WO2012008181A1 - Sensor, sensor network system, method for controlling sensor, and control program - Google Patents
Sensor, sensor network system, method for controlling sensor, and control program Download PDFInfo
- Publication number
- WO2012008181A1 WO2012008181A1 PCT/JP2011/056269 JP2011056269W WO2012008181A1 WO 2012008181 A1 WO2012008181 A1 WO 2012008181A1 JP 2011056269 W JP2011056269 W JP 2011056269W WO 2012008181 A1 WO2012008181 A1 WO 2012008181A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- base station
- period
- sleep
- response
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/38—Services specially adapted for particular environments, situations or purposes for collecting sensor information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
- H04W52/0216—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a sensor that performs intermittent operation and a sensor network system.
- sensor network systems have been realized in which sensors (sensor nodes) having a sensing function and a wireless communication function are connected by a mesh network, and data measured by each sensor is integrated in a base station that is a host system (for example, ZigBee). (Registered trademark) standard).
- a base station that is a host system (for example, ZigBee). (Registered trademark) standard).
- the relay device relays communication between each sensor and the base station to constitute a mesh network.
- the base station and the repeater are mainly supplied with power from an AC power source.
- the sensor is often driven by a battery in consideration of ease of arrangement, mobility, and downsizing. For this reason, in order to reduce maintenance work, a sensor that needs to be replaced less frequently is a practical sensor. Therefore, reducing the power consumption of the sensor is an important issue.
- the sensor that performs intermittent operation is activated only during the period for measuring the surrounding physical quantity, etc., and during the period for communicating to transmit the measured data to the base station, and in the sleep state where communication is not possible during the period for which measurement and communication are not performed To reduce power consumption.
- FIG. 7 is a schematic diagram showing the configuration of the sensor network system 100 of the mesh network.
- the sensor network system 100 includes a base station 101, a plurality of relay devices 102a to 102b, and a plurality of sensors 103a to 103d.
- Each of the sensors 103a to 103d is activated at a predetermined timing by a built-in timer, and measures, for example, temperature. Thereafter, in order to accumulate the measured temperature data in the base station 101, each of the sensors 103a to 103d communicates with the base station 101 via one or more repeaters 102a to 102b.
- the data transmitted from the sensors 103a and 103b to the base station 101 reaches the base station 101 via the two repeaters 102a and 102b.
- Data transmitted from the sensor 103c to the base station 101 reaches the base station 101 via a single relay 102b.
- the sensor 103 d communicates directly with the base station 101 and transmits data to the base station 101.
- FIG. 8 is a diagram illustrating communication between the sensor 103d and the base station 101 and current consumption of the sensor 103d.
- the horizontal axis represents time (time) t, and the upper part of FIG. 8 shows data transmission / reception processing of the sensor 103d and the base station 101.
- the lower part of FIG. 8 shows the current consumption of the sensor 103d.
- FIG. 8 schematically shows the relationship between time and current consumption, and the scale of the graph is not accurate.
- the sensor 103d in the sleep state is activated at a time t101 by an internal timer and shifts to an active state.
- the sensor 103d In the active state, the sensor 103d is activated, and the current consumption is significantly larger than that in the sleep state.
- the sensor 103d measures, for example, the temperature between time t101 and time t102, and transmits the measured data to the base station 101 between time t102 and time t103.
- the arrows in FIG. 8 indicate data transmission in communication.
- the base station 101 that has received data from the sensor 103d returns a reception confirmation indicating that the reception has been successful to the sensor 103d.
- the transmission of data in communication includes the reception confirmation, that is, the reception confirmation is included. Communication is performed between time t102 and time t103.
- the base station 101 that has received the data checks whether or not the received data is appropriate between time t103 and time t104. When the received data is appropriate, the base station 101 transmits a response indicating that the reception of the measurement data is completed as a response to the sensor 103d between the time t104 and the time t105 to the sensor 103d. Note that the reception confirmation for this response is transmitted from the sensor 103d to the base station 101 between time t104 and time t105.
- the sensor 103d When the sensor 103d receives a response indicating that the reception of the measurement data is completed from the base station 101, the sensor 103d shifts to a sleep state with a small current consumption after time t105. As described above, the sensor 103d is in an active state at a predetermined interval, and performs an intermittent operation in which the sensor 103d enters a sleep state when communication with the base station 101 is completed.
- Patent Document 1 describes a sensor network system that includes a sensor that performs intermittent operation and a base station, and reduces the power consumption of the sensor.
- Patent Document 1 discloses a configuration in which the time during which the sensor is activated for communication is shortened by shortening the response period of the base station to the data transmission of the sensor (the period from time t103 to time t104 in FIG. 8). Are listed.
- Japanese Patent Publication Japanese Patent Laid-Open No. 2006-21439 (published on August 10, 2006)”
- the relay time by the repeater increases, and the sensor transmits data before the base station The period until receiving the response becomes longer. Therefore, as the number of repeaters through communication increases, the period during which the sensor is in an active state in order to receive a response from the base station becomes longer.
- FIG. 9 is a diagram illustrating communication between the sensor 103a and the base station 101 and current consumption of the sensor 103a.
- the horizontal axis represents time (time) t, and the upper part of FIG. 9 shows data transmission / reception processing of the sensor 103a, the repeaters 102a and 102b, and the base station 101.
- the lower part of FIG. 9 shows the current consumption of the sensor 103a.
- FIG. 9 schematically shows the relationship between time and current consumption, and the scale of the graph is not accurate.
- the sensor 103a communicates with the base station 101 via the two repeaters 102a and 102b.
- the sensor 103a shifts from the sleep state to the active state at time t111, and measures the temperature between time t111 and time t112.
- the sensor 103a transmits measurement data to the repeater 102a between time t112 and time t113.
- the relay machine 102a receives measurement data, and transmits the reception confirmation with respect to it to the sensor 103a.
- the relay device 102a transmits the received measurement data to the relay device 102b, and the relay device 102b transmits a reception confirmation to the relay device 102a.
- the relay station 102b transmits the received measurement data to the base station 101, and the base station 101 transmits a reception confirmation to the relay station 102b.
- the base station 101 that has received the data checks whether or not the received data is appropriate between time t115 and time t116. When the received data is appropriate, the base station 101 transmits a response indicating that the reception of the measurement data is completed as a response to the sensor 103a from the time t116 to the time t117 to the relay device 102b. Thereafter, the response from the base station 101 is received by the sensor 103a through the repeaters 102b and 102a in order. When the sensor 103a receives a response indicating that the reception of the measurement data is completed from the base station 101, the sensor 103a shifts to a sleep state with a small current consumption after time t119.
- a mesh network for example, ZigBee (registered trademark) Pro standard
- the network path changes according to the surrounding wireless environment and the like.
- the number of relay stages with the base station changes. Therefore, the period during which the sensor is in the active state also changes. Therefore, when the number of relay stages increases, the period during which the sensor is in the active state is extended, and the battery life of the sensor is shortened.
- a memory for buffering is installed in the repeater, and the repeater stores the transmission data from the sensor to the base station, and the transmission data (response or command, etc.) from the base station to the sensor.
- a technique has been proposed in which a repeater communicates with a sensor and transmits and receives these data at a predetermined time when the sensor becomes active.
- the repeater buffers transmission data, a large-capacity memory for storing a large amount of data according to the number of surrounding sensors is required, and the power consumption of the repeater increases. Therefore, when a small memory is used for the repeater, the number of sensors that can be connected to the repeater is reduced.
- the present invention has been made in view of the above problems, and an object thereof is to reduce the current consumption of a sensor that performs intermittent operation.
- the sensor according to the present invention performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and transmits data to the base station directly or via one or more repeaters.
- a period determination unit that determines a sleep period is provided, and the sleep period, the sleep state, and the period from when data is transmitted until a response is received from the base station. It is characterized by becoming.
- the sensor control method performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and sends data to the base station directly or via one or more repeaters.
- a method for controlling a sensor to transmit in order to solve the above-described problem, a period determination step for determining a sleep period and a period from when the sensor transmits data until a response is received from the base station And a sleep step for putting the sensor in a sleep state during the sleep period.
- the senor enters a sleep state with low current consumption between the time when data is transmitted and the time when a response from the base station is received. Can be reduced.
- the active state is a state where communication is possible
- the sleep state is a state where communication is impossible and current consumption is smaller than that of the active state. Therefore, the sensor can reduce current consumption. Therefore, for example, when the sensor operates with a battery, the battery life can be extended, and the maintenance load can be reduced.
- the sensor according to the present invention performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and transmits data to the base station directly or via one or more repeaters.
- a sleep state is established for a predetermined sleep period from when data is transmitted until a response is received from the base station.
- the sensor control method performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and sends data to the base station directly or via one or more repeaters.
- the sensor transmits a predetermined sleep period between the time when the sensor transmits data and the time when a response from the base station is received. It is characterized by including a sleep step for making a sleep state.
- the senor enters a sleep state with low current consumption between the time when data is transmitted and the time when a response from the base station is received. Can be reduced. Therefore, the sensor can reduce current consumption. Therefore, for example, when the sensor operates with a battery, the battery life can be extended, and the maintenance load can be reduced.
- the senor enters a sleep state with low current consumption between the time when data is transmitted and the time when a response is received from the base station. Active time can be reduced. Therefore, the sensor can reduce current consumption. Therefore, for example, when the sensor operates with a battery, the battery life can be extended, and the maintenance load can be reduced.
- FIG. 1 is a schematic diagram showing a configuration of a sensor network system 10 of a mesh network.
- the sensor network system 10 includes a base station 1, a plurality of repeaters 2a to 2b, and a plurality of sensors (sensor nodes) 3a to 3d.
- the base station 1 may be arranged in a server room of an office, and the sensors 3a to 3d may be arranged in each room of the office for measuring temperature and humidity, and power of each outdoor facility or You may arrange
- the sensors 3a to 3d operate with the power of the built-in battery, and the relays 2a to 2b and the base station 1 operate with power supplied from an external AC power source.
- Sensors 3a to 3d have a sensing (measurement) function and a wireless communication function. Each of the sensors 3a to 3d is activated at a predetermined timing by a built-in timer and measures temperature and the like. The sensors 3a to 3d may measure other quantities such as humidity or illuminance. Thereafter, in order to accumulate the measured temperature data in the base station 1, each of the sensors 3a to 3d performs wireless communication with the base station 1 via one or more repeaters 2a to 2b. . Here, data transmitted from the sensors 3a and 3b to the base station 1 reaches the base station 1 through the two relay devices 2a and 2b. Data transmitted from the sensor 3c to the base station 1 reaches the base station 1 through one relay device 2b.
- the sensor 3 d communicates directly with the base station 1 and transmits data to the base station 1.
- the sensor network system 10 is a mesh network that fluidly changes the communication path according to the surrounding wireless environment and the state of the repeaters 2a and 2b.
- the sensors 3a to 3d can communicate with each other in accordance with the signal strength of the base station 1 or the relays 2a to 2b. Data etc. are transmitted with a signal strength of a limit level.
- FIG. 2 is a block diagram showing the configuration of the sensor 3a.
- the sensors 3a to 3d have the same configuration.
- the sensor 3a includes a timer unit 11, an activation unit 12, a measurement unit 13, a communication unit 14, a sleep setting unit (period determination unit) 15, and a storage unit 16.
- the timer unit 11 stores the activation time (time), and outputs a signal for starting measurement to the activation unit 12 in order to shift the sensor 3a from the sleep state to the active state at a predetermined time for measurement. To do.
- the timer unit 11 receives the sleep period information from the activation unit 12, the timer unit 11 causes the activation unit 12 to wait for communication in order to shift the sensor 3a from the sleep state to the active state at a time according to the sleep period. Output a signal.
- the activation unit 12 When the activation unit 12 receives a signal from the timer unit 11, the activation unit 12 shifts the sensor 3a from the sleep state to the active state. When the activation unit 12 receives a measurement start signal from the timer unit 11, the activation unit 12 outputs a measurement start signal to the measurement unit 13. Further, upon receiving a communication standby signal from the timer unit 11, the activation unit 12 outputs a communication standby signal to the communication unit 14. In addition, when the activation unit 12 receives a signal for shifting to the sleep state from the sleep setting unit 15, the activation unit 12 outputs information on the sleep period to the timer unit 11 as necessary to shift the sensor 3 a from the active state to the sleep state. .
- the measurement unit 13 When the measurement unit 13 receives the measurement start signal, the measurement unit 13 measures the temperature and acquires the measurement value.
- the measurement unit 13 may be configured to acquire a measurement value from an external sensor.
- the measurement unit 13 outputs measurement data including the measurement value and the measurement time to the communication unit 14.
- the communication unit 14 communicates with the external base station 1 or the repeaters 2a and 2b.
- the communication unit 14 receives the measurement data from the measurement unit 13
- the communication unit 14 transmits the measurement data to the communicable repeaters 2a and 2b or the communicable base station 1.
- the communication unit 14 receives a communication standby signal from the activation unit 12
- the communication unit 14 waits for communication from the outside in an active state in which communication is possible.
- the communication unit 14 receives data such as a response, a command, and a reception confirmation from the repeaters 2a and 2b or the base station 1.
- the communication unit 14 outputs the received data and the received time to the sleep setting unit 15.
- the sleep setting unit 15 When the sleep setting unit 15 receives the reception confirmation for the transmission of the measurement data and the received time from the communication unit 14, the sleep setting unit 15 stores the information of the time when the reception confirmation is received in the storage unit 16.
- the sleep setting unit 15 reads the past (previous communication) response waiting period (the period from when the measurement data is transmitted to the repeater until the response of the base station is returned) from the storage unit 16.
- the sleep period is determined according to the response waiting period, and a signal for shifting to the sleep state is output to the activation unit 12 together with the sleep period information.
- the sleep setting unit 15 When the sleep setting unit 15 receives the response of the base station 1 from the communication unit 14, the sleep setting unit 15 stores information on the time when the response of the base station 1 was received in the storage unit 16, and the sensor 3a is stored until a predetermined time for measurement. In order to enter the sleep state, a signal for shifting to the sleep state is output to the activation unit 12.
- the storage unit 16 stores information on the past response waiting period (for example, the length of the response waiting period, the time when the measurement data is transmitted, the time when the reception confirmation is received, and / or the time when the response of the base station 1 is received. Etc.).
- FIG. 3 is a diagram illustrating communication between the sensor 3a and the base station 1, and current consumption of the sensor 3a.
- the horizontal axis represents time (time) t, and the upper part of FIG. 3 shows data transmission / reception processing of the sensor 3a, the repeaters 2a and 2b, and the base station 1.
- the lower part of FIG. 3 shows the current consumption of the sensor 3a.
- FIG. 3 schematically shows the relationship between time and current consumption, and the scale of the graph is not accurate.
- the sensor 3a communicates with the base station 1 via the two repeaters 2a and 2b (the number of relay stages is 2).
- the sensor 3a is activated by a built-in timer at time t1, shifts from the sleep state to the active state, and measures the temperature between time t1 and time t2.
- the sensor 3a transmits measurement data to the repeater 2a between time t2 and time t3.
- the relay machine 2a receives measurement data, and transmits the reception confirmation with respect to it to the sensor 3a.
- the sensor 3a shifts to a sleep state (time t3).
- the sensor 3a determines a predetermined sleep period TS from past communication, and sets a timer so as to shift to an active state in which communication with the repeater 2a is possible after the sleep period TS elapses.
- the period between time t3 and time t8 shown in FIG. 3 is set as the sleep period TS.
- the relay device 2a transmits the received measurement data to the relay device 2b, and the relay device 2b transmits a reception confirmation to the relay device 2a.
- the relay device 2b transmits the received measurement data to the base station 1, and the base station 1 transmits a reception confirmation to the relay device 2b.
- the base station 1 that has received the data checks whether or not the received data is appropriate between time t5 and time t6. When the received data is appropriate, the base station 1 transmits a response indicating that the reception of the measurement data is completed as a response to the sensor 3a to the repeater 2b between time t6 and time t7.
- the response may include a control command (command) for the sensor 3a.
- the repeater 2b receives a response between time t6 and time t7, and transmits a reception confirmation to the base station 1.
- the relay device 2b transmits the received response to the relay device 2a, and the relay device 2a transmits a reception confirmation to the relay device 2b.
- the sensor 3a After the sleep period TS elapses from time t3 (between time t7 and time t8), the sensor 3a is activated by the timer and shifts from the sleep state to an active state in which communication is possible.
- the relay device 2a transmits the received response to the sensor 3a, and the sensor 3a transmits a reception confirmation to the relay device 2a.
- the sensor 3a receives the response indicating that the reception of the measurement data is completed from the base station 1
- the period TA time t3 from when the measurement data is transmitted to the repeater 2a until the response of the base station 1 is returned. From time t8).
- the time t3 indicates a point in time when the sensor 3a transmits measurement data to the repeater 2a and receives a reception confirmation from the repeater 2a to complete the communication
- a time t8 indicates that the sensor 3a receives the repeater.
- the sensor 3a determines the sleep period TS in the next communication based on the calculated period TA. Specifically, in consideration of a case where a response is returned a little earlier, a period shorter than the period TA, such as a period obtained by subtracting a predetermined period from the period TA or a period obtained by multiplying the period TA by a predetermined ratio. The period is determined as the sleep period TS. Note that the period TA may be determined as the sleep period as it is.
- a transition is made to a sleep state with low current consumption.
- the sensor 3a stands by in a sleep state until a predetermined time for measurement (for example, after 10 minutes) comes.
- the sensor 3a If the sensor 3a cannot receive a response from the base station within a predetermined period (for example, within 0.5 seconds) after shifting to the active state in order to receive a response, the sensor 3a sets the next sleep period to 0 second. Or reset the next sleep period to be shorter. Therefore, the response waiting period is reduced due to a decrease in the number of relay stages, and when the relay 2a transmits a response from the base station 1 to the sensor 3a while the sensor 3a is in the sleep state, the sensor 3a The sleep period after the next time is changed to be shorter so that a response can be received.
- a predetermined period for example, within 0.5 seconds
- the sensor 3a, the repeaters 2a and 2b, and the base station 1 transmit the data within a predetermined period after transmission. If reception confirmation is not returned from the communication partner (for example, within one second), data is retransmitted to the communication partner. Therefore, when the sleep period after the sensor 3a transmits the measurement data to the relay device 2a is too long, and the sensor 3a is in the sleep state, the relay device 2a transmits a response from the base station 1 to the sensor 3a. However, since the reception confirmation cannot be obtained, the repeater 2a retransmits the response from the base station 1 to the sensor 3a after a predetermined period.
- the sensor 3a can receive the retransmission of the response from the base station 1 and confirm that the measurement data has arrived at the base station 1. Therefore, even if the number of relay stages (the number of relay stations via communication up to the base station 1) is reduced from the previous communication, and the response returns earlier than the previous time, the sensor 3a may receive a response retransmission. it can. Note that, when performing retransmission, the relay station 2a may add information indicating that this is not the first transmission. As a result, the sensor 3a recognizes that the first transmission from the repeater 2a has not been received, and so that the repeater 2a does not have to retransmit in the next and subsequent communications. The period can be changed short.
- the sensor 3a If the sensor 3a cannot receive a response from the base station 1 within a predetermined period (for example, within 3 seconds) after shifting to the active state at time t8, the measurement data is not transmitted somewhere in the communication path. Since it is considered that the measurement data has not reached the base station 1, the sensor 3a retransmits the measurement data to the repeater 2a. When the measurement data is retransmitted, the sensor 3a waits in a communicable state without shifting to the sleep state in order to reliably receive a response from the base station. That is, the sleep period is reset to zero.
- a predetermined period for example, within 3 seconds
- FIG. 4 is a diagram illustrating an example of an operation flow of the sensor.
- the sensor starts at a predetermined time set in advance by a built-in timer, and shifts to an active state (S1).
- the sensor measures the temperature (S2).
- the sensor transmits the measured measurement data to the repeater or the base station (S3).
- the sensor receives a reception confirmation from the repeater or the base station.
- the sensor updates the transmission output level so that communication is performed with the minimum signal strength (S4).
- the sensor determines the sleep period based on the past response waiting period (S5).
- the sleep period is set to 0 ms.
- the sensor sets a timer so as to be in the sleep state only during the determined sleep period and shifts to the sleep state (S7). Then, after the sleep period elapses, the sensor is activated by a timer and shifts to an active state in which communication is possible (S8).
- the active sensor receives the response of the base station from the base station or the relay station, and receives it, and returns a confirmation of reception.
- the sensor uses the sleep period to reset the sleep period. Is stored in the storage unit 16 (S11).
- the mobile station stands by in a communicable active state and waits for a response from the base station (S12).
- the process returns to S3 in order to retransmit the measurement data to the base station.
- the senor can perform reception for a predetermined period after transmitting measurement data to the base station until receiving a response indicating that reception of the measurement data is completed from the base station. Wait in no sleep state. Therefore, current consumption can be reduced compared to a conventional sensor that waits in a communicable state until a response from the base station is received. The effect of reducing the current consumption compared with the conventional configuration becomes more prominent as the number of relay stages increases.
- the senor transmits the measurement data to the repeater based on the past response waiting period (the period from when the measurement data is transmitted to the repeater until the base station response is returned). Since the sleep period to be determined is determined, the time for the response from the base station to be returned can be predicted regardless of the number of relay stages, and when the response from the base station is returned, the communication can be shifted to the active state. it can. Therefore, the sensor can receive the response from the base station while reducing the current consumption during the response waiting period. If the response from the base station does not reach due to poor communication, the sensor can quickly measure the response. Data can be retransmitted. Therefore, the base station can receive measurement data accurately and quickly.
- the past response waiting period the period from when the measurement data is transmitted to the repeater until the base station response is returned. Since the sleep period to be determined is determined, the time for the response from the base station to be returned can be predicted regardless of the number of relay stages, and when the response from the base station is returned, the communication can be shifted to the active state. it
- the sensor predicts the time when the response from the base station is returned and shifts to the active state, when the nearest repeater capable of communicating with the sensor transmits the response from the base station to the sensor, the sensor Communication can be received appropriately. For this reason, it is difficult to cause waste that the repeater tries to communicate with the sensor many times even though the sensor is in the sleep state.
- the sensor may determine the sleep period based on the response waiting period in the communication before the previous time. For example, the average of the response waiting period in the communication in the past predetermined period or the communication in the past predetermined number of times. Alternatively, the sleep period may be determined using a weighted average or the like.
- the sensor when the sensor cannot receive a response from the base station within a predetermined period (for example, within 3 seconds) after transitioning to the active state, the sensor transitions to the sleep state without immediately retransmitting measurement data. Measurement data may be sent together at the time of measurement. In the next measurement, the sleep period may be reset to 0 in order to reliably receive a response from the base station.
- a predetermined period for example, within 3 seconds
- FIG. 5 shows the value of each parameter in the above equation.
- the data transmission interval is 600 seconds (10 minutes).
- the average current consumption during active is 40 mA.
- the average current consumption during sleep is 0.025 mA. Since the timer is only operated during sleep, the sensor can operate with a current consumption of about 1/500 to 1/1000 compared to the average current consumption during active time.
- the active time (period) in one cycle includes a measurement time (t2-t1 in FIG. 3), a data transmission time (t3-t2 in FIG. 3), a response reception time (t9-t8 in FIG. 3), and a communication standby time ( This is the sum of t118-t113) in FIG.
- the sleep period is 600 seconds minus the active time.
- the measurement time, data transmission time, and response reception time are the same for the sensor of this embodiment and the conventional sensor.
- it takes 11 milliseconds (ms) for the communication between the sensor, the repeater, and the base station. That is, the processing time for one arrow in FIG. 3 (periods such as t3-t2, t4-t3, t9-t8) is 11 ms.
- the active time when the sensor and the base station directly communicate with each other without using a repeater is 70 ms. That is, assume that the sum of the measurement time, data transmission time, and response reception time is 70 ms.
- the base station confirms whether or not the received data is appropriate (t6-t5) and ignores it.
- the sensor sets the sleep period to 0 ms (that is, the sensor does not shift to the sleep state after receiving the response from the base station after transmitting the measurement data).
- the sensor may be configured to sleep for a short period even when the number of relay stages is zero.
- the active time is extended by 22 ms (11 ms ⁇ 2 round trips). Therefore, when the number of relay stages is 1 (when there is one relay station that relays communication), it takes 92 ms to complete the process of transmitting measurement data after starting measurement at a predetermined time and receiving the response from the base station. . That is, the active time of the conventional sensor that does not perform the sleep operation is 92 ms.
- the sensor of the present embodiment ideally performs a sleep operation (when the sensor returns from the sleep state to the active state immediately before receiving a response from the base station), the active time is 70 ms, The time does not change depending on the number of relay stages.
- the active time of the sensor of this embodiment becomes shorter as compared with the conventional sensor as the number of relay stages increases.
- current consumption in a sleep state is much smaller than current consumption in an active state. Therefore, the sensor of this embodiment can greatly reduce current consumption.
- FIG. 6 is a table comparing the active time and current consumption of the sensor of the present embodiment and the conventional sensor for each number of relay stages.
- the value (%) of current consumption indicates the ratio of the current consumption of the sensor of the present embodiment to the current consumption of the conventional sensor.
- the sensor of this embodiment can reduce the current consumption to about 72% compared to the conventional sensor.
- the sensor of the present embodiment can suppress variation in active time due to the difference in the number of relay stages. That is, since the sensor of this embodiment operates with a substantially constant active time regardless of the number of relay stages, it is possible to suppress variations in battery life of a plurality of sensors. Therefore, battery replacement of a plurality of sensors can be performed at the same timing, and a maintenance load can be reduced.
- the configuration of the sensor network system of the present embodiment is the same as the sensor network system 10 of the mesh network shown in FIG.
- the base station 1 transmits information on the number of relay stages of the sensors 3a to 3d to the sensors 3a to 3d. Note that the information on the number of relay stages is included in a response to the transmission of measurement data and transmitted to the sensors 3a to 3d. Since the response waiting period mainly varies depending on the number of relay stages, each of the sensors 3a to 3d determines the sleep period after transmitting measurement data according to the number of relay stages.
- identification information of the relayed relays 2a to 2b is transmitted to the base station 1 together with the measurement data.
- the base station 1 uses the sensor 3a, the relay as information on the communication path along with the measurement data. 2a and the address (identification information) of the repeater 2b are received. Thereby, the base station 1 can recognize the number of repeaters that are relaying the communication with the sensor 3a.
- the base station 1 transmits a response including information on the number of relay stages to the sensor 3a.
- the configuration of the sensor of this embodiment is the same as the sensor shown in FIG.
- the sensor 3a determines the sleep period based on the information on the number of relay stages. For example, when receiving a response from the base station 1, the communication unit 14 outputs received data to the sleep setting unit 15.
- the sleep setting unit 15 When the sleep setting unit 15 receives the reception confirmation for the transmission of the measurement data and the received time from the communication unit 14, the sleep setting unit 15 reads information on the relay stage number of the previous communication from the storage unit 16 and determines the sleep period according to the relay stage number. Then, a signal for shifting to the sleep state is output to the activation unit 12 together with information on the sleep period.
- the sleep setting unit 15 may set a period determined in advance according to the number of relay stages as a sleep period.
- the sleep setting unit 15 may determine the sleep period based on the relationship between the number of relay stages in the past communication and the response waiting period. For example, the sleep setting unit 15 can determine the sleep period based on an average response waiting period (or a minimum response waiting period or the like) when the number of relay stages is 2.
- the sleep setting unit 15 When the sleep setting unit 15 receives the response of the base station 1, the sleep setting unit 15 stores the information of the time when the response is received and the information of the number of relay stages included in the response in the storage unit 16, and the sensor 3a until a predetermined time for measurement. In order to set the sleep state to the sleep state, a signal for shifting to the sleep state is output to the activation unit 12.
- the storage unit 16 stores information on the number of relay stages and information on a past response waiting period.
- table data indicating the number of relay stages and a predetermined sleep period corresponding thereto may be stored.
- the sensor response wait period mainly varies depending on the number of relay stages.
- each sensor determines the sleep period according to the number of relay stages of the communication path, so that the response waiting period can be appropriately predicted. Therefore, it is possible to reduce the active time while waiting for a response and reduce the current consumption.
- the sensor that has received the response from the base station may determine the number of relaying relay devices from the communication path information (address of each relaying device) added to the response.
- the base station may transmit information indicating the sleep period to each sensor instead of information on the number of relay stages. For example, the base station determines the number of relay stages from information on the communication path with a certain sensor, determines a predetermined sleep period according to the past or the latest number of relay stages, and transmits information indicating the determined sleep period to the sensor. May be.
- the sleep setting unit of the sensor can determine the sleep period in the next communication based on the received information indicating the sleep period.
- the base station may transmit information indicating a level that changes according to the number of relay stages to each sensor, and the sensor may determine the sleep period according to the level indicated by the received information. For example, if the number of relay stages is 0 to 1, level 1 is assumed, when the number of relay stages is 2 to 4, level 2 is assumed, and when the number of relay stages is 5 or more, level 3 is expected to change the response waiting period according to the level. it can. Therefore, the sensor can predict the response waiting period according to the received level and determine the sleep period. Note that the base station may determine the sleep period and transmit information indicating the sleep period as the level to the sensor.
- the senor may be configured to be in a sleep state for a certain period of time from transmission of measurement data to the base station to reception of a response from the base station regardless of the number of relay stages.
- a first sensor performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and transmits data to the base station directly or via one or more of the repeaters.
- a sensor for transmitting comprising a period determining unit for determining a sleep period, wherein the sleep period is in a sleep state from when data is transmitted until a response is received from the base station. Yes.
- a first sensor control method of the present invention in a sensor network system including a base station, a repeater, and a sensor, the base station performs an intermittent operation and directly or via one or more of the repeaters.
- a method of controlling a sensor for transmitting data to a period determining step for determining a sleep period, and between the time when the sensor transmits data and the time when a response is received from the base station, A sleep step, and a sleep step for setting a sleep state.
- the senor enters a sleep state with low current consumption between the time when data is transmitted and the time when a response from the base station is received. Can be reduced.
- the active state is a state where communication is possible
- the sleep state is a state where communication is impossible and current consumption is smaller than that of the active state. Therefore, the sensor can reduce current consumption. Therefore, for example, when the sensor operates with a battery, the battery life can be extended, and the maintenance load can be reduced.
- the period determining unit predicts a response waiting period from when the sensor transmits data until receiving a response from the base station, and before the response from the base station returns,
- the sleep period may be determined so as to shift to a communicable active state.
- the period determination unit predicts the response waiting period and determines the sleep period, so that the sensor can shift to a communicable active state before the response from the base station is returned. . Therefore, it is possible to more reliably receive a response from the base station, reduce the active time, and reduce current consumption.
- the period determination unit may determine the sleep period based on a response waiting period from when the sensor transmits data until a response is received from the base station in past communication.
- the period determining unit can determine the sleep period based on the response waiting time in the past communication, and therefore can predict the response waiting period. Therefore, it is possible to determine a sleep period as long as possible so that a response from the base station can be received. Therefore, the active time can be reduced more efficiently.
- the active time of a plurality of sensors can be made more uniform regardless of the number of repeaters that relay communication, for example, when the sensors operate on batteries, the battery life of the plurality of sensors is made more uniform. be able to. Therefore, the maintenance load can be reduced.
- the period determination unit may determine the sleep period according to the number of repeaters that relay communication with the base station.
- the response waiting period mainly varies depending on the number of repeaters that relay communication with the base station.
- a sleep period is determined according to the number of the relay machines which relay communication with a base station, a response waiting period can be estimated. Therefore, it is possible to determine a sleep period as long as possible so that a response from the base station can be received. Therefore, the active time can be reduced more efficiently.
- the active time of a plurality of sensors can be made more uniform regardless of the number of repeaters that relay communication, for example, when the sensors operate on batteries, the battery life of the plurality of sensors is made more uniform. be able to. Therefore, the maintenance load can be reduced.
- the base station transmits information indicating a level corresponding to the number of relays that relay communication with the sensor to the sensor, and the period determination unit determines the sleep period according to the level. It may be a configuration.
- the base station transmits information indicating a level corresponding to the number of relays that relay communication with the sensor to the sensor. Since the number of repeaters that relay communication is related to the response waiting time, the period determination unit of the sensor receives the response from the base station by determining the sleep period according to the level indicated by the above information. As long as possible, the longest possible sleep period can be determined. Therefore, the active time can be reduced more efficiently. In addition, since the active time of a plurality of sensors can be made more uniform regardless of the number of repeaters that relay communication, for example, when the sensors operate on batteries, the battery life of the plurality of sensors is made more uniform. be able to. Therefore, the maintenance load can be reduced.
- the period determination unit may change the sleep period in the next communication to be short.
- the response waiting time may change accordingly.
- the response waiting time is shortened, it is conceivable that a response from the base station is returned while the sensor is in the sleep state.
- the period determining unit changes the sleep period in the next communication to be short. Therefore, the number of repeaters that relay communication is reduced, the response waiting time is shortened, and even if a response is returned from the base station while the sensor is in the sleep state, this will be handled in the next communication. And the sensor can properly receive a response from the base station.
- the second sensor performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and sends data to the base station directly or via one or more repeaters.
- the transmitting sensor is in a sleep state for a predetermined sleep period from when data is transmitted to when a response from the base station is received.
- the base station performs intermittent operation and directly or via one or more of the repeaters.
- a method of controlling a sensor for transmitting data to a sleep step of setting the sensor to a sleep state for a predetermined sleep period from when the sensor transmits data to when a response from the base station is received including.
- the senor enters a sleep state with low current consumption between the time when data is transmitted and the time when a response from the base station is received. Can be reduced. Therefore, the sensor can reduce current consumption. Therefore, for example, when the sensor operates with a battery, the battery life can be extended, and the maintenance load can be reduced.
- the sensor network system includes a base station, a repeater, and the sensor.
- a part of the sensor may be realized by a computer.
- a control program that causes the computer to operate as each unit and a computer-readable recording medium that records the control program are also included in the present invention. Enter the category.
- Each block of the sensors 3a to 3d, particularly the sleep setting unit 15, may be configured by hardware logic, or may be realized by software using a CPU (central processing unit) as follows.
- the sensors 3a to 3d include a CPU that executes instructions of a control program that realizes each function, a ROM (read memory) that stores the program, a RAM (random access memory) that develops the program, the program, and various A storage device (recording medium) such as a memory for storing data is provided.
- An object of the present invention is to provide a recording medium on which a program code (execution format program, intermediate code program, source program) of a control program for the sensors 3a to 3d, which is software that realizes the above-described functions, is recorded in a computer-readable manner This can also be achieved by supplying to the sensors 3a to 3d and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU (microprocessor unit)).
- a program code execution format program, intermediate code program, source program
- Examples of the recording medium include a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, a CD-ROM (compact disk-read-only memory) / MO (magneto-optical) / Disc system including optical disc such as MD (Mini Disc) / DVD (digital versatile disc) / CD-R (CD Recordable), card system such as IC card (including memory card) / optical card, or mask ROM / EPROM ( A semiconductor memory system such as erasable, programmable, read-only memory, EEPROM (electrically erasable, programmable, read-only memory) / flash ROM, or the like can be used.
- a tape system such as a magnetic tape and a cassette tape
- a magnetic disk such as a floppy (registered trademark) disk / hard disk
- the sensors 3a to 3d may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
- the communication network is not particularly limited.
- the Internet an intranet, an extranet, a LAN (local area network), an ISDN (integrated services network, digital network), a VAN (value-added network), and a CATV (community antenna) television communication.
- a network, a virtual private network, a telephone line network, a mobile communication network, a satellite communication network, etc. can be used.
- the transmission medium constituting the communication network is not particularly limited.
- IEEE institute of electrical and electronic engineering
- USB power line carrier
- cable TV line telephone line
- ADSL asynchronous digital subscriber loop
- Bluetooth registered trademark
- 802.11 wireless high data rate
- mobile phone network satellite line, terrestrial digital network, etc. But it is available.
- the present invention can be used for a sensor that performs intermittent operation.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
The current consumption of a sensor which operates intermittently is reduced. Disclosed is a sensor (3a) which operates intermittently in a sensor network system containing a base station, a relay device, and the sensor (3a), and which directly transmits data to the base station or transmits data to the base station via one or more relay devices. The sensor (3a) is provided with a sleep setting unit (15) for determining a sleep period, and enters a sleep state during the abovementioned sleep period, which is between the point in which data is transmitted and the point in which a response from the base station is received. As a consequence, the time in which the sensor (3a) is active is reduced, thereby being able to reduce the current consumption.
Description
本発明は、間欠動作を行うセンサ、およびセンサネットワークシステムに関する。
The present invention relates to a sensor that performs intermittent operation and a sensor network system.
近年、センシング機能と無線通信機能とを有するセンサ(センサノード)をメッシュネットワークで接続し、各センサが計測したデータを上位システムである基地局に集積するセンサネットワークシステムが実現されている(例えばZigBee(登録商標)規格)。このようなセンサネットワークシステムでは、無線通信機能を有する中継機を複数配置することにより、中継機が、各センサと基地局との通信を中継して、メッシュネットワークを構成する。基地局および中継機は、主としてAC電源から電力の供給を受ける。一方、センサは、配置の容易さ、移動性、小型化を考慮して、電池によって駆動される場合が多い。そのため、メンテナンスの手間を削減するために、電池交換を行う頻度が少なくてよいセンサが実用的なセンサとなる。よって、センサの消費電力を低減することが重要な課題となる。
In recent years, sensor network systems have been realized in which sensors (sensor nodes) having a sensing function and a wireless communication function are connected by a mesh network, and data measured by each sensor is integrated in a base station that is a host system (for example, ZigBee). (Registered trademark) standard). In such a sensor network system, by arranging a plurality of relay devices having a wireless communication function, the relay device relays communication between each sensor and the base station to constitute a mesh network. The base station and the repeater are mainly supplied with power from an AC power source. On the other hand, the sensor is often driven by a battery in consideration of ease of arrangement, mobility, and downsizing. For this reason, in order to reduce maintenance work, a sensor that needs to be replaced less frequently is a practical sensor. Therefore, reducing the power consumption of the sensor is an important issue.
従来から、消費電力を低減するために、間欠動作を行うセンサがある。間欠動作を行うセンサは、周囲の物理量等を計測する期間、および計測したデータを基地局に送信するために通信を行う期間のみ起動し、計測および通信を行わない期間は通信不可能なスリープ状態に移行して電力消費を抑制するものである。
Conventionally, there are sensors that perform intermittent operation in order to reduce power consumption. The sensor that performs intermittent operation is activated only during the period for measuring the surrounding physical quantity, etc., and during the period for communicating to transmit the measured data to the base station, and in the sleep state where communication is not possible during the period for which measurement and communication are not performed To reduce power consumption.
図7は、メッシュネットワークのセンサネットワークシステム100の構成を示す模式図である。センサネットワークシステム100は、基地局101と、複数の中継機102a~102bと、複数のセンサ103a~103dとを備える。各センサ103a~103dは、内蔵するタイマーによって所定のタイミングで起動し、例えば気温等の計測を行う。その後、計測された気温のデータを基地局101に集積するために、各センサ103a~103dは、1つ以上の中継機102a~102bを介して、または直接に、基地局101と通信を行う。ここでは、センサ103a・103bから基地局101に対して送信されるデータは、2つの中継機102a・102bを中継して、基地局101に到達する。センサ103cから基地局101に対して送信されるデータは、1つの中継機102bを中継して、基地局101に到達する。センサ103dは、基地局101と直接通信を行い、基地局101にデータを送信する。
FIG. 7 is a schematic diagram showing the configuration of the sensor network system 100 of the mesh network. The sensor network system 100 includes a base station 101, a plurality of relay devices 102a to 102b, and a plurality of sensors 103a to 103d. Each of the sensors 103a to 103d is activated at a predetermined timing by a built-in timer, and measures, for example, temperature. Thereafter, in order to accumulate the measured temperature data in the base station 101, each of the sensors 103a to 103d communicates with the base station 101 via one or more repeaters 102a to 102b. Here, the data transmitted from the sensors 103a and 103b to the base station 101 reaches the base station 101 via the two repeaters 102a and 102b. Data transmitted from the sensor 103c to the base station 101 reaches the base station 101 via a single relay 102b. The sensor 103 d communicates directly with the base station 101 and transmits data to the base station 101.
図8は、センサ103dおよび基地局101の通信、およびセンサ103dの消費電流を示す図である。横軸は時間(時刻)tを表し、図8の上部は、センサ103dおよび基地局101のデータの送受信の処理を示す。図8の下部は、センサ103dの消費電流を示す。なお、図8は、模式的に時間と消費電流との関係を示すものであり、グラフの目盛りは正確なものではない。
FIG. 8 is a diagram illustrating communication between the sensor 103d and the base station 101 and current consumption of the sensor 103d. The horizontal axis represents time (time) t, and the upper part of FIG. 8 shows data transmission / reception processing of the sensor 103d and the base station 101. The lower part of FIG. 8 shows the current consumption of the sensor 103d. FIG. 8 schematically shows the relationship between time and current consumption, and the scale of the graph is not accurate.
スリープ状態であったセンサ103dは、内蔵するタイマーによって、時刻t101に起動してアクティブ状態に移行する。アクティブ状態では、センサ103dが起動しており、スリープ状態に比べて消費電流は格段に大きくなる。起動した後、センサ103dは、時刻t101から時刻t102の間に、例えば気温の計測を行い、時刻t102から時刻t103の間に、計測したデータを基地局101に送信する。図8における矢印は通信におけるデータの送信を示す。なお、センサ103dからデータを受信した基地局101は、受信が成功したことを示す受信確認をセンサ103dに返すが、通信におけるデータの送信には受信確認が含まれる、すなわち、この受信確認を含めた通信が時刻t102から時刻t103の間に行われる。
The sensor 103d in the sleep state is activated at a time t101 by an internal timer and shifts to an active state. In the active state, the sensor 103d is activated, and the current consumption is significantly larger than that in the sleep state. After the activation, the sensor 103d measures, for example, the temperature between time t101 and time t102, and transmits the measured data to the base station 101 between time t102 and time t103. The arrows in FIG. 8 indicate data transmission in communication. The base station 101 that has received data from the sensor 103d returns a reception confirmation indicating that the reception has been successful to the sensor 103d. However, the transmission of data in communication includes the reception confirmation, that is, the reception confirmation is included. Communication is performed between time t102 and time t103.
データを受信した基地局101は、時刻t103から時刻t104の間に、受信したデータが適正なものであるか否かを確認する。受信したデータが適正なものである場合、基地局101は、時刻t104から時刻t105の間に、センサ103dに対する応答として計測データの受信が完了したことを示すレスポンスをセンサ103dに送信する。なお、このレスポンスに対する受信確認は、時刻t104から時刻t105の間に、センサ103dから基地局101に対して送信される。
The base station 101 that has received the data checks whether or not the received data is appropriate between time t103 and time t104. When the received data is appropriate, the base station 101 transmits a response indicating that the reception of the measurement data is completed as a response to the sensor 103d between the time t104 and the time t105 to the sensor 103d. Note that the reception confirmation for this response is transmitted from the sensor 103d to the base station 101 between time t104 and time t105.
センサ103dは、基地局101から計測データの受信が完了したことを示すレスポンスを受信すると、時刻t105の後、消費電流の小さいスリープ状態に移行する。このように、センサ103dは、所定の間隔でアクティブ状態になり、基地局101との通信が完了するとスリープ状態になる間欠動作を行う。
When the sensor 103d receives a response indicating that the reception of the measurement data is completed from the base station 101, the sensor 103d shifts to a sleep state with a small current consumption after time t105. As described above, the sensor 103d is in an active state at a predetermined interval, and performs an intermittent operation in which the sensor 103d enters a sleep state when communication with the base station 101 is completed.
なお、アクティブ状態においても計測時と通信時とで消費電流の値は異なるが、図8では省略してアクティブ状態の平均的な消費電流を描いている。
Note that, even in the active state, the current consumption value is different between the measurement time and the communication time, but in FIG. 8, the average current consumption in the active state is depicted by omitting it.
特許文献1には、間欠動作を行うセンサと、基地局とを含み、センサの消費電力を低減するセンサネットワークシステムが記載されている。特許文献1には、センサのデータ送信に対する基地局の応答期間(図8における時刻t103から時刻t104の期間)を短縮することにより、センサが通信のために起動している時間を短縮する構成が記載されている。
Patent Document 1 describes a sensor network system that includes a sensor that performs intermittent operation and a base station, and reduces the power consumption of the sensor. Patent Document 1 discloses a configuration in which the time during which the sensor is activated for communication is shortened by shortening the response period of the base station to the data transmission of the sensor (the period from time t103 to time t104 in FIG. 8). Are listed.
しかしながら、センサが中継機を介して基地局にデータの送信を行う場合(図7におけるセンサ103a~103c)、中継機による中継時間が多くなり、センサがデータの送信を行ってから、基地局からのレスポンスを受信するまでの期間が長くなる。そのため、通信を介する中継機の数が増えれば増えるほど、基地局からのレスポンスを受信するためにセンサがアクティブ状態になっている期間が長くなる。
However, when the sensor transmits data to the base station via the repeater (sensors 103a to 103c in FIG. 7), the relay time by the repeater increases, and the sensor transmits data before the base station The period until receiving the response becomes longer. Therefore, as the number of repeaters through communication increases, the period during which the sensor is in an active state in order to receive a response from the base station becomes longer.
図9は、センサ103aおよび基地局101の通信、およびセンサ103aの消費電流を示す図である。横軸は時間(時刻)tを表し、図9の上部は、センサ103a、中継機102a・102b、および基地局101のデータの送受信の処理を示す。図9の下部は、センサ103aの消費電流を示す。なお、図9は、模式的に時間と消費電流との関係を示すものであり、グラフの目盛りは正確なものではない。
FIG. 9 is a diagram illustrating communication between the sensor 103a and the base station 101 and current consumption of the sensor 103a. The horizontal axis represents time (time) t, and the upper part of FIG. 9 shows data transmission / reception processing of the sensor 103a, the repeaters 102a and 102b, and the base station 101. The lower part of FIG. 9 shows the current consumption of the sensor 103a. FIG. 9 schematically shows the relationship between time and current consumption, and the scale of the graph is not accurate.
センサネットワークシステム100において、センサ103aは、2つの中継機102a・102bを介して基地局101と通信を行う。センサ103aは、時刻t111にスリープ状態からアクティブ状態に移行し、時刻t111から時刻t112の間に気温の計測を行う。センサ103aは、時刻t112から時刻t113の間に中継機102aに、計測データの送信を行う。なお、時刻t112から時刻t113の間に、中継機102aは、計測データを受信し、それに対する受信確認をセンサ103aに送信する。時刻t113から時刻t114の間に、中継機102aは、受け取った計測データを中継機102bに送信し、中継機102bは、受信確認を中継機102aに送信する。時刻t114から時刻t115の間に、中継機102bは、受け取った計測データを基地局101に送信し、基地局101は、受信確認を中継機102bに送信する。
In the sensor network system 100, the sensor 103a communicates with the base station 101 via the two repeaters 102a and 102b. The sensor 103a shifts from the sleep state to the active state at time t111, and measures the temperature between time t111 and time t112. The sensor 103a transmits measurement data to the repeater 102a between time t112 and time t113. In addition, between the time t112 and the time t113, the relay machine 102a receives measurement data, and transmits the reception confirmation with respect to it to the sensor 103a. Between time t113 and time t114, the relay device 102a transmits the received measurement data to the relay device 102b, and the relay device 102b transmits a reception confirmation to the relay device 102a. Between time t114 and time t115, the relay station 102b transmits the received measurement data to the base station 101, and the base station 101 transmits a reception confirmation to the relay station 102b.
データを受信した基地局101は、時刻t115から時刻t116の間に、受信したデータが適正なものであるか否かを確認する。受信したデータが適正なものである場合、基地局101は、時刻t116から時刻t117の間に、センサ103aに対する応答として計測データの受信が完了したことを示すレスポンスを中継機102bに送信する。その後、基地局101からのレスポンスは、中継機102b・102aを順に経て、センサ103aによって受信される。センサ103aは、基地局101から計測データの受信が完了したことを示すレスポンスを受信すると、時刻t119の後、消費電流の小さいスリープ状態に移行する。
The base station 101 that has received the data checks whether or not the received data is appropriate between time t115 and time t116. When the received data is appropriate, the base station 101 transmits a response indicating that the reception of the measurement data is completed as a response to the sensor 103a from the time t116 to the time t117 to the relay device 102b. Thereafter, the response from the base station 101 is received by the sensor 103a through the repeaters 102b and 102a in order. When the sensor 103a receives a response indicating that the reception of the measurement data is completed from the base station 101, the sensor 103a shifts to a sleep state with a small current consumption after time t119.
このように、中継段数(センサと基地局との間の通信を中継する中継機の数)が多くなると、中継機が通信を中継している期間が長くなり、センサから基地局までのネットワークの経路が遠いと、センサがアクティブ状態である期間において、中継機が通信を中継している期間が占める割合が大きくなる。そのため、特許文献1に記載の技術のように、基地局の処理を高速化したとしても、センサが基地局からのレスポンスを受け取る期間を短縮する、すなわちアクティブ状態である期間を短縮する効果はあまり見込めない。そのため、センサの消費電流を低減する効果があまり見込めない。また、自立的にセンサから基地局への通信経路を構築するメッシュネットワーク(例えばZigBee(登録商標)Pro規格)においては、周囲の無線環境等の状況に応じてネットワーク経路が変化するので、センサと基地局との間の中継段数が変化する。よって、センサがアクティブ状態である期間も変化する。そのため、中継段数が多くなると、センサがアクティブ状態である期間が延び、センサの電池の寿命が短くなる。
Thus, when the number of relay stages (the number of relays that relay communication between the sensor and the base station) increases, the period during which the relay relays communication increases, and the network from the sensor to the base station increases. If the route is far, the ratio of the period during which the relay relays communication increases in the period in which the sensor is in the active state. Therefore, even if the processing of the base station is speeded up as in the technique described in Patent Document 1, the effect that the sensor receives a response from the base station is shortened, that is, the period in which the sensor is in an active state is reduced. I can't expect. Therefore, the effect of reducing the current consumption of the sensor cannot be expected so much. Further, in a mesh network (for example, ZigBee (registered trademark) Pro standard) that autonomously constructs a communication path from a sensor to a base station, the network path changes according to the surrounding wireless environment and the like. The number of relay stages with the base station changes. Therefore, the period during which the sensor is in the active state also changes. Therefore, when the number of relay stages increases, the period during which the sensor is in the active state is extended, and the battery life of the sensor is shortened.
これに対し、中継機にバッファリング用のメモリを搭載し、センサから基地局への送信データ、および、基地局からセンサへの送信データ(レスポンスまたはコマンド等)を中継機が記憶しておき、センサがアクティブになる所定の時間に、中継機がセンサと通信を行い、これらのデータを送受信する技術が提案されている。しかしながら、中継機が送信データをバッファリングする場合、周囲のセンサの数に応じて多くのデータを記憶しておく大容量のメモリが必要となり、中継機の消費電力も大きくなる。そのため、中継機に小型のメモリを使用する場合、中継機に接続できるセンサの数が少なくなる。
On the other hand, a memory for buffering is installed in the repeater, and the repeater stores the transmission data from the sensor to the base station, and the transmission data (response or command, etc.) from the base station to the sensor, A technique has been proposed in which a repeater communicates with a sensor and transmits and receives these data at a predetermined time when the sensor becomes active. However, when the repeater buffers transmission data, a large-capacity memory for storing a large amount of data according to the number of surrounding sensors is required, and the power consumption of the repeater increases. Therefore, when a small memory is used for the repeater, the number of sensors that can be connected to the repeater is reduced.
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、間欠動作を行うセンサの消費電流を低減することにある。
The present invention has been made in view of the above problems, and an object thereof is to reduce the current consumption of a sensor that performs intermittent operation.
本発明に係るセンサは、基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサであって、上記の課題を解決するために、スリープ期間を決定する期間決定部を備え、データを送信してから上記基地局からのレスポンスを受信するまでの間に、上記スリープ期間、スリープ状態になることを特徴としている。
The sensor according to the present invention performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and transmits data to the base station directly or via one or more repeaters. In order to solve the above-described problem, a period determination unit that determines a sleep period is provided, and the sleep period, the sleep state, and the period from when data is transmitted until a response is received from the base station. It is characterized by becoming.
本発明に係るセンサの制御方法は、基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサの制御方法であって、上記の課題を解決するために、スリープ期間を決定する期間決定ステップと、上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでの間に、上記センサを上記スリープ期間、スリープ状態にするスリープステップとを含むことを特徴としている。
The sensor control method according to the present invention performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and sends data to the base station directly or via one or more repeaters. A method for controlling a sensor to transmit, in order to solve the above-described problem, a period determination step for determining a sleep period and a period from when the sensor transmits data until a response is received from the base station And a sleep step for putting the sensor in a sleep state during the sleep period.
上記の構成によれば、データを送信してから基地局からのレスポンスを受信するまでの間に、センサは消費電流の小さいスリープ状態になるので、基地局からのレスポンスを待つ間のアクティブ時間を削減することができる。ここで、アクティブ状態は通信可能な状態、スリープ状態は通信不可能でアクティブ状態より消費電流が小さい状態である。よって、センサは、消費電流を低減することができる。そのため、例えばセンサが電池で動作する場合、電池寿命を長くすることができ、メンテナンスの負荷を軽減することができる。
According to the above configuration, the sensor enters a sleep state with low current consumption between the time when data is transmitted and the time when a response from the base station is received. Can be reduced. Here, the active state is a state where communication is possible, and the sleep state is a state where communication is impossible and current consumption is smaller than that of the active state. Therefore, the sensor can reduce current consumption. Therefore, for example, when the sensor operates with a battery, the battery life can be extended, and the maintenance load can be reduced.
本発明に係るセンサは、基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサであって、上記の課題を解決するために、データを送信してから上記基地局からのレスポンスを受信するまでの間に、所定のスリープ期間、スリープ状態になることを特徴としている。
The sensor according to the present invention performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and transmits data to the base station directly or via one or more repeaters. In order to solve the above-described problem, a sleep state is established for a predetermined sleep period from when data is transmitted until a response is received from the base station.
本発明に係るセンサの制御方法は、基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサの制御方法であって、上記の課題を解決するために、上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでの間に、上記センサを所定のスリープ期間、スリープ状態にするスリープステップを含むことを特徴としている。
The sensor control method according to the present invention performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and sends data to the base station directly or via one or more repeaters. In order to solve the above-described problem, the sensor transmits a predetermined sleep period between the time when the sensor transmits data and the time when a response from the base station is received. It is characterized by including a sleep step for making a sleep state.
上記の構成によれば、データを送信してから基地局からのレスポンスを受信するまでの間に、センサは消費電流の小さいスリープ状態になるので、基地局からのレスポンスを待つ間のアクティブ時間を削減することができる。よって、センサは、消費電流を低減することができる。そのため、例えばセンサが電池で動作する場合、電池寿命を長くすることができ、メンテナンスの負荷を軽減することができる。
According to the above configuration, the sensor enters a sleep state with low current consumption between the time when data is transmitted and the time when a response from the base station is received. Can be reduced. Therefore, the sensor can reduce current consumption. Therefore, for example, when the sensor operates with a battery, the battery life can be extended, and the maintenance load can be reduced.
以上のように本発明によれば、データを送信してから基地局からのレスポンスを受信するまでの間に、センサは消費電流の小さいスリープ状態になるので、基地局からのレスポンスを待つ間のアクティブ時間を削減することができる。よって、センサは、消費電流を低減することができる。そのため、例えばセンサが電池で動作する場合、電池寿命を長くすることができ、メンテナンスの負荷を軽減することができる。
As described above, according to the present invention, the sensor enters a sleep state with low current consumption between the time when data is transmitted and the time when a response is received from the base station. Active time can be reduced. Therefore, the sensor can reduce current consumption. Therefore, for example, when the sensor operates with a battery, the battery life can be extended, and the maintenance load can be reduced.
[実施形態1]
以下、本発明の実施形態について、図1~図6を参照して詳細に説明する。 [Embodiment 1]
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
以下、本発明の実施形態について、図1~図6を参照して詳細に説明する。 [Embodiment 1]
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
<センサネットワークシステムの構成>
図1は、メッシュネットワークのセンサネットワークシステム10の構成を示す模式図である。センサネットワークシステム10は、基地局1と、複数の中継機2a~2bと、複数のセンサ(センサノード)3a~3dとを備える。例えば、基地局1はオフィスのサーバルームに配置され、センサ3a~3dは、気温および湿度の計測のためにオフィスの各部屋に分散されて配置されてもよく、また屋外の各設備の電力または温度等の計測のために各設備に配置されてもよい。センサ3a~3dは、内蔵する電池の電力で動作し、中継機2a~2b、および基地局1は、外部のAC電源からの電力供給によって動作する。 <Configuration of sensor network system>
FIG. 1 is a schematic diagram showing a configuration of asensor network system 10 of a mesh network. The sensor network system 10 includes a base station 1, a plurality of repeaters 2a to 2b, and a plurality of sensors (sensor nodes) 3a to 3d. For example, the base station 1 may be arranged in a server room of an office, and the sensors 3a to 3d may be arranged in each room of the office for measuring temperature and humidity, and power of each outdoor facility or You may arrange | position in each installation for measurement, such as temperature. The sensors 3a to 3d operate with the power of the built-in battery, and the relays 2a to 2b and the base station 1 operate with power supplied from an external AC power source.
図1は、メッシュネットワークのセンサネットワークシステム10の構成を示す模式図である。センサネットワークシステム10は、基地局1と、複数の中継機2a~2bと、複数のセンサ(センサノード)3a~3dとを備える。例えば、基地局1はオフィスのサーバルームに配置され、センサ3a~3dは、気温および湿度の計測のためにオフィスの各部屋に分散されて配置されてもよく、また屋外の各設備の電力または温度等の計測のために各設備に配置されてもよい。センサ3a~3dは、内蔵する電池の電力で動作し、中継機2a~2b、および基地局1は、外部のAC電源からの電力供給によって動作する。 <Configuration of sensor network system>
FIG. 1 is a schematic diagram showing a configuration of a
センサ3a~3dは、センシング(計測)機能と無線通信機能とを有する。各センサ3a~3dは、内蔵するタイマーによって所定のタイミングで起動し、気温等の計測を行う。なお、センサ3a~3dは、湿度または照度等、他の量を計測してもよい。その後、計測された気温のデータを基地局1に集積するために、各センサ3a~3dは、1つ以上の中継機2a~2bを介して、または直接に、基地局1と無線通信を行う。ここでは、センサ3a・3bから基地局1に対して送信されるデータは、2つの中継機2a・2bを中継して、基地局1に到達する。センサ3cから基地局1に対して送信されるデータは、1つの中継機2bを中継して、基地局1に到達する。センサ3dは、基地局1と直接通信を行い、基地局1にデータを送信する。なお、センサネットワークシステム10は、周囲の無線環境および中継機2a・2bの状態に応じて、通信経路を流動的に変化させるメッシュネットワークである。なお、センサ3a~3dと、基地局1または中継機2a~2bとの間の通信において、センサ3a~3dは、基地局1または中継機2a~2bの信号強度に合わせて、通信可能な最低限のレベルの信号強度でデータ等の送信を行う。
Sensors 3a to 3d have a sensing (measurement) function and a wireless communication function. Each of the sensors 3a to 3d is activated at a predetermined timing by a built-in timer and measures temperature and the like. The sensors 3a to 3d may measure other quantities such as humidity or illuminance. Thereafter, in order to accumulate the measured temperature data in the base station 1, each of the sensors 3a to 3d performs wireless communication with the base station 1 via one or more repeaters 2a to 2b. . Here, data transmitted from the sensors 3a and 3b to the base station 1 reaches the base station 1 through the two relay devices 2a and 2b. Data transmitted from the sensor 3c to the base station 1 reaches the base station 1 through one relay device 2b. The sensor 3 d communicates directly with the base station 1 and transmits data to the base station 1. The sensor network system 10 is a mesh network that fluidly changes the communication path according to the surrounding wireless environment and the state of the repeaters 2a and 2b. In the communication between the sensors 3a to 3d and the base station 1 or the relays 2a to 2b, the sensors 3a to 3d can communicate with each other in accordance with the signal strength of the base station 1 or the relays 2a to 2b. Data etc. are transmitted with a signal strength of a limit level.
図2は、センサ3aの構成を示すブロック図である。なお、センサ3a~3dはいずれも同じ構成である。センサ3aは、タイマー部11、起動部12、計測部13、通信部14、スリープ設定部(期間決定部)15、および記憶部16を備える。
FIG. 2 is a block diagram showing the configuration of the sensor 3a. The sensors 3a to 3d have the same configuration. The sensor 3a includes a timer unit 11, an activation unit 12, a measurement unit 13, a communication unit 14, a sleep setting unit (period determination unit) 15, and a storage unit 16.
タイマー部11は、起動する時間(時刻)を記憶し、計測を行う所定の時刻になるとセンサ3aをスリープ状態からアクティブ状態へと移行させるために、起動部12に計測開始のための信号を出力する。また、タイマー部11は、起動部12からスリープ期間の情報を受け取ると、スリープ期間に応じた時刻にセンサ3aをスリープ状態からアクティブ状態へと移行させるために、起動部12に通信待機のための信号を出力する。
The timer unit 11 stores the activation time (time), and outputs a signal for starting measurement to the activation unit 12 in order to shift the sensor 3a from the sleep state to the active state at a predetermined time for measurement. To do. When the timer unit 11 receives the sleep period information from the activation unit 12, the timer unit 11 causes the activation unit 12 to wait for communication in order to shift the sensor 3a from the sleep state to the active state at a time according to the sleep period. Output a signal.
起動部12は、タイマー部11から信号を受け取ると、センサ3aをスリープ状態からアクティブ状態へと移行させる。起動部12は、タイマー部11から計測開始の信号を受け取ると、計測部13に計測開始の信号を出力する。また、起動部12は、タイマー部11から通信待機の信号を受け取ると、通信部14に通信待機の信号を出力する。また、起動部12は、スリープ設定部15からスリープ状態へ移行する信号を受け取ると、必要に応じてスリープ期間の情報をタイマー部11に出力し、センサ3aをアクティブ状態からスリープ状態へと移行させる。
When the activation unit 12 receives a signal from the timer unit 11, the activation unit 12 shifts the sensor 3a from the sleep state to the active state. When the activation unit 12 receives a measurement start signal from the timer unit 11, the activation unit 12 outputs a measurement start signal to the measurement unit 13. Further, upon receiving a communication standby signal from the timer unit 11, the activation unit 12 outputs a communication standby signal to the communication unit 14. In addition, when the activation unit 12 receives a signal for shifting to the sleep state from the sleep setting unit 15, the activation unit 12 outputs information on the sleep period to the timer unit 11 as necessary to shift the sensor 3 a from the active state to the sleep state. .
計測部13は、計測開始の信号を受け取ると、気温の計測を行い計測値を取得する。なお、計測部13は、外部のセンサから計測値を取得する構成であってもよい。計測部13は、計測値と計測時刻とを含む計測データを通信部14に出力する。
When the measurement unit 13 receives the measurement start signal, the measurement unit 13 measures the temperature and acquires the measurement value. The measurement unit 13 may be configured to acquire a measurement value from an external sensor. The measurement unit 13 outputs measurement data including the measurement value and the measurement time to the communication unit 14.
通信部14は、外部の基地局1または中継機2a・2bと通信を行う。通信部14は、計測部13から計測データを受け取ると、通信可能な中継機2a・2bまたは通信可能な基地局1に対して計測データの送信を行う。また、通信部14は、起動部12から通信待機の信号を受け取ると、通信可能なアクティブ状態で外部からの通信を待つ。また、通信部14は、中継機2a・2bまたは基地局1から、レスポンス、コマンド、および受信確認等のデータを受信する。通信部14は、受信確認またはレスポンス等を受信すると、受信データと受信した時刻とをスリープ設定部15に出力する。
The communication unit 14 communicates with the external base station 1 or the repeaters 2a and 2b. When the communication unit 14 receives the measurement data from the measurement unit 13, the communication unit 14 transmits the measurement data to the communicable repeaters 2a and 2b or the communicable base station 1. In addition, when the communication unit 14 receives a communication standby signal from the activation unit 12, the communication unit 14 waits for communication from the outside in an active state in which communication is possible. Further, the communication unit 14 receives data such as a response, a command, and a reception confirmation from the repeaters 2a and 2b or the base station 1. When receiving the reception confirmation or response, the communication unit 14 outputs the received data and the received time to the sleep setting unit 15.
スリープ設定部15は、通信部14から計測データの送信に対する受信確認と受信した時刻とを受け取ると、受信確認を受信した時刻の情報を記憶部16に記憶させる。また、スリープ設定部15は、記憶部16から過去(前回の通信)のレスポンス待ち期間(中継機に計測データを送信してから基地局のレスポンスが返ってくるまでの期間)を読み出し、過去のレスポンス待ち期間に応じてスリープ期間を決定し、スリープ期間の情報と共にスリープ状態へ移行する信号を起動部12に出力する。
When the sleep setting unit 15 receives the reception confirmation for the transmission of the measurement data and the received time from the communication unit 14, the sleep setting unit 15 stores the information of the time when the reception confirmation is received in the storage unit 16. The sleep setting unit 15 reads the past (previous communication) response waiting period (the period from when the measurement data is transmitted to the repeater until the response of the base station is returned) from the storage unit 16. The sleep period is determined according to the response waiting period, and a signal for shifting to the sleep state is output to the activation unit 12 together with the sleep period information.
また、スリープ設定部15は、通信部14から基地局1のレスポンスを受け取ると、基地局1のレスポンスを受信した時刻の情報を記憶部16に記憶させ、計測を行う所定の時刻までセンサ3aをスリープ状態にするために、起動部12に、スリープ状態へ移行する信号を出力する。
When the sleep setting unit 15 receives the response of the base station 1 from the communication unit 14, the sleep setting unit 15 stores information on the time when the response of the base station 1 was received in the storage unit 16, and the sensor 3a is stored until a predetermined time for measurement. In order to enter the sleep state, a signal for shifting to the sleep state is output to the activation unit 12.
記憶部16は、過去のレスポンス待ち期間の情報(例えば、レスポンス待ち期間の長さ、計測データを送信した時刻、それに対する受信確認を受信した時刻、および/または基地局1のレスポンスを受信した時刻等)を記憶する。
The storage unit 16 stores information on the past response waiting period (for example, the length of the response waiting period, the time when the measurement data is transmitted, the time when the reception confirmation is received, and / or the time when the response of the base station 1 is received. Etc.).
<センサおよび基地局の通信処理>
図3は、センサ3aおよび基地局1の通信、およびセンサ3aの消費電流を示す図である。横軸は時間(時刻)tを表し、図3の上部は、センサ3a、中継機2a・2b、および基地局1のデータの送受信の処理を示す。図3の下部は、センサ3aの消費電流を示す。なお、図3は、模式的に時間と消費電流との関係を示すものであり、グラフの目盛りは正確なものではない。 <Communication processing of sensor and base station>
FIG. 3 is a diagram illustrating communication between thesensor 3a and the base station 1, and current consumption of the sensor 3a. The horizontal axis represents time (time) t, and the upper part of FIG. 3 shows data transmission / reception processing of the sensor 3a, the repeaters 2a and 2b, and the base station 1. The lower part of FIG. 3 shows the current consumption of the sensor 3a. FIG. 3 schematically shows the relationship between time and current consumption, and the scale of the graph is not accurate.
図3は、センサ3aおよび基地局1の通信、およびセンサ3aの消費電流を示す図である。横軸は時間(時刻)tを表し、図3の上部は、センサ3a、中継機2a・2b、および基地局1のデータの送受信の処理を示す。図3の下部は、センサ3aの消費電流を示す。なお、図3は、模式的に時間と消費電流との関係を示すものであり、グラフの目盛りは正確なものではない。 <Communication processing of sensor and base station>
FIG. 3 is a diagram illustrating communication between the
センサネットワークシステム10において、センサ3aは、2つの中継機2a・2bを介して基地局1と通信を行う(中継段数は2)。センサ3aは、時刻t1に内蔵するタイマーによって起動して、スリープ状態からアクティブ状態に移行し、時刻t1から時刻t2の間に気温の計測を行う。
In the sensor network system 10, the sensor 3a communicates with the base station 1 via the two repeaters 2a and 2b (the number of relay stages is 2). The sensor 3a is activated by a built-in timer at time t1, shifts from the sleep state to the active state, and measures the temperature between time t1 and time t2.
次にセンサ3aは、時刻t2から時刻t3の間に中継機2aに、計測データの送信を行う。なお、時刻t2から時刻t3の間に、中継機2aは、計測データを受信し、それに対する受信確認をセンサ3aに送信する。
Next, the sensor 3a transmits measurement data to the repeater 2a between time t2 and time t3. In addition, between the time t2 and the time t3, the relay machine 2a receives measurement data, and transmits the reception confirmation with respect to it to the sensor 3a.
センサ3aから中継機2aへの通信が完了すると(センサ3aが中継機2aへ計測データを送信し、受信確認を受信すると)、センサ3aは、スリープ状態に移行する(時刻t3)。このときセンサ3aは、過去の通信から所定のスリープ期間TSを決定し、スリープ期間TS経過後に、中継機2aとの通信が可能なアクティブ状態に移行するようタイマーを設定する。ここでは、図3に示す時刻t3から時刻t8より少し前までの間の期間をスリープ期間TSとして設定する。
When the communication from the sensor 3a to the repeater 2a is completed (when the sensor 3a transmits measurement data to the repeater 2a and receives a reception confirmation), the sensor 3a shifts to a sleep state (time t3). At this time, the sensor 3a determines a predetermined sleep period TS from past communication, and sets a timer so as to shift to an active state in which communication with the repeater 2a is possible after the sleep period TS elapses. Here, the period between time t3 and time t8 shown in FIG. 3 is set as the sleep period TS.
時刻t3から時刻t4の間に、中継機2aは、受け取った計測データを中継機2bに送信し、中継機2bは、受信確認を中継機2aに送信する。時刻t4から時刻t5の間に、中継機2bは、受け取った計測データを基地局1に送信し、基地局1は、受信確認を中継機2bに送信する。
Between time t3 and time t4, the relay device 2a transmits the received measurement data to the relay device 2b, and the relay device 2b transmits a reception confirmation to the relay device 2a. Between time t4 and time t5, the relay device 2b transmits the received measurement data to the base station 1, and the base station 1 transmits a reception confirmation to the relay device 2b.
データを受信した基地局1は、時刻t5から時刻t6の間に、受信したデータが適正なものであるか否かを確認する。受信したデータが適正なものである場合、基地局1は、時刻t6から時刻t7の間に、センサ3aに対する応答として計測データの受信が完了したことを示すレスポンスを中継機2bに送信する。なお、このレスポンスには、センサ3aに対する制御命令(コマンド)等を含めてもよい。なお、中継機2bは、時刻t6から時刻t7の間に、レスポンスを受信し、受信確認を基地局1に送信する。
The base station 1 that has received the data checks whether or not the received data is appropriate between time t5 and time t6. When the received data is appropriate, the base station 1 transmits a response indicating that the reception of the measurement data is completed as a response to the sensor 3a to the repeater 2b between time t6 and time t7. The response may include a control command (command) for the sensor 3a. The repeater 2b receives a response between time t6 and time t7, and transmits a reception confirmation to the base station 1.
時刻t7から時刻t8の間に、中継機2bは、受け取ったレスポンスを中継機2aに送信し、中継機2aは、受信確認を中継機2bに送信する。
Between time t7 and time t8, the relay device 2b transmits the received response to the relay device 2a, and the relay device 2a transmits a reception confirmation to the relay device 2b.
時刻t3からスリープ期間TSが経過した後(時刻t7と時刻t8の間に)、センサ3aは、タイマーによって起動し、スリープ状態から通信可能なアクティブ状態に移行する。
After the sleep period TS elapses from time t3 (between time t7 and time t8), the sensor 3a is activated by the timer and shifts from the sleep state to an active state in which communication is possible.
時刻t8から時刻t9の間に、中継機2aは、受け取ったレスポンスをセンサ3aに送信し、センサ3aは、受信確認を中継機2aに送信する。センサ3aは、基地局1から計測データの受信が完了したことを示すレスポンスを受信すると、中継機2aに計測データを送信してから基地局1のレスポンスが返ってくるまでの期間TA(時刻t3から時刻t8の期間)を算出する。(なお、ここでは時刻t3は、センサ3aが中継機2aに計測データを送信して中継機2aから受信確認を受信して、通信が完了した時点を指し、時刻t8は、センサ3aが中継機2aから基地局1のレスポンスを受信し始める時点を指す。)中継段数が変化しなければ、次回の通信においても中継機2aに計測データを送信してから基地局1のレスポンスが返ってくるまでに、期間TAと同程度の期間がかかると予測できる。そのため、センサ3aは、算出した期間TAに基づいて、次回の通信におけるスリープ期間TSを決定する。具体的には、レスポンスが返ってくるのが少し早い場合を考慮して、期間TAから所定の期間を引いた期間、または期間TAに所定の割合を掛けた期間等の、期間TAより少し短い期間をスリープ期間TSとして決定する。なお、期間TAをそのままスリープ期間として決定してもよい。
Between time t8 and time t9, the relay device 2a transmits the received response to the sensor 3a, and the sensor 3a transmits a reception confirmation to the relay device 2a. When the sensor 3a receives the response indicating that the reception of the measurement data is completed from the base station 1, the period TA (time t3) from when the measurement data is transmitted to the repeater 2a until the response of the base station 1 is returned. From time t8). (Here, the time t3 indicates a point in time when the sensor 3a transmits measurement data to the repeater 2a and receives a reception confirmation from the repeater 2a to complete the communication, and a time t8 indicates that the sensor 3a receives the repeater. 2a refers to the time when the response of the base station 1 starts to be received.) If the number of relay stages does not change, until the response of the base station 1 is returned after transmitting measurement data to the relay 2a in the next communication Therefore, it can be predicted that a period equivalent to the period TA will be required. Therefore, the sensor 3a determines the sleep period TS in the next communication based on the calculated period TA. Specifically, in consideration of a case where a response is returned a little earlier, a period shorter than the period TA, such as a period obtained by subtracting a predetermined period from the period TA or a period obtained by multiplying the period TA by a predetermined ratio. The period is determined as the sleep period TS. Note that the period TA may be determined as the sleep period as it is.
その後(時刻t9の後)、消費電流の小さいスリープ状態に移行する。センサ3aは、計測を行う所定の時刻(例えば10分後)が来るまで、スリープ状態のまま待機する。
After that (after time t9), a transition is made to a sleep state with low current consumption. The sensor 3a stands by in a sleep state until a predetermined time for measurement (for example, after 10 minutes) comes.
なお、センサ3aは、レスポンスを受信するためにアクティブ状態に移行してから所定の期間内(例えば0.5秒間以内)に基地局からのレスポンスを受信できない場合は、次回のスリープ期間を0秒にリセットする、または、次回のスリープ期間を短く変更する。そのため、中継段数が減少したこと等により、レスポンス待ち期間が減少し、センサ3aがスリープ状態である間に、中継機2aが基地局1からのレスポンスをセンサ3aに送信した場合、センサ3aは、次回以降のスリープ期間を短く変更し、レスポンスを受信できるようにする。
If the sensor 3a cannot receive a response from the base station within a predetermined period (for example, within 0.5 seconds) after shifting to the active state in order to receive a response, the sensor 3a sets the next sleep period to 0 second. Or reset the next sleep period to be shorter. Therefore, the response waiting period is reduced due to a decrease in the number of relay stages, and when the relay 2a transmits a response from the base station 1 to the sensor 3a while the sensor 3a is in the sleep state, the sensor 3a The sleep period after the next time is changed to be shorter so that a response can be received.
なお、各通信においてデータ(計測データおよび基地局1からセンサ3aへのレスポンス)の送信を行った際、センサ3a、中継機2a・2b、および基地局1は、送信してから所定の期間内(例えば1秒間以内)に通信相手から受信確認が返ってこない場合は、通信相手にデータを再送信する。そのため、センサ3aが中継機2aに計測データを送信してからのスリープ期間が長すぎ、センサ3aがスリープ状態である間に、中継機2aが基地局1からのレスポンスをセンサ3aに送信した場合でも、受信確認が得られないので中継機2aは所定の期間後に基地局1からのレスポンスをセンサ3aに再送信する。これにより、センサ3aは、スリープ期間が長すぎた場合でも、基地局1からのレスポンスの再送信を受信し、計測データが基地局1に届いたことを確認することができる。そのため、前回の通信時より中継段数(基地局1までの通信を介する中継機の数)が減少し、前回よりレスポンスが早く帰ってくる場合でも、センサ3aはレスポンスの再送信を受信することができる。なお、中継機2aは、再送信を行う場合、これが1回目の送信ではないことを示す情報を付加してもよい。これにより、センサ3aは、中継機2aからの1回目の送信を受信できなかったことを認識し、次回以降の通信において中継機2aが再送信を行わなくてもよいように、次回以降のスリープ期間を短く変更することができる。
When data (measurement data and response from the base station 1 to the sensor 3a) is transmitted in each communication, the sensor 3a, the repeaters 2a and 2b, and the base station 1 transmit the data within a predetermined period after transmission. If reception confirmation is not returned from the communication partner (for example, within one second), data is retransmitted to the communication partner. Therefore, when the sleep period after the sensor 3a transmits the measurement data to the relay device 2a is too long, and the sensor 3a is in the sleep state, the relay device 2a transmits a response from the base station 1 to the sensor 3a. However, since the reception confirmation cannot be obtained, the repeater 2a retransmits the response from the base station 1 to the sensor 3a after a predetermined period. Thereby, even when the sleep period is too long, the sensor 3a can receive the retransmission of the response from the base station 1 and confirm that the measurement data has arrived at the base station 1. Therefore, even if the number of relay stages (the number of relay stations via communication up to the base station 1) is reduced from the previous communication, and the response returns earlier than the previous time, the sensor 3a may receive a response retransmission. it can. Note that, when performing retransmission, the relay station 2a may add information indicating that this is not the first transmission. As a result, the sensor 3a recognizes that the first transmission from the repeater 2a has not been received, and so that the repeater 2a does not have to retransmit in the next and subsequent communications. The period can be changed short.
また、センサ3aが、時刻t8にアクティブ状態に移行してから所定の期間内(例えば3秒間以内)に基地局1からのレスポンスを受信できない場合、通信経路のどこかで計測データが伝送されず基地局1に計測データが到達していないことも考えられるので、センサ3aは、中継機2aに対して計測データを再送信する。なお、計測データを再送信した場合、センサ3aは、確実に基地局からのレスポンスを受信するために、スリープ状態に移行せず通信可能状態のまま待機する。すなわち、スリープ期間を0にリセットする。
If the sensor 3a cannot receive a response from the base station 1 within a predetermined period (for example, within 3 seconds) after shifting to the active state at time t8, the measurement data is not transmitted somewhere in the communication path. Since it is considered that the measurement data has not reached the base station 1, the sensor 3a retransmits the measurement data to the repeater 2a. When the measurement data is retransmitted, the sensor 3a waits in a communicable state without shifting to the sleep state in order to reliably receive a response from the base station. That is, the sleep period is reset to zero.
<センサの動作フロー>
図4は、センサの動作フローの一例を示す図である。 <Sensor operation flow>
FIG. 4 is a diagram illustrating an example of an operation flow of the sensor.
図4は、センサの動作フローの一例を示す図である。 <Sensor operation flow>
FIG. 4 is a diagram illustrating an example of an operation flow of the sensor.
センサは、内蔵するタイマーによってあらかじめ設定された所定の時刻に起動し、アクティブ状態に移行する(S1)。
The sensor starts at a predetermined time set in advance by a built-in timer, and shifts to an active state (S1).
その後、センサは、気温の計測を行う(S2)。
After that, the sensor measures the temperature (S2).
センサは、計測した計測データを、中継機または基地局に送信する(S3)。また、センサは、中継機または基地局から受信確認を受信する。
The sensor transmits the measured measurement data to the repeater or the base station (S3). In addition, the sensor receives a reception confirmation from the repeater or the base station.
中継機または基地局の無線通信の信号強度に応じて、センサは、最低限のレベルの信号強度で通信を行うよう、送信出力レベルを更新する(S4)。
In accordance with the signal strength of the wireless communication of the relay station or the base station, the sensor updates the transmission output level so that communication is performed with the minimum signal strength (S4).
センサは、過去のレスポンス待ち期間に基づいて、スリープ期間を決定する(S5)。なお、スリープ期間をリセットする情報が記憶部16に記憶されている場合、スリープ期間を0msに設定する。
The sensor determines the sleep period based on the past response waiting period (S5). When information for resetting the sleep period is stored in the storage unit 16, the sleep period is set to 0 ms.
スリープ期間が0msより大きい場合(S6でYes)、センサは、決定したスリープ期間の間だけスリープ状態になるよう、タイマーを設定してスリープ状態に移行する(S7)。そして、スリープ期間が経過した後、センサは、タイマーによって起動し、通信可能なアクティブ状態に移行する(S8)。
If the sleep period is greater than 0 ms (Yes in S6), the sensor sets a timer so as to be in the sleep state only during the determined sleep period and shifts to the sleep state (S7). Then, after the sleep period elapses, the sensor is activated by a timer and shifts to an active state in which communication is possible (S8).
アクティブ状態のセンサは、基地局または中継機から、基地局のレスポンスが送信されてくると、それを受信し、受信確認を返信する。
The active sensor receives the response of the base station from the base station or the relay station, and receives it, and returns a confirmation of reception.
アクティブ状態に移行してから、所定の期間内(例えば0.5秒間以内)に基地局のレスポンスを受信した場合(S9でYes)、センサは、スリープ状態に移行し(S10)、S1の処理に戻る。
When the response of the base station is received within a predetermined period (for example, within 0.5 seconds) after shifting to the active state (Yes in S9), the sensor shifts to the sleep state (S10), and the process of S1 Return to.
アクティブ状態に移行してから、所定の期間内(例えば0.5秒間以内)に基地局のレスポンスを受信しなかった場合(S9でNo)、センサは、スリープ期間をリセットするために、スリープ期間をリセットする情報を記憶部16に記憶させる(S11)。
When the base station response is not received within a predetermined period (for example, within 0.5 seconds) after shifting to the active state (No in S9), the sensor uses the sleep period to reset the sleep period. Is stored in the storage unit 16 (S11).
なお、スリープ期間が0msの場合(S6でNo)、通信可能なアクティブ状態のまま待機して、基地局のレスポンスを待つ(S12)。
If the sleep period is 0 ms (No in S6), the mobile station stands by in a communicable active state and waits for a response from the base station (S12).
S11の後、センサがアクティブ状態に移行してから、またはS12の後、センサが計測データの送信を行ってから所定の期間内(例えば3秒間以内)に基地局のレスポンスを受信しなかった場合(S13でNo)、基地局への計測データの再送信を行うため、S3の処理に戻る。
After S11, when the sensor shifts to the active state, or after S12, the sensor does not receive the base station response within a predetermined period (for example, within 3 seconds) after transmitting the measurement data. (No in S13), the process returns to S3 in order to retransmit the measurement data to the base station.
S11の後、センサがアクティブ状態に移行してから、またはS12の後、センサが計測データの送信を行ってから所定の期間内(例えば3秒間以内)に基地局のレスポンスを受信した場合(S13でYes)、S10の処理に進み、センサはスリープ状態に移行する。
After S11, when the sensor shifts to the active state, or after S12, when the response of the base station is received within a predetermined period (for example, within 3 seconds) after the sensor transmits the measurement data (S13) Yes), the process proceeds to S10, and the sensor shifts to the sleep state.
本実施形態によれば、センサは、基地局に対して計測データを送信した後、基地局から計測データの受信が完了したことを示すレスポンスを受信するまでの間の所定の期間、受信を行えないスリープ状態で待機する。そのため、基地局からのレスポンスが来るまで通信可能状態のまま待機する従来のセンサに比べて、消費電流を低減することができる。従来の構成に比べて消費電流を低減する効果は、中継段数が増えれば増えるほど顕著に現れる。
According to this embodiment, the sensor can perform reception for a predetermined period after transmitting measurement data to the base station until receiving a response indicating that reception of the measurement data is completed from the base station. Wait in no sleep state. Therefore, current consumption can be reduced compared to a conventional sensor that waits in a communicable state until a response from the base station is received. The effect of reducing the current consumption compared with the conventional configuration becomes more prominent as the number of relay stages increases.
また、本実施形態のセンサは、過去のレスポンス待ち期間(中継機に計測データを送信してから基地局のレスポンスが返ってくるまでの期間)に基づいて、中継機に計測データを送信してからスリープするスリープ期間を決定するので、中継段数に関わらず基地局からのレスポンスが返ってくる時間を予測でき、基地局からのレスポンスが返ってくる頃に通信可能なアクティブ状態に移行することができる。そのため、センサは、レスポンス待ちの期間の消費電流を低減しながら基地局からのレスポンスを受信することができ、万が一、通信不良により基地局からのレスポンスが到達しない場合、迅速に基地局への計測データの再送信を行うことができる。そのため、基地局は、正確に、かつ、迅速に計測データを受け取ることができる。
In addition, the sensor according to the present embodiment transmits the measurement data to the repeater based on the past response waiting period (the period from when the measurement data is transmitted to the repeater until the base station response is returned). Since the sleep period to be determined is determined, the time for the response from the base station to be returned can be predicted regardless of the number of relay stages, and when the response from the base station is returned, the communication can be shifted to the active state. it can. Therefore, the sensor can receive the response from the base station while reducing the current consumption during the response waiting period. If the response from the base station does not reach due to poor communication, the sensor can quickly measure the response. Data can be retransmitted. Therefore, the base station can receive measurement data accurately and quickly.
また、センサは基地局からのレスポンスが返ってくる時間を予測してアクティブ状態に移行するので、センサと通信可能な直近の中継機がセンサに基地局からのレスポンスを送信したときに、センサは通信を適切に受信することができる。そのため、センサがスリープ状態であるのに中継機が何度も当該センサに通信を試みるといった無駄が発生しにくい。
In addition, since the sensor predicts the time when the response from the base station is returned and shifts to the active state, when the nearest repeater capable of communicating with the sensor transmits the response from the base station to the sensor, the sensor Communication can be received appropriately. For this reason, it is difficult to cause waste that the repeater tries to communicate with the sensor many times even though the sensor is in the sleep state.
なお、センサは、前回より前の通信における、レスポンス待ち期間に基づいて、スリープ期間を決定してもよく、例えば過去の所定の期間の通信または過去の所定の回数の通信におけるレスポンス待ち期間の平均または加重平均等を用いてスリープ期間を決定してもよい。
The sensor may determine the sleep period based on the response waiting period in the communication before the previous time. For example, the average of the response waiting period in the communication in the past predetermined period or the communication in the past predetermined number of times. Alternatively, the sleep period may be determined using a weighted average or the like.
また、センサが、アクティブ状態に移行してから所定の期間内(例えば3秒間以内)に基地局からのレスポンスを受信できない場合、すぐに計測データの再送信を行わずスリープ状態に移行し、次回の計測時に計測データをまとめて送ってもよい。また、次回の計測時には、確実に基地局からのレスポンスを受信するために、スリープ期間を0にリセットしてもよい。
In addition, when the sensor cannot receive a response from the base station within a predetermined period (for example, within 3 seconds) after transitioning to the active state, the sensor transitions to the sleep state without immediately retransmitting measurement data. Measurement data may be sent together at the time of measurement. In the next measurement, the sleep period may be reset to 0 in order to reliably receive a response from the base station.
<センサの消費電流の比較>
本実施形態のセンサと、従来のセンサとにおける消費電流の比較を以下に説明する。間欠動作を行うセンサの消費電流の試算は、単純化した式を用いて行うことができる。一定間隔で計測を行ってデータを送信するセンサの平均消費電流は、次式で表される。 <Comparison of sensor current consumption>
A comparison of current consumption between the sensor of this embodiment and the conventional sensor will be described below. Trial calculation of current consumption of a sensor that performs intermittent operation can be performed using a simplified formula. The average current consumption of a sensor that performs measurement at a constant interval and transmits data is expressed by the following equation.
本実施形態のセンサと、従来のセンサとにおける消費電流の比較を以下に説明する。間欠動作を行うセンサの消費電流の試算は、単純化した式を用いて行うことができる。一定間隔で計測を行ってデータを送信するセンサの平均消費電流は、次式で表される。 <Comparison of sensor current consumption>
A comparison of current consumption between the sensor of this embodiment and the conventional sensor will be described below. Trial calculation of current consumption of a sensor that performs intermittent operation can be performed using a simplified formula. The average current consumption of a sensor that performs measurement at a constant interval and transmits data is expressed by the following equation.
アクティブ状態であっても、計測時、送信時、受信時、または通信待機時では、それぞれ消費電流は異なるが、ここでは単純にこれらアクティブ状態の平均消費電流(アクティブ時平均消費電流)は同じ値であるとする。
Even in the active state, the current consumption differs during measurement, transmission, reception, or communication standby, but the average current consumption in these active states (average current consumption during active) is simply the same here. Suppose that
上式の中の各パラメータの値を図5に示す。データ送信間隔は600秒(10分)とする。アクティブ時平均消費電流は40mAとする。スリープ時平均消費電流は0.025mAとする。スリープ時はタイマーを動作させているだけなので、センサは、アクティブ時の平均消費電流に比べて1/500~1/1000程の消費電流で動作することができる。1サイクルにおけるアクティブ時間(期間)は、計測時間(図3におけるt2-t1)、データ送信時間(図3におけるt3-t2)、レスポンス受信時間(図3におけるt9-t8)、および通信待機時間(図9におけるt118-t113)の和である。スリープ期間は、600秒からアクティブ時間を引いたものである。
Figure 5 shows the value of each parameter in the above equation. The data transmission interval is 600 seconds (10 minutes). The average current consumption during active is 40 mA. The average current consumption during sleep is 0.025 mA. Since the timer is only operated during sleep, the sensor can operate with a current consumption of about 1/500 to 1/1000 compared to the average current consumption during active time. The active time (period) in one cycle includes a measurement time (t2-t1 in FIG. 3), a data transmission time (t3-t2 in FIG. 3), a response reception time (t9-t8 in FIG. 3), and a communication standby time ( This is the sum of t118-t113) in FIG. The sleep period is 600 seconds minus the active time.
アクティブ時間の内、計測時間、データ送信時間、およびレスポンス受信時間は、本実施形態のセンサと、従来のセンサとでは同じである。ここで、センサ、中継機、および基地局の各間の通信に11ミリ秒(ms)かかるとする。すなわち、図3の矢印1つ分の処理時間(t3-t2、t4-t3、t9-t8等の期間)が11msである。また、中継機を介さずセンサと基地局とが直接通信を行う場合(中継段数0)のアクティブ時間は、70msであるとする。すなわち、計測時間、データ送信時間、およびレスポンス受信時間の和が70msであるとする。なお、基地局が、受信したデータが適正なものであるか否かを確認する期間(t6-t5)は短いとして無視する。また、中継段数が0の場合、センサはスリープ期間を0msと設定する(すなわち、計測データの送信を行ってから基地局からのレスポンスを受信するまでにスリープ状態に移行しない)。なお、センサは、中継段数が0の場合にも、短い期間スリープする構成であってもよい。
Of the active time, the measurement time, data transmission time, and response reception time are the same for the sensor of this embodiment and the conventional sensor. Here, it is assumed that it takes 11 milliseconds (ms) for the communication between the sensor, the repeater, and the base station. That is, the processing time for one arrow in FIG. 3 (periods such as t3-t2, t4-t3, t9-t8) is 11 ms. In addition, it is assumed that the active time when the sensor and the base station directly communicate with each other without using a repeater (the number of relay stages is 0) is 70 ms. That is, assume that the sum of the measurement time, data transmission time, and response reception time is 70 ms. Note that the base station confirms whether or not the received data is appropriate (t6-t5) and ignores it. When the number of relay stages is 0, the sensor sets the sleep period to 0 ms (that is, the sensor does not shift to the sleep state after receiving the response from the base station after transmitting the measurement data). The sensor may be configured to sleep for a short period even when the number of relay stages is zero.
この場合、中継段数が1段増えるとアクティブ時間は22ms(11ms×2往復)延びる。よって、中継段数が1の場合(通信を中継する中継機が1つの場合)、所定の時刻に計測を始めてから計測データを送信し、基地局からのレスポンスを受信する処理を完了するまで92msかかる。すなわち、スリープ動作をしない従来のセンサのアクティブ時間は、92msである。これに対し、本実施形態のセンサが、理想的にスリープ動作を行った場合(基地局からのレスポンスを受信する直前にスリープ状態からアクティブ状態に復帰した場合)、アクティブ時間は70msであり、アクティブ時間は中継段数によって変化しない。そのため、本実施形態のセンサのアクティブ時間は、中継段数が多くなればなるほど、従来のセンサに比べて少なくなる。一般に、センサにおいて、スリープ状態の消費電流はアクティブ状態の消費電流に比べて格段に小さい。よって、本実施形態のセンサは、消費電流を大いに低減することができる。
In this case, when the number of relay stages is increased by one, the active time is extended by 22 ms (11 ms × 2 round trips). Therefore, when the number of relay stages is 1 (when there is one relay station that relays communication), it takes 92 ms to complete the process of transmitting measurement data after starting measurement at a predetermined time and receiving the response from the base station. . That is, the active time of the conventional sensor that does not perform the sleep operation is 92 ms. On the other hand, when the sensor of the present embodiment ideally performs a sleep operation (when the sensor returns from the sleep state to the active state immediately before receiving a response from the base station), the active time is 70 ms, The time does not change depending on the number of relay stages. Therefore, the active time of the sensor of this embodiment becomes shorter as compared with the conventional sensor as the number of relay stages increases. In general, in a sensor, current consumption in a sleep state is much smaller than current consumption in an active state. Therefore, the sensor of this embodiment can greatly reduce current consumption.
図6は、中継段数毎の、本実施形態のセンサおよび従来のセンサのアクティブ時間および消費電流を比較して示す表である。消費電流の値(%)は、従来のセンサの消費電流に対する、本実施形態のセンサの消費電流の比を示している。中継段数が9の場合、本実施形態のセンサは、従来のセンサに対して消費電流を約72%に低減することができる。
FIG. 6 is a table comparing the active time and current consumption of the sensor of the present embodiment and the conventional sensor for each number of relay stages. The value (%) of current consumption indicates the ratio of the current consumption of the sensor of the present embodiment to the current consumption of the conventional sensor. When the number of relay stages is 9, the sensor of this embodiment can reduce the current consumption to about 72% compared to the conventional sensor.
本実施形態のセンサは、中継段数の違いによるアクティブ時間のばらつきを抑えることができる。すなわち、本実施形態のセンサは、中継段数に関係なく、ほぼ一定のアクティブ時間で動作するので、複数のセンサの電池寿命のばらつきを抑えることができる。そのため、複数のセンサの電池交換を同じタイミングで行うことができ、メンテナンスの負荷を軽減することができる。
The sensor of the present embodiment can suppress variation in active time due to the difference in the number of relay stages. That is, since the sensor of this embodiment operates with a substantially constant active time regardless of the number of relay stages, it is possible to suppress variations in battery life of a plurality of sensors. Therefore, battery replacement of a plurality of sensors can be performed at the same timing, and a maintenance load can be reduced.
[実施形態2]
以下、本発明の実施形態について、図1、図2を参照して詳細に説明する。なお、説明の便宜上、実施形態1にて説明した図面と同じ機能を有する部材・構成については、同じ符号を付記し、その詳細な説明を省略する。 [Embodiment 2]
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2. For convenience of explanation, members / configurations having the same functions as those in the drawings described in the first embodiment are given the same reference numerals, and detailed descriptions thereof are omitted.
以下、本発明の実施形態について、図1、図2を参照して詳細に説明する。なお、説明の便宜上、実施形態1にて説明した図面と同じ機能を有する部材・構成については、同じ符号を付記し、その詳細な説明を省略する。 [Embodiment 2]
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2. For convenience of explanation, members / configurations having the same functions as those in the drawings described in the first embodiment are given the same reference numerals, and detailed descriptions thereof are omitted.
<センサネットワークシステムの構成>
本実施形態のセンサネットワークシステムの構成は、図1に示すメッシュネットワークのセンサネットワークシステム10と同じである。本実施形態では、基地局1が、各センサ3a~3dの中継段数の情報を、当該センサ3a~3dに送信する。なお、中継段数の情報は、計測データの送信に対するレスポンスに含められてセンサ3a~3dに送信される。レスポンス待ち期間は、主に中継段数に応じて変化するので、各センサ3a~3dは、それぞれの中継段数に応じて、計測データを送信した後のスリープ期間を決定する。 <Configuration of sensor network system>
The configuration of the sensor network system of the present embodiment is the same as thesensor network system 10 of the mesh network shown in FIG. In this embodiment, the base station 1 transmits information on the number of relay stages of the sensors 3a to 3d to the sensors 3a to 3d. Note that the information on the number of relay stages is included in a response to the transmission of measurement data and transmitted to the sensors 3a to 3d. Since the response waiting period mainly varies depending on the number of relay stages, each of the sensors 3a to 3d determines the sleep period after transmitting measurement data according to the number of relay stages.
本実施形態のセンサネットワークシステムの構成は、図1に示すメッシュネットワークのセンサネットワークシステム10と同じである。本実施形態では、基地局1が、各センサ3a~3dの中継段数の情報を、当該センサ3a~3dに送信する。なお、中継段数の情報は、計測データの送信に対するレスポンスに含められてセンサ3a~3dに送信される。レスポンス待ち期間は、主に中継段数に応じて変化するので、各センサ3a~3dは、それぞれの中継段数に応じて、計測データを送信した後のスリープ期間を決定する。 <Configuration of sensor network system>
The configuration of the sensor network system of the present embodiment is the same as the
計測データが、各センサ3a~3cから中継機2a~2bを経由して基地局1へ送信される場合、計測データと共に、中継した中継機2a~2bの識別情報が基地局1へ送信される。例えば、センサ3aから中継機2aおよび中継機2bを中継して基地局1へ計測データを送信する場合、基地局1は、計測データと共に、通信経路(パス)の情報として、センサ3a、中継機2a、および中継機2bのアドレス(識別情報)を受け取る。これにより、基地局1は、センサ3aとの通信について、中継している中継機の数を認識することができる。基地局1は、センサ3aに対して、中継段数の情報を含むレスポンスを送信する。
When the measurement data is transmitted from the sensors 3a to 3c to the base station 1 via the relays 2a to 2b, identification information of the relayed relays 2a to 2b is transmitted to the base station 1 together with the measurement data. . For example, when the measurement data is transmitted from the sensor 3a to the base station 1 via the relay 2a and the relay 2b, the base station 1 uses the sensor 3a, the relay as information on the communication path along with the measurement data. 2a and the address (identification information) of the repeater 2b are received. Thereby, the base station 1 can recognize the number of repeaters that are relaying the communication with the sensor 3a. The base station 1 transmits a response including information on the number of relay stages to the sensor 3a.
本実施形態のセンサの構成は、図2に示すセンサと同じである。センサ3aは、中継段数の情報に基づいて、スリープ期間を決定する。例えば、通信部14は、基地局1からのレスポンスを受信すると、受信データをスリープ設定部15に出力する。
The configuration of the sensor of this embodiment is the same as the sensor shown in FIG. The sensor 3a determines the sleep period based on the information on the number of relay stages. For example, when receiving a response from the base station 1, the communication unit 14 outputs received data to the sleep setting unit 15.
スリープ設定部15は、通信部14から計測データの送信に対する受信確認と受信した時刻とを受け取ると、記憶部16から前回の通信の中継段数の情報を読み出し、中継段数に応じてスリープ期間を決定し、スリープ期間の情報と共にスリープ状態へ移行する信号を起動部12に出力する。スリープ設定部15は、中継段数に応じてあらかじめ決められた期間をスリープ期間としてもよい。また、スリープ設定部15は、過去の通信における中継段数とレスポンス待ち期間との関係に基づいて、スリープ期間を決定してもよい。例えば、スリープ設定部15は、中継段数が2のときの平均のレスポンス待ち期間(または最小のレスポンス待ち期間等)に基づいて、スリープ期間を決定することができる。
When the sleep setting unit 15 receives the reception confirmation for the transmission of the measurement data and the received time from the communication unit 14, the sleep setting unit 15 reads information on the relay stage number of the previous communication from the storage unit 16 and determines the sleep period according to the relay stage number. Then, a signal for shifting to the sleep state is output to the activation unit 12 together with information on the sleep period. The sleep setting unit 15 may set a period determined in advance according to the number of relay stages as a sleep period. The sleep setting unit 15 may determine the sleep period based on the relationship between the number of relay stages in the past communication and the response waiting period. For example, the sleep setting unit 15 can determine the sleep period based on an average response waiting period (or a minimum response waiting period or the like) when the number of relay stages is 2.
また、スリープ設定部15は、基地局1のレスポンスを受け取ると、レスポンスを受信した時刻の情報およびレスポンスに含まれる中継段数の情報を記憶部16に記憶させ、計測を行う所定の時刻までセンサ3aをスリープ状態にするために、起動部12に、スリープ状態へ移行する信号を出力する。
When the sleep setting unit 15 receives the response of the base station 1, the sleep setting unit 15 stores the information of the time when the response is received and the information of the number of relay stages included in the response in the storage unit 16, and the sensor 3a until a predetermined time for measurement. In order to set the sleep state to the sleep state, a signal for shifting to the sleep state is output to the activation unit 12.
記憶部16は、中継段数の情報、過去のレスポンス待ち期間の情報を記憶する。また、中継段数とそれに対応してあらかじめ決められたスリープ期間とを示すテーブルデータを記憶していてもよい。
The storage unit 16 stores information on the number of relay stages and information on a past response waiting period. In addition, table data indicating the number of relay stages and a predetermined sleep period corresponding thereto may be stored.
センサのレスポンス待ち期間は、主に中継段数によって変化する。本実施の形態によれば、各センサは、通信経路の中継段数に応じてスリープ期間を決定するので、レスポンス待ち期間を適切に予測することができる。そのため、レスポンス待ちの間のアクティブ時間を削減し、消費電流を低減することができる。
The sensor response wait period mainly varies depending on the number of relay stages. According to the present embodiment, each sensor determines the sleep period according to the number of relay stages of the communication path, so that the response waiting period can be appropriately predicted. Therefore, it is possible to reduce the active time while waiting for a response and reduce the current consumption.
なお、基地局からのレスポンスを受信したセンサが、レスポンスに付加された通信経路の情報(各中継機のアドレス)から、中継している中継機の数を判別してもよい。
It should be noted that the sensor that has received the response from the base station may determine the number of relaying relay devices from the communication path information (address of each relaying device) added to the response.
また、基地局は、各センサに対して、中継段数の情報ではなく、スリープ期間を示す情報を送信してもよい。例えば、基地局は、あるセンサとの通信経路の情報から中継段数を判別し、過去または直近の中継段数に応じた所定のスリープ期間を決定し、決定したスリープ期間を示す情報を当該センサに送信してもよい。当該センサのスリープ設定部は、受け取ったスリープ期間を示す情報に基づき、次回の通信におけるスリープ期間を決定することができる。
In addition, the base station may transmit information indicating the sleep period to each sensor instead of information on the number of relay stages. For example, the base station determines the number of relay stages from information on the communication path with a certain sensor, determines a predetermined sleep period according to the past or the latest number of relay stages, and transmits information indicating the determined sleep period to the sensor. May be. The sleep setting unit of the sensor can determine the sleep period in the next communication based on the received information indicating the sleep period.
また、基地局は、各センサに対して、中継段数に応じて変化するレベルを示す情報を送信し、センサは、受け取った上記情報が示すレベルに応じて、スリープ期間を決定してもよい。例えば、中継段数が0~1のときはレベル1、中継段数が2~4のときはレベル2、中継段数が5以上のときはレベル3とすると、レベルに応じてレスポンス待ち期間が変化すると予測できる。そのため、センサは、受け取ったレベルに応じてレスポンス待ち期間を予測し、スリープ期間を決定することができる。なお、基地局がスリープ期間を決定し、上記レベルとしてスリープ期間を示す情報をセンサに送信してもよい。
Also, the base station may transmit information indicating a level that changes according to the number of relay stages to each sensor, and the sensor may determine the sleep period according to the level indicated by the received information. For example, if the number of relay stages is 0 to 1, level 1 is assumed, when the number of relay stages is 2 to 4, level 2 is assumed, and when the number of relay stages is 5 or more, level 3 is expected to change the response waiting period according to the level. it can. Therefore, the sensor can predict the response waiting period according to the received level and determine the sleep period. Note that the base station may determine the sleep period and transmit information indicating the sleep period as the level to the sensor.
また、センサは、基地局に計測データを送信してから基地局からのレスポンスを受信するまでに、中継段数等に関係なく一定の期間、スリープ状態になる構成であってもよい。
Further, the sensor may be configured to be in a sleep state for a certain period of time from transmission of measurement data to the base station to reception of a response from the base station regardless of the number of relay stages.
[他の変形例]
本発明に係る第1のセンサは、基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサであって、スリープ期間を決定する期間決定部を備え、データを送信してから上記基地局からのレスポンスを受信するまでの間に、上記スリープ期間、スリープ状態になることを特徴としている。 [Other variations]
A first sensor according to the present invention performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and transmits data to the base station directly or via one or more of the repeaters. A sensor for transmitting, comprising a period determining unit for determining a sleep period, wherein the sleep period is in a sleep state from when data is transmitted until a response is received from the base station. Yes.
本発明に係る第1のセンサは、基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサであって、スリープ期間を決定する期間決定部を備え、データを送信してから上記基地局からのレスポンスを受信するまでの間に、上記スリープ期間、スリープ状態になることを特徴としている。 [Other variations]
A first sensor according to the present invention performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and transmits data to the base station directly or via one or more of the repeaters. A sensor for transmitting, comprising a period determining unit for determining a sleep period, wherein the sleep period is in a sleep state from when data is transmitted until a response is received from the base station. Yes.
本発明に係る第1のセンサの制御方法は、基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサの制御方法であって、スリープ期間を決定する期間決定ステップと、上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでの間に、上記センサを上記スリープ期間、スリープ状態にするスリープステップとを含むことを特徴としている。
According to a first sensor control method of the present invention, in a sensor network system including a base station, a repeater, and a sensor, the base station performs an intermittent operation and directly or via one or more of the repeaters. A method of controlling a sensor for transmitting data to a period determining step for determining a sleep period, and between the time when the sensor transmits data and the time when a response is received from the base station, A sleep step, and a sleep step for setting a sleep state.
上記の構成によれば、データを送信してから基地局からのレスポンスを受信するまでの間に、センサは消費電流の小さいスリープ状態になるので、基地局からのレスポンスを待つ間のアクティブ時間を削減することができる。ここで、アクティブ状態は通信可能な状態、スリープ状態は通信不可能でアクティブ状態より消費電流が小さい状態である。よって、センサは、消費電流を低減することができる。そのため、例えばセンサが電池で動作する場合、電池寿命を長くすることができ、メンテナンスの負荷を軽減することができる。
According to the above configuration, the sensor enters a sleep state with low current consumption between the time when data is transmitted and the time when a response from the base station is received. Can be reduced. Here, the active state is a state where communication is possible, and the sleep state is a state where communication is impossible and current consumption is smaller than that of the active state. Therefore, the sensor can reduce current consumption. Therefore, for example, when the sensor operates with a battery, the battery life can be extended, and the maintenance load can be reduced.
また、上記期間決定部は、上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでのレスポンス待ち期間を予測し、上記基地局からのレスポンスが返ってくる前に上記センサが通信可能なアクティブ状態に移行するよう、上記スリープ期間を決定してもよい。
In addition, the period determining unit predicts a response waiting period from when the sensor transmits data until receiving a response from the base station, and before the response from the base station returns, The sleep period may be determined so as to shift to a communicable active state.
上記の構成によれば、期間決定部は、レスポンス待ち期間を予測してスリープ期間を決定するので、基地局からのレスポンスが返ってくる前にセンサは通信可能なアクティブ状態に移行することができる。よって、基地局からのレスポンスをより確実に受信し、かつ、アクティブ時間を削減し、消費電流を低減することができる。
According to the above configuration, the period determination unit predicts the response waiting period and determines the sleep period, so that the sensor can shift to a communicable active state before the response from the base station is returned. . Therefore, it is possible to more reliably receive a response from the base station, reduce the active time, and reduce current consumption.
また、上記期間決定部は、過去の通信における、上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでのレスポンス待ち期間に基づいて、上記スリープ期間を決定してもよい。
Further, the period determination unit may determine the sleep period based on a response waiting period from when the sensor transmits data until a response is received from the base station in past communication.
上記の構成によれば、期間決定部は、過去の通信におけるレスポンス待ち時間に基づいて、スリープ期間を決定することができるので、レスポンス待ち期間を予測することができる。よって、基地局からのレスポンスが受信できるように、かつ、できるだけ長いスリープ期間を決定することができる。そのため、より効率的にアクティブ時間を削減することができる。また、通信を中継する中継機の数に関わらず、複数のセンサのアクティブ時間をより均一にすることができるので、例えばセンサが電池で動作する場合、複数のセンサの電池寿命をより均一にすることができる。そのため、メンテナンスの負荷を軽減することができる。
According to the above configuration, the period determining unit can determine the sleep period based on the response waiting time in the past communication, and therefore can predict the response waiting period. Therefore, it is possible to determine a sleep period as long as possible so that a response from the base station can be received. Therefore, the active time can be reduced more efficiently. In addition, since the active time of a plurality of sensors can be made more uniform regardless of the number of repeaters that relay communication, for example, when the sensors operate on batteries, the battery life of the plurality of sensors is made more uniform. be able to. Therefore, the maintenance load can be reduced.
また、上記期間決定部は、上記基地局との通信を中継する中継機の数に応じて、上記スリープ期間を決定してもよい。
In addition, the period determination unit may determine the sleep period according to the number of repeaters that relay communication with the base station.
レスポンス待ち期間は、主に基地局との通信を中継する中継機の数に応じて変化する。上記の構成によれば、基地局との通信を中継する中継機の数に応じて、スリープ期間を決定するので、レスポンス待ち期間を予測することができる。よって、基地局からのレスポンスが受信できるように、かつ、できるだけ長いスリープ期間を決定することができる。そのため、より効率的にアクティブ時間を削減することができる。また、通信を中継する中継機の数に関わらず、複数のセンサのアクティブ時間をより均一にすることができるので、例えばセンサが電池で動作する場合、複数のセンサの電池寿命をより均一にすることができる。そのため、メンテナンスの負荷を軽減することができる。
The response waiting period mainly varies depending on the number of repeaters that relay communication with the base station. According to said structure, since a sleep period is determined according to the number of the relay machines which relay communication with a base station, a response waiting period can be estimated. Therefore, it is possible to determine a sleep period as long as possible so that a response from the base station can be received. Therefore, the active time can be reduced more efficiently. In addition, since the active time of a plurality of sensors can be made more uniform regardless of the number of repeaters that relay communication, for example, when the sensors operate on batteries, the battery life of the plurality of sensors is made more uniform. be able to. Therefore, the maintenance load can be reduced.
また、上記基地局は、上記センサとの通信を中継する中継機の数に応じたレベルを示す情報を上記センサに送信し、上記期間決定部は、上記レベルに応じて上記スリープ期間を決定する構成であってもよい。
In addition, the base station transmits information indicating a level corresponding to the number of relays that relay communication with the sensor to the sensor, and the period determination unit determines the sleep period according to the level. It may be a configuration.
上記の構成によれば、基地局が、センサとの通信を中継する中継機の数に応じたレベルを示す情報をセンサに送信する。通信を中継する中継機の数は、レスポンス待ち時間と関連しているので、センサの期間決定部は、上記情報が示すレベルに応じてスリープ期間を決定することにより、基地局からのレスポンスが受信できるように、かつ、できるだけ長いスリープ期間を決定することができる。そのため、より効率的にアクティブ時間を削減することができる。また、通信を中継する中継機の数に関わらず、複数のセンサのアクティブ時間をより均一にすることができるので、例えばセンサが電池で動作する場合、複数のセンサの電池寿命をより均一にすることができる。そのため、メンテナンスの負荷を軽減することができる。
According to the above configuration, the base station transmits information indicating a level corresponding to the number of relays that relay communication with the sensor to the sensor. Since the number of repeaters that relay communication is related to the response waiting time, the period determination unit of the sensor receives the response from the base station by determining the sleep period according to the level indicated by the above information. As long as possible, the longest possible sleep period can be determined. Therefore, the active time can be reduced more efficiently. In addition, since the active time of a plurality of sensors can be made more uniform regardless of the number of repeaters that relay communication, for example, when the sensors operate on batteries, the battery life of the plurality of sensors is made more uniform. be able to. Therefore, the maintenance load can be reduced.
また、上記センサが、データを送信してから上記スリープ期間が経過した後にスリープ状態からアクティブ状態に移行し、アクティブ状態に移行してから所定の期間内に上記基地局からのレスポンスを受信できない場合、上記期間決定部は、次回の通信における上記スリープ期間を短く変更する構成であってもよい。
In addition, when the sensor shifts from the sleep state to the active state after the sleep period elapses after transmitting data, and cannot receive a response from the base station within a predetermined period after the transition to the active state The period determination unit may change the sleep period in the next communication to be short.
例えば、中継の通信経路が変化して通信を中継する中継機の数が変化した場合、それに対応してレスポンス待ち時間も変化すると考えられる。レスポンス待ち時間が短くなった場合、センサがスリープ状態である間に基地局からのレスポンスが返ってくることが考えられる。
For example, when the relay communication path changes and the number of relays that relay communication changes, the response waiting time may change accordingly. When the response waiting time is shortened, it is conceivable that a response from the base station is returned while the sensor is in the sleep state.
上記の構成によれば、アクティブ状態に移行してから所定の期間内に基地局からのレスポンスを受信できない場合、期間決定部は、次回の通信における上記スリープ期間を短く変更する。よって、通信を中継する中継機の数が少なくなり、レスポンス待ち時間が短くなり、センサがスリープ状態である間に基地局からのレスポンスが返ってきた場合でも、次回の通信においてはこれに対応することができ、センサは適切に基地局からのレスポンスを受信することができる。
According to the above configuration, when the response from the base station cannot be received within a predetermined period after the transition to the active state, the period determining unit changes the sleep period in the next communication to be short. Therefore, the number of repeaters that relay communication is reduced, the response waiting time is shortened, and even if a response is returned from the base station while the sensor is in the sleep state, this will be handled in the next communication. And the sensor can properly receive a response from the base station.
本発明に係る第2のセンサは、基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサであって、データを送信してから上記基地局からのレスポンスを受信するまでの間に、所定のスリープ期間、スリープ状態になる。
The second sensor according to the present invention performs intermittent operation in a sensor network system including a base station, a repeater, and a sensor, and sends data to the base station directly or via one or more repeaters. The transmitting sensor is in a sleep state for a predetermined sleep period from when data is transmitted to when a response from the base station is received.
本発明に係る第2のセンサの制御方法は、基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサの制御方法であって、上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでの間に、上記センサを所定のスリープ期間、スリープ状態にするスリープステップを含む。
According to the second sensor control method of the present invention, in a sensor network system including a base station, a repeater, and a sensor, the base station performs intermittent operation and directly or via one or more of the repeaters. A method of controlling a sensor for transmitting data to a sleep step of setting the sensor to a sleep state for a predetermined sleep period from when the sensor transmits data to when a response from the base station is received including.
上記の構成によれば、データを送信してから基地局からのレスポンスを受信するまでの間に、センサは消費電流の小さいスリープ状態になるので、基地局からのレスポンスを待つ間のアクティブ時間を削減することができる。よって、センサは、消費電流を低減することができる。そのため、例えばセンサが電池で動作する場合、電池寿命を長くすることができ、メンテナンスの負荷を軽減することができる。
According to the above configuration, the sensor enters a sleep state with low current consumption between the time when data is transmitted and the time when a response from the base station is received. Can be reduced. Therefore, the sensor can reduce current consumption. Therefore, for example, when the sensor operates with a battery, the battery life can be extended, and the maintenance load can be reduced.
本発明に係るセンサネットワークシステムは、基地局と、中継機と、上記センサとを含む。
The sensor network system according to the present invention includes a base station, a repeater, and the sensor.
(プログラムおよび記録媒体)
なお、上記センサは、一部をコンピュータによって実現してもよく、この場合には、コンピュータを上記各部として動作させる制御プログラム、および上記制御プログラムを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 (Program and recording medium)
Note that a part of the sensor may be realized by a computer. In this case, a control program that causes the computer to operate as each unit and a computer-readable recording medium that records the control program are also included in the present invention. Enter the category.
なお、上記センサは、一部をコンピュータによって実現してもよく、この場合には、コンピュータを上記各部として動作させる制御プログラム、および上記制御プログラムを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 (Program and recording medium)
Note that a part of the sensor may be realized by a computer. In this case, a control program that causes the computer to operate as each unit and a computer-readable recording medium that records the control program are also included in the present invention. Enter the category.
センサ3a~3dの各ブロック、特にスリープ設定部15は、ハードウェアロジックによって構成してもよいし、次のようにCPU(central processing unit)を用いてソフトウェアによって実現してもよい。
Each block of the sensors 3a to 3d, particularly the sleep setting unit 15, may be configured by hardware logic, or may be realized by software using a CPU (central processing unit) as follows.
すなわち、センサ3a~3dは、各機能を実現する制御プログラムの命令を実行するCPU、上記プログラムを格納したROM(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアであるセンサ3a~3dの制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記センサ3a~3dに供給し、そのコンピュータ(またはCPUやMPU(microprocessor unit))が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
That is, the sensors 3a to 3d include a CPU that executes instructions of a control program that realizes each function, a ROM (read memory) that stores the program, a RAM (random access memory) that develops the program, the program, and various A storage device (recording medium) such as a memory for storing data is provided. An object of the present invention is to provide a recording medium on which a program code (execution format program, intermediate code program, source program) of a control program for the sensors 3a to 3d, which is software that realizes the above-described functions, is recorded in a computer-readable manner This can also be achieved by supplying to the sensors 3a to 3d and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU (microprocessor unit)).
上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM(compact disc read-only memory)/MO(magneto-optical)/MD(Mini Disc)/DVD(digital versatile disk)/CD-R(CD Recordable)等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM(erasable programmable read-only memory)/EEPROM(electrically erasable and programmable read-only memory)/フラッシュROM等の半導体メモリ系などを用いることができる。
Examples of the recording medium include a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, a CD-ROM (compact disk-read-only memory) / MO (magneto-optical) / Disc system including optical disc such as MD (Mini Disc) / DVD (digital versatile disc) / CD-R (CD Recordable), card system such as IC card (including memory card) / optical card, or mask ROM / EPROM ( A semiconductor memory system such as erasable, programmable, read-only memory, EEPROM (electrically erasable, programmable, read-only memory) / flash ROM, or the like can be used.
また、センサ3a~3dを通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN(local area network)、ISDN(integrated services digital network)、VAN(value-added network)、CATV(community antenna television)通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE(institute of electrical and electronic engineers)1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL(asynchronous digital subscriber loop)回線等の有線でも、IrDA(infrared data association)やリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR(high data rate)、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。
Alternatively, the sensors 3a to 3d may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. For example, the Internet, an intranet, an extranet, a LAN (local area network), an ISDN (integrated services network, digital network), a VAN (value-added network), and a CATV (community antenna) television communication. A network, a virtual private network, a telephone line network, a mobile communication network, a satellite communication network, etc. can be used. Further, the transmission medium constituting the communication network is not particularly limited. For example, IEEE (institute of electrical and electronic engineering) (1394), USB, power line carrier, cable TV line, telephone line, ADSL (asynchronous digital subscriber loop) loop Wireless such as IrDA (infrared data association) or remote control, Bluetooth (registered trademark), 802.11 wireless, HDR (high data rate), mobile phone network, satellite line, terrestrial digital network, etc. But it is available.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
本発明は、間欠動作を行うセンサに利用することができる。
The present invention can be used for a sensor that performs intermittent operation.
1 基地局
2a、2b 中継機
3a~3d センサ(センサノード)
11 タイマー部
12 起動部
13 計測部
14 通信部
15 スリープ設定部(期間決定部)
16 記憶部 1 Base station 2a, 2b Repeater 3a-3d Sensor (sensor node)
11Timer unit 12 Start unit 13 Measuring unit 14 Communication unit 15 Sleep setting unit (period determination unit)
16 Memory unit
2a、2b 中継機
3a~3d センサ(センサノード)
11 タイマー部
12 起動部
13 計測部
14 通信部
15 スリープ設定部(期間決定部)
16 記憶部 1
11
16 Memory unit
Claims (12)
- 基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサであって、
スリープ期間を決定する期間決定部を備え、
上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでのレスポンス待ち期間の間に、上記スリープ期間、スリープ状態になることを特徴とするセンサ。 In a sensor network system including a base station, a relay device, and a sensor, a sensor that performs intermittent operation and transmits data to the base station directly or through one or more relay devices,
A period determining unit for determining a sleep period;
A sensor which is in a sleep state during the sleep period during a response waiting period from when the sensor transmits data to when a response from the base station is received. - 上記期間決定部は、上記レスポンス待ち期間を予測し、上記基地局からのレスポンスが返ってくる前に上記センサが通信可能なアクティブ状態に移行するよう、上記スリープ期間を決定することを特徴とする請求項1に記載のセンサ。 The period determining unit predicts the response waiting period, and determines the sleep period so that the sensor transitions to an active state in which communication is possible before a response from the base station is returned. The sensor according to claim 1.
- 上記期間決定部は、過去の通信における、上記レスポンス待ち期間に基づいて、上記スリープ期間を決定することを特徴とする請求項1に記載のセンサ。 The sensor according to claim 1, wherein the period determining unit determines the sleep period based on the response waiting period in past communication.
- 上記期間決定部は、上記基地局との通信を中継する中継機の数に応じて、上記スリープ期間を決定することを特徴とする請求項1に記載のセンサ。 2. The sensor according to claim 1, wherein the period determining unit determines the sleep period according to the number of repeaters that relay communication with the base station.
- 上記基地局は、上記センサとの通信を中継する中継機の数に応じたレベルを示す情報を上記センサに送信し、
上記期間決定部は、上記レベルに応じて上記スリープ期間を決定することを特徴とする請求項1に記載のセンサ。 The base station transmits information indicating a level corresponding to the number of relays that relay communication with the sensor to the sensor,
The sensor according to claim 1, wherein the period determining unit determines the sleep period according to the level. - 上記センサが、データを送信してから上記スリープ期間が経過した後にスリープ状態からアクティブ状態に移行し、アクティブ状態に移行してから所定の期間内に上記基地局からのレスポンスを受信できない場合、上記期間決定部は、次回の通信における上記スリープ期間を短く変更することを特徴とする請求項1に記載のセンサ。 When the sensor transitions from the sleep state to the active state after the elapse of the sleep period after transmitting data, and cannot receive a response from the base station within a predetermined period after the transition to the active state, The sensor according to claim 1, wherein the period determining unit changes the sleep period in the next communication to be shorter.
- 基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサであって、
データを送信してから上記基地局からのレスポンスを受信するまでの間に、所定のスリープ期間、スリープ状態になることを特徴とするセンサ。 In a sensor network system including a base station, a relay device, and a sensor, a sensor that performs intermittent operation and transmits data to the base station directly or through one or more relay devices,
A sensor that is in a sleep state for a predetermined sleep period from when data is transmitted to when a response from the base station is received. - 基地局と、中継機と、請求項1または7に記載のセンサとを含むことを特徴とするセンサネットワークシステム。 A sensor network system comprising a base station, a relay station, and the sensor according to claim 1.
- 基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサの制御方法であって、
スリープ期間を決定する期間決定ステップと、
上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでの間に、上記センサを上記スリープ期間、スリープ状態にするスリープステップとを含むことを特徴とするセンサの制御方法。 In a sensor network system including a base station, a repeater, and a sensor, a sensor control method that performs intermittent operation and transmits data to the base station directly or through one or more of the repeaters,
A period determining step for determining a sleep period;
A sensor control method comprising: a sleep step for setting the sensor to a sleep state during the sleep period from when the sensor transmits data to when a response from the base station is received. - 基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサの制御方法であって、
上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでの間に、上記センサを所定のスリープ期間、スリープ状態にするスリープステップを含むことを特徴とするセンサの制御方法。 In a sensor network system including a base station, a repeater, and a sensor, a sensor control method that performs intermittent operation and transmits data to the base station directly or through one or more of the repeaters,
A sensor control method comprising a sleep step of setting the sensor to a sleep state for a predetermined sleep period from when the sensor transmits data to when a response from the base station is received. - 基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサの制御プログラムであって、
スリープ期間を決定する期間決定ステップと、
上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでの間に、上記センサを上記スリープ期間、スリープ状態にするスリープステップとを、上記センサが備えるコンピュータに実行させることを特徴とする制御プログラム。 In a sensor network system including a base station, a relay station, and a sensor, a sensor control program that performs intermittent operation and transmits data to the base station directly or via one or more relay stations,
A period determining step for determining a sleep period;
The computer having the sensor executes a sleep step of putting the sensor in a sleep state during the sleep period from when the sensor transmits data until receiving a response from the base station. Control program. - 基地局と中継機とセンサとを含むセンサネットワークシステムにおいて、間欠動作を行い、直接にまたは1つ以上の上記中継機を介して、上記基地局にデータを送信するセンサの制御プログラムであって、
上記センサがデータを送信してから上記基地局からのレスポンスを受信するまでの間に、上記センサを所定のスリープ期間、スリープ状態にするスリープステップを、上記センサが備えるコンピュータに実行させることを特徴とする制御プログラム。 In a sensor network system including a base station, a relay station, and a sensor, a sensor control program that performs intermittent operation and transmits data to the base station directly or via one or more relay stations,
A computer having the sensor execute a sleep step for setting the sensor to a sleep state for a predetermined sleep period from when the sensor transmits data to when a response from the base station is received. Control program.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-161821 | 2010-07-16 | ||
JP2010161821A JP5187356B2 (en) | 2010-07-16 | 2010-07-16 | Sensor, sensor network system, sensor control method, and control program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012008181A1 true WO2012008181A1 (en) | 2012-01-19 |
Family
ID=45469195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056269 WO2012008181A1 (en) | 2010-07-16 | 2011-03-16 | Sensor, sensor network system, method for controlling sensor, and control program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5187356B2 (en) |
WO (1) | WO2012008181A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107431889A (en) * | 2015-02-10 | 2017-12-01 | 泰科消防及安全有限公司 | For controlling the method and system of low energy link in wireless sensor network |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5670955B2 (en) * | 2012-05-15 | 2015-02-18 | Necソリューションイノベータ株式会社 | COMMUNICATION SYSTEM, TERMINAL, RELAY DEVICE, COMMUNICATION METHOD, AND COMPUTER PROGRAM |
JP2014053729A (en) * | 2012-09-06 | 2014-03-20 | Denso Corp | Radio communication system, communication device, and communication program |
JP6202747B2 (en) * | 2014-03-25 | 2017-09-27 | アルプス電気株式会社 | Communication terminal |
JP2018510594A (en) * | 2015-01-27 | 2018-04-12 | ロシックス・インコーポレイテッド | System and method for providing a wireless sensor network having an asymmetric network architecture |
JPWO2017061074A1 (en) * | 2015-10-05 | 2018-07-26 | 日本電気株式会社 | Deterioration detection device, deterioration detection method, computer-readable recording medium, and deterioration detection system |
JP6470207B2 (en) * | 2016-03-04 | 2019-02-13 | 上田日本無線株式会社 | Repeater and radio system |
JP2019117982A (en) * | 2017-12-26 | 2019-07-18 | 京セラ株式会社 | Communication device, communication module, communication method, and program |
CN111447582A (en) * | 2019-01-16 | 2020-07-24 | 索尼公司 | User equipment in a wireless communication system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008228180A (en) * | 2007-03-15 | 2008-09-25 | Japan Radio Co Ltd | Radio device |
JP2010130324A (en) * | 2008-11-27 | 2010-06-10 | Sharp Corp | Radio telemeter system |
-
2010
- 2010-07-16 JP JP2010161821A patent/JP5187356B2/en active Active
-
2011
- 2011-03-16 WO PCT/JP2011/056269 patent/WO2012008181A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008228180A (en) * | 2007-03-15 | 2008-09-25 | Japan Radio Co Ltd | Radio device |
JP2010130324A (en) * | 2008-11-27 | 2010-06-10 | Sharp Corp | Radio telemeter system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107431889A (en) * | 2015-02-10 | 2017-12-01 | 泰科消防及安全有限公司 | For controlling the method and system of low energy link in wireless sensor network |
Also Published As
Publication number | Publication date |
---|---|
JP5187356B2 (en) | 2013-04-24 |
JP2012023668A (en) | 2012-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5187356B2 (en) | Sensor, sensor network system, sensor control method, and control program | |
CN109548116B (en) | ZigBee gateway equipment batch network access method, device and equipment based on NFC | |
US7831283B2 (en) | Sensor network system and sensor node | |
KR101580622B1 (en) | Power save proxy in communication networks | |
US10055570B2 (en) | Mesh relay | |
WO2011030636A1 (en) | Information-providing device and information-providing method, wireless communication device and wireless communication method, computer program, and wireless communication system | |
JP4818066B2 (en) | Wireless meter reading system and wireless meter reading method | |
AU2005239405A1 (en) | System and method for improved transmission of meter data | |
CN103826199A (en) | Apparatus and method for performing low-power geo-fence operations | |
JP2009140184A (en) | Wireless communication system | |
JP4643413B2 (en) | Multi-hop wireless communication system and its base station and wireless terminal | |
JP2014072729A (en) | Communication system, communication device, relay device, and program | |
JP6508594B2 (en) | Communication node, communication method and wireless communication system | |
WO2018057171A1 (en) | Dynamic battery charging threshold for mobile devices | |
KR20180096466A (en) | Method and apparatus for sensing | |
JP2016208274A (en) | Communication slave device and wireless communication system | |
JP4982297B2 (en) | Specific low-power radio telemeter system | |
JP2009088837A (en) | Relay system, relay device, program, and control method | |
JP7046141B1 (en) | Terminals, how terminals operate, data collection systems, and programs | |
KR101203859B1 (en) | Method for Saving Power of Mobile Telecommunication Terminal and Mobile Telecommunication Terminal using the same | |
CN115298715B (en) | Communication terminal, communication system, power saving control method, and storage medium | |
JP7031454B2 (en) | Wireless communication system | |
US20240002189A1 (en) | Elevator monitoring solution for an elevator system | |
JP2005286631A (en) | Power line communication relaying apparatus and relaying method, and power line communication system | |
JP5417474B2 (en) | COMMUNICATION DEVICE, COMMUNICATION CONTROL METHOD, AND PROGRAM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11806514 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11806514 Country of ref document: EP Kind code of ref document: A1 |