex、伸度:44.5%、芯部露出度:0%、芯部分のみの強度:2.7cN/dtex)を得た。
<Fiber b>
The sheath component is a copolymerized polyethylene terephthalate composed of terephthalic acid, ethylene glycol, 5-sodium sulfoisophthalic acid (1.5 mol% with respect to the acid component), DEG 4.8 mol% and PEG 3.0 mass% with a molecular weight of 600 ( A core-sheath type composite fiber (fineness: 100 dtex / 48f, strength: 3.5 cN / dtex, elongation: 44.5%, core, except that the melting point is 237 ° C. and the intrinsic viscosity is 0.60) The degree of exposure was 0%, and the strength of only the core portion was 2.7 cN / dtex).
<繊維c>
 芯鞘比率を、67/33に変更して、繊度を変更する以外は、繊維bと同様に芯鞘型複合繊維(繊度:70dtex/48f、強度:4.0cN/dtex、伸度:44.2%、芯部露出度:0%、芯部のみの強度:2.7cN/dtex)を得た。
<Fiber c>
The core-sheath composite fiber (fineness: 70 dtex / 48f, strength: 4.0 cN / dtex, elongation: 44.) except that the fineness is changed by changing the core-sheath ratio to 67/33. 2%, core exposure: 0%, strength of core only: 2.7 cN / dtex).
<繊維d>
 繊維横断面形状が図1に示す繊維横断面のうち(i)で芯部露出度が8.9%である以外は繊維bと同様に芯鞘複合繊維(繊度:100dtex/48f、強度:3.5cN/dtex、伸度:34.0%、芯部のみの強度:3.3cN/dtex)を得た。
<Fiber d>
The core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3) is the same as the fiber b except that the fiber cross-sectional shape is (i) in the fiber cross-section shown in FIG. 1 and the core exposure is 8.9%. 0.5 cN / dtex, elongation: 34.0%, strength of the core only: 3.3 cN / dtex).
<繊維e>
 芯部露出度が5.2%である以外は繊維dと同様に芯鞘複合繊維(繊度:100dtex/48f、強度:3.4cN/dtex、伸度:37.5%、芯部のみの強度:3.1cN/dtex)を得た。
<Fiber e>
A core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3.4 cN / dtex, elongation: 37.5%, strength of the core only, except that the core exposure is 5.2%) : 3.1 cN / dtex).
<繊維f>
 鞘成分を、テレフタル酸、エチレングリコール、5−ナトリウムスルホイソフタル酸(酸成分に対して2.3mol%)、DEG4.8mol%及び分子量8000のPEG10質量%から構成される共重合ポリエチレンテレフタレート(融点241℃、固有粘度0.77)とする以外は、繊維aと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:3.4cN/dtex、伸度:42.3%、芯部露出度:0%、芯部のみの強度:2.6cN/dtex)を得た。
<Fiber f>
The sheath component was copolymerized polyethylene terephthalate (melting point 241) composed of terephthalic acid, ethylene glycol, 5-sodium sulfoisophthalic acid (2.3 mol% with respect to the acid component), DEG 4.8 mol%, and molecular weight 8000 PEG 10% by mass. The core-sheath type composite fiber (fineness: 100 dtex / 48f, strength: 3.4 cN / dtex, elongation: 42.3%, core exposure) : 0%, strength of core part only: 2.6 cN / dtex).
<繊維g>
 芯鞘複合繊維の芯鞘比率を、20/80と変更する以外は、繊維bと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:3.2cN/dtex、伸度:32.4%、芯部露出度:0%、芯部のみの強度:3.8cN/dtex)を得た。
<Fiber g>
Except for changing the core-sheath ratio of the core-sheath composite fiber to 20/80, the core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3.2 cN / dtex, elongation: 32.4) is the same as the fiber b. %, Core part exposure: 0%, strength of core part only: 3.8 cN / dtex).
<繊維h>
 芯鞘複合繊維の芯鞘比率を、90/10と変更する以外は、繊維bと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:4.4cN/dtex、伸度:49.2%、芯部露出度:0%、芯部のみの強度4.3cN/dtex)を得た。
<Fiber h>
The core-sheath composite fiber (fineness: 100 ctex / 48f, strength: 4.4 cN / dtex, elongation: 49.2) is the same as the fiber b except that the core-sheath ratio of the core-sheath composite fiber is changed to 90/10. %, Core exposure: 0%, strength of core only 4.3 cN / dtex).
<繊維i>
 芯鞘複合繊維の芯鞘比率を、10/90と変更する以外は、繊維dと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:3.1cN/dtex、伸度:30.4%、芯部露出度:8.9%、芯部のみの強度:5.4cN/dtex)を得た。
<Fiber i>
Except for changing the core-sheath ratio of the core-sheath composite fiber to 10/90, the core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3.1 cN / dtex, elongation: 30.4) is the same as the fiber d. %, Core exposure: 8.9%, strength of core only: 5.4 cN / dtex).
<繊維j>
 芯鞘複合繊維の芯鞘比率を、80/20と変更する以外は、繊維dと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:4.0cN/dtex、伸度:42.8%、芯部露出度8.9%、芯部のみの強度:3.8cN/dtex)を得た。
<Fiber j>
The core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 4.0 cN / dtex, elongation: 42.8) is the same as the fiber d except that the core-sheath ratio of the core-sheath composite fiber is changed to 80/20. %, Core exposure degree 8.9%, strength of core only: 3.8 cN / dtex).
<繊維k>
 芯鞘複合繊維の芯部露出度を、40%と変更する以外は、繊維dと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:3.7cN/dtex、伸度:38.4%、芯部露出度40%、芯部のみの強度:3.3cN/dtex)を得た。
<Fiber k>
The core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3.7 cN / dtex, elongation: 38.4) is the same as the fiber d, except that the core exposure of the core-sheath composite fiber is changed to 40%. %, Core exposure 40%, strength of core only: 3.3 cN / dtex).
<繊維l>
 芯鞘複合繊維の芯部露出度を、50%と変更する以外は、繊維dと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:3.6cN/dtex、伸度:36.6%、芯部露出度:50%、芯部のみの強度:3.3cN/dtex)を得た。
<Fiber l>
The core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 3.6 cN / dtex, elongation: 36.6) is the same as the fiber d except that the core-part exposed degree of the core-sheath composite fiber is changed to 50%. %, Core exposure: 50%, strength of core only: 3.3 cN / dtex).
<繊維m>
 鞘成分を、テレフタル酸、エチレングリコール、5−ナトリウムスルホイソフタル酸(酸成分に対して1.5mol%)、DEG4.8mol%及び分子量600のPEG3.0質量%から構成される共重合ポリエチレンテレフタレート(融点237℃、固有粘度0.60)、芯成分を未変性のポリエチレンテレフタレート(融点256℃、固有粘度0.63)とする以外は、繊維aと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:4.2cN/dtex、伸度:32.0%)を得た。
<Fiber m>
The sheath component is a copolymerized polyethylene terephthalate composed of terephthalic acid, ethylene glycol, 5-sodium sulfoisophthalic acid (1.5 mol% with respect to the acid component), DEG 4.8 mol% and PEG 3.0 mass% with a molecular weight of 600 ( A core-sheath type composite fiber (fineness: 100 dtex / min) as in the case of the fiber a except that the melting point is 237 ° C. and the intrinsic viscosity is 0.60) and the core component is unmodified polyethylene terephthalate (melting point 256 ° C. and the intrinsic viscosity is 0.63). 48f, strength: 4.2 cN / dtex, elongation: 32.0%).
<繊維n>
 芯成分をナイロン6(融点225℃、相対粘度2.98)とし、270℃で溶融する以外は、繊維bと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:4.2cN/dtex、伸度:48%、芯部露出度:0%、芯部分のみの強度:4.2cN/dtex)を得た。
<Fiber n>
A core-sheath type composite fiber (fineness: 100 dtex / 48 f, strength: 4.2 cN / dtex) is the same as the fiber b except that the core component is nylon 6 (melting point: 225 ° C., relative viscosity: 2.98) and it is melted at 270 ° C. , Elongation: 48%, core exposure: 0%, strength of core only: 4.2 cN / dtex).
<繊維o>
 芯成分をナイロン6(融点225℃、相対粘度3.37)とし、280℃で溶融する以外は、繊維bと同様に芯鞘型複合繊維(繊度:100dtex/48f、強度:4.8cN/dtex、伸度:36%、芯部露出度:0%、芯部分のみの強度:4.7cN/dtex)を得た。
<Fiber o>
A core-sheath type composite fiber (fineness: 100 dtex / 48 f, strength: 4.8 cN / dtex) is the same as the fiber b except that the core component is nylon 6 (melting point: 225 ° C., relative viscosity: 3.37) and it is melted at 280 ° C. , Elongation: 36%, core exposure: 0%, strength of core only: 4.7 cN / dtex).
<繊維p>
 芯成分をナイロン6(融点225℃、相対粘度2.98)とし、270℃で溶融する以外は、繊維dと同様に繊維横断面形状が図1に示す繊維横断面のうち(i)で芯部露出度が8.9%である芯鞘複合繊維(繊度:100dtex/48f、強度:4.1cN/dtex、伸度:48%、芯部のみの強度:4.0cN/dtex)を得た。
<Fiber p>
1 except that the core component is nylon 6 (melting point: 225 ° C., relative viscosity: 2.98) and melts at 270 ° C. A core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 4.1 cN / dtex, elongation: 48%, strength of the core only: 4.0 cN / dtex) with a part exposure of 8.9% was obtained. .
<繊維q>
 芯成分をナイロン6(融点225℃、相対粘度3.37)とし、280℃で溶融する以外は、繊維dと同様に繊維横断面形状が図1に示す繊維横断面のうち(i)で芯部露出度が8.9%である芯鞘複合繊維(繊度:100dtex/48f、強度:4.8cN/dtex、伸度:36%、芯部のみの強度:4.7cN/dtex)を得た。
<Fiber q>
1 except that the core component is nylon 6 (melting point: 225 ° C., relative viscosity: 3.37) and melts at 280 ° C. The fiber cross-sectional shape is the same as the fiber d in the fiber cross-section shown in FIG. A core-sheath composite fiber (fineness: 100 dtex / 48f, strength: 4.8 cN / dtex, elongation: 36%, strength of the core only: 4.7 cN / dtex) with a part exposure of 8.9% was obtained. .
<繊維r>
 芯成分をナイロン6(融点225℃、相対粘度2.98)とし、270℃で溶融させ、一方、鞘成分をテレフタル酸、エチレングリコール、5−ナトリウムスルホイソフタル酸(酸成分に対して1.5mol%)、DEG4.8mol%及び分子量600のPEG3.0質量%から構成される共重合ポリエチレンテレフタレート(融点237℃、固有粘度0.595)とテレフタル酸、エチレングリコール、5−ナトリウムスルホイソフタル酸(酸成分に対して2.3mol%)、DEG4.8mol%及び分子量8000のPEG10質量%から構成される共重合ポリエチレンテレフタレート(融点241℃、固有粘度0.770)を重量比率6/4で混合して290℃で溶融する以外は、繊維dと同様に繊維横断面形状が図1に示す繊維横断面のうち(i)で芯部露出度が8.9%である芯鞘複合繊維(繊度:100dtex/48f、強度:4.2cN/dtex、伸度:40%、芯部のみの強度:4.1cN/dtex)を得た。
<Fiber r>
The core component is nylon 6 (melting point 225 ° C., relative viscosity 2.98) and melted at 270 ° C., while the sheath component is terephthalic acid, ethylene glycol, 5-sodium sulfoisophthalic acid (1.5 mol with respect to the acid component) %), DEG 4.8 mol%, and copolymerized polyethylene terephthalate (melting point: 237 ° C., intrinsic viscosity: 0.595) composed of PEG of 4.8 mol% and molecular weight of 600, terephthalic acid, ethylene glycol, 5-sodium sulfoisophthalic acid (acid) 2.3 mol%), DEG 4.8 mol%, and copolymerized polyethylene terephthalate (melting point 241 ° C., intrinsic viscosity 0.770) composed of 10% by mass of PEG having a molecular weight of 8000 were mixed at a weight ratio of 6/4. The fiber shown in FIG. 1 has the same cross-sectional shape as the fiber d except that it melts at 290 ° C. The core-sheath composite fiber having a core exposure degree of 8.9% in the cross section (fineness: 100 dtex / 48f, strength: 4.2 cN / dtex, elongation: 40%, strength of the core only: 4) .1 cN / dtex).
 繊維についての情報を表1に示す。
実施例1
Information about the fibers is shown in Table 1.
Example 1
 上記で作成された繊維aを用いて、鹿の子組織の編物A(厚さ1mm)を得た。さらに得られた編物Aについて一般的な条件により精練、セットを行った。 A knitted fabric A (thickness: 1 mm) having a Kanoko structure was obtained using the fiber a prepared above. Further, the obtained knitted fabric A was scoured and set under general conditions.
 次に、編物Aに対し以下の方法に従って繊維分解加工を行った。
(1)インク受容層の形成
 下記処方1の組成物を混合し、ホモジナイザーを用いて1時間攪拌して得られた処理液を、上記で得られた編物に、固形分換算で2g/mになるようにディップニップ法で付与し、170℃で2分間乾燥してインク受容層が形成された編物を得た。
Next, fiber decomposition processing was performed on the knitted fabric A according to the following method.
(1) Formation of Ink Receiving Layer The treatment liquid obtained by mixing the composition of the following formulation 1 and stirring for 1 hour using a homogenizer was added to the knitted fabric obtained above in terms of solid content of 2 g / m 2. Was applied by a dip nip method and dried at 170 ° C. for 2 minutes to obtain a knitted fabric on which an ink receiving layer was formed.
<処方1>
 DKSファインガムHEL−1:2質量%
 (第一工業製薬(株)製、エーテル化カルボキシメチルセルロース)
 MSリキッド:5%質量
 (明成化学工業(株)製、ニトロベンゼンスルホン酸塩、還元防止剤、
  有効成分30%)
 水:93質量%
<Prescription 1>
DKS Fine Gum HEL-1: 2% by mass
(Daiichi Kogyo Seiyaku Co., Ltd., etherified carboxymethylcellulose)
MS liquid: 5% by mass (manufactured by Meisei Chemical Co., Ltd., nitrobenzene sulfonate, reduction inhibitor,
30% active ingredient)
Water: 93% by mass
(2)繊維分解性インクの調製
 下記処方2の組成物を混合し、スターラーを用いて1時間攪拌後、ADVANTEC高純度濾紙No.5A(東洋濾紙(株)製)にて減圧濾過後、真空脱気処理し、繊維分解性インクを得た。なお、25℃における粘度は、3cpsであった。
(2) Preparation of fiber-decomposable ink The composition of the following formulation 2 was mixed, stirred for 1 hour using a stirrer, and then ADVANTEC high purity filter paper No. After filtration under reduced pressure with 5A (manufactured by Toyo Filter Paper Co., Ltd.), vacuum deaeration treatment was performed to obtain a fiber-decomposable ink. The viscosity at 25 ° C. was 3 cps.
<処方2>
 炭酸グアニジン(繊維分解加工剤):20質量%
 尿素(溶解安定剤):5質量%
 ジエチレングリコール(乾燥防止剤):5質量%
 水:70質量%
<Prescription 2>
Guanidine carbonate (fiber decomposition processing agent): 20% by mass
Urea (dissolution stabilizer): 5% by mass
Diethylene glycol (anti-drying agent): 5% by mass
Water: 70% by mass
(3)インクジェット印捺
 予め定めた柄となるように、以下の条件にてインクジェット印捺を行った。
<インクジェット印捺条件>
 印捺装置:オンデマンド方式シリアル走査型インクジェット印捺装置
 ノズル径:50μm
 駆動電圧:100V
 周波数:5kHz
 解像度:360dpi
 繊維分解性インク印捺量:40g/m
(3) Inkjet printing Inkjet printing was performed under the following conditions so as to obtain a predetermined pattern.
<Inkjet printing conditions>
Printing device: On-demand serial scanning ink jet printing device Nozzle diameter: 50 μm
Drive voltage: 100V
Frequency: 5kHz
Resolution: 360 dpi
Fibre-degradable ink printing amount: 40 g / m 2
 編物を乾燥した後、HTスチーマーを用いて175℃で10分間湿熱処理した。さらに、トライポールTK(第一工業製薬(株)製、ノニオン界面活性剤)を2g/L、ソーダ灰を2g/L、ハイドロサルファイトを1g/L含むソーピング浴にて、80℃で10分間処理して洗浄した後、水洗し、乾燥して分解部分と未分解部分を有する実施例1の繊維布帛を得た。 After drying the knitted fabric, it was wet-heat treated at 175 ° C. for 10 minutes using an HT steamer. Furthermore, in a soaping bath containing 2 g / L of Tripol TK (Daiichi Kogyo Seiyaku Co., Ltd., nonionic surfactant), 2 g / L of soda ash, and 1 g / L of hydrosulfite at 80 ° C. for 10 minutes. After treating and washing, the fiber fabric of Example 1 having a decomposed part and an undecomposed part was obtained by washing with water and drying.
 また、得られた実施例1の繊維布帛を構成する糸を抜き出した際の、分解部分の強力は145.9cN、未分解部分の強力は378cNであった。分解部分の強力に対する分解部分の強力の比率((分解部分の芯鞘型複合繊維の強力/未分解部分の芯鞘型複合繊維の強力)×100)は39%であった。得られた繊維布帛の評価を表2に示す。
実施例2
Further, when the yarn constituting the fiber fabric of Example 1 obtained was extracted, the strength of the decomposed portion was 145.9 cN, and the strength of the undecomposed portion was 378 cN. The ratio of the strength of the decomposed portion to the strength of the decomposed portion (the strength of the core-sheath composite fiber of the decomposed portion / the strength of the core-sheath composite fiber of the undecomposed portion) × 100) was 39%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 2
 上記で作成された繊維bを用いた以外は全て実施例1と同様な工程で製造し、実施例2の繊維布帛を得た。 The fiber fabric of Example 2 was obtained in the same manner as in Example 1 except that the fiber b created above was used.
 また、得られた実施例2の繊維布帛を構成する糸を抜き出した際の、分解部分の強力は135.3cN、未分解部分の強力は350.9cNであった。上記未分解部分の強力に対する分解部分の強力の比率は39%であった。得られた繊維布帛の評価を表2に示す。
実施例3
Further, when the yarn constituting the obtained fiber fabric of Example 2 was extracted, the strength of the decomposed portion was 135.3 cN, and the strength of the undecomposed portion was 350.9 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 39%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 3
 上記で作成された繊維cを用いた以外は全て実施例1と同様な工程で製造し、実施例3の繊維布帛を得た。 The fiber fabric of Example 3 was obtained in the same manner as in Example 1 except that the fiber c created above was used.
 また、得られた実施例3の繊維布帛を構成する糸を抜き出した際の、分解部分の強力は135.3cN、未分解部分の強力は279.2cNであった。上記未分解部分の強力に対する分解部分の強力の比率は49%であった。得られた繊維布帛の評価を表2に示す。
実施例4
Further, when the yarn constituting the obtained fiber fabric of Example 3 was extracted, the strength of the decomposed portion was 135.3 cN, and the strength of the undecomposed portion was 279.2 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 49%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 4
 上記で作成された繊維dを用いた以外は全て実施例1と同様な工程で製造し、実施例4の繊維布帛を得た。 The fiber fabric of Example 4 was obtained in the same manner as in Example 1 except that the fiber d created above was used.
 また、得られた実施例4の繊維布帛を構成する芯鞘複合繊維を抜き出した際の、分解部分の強力は163.1cN、未分解部分の強力は361.5cNであった。上記未分解部分の強力に対する分解部分の強力の比率は45%であった。得られた繊維布帛の評価を表2に示す。
実施例5
Further, when the core-sheath composite fiber constituting the obtained fiber fabric of Example 4 was extracted, the strength of the decomposed portion was 163.1 cN, and the strength of the undecomposed portion was 361.5 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 45%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 5
 上記で作成された繊維eを用いた以外は全て実施例1と同様な工程で製造し、実施例5の繊維布帛を得た。 The fiber fabric of Example 5 was obtained in the same manner as in Example 1 except that the fiber e created above was used.
 また、得られた実施例5の繊維布帛を構成する糸を抜き出した際の、分解部分の強力は156.2cN、未分解部分の強力は346.1cNであった。上記未分解部分の強力に対する分解部分の強力の比率は45%であった。得られた繊維布帛の評価を表2に示す。
実施例6
Further, when the yarn constituting the obtained fiber fabric of Example 5 was extracted, the strength of the decomposed portion was 156.2 cN, and the strength of the undecomposed portion was 346.1 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 45%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 6
 上記で作成された繊維fを用いた以外は全て実施例1と同様な工程で製造し、実施例6の繊維布帛を得た。 The fiber fabric of Example 6 was obtained in the same manner as in Example 1 except that the fiber f created above was used.
 また、得られた繊維布帛を構成する芯鞘複合繊維を抜き出した際の、分解部分の強力は129.3cN、未分解部分の強力は335.0cNであった。上記未分解部分の強力に対する分解部分の強力の比率は39%であった。得られた繊維布帛の評価を表2に示す。
実施例7
Further, when the core-sheath composite fiber constituting the obtained fiber fabric was extracted, the strength of the decomposed portion was 129.3 cN, and the strength of the undecomposed portion was 335.0 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 39%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 7
 上記で作成された繊維gを用いた以外は全て実施例1と同様な工程で製造し、実施例7の繊維布帛を得た。 The fiber fabric of Example 7 was obtained in the same manner as in Example 1 except that the fiber g prepared above was used.
 また、得られた繊維布帛を構成する芯鞘複合繊維を抜き出した際の、分解部分の強力は75.1cN、未分解部分の強力は322.5cNであった。上記未分解部分の強力に対する分解部分の強力の比率は23%であった。得られた繊維布帛の評価を表2に示す。
実施例8
Further, when the core-sheath composite fiber constituting the obtained fiber fabric was extracted, the strength of the decomposed portion was 75.1 cN, and the strength of the undecomposed portion was 322.5 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 23%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 8
 上記で作成された繊維hを用いた以外は全て実施例1と同様な工程で製造し、実施例8の繊維布帛を得た。 All were manufactured in the same process as Example 1 except having used the fiber h created above, and the fiber fabric of Example 8 was obtained.
 また、得られた繊維布帛を構成する芯鞘複合繊維を抜き出した際の、分解部分の強力は387.4cN、未分解部分の強力は441.2cNであった。上記未分解部分の強力に対する分解部分の強力の比率は88%であった。得られた繊維布帛の評価を表2に示す。
実施例9
Further, when the core-sheath composite fiber constituting the obtained fiber fabric was extracted, the strength of the decomposed portion was 387.4 cN, and the strength of the undecomposed portion was 441.2 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 88%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 9
 上記で作成された繊維iを用いた以外は全て実施例1と同様な工程で製造し、実施例9の繊維布帛を得た。 The fiber fabric of Example 9 was obtained in the same manner as in Example 1 except that the fiber i created above was used.
 また、得られた繊維布帛を構成する芯鞘複合繊維を抜き出した際の、分解部分の強力は54.2cN、未分解部分の強力は313.4cNであった。上記未分解部分の強力に対する分解部分の強力の比率は17%であった。得られた繊維布帛の評価を表2に示す。
実施例10
Further, when the core-sheath composite fiber constituting the obtained fiber fabric was extracted, the strength of the decomposed portion was 54.2 cN, and the strength of the undecomposed portion was 313.4 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 17%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 10
 上記で作成された繊維jを用いた以外は全て実施例1と同様な工程で製造し、実施例10の繊維布帛を得た。
 また、得られた実施例10の繊維布帛を構成する芯鞘複合繊維を抜き出した際の、分解部分の強力は301.4cN、未分解部分の強力は402.3cNであった。上記未分解部分の強力に対する分解部分の強力の比率は75%であった。得られた繊維布帛の評価を表2に示す。
実施例11
A fiber fabric of Example 10 was obtained in the same manner as in Example 1 except that the fiber j created above was used.
Further, when the core-sheath composite fiber constituting the obtained fiber fabric of Example 10 was extracted, the strength of the decomposed portion was 301.4 cN, and the strength of the undecomposed portion was 402.3 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 75%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 11
 上記で作成された繊維kを用いた以外は全て実施例1と同様な工程で製造し、実施例11の繊維布帛を得た。
 また、得られた実施例11の繊維布帛を構成する芯鞘複合繊維を抜き出した際の、分解部分の強力は165.8cN、未分解部分の強力は374.3cNであった。上記未分解部分の強力に対する分解部分の強力の比率は44%であった。得られた繊維布帛の評価を表2に示す。
実施例12
Except for using the fiber k prepared above, all were manufactured in the same process as in Example 1 to obtain a fiber fabric of Example 11.
Further, when the core-sheath composite fiber constituting the obtained fiber fabric of Example 11 was extracted, the strength of the decomposed portion was 165.8 cN, and the strength of the undecomposed portion was 374.3 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 44%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 12
 上記で作成された繊維lを用いた以外は全て実施例1と同様な工程で製造し、実施例12の繊維布帛を得た。
 また、得られた実施例12の繊維布帛を構成する芯鞘複合繊維を抜き出した際の、分解部分の強力は164.7cN、未分解部分の強力は358.1cNであった。上記未分解部分の強力に対する分解部分の強力の比率は46%であった。得られた繊維布帛の評価を表2に示す。
実施例13
Except for using the fiber l prepared above, all were manufactured in the same process as in Example 1 to obtain a fiber fabric of Example 12.
Further, when the core-sheath composite fiber constituting the obtained fiber fabric of Example 12 was extracted, the strength of the decomposed portion was 164.7 cN, and the strength of the undecomposed portion was 358.1 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 46%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 13
 上記で作成された、繊維aを使用した編物Aに対し以下の方法に従って繊維分解加工を行った。
 下記処方3の組成物を混合し、水と糊剤の添加により粘度を40000~50000cpsに調整し、目的とする繊維分解加工剤を得た。得られた繊維分解加工剤をロータリー捺染機により、乾燥後の塗布量が単位面積当たり約4g/mとなるように塗布した。
The knitted fabric A using the fiber a prepared above was subjected to fiber decomposition processing according to the following method.
The composition of the following prescription 3 was mixed, and the viscosity was adjusted to 40000-50000 cps by adding water and a paste to obtain the intended fiber decomposition processing agent. The obtained fiber decomposition processing agent was applied by a rotary printing machine so that the coating amount after drying was about 4 g / m 2 per unit area.
<処方3>
 第4級アンモニウム塩(ポリエステル分解剤):30部
 尿素(浸透剤):20部
 ハイプリントRH(林化学工業)6%水溶解品(糊剤):10~20部
 水:30~40部
<Prescription 3>
Quaternary ammonium salt (polyester decomposition agent): 30 parts Urea (penetrating agent): 20 parts Highprint RH (Hayashi Chemical Industry) 6% water-soluble product (glue): 10-20 parts Water: 30-40 parts
 110℃で2分間編物を乾燥した後、HTスチーマーを用いて110℃で10分間湿熱処理した。さらに、トライポールTK(第一工業製薬(株)製、ノニオン界面活性剤)を2g/L、ソーダ灰を2g/L、ハイドロサルファイトを1g/L含むソーピング浴にて、80℃で10分間処理して洗浄した後、水洗し、乾燥して分解部分と未分解部分を有する実施例13の繊維布帛を得た。得られた繊維布帛の評価を表2に示す。
実施例14
The knitted fabric was dried at 110 ° C. for 2 minutes, and then wet-heat treated at 110 ° C. for 10 minutes using an HT steamer. Furthermore, in a soaping bath containing 2 g / L of Tripol TK (Daiichi Kogyo Seiyaku Co., Ltd., nonionic surfactant), 2 g / L of soda ash, and 1 g / L of hydrosulfite at 80 ° C. for 10 minutes. After the treatment and washing, the fiber fabric of Example 13 having a decomposed part and an undecomposed part was obtained by washing with water and drying. Table 2 shows the evaluation of the obtained fiber fabric.
Example 14
 上記で作成された繊維aを用いて、鹿の子組織の編物に代えてツイル組織の織物とした以外は全て実施例1と同様な工程で製造し、実施例14の繊維布帛を得た。得られた繊維布帛の評価を表2に示す。
実施例15
A fiber fabric of Example 14 was obtained in the same manner as in Example 1 except that the fiber a created above was used instead of a knitted fabric of Kanoko structure and a twill textured fabric was used. Table 2 shows the evaluation of the obtained fiber fabric.
Example 15
 上記で作成された繊維nを用いた以外は全て実施例1と同様な工程で製造し、実施例15の繊維布帛を得た。 The fiber fabric of Example 15 was obtained in the same manner as in Example 1 except that the fiber n created above was used.
 また、得られた実施例15の繊維布帛を構成する糸を抜き出した際の、分解部分の強力は210.5cN、未分解部分の強力は420.2cNであった。上記未分解部分の強力に対する分解部分の強力の比率は50%であった。得られた繊維布帛の評価を表2に示す。
実施例16
Further, when the yarn constituting the fiber fabric of Example 15 obtained was extracted, the strength of the decomposed portion was 210.5 cN, and the strength of the undecomposed portion was 420.2 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 50%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 16
 上記で作成された繊維oを用いた以外は全て実施例1と同様な工程で製造し、実施例16の繊維布帛を得た。 The fiber fabric of Example 16 was obtained in the same manner as in Example 1 except that the fiber o created above was used.
 また、得られた実施例16の繊維布帛を構成する糸を抜き出した際の、分解部分の強力は235.2cN、未分解部分の強力は470.6cNであった。上記未分解部分の強力に対する分解部分の強力の比率は50%であった。得られた繊維布帛の評価を表2に示す。
実施例17
Further, when the yarn constituting the obtained fiber fabric of Example 16 was extracted, the strength of the decomposed portion was 235.2 cN, and the strength of the undecomposed portion was 470.6 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 50%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 17
 上記で作成された繊維pを用いた以外は全て実施例1と同様な工程で製造し、実施例17の繊維布帛を得た。 The fiber fabric of Example 17 was obtained in the same manner as in Example 1 except that the fiber p created above was used.
 また、得られた実施例17の繊維布帛を構成する糸を抜き出した際の、分解部分の強力は200.2cN、未分解部分の強力は410.8cNであった。上記未分解部分の強力に対する分解部分の強力の比率は49%であった。得られた繊維布帛の評価を表2に示す。
実施例18
Further, when the yarn constituting the fiber fabric of Example 17 obtained was extracted, the strength of the decomposed portion was 200.2 cN, and the strength of the undecomposed portion was 410.8 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 49%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 18
 上記で作成された繊維qを用いた以外は全て実施例1と同様な工程で製造し、実施例18の繊維布帛を得た。 The fiber fabric of Example 18 was obtained in the same manner as in Example 1 except that the fiber q created above was used.
 また、得られた実施例18の繊維布帛を構成する糸を抜き出した際の、分解部分の強力は235.3cN、未分解部分の強力は480.7cNであった。上記未分解部分の強力に対する分解部分の強力の比率は49%であった。得られた繊維布帛の評価を表2に示す。
実施例19
Further, when the yarn constituting the fiber fabric of Example 18 obtained was extracted, the strength of the decomposed portion was 235.3 cN, and the strength of the undecomposed portion was 480.7 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 49%. Table 2 shows the evaluation of the obtained fiber fabric.
Example 19
 上記で作成された繊維rを用いた以外は全て実施例1と同様な工程で製造し、実施例19の繊維布帛を得た。 The fiber fabric of Example 19 was obtained in the same manner as in Example 1 except that the fiber r created above was used.
 また、得られた実施例19の繊維布帛を構成する糸を抜き出した際の、分解部分の強力は200.1cN、未分解部分の強力は410.5cNであった。上記未分解部分の強力に対する分解部分の強力の比率は49%であった。得られた繊維布帛の評価を表2に示す。 Further, when the yarn constituting the fiber fabric of Example 19 obtained was extracted, the strength of the decomposed portion was 200.1 cN and the strength of the undecomposed portion was 410.5 cN. The ratio of the strength of the decomposed portion to the strength of the undecomposed portion was 49%. Table 2 shows the evaluation of the obtained fiber fabric.
〔比較例1〕
 上記で作成された繊維mを用いた以外は全て実施例1と同様な工程で製造し、比較例1の繊維布帛を得た。得られた繊維布帛の評価を表2に示す。
[Comparative Example 1]
Except for using the fiber m prepared above, all were manufactured in the same process as in Example 1 to obtain a fiber fabric of Comparative Example 1. Table 2 shows the evaluation of the obtained fiber fabric.
〔比較例2〕
 ナイロン6(東レ株式会社製、56dtex/17f)、ポリエステル繊維(東レ株式会社製、44dtex/48f)、ポリウレタン繊維(旭化成せんい株式会社製、78dtex)を用いて鹿の子組織により交編し、ナイロン6が49%、ポリエステル繊維が30%、ポリウレタン繊維が21%の、鹿の子組織の編物を得た。以後は実施例1と同様な工程で製造し、比較例2の繊維布帛を得た。得られた繊維布帛の評価を表2に示す。
[Comparative Example 2]
Nylon 6 (manufactured by Toray Industries, Inc., 56 dtex / 17f), polyester fiber (manufactured by Toray Industries, Inc., 44 dtex / 48f), polyurethane fiber (manufactured by Asahi Kasei Fibers Co., Ltd., 78 dtex) is knitted with a Kanoko structure. A knitted fabric of Kanoko structure comprising 49%, polyester fiber 30% and polyurethane fiber 21% was obtained. Thereafter, the same process as in Example 1 was carried out to obtain a fiber fabric of Comparative Example 2. Table 2 shows the evaluation of the obtained fiber fabric.
〔比較例3〕
 ナイロン6(東レ株式会社製、78dtex/24f)に、カチオン可染ポリエステル仮撚糸(東レ株式会社、56dtex/36f)を、スピンドル回転数10500rpm、撚数650(Z撚)T/mで巻き付けることによりナイロン6/ポリエステル複合被覆糸を得た。
 得られた複合被覆糸を用いて、鹿の子組織の編物を作成した。以後は実施例1と同様な工程で製造し、比較例3の繊維布帛を得た。得られた繊維布帛の評価を表2に示す。
[Comparative Example 3]
By winding a cationic dyeable polyester false twisted yarn (Toray Industries, Inc., 56 dtex / 36f) on nylon 6 (Toray Industries, Inc., 78 dtex / 24f) at a spindle rotation speed of 10500 rpm and a twist number of 650 (Z twist) T / m A nylon 6 / polyester composite coated yarn was obtained.
Using the obtained composite coated yarn, a knitted fabric of Kanoko structure was prepared. Thereafter, the same process as in Example 1 was carried out to obtain a fiber fabric of Comparative Example 3. Table 2 shows the evaluation of the obtained fiber fabric.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~19の繊維布帛はいずれも、繊維分解加工剤による分解部分と未分解部分との境界部分のシャープ性に優れ、分解部分と未分解部分との差異により高品位の意匠を形成することができるが、比較例1~3の繊維布帛は分解部分と未分解部分との境界部分のシャープ性に劣り、高品位の意匠を形成することはできなかった。
 なお、実施例4、5、9、10、17~19のように、繊維横断面において、ポリアミド成分の一部が繊維表面に露出し、芯部露出度が1~30%のものは、特に、鞘部の除去性に優れ、分解部分と未分解部分の境界品位や意匠表現性に優れたものであった。
Each of the fiber fabrics of Examples 1 to 19 is excellent in sharpness at the boundary between the decomposed portion and the undecomposed portion by the fiber decomposition processing agent, and forms a high-quality design due to the difference between the decomposed portion and the undecomposed portion. However, the fiber fabrics of Comparative Examples 1 to 3 were inferior in sharpness at the boundary portion between the decomposed portion and the undecomposed portion, and a high-quality design could not be formed.
As in Examples 4, 5, 9, 10, 17 to 19, in the fiber cross section, a part of the polyamide component is exposed on the fiber surface and the core portion exposure is 1 to 30%. The sheath part was excellent in removability, and the boundary quality between the decomposed part and the undecomposed part and the design expression were excellent.
 本発明は、2010年7月14日に出願された日本国特許出願2010−160025号に基づく。本明細書中に日本国特許出願2010−160025号の明細書、特許請求の範囲、図面全体を参照して取り込むものとする。 The present invention is based on Japanese Patent Application No. 2010-160025 filed on July 14, 2010. The specification of the Japanese Patent Application 2010-160025, claims, and the entire drawing are incorporated in the present specification.
 本発明は、分解部分と未分解部分との境界部分のシャープ性に優れ、意匠性や部分的な機能性の付与に適した繊維布帛に好適である。 The present invention is excellent in the sharpness of the boundary portion between the decomposed portion and the undecomposed portion, and is suitable for a fiber fabric suitable for imparting design properties and partial functionality.

Claims (12)

  1. 芯鞘型複合繊維からなる糸によって全部または一部が構成されている繊維布帛であって、芯鞘型複合繊維の芯部がポリアミド成分からなり、鞘部がポリエステル成分からなり、鞘部のポリエステル成分が繊維分解加工剤によって除去された部分と除去されていない部分とを持つことを特徴とする繊維布帛。 A fiber fabric that is entirely or partially constituted by yarns made of a core-sheath type composite fiber, wherein the core part of the core-sheath type composite fiber is made of a polyamide component, the sheath part is made of a polyester component, and the polyester of the sheath part A fiber fabric characterized in that the component has a part removed by a fiber decomposition processing agent and a part not removed.
  2. 前記芯鞘型複合繊維の横断面において、ポリアミド成分とポリエステル成分の横断面積比率が、20/80~80/20であることを特徴とする、請求項1に記載の繊維布帛。 2. The fiber fabric according to claim 1, wherein the cross-sectional area ratio of the polyamide component and the polyester component is 20/80 to 80/20 in the cross section of the core-sheath composite fiber.
  3. 前記芯鞘型複合繊維の横断面において、芯部のポリアミド成分の一部が繊維表面に露出していることを特徴とする、請求項1または2に記載の繊維布帛。 3. The fiber fabric according to claim 1, wherein a part of the polyamide component of the core part is exposed on the fiber surface in a cross section of the core-sheath composite fiber.
  4. 前記芯鞘型複合繊維の、鞘部のポリエステル成分がアルカリ金属スルホン酸基を有する化合物により変性された変性ポリエステル共重合体からなることを特徴とする、請求項1乃至3のいずれか1項に記載の繊維布帛。 The polyester component of the sheath part of the core-sheath type composite fiber is made of a modified polyester copolymer modified with a compound having an alkali metal sulfonic acid group, according to any one of claims 1 to 3. The fiber fabric described.
  5. 分解除去されていないポリエステル成分及び/またはポリエステル成分が分解除去された部分のポリアミド成分に色柄が付与されていることを特徴とする、請求項1乃至4のいずれか1項に記載の繊維布帛。 The fiber fabric according to any one of claims 1 to 4, wherein a color pattern is imparted to a polyester component that has not been decomposed and / or removed, and / or a polyamide component in which the polyester component has been decomposed and removed. .
  6. 前記ポリアミド成分を構成するポリアミド系ポリマーの相対粘度が、1.5~6.0であることを特徴とする、請求項1乃至5のいずれか1項に記載の繊維布帛。 The fiber fabric according to any one of claims 1 to 5, wherein the polyamide-based polymer constituting the polyamide component has a relative viscosity of 1.5 to 6.0.
  7. 前記ポリエステル成分を構成するポリエステル系ポリマーの固有粘度が、0.4~1.0であることを特徴とする、請求項1乃至6のいずれか1項に記載の繊維布帛。 The fiber fabric according to any one of claims 1 to 6, wherein the polyester-based polymer constituting the polyester component has an intrinsic viscosity of 0.4 to 1.0.
  8. 芯鞘型複合繊維からなる糸によって全部または一部が構成されている繊維布帛の製造方法であって、芯鞘型複合繊維の芯部がポリアミド成分からなる繊維布帛に、模様状に、アルカリを主成分とする繊維分解加工剤を付与し、鞘部のポリエステル成分を部分的に除去することを特徴とする繊維布帛の製造方法。 A method for producing a fiber fabric, all or part of which is constituted by yarns composed of core-sheath composite fibers, wherein the core of the core-sheath composite fibers is made of a polyamide component and patterned with alkali. A method for producing a fiber fabric, comprising applying a fiber decomposition processing agent as a main component and partially removing a polyester component in a sheath portion.
  9. 前記繊維分解加工剤を付与する方式が、捺染方式またはインクジェット方式である、請求項8に記載の繊維布帛の製造方法。 The method for producing a fiber fabric according to claim 8, wherein the method for applying the fiber decomposition processing agent is a printing method or an inkjet method.
  10. 前記繊維分解加工剤と同時に、ポリエステル成分の着色が可能な着色剤及び/またはポリアミド成分の着色が可能な着色剤を付与することを特徴とする、請求項8または9に記載の繊維布帛の製造方法。 The fiber fabric according to claim 8 or 9, wherein a colorant capable of coloring a polyester component and / or a colorant capable of coloring a polyamide component is added simultaneously with the fiber decomposition processing agent. Method.
  11. 前記繊維分解加工剤がグアニジン弱酸塩である請求項8乃至10のいずれか1項に記載の繊維布帛の製造方法。 The method for producing a fiber fabric according to any one of claims 8 to 10, wherein the fiber decomposition processing agent is a guanidine weak acid salt.
  12. 前記グアニジン弱酸塩が炭酸グアニジンである請求項11に記載の繊維布帛の製造方法。 The method for producing a fiber fabric according to claim 11, wherein the guanidine weak acid salt is guanidine carbonate.
PCT/JP2011/066639 2010-07-14 2011-07-14 Fibrous fabric and manufacturing method for same WO2012008617A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012524620A JP5854997B2 (en) 2010-07-14 2011-07-14 Fiber fabric and method for producing fiber fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-160025 2010-07-14
JP2010160025 2010-07-14

Publications (1)

Publication Number Publication Date
WO2012008617A1 true WO2012008617A1 (en) 2012-01-19

Family

ID=45469543

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/066152 WO2012008548A1 (en) 2010-07-14 2011-07-14 Core-sheath type composite fiber
PCT/JP2011/066639 WO2012008617A1 (en) 2010-07-14 2011-07-14 Fibrous fabric and manufacturing method for same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066152 WO2012008548A1 (en) 2010-07-14 2011-07-14 Core-sheath type composite fiber

Country Status (2)

Country Link
JP (2) JP5854997B2 (en)
WO (2) WO2012008548A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147251A1 (en) * 2017-02-09 2018-08-16 東レ株式会社 Thermally adhesive sheath-core conjugate fiber and tricot fabric
CN113050568A (en) * 2017-02-22 2021-06-29 苏州普力玛智能电子有限公司 Quality monitoring method and system for false-twisted yarns

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221713A1 (en) * 2016-06-22 2017-12-28 東レ株式会社 High-temperature-shrinkable polyamide composite fiber, textured yarn, and textile partially using such polyamide composite fiber and textured yarn
JP7235050B2 (en) * 2019-01-30 2023-03-08 東レ株式会社 Water-repellent woven or knitted fabric, method for producing the same, and clothing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263679A (en) * 1991-02-13 1992-09-18 Toyobo Co Ltd Production of opal finishing cloth
JPH04352886A (en) * 1991-05-23 1992-12-07 Unitika Ltd Watermarked fabric
WO2006075643A1 (en) * 2005-01-14 2006-07-20 Seiren Co., Ltd. Process for producing rugged fabric

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517676B2 (en) * 1989-08-31 1996-07-24 東レ株式会社 Polyamide / polyester composite yarn and polyester-based high-density fabric composed of the same
JP4599790B2 (en) * 2002-07-25 2010-12-15 東レ株式会社 Method for producing dyed fabric
JP4453450B2 (en) * 2004-06-14 2010-04-21 東レ株式会社 Functional fabric
JP2007016353A (en) * 2005-07-08 2007-01-25 Toray Ind Inc Splittable conjugate fiber
WO2007074833A1 (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Co., Ltd. Fabric composed of regions different in stretchability and process for production thereof
JP5209868B2 (en) * 2006-11-14 2013-06-12 三菱レイヨン株式会社 Fabric having partially different air permeability, garment using the fabric, and method for producing fabric
JP2009228157A (en) * 2008-03-21 2009-10-08 Toray Ind Inc Microfibrilated conjugate fiber and woven or knitted fabric and textile product produced using the same
JP5012646B2 (en) * 2008-04-30 2012-08-29 東レ株式会社 Split-type polyamide / polyester composite fibers, woven and knitted fabrics, and textile products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263679A (en) * 1991-02-13 1992-09-18 Toyobo Co Ltd Production of opal finishing cloth
JPH04352886A (en) * 1991-05-23 1992-12-07 Unitika Ltd Watermarked fabric
WO2006075643A1 (en) * 2005-01-14 2006-07-20 Seiren Co., Ltd. Process for producing rugged fabric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147251A1 (en) * 2017-02-09 2018-08-16 東レ株式会社 Thermally adhesive sheath-core conjugate fiber and tricot fabric
CN110268109A (en) * 2017-02-09 2019-09-20 东丽株式会社 Thermal bonding sheath-core type conjugate fiber and warp-knitted fabric
CN110268109B (en) * 2017-02-09 2022-07-22 东丽株式会社 Heat-bondable core-sheath composite fiber and warp-knitted fabric
CN113050568A (en) * 2017-02-22 2021-06-29 苏州普力玛智能电子有限公司 Quality monitoring method and system for false-twisted yarns

Also Published As

Publication number Publication date
JPWO2012008548A1 (en) 2013-09-09
JPWO2012008617A1 (en) 2013-09-09
WO2012008548A1 (en) 2012-01-19
JP5854997B2 (en) 2016-02-09
JP5852570B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5006792B2 (en) Opal processed fabric
JP5852570B2 (en) Core-sheath type composite fiber
KR20070105304A (en) Process for producing rugged fabric
CN113330156A (en) Water-repellent woven knitted fabric, method for producing same, and clothing
EP3323913A1 (en) Modified polyester fiber, opal finished woven and knitted fabric containing the fiber, and method for producing same
JP5735844B2 (en) Cationic dyeable polyester fibers and fiber aggregates with excellent dyeability
JP5718045B2 (en) Polyester fibers and fiber aggregates with excellent dyeability
EP1681389A2 (en) Preparation process of fabric forming three-dimensional pattern
JP3989883B2 (en) Multicolored pile fabric with uneven pattern
JP2006161263A (en) Polyester core-sheath conjugate fiber and fabric therefrom
JP2002227035A (en) Polylactic acid fiber structure having excellent chromatic color development and method for producing the same
JP2006249585A (en) Conjugated textured yarn and woven or knitted fabric thereof
KR20210002942A (en) Combined filament polyamide yarn and ventilating fabric having non see-through property
JP2014019980A (en) Water absorption structural change fabric
JP2002138378A (en) Method for printing aliphatic polyester-based fiber
JP2010111962A (en) Method for producing stone-like fabric, stone-like fabric, and textile product
JP2007092227A (en) Polyester core-sheath conjugate fiber and its fabric
JP5060235B2 (en) Ink set for opal processing and method for producing opal processed fabric using the same
JP4254393B2 (en) Manufacturing method of polyamide woven fabric
JP2009144263A (en) Water-absorbing quick-drying polyester undrawn fiber and method for producing the same
JP2002227034A (en) Polylactic acid fiber structure having excellent black color development and method for producing the same
JP2014037650A (en) Polyester fiber suitable to inkjet dyeing
JPH08325839A (en) Production of polyester filament easily split in alkali
JP2009084747A (en) Twisted yarn of polymer alloy fiber and woven fabric formed of the same
JP2010163739A (en) Core-sheath multifilament

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524620

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806944

Country of ref document: EP

Kind code of ref document: A1