WO2012008569A1 - Heat sink, and electronic device - Google Patents

Heat sink, and electronic device Download PDF

Info

Publication number
WO2012008569A1
WO2012008569A1 PCT/JP2011/066202 JP2011066202W WO2012008569A1 WO 2012008569 A1 WO2012008569 A1 WO 2012008569A1 JP 2011066202 W JP2011066202 W JP 2011066202W WO 2012008569 A1 WO2012008569 A1 WO 2012008569A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
protective film
ceramic
heat sink
ceramic protective
Prior art date
Application number
PCT/JP2011/066202
Other languages
French (fr)
Japanese (ja)
Inventor
彰規 伊藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012008569A1 publication Critical patent/WO2012008569A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a heat sink and an electronic device.
  • This application claims priority based on Japanese Patent Application No. 2010-160779 filed in Japan on July 15, 2010, the contents of which are incorporated herein by reference.
  • a heat sink described in Patent Document 1 is known as a heat sink that mounts electronic components and can dissipate heat generated by the electronic components.
  • an insulating layer is formed around a base made of aluminum or an aluminum alloy.
  • the insulating layer is formed of a porous ceramic protective film in which independent pores are scattered.
  • the state in which the independent pores are scattered is a state in which a plurality of holes having no opening and whose maximum length (maximum distance between the inner walls of the hole) is 0.5 ⁇ m or more are observed.
  • Such a ceramic protective film can absorb the stress caused by the difference in thermal expansion coefficient between the substrate and the ceramic protective film, and even if the temperature is high, the ceramic protective film does not easily crack.
  • the ceramic protective film of Patent Document 1 has a porous structure in which independent pores are scattered. Therefore, heat conductivity is bad and heat dissipation is low.
  • the ceramic protective film is generated by the reaction between oxygen plasma and metal ions of the substrate. Independent pores are generated by the gas generated by the reaction between oxygen plasma and metal ions, but it is difficult to precisely control the conditions for generating the independent pores.
  • the thickness of the ceramic protective film is 5 ⁇ m or more. This is considered to be because it is difficult to obtain a stable insulating property by reducing the film thickness unevenness of the ceramic protective film.
  • the thinner the ceramic protective film the better. Therefore, the heat dissipation plate of Patent Document 1 cannot provide sufficient heat dissipation.
  • This invention is made
  • a heat dissipation plate is a ceramic film formed by anodizing a base made of aluminum or an aluminum alloy and the surface of the base, and has no voids inside.
  • a ceramic protective film having a thickness of 0.01 ⁇ m or more and less than 5 ⁇ m, and a metal film formed on the surface of the ceramic protective film.
  • the heat sink by 1 aspect of this invention may further be equipped with the metal film formed in the part in which the said ceramic protective film of the said base
  • the heat sink by 1 aspect of this invention WHEREIN:
  • the said metal film may have the unevenness
  • the metal film may be a porous film.
  • the heat sink by 1 aspect of this invention WHEREIN:
  • coat may consist of copper or aluminum.
  • the heat sink by 1 aspect of this invention WHEREIN: The thickness of 0.5 to 3 micrometer may be sufficient as the said ceramic protective film.
  • An electronic device is a ceramic film that is formed by anodizing a substrate made of aluminum or an aluminum alloy and the surface of the substrate, and has no voids inside.
  • a heat sink having a ceramic protective film having a thickness of 0.01 ⁇ m or more and less than 5 ⁇ m and a metal film formed on the surface of the ceramic protective film is provided.
  • an electronic device may be formed on the surface of the ceramic protective film.
  • the electronic device by the other aspect of this invention may be further equipped with the board
  • the electronic device by the other aspect of this invention may further be equipped with the solar cell panel closely_contact
  • the present invention it is possible to provide a heat radiating plate that is excellent in heat dissipation and hardly cracks in the ceramic protective film even at high temperatures, and an electronic device using the heat radiating plate.
  • FIG. 2 is a cross-sectional SEM image of a ceramic protective film formed by the method of Example 1.
  • FIG. 2 is a surface SEM image of a metal film formed by the method of Example 1.
  • FIG. 1 is a schematic cross-sectional view of a heat sink 4 which is a first form of a heat sink.
  • the heat sink 4 includes the base 1 as a core.
  • the substrate 1 is not particularly limited as long as it has thermal conductivity, and a glass plate or a metal plate formed on the surface of a film, or a metal plate made of aluminum or an aluminum alloy can be used.
  • a metal plate made of aluminum or an aluminum alloy is suitable as a material for the substrate 1 because it has high thermal conductivity, can be obtained at a low cost, and can easily form the ceramic protective film 2 on the surface by anodization.
  • a ceramic protective film 2 is formed on the surface of the substrate 1.
  • the ceramic protective film 2 covers the entire outer surface of the substrate 1.
  • the ceramic protective film 2 functions as a protective film for enhancing the corrosion resistance, wear resistance, electrical insulation and the like of the heat sink 4.
  • the ceramic protective film 2 is a ceramic film having no pores inside.
  • the term “having no pores” means that the ceramic protective film 2 does not have a porous structure.
  • the porous structure is a structure in which independent pores are scattered in the ceramic protective film as in Patent Document 1, and a large number of pores extending in the film thickness direction of the ceramic protective film are regularly arranged in the film surface direction of the ceramic protective film. Including a hole array structure arranged in a row.
  • a porous oxide film having a large number of pores formed on the surface may be formed.
  • This oxide film is composed of an aggregate of cylindrical alumina called cells, and a hole extending in the thickness direction of the oxide film is formed at the center of each cell.
  • the mechanism by which the hole array structure is formed is as follows.
  • anodization is performed using an acid such as sulfuric acid, oxalic acid, or phosphoric acid as the electrolyte
  • an oxide film with a certain thickness is formed on the surface of the substrate, and then the electric field strength in the film thickness direction increases and the oxide film Dissolution is accelerated.
  • the growth of the oxide film on the substrate side proceeds as much as the thickness decreases due to dissolution.
  • the dissolution of the oxide film and the growth of the oxide layer proceed preferentially.
  • a hole array structure is formed in the oxide film by the local dissolution and generation of the oxide film.
  • Vacancies are formed because the oxide film is dissolved by the acidic electrolyte. Therefore, in order not to form vacancies, a weakly acidic electrolytic solution may be used as the electrolytic solution, or a metal plate made of aluminum or an aluminum alloy may be positively polarized and anodized using a neutral electrolytic solution. good.
  • the ceramic protective film 2 can be made into the fine ceramic membrane
  • the thickness of the ceramic protective film 2 is preferably 0.01 ⁇ m or more and less than 5 ⁇ m, and more preferably 0.5 ⁇ m or more and 3 ⁇ m or less. If the thickness of the ceramic protective film 2 is less than 0.01 ⁇ m, sufficient corrosion resistance, wear resistance, electrical insulation and the like cannot be obtained. When the thickness of the ceramic protective film 2 is 5 ⁇ m or more, cracks are likely to occur in the ceramic protective film 2 when the heat sink 4 becomes high temperature. On the other hand, if the thickness of the ceramic protective film 2 is large, the heat capacity of the ceramic protective film 2 becomes large, and the heat dissipation becomes insufficient.
  • the ceramic protective film 2 When the thickness of the ceramic protective film 2 is 0.01 ⁇ m or more and less than 5 ⁇ m, the ceramic protective film 2 has good corrosion resistance, wear resistance, electrical insulation, and heat dissipation, and cracks when the heat sink 4 becomes hot. Is also suppressed. Such an effect is further enhanced when the thickness of the ceramic protective film 2 is 0.5 ⁇ m or more and 3 ⁇ m or less.
  • a metal film 3 is formed on the surface of the ceramic protective film 2.
  • the metal film 3 is formed only on one main surface side of the substrate 1.
  • the metal film 3 is provided in order to improve the heat dissipation and wear resistance of the heat sink 4.
  • the metal film 3 is not particularly limited as long as it has a high thermal conductivity.
  • Aluminum and copper are suitable as the metal film 3 formed on the surface of the ceramic protective film 2 because of their high thermal conductivity and high heat dissipation.
  • the thickness of the metal film 3 is preferably 0.03 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 5 ⁇ m or less. If the thickness of the metal film 3 is less than 0.03 ⁇ m, sufficient wear resistance cannot be obtained. When the thickness of the metal film 3 is larger than 10 ⁇ m, the heat capacity of the metal film 3 is increased and the heat dissipation is impaired. When the thickness of the metal film 3 is 0.03 ⁇ m or more and 10 ⁇ m or less, the heat dissipation and wear resistance of the metal film 3 are improved, and when the thickness of the metal film 3 is 0.1 ⁇ m or more and 5 ⁇ m or less, More effective.
  • irregularities 3 a are formed on the surface of the metal film 3.
  • the surface area of the metal film 3 becomes large and heat dissipation increases.
  • a method of forming the unevenness 3 a on the surface of the metal film 3 there are a sand blast method in which an abrasive is sprayed on the surface of the metal film 3, an etching method in which the surface of the metal film 3 is etched, and the like.
  • the metal film 3 is formed by sputtering, if the temperature of the substrate 1 is increased, fine irregularities called hillocks may be formed on the surface of the metal film 3. This hillock may be used as the unevenness 3 a of the metal film 3. In this case, the metal film 3 and the unevenness 3a can be formed simultaneously.
  • the ceramic protective film 2 is not porous but a dense ceramic film. For this reason, the ceramic protective film 2 has better thermal conductivity than the porous ceramic protective film and has excellent heat dissipation. Even if the dense ceramic protective film 2 has a small film thickness, the film thickness unevenness is small and has a stable insulating property. Therefore, the film thickness of the ceramic protective film 2 can be a thin film having a thickness of 0.01 ⁇ m or more and less than 5 ⁇ m, thereby providing the heat radiating plate 4 excellent in heat dissipation. In addition, since the ceramic protective film 2 is formed thin, cracks are unlikely to occur in the ceramic protective film 2 even when the heat sink 4 becomes high temperature.
  • the highly reliable heat sink 4 is provided.
  • the ceramic protective film 2 is not porous, the surface of the ceramic protective film 2 is less uneven. Therefore, the heat radiation plate 4 having high adhesion between the ceramic protective film 2 and the metal film 3 and excellent reliability is obtained.
  • a base 1 serving as a core is prepared.
  • the substrate 1 for example, a metal plate made of aluminum or an aluminum alloy is used.
  • a ceramic protective film 2 is formed on the surface of the substrate 1 by anodizing the surface of the substrate 1.
  • the surface of the base body 1 is oxidized and a ceramic protective film 2 made of an oxide film of the base body 1 is formed.
  • the electrolytic solution a weakly acidic or neutral electrolytic solution is used. Thereby, a dense ceramic protective film 2 having no pores is formed.
  • the thickness of the formed ceramic protective film 2 is proportional to the magnitude of the energized voltage and the energization time. Therefore, these are adjusted so that the thickness of the ceramic protective film 2 is 0.01 ⁇ m or more and less than 5 ⁇ m, more preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
  • a metal film 3 is formed on the surface of the ceramic protective film 2.
  • the metal film 3 is formed, for example, by heating the substrate 1 to about 250 ° C. and sputtering aluminum on the surface of the ceramic protective film 2.
  • Hillock becomes a problem when the metal film 3 is used as wiring.
  • the heat sink 4 uses the metal coating 3 as a heat dissipation layer, hillocks are positively formed on the surface of the metal coating 3.
  • the metal film 3 becomes a porous film having irregularities 3a formed on the surface, and the surface area of the metal film 3 is enlarged.
  • the heat accumulated in the ceramic protective film 2 is quickly released to the outside through the surface of the metal film 3, and the heat dissipation performance of the heat radiating plate 4 is enhanced.
  • Example 1 Hereinafter, Example 1, Comparative Example 1, and Comparative Example 2 will be described.
  • a heat radiating plate in which a ceramic protective film is formed of a dense ceramic film is referred to as Example 1.
  • a heat radiating plate in which the ceramic protective film is formed of a ceramic film in which independent pores are scattered is referred to as Comparative Example 1.
  • a heat radiating plate in which a ceramic protective film is formed of a ceramic film having a hole array structure is referred to as Comparative Example 2.
  • the characteristics of Example 1, Comparative Example 1, and Comparative Example 2 are compared. Specific configurations of Example 1, Comparative Example 1, and Comparative Example 2 are as follows.
  • Example 1 Ceramics with a film thickness of 0.8 ⁇ m by anodizing method using a near neutral electrolyte such as an organic acid solution on the entire outer surface of an aluminum plate (JIS name: A1050) having a thickness of 1.0 mm and a size of 100 m ⁇ 100 mm
  • a substrate on which a film (ceramic protective film) was formed was prepared.
  • a sample having a size of 30 mm ⁇ 30 mm was cut out from the substrate.
  • a 3 ⁇ m-thick aluminum metal film was formed on the entire surface of one main surface of the sample by sputtering, and the heat dissipation plate of Example 1 was obtained. Sputtering was performed at a substrate temperature of 250 ° C. so that hillocks were generated on the surface of the metal film.
  • FIG. 3 is a cross-sectional SEM (Scanning Electron Microscopy) image of the ceramic protective film formed by the method of Example 1.
  • FIG. 4 is a surface SEM image of the metal film formed by the method of Example 1.
  • the ceramic protective film 2 is a dense film, and the surface of the ceramic protective film 2 is generally smooth.
  • the ceramic protective film 2 is a thin film having a thickness of 0.8 ⁇ m, but the film thickness unevenness hardly occurs.
  • Comparative Example 1 A substrate in which a ceramic film (ceramic protective film) having a thickness of 0.8 ⁇ m is formed on the entire outer surface of an aluminum plate (JIS name: A1050) having a thickness of 1.0 mm and a size of 100 m ⁇ 100 mm by a plasma chemical anodizing method. Got ready. This substrate was obtained from Ueda Alumite Industry Co., Ltd. as an aluminum product treated with Kepler coating. The ceramic film formed by the plasma chemical anodizing method has a porous structure in which independent pores are scattered. A sample having a size of 30 mm ⁇ 30 mm was cut out from the substrate.
  • a 3 ⁇ m-thick aluminum metal film was formed on the entire surface of one main surface of the sample by sputtering to obtain a heat radiating plate of Comparative Example 1. Sputtering was performed at a lower substrate temperature than in Example 1 so that hillocks were not generated on the surface of the metal film.
  • Comparative Example 2 By an ordinary anodic oxidation method (anodic oxidation method not plasma scientific anodization method) using an acidic electrolyte solution on the entire outer surface of an aluminum plate (JIS name: A1050) having a thickness of 1.0 mm and a size of 100 m ⁇ 100 mm A substrate on which a ceramic film (ceramic protective film) having a thickness of 0.8 ⁇ m was formed was prepared. This substrate was obtained from Ueda Anodized Industry Co., Ltd. as an anodized substrate.
  • a ceramic film formed by a normal anodic oxidation method has a hole array structure in which a large number of holes extending in the film thickness direction are regularly arranged in the film surface direction.
  • a sample having a size of 30 mm ⁇ 30 mm was cut out from the substrate.
  • a 3 ⁇ m thick aluminum metal film was formed on the entire surface of one of the main surfaces of the sample by sputtering to obtain a heat radiating plate of Comparative Example 2.
  • Sputtering was performed at a lower substrate temperature than in Example 1 so that hillocks were not generated on the surface of the metal film.
  • Table 1 shows the results of comparing the characteristics of Example 1, Comparative Example 1, and Comparative Example 2.
  • Presence / absence of pores in the ceramic coating is an evaluation of whether or not pores are formed inside the ceramic coating by observing a cross-sectional SEM image of the sample before forming the metal coating.
  • a case where holes are formed inside the ceramic film is referred to as “having holes”, and a case where holes are not formed is referred to as “no holes”.
  • Presence / absence of vacancies on the surface of the metal film is an evaluation of whether or not vacancies formed by hillocks exist on the surface of the metal film by observing the surface SEM image of the metal film.
  • the case where holes are formed on the surface of the metal film is referred to as “having holes”, and the case where holes are not formed on the surface of the metal film is referred to as “no holes”.
  • the presence or absence of cracks in the ceramic film is an evaluation of whether or not cracks have occurred on the surface of the ceramic film by observing the surface of the ceramic film with a microscope. Observation with a microscope is performed twice before the heat cycle treatment on the heat sink and after the heat cycle treatment. A case where a crack has occurred is referred to as “with crack”, and a case where no crack has occurred is referred to as “without crack”.
  • the heat cycle process is a process in which a sample before forming a metal film is immersed in a liquid at ⁇ 55 ° C. for 15 minutes and in a liquid at 125 ° C. for 15 minutes and subjected to 50 cycles.
  • coat was observed by 1000 time magnification, and it was investigated whether the ceramic membrane
  • the thicknesses of the ceramic films (ceramic protective films) of Example 1, Comparative Example 1, and Comparative Example 2 are all 0.8 ⁇ m.
  • the ceramic film of Example 1 is a dense film without voids.
  • the ceramic film of Comparative Example 1 is a porous film in which independent pores are scattered.
  • the ceramic film of Comparative Example 2 is a porous film in which a hole array structure is formed.
  • the thickness of the ceramic film is thin, the heat capacity of the ceramic film is reduced and the heat dissipation is increased.
  • the electrical insulation between the metal film and the aluminum plate (substrate) is increased. It becomes insufficient and short circuit is likely to occur.
  • the heat radiating plate of Example 1 since the ceramic film is formed as a dense film having no pores therein, even if the thickness of the ceramic film is reduced, the electrical insulation is high and short-circuiting is unlikely to occur.
  • the metal film of Example 1 is a porous film having pores formed on the surface.
  • the metal films of Comparative Example 1 and Comparative Example 2 are smooth films having no pores on the surface. Therefore, the surface area of the metal film of Example 1 is larger than the surface area of the metal film of Comparative Example 1 or Comparative Example 2. Therefore, the heat dissipation of the metal film of Example 1 is higher than the heat dissipation of the metal films of Comparative Example 1 and Comparative Example 2. Since the ceramic film of Example 1 is a denser film than the ceramic film of Comparative Example 1 or Comparative Example 2, it has high thermal conductivity and excellent heat dissipation. Therefore, the heat dissipation of the entire heat sink combining the heat dissipation of the ceramic film and the heat dissipation of the metal film is superior to that of Comparative Example 1 and Comparative Example 2 in the heat sink of Example 1.
  • Example 1 Comparative Example 1, and Comparative Example 2
  • no cracks are generated on the surface of the ceramic film before the heat cycle treatment.
  • cracks do not occur on the surfaces of the ceramic coatings of Example 1 and Comparative Example 1, but cracks occur on the surface of the ceramic coating of Comparative Example 2.
  • the following can be considered as the cause of no cracks occurring in the ceramic coatings of Example 1 and Comparative Example 2 even after the heat cycle treatment.
  • the ceramic film of Example 1 is a thin film having a thickness of 0.8 ⁇ m, it has high flexibility. Therefore, it is considered that the thermal stress during the heat cycle treatment was absorbed by the ceramic film, and the generation of cracks was suppressed.
  • Comparative Example 1 since the independent pores are scattered inside the ceramic film, the flexibility is further increased, and it is considered that the occurrence of cracks is further suppressed.
  • the ceramic film of Comparative Example 2 is also a thin film, but the ceramic film of Comparative Example 2 has a hole array structure in which a large number of holes penetrate in the thickness direction. Such a ceramic film is vulnerable to thermal stress in the film surface direction. Therefore, it is considered that cracks occurred after the heat cycle treatment.
  • Example 1 is the most excellent as a comprehensive evaluation.
  • FIG. 5 is a schematic cross-sectional view of an LED lighting device 11 which is an example of an electronic apparatus including the heat radiation plate 4 of the first form shown in FIG.
  • the heat sink 4 has a base 1, a ceramic protective film 2, and a metal film 3. Since the structure of the heat sink 4 is as described above, a detailed description thereof is omitted.
  • the LED lighting device 11 includes a substrate 8, a heat sink 4, and a cover member 10.
  • a plurality of LEDs (Light Emitting Diodes) 7 are mounted on the substrate 8.
  • the heat sink 4 is provided on the opposite side of the LED 7 with the substrate 8 interposed therebetween.
  • the cover member 10 is a transparent cover member that covers the periphery of the LED 7 and the substrate 8.
  • the substrate 8 is installed on the surface opposite to the surface on which the metal film 3 of the heat sink 4 is formed.
  • the substrate 8 is not particularly limited as long as it has thermal conductivity, and a plate made of glass, aluminum, copper, stainless steel, a resin film, or the like is used.
  • the substrate 8 is in close contact with the heat radiating plate 4 by the adhesive 9, but the substrate 8 and the heat radiating plate 4 may be in close contact without using an adhesive.
  • a transparent cover member 10 that covers the top of the substrate 8 and the LEDs 7 is provided around the substrate 8.
  • the cover member 10 only needs to transmit the light emitted from the LED, and a transparent member such as glass or resin is used.
  • the cover member 10 is fixed on the ceramic protective film 2 by forming a sealed space 12 for sealing the substrate 8 and the LED 7 with the base body 1.
  • the heat H1 generated in the LED 7 is transmitted to the substrate 8, and is released to the outside as heat H2 through the adhesive 9, the ceramic protective film 2, the substrate 1, the ceramic protective film 2, and the metal film 3. Therefore, the temperature rise in the sealed space 12 is suppressed, and the temperature of the LED is also reduced. Thereby, the stable drive of LED7 is attained.
  • the ceramic protective film 2 is formed on the entire outer surface of the base 1, but the ceramic protective film 2 is not necessarily formed on the main surface of the base 1 opposite to the side facing the base 8. It does not have to be.
  • the ceramic protective film 2 is formed on the surface of the base 1 other than the main surface opposite to the side facing the base 8, and the metal film 3 is formed on the surface of the base 1 where the ceramic protective film 2 is not formed. May be. Thereby, the heat dissipation of the heat sink 4 can be improved.
  • FIG. 6 is a schematic cross-sectional view of an electronic component substrate 15 which is an example of an electronic device including the heat dissipation plate 13 which is the second form of the heat dissipation plate.
  • symbol is attached
  • the electronic component substrate 15 has a plurality of wirings 14 formed on the heat sink 13.
  • the heat radiating plate 13 includes the base 1 as a core, and a ceramic protective film 2 is formed on the surface of the base 1.
  • the ceramic protective film 2 covers the entire outer surface of the substrate 1.
  • the wiring 14 is formed on the surface of the ceramic protective film 2.
  • the material of the substrate 1 and the material and thickness of the ceramic protective film 2 are the same as those of the heat sink 4 of the first embodiment.
  • a wiring 14 is formed on the surface of the ceramic protective film 2.
  • the wiring 14 is formed only on one main surface side of the base 1.
  • the wiring 14 can be formed, for example, by selectively etching the metal film 3 of the heat radiation plate 4 of the first form shown in FIG. Since the unevenness 3a is formed on the surface of the metal film 3 in FIG. 1, the unevenness 14a is formed on the surface of the wiring 14, but the surface of the wiring 14 may be smooth.
  • the electronic component substrate 15 may be the one in which no electronic component is mounted on the wiring 14, and the electronic component substrate 15 may be one in which the electronic component is mounted on the wiring 14. Heat generated in the electronic component on the wiring 14 is released to the outside through the wiring 14, the ceramic protective film 2, the base 1, and the ceramic protective film 2. Therefore, the temperature rise of the electronic component is suppressed, and the electronic component can be driven stably.
  • FIG. 7 is a schematic cross-sectional view of a solar cell unit 20 which is an example of an electronic apparatus including the heat radiation plate 4 of the first form shown in FIG.
  • the heat sink 4 has a base 1, a ceramic protective film 2, and a metal film 3. Since the structure of the heat sink 4 is as described above, a detailed description thereof is omitted.
  • the solar cell unit 20 includes a solar cell panel 16, a heat sink 4, a protective film 17, and a back plate 18.
  • the heat sink 4 is provided on the side opposite to the light incident surface 16 a side of the solar cell panel 16.
  • the protective film 17 is a transparent protective film that covers the light incident surface 16 a of the solar cell panel 16.
  • the back plate 18 is provided on the side opposite to the solar cell panel 16 with the heat sink 4 interposed therebetween.
  • the solar cell panel 16 is an element that converts light incident from the light incident surface 16a into electric power by the photovoltaic effect.
  • Examples of the solar cell panel 16 include a silicon-based solar cell panel that uses silicon for a photoelectric conversion unit, a compound-based solar cell that uses a compound semiconductor for a photoelectric conversion unit, and an organic-based solar cell panel that uses an organic compound for a photoelectric conversion unit. Used.
  • a known solar cell panel is used as the solar cell panel 16, and the type and configuration thereof are not particularly limited.
  • the solar cell panel 16 is installed on the surface opposite to the surface on which the metal film 3 of the heat sink 4 is formed.
  • the heat sink 4 is in close contact with the surface opposite to the light incident surface 16a side of the solar cell panel 16 directly or via an adhesive (not shown).
  • the solar cell panel 16, the heat radiating plate 4, and the protective film 17 are integrated and fixed to the back plate 18.
  • the maximum photoelectric conversion efficiency of the solar cell panel 16 is about 15%, and the remaining solar energy is about 80% waste heat. If the heat is not excluded, the temperature of the solar cell panel 16 rises to the optimum temperature (25 ° C.) or more, and the photoelectric conversion efficiency of the solar cell panel 16 is lowered. When the solar cell panel 16 is used in a high temperature environment for a long period of time, the deterioration is quick and the life is shortened. Except for the winter, the temperature of the solar cell panel 16 reaches 70 ° C. to 90 ° C., and the photoelectric conversion efficiency decreases to about 7% to 10%.
  • the solar cell unit 20 is provided with a heat sink 4 on the surface of the solar cell panel 16 opposite to the light incident surface 16a.
  • the heat accumulated in the solar cell panel 16 is released to the outside through the heat sink 4. Therefore, the temperature of the photoelectric conversion part of the solar cell panel 16 is maintained near the optimum temperature (for example, 45 ° C. or lower). Therefore, the solar cell unit 20 with high photoelectric conversion efficiency of the solar cell panel 16 is obtained.
  • FIG. 8 is a schematic perspective view of a solar cell module 21 in which a plurality of solar cell units 20 are arranged in an array and fixed to the back plate 4.
  • FIG. 9 is a schematic perspective view of a large-sized solar cell module 23 in which a plurality of the solar cell modules 22 of FIG.
  • the solar cell modules 21 and 23 are obtained by connecting a plurality of solar cell units 20 in series or in parallel to obtain necessary power. Since the solar cell modules 21 and 23 include the solar cell unit 20 with high photoelectric conversion efficiency, large electric power can be stably supplied.
  • [Deformation] 1 and 6 show different types of heat sinks. These heat radiating plates can be appropriately changed according to the use and required performance of electronic components mounted on the heat radiating plates.
  • the heat dissipation plate of FIG. 1 can be applied to the electronic component substrate 15 of FIG.
  • the heat sink shown in FIG. 6 can be applied to the electronic apparatus shown in FIGS.
  • FIG. 5, FIG. 6, and FIG. 7 show an LED illumination device, an electronic component substrate, and a solar cell unit as examples of electronic devices.
  • the electronic device is not limited to such a device, and the present invention can be applied to general devices including a heat sink.
  • the present invention can be widely used in the field of heat sinks and the field of electronic devices using heat sinks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A heat sink is provided with a substrate comprising aluminum or an aluminum alloy. The heat sink is produced by anodizing the surface of the substrate, and is provided with a ceramic protective film, which is a ceramic coating film having no voids therein and having a thickness of not less than 0.01 μm and less than 5 μm. The heat sink is additionally provided with a metal coating film formed on the surface of the ceramic protective film.

Description

放熱板、電子機器Heat sink, electronic equipment
 本発明は、放熱板、電子機器に関する。
 本願は、2010年7月15日に、日本に出願された特願2010-160779号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a heat sink and an electronic device.
This application claims priority based on Japanese Patent Application No. 2010-160779 filed in Japan on July 15, 2010, the contents of which are incorporated herein by reference.
 電子部品を搭載し、電子部品で発生する熱を放熱できる放熱板として、特許文献1に記載されている放熱板が知られている。特許文献1に記載されている放熱板では、アルミニウム又はアルミニウム合金からなる基体の周囲に絶縁層が形成されている。また、特許文献1に記載されている放熱板では、絶縁層が、その内部に独立ポアが散在する多孔質構造のセラミックス保護膜からなる。内部に独立ポアが散在している状態とは、開口部を有しない穴であって、その最大長さ(穴内壁間の最大距離)が0.5μm以上の穴が複数観察される状態をいう。このようなセラミックス保護膜は、基体とセラミックス保護膜との熱膨張係数の差に起因する応力を吸収することができ、高温にしてもセラミックス保護膜に割れ(クラック)が発生しにくい。 A heat sink described in Patent Document 1 is known as a heat sink that mounts electronic components and can dissipate heat generated by the electronic components. In the heat radiating plate described in Patent Document 1, an insulating layer is formed around a base made of aluminum or an aluminum alloy. Moreover, in the heat sink described in Patent Document 1, the insulating layer is formed of a porous ceramic protective film in which independent pores are scattered. The state in which the independent pores are scattered is a state in which a plurality of holes having no opening and whose maximum length (maximum distance between the inner walls of the hole) is 0.5 μm or more are observed. . Such a ceramic protective film can absorb the stress caused by the difference in thermal expansion coefficient between the substrate and the ceramic protective film, and even if the temperature is high, the ceramic protective film does not easily crack.
特開2004-179224号公報JP 2004-179224 A
 特許文献1のセラミックス保護膜は、独立ポアが散在した多孔質構造を有する。そのため、熱伝導性が悪く、放熱性が低い。また、このセラミックス保護膜は、酸素プラズマと基体の金属イオンとが反応して生成される。酸素プラズマと金属イオンとの反応で発生するガスによって独立ポアが生成されるが、独立ポアの生成条件を精密にコントロールすることは難しい。特許文献1によれば、セラミックス保護膜の厚みは、5μm以上とされている。これは、このセラミックス保護膜の膜厚むらを小さくして安定した絶縁性を得ることが困難なためであると解される。しかし、セラミックス保護膜の放熱性を高めるためには、セラミックス保護膜の厚みは薄いほど良い。よって、特許文献1の放熱板では十分な放熱性が得られない。 The ceramic protective film of Patent Document 1 has a porous structure in which independent pores are scattered. Therefore, heat conductivity is bad and heat dissipation is low. The ceramic protective film is generated by the reaction between oxygen plasma and metal ions of the substrate. Independent pores are generated by the gas generated by the reaction between oxygen plasma and metal ions, but it is difficult to precisely control the conditions for generating the independent pores. According to Patent Document 1, the thickness of the ceramic protective film is 5 μm or more. This is considered to be because it is difficult to obtain a stable insulating property by reducing the film thickness unevenness of the ceramic protective film. However, in order to increase the heat dissipation of the ceramic protective film, the thinner the ceramic protective film, the better. Therefore, the heat dissipation plate of Patent Document 1 cannot provide sufficient heat dissipation.
 本発明は、上記事情に鑑みてなされたものであり、高い放熱性を有する放熱板、電子機器を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the heat sink and electronic device which have high heat dissipation.
(1) 本発明の一態様による放熱板は、アルミニウム又はアルミニウム合金からなる基体と、前記基体の表面を陽極酸化することにより形成され、内部に空孔を有しないセラミックス皮膜であり、厚みが0.01μm以上5μm未満であるセラミックス保護膜と、前記セラミックス保護膜の表面に形成される金属皮膜と、を備える。 (1) A heat dissipation plate according to one embodiment of the present invention is a ceramic film formed by anodizing a base made of aluminum or an aluminum alloy and the surface of the base, and has no voids inside. A ceramic protective film having a thickness of 0.01 μm or more and less than 5 μm, and a metal film formed on the surface of the ceramic protective film.
(2) また、本発明の一態様による放熱板は、前記基体の前記セラミックス保護膜が形成されていない部分に形成される金属皮膜を更に備えていても良い。 (2) Moreover, the heat sink by 1 aspect of this invention may further be equipped with the metal film formed in the part in which the said ceramic protective film of the said base | substrate is not formed.
(3) また、本発明の一態様による放熱板において、前記金属皮膜は、表面に凹凸が形成されていても良い。 (3) Moreover, the heat sink by 1 aspect of this invention WHEREIN: The said metal film may have the unevenness | corrugation formed in the surface.
(4) また、本発明の一態様による放熱板において、前記金属皮膜は、多孔質な膜であっても良い。 (4) In the heat dissipation plate according to one aspect of the present invention, the metal film may be a porous film.
(5) また、本発明の一態様による放熱板において、前記金属皮膜は、銅又はアルミニウムからなっていても良い。 (5) Moreover, the heat sink by 1 aspect of this invention WHEREIN: The said metal membrane | film | coat may consist of copper or aluminum.
(6) また、本発明の一態様による放熱板において、前記セラミックス保護膜は、厚みが0.5μm以上3μm以下であっても良い。 (6) Moreover, the heat sink by 1 aspect of this invention WHEREIN: The thickness of 0.5 to 3 micrometer may be sufficient as the said ceramic protective film.
(7) 本発明の他の態様による電子機器は、アルミニウム又はアルミニウム合金からなる基体と、前記基体の表面を陽極酸化することにより形成され、内部に空孔を有しないセラミックス皮膜であり、厚みが0.01μm以上5μm未満であるセラミックス保護膜と、前記セラミックス保護膜の表面に形成される金属皮膜と、を備える放熱板を有する。 (7) An electronic device according to another aspect of the present invention is a ceramic film that is formed by anodizing a substrate made of aluminum or an aluminum alloy and the surface of the substrate, and has no voids inside. A heat sink having a ceramic protective film having a thickness of 0.01 μm or more and less than 5 μm and a metal film formed on the surface of the ceramic protective film is provided.
(8) なお、本発明の他の態様による電子機器は、前記セラミックス保護膜の表面に形成されていても良い。 (8) Note that an electronic device according to another aspect of the present invention may be formed on the surface of the ceramic protective film.
(9) また、本発明の他の態様による電子機器は、前記放熱板上に、直接又は接着剤を介して密着され、LEDを搭載した基板を更に備えていても良い。 (9) Moreover, the electronic device by the other aspect of this invention may be further equipped with the board | substrate which carried out close_contact | adherence on the said heat sink, directly or through the adhesive agent, and mounted LED.
(10) また、本発明の他の態様による電子機器は、前記放熱板上に、直接又は接着剤を介して密着される太陽電池パネルを更に備えていても良い。 (10) Moreover, the electronic device by the other aspect of this invention may further be equipped with the solar cell panel closely_contact | adhered on the said heat sink directly or through an adhesive agent.
 本発明によれば、放熱性に優れ、高温になってもセラミックス保護膜に割れが発生しにくい放熱板、及び、それを用いた電子機器を提供することができる。 According to the present invention, it is possible to provide a heat radiating plate that is excellent in heat dissipation and hardly cracks in the ceramic protective film even at high temperatures, and an electronic device using the heat radiating plate.
第1形態の放熱板の概略断面図である。It is a schematic sectional drawing of the heat sink of a 1st form. 第1形態の放熱板の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the heat sink of a 1st form. 第1形態の放熱板の製造方法の一例であって、図2Aの次の工程を示す模式図である。It is an example of the manufacturing method of the heat sink of a 1st form, Comprising: It is a schematic diagram which shows the next process of FIG. 2A. 第1形態の放熱板の製造方法の一例であって、図2Bの次の工程を示す模式図である。It is an example of the manufacturing method of the heat sink of a 1st form, Comprising: It is a schematic diagram which shows the next process of FIG. 2B. 実施例1の方法により形成されたセラミックス保護膜の断面SEM像である。2 is a cross-sectional SEM image of a ceramic protective film formed by the method of Example 1. FIG. 実施例1の方法により形成された金属皮膜の表面SEM像である。2 is a surface SEM image of a metal film formed by the method of Example 1. FIG. 第2形態の放熱板を備えたLED照明装置の断面模式図である。It is a cross-sectional schematic diagram of the LED lighting apparatus provided with the heat sink of the 2nd form. 第3形態の放熱板を備えた電子部品基板の断面模式図である。It is a cross-sectional schematic diagram of the electronic component board | substrate provided with the heat sink of the 3rd form. 第1形態の放熱板を備えた太陽電池ユニットの断面模式図である。It is a cross-sectional schematic diagram of the solar cell unit provided with the heat sink of the 1st form. 複数の太陽電池ユニットを備えた太陽電池モジュールの概略斜視図である。It is a schematic perspective view of a solar cell module provided with a plurality of solar cell units. 大型太陽電池モジュールの概略斜視図である。It is a schematic perspective view of a large sized solar cell module.
[放熱板]
 図1は、放熱板の第1形態である放熱板4の概略断面図である。
[Heatsink]
FIG. 1 is a schematic cross-sectional view of a heat sink 4 which is a first form of a heat sink.
 放熱板4は、基体1をコアとして含む。基体1は、熱伝導性を有するものであれば、特に限定されず、ガラスやフィルムの表面に金属皮膜を形成したものや、アルミニウム又はアルミニウム合金などからなる金属板を用いることができる。アルミニウム又はアルミニウム合金からなる金属板は、熱伝導率が高く、安価に入手が可能であり、陽極酸化によって容易に表面にセラミック保護膜2を形成できるため、基体1の材料として好適である。 The heat sink 4 includes the base 1 as a core. The substrate 1 is not particularly limited as long as it has thermal conductivity, and a glass plate or a metal plate formed on the surface of a film, or a metal plate made of aluminum or an aluminum alloy can be used. A metal plate made of aluminum or an aluminum alloy is suitable as a material for the substrate 1 because it has high thermal conductivity, can be obtained at a low cost, and can easily form the ceramic protective film 2 on the surface by anodization.
 基体1の表面には、セラミック保護膜2が形成されている。セラミックス保護膜2は、基体1の外面全体を覆っている。セラミック保護膜2は、放熱板4の耐食性、耐摩耗性、電気絶縁性などを高めるための保護膜として機能する。セラミック保護膜2は、内部に空孔を有しないセラミックス皮膜である。内部に空孔を有しないとは、セラミック保護膜2が多孔質構造を有しないことを意味する。多孔質構造とは、特許文献1のようにセラミック保護膜内に独立ポアが散在した構造のほか、セラミック保護膜の膜厚方向に延びる多数の空孔がセラミック保護膜の膜面方向に規則的に配列したホールアレイ構造を含む。 A ceramic protective film 2 is formed on the surface of the substrate 1. The ceramic protective film 2 covers the entire outer surface of the substrate 1. The ceramic protective film 2 functions as a protective film for enhancing the corrosion resistance, wear resistance, electrical insulation and the like of the heat sink 4. The ceramic protective film 2 is a ceramic film having no pores inside. The term “having no pores” means that the ceramic protective film 2 does not have a porous structure. The porous structure is a structure in which independent pores are scattered in the ceramic protective film as in Patent Document 1, and a large number of pores extending in the film thickness direction of the ceramic protective film are regularly arranged in the film surface direction of the ceramic protective film. Including a hole array structure arranged in a row.
 例えば、アルミニウムを硫酸、シュウ酸、リン酸などの酸性電解液中でプラスに分極し陽極酸化すると、表面に多数の空孔が形成された多孔質の酸化皮膜が形成される場合がある。この酸化皮膜は、セルと呼ばれるシリンダ状のアルミナの集合体からなり、各セルの中心部には、酸化皮膜の厚み方向に延びる空孔が形成されている。セルが酸化皮膜の膜面方向にハニカム状に配置されることにより、膜厚方向に延びる多数の空孔が膜面方向に規則的に配列したホールアレイ構造が形成される。 For example, when aluminum is positively polarized and anodized in an acidic electrolyte such as sulfuric acid, oxalic acid, or phosphoric acid, a porous oxide film having a large number of pores formed on the surface may be formed. This oxide film is composed of an aggregate of cylindrical alumina called cells, and a hole extending in the thickness direction of the oxide film is formed at the center of each cell. By arranging the cells in a honeycomb shape in the film surface direction of the oxide film, a hole array structure in which a large number of holes extending in the film thickness direction are regularly arranged in the film surface direction is formed.
 ホールアレイ構造が形成されるメカニズムは次の通りである。硫酸、シュウ酸、リン酸などの酸を電解液として陽極酸化を行った場合には、一定の厚みの酸化皮膜が基体の表面に生成した後、膜厚方向の電場強度が増大し、酸化皮膜の溶解が加速される。同時に、溶解によって厚みが減少した分、酸化皮膜の基体側(例えばアルミニウム地金側)への成長が進行する。いったん空孔が形成された部分では、優先的に酸化皮膜の溶解や、酸化層の成長が進行する。局所的な酸化皮膜の溶解や、生成が進行することにより、酸化皮膜にホールアレイ構造が形成される。 The mechanism by which the hole array structure is formed is as follows. When anodization is performed using an acid such as sulfuric acid, oxalic acid, or phosphoric acid as the electrolyte, an oxide film with a certain thickness is formed on the surface of the substrate, and then the electric field strength in the film thickness direction increases and the oxide film Dissolution is accelerated. At the same time, the growth of the oxide film on the substrate side (for example, the aluminum base metal side) proceeds as much as the thickness decreases due to dissolution. Once the pores are formed, the dissolution of the oxide film and the growth of the oxide layer proceed preferentially. A hole array structure is formed in the oxide film by the local dissolution and generation of the oxide film.
 空孔が形成されるのは、酸性の電解液によって酸化皮膜の溶解が起こるためである。よって、空孔を形成しないためには、電解液として弱酸性の電解液を用いるか、中性の電解液を用いてアルミニウム又はアルミニウム合金などからなる金属板をプラスに分極して陽極酸化すれば良い。こうすることで、セラミック保護膜2を、内部に空孔を有しない緻密なセラミックス皮膜とすることができる。 Vacancies are formed because the oxide film is dissolved by the acidic electrolyte. Therefore, in order not to form vacancies, a weakly acidic electrolytic solution may be used as the electrolytic solution, or a metal plate made of aluminum or an aluminum alloy may be positively polarized and anodized using a neutral electrolytic solution. good. By carrying out like this, the ceramic protective film 2 can be made into the fine ceramic membrane | film | coat which does not have a void | hole inside.
 セラミック保護膜2の厚みは、0.01μm以上5μm未満であることが好ましく、0.5μm以上3μm以下であることがより好ましい。セラミック保護膜2の厚みが0.01μm未満であると、十分な耐食性、耐摩耗性、電気絶縁性などが得られない。セラミック保護膜2の厚みが5μm以上であると、放熱板4が高温になった場合にセラミック保護膜2にクラックが発生し易くなる。また、セラミックス保護膜2の厚みが厚いと、セラミックス保護膜2の熱容量が大きくなり、放熱性が不十分になる。セラミック保護膜2の厚みが0.01μm以上5μm未満であると、セラミック保護膜2の耐食性、耐摩耗性、電気絶縁性、放熱性が良好になり、放熱板4が高温になったときのクラックの発生も抑制される。セラミック保護膜2の厚みが0.5μm以上3μm以下であると、このような効果がより高まる。 The thickness of the ceramic protective film 2 is preferably 0.01 μm or more and less than 5 μm, and more preferably 0.5 μm or more and 3 μm or less. If the thickness of the ceramic protective film 2 is less than 0.01 μm, sufficient corrosion resistance, wear resistance, electrical insulation and the like cannot be obtained. When the thickness of the ceramic protective film 2 is 5 μm or more, cracks are likely to occur in the ceramic protective film 2 when the heat sink 4 becomes high temperature. On the other hand, if the thickness of the ceramic protective film 2 is large, the heat capacity of the ceramic protective film 2 becomes large, and the heat dissipation becomes insufficient. When the thickness of the ceramic protective film 2 is 0.01 μm or more and less than 5 μm, the ceramic protective film 2 has good corrosion resistance, wear resistance, electrical insulation, and heat dissipation, and cracks when the heat sink 4 becomes hot. Is also suppressed. Such an effect is further enhanced when the thickness of the ceramic protective film 2 is 0.5 μm or more and 3 μm or less.
 セラミック保護膜2の表面には、金属皮膜3が形成されている。金属皮膜3は、基体1の一方の主面側のみに形成されている。金属皮膜3は、放熱板4の放熱性や耐摩耗性を高めるために設けられている。金属皮膜3は、熱伝導率の高い材料であれば、特に限定されない。アルミニウムや銅は熱伝導率が大きく、放熱性が高いので、セラミック保護膜2の表面に形成する金属皮膜3として好適である。 A metal film 3 is formed on the surface of the ceramic protective film 2. The metal film 3 is formed only on one main surface side of the substrate 1. The metal film 3 is provided in order to improve the heat dissipation and wear resistance of the heat sink 4. The metal film 3 is not particularly limited as long as it has a high thermal conductivity. Aluminum and copper are suitable as the metal film 3 formed on the surface of the ceramic protective film 2 because of their high thermal conductivity and high heat dissipation.
 金属皮膜3の厚みは、0.03μm以上10μm以下であることが好ましく、0.1μm以上5μm以下であることがより好ましい。金属皮膜3の厚みが0.03μm未満であると、十分な耐摩耗性が得られない。金属皮膜3の厚みが10μmよりも大きいと、金属皮膜3の熱容量が大きくなり、放熱性が損なわれる。金属皮膜3の厚みが0.03μm以上10μm以下であると、金属皮膜3の放熱性や耐摩耗性が良好になり、金属皮膜3の厚みが0.1μm以上5μm以下であると、このような効果がより高まる。 The thickness of the metal film 3 is preferably 0.03 μm or more and 10 μm or less, and more preferably 0.1 μm or more and 5 μm or less. If the thickness of the metal film 3 is less than 0.03 μm, sufficient wear resistance cannot be obtained. When the thickness of the metal film 3 is larger than 10 μm, the heat capacity of the metal film 3 is increased and the heat dissipation is impaired. When the thickness of the metal film 3 is 0.03 μm or more and 10 μm or less, the heat dissipation and wear resistance of the metal film 3 are improved, and when the thickness of the metal film 3 is 0.1 μm or more and 5 μm or less, More effective.
 金属皮膜3の表面には凹凸3aが形成されていることが好ましい。これにより、金属皮膜3の表面積が大きくなり、放熱性が高まる。金属皮膜3の表面に凹凸3aを形成する方法としては、金属皮膜3の表面に研磨材を吹きつけるサンドブラスト法や、金属皮膜3の表面をエッチング処理するエッチング法などがある。金属皮膜3をスパッタで形成するときに、基体1の温度を高温にすると、金属皮膜3の表面にヒロックと呼ばれる微細な凹凸が形成されることがある。このヒロックを金属皮膜3の凹凸3aとして利用しても良い。この場合、金属皮膜3と凹凸3aとを同時に形成することができる。 It is preferable that irregularities 3 a are formed on the surface of the metal film 3. Thereby, the surface area of the metal film 3 becomes large and heat dissipation increases. As a method of forming the unevenness 3 a on the surface of the metal film 3, there are a sand blast method in which an abrasive is sprayed on the surface of the metal film 3, an etching method in which the surface of the metal film 3 is etched, and the like. When the metal film 3 is formed by sputtering, if the temperature of the substrate 1 is increased, fine irregularities called hillocks may be formed on the surface of the metal film 3. This hillock may be used as the unevenness 3 a of the metal film 3. In this case, the metal film 3 and the unevenness 3a can be formed simultaneously.
 上記構成の放熱板4によれば、セラミック保護膜2は多孔質ではなく、緻密なセラミックス皮膜である。そのため、多孔質なセラミック保護膜よりも熱伝導性が良く、放熱性に優れたセラミック保護膜2となる。緻密なセラミック保護膜2は、膜厚が小さくても、膜厚むらが少なく、安定した絶縁性を有する。よって、セラミック保護膜2の膜厚を0.01μm以上5μm未満の薄い膜とすることができ、これにより、放熱性に優れた放熱板4が提供される。また、セラミック保護膜2が薄く形成されているので、放熱板4が高温になってもセラミック保護膜2にクラックが発生しにくい。そのため、信頼性の高い放熱板4が提供される。また、セラミック保護膜2は多孔質ではないので、セラミック保護膜2の表面には凹凸が少ない。よって、セラミック保護膜2と金属皮膜3との密着力が高く、信頼性に優れた放熱板4となる。 According to the heat radiating plate 4 having the above configuration, the ceramic protective film 2 is not porous but a dense ceramic film. For this reason, the ceramic protective film 2 has better thermal conductivity than the porous ceramic protective film and has excellent heat dissipation. Even if the dense ceramic protective film 2 has a small film thickness, the film thickness unevenness is small and has a stable insulating property. Therefore, the film thickness of the ceramic protective film 2 can be a thin film having a thickness of 0.01 μm or more and less than 5 μm, thereby providing the heat radiating plate 4 excellent in heat dissipation. In addition, since the ceramic protective film 2 is formed thin, cracks are unlikely to occur in the ceramic protective film 2 even when the heat sink 4 becomes high temperature. Therefore, the highly reliable heat sink 4 is provided. In addition, since the ceramic protective film 2 is not porous, the surface of the ceramic protective film 2 is less uneven. Therefore, the heat radiation plate 4 having high adhesion between the ceramic protective film 2 and the metal film 3 and excellent reliability is obtained.
[放熱板の製造方法]
 図2A~図2Cは、放熱板4の製造方法の一例を示す模式図である。
[Manufacturing method of heat sink]
2A to 2C are schematic views showing an example of a manufacturing method of the heat sink 4.
 図2Aに示すように、コアとなる基体1を用意する。基体1としては、例えば、アルミニウム又はアルミニウム合金からなる金属板が用いられる。 As shown in FIG. 2A, a base 1 serving as a core is prepared. As the substrate 1, for example, a metal plate made of aluminum or an aluminum alloy is used.
 次に、図2Bに示すように、基体1の表面を陽極酸化することにより、基板1の表面にセラミックス保護膜2を形成する。電解液中に基体1を浸し、基体1を陽極として通電すると、基体1の表面が酸化されて、基体1の酸化皮膜からなるセラミックス保護膜2が形成される。電解液としては、弱酸性又は中性の電解液が用いられる。これにより、内部に空孔を有しない緻密なセラミックス保護膜2が形成される。形成されるセラミックス保護膜2の厚みは、通電する電圧の大きさや通電時間に比例する。よって、これらを調節してセラミックス保護膜2の厚みを0.01μm以上5μm未満、より好ましくは、0.5μm以上3μm以下とする。 Next, as shown in FIG. 2B, a ceramic protective film 2 is formed on the surface of the substrate 1 by anodizing the surface of the substrate 1. When the base body 1 is immersed in the electrolytic solution and the base body 1 is used as an anode, the surface of the base body 1 is oxidized and a ceramic protective film 2 made of an oxide film of the base body 1 is formed. As the electrolytic solution, a weakly acidic or neutral electrolytic solution is used. Thereby, a dense ceramic protective film 2 having no pores is formed. The thickness of the formed ceramic protective film 2 is proportional to the magnitude of the energized voltage and the energization time. Therefore, these are adjusted so that the thickness of the ceramic protective film 2 is 0.01 μm or more and less than 5 μm, more preferably 0.5 μm or more and 3 μm or less.
 次に、図2Cに示すように、セラミックス保護膜2の表面に金属皮膜3を形成する。金属皮膜3は、例えば、基体1を250℃程度に加熱してセラミックス保護膜2の表面にアルミニウムをスパッタすることにより形成される。 Next, as shown in FIG. 2C, a metal film 3 is formed on the surface of the ceramic protective film 2. The metal film 3 is formed, for example, by heating the substrate 1 to about 250 ° C. and sputtering aluminum on the surface of the ceramic protective film 2.
 アルミニウムを金属皮膜3として形成する場合、スパッタ処理中の基体1の温度が高いと、金属皮膜3の表面にヒロックと呼ばれる微細な凹凸が形成される場合がある。ヒロックは、金属皮膜3と金属皮膜3の形成対象物との熱膨張係数差によって発生すると考えられている。すなわち、金属皮膜3と金属皮膜3の形成対象物との熱膨張係数差によって、金属皮膜3に圧縮応力が発生し、この圧縮応力がドライビングフォースとなって金属皮膜3の結晶粒界に沿った金属原子の拡散が生じ、ヒロックが形成されると考えられている。 When forming aluminum as the metal film 3, if the temperature of the substrate 1 during the sputtering process is high, fine irregularities called hillocks may be formed on the surface of the metal film 3. It is thought that hillocks are generated due to a difference in thermal expansion coefficient between the metal film 3 and the object on which the metal film 3 is formed. That is, a compressive stress is generated in the metal film 3 due to a difference in thermal expansion coefficient between the metal film 3 and an object to be formed of the metal film 3, and this compressive stress becomes a driving force along the crystal grain boundary of the metal film 3. It is believed that metal atoms diffuse and hillocks are formed.
 ヒロックは、金属皮膜3を配線として利用する場合には問題となる。しかし、放熱板4では、金属皮膜3を放熱層として利用しているので、金属皮膜3の表面に積極的にヒロックを形成している。ヒロックを形成することで、金属皮膜3は、表面に凹凸3aが形成された多孔質な膜となり、金属皮膜3の表面積が拡大される。これにより、セラミックス保護膜2に蓄積された熱は、金属皮膜3の表面を介して速やかに外部に放出されるようになり、放熱板4の放熱性が高まる。 Hillock becomes a problem when the metal film 3 is used as wiring. However, since the heat sink 4 uses the metal coating 3 as a heat dissipation layer, hillocks are positively formed on the surface of the metal coating 3. By forming hillocks, the metal film 3 becomes a porous film having irregularities 3a formed on the surface, and the surface area of the metal film 3 is enlarged. Thereby, the heat accumulated in the ceramic protective film 2 is quickly released to the outside through the surface of the metal film 3, and the heat dissipation performance of the heat radiating plate 4 is enhanced.
[実施例]
 以下、実施例1、比較例1、比較例2について説明する。セラミックス保護膜を緻密なセラミックス皮膜で形成した放熱板を実施例1とする。セラミックス保護膜を独立ポアが散在したセラミックス皮膜で形成した放熱板を比較例1とする。セラミックス保護膜をホールアレイ構造が形成されたセラミックス皮膜で形成した放熱板を比較例2とする。これら実施例1、比較例1、比較例2の特性の比較を行う。実施例1、比較例1、比較例2の具体的な構成は以下の通りである。
[Example]
Hereinafter, Example 1, Comparative Example 1, and Comparative Example 2 will be described. A heat radiating plate in which a ceramic protective film is formed of a dense ceramic film is referred to as Example 1. A heat radiating plate in which the ceramic protective film is formed of a ceramic film in which independent pores are scattered is referred to as Comparative Example 1. A heat radiating plate in which a ceramic protective film is formed of a ceramic film having a hole array structure is referred to as Comparative Example 2. The characteristics of Example 1, Comparative Example 1, and Comparative Example 2 are compared. Specific configurations of Example 1, Comparative Example 1, and Comparative Example 2 are as follows.
1.実施例1
 厚み1.0mm、大きさ100m×100mmのアルミニウム板(JIS呼称:A1050)の外面全体に、有機酸溶液等の中性付近の電解液を用いた陽極酸化法によって、膜厚0.8μmのセラミックス皮膜(セラミックス保護膜)を形成した基板を準備した。この基板から30mm×30mmの大きさの試料を切り出した。試料の一方の主面の全面にスパッタ法により3μm厚のアルミニウムの金属皮膜を形成し、実施例1の放熱板とした。なお、スパッタは基板の温度を250℃にして行い、金属皮膜の表面にヒロックが発生するようにした。
1. Example 1
Ceramics with a film thickness of 0.8μm by anodizing method using a near neutral electrolyte such as an organic acid solution on the entire outer surface of an aluminum plate (JIS name: A1050) having a thickness of 1.0 mm and a size of 100 m × 100 mm A substrate on which a film (ceramic protective film) was formed was prepared. A sample having a size of 30 mm × 30 mm was cut out from the substrate. A 3 μm-thick aluminum metal film was formed on the entire surface of one main surface of the sample by sputtering, and the heat dissipation plate of Example 1 was obtained. Sputtering was performed at a substrate temperature of 250 ° C. so that hillocks were generated on the surface of the metal film.
 図3は、実施例1の方法により形成されたセラミックス保護膜の断面SEM(Scanning Electron Microscopy;走査型電子顕微鏡)像である。図4は、実施例1の方法により形成された金属皮膜の表面SEM像である。 FIG. 3 is a cross-sectional SEM (Scanning Electron Microscopy) image of the ceramic protective film formed by the method of Example 1. FIG. 4 is a surface SEM image of the metal film formed by the method of Example 1.
 図3に示すように、セラミックス保護膜2の内部には、独立ポアやホールアレイ構造は形成されていない。セラミックス保護膜2は緻密な膜であり、セラミックス保護膜2の表面は概ね平滑である。セラミックス保護膜2は厚みが0.8μmの薄い膜であるが、膜厚むらは殆ど発生していない。 As shown in FIG. 3, no independent pores or hole array structure is formed inside the ceramic protective film 2. The ceramic protective film 2 is a dense film, and the surface of the ceramic protective film 2 is generally smooth. The ceramic protective film 2 is a thin film having a thickness of 0.8 μm, but the film thickness unevenness hardly occurs.
 図4に示すように、金属皮膜3の表面には、ヒロックにより形成された多数の空孔3aが形成されている。金属皮膜3の表面積は、空孔3aによって拡大されている。そのため、金属皮膜3に伝えられた熱は、金属皮膜3の表面から速やかに外部に放出される。 As shown in FIG. 4, on the surface of the metal film 3, a large number of holes 3a formed by hillocks are formed. The surface area of the metal film 3 is expanded by the holes 3a. Therefore, the heat transmitted to the metal film 3 is quickly released from the surface of the metal film 3 to the outside.
2.比較例1
 厚み1.0mm、大きさ100m×100mmのアルミニウム板(JIS呼称:A1050)の外面全体に、プラズマ化学的陽極酸化法によって、膜厚0.8μmのセラミックス皮膜(セラミックス保護膜)を形成した基板を準備した。この基板は、植田アルマイト工業(株)より、ケプラーコート処理されたアルミニウム製品として入手したものである。プラズマ化学的陽極酸化法により形成されたセラミックス皮膜は、内部に独立ポアが散在した多孔質構造を有する。この基板から30mm×30mmの大きさの試料を切り出した。試料の一方の主面の全面にスパッタ法により3μm厚のアルミニウムの金属皮膜を形成し、比較例1の放熱板とした。なお、スパッタは実施例1に比べて基板の温度を下げて行い、金属皮膜の表面にヒロックが発生しないようにした。
2. Comparative Example 1
A substrate in which a ceramic film (ceramic protective film) having a thickness of 0.8 μm is formed on the entire outer surface of an aluminum plate (JIS name: A1050) having a thickness of 1.0 mm and a size of 100 m × 100 mm by a plasma chemical anodizing method. Got ready. This substrate was obtained from Ueda Alumite Industry Co., Ltd. as an aluminum product treated with Kepler coating. The ceramic film formed by the plasma chemical anodizing method has a porous structure in which independent pores are scattered. A sample having a size of 30 mm × 30 mm was cut out from the substrate. A 3 μm-thick aluminum metal film was formed on the entire surface of one main surface of the sample by sputtering to obtain a heat radiating plate of Comparative Example 1. Sputtering was performed at a lower substrate temperature than in Example 1 so that hillocks were not generated on the surface of the metal film.
3.比較例2
 厚み1.0mm、大きさ100m×100mmのアルミニウム板(JIS呼称:A1050)の外面全体に、酸性の電解液を用いた通常の陽極酸化法(プラズマ科学的陽極酸化法ではない陽極酸化法)によって、膜厚0.8μmのセラミックス皮膜(セラミックス保護膜)を形成した基板を準備した。この基板は、植田アルマイト工業(株)より、アルマイト処理基板として入手したものである。通常の陽極酸化法で形成されたセラミックス皮膜は、膜厚方向に延びる多数の空孔が膜面方向に規則的に配列したホールアレイ構造を有する。この基板から30mm×30mmの大きさの試料を切り出した。試料の一方の主面の全面にスパッタ法により3μm厚のアルミニウムの金属皮膜を形成し、比較例2の放熱板とした。なお、スパッタは実施例1に比べて基板の温度を下げて行い、金属皮膜の表面にヒロックが発生しないようにした。
3. Comparative Example 2
By an ordinary anodic oxidation method (anodic oxidation method not plasma scientific anodization method) using an acidic electrolyte solution on the entire outer surface of an aluminum plate (JIS name: A1050) having a thickness of 1.0 mm and a size of 100 m × 100 mm A substrate on which a ceramic film (ceramic protective film) having a thickness of 0.8 μm was formed was prepared. This substrate was obtained from Ueda Anodized Industry Co., Ltd. as an anodized substrate. A ceramic film formed by a normal anodic oxidation method has a hole array structure in which a large number of holes extending in the film thickness direction are regularly arranged in the film surface direction. A sample having a size of 30 mm × 30 mm was cut out from the substrate. A 3 μm thick aluminum metal film was formed on the entire surface of one of the main surfaces of the sample by sputtering to obtain a heat radiating plate of Comparative Example 2. Sputtering was performed at a lower substrate temperature than in Example 1 so that hillocks were not generated on the surface of the metal film.
 表1は、実施例1、比較例1、比較例2の特性を比較した結果である。 Table 1 shows the results of comparing the characteristics of Example 1, Comparative Example 1, and Comparative Example 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、「セラミックス皮膜の電気絶縁性」は、金属皮膜とアルミニウム板との間の電気抵抗をテスターで測定し、金属皮膜とアルミニウム板との間に短絡が生じているか否かを評価したものである。電気絶縁性の測定は、放熱板にヒートサイクル処理を行う前に行っている。金属皮膜とアルミニウム板とが短絡していない状態を「良好」とし、短絡している状態を「短絡」としている。 In Table 1, “electrical insulation of the ceramic film” was measured by measuring the electric resistance between the metal film and the aluminum plate with a tester, and evaluated whether or not a short circuit occurred between the metal film and the aluminum plate. Is. The measurement of electrical insulation is performed before heat cycle processing is performed on the heat sink. The state where the metal film and the aluminum plate are not short-circuited is “good”, and the state where the metal film is short-circuited is “short-circuit”.
 「セラミックス皮膜の空孔の有無」は、金属皮膜を形成する前の試料の断面SEM像を観察し、セラミックス皮膜の内部に空孔が形成されているか否かを評価したものである。
 セラミックス皮膜の内部に空孔が形成されている場合を「空孔あり」とし、空孔が形成されていない場合を「空孔なし」としている。
“Presence / absence of pores in the ceramic coating” is an evaluation of whether or not pores are formed inside the ceramic coating by observing a cross-sectional SEM image of the sample before forming the metal coating.
A case where holes are formed inside the ceramic film is referred to as “having holes”, and a case where holes are not formed is referred to as “no holes”.
 「金属皮膜表面の空孔の有無」は、金属皮膜の表面SEM像を観察し、金属皮膜の表面にヒロックにより形成された空孔が存在するか否かを評価したものである。金属皮膜の表面に空孔が形成されている場合を「空孔あり」とし、金属皮膜の表面に空孔が形成されていない場合を「空孔なし」としている。 “Presence / absence of vacancies on the surface of the metal film” is an evaluation of whether or not vacancies formed by hillocks exist on the surface of the metal film by observing the surface SEM image of the metal film. The case where holes are formed on the surface of the metal film is referred to as “having holes”, and the case where holes are not formed on the surface of the metal film is referred to as “no holes”.
 「セラミックス皮膜のクラックの有無」は、セラミックス皮膜の表面を顕微鏡で観察し、セラミックス皮膜の表面にクラックが発生しているか否かを評価したものである。顕微鏡による観察は、放熱板にヒートサイクル処理を行う前とヒートサイクル処理を行った後の合計2回行っている。クラックが発生している場合を「クラックあり」とし、クラックが発生していない場合を「クラックなし」としている。 "The presence or absence of cracks in the ceramic film" is an evaluation of whether or not cracks have occurred on the surface of the ceramic film by observing the surface of the ceramic film with a microscope. Observation with a microscope is performed twice before the heat cycle treatment on the heat sink and after the heat cycle treatment. A case where a crack has occurred is referred to as “with crack”, and a case where no crack has occurred is referred to as “without crack”.
 ヒートサイクル処理とは、金属皮膜を形成する前の試料を-55℃の液に15分、125℃の液に15分浸漬し、これを50サイクル施す処理をいう。ヒートサイクル処理を施した試料についてセラミックス皮膜の表面を1000倍の倍率で観察し、セラミックス皮膜にクラックが発生しているか否かを調べた。 The heat cycle process is a process in which a sample before forming a metal film is immersed in a liquid at −55 ° C. for 15 minutes and in a liquid at 125 ° C. for 15 minutes and subjected to 50 cycles. About the sample which performed the heat cycle process, the surface of the ceramic membrane | film | coat was observed by 1000 time magnification, and it was investigated whether the ceramic membrane | film | coat has cracked.
 表1に示すように、実施例1、比較例1、比較例2のセラミックス皮膜(セラミックス保護膜)の厚みはいずれも0.8μmである。実施例1のセラミックス皮膜は、空孔の無い緻密な膜である。比較例1のセラミックス皮膜は、独立ポアが散在した多孔質な膜である。比較例2のセラミックス皮膜は、ホールアレイ構造が形成された多孔質な膜である。 As shown in Table 1, the thicknesses of the ceramic films (ceramic protective films) of Example 1, Comparative Example 1, and Comparative Example 2 are all 0.8 μm. The ceramic film of Example 1 is a dense film without voids. The ceramic film of Comparative Example 1 is a porous film in which independent pores are scattered. The ceramic film of Comparative Example 2 is a porous film in which a hole array structure is formed.
 セラミックス皮膜の厚みが薄いと、セラミックス皮膜の熱容量が小さくなり、放熱性が高まる。しかし、比較例1や比較例2のようにセラミックス皮膜の内部に多数の空孔が存在する場合には、セラミックス皮膜の厚みが薄くなると、金属皮膜とアルミニウム板(基体)との電気絶縁性が不十分になり、短絡が生じやすい。実施例1の放熱板では、セラミックス皮膜が、内部に空孔を有しない緻密な膜として形成されているため、セラミックス皮膜の厚みが薄くなっても電気絶縁性が高く、短絡が生じにくい。 If the thickness of the ceramic film is thin, the heat capacity of the ceramic film is reduced and the heat dissipation is increased. However, when a large number of pores exist in the ceramic film as in Comparative Example 1 and Comparative Example 2, when the thickness of the ceramic film is reduced, the electrical insulation between the metal film and the aluminum plate (substrate) is increased. It becomes insufficient and short circuit is likely to occur. In the heat radiating plate of Example 1, since the ceramic film is formed as a dense film having no pores therein, even if the thickness of the ceramic film is reduced, the electrical insulation is high and short-circuiting is unlikely to occur.
 実施例1の金属皮膜は、表面に空孔が形成された多孔質な膜である。比較例1と比較例2の金属皮膜は、表面に空孔を有しない平滑な膜である。そのため、実施例1の金属皮膜の表面積は、比較例1や比較例2の金属皮膜の表面積よりも大きい。従って、実施例1の金属皮膜の放熱性は、比較例1や比較例2の金属皮膜の放熱性よりも高い。実施例1のセラミックス皮膜は比較例1や比較例2のセラミックス皮膜よりも緻密な膜であるから、熱伝導性が高く、放熱性にも優れている。よって、セラミックス皮膜の放熱性と金属皮膜の放熱性とを総合した放熱板全体の放熱性は、実施例1の放熱板ほうが比較例1や比較例2の放熱板よりも優れている。 The metal film of Example 1 is a porous film having pores formed on the surface. The metal films of Comparative Example 1 and Comparative Example 2 are smooth films having no pores on the surface. Therefore, the surface area of the metal film of Example 1 is larger than the surface area of the metal film of Comparative Example 1 or Comparative Example 2. Therefore, the heat dissipation of the metal film of Example 1 is higher than the heat dissipation of the metal films of Comparative Example 1 and Comparative Example 2. Since the ceramic film of Example 1 is a denser film than the ceramic film of Comparative Example 1 or Comparative Example 2, it has high thermal conductivity and excellent heat dissipation. Therefore, the heat dissipation of the entire heat sink combining the heat dissipation of the ceramic film and the heat dissipation of the metal film is superior to that of Comparative Example 1 and Comparative Example 2 in the heat sink of Example 1.
 実施例1、比較例1、比較例2のいずれにおいても、ヒートサイクル処理前のセラミックス皮膜の表面にはクラックは発生していない。ヒートサイクル処理を行うと、実施例1と比較例1のセラミックス皮膜の表面にはクラックは発生しないが、比較例2のセラミックス皮膜の表面にはクラックが発生する。 In any of Example 1, Comparative Example 1, and Comparative Example 2, no cracks are generated on the surface of the ceramic film before the heat cycle treatment. When heat cycle treatment is performed, cracks do not occur on the surfaces of the ceramic coatings of Example 1 and Comparative Example 1, but cracks occur on the surface of the ceramic coating of Comparative Example 2.
 ヒートサイクル処理後においても実施例1と比較例2のセラミックス皮膜にクラックが発生しない原因としては、次のことが考えられる。一般に、セラミックス皮膜の厚みが厚いと、セラミックス皮膜とアルミニウム板との間の熱膨張係数差に起因した熱応力によってセラミックス皮膜にクラックが発生し易くなる。セラミックス皮膜が緻密な膜である場合にはこの傾向が顕著となるが、実施例1のセラミックス皮膜は厚さが0.8μmの薄い膜であるため、柔軟性が高い。そのため、ヒートサイクル処理時の熱応力がセラミックス皮膜で吸収され、クラックの発生が抑制されたと考えられる。比較例1でも同様である。
 比較例1の場合は、セラミックス皮膜の内部に独立ポアが散在しているため、さらに柔軟性が高くなっており、クラックの発生もより抑制されたと考えられる。
The following can be considered as the cause of no cracks occurring in the ceramic coatings of Example 1 and Comparative Example 2 even after the heat cycle treatment. In general, when the thickness of the ceramic film is large, cracks are likely to occur in the ceramic film due to thermal stress caused by the difference in thermal expansion coefficient between the ceramic film and the aluminum plate. This tendency becomes remarkable when the ceramic film is a dense film. However, since the ceramic film of Example 1 is a thin film having a thickness of 0.8 μm, it has high flexibility. Therefore, it is considered that the thermal stress during the heat cycle treatment was absorbed by the ceramic film, and the generation of cracks was suppressed. The same applies to Comparative Example 1.
In the case of Comparative Example 1, since the independent pores are scattered inside the ceramic film, the flexibility is further increased, and it is considered that the occurrence of cracks is further suppressed.
 比較例2のセラミックス皮膜も薄い膜であるが、比較例2のセラミックス皮膜は、多数の空孔が厚み方向に貫通したホールアレイ構造をとる。このようなセラミックス皮膜は膜面方向の熱応力に弱い。そのため、ヒートサイクル処理後にクラックが発生したと考えられる。 The ceramic film of Comparative Example 2 is also a thin film, but the ceramic film of Comparative Example 2 has a hole array structure in which a large number of holes penetrate in the thickness direction. Such a ceramic film is vulnerable to thermal stress in the film surface direction. Therefore, it is considered that cracks occurred after the heat cycle treatment.
 以上のことから、総合的な評価として、実施例1が最も優れている。 From the above, Example 1 is the most excellent as a comprehensive evaluation.
[LED照明装置]
 図5は、図1に示した第1形態の放熱板4を備えた電子機器の一例であるLED照明装置11の断面模式図である。放熱板4は、基体1、セラミックス保護膜2、金属皮膜3を有する。放熱板4の構成は、前述した通りなので、詳細な説明は省略する。
[LED lighting device]
FIG. 5 is a schematic cross-sectional view of an LED lighting device 11 which is an example of an electronic apparatus including the heat radiation plate 4 of the first form shown in FIG. The heat sink 4 has a base 1, a ceramic protective film 2, and a metal film 3. Since the structure of the heat sink 4 is as described above, a detailed description thereof is omitted.
 LED照明装置11は、基板8、放熱板4、カバー部材10を有する。基板8は、複数のLED(Light Emitting Diode;発光ダイオード)7が搭載されている。放熱板4は、基板8を挟んでLED7とは反対側に設けられている。カバー部材10は、LED7及び基板8の周囲を覆う透明なカバー部材である。 The LED lighting device 11 includes a substrate 8, a heat sink 4, and a cover member 10. A plurality of LEDs (Light Emitting Diodes) 7 are mounted on the substrate 8. The heat sink 4 is provided on the opposite side of the LED 7 with the substrate 8 interposed therebetween. The cover member 10 is a transparent cover member that covers the periphery of the LED 7 and the substrate 8.
 基板8は、放熱板4の金属皮膜3が形成されている面とは反対側の面に設置されている。基板8は、熱伝導性を有するものであれば、特に限定されず、ガラス、アルミニウム、銅、ステンレスなどの板や、樹脂フィルムなどが用いられる。基板8は接着剤9によって放熱板4に密着しているが、接着剤を介さずに基板8と放熱板4とを密着させても良い。 The substrate 8 is installed on the surface opposite to the surface on which the metal film 3 of the heat sink 4 is formed. The substrate 8 is not particularly limited as long as it has thermal conductivity, and a plate made of glass, aluminum, copper, stainless steel, a resin film, or the like is used. The substrate 8 is in close contact with the heat radiating plate 4 by the adhesive 9, but the substrate 8 and the heat radiating plate 4 may be in close contact without using an adhesive.
 基板8の周囲には、基板8及びLED7の上部を覆う透明なカバー部材10が設けられている。カバー部材10は、LEDから放射された光を透過するものであれば良く、ガラスや樹脂などの透明な部材が用いられる。カバー部材10は、基体1との間で基板8及びLED7を密閉する密閉空間12を形成して、セラミックス保護膜2上に固定されている。 A transparent cover member 10 that covers the top of the substrate 8 and the LEDs 7 is provided around the substrate 8. The cover member 10 only needs to transmit the light emitted from the LED, and a transparent member such as glass or resin is used. The cover member 10 is fixed on the ceramic protective film 2 by forming a sealed space 12 for sealing the substrate 8 and the LED 7 with the base body 1.
 LED7で発生した熱H1は、基板8に伝わり、接着剤9、セラミックス保護膜2、基体1、セラミックス保護膜2、金属皮膜3を介して、熱H2として外部に放出される。そのため、密閉空間12内の温度上昇が抑制され、LEDの温度も低減される。これにより、LED7の安定的な駆動が可能となる。 The heat H1 generated in the LED 7 is transmitted to the substrate 8, and is released to the outside as heat H2 through the adhesive 9, the ceramic protective film 2, the substrate 1, the ceramic protective film 2, and the metal film 3. Therefore, the temperature rise in the sealed space 12 is suppressed, and the temperature of the LED is also reduced. Thereby, the stable drive of LED7 is attained.
 なお、図5では、基体1の外面全体にセラミックス保護膜2が形成されているが、基体1の基体8と対向する側とは反対側の主面には、必ずしもセラミックス保護膜2は形成されていなくてもよい。例えば、基体1の基体8と対向する側とは反対側の主面以外の面にセラミックス保護膜2を形成し、セラミックス保護膜2の形成されていない基体1の表面に金属皮膜3を形成してもよい。これにより、放熱板4の放熱性を高めることができる。 In FIG. 5, the ceramic protective film 2 is formed on the entire outer surface of the base 1, but the ceramic protective film 2 is not necessarily formed on the main surface of the base 1 opposite to the side facing the base 8. It does not have to be. For example, the ceramic protective film 2 is formed on the surface of the base 1 other than the main surface opposite to the side facing the base 8, and the metal film 3 is formed on the surface of the base 1 where the ceramic protective film 2 is not formed. May be. Thereby, the heat dissipation of the heat sink 4 can be improved.
[電子部品基板]
 図6は、放熱板の第2形態である放熱板13を備えた電子機器の一例である電子部品基板15の断面模式図である。放熱板13において第1形態の放熱板4と共通する構成については、同じ符号を付し、詳細な説明は省略する。
[Electronic component board]
FIG. 6 is a schematic cross-sectional view of an electronic component substrate 15 which is an example of an electronic device including the heat dissipation plate 13 which is the second form of the heat dissipation plate. About the structure which is common in the heat sink 13 with the heat sink 4 of 1st form, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 電子部品基板15は、放熱板13上に複数の配線14を形成したものである。放熱板13は、基体1をコアとして含み、基体1の表面には、セラミック保護膜2が形成されている。セラミックス保護膜2は、基体1の外面全体を覆っている。配線14は、セラミックス保護膜2の表面に形成されている。基体1の材料、セラミックス保護膜2の材料及び厚みは、第1形態の放熱板4と同じである。 The electronic component substrate 15 has a plurality of wirings 14 formed on the heat sink 13. The heat radiating plate 13 includes the base 1 as a core, and a ceramic protective film 2 is formed on the surface of the base 1. The ceramic protective film 2 covers the entire outer surface of the substrate 1. The wiring 14 is formed on the surface of the ceramic protective film 2. The material of the substrate 1 and the material and thickness of the ceramic protective film 2 are the same as those of the heat sink 4 of the first embodiment.
 セラミック保護膜2の表面には、配線14が形成されている。配線14は、基体1の一方の主面側のみに形成されている。配線14は、例えば、図1に示した第1形態の放熱板4の金属皮膜3を選択エッチングすることにより形成することができる。図1の金属皮膜3の表面には凹凸3aが形成されているので、配線14の表面には凹凸14aが形成されているが、配線14の表面は平滑でも良い。 A wiring 14 is formed on the surface of the ceramic protective film 2. The wiring 14 is formed only on one main surface side of the base 1. The wiring 14 can be formed, for example, by selectively etching the metal film 3 of the heat radiation plate 4 of the first form shown in FIG. Since the unevenness 3a is formed on the surface of the metal film 3 in FIG. 1, the unevenness 14a is formed on the surface of the wiring 14, but the surface of the wiring 14 may be smooth.
 配線14上には、半導体チップなどの別の電子部品(図示略)が接続される。配線14上に電子部品を実装しない状態のものを電子部品基板15としても良く、配線14上に電子部品を実装したものを電子部品基板15としても良い。配線14上の電子部品で発生した熱は、配線14、セラミックス保護膜2、基体1、セラミックス保護膜2を介して外部に放出される。そのため、電子部品の温度上昇が抑制され、電子部品の安定的な駆動が可能となる。 On the wiring 14, another electronic component (not shown) such as a semiconductor chip is connected. The electronic component substrate 15 may be the one in which no electronic component is mounted on the wiring 14, and the electronic component substrate 15 may be one in which the electronic component is mounted on the wiring 14. Heat generated in the electronic component on the wiring 14 is released to the outside through the wiring 14, the ceramic protective film 2, the base 1, and the ceramic protective film 2. Therefore, the temperature rise of the electronic component is suppressed, and the electronic component can be driven stably.
[太陽電池ユニット]
 図7は、図1に示した第1形態の放熱板4を備えた電子機器の一例である太陽電池ユニット20の断面模式図である。放熱板4は、基体1、セラミックス保護膜2、金属皮膜3を有する。放熱板4の構成は、前述した通りなので、詳細な説明は省略する。
[Solar cell unit]
FIG. 7 is a schematic cross-sectional view of a solar cell unit 20 which is an example of an electronic apparatus including the heat radiation plate 4 of the first form shown in FIG. The heat sink 4 has a base 1, a ceramic protective film 2, and a metal film 3. Since the structure of the heat sink 4 is as described above, a detailed description thereof is omitted.
 太陽電池ユニット20は、太陽電池パネル16、放熱板4、保護フィルム17、背板18を有する。放熱板4は、太陽電池パネル16の光入射面16a側とは反対側に設けられている。保護フィルム17は、太陽電池パネル16の光入射面16aを覆う透明な保護フィルムである。背板18は、放熱板4を挟んで太陽電池パネル16とは反対側に設けられている。 The solar cell unit 20 includes a solar cell panel 16, a heat sink 4, a protective film 17, and a back plate 18. The heat sink 4 is provided on the side opposite to the light incident surface 16 a side of the solar cell panel 16. The protective film 17 is a transparent protective film that covers the light incident surface 16 a of the solar cell panel 16. The back plate 18 is provided on the side opposite to the solar cell panel 16 with the heat sink 4 interposed therebetween.
 太陽電池パネル16は、光入射面16aから入射した光を光起電力効果によって電力に変換する素子である。太陽電池パネル16としては、光電変換部にシリコンを用いるシリコン系太陽電池パネルや、光電変換部に化合物半導体を用いる化合物系太陽電池や、光電変換部に有機化合物を用いる有機系太陽電池パネルなどが用いられる。太陽電池パネル16としては公知の太陽電池パネルが用いられ、その種類や構成は特に限定されない。 The solar cell panel 16 is an element that converts light incident from the light incident surface 16a into electric power by the photovoltaic effect. Examples of the solar cell panel 16 include a silicon-based solar cell panel that uses silicon for a photoelectric conversion unit, a compound-based solar cell that uses a compound semiconductor for a photoelectric conversion unit, and an organic-based solar cell panel that uses an organic compound for a photoelectric conversion unit. Used. A known solar cell panel is used as the solar cell panel 16, and the type and configuration thereof are not particularly limited.
 太陽電池パネル16は、放熱板4の金属皮膜3が形成された面とは反対側の面に設置されている。放熱板4は、太陽電池パネル16の光入射面16a側とは反対側の面に直接又は接着剤(図示略)を介して密着している。太陽電池パネル16、放熱板4、及び保護フィルム17は一体化されて背板18に固定されている。 The solar cell panel 16 is installed on the surface opposite to the surface on which the metal film 3 of the heat sink 4 is formed. The heat sink 4 is in close contact with the surface opposite to the light incident surface 16a side of the solar cell panel 16 directly or via an adhesive (not shown). The solar cell panel 16, the heat radiating plate 4, and the protective film 17 are integrated and fixed to the back plate 18.
 通常、太陽電池パネル16の最大光電変換効率は約15%であり、残りの太陽エネルギーは80%程度廃熱になる。その熱が排除されなければ、太陽電池パネル16の温度が最適温度(25℃)以上に上昇し、太陽電池パネル16の光電変換効率を低下させてしまう。太陽電池パネル16は長期間高温環境で使用されると劣化が早くなり、寿命も短くなる。冬場を除くと、太陽電池パネル16の温度が70℃~90℃に達し、光電変換効率は7%~10%程度まで低下してしまう。 Usually, the maximum photoelectric conversion efficiency of the solar cell panel 16 is about 15%, and the remaining solar energy is about 80% waste heat. If the heat is not excluded, the temperature of the solar cell panel 16 rises to the optimum temperature (25 ° C.) or more, and the photoelectric conversion efficiency of the solar cell panel 16 is lowered. When the solar cell panel 16 is used in a high temperature environment for a long period of time, the deterioration is quick and the life is shortened. Except for the winter, the temperature of the solar cell panel 16 reaches 70 ° C. to 90 ° C., and the photoelectric conversion efficiency decreases to about 7% to 10%.
 太陽電池ユニット20には、太陽電池パネル16の光入射面16aとは反対側の面に放熱板4が設けられている。太陽電池パネル16に蓄積された熱は、放熱板4を介して外部に放出される。そのため、太陽電池パネル16の光電変換部の温度が最適温度付近(例えば45℃以下)に維持される。よって、太陽電池パネル16の光電変換効率が高い太陽電池ユニット20が得られる。 The solar cell unit 20 is provided with a heat sink 4 on the surface of the solar cell panel 16 opposite to the light incident surface 16a. The heat accumulated in the solar cell panel 16 is released to the outside through the heat sink 4. Therefore, the temperature of the photoelectric conversion part of the solar cell panel 16 is maintained near the optimum temperature (for example, 45 ° C. or lower). Therefore, the solar cell unit 20 with high photoelectric conversion efficiency of the solar cell panel 16 is obtained.
 図8は、複数の太陽電池ユニット20をアレイ状に配列して背板4に固定した太陽電池モジュール21の概略斜視図である。図9は、図8の太陽電池モジュール22を枠体22に複数取り付けた大型の太陽電池モジュール23の概略斜視図である。 FIG. 8 is a schematic perspective view of a solar cell module 21 in which a plurality of solar cell units 20 are arranged in an array and fixed to the back plate 4. FIG. 9 is a schematic perspective view of a large-sized solar cell module 23 in which a plurality of the solar cell modules 22 of FIG.
 太陽電池モジュール21,23は、複数の太陽電池ユニット20を直列又は並列に接続して、必要となる電力が得られるようにしたものである。太陽電池モジュール21,23は光電変換効率の高い太陽電池ユニット20を備えているので、大きな電力を安定的に供給することができる。 The solar cell modules 21 and 23 are obtained by connecting a plurality of solar cell units 20 in series or in parallel to obtain necessary power. Since the solar cell modules 21 and 23 include the solar cell unit 20 with high photoelectric conversion efficiency, large electric power can be stably supplied.
[変形形態]
 図1と図6には、互いに異なる形態の放熱板を示した。これらの放熱板は、放熱板上に搭載される電子部品の用途や要求性能などに応じて適宜変更可能である。例えば、図6の電子部品基板15に図1の放熱板を適用することができる。逆に、図5や図7の電子機器に図6の放熱板を適用することもできる。
[Deformation]
1 and 6 show different types of heat sinks. These heat radiating plates can be appropriately changed according to the use and required performance of electronic components mounted on the heat radiating plates. For example, the heat dissipation plate of FIG. 1 can be applied to the electronic component substrate 15 of FIG. Conversely, the heat sink shown in FIG. 6 can be applied to the electronic apparatus shown in FIGS.
 図5、図6、図7には、電子機器の一例として、LED照明装置、電子部品基板、太陽電池ユニットを示した。しかし、電子機器はこのようなものに限定されず、放熱板を備えた機器一般に本発明を適用することができる。 FIG. 5, FIG. 6, and FIG. 7 show an LED illumination device, an electronic component substrate, and a solar cell unit as examples of electronic devices. However, the electronic device is not limited to such a device, and the present invention can be applied to general devices including a heat sink.
 本発明は、放熱板の分野、放熱板を用いる電子機器の分野において広く利用可能である。 The present invention can be widely used in the field of heat sinks and the field of electronic devices using heat sinks.
1・・・基体、2・・・セラミックス保護膜、3・・・金属皮膜、3a・・・凹凸、4・・・放熱板、7・・・LED、8・・・基板、11・・・LED照明装置(電子機器)、13・・・放熱板、14・・・配線、15・・・電子部品基板(電子機器)、16・・・太陽電池パネル、20・・・太陽電池ユニット(電子機器)、21,23・・・太陽電池モジュール(電子機器) DESCRIPTION OF SYMBOLS 1 ... Base | substrate, 2 ... Ceramics protective film, 3 ... Metal film, 3a ... Unevenness, 4 ... Heat sink, 7 ... LED, 8 ... Board | substrate, 11 ... LED lighting device (electronic device), 13 ... radiator plate, 14 ... wiring, 15 ... electronic component substrate (electronic device), 16 ... solar cell panel, 20 ... solar cell unit (electronic) Equipment) 21, 23 ... Solar cell module (electronic equipment)

Claims (10)

  1.  アルミニウム又はアルミニウム合金からなる基体と、
     前記基体の表面を陽極酸化することにより形成され、内部に空孔を有しないセラミックス皮膜であり、厚みが0.01μm以上5μm未満であるセラミックス保護膜と、
     前記セラミックス保護膜の表面に形成される金属皮膜と、
     を備える放熱板。
    A substrate made of aluminum or an aluminum alloy;
    A ceramic protective film formed by anodizing the surface of the substrate and having no pores therein, and having a thickness of 0.01 μm or more and less than 5 μm;
    A metal film formed on the surface of the ceramic protective film;
    A heat sink.
  2.  前記基体の前記セラミックス保護膜が形成されていない部分に形成される金属皮膜を更に備える請求項1に記載の放熱板。 The heat radiating plate according to claim 1, further comprising a metal film formed on a portion of the substrate where the ceramic protective film is not formed.
  3.  前記金属皮膜は、表面に凹凸が形成されている請求項1又は2に記載の放熱板。 The heat sink according to claim 1 or 2, wherein the metal film has an uneven surface.
  4.  前記金属皮膜は、多孔質な膜である請求項3に記載の放熱板。 The heat sink according to claim 3, wherein the metal film is a porous film.
  5.  前記金属皮膜は、銅又はアルミニウムからなる請求項1又は2に記載の放熱板。 The heat sink according to claim 1 or 2, wherein the metal film is made of copper or aluminum.
  6.  前記セラミックス保護膜は、厚みが0.5μm以上3μm以下である請求項1に記載の放熱板。 The radiator plate according to claim 1, wherein the ceramic protective film has a thickness of 0.5 µm to 3 µm.
  7.  アルミニウム又はアルミニウム合金からなる基体と、
     前記基体の表面を陽極酸化することにより形成され、内部に空孔を有しないセラミックス皮膜であり、厚みが0.01μm以上5μm未満であるセラミックス保護膜と、
     前記セラミックス保護膜の表面に形成される金属皮膜と、
     を備える放熱板を有する電子機器。
    A substrate made of aluminum or an aluminum alloy;
    A ceramic protective film formed by anodizing the surface of the substrate and having no pores therein, and having a thickness of 0.01 μm or more and less than 5 μm;
    A metal film formed on the surface of the ceramic protective film;
    An electronic apparatus having a heat sink.
  8.  前記セラミックス保護膜の表面に形成される配線を更に備える請求項7に記載の電子機器。 The electronic device according to claim 7, further comprising a wiring formed on a surface of the ceramic protective film.
  9.  前記放熱板上に、直接又は接着剤を介して密着され、LEDを搭載した基板を更に備える請求項7に記載の電子機器。 8. The electronic device according to claim 7, further comprising a substrate mounted on the heat sink, directly or via an adhesive, on which an LED is mounted.
  10.  前記放熱板上に、直接又は接着剤を介して密着される太陽電池パネルを更に備える請求項7に記載の電子機器。 The electronic device according to claim 7, further comprising a solar cell panel that is in close contact with the heat sink directly or via an adhesive.
PCT/JP2011/066202 2010-07-15 2011-07-15 Heat sink, and electronic device WO2012008569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010160779 2010-07-15
JP2010-160779 2010-07-15

Publications (1)

Publication Number Publication Date
WO2012008569A1 true WO2012008569A1 (en) 2012-01-19

Family

ID=45469563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066202 WO2012008569A1 (en) 2010-07-15 2011-07-15 Heat sink, and electronic device

Country Status (1)

Country Link
WO (1) WO2012008569A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033700A1 (en) * 2013-09-05 2015-03-12 シャープ株式会社 Substrate for light emitting device, light emitting device, and method for manufacturing substrate for light emitting device
WO2015079913A1 (en) * 2013-11-29 2015-06-04 シャープ株式会社 Light-emitting device substrate, light-emitting device, and method for producing light-emitting device substrate
EP3200571B1 (en) * 2014-09-24 2021-04-21 Kyocera Corporation Electronic component mounting board and light emission device using same
WO2021146722A1 (en) * 2020-01-19 2021-07-22 Ixi Technology Holdings, Inc. Heat sink for hand held equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293513A (en) * 1995-04-25 1996-11-05 Matsushita Electron Corp Semiconductor device and its manufacture
JP2000124568A (en) * 1998-10-19 2000-04-28 Sumitomo Metal Ind Ltd Metal base substrate, semiconductor device, and manufacture of them
JP2004200519A (en) * 2002-12-19 2004-07-15 Kyocera Corp Solar cell module
JP2007251176A (en) * 2006-03-17 2007-09-27 Samsung Electro-Mechanics Co Ltd Anodized metal substrate module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293513A (en) * 1995-04-25 1996-11-05 Matsushita Electron Corp Semiconductor device and its manufacture
JP2000124568A (en) * 1998-10-19 2000-04-28 Sumitomo Metal Ind Ltd Metal base substrate, semiconductor device, and manufacture of them
JP2004200519A (en) * 2002-12-19 2004-07-15 Kyocera Corp Solar cell module
JP2007251176A (en) * 2006-03-17 2007-09-27 Samsung Electro-Mechanics Co Ltd Anodized metal substrate module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033700A1 (en) * 2013-09-05 2015-03-12 シャープ株式会社 Substrate for light emitting device, light emitting device, and method for manufacturing substrate for light emitting device
CN105518883A (en) * 2013-09-05 2016-04-20 夏普株式会社 Light-emission device, and production method therefor
JP6030244B2 (en) * 2013-09-05 2016-11-24 シャープ株式会社 Light emitting device substrate, light emitting device, and method for manufacturing light emitting device substrate
WO2015079913A1 (en) * 2013-11-29 2015-06-04 シャープ株式会社 Light-emitting device substrate, light-emitting device, and method for producing light-emitting device substrate
JP6054546B2 (en) * 2013-11-29 2016-12-27 シャープ株式会社 LIGHT EMITTING DEVICE SUBSTRATE, LIGHT EMITTING DEVICE, AND LIGHT EMITTING DEVICE SUBSTRATE MANUFACTURING METHOD
EP3200571B1 (en) * 2014-09-24 2021-04-21 Kyocera Corporation Electronic component mounting board and light emission device using same
WO2021146722A1 (en) * 2020-01-19 2021-07-22 Ixi Technology Holdings, Inc. Heat sink for hand held equipment
US11147189B2 (en) 2020-01-19 2021-10-12 Ixi Technology Holdings, Inc. Heat sink for hand held equipment

Similar Documents

Publication Publication Date Title
US8955580B2 (en) Use of a graphite heat-dissipation device including a plating metal layer
JP5539238B2 (en) Heat dissipation board
JP4980455B2 (en) Method for manufacturing metal substrate with insulating layer, method for manufacturing semiconductor device, method for manufacturing solar cell, method for manufacturing electronic circuit, and method for manufacturing light emitting element
US20130209776A1 (en) Back sheet of a solar cell module for photovoltaic power generation
EP1991720A1 (en) Anodised aluminium, dielectric, and method
EP2217043B1 (en) Method for producing a substrate for power module
WO2012008569A1 (en) Heat sink, and electronic device
KR20170044105A (en) Joined body, substrate for power module provided with heat sink, heat sink, method for manufacturing joined body, method for manufacturing substrate for power module provided with heat sink, and method for manufacturing heat sink
US20100112372A1 (en) Component having a ceramic base the surface of which is metalized
KR101751108B1 (en) Heat Radiating Apparatus of the LED Lighting Fixture using a Silver Paste
WO2010114238A2 (en) Circuit board, and method for manufacturing same
KR20130036650A (en) Metal substrate module for led, method for manufacturing the same, and led package for vehicle using metal substrate module
WO2015135249A1 (en) Patterned multi-insulating material circuit substrate
US20120211268A1 (en) Light and heat resistant circuit board apparatus and method
KR20100107371A (en) Hear-dissipating device including a plating metal layer
Lee et al. Heat dissipation performance of metal-core printed circuit board prepared by anodic oxidation and electroless deposition
JPWO2018216433A1 (en) Method for manufacturing member to be processed and laminate
CN108140705B (en) Substrate for light-emitting module, substrate for light-emitting module with refrigerator, and method for manufacturing substrate for light-emitting module
CN103035831A (en) Manufacture method for light-emitting diode (LED) aluminum substrate insulation layer
KR101118846B1 (en) Heat radiating substrate and method of manufacturing the same
KR20160134026A (en) Heat Radiating Apparatus of the LED Lighting Fixture using a Methanol
KR101125752B1 (en) Printed circuit board and method of manufacturing the same
JP2011176299A (en) Circuit board and electronic equipment using the same
US20110232950A1 (en) Substrate and method for manufacturing the same
KR101154373B1 (en) Metal core substrate and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP