WO2012008070A1 - Image capturing device and signal processing method - Google Patents

Image capturing device and signal processing method Download PDF

Info

Publication number
WO2012008070A1
WO2012008070A1 PCT/JP2011/001374 JP2011001374W WO2012008070A1 WO 2012008070 A1 WO2012008070 A1 WO 2012008070A1 JP 2011001374 W JP2011001374 W JP 2011001374W WO 2012008070 A1 WO2012008070 A1 WO 2012008070A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
light
color filter
signal
signal processing
Prior art date
Application number
PCT/JP2011/001374
Other languages
French (fr)
Japanese (ja)
Inventor
田中 圭介
一夫 藤原
信三 香山
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012008070A1 publication Critical patent/WO2012008070A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/88Camera processing pipelines; Components thereof for processing colour signals for colour balance, e.g. white-balance circuits or colour temperature control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • the present invention relates to an imaging apparatus and a signal processing method, and more particularly, to an imaging apparatus and a signal processing method that include a color filter having a plurality of regions that transmit light of different wavelengths for each region and perform color correction.
  • the pixel array is becoming larger in size for single lens reflex DSCs and the like.
  • an absorptive color filter such as an organic pigment filter
  • color unevenness occurs and it is a problem that high-definition color reproducibility cannot be achieved.
  • a multilayer interference filter such as a photonic filter (PCF)
  • unevenness in the filter film thickness causes color unevenness, which is a problem for realizing high-definition color reproducibility.
  • a digital camera such as a single-lens reflex DSC, an imaging apparatus and an image processing method that output an image with high-definition color reproducibility are strongly desired.
  • Patent Document 1 discloses a conventional technique for performing color shading correction as an approach to realizing high-definition color reproducibility.
  • Patent Document 1 As a general method of calculating the correction amount, a method of obtaining a luminance ratio mainly from adjacent pixels having different colors is disclosed. However, this method is effective only for color correction by color mixture of adjacent pixels with obliquely incident light.
  • the conventional technology can correct color shading mainly due to color mixing of adjacent pixels that changes depending on the illumination conditions and imaging conditions such as lenses, but it does not vary in workmanship such as color filters distributed as fixed values in the wafer surface. It is not possible to correct color unevenness due to.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an imaging apparatus and a signal processing method that can realize high-definition color reproducibility.
  • an imaging device includes a plurality of pixels arranged two-dimensionally in an imaging surface and a signal that processes a pixel signal output from each of the plurality of pixels.
  • Each of the plurality of pixels includes a plurality of light receiving elements, and a color filter formed on the plurality of light receiving elements and including a plurality of regions that transmit light of different wavelengths for each region
  • the signal processing unit includes a WB adjustment unit that adjusts a white balance of the pixel signal, a reference data storage unit that stores correction reference data indicating characteristics for each region of the color filter in units of one or a plurality of pixels, and ,
  • a coordinate acquisition unit that acquires a two-dimensional coordinate indicating the position of the light receiving element in the imaging surface, correction reference data stored in the reference data storage unit, and a secondary acquired by the coordinate acquisition unit
  • a correction amount calculation unit that determines a hue correction amount based on the coordinates, and a hue correction unit that corrects the hue of the pixel signal after
  • the hue correction amount is determined using correction reference data indicating the characteristics of each color filter region, so that even if color unevenness occurs due to, for example, manufacturing variations in the color filter, an appropriate hue is determined. Can be corrected. Therefore, high-definition color reproducibility can be realized.
  • the plurality of regions include a red region that transmits red light, a green region that transmits green light, and a blue region that transmits blue light, and the color filter includes a high refractive index material having a first refractive index.
  • N layers where n is a natural number of 3 or more
  • n-1 layers made of a low refractive index material having a second refractive index lower than the first refractive index are alternately stacked. Two of the n-layer films made of the high-refractive index material, and one of the n-1 layers made of the low-refractive index material.
  • Is a layer common to the red region, the green region, and the blue region, and the red region is included in the common layer among n-1 layers composed of the low refractive index material.
  • the film thickness of one layer other than the one layer film may be different from the film thickness of the other layers.
  • a color filter having an arbitrary transmission wavelength characteristic region can be realized, so that high-definition color reproducibility can be realized.
  • the plurality of regions may further include a region that transmits only near-infrared light.
  • the correction amount is represented by a function expression having the two-dimensional coordinates and the wavelength of light transmitted through the color filter as variables, and the reference data storage unit uses the function expression as the correction reference data. You may remember.
  • a signal processing method is a signal processing method for processing a pixel signal output for each pixel from a solid-state imaging device in which a plurality of pixels are two-dimensionally arranged in an imaging surface.
  • Each of the plurality of pixels includes a plurality of light receiving elements and a color filter formed on the plurality of light receiving elements and including a plurality of regions that transmit light of different wavelengths for each region, and the signal processing method includes a WB adjustment step for adjusting the white balance of the pixel signal, and a hue correction step for correcting the hue of the pixel signal after the white balance is adjusted.
  • a region of the color filter A hue correction amount is determined based on correction reference data indicating the characteristics of each pixel in units of one or a plurality of pixels and two-dimensional coordinates indicating the position of the light receiving element in the imaging surface. The determined correction amount for correcting the hue of the pixel signal.
  • the hue correction amount is determined using correction reference data indicating the characteristics of each color filter region, so that even if color unevenness occurs due to, for example, manufacturing variations in the color filter, an appropriate hue is determined. Can be corrected. Therefore, high-definition color reproducibility can be realized.
  • the correction amount may be determined independently for each transmission characteristic of the color filter region to correct the hue of the pixel signal.
  • the correction amount may be determined so as to change monotonously as the two-dimensional coordinate increases.
  • the correction amount is represented by a function equation having the two-dimensional coordinates and the wavelength of light transmitted through the color filter as variables, and the correction amount is determined using the function equation in the hue correction step. May be.
  • correction reference data may be a wafer in-plane distribution of transmittance of the color filter film formation monitor wafer created when forming the color filter.
  • the transmittance distribution on the entire surface of the wafer of the color filter film formation monitor or the transmittance distribution of a part of the wafer is used as the correction reference data.
  • this correction reference data a correction amount is calculated for each light receiving element arranged two-dimensionally, and hue correction is performed so that there is no color unevenness in the imaging surface, thereby realizing high-definition color reproducibility. can do.
  • correction reference data may be an in-wafer distribution of the film thickness of all or part of the color filters of the color filter film formation monitor wafer created when forming the color filter.
  • the signal processing method may further include a reference data calculation step of calculating the correction reference data using a pixel signal generated when reference light is incident on the solid-state imaging device.
  • the hue correction amount can be determined using the variation of the pixel signal obtained by entering the reference light for each light receiving element, so that high-definition color reproducibility can be realized.
  • the reference light may be white light.
  • the reference light may include infrared light.
  • a light receiving element formed with a color filter having a region having a different transmission color can be simultaneously and easily used at night, etc.
  • the amount of correction can be calculated. Therefore, high-definition color reproducibility can be realized.
  • the reference light may be light having a transmission center wavelength in the transmission characteristics of the color filter region.
  • FIG. 1 is a diagram illustrating an example of a configuration of an imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an example of a signal processing method executed by the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram illustrating an example of the configuration of the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 is a diagram illustrating an example of a cross-sectional configuration of the color filter provided in the solid-state imaging device of the imaging apparatus according to Embodiment 2 of the present invention.
  • the imaging apparatus includes a plurality of pixels arranged two-dimensionally in an imaging surface, and a signal processing unit that processes pixel signals output from each of the plurality of pixels.
  • Each of the plurality of pixels includes a plurality of light receiving elements and a color filter formed on the plurality of light receiving elements and including a plurality of regions that transmit light of different wavelengths for each region.
  • the signal processing unit determines a reference data storage unit that stores correction reference data indicating characteristics of each color filter region in units of one or a plurality of pixels, and a hue correction amount.
  • the correction amount calculation unit determines a hue correction amount based on the two-dimensional coordinates indicating the position of the light receiving element in the imaging surface and the correction reference data stored in the reference data storage unit. .
  • FIG. 1 is a block diagram illustrating an example of a functional configuration of the imaging apparatus 100 according to Embodiment 1 of the present invention.
  • the imaging apparatus 100 includes a solid-state imaging device 101 and a signal processing unit 201. Further, in the signal processing method according to the first embodiment of the present invention, the imaging having the unit pixel 110 having one unit of four pixels in which Bayer array of red (R), green (Gr, Gb), and blue (B) is arranged. In the apparatus 100, an image signal composed of a color signal and a luminance signal is processed.
  • the solid-state image sensor 101 is a MOS (Metal Oxide Semiconductor) type image sensor that photoelectrically converts incident light to generate an electrical signal.
  • the solid-state imaging device 101 includes a plurality of unit pixels 110, a vertical shift register 121, a horizontal shift register 122, a noise removal circuit 123, and an output amplifier 124. In FIG. 1, only one of the plurality of unit pixels 110 is shown.
  • Each of the plurality of unit pixels 110 includes a plurality of light receiving elements 111 and a color filter 112.
  • the unit pixel 110 according to the first embodiment of the present invention is a pixel in which four sub-pixels in which red (R), green (Gr, Gb), and blue (B) are arranged in a Bayer array are used as one unit. That is, as shown in FIG. 1, the unit pixel 110 includes four light receiving elements 111.
  • the plurality of light receiving elements 111 generate electric signals by photoelectrically converting incident light transmitted through the color filter 112.
  • the generated electrical signal is output to the signal processing unit 201 according to control by the vertical shift register 121 and the horizontal shift register 122.
  • the color filter 112 is a filter that selectively transmits visible light (R, G, B) for each region. Specifically, the color filter 112 includes a red region 113, green regions 114 and 115, and a blue region 116.
  • the color filter 112 is an absorptive organic pigment filter that includes different organic pigments for each transmitted color.
  • the red region 113 is a region that mainly transmits red color (650 nm) in the color filter 112.
  • the green regions 114 and 115 are regions that mainly transmit green color (550 nm) in the color filter 112.
  • the blue region 116 is a region that mainly transmits blue (450 nm) in the color filter 112.
  • the vertical shift register 121 selects the plurality of light receiving elements 111 for each row, and the horizontal shift register 122 selects the selected row signal.
  • the noise removal circuit 123 removes noise from the electrical signal output from the light receiving element 111.
  • the output amplifier 124 amplifies the electrical signal selected by the vertical shift register 121 and the horizontal shift register 122 and outputs the amplified signal to the signal processing unit 201.
  • the solid-state imaging device 101 outputs an electrical signal as a sub-pixel signal for each light receiving element 111.
  • the subpixel signal is an electrical signal of a color component corresponding to each light receiving element 111.
  • the signal processing unit 201 generates a luminance signal and a color signal of the unit pixel 110 by processing the pixel signal output from the solid-state imaging device 101.
  • the pixel signal is a signal output from each of the plurality of unit pixels 110, and specifically includes red (R), green (G), and blue (B) sub-pixel signals.
  • the signal processing unit 201 is a DSP (Digital Signal Processor) or the like that performs image signal processing on the image signal received from the solid-state imaging device 101.
  • the image signal means a group of a plurality of pixel signals.
  • the signal processing unit 201 includes a defect correction circuit 211, an OB calculation circuit 212, a luminance calculation circuit 221, a low-pass filter circuit 231, a color shading correction circuit 232, and a luminance shading correction circuit 233. , White balance adjustment circuit 234, hue correction circuit 235, color gain adjustment circuit 236, ⁇ correction circuit 237, addition circuit 238, correction amount calculation circuit 241, reference data storage unit 242, and reference data input circuit 243 and a coordinate acquisition circuit 244 for two-dimensional coordinates in the imaging plane of the light receiving element.
  • the processed pixel signal is stored in a memory (not shown) or the like. Each processing unit acquires a processed pixel signal or the like from the memory as necessary, and performs each process using the acquired processed pixel signal.
  • the scratch correction circuit 211 performs pixel defect correction. That is, the defect correction circuit 211 generates and outputs a pixel signal of a defective pixel by performing an operation using a pixel signal of an adjacent pixel in the input image signal.
  • the OB calculation circuit 212 performs offset removal such as dark current included in the pixel signal. For example, the OB calculation circuit 212 performs offset removal for each sub-pixel signal.
  • the sub-pixel signal processed by the OB calculation circuit 212 is output to the luminance calculation circuit 221 and the low-pass filter circuit 231.
  • the low-pass filter circuit 231 removes a noise component included in the sub-pixel signal.
  • the sub-pixel signal from which the noise component has been removed is output to the color shading correction circuit 232.
  • the color shading correction circuit 232 and the luminance shading correction circuit 233 respectively perform color shading correction and luminance shading correction using output signals from adjacent pixels. Color shading and luminance shading occur, for example, as a mixture of oblique incident light to adjacent pixels, which varies depending on the shooting conditions.
  • the pixel signal whose shading is corrected is output to the white balance adjustment circuit 234.
  • the white balance adjustment circuit 234 adjusts the white balance (WB) of the pixel signal. That is, color correction is performed between the three primary colors of the sub-pixel signal indicating each color included in the pixel signal.
  • the pixel signal after the white balance is adjusted is output to the hue correction circuit 235.
  • the hue correction circuit 235 uses the correction amount determined by the correction amount calculation circuit 241 to correct the hue of the pixel signal after the white balance is adjusted.
  • the corrected pixel signal is output to the color gain adjustment circuit 236.
  • the color gain adjustment circuit 236 adjusts the color gain of the input pixel signal.
  • the pixel signal whose color gain has been adjusted is output to the ⁇ correction circuit 237.
  • the ⁇ correction circuit 237 performs ⁇ correction on the input pixel signal.
  • the corrected pixel signal is output to the addition circuit 238.
  • the addition circuit 238 adds the pixel signal output from the ⁇ correction circuit 237 and the luminance signal output from the luminance calculation circuit 221 to generate a pixel signal after signal processing.
  • the pixel signal after the signal processing is output as an image signal to a display device or the like.
  • the correction amount calculation circuit 241 calculates the hue correction amount for each light receiving element 111 using the hue correction reference data stored in the reference data storage unit 242 and the two-dimensional coordinates indicating the position of the light receiving element in the imaging surface. Calculate and determine. For example, the correction amount calculation circuit 241 determines the hue correction amount so as to change monotonously in accordance with an increase in the two-dimensional coordinates of the light receiving element acquired by the coordinate acquisition circuit 244. In this way, since the hue correction amount is monotonously increased in accordance with the increase in the two-dimensional coordinates, the hue correction amount does not have to be changed suddenly between adjacent pixels, so that high-definition color reproducibility can be achieved. Can be realized. The determined hue correction amount is output to the hue correction circuit 235.
  • the correction amount calculation circuit 241 uses, as variables for hue correction reference data, a function expression representing a hue correction amount, using the two-dimensional coordinates of the light receiving element 111 and the wavelength of light transmitted through the color filter 112 as variables. Then, the hue correction amount is calculated. That is, the correction amount calculation circuit 241 uses the two-dimensional coordinates (x, y) of the light receiving element acquired by the coordinate acquisition circuit 244 and the wavelength ⁇ of the light incident on the light receiving element to calculate the hue correction amount. Calculate.
  • the amount of memory required for image processing can be reduced by expressing the hue correction amount by a functional expression having two-dimensional coordinates and wavelength as variables. Therefore, image processing can be performed with low power, and high-definition color reproducibility can be realized.
  • the reference data storage unit 242 is a memory for storing hue correction reference data.
  • the reference data storage unit 242 stores, as hue correction reference data, a functional expression having two-dimensional coordinates in the imaging surface and the wavelength of light transmitted through the color filter as variables. In this way, by storing a functional expression having two-dimensional coordinates and the wavelength of light as variables, it becomes unnecessary to store correction reference data for each position, so that the amount of memory can be reduced, High-definition color reproducibility can be realized.
  • the reference data input circuit 243 stores the hue correction reference data used for calculating the hue correction amount in the reference data storage unit 242.
  • the reference data input circuit 243 stores the in-wafer distribution of the transmittance of the color filter film formation monitor wafer created at the time of forming the color filter in the reference data storage unit 242 as hue correction reference data.
  • the color filter film formation monitor created at the time of color filter formation measure the entire surface distribution of the color filter film formation monitor or the transmittance distribution from a part of the wafer, and use the measured transmittance distribution as the correction reference data.
  • the data input circuit 243 is stored in the reference data storage unit 242. As a result, using this correction reference data, a correction amount is calculated for each light receiving element arranged two-dimensionally, and hue correction is performed so that there is no color unevenness in the imaging surface, thereby realizing high-definition color reproducibility. can do.
  • the imaging apparatus 100 uses the correction reference data and the two-dimensional coordinates indicating the position of the pixel in the imaging surface to calculate the correction amount for determining the hue correction amount.
  • a circuit 241 and a hue correction circuit 235 that corrects the hue of the pixel signal with the determined correction amount are provided.
  • the correction reference data indicates the characteristics of each region of the color filter 112 in units of one or a plurality of pixels.
  • the hue correction amount is determined using the correction reference data indicating the characteristics of each region of the color filter 112. For example, even when color unevenness due to manufacturing variation of the color filter 112 occurs Correct hue correction.
  • the correction reference data is a transmittance distribution of the color filter film formation monitor wafer.
  • the correction amount calculation circuit 241 calculates a correction amount for each light receiving element that is two-dimensionally arranged in the imaging surface of the imaging apparatus 100 from the correction reference data, and the hue correction circuit 235 prevents color unevenness in the imaging surface. Correct the hue. Thereby, according to the imaging device 100 which concerns on Embodiment 1 of this invention, high-definition color reproducibility is realizable.
  • FIG. 2 is a flowchart illustrating an example of a signal processing method executed by the imaging apparatus 100 according to Embodiment 1 of the present invention.
  • the white balance adjustment circuit 234 adjusts the white balance of the input pixel signal (S110). As described above, the pixel signal input to the white balance adjustment circuit 234 is subjected to predetermined processing such as shading correction processing and LPF processing.
  • the correction amount calculation circuit 241 calculates a hue correction amount using the correction reference data stored in the reference data storage unit 242 and the two-dimensional coordinates acquired by the coordinate acquisition circuit 244 (S120). ).
  • the coordinate acquisition circuit 244 acquires two-dimensional coordinates indicating the pixel position of the target pixel that has output the pixel signal that is the target of the hue correction processing.
  • the correction amount calculation circuit 241 calculates the hue correction amount using, for example, the above-described function formula. Specifically, the correction amount is determined independently for each transmission characteristic of the color filter 112 region. Since hue correction is performed independently for each color, high-definition color reproducibility can be realized.
  • the wavelength which is one of the variables of the functional equation corresponding to the transmission color of the color filter formed on the pixel, is obtained from the in-wafer distribution of the transmittance of the color filter film formation monitor wafer created at the time of forming the color filter. It is done.
  • the wafer in-plane distribution is stored in the reference data storage unit 242 as correction reference data.
  • the hue correction circuit 235 corrects the hue of the pixel signal of the target pixel using the correction amount calculated by the correction amount calculation circuit 241 (S130).
  • the correction reference data indicating the characteristics of each color filter region and the two-dimensional coordinates indicating the position of the target pixel are used. Even when the characteristics of the color filter are different depending on the position in the imaging surface due to manufacturing variation or the like, an appropriate correction amount can be calculated. Therefore, according to the signal processing method according to Embodiment 1 of the present invention, high-definition color reproducibility can be realized.
  • the predetermined correction reference data may be an in-wafer distribution of the film thickness of all or a part of the color filter of the color filter film formation monitor wafer created at the time of forming the color filter.
  • the color filter film formation monitor created at the time of color filter formation there is a correlation with the transmittance of the color filter film formation monitor, and the color filter film thickness distribution over the wafer or the wafer that can be measured easily and inexpensively
  • a part of the distribution is used as correction reference data.
  • a correction amount is calculated for each light receiving element, and hue correction is performed so that there is no color unevenness in the imaging surface, thereby realizing high-definition color reproducibility at low cost. Can do.
  • the predetermined correction reference data may be calculated from an image signal from the light receiving element when white light is incident on the imaging apparatus 100 as reference light.
  • a white light source as the reference light, it is possible to simultaneously and easily calculate the hue correction amount for each light receiving element in a light receiving element in which a color filter having a region having a different transmission color is formed. . Therefore, high-definition color reproducibility can be realized.
  • the reference light may include infrared light.
  • a light source that includes infrared light as the reference light, it is possible to simultaneously and easily adjust the amount of hue correction within the imaging surface by using a light-receiving element with a color filter with a different transmission color, even at night. It is possible to calculate and correct the hue using the correction amount. Therefore, high-definition color reproduction can be realized.
  • the hue correction amount can be determined by using the variation of the pixel signal obtained by entering the reference light for each light receiving element, so that high-definition color reproducibility can be realized. .
  • the reference light may be light having a transmission center wavelength in the transmission characteristics of the color filter region.
  • the correction reference data is acquired by irradiating the light receiving element corresponding to the red region with red light. Then, by performing the hue correction using the correction amount calculated from the correction reference data, the imaging apparatus 100 can determine an appropriate correction amount for each color, and can realize high-definition color reproducibility.
  • the imaging apparatus 100 As described above, according to the imaging apparatus 100 according to the first embodiment of the present invention, not only thinning of the color filter by reducing the height of pixels or miniaturization by increasing the number of pixels, but also for a digital single lens reflex camera, etc. It is possible to reduce color unevenness caused by variations in workmanship such as color filters due to the large pixel array. Therefore, according to the imaging device 100 according to Embodiment 1 of the present invention, high-definition color reproducibility can be realized.
  • An imaging apparatus includes a color filter including a region that transmits near-infrared light, and processes an image signal including a near-infrared signal.
  • a color filter including a region that transmits near-infrared light
  • processes an image signal including a near-infrared signal since the near-infrared signal is used, for example, even when the visible light signal is weak, such as at night, the color component signal is effectively left. High-definition color reproducibility can be realized.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of the imaging apparatus 300 according to Embodiment 2 of the present invention.
  • the imaging apparatus 300 includes a solid-state imaging device 310, a signal processing unit 320, an imaging control unit 330, a light source control unit 341, and an IR light source 342. And an objective lens 351 and a diaphragm 352.
  • the signal processing method according to Embodiment 2 of the present invention includes red (R) + near infrared (IR), green (G) + near infrared (IR), blue (B) + near infrared (IR).
  • an image pickup apparatus 100 having a unit pixel 311 having four units of near infrared (IR) as a unit, an image signal composed of a color signal and a luminance signal is processed.
  • the solid-state imaging device 310 is a MOS type image sensor that photoelectrically converts incident light to generate a color signal.
  • the solid-state imaging device 310 includes a plurality of unit pixels 311, a vertical shift register 121, a horizontal shift register 122, a noise removal circuit 123, and an output amplifier 124.
  • FIG. 3 shows only one of the plurality of unit pixels 311. In the following, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof may be omitted.
  • Each of the plurality of unit pixels 311 includes a plurality of light receiving elements 111 and a color filter 312.
  • the color filter 312 includes an R + IR transmission region 313, a G + IR transmission region 314, a B + IR transmission region 315, and an IR transmission region 316. That is, the color filter 312 is a filter that selectively transmits visible light (R, G, B) for each region and transmits infrared light.
  • the color filter 112 differs in that one of the two green regions 114 and 115 included in the unit pixel 110 is replaced with an IR transmission region 316 that transmits near-infrared light.
  • the red region 113, the other of the green regions 114 and 115, and the blue region 116 included in the unit pixel 110 are respectively an R + IR transmission region 313, a G + IR transmission region 314, and a B + IR transmission region 315 that also transmit near infrared light. It is also different in that it is replaced by.
  • the solid-state imaging device 310 selects each row of the unit pixels 311 arranged two-dimensionally by the vertical shift register 121, selects the row signal by the horizontal shift register 122, and outputs a color signal (pixel signal) for each unit pixel 311. Output from the output amplifier 124. That is, the solid-state imaging device 310 outputs pixel signals including R + IR, G + IR, B + IR, and IR sub-pixel signals to the signal processing unit 320.
  • a photonic crystal color filter is integrated as a color filter 312 on an image sensor (a plurality of light receiving elements 111).
  • a transmission band through which light is transmitted is designed so that near-infrared light is transmitted and used as an IR filter.
  • the R + IR transmissive region 313, the G + IR transmissive region 314, and the B + IR transmissive region 315 of the color filter 312 are formed by alternately laminating a low refractive index material and a high refractive index material at a film thickness of ⁇ / 4 ( ⁇ : wavelength). This can be realized by introducing a “defect layer” having a film thickness different from ⁇ / 4 into the optical multilayer film. Due to this defect layer, the optical periodicity is disturbed, and a transmission band can be generated in the forbidden band. By appropriately designing the thickness of the defect layer, a transmission band of a desired wavelength band can be realized.
  • a color filter having IR pixels can be easily designed. Simply adjusting the film thickness of each defect layer in the R + IR transmission region 313, G + IR transmission region 314, and B + IR transmission region 315, red light and near infrared light, green light and near infrared light, blue light and near infrared light.
  • a light transmission band can be formed.
  • FIG. 4 is a diagram illustrating an example of a cross-sectional configuration of the color filter 312 provided in the solid-state imaging device 310 of the imaging apparatus 300 according to Embodiment 2 of the present invention. As shown in FIG. 4, a color filter 312 is formed on the substrate 401.
  • a plurality of light receiving elements 111 are formed on the substrate 401, and an R + IR transmission region 313, a G + IR transmission region 314, a B + IR transmission region 315, and an IR transmission region 316 are formed on each of the plurality of light reception elements 111. .
  • the color filter 312 includes an n-layer film (first films 402, 404, 406, and 408) made of a high refractive index material having a first refractive index, and a low refractive index having a second refractive index lower than the first refractive index.
  • N-1 layer films (second films 403, 405, and 407) composed of the following dielectric layers are included.
  • n is a natural number of 3 or more.
  • the color filter 312 includes a planarization film 409 formed on the first film 408.
  • the first films 402, 404, 406, and 408 are made of, for example, titanium dioxide (TiO 2 ).
  • the second films 403, 405, and 407 are made of, for example, silicon dioxide (SiO 2 ).
  • First films 404 and 406, which are two layers of n layers made of a high refractive index material, and one film of n-1 layers made of a low refractive index material
  • the second film 405 is common to the R + IR transmission region 313, the G + IR transmission region 314, the B + IR transmission region 315, and the IR transmission region 316. That is, the first films 404 and 406 and the second film 405 are included in a layer common to each region of the color filter 312, and when the set wavelength of incident light is ⁇ , 1 ⁇ 4 of the set wavelength ⁇ .
  • a film thickness equal to
  • the second films 403 and 407 correspond to “defect layers” and have a film thickness different from ⁇ / 4.
  • the second films 403 and 407 are layers used to control light to be transmitted, and transmit red, green, blue, or near-infrared light by changing the film thickness for each region.
  • the film thickness of at least one layer of the low-refractive index film is set to the wavelength of light to be transmitted.
  • the transmission bands of red light and near infrared light, green light and near infrared light, blue light, near infrared light, and only near infrared light are different. Can be formed.
  • a color filter having an arbitrary transmission wavelength characteristic region can be realized, so that high-definition color reproducibility can be realized.
  • the signal processing unit 320 is a DSP or the like that performs image signal processing on the image signal received from the solid-state image sensor 310. Compared with the signal processing unit 201 according to the first embodiment, the signal processing unit 320 newly includes a 4 ⁇ 4 matrix calculation circuit 321, a color difference calculation circuit 322, a near-infrared signal control circuit 323, and a k calculation circuit. 324.
  • the imaging control unit 330 includes an exposure time control unit 331 and an aperture control unit 332.
  • the exposure time control unit 331 controls the exposure time of the solid-state image sensor 310. For example, the exposure time control unit 331 determines the exposure time based on the control from the near-infrared signal control circuit 323, and controls the solid-state image sensor 310 so that the light receiving element 111 is exposed for the determined exposure time. .
  • the aperture control unit 332 controls the aperture 352. For example, the aperture control unit 332 determines the aperture amount of the aperture 352 based on the control from the near infrared signal control circuit 323, and controls the aperture 352 so as to realize the determined aperture amount.
  • the light source control unit 341 controls the irradiation amount of near-infrared light emitted from the IR light source 342 to the subject. For example, the light source control unit 341 determines the irradiation amount of near infrared light based on the control from the luminance calculation circuit 221.
  • the IR light source 342 irradiates the subject with an irradiation amount of near-infrared light determined by the light source control unit 341.
  • the objective lens 351 forms an image of incident light on the imaging region of the solid-state imaging device 310.
  • the diaphragm 352 controls the amount of light passing through the objective lens 351.
  • the signal processing unit 320 outputs the luminance signal and the color signal of the pixels of the red (R), green (G), and blue (B) filters from the pixel signal output from the solid-state imaging device 310. Generate.
  • Invisible light (IR) is obtained from a red (R) + near infrared (IR) signal that is an output signal of a sub-pixel having an R + IR transmission region 313 that transmits visible light (R) and invisible light (IR).
  • Red (R) is derived by subtracting the near-infrared (IR) signal that is the output signal of the sub-pixel having the IR transmitting region 316 that transmits the light. Then, the derived red (R) may be used as the sub-pixel signal.
  • the red, green, and blue signals can be obtained by subtracting the IR signal component of the IR pixel from the original red, green, and blue signals including near-infrared light components in the daytime. Obtainable.
  • the imaging apparatus 300 according to Embodiment 2 of the present invention does not require a mechanical IR cut filter even during daytime.
  • the resolution of the IR image is higher than that of the RGB image in the daytime because the IR components of R + IR pixels, G + IR pixels, and B + IR pixels are used.
  • the pixel signal output from the solid-state imaging device 310 includes an R + IR subpixel signal, a G + IR subpixel signal, a B + IR subpixel signal, and an IR subpixel signal. That is, each sub-pixel signal is different from the first embodiment in that it includes a near-infrared light component.
  • the defect correction circuit 211, the OB calculation circuit 212, and the low-pass filter circuit 231 process the input pixel signal as in the first embodiment.
  • the 4 ⁇ 4 matrix calculation circuit 321 generates color signals of R, G, and B visible light by subtracting the IR signal subjected to specific gravity from the original signal of each sub-pixel.
  • the specific gravity coefficient at this time is adjusted so that near-infrared light disappears from each sub-pixel signal. That is, the 4 ⁇ 4 matrix operation circuit 321 performs 3 ⁇ 4 matrix operations on the R + IR subpixel signal, the G + IR subpixel signal, the B + IR subpixel signal, and the IR subpixel signal, thereby generating three RGB signals. Generate and output.
  • the color shading correction circuit 232 and the luminance shading correction circuit 233 execute the color shading correction and the luminance shading correction using output signals from adjacent pixels as in the case of the normal three primary colors. Further, the white balance adjustment circuit 234 adjusts the white balance of the pixel signal.
  • the color difference calculation circuit 322 calculates and outputs a plurality of color difference component signals (RY signal, BY signal) using a plurality of types of color signals (that is, R, G, B).
  • the color signal output from the ⁇ correction circuit 237 is output as an image signal to the display device or the like together with the luminance signal output from the luminance calculation circuit 221.
  • the hue correction circuit 235 corrects the color difference component signal output from the color difference calculation circuit 322 with the correction amount determined by the correction amount calculation circuit 241.
  • the correction amount calculation circuit 241 uses the hue correction reference data input from the reference data input circuit 243 and stored in the reference data storage unit 242, and the two-dimensional coordinates of the light receiving element acquired by the coordinate acquisition circuit 244. The correction amount for each light receiving element is calculated.
  • the luminance calculation circuit 221 uses a signal output from a light receiving element equipped with a color filter that passes only near-infrared light (that is, an IR sub-pixel signal) in an operation for generating a luminance signal. To do.
  • k is an arbitrary variable. Specifically, it is a mixing coefficient indicating the mixing ratio of the IR sub-pixel signal with respect to the ((R + IR) + (G + IR) + (B + IR)) signal, or the mixing indicating the mixing ratio of the IR sub-pixel signal with respect to the luminance signal Y. It is a coefficient. In this case, k is determined within a range of ⁇ 3 to +1.
  • the k calculation circuit 324 calculates k. Specifically, the k calculation circuit 324 calculates the mixing coefficient according to the signal amount of the IR sub-pixel signal.
  • the luminance calculation circuit 221 can generate the luminance signal Y from which the IR sub-pixel signal is completely removed. This is suitable for imaging in the daytime mode.
  • the luminance calculation circuit 221 can generate the luminance signal Y including all of the IR subpixel signals. This is suitable for generating a monochrome image.
  • k is an intermediate value between -3 and +1, a color image is generated, and the degree of colorization is determined according to k. This is suitable for colorizing in the night mode.
  • the near-infrared signal control circuit 323 controls the imaging control unit 330 according to the component amount of the near-infrared signal (IR subpixel signal) used for the luminance signal calculation, and sets the exposure amount of the solid-state imaging device 310 to a predetermined value. The value can be controlled.
  • the near-infrared signal control circuit 323 controls the exposure time control unit 331 to adjust the exposure time to a predetermined value. To do. Further, in order to adjust the exposure amount of the solid-state imaging device 310 to a predetermined value, the near-infrared signal control circuit 323 controls the aperture control unit 332 and adjusts the aperture 352 of the objective lens 351 to reduce the incident light amount. Adjust to a predetermined value.
  • the near-infrared signal control circuit 323 controls the light source control unit 341 so as to irradiate the subject with predetermined near-infrared light.
  • the irradiation amount of the light source 342 is adjusted.
  • the near-infrared signal control circuit 323 controls the color gain adjustment circuit 236 according to the output of the white balance adjustment circuit 234 in order to adjust the component amount of the IR subpixel signal applied to the color signal component. Then, adjust the gain. In particular, in order to obtain red color reproducibility such as signs required for in-vehicle cameras and security cameras, the amount of the near-infrared signal component is controlled so as to maximize the gain of the red signal. Further, the signal processing unit 320 gives the maximum gain to the step of generating a color reproduction signal composed of only the visible light component excluding the near-infrared signal component of each light receiving element and the step of generating the red signal component. Control.
  • the near infrared signal control circuit 323 controls the amount of the near infrared light component applied to the luminance signal according to the intensity of the color reproduction signal.
  • each sub-pixel signal includes a near infrared component, but the 4 ⁇ 4 matrix calculation circuit 321 removes the near infrared component. Since the white balance adjustment circuit 234 and the hue correction circuit 235 perform processing on the signal from which the near-infrared component has been removed, the same processing as in the first embodiment can be performed.
  • the imaging apparatus 300 includes the color filter 312 including the region that transmits near-infrared light and the signal processing unit 320, and the signal processing unit 320 includes the near-red light.
  • An image signal including an external signal is processed.
  • the signal processing unit 320 removes the near-infrared light component from each of the sub-pixel signals including the near-infrared light component, and the signal from which the near-infrared light component is removed, that is, R, G,
  • a hue correction amount is determined, and the hue is corrected with the determined correction amount.
  • the imaging apparatus 300 according to Embodiment 2 of the present invention high-definition color reproducibility can be realized even in the case of an image signal including a near-infrared component.
  • an image signal including a near-infrared component since near infrared signals are used, high-definition color reproduction is possible even in the night mode where the visible light signal is weak in image sensors that receive near infrared light at night, such as day and night cameras. Can be realized.
  • near infrared light since near infrared light is used, high-definition color reproducibility can be realized even under infrared light illumination such as at night.
  • color mixture shading due to obliquely incident light is color-corrected, and the correction data is calculated from the luminance ratio of green pixels adjacent to blue pixels or red pixels. Since this method performs color shading correction before white balance, it is possible to completely correct the spectral wavelength shift due to variations in the color filter performance (color unevenness) within the pixel array, which is a fixed value. Therefore, there is a problem that high-definition color reproduction cannot be performed.
  • the color shading correction amount is lighter than the luminance shading correction amount (about 1/3), and the color shading correction and the luminance shading correction are performed after white balance.
  • the correction of the color information and the correction of the luminance information are obtained from the same gain information, so that the spectral wavelength shift due to the color filter performance variation (color unevenness) in the pixel array, which is a fixed value, is completely eliminated. Therefore, there is a problem that high-definition color reproduction cannot be performed.
  • the imaging device and the signal processing method according to the embodiment of the present invention are thin films of color filters by reducing the height of pixels.
  • high-definition color reproducibility is achieved by reducing color unevenness caused by variations in workmanship such as color filters due to large pixel arrays such as for digital SLR cameras. can do.
  • the imaging device and the signal processing method according to the present invention have been described based on the embodiments, the present invention is not limited to these embodiments. Unless it deviates from the meaning of this invention, the form which carried out the various deformation
  • the components included in the signal processing units 201 and 320 illustrated in FIGS. 1 and 3 do not necessarily have to include all of them.
  • the signal processing unit 201 may not include the addition circuit 238, and outputs the luminance signal calculated by the luminance calculation circuit 221 and the color difference signal corrected by the ⁇ correction circuit 237 to an external display device or the like. May be.
  • the arrangement of the sub-pixels included in the unit pixel may not be a Bayer arrangement.
  • the configuration of the imaging apparatus is for illustration in order to specifically describe the present invention, and the imaging apparatus according to the present invention is not necessarily provided with all of the above configurations. In other words, the imaging apparatus according to the present invention only needs to have a minimum configuration that can realize the effects of the present invention.
  • the above-described signal processing method by the imaging apparatus is for illustration in order to specifically describe the present invention, and the signal processing method by the imaging apparatus according to the present invention does not necessarily include all the above steps. There is no need. In other words, the signal processing method according to the present invention needs to include only the minimum steps that can realize the effects of the present invention.
  • the order in which the above steps are executed is for illustration in order to specifically describe the present invention, and may be in an order other than the above.
  • the imaging device and the signal processing method according to the present invention have the effect of being able to realize high-definition color reproducibility, such as a digital single-lens reflex camera, a digital camera, a camera-equipped mobile phone, and a day / night monitoring camera. Can be used.

Abstract

Disclosed is an image capturing device (100) provided with a plurality of unit pixels (110) two-dimensionally arranged on an image capturing surface, and a signal processing unit (201), wherein each of the plurality of unit pixels (110) comprises a plurality of light receiving elements (111), and a color filter (112) comprising a plurality of areas so that each of the areas transmits light having a wavelength different from each other; and the signal processing unit (201) comprises a white balance adjustment circuit (234) for adjusting a white balance of a pixel signal, a reference data storage unit (242) for storing correction reference data which indicates properties of each area of the color filter, a coordinate acquisition circuit (244) for acquiring two-dimensional coordinates indicating a position of the light receiving element (111) in the image capturing surface, a correction amount calculation circuit (241) for determining a hue correction amount on the basis of the correction reference data and the two-dimensional coordinates, and a hue correction circuit (235) for correcting the hue of the pixel signal after the pixel signal is subjected to the white balance adjustment, using the correction amount determined by the correction amount calculation circuit (241).

Description

撮像装置及び信号処理方法Imaging apparatus and signal processing method
 本発明は、撮像装置及び信号処理方法に関し、特に、領域毎に異なる波長の光を透過する複数の領域を有する色フィルタを備え、色補正を行う撮像装置及び信号処理方法に関する。 The present invention relates to an imaging apparatus and a signal processing method, and more particularly, to an imaging apparatus and a signal processing method that include a color filter having a plurality of regions that transmit light of different wavelengths for each region and perform color correction.
 近年、コンパクトデジタルスチルカメラ(DSC:Digital Still Camera)だけでなく、高度な色再現を求められる一眼レフDSCのように、銀塩フィルムから撮像素子へ、撮像媒体の移行が急速に進んでいる。 In recent years, not only compact digital still cameras (DSC: Digital Still Camera) but also single-lens reflex DSCs that require advanced color reproduction, the transition of imaging media from silver-salt films to imaging devices is rapidly progressing.
 また、撮像素子の画素の低背化による色フィルタの薄膜化、及び、高画素化による微細化だけでなく、一眼レフDSC用などでは、画素アレイの大判化が進行している。しかし、その撮像素子に有機顔料フィルタなどの吸収型色フィルタを用いている場合は、色ムラなどが発生し、高精細な色再現性を達成できないことが課題となっている。また、フォトニックフィルタ(Photonic Filter:PCF)などの多層干渉型フィルタでも、フィルタ膜厚のムラが色ムラの原因となり、高精細な色再現性実現への課題となっている。特に、一眼レフDSCなどのデジタルカメラでは、高精細な色再現性の画像を出力する撮像装置及び画像処理方法が強く望まれている。 In addition to thinning of the color filter due to the reduction in the height of the pixels of the image sensor and the miniaturization due to the increase in the number of pixels, the pixel array is becoming larger in size for single lens reflex DSCs and the like. However, when an absorptive color filter such as an organic pigment filter is used for the image pickup element, color unevenness occurs and it is a problem that high-definition color reproducibility cannot be achieved. Even in a multilayer interference filter such as a photonic filter (PCF), unevenness in the filter film thickness causes color unevenness, which is a problem for realizing high-definition color reproducibility. In particular, in a digital camera such as a single-lens reflex DSC, an imaging apparatus and an image processing method that output an image with high-definition color reproducibility are strongly desired.
 そこで、特許文献1には、高精細な色再現性実現へのアプローチとして色シェーディング補正を行う従来技術が開示されている。 Therefore, Patent Document 1 discloses a conventional technique for performing color shading correction as an approach to realizing high-definition color reproducibility.
特開2005-278004号公報JP 2005-278004 A
 しかしながら、上記従来技術では、高精細な色再現性を実現することができないという課題がある。 However, the above-described conventional technology has a problem that high-definition color reproducibility cannot be realized.
 具体的には、特許文献1に開示された従来技術では、その補正量の算出方法は、一般的な方法として、主に色の異なる近接画素などから輝度比を求める方法が開示されている。しかしながら、この方法では、斜入射光による隣接画素への混色による色補正にしか効果がない。 Specifically, in the related art disclosed in Patent Document 1, as a general method of calculating the correction amount, a method of obtaining a luminance ratio mainly from adjacent pixels having different colors is disclosed. However, this method is effective only for color correction by color mixture of adjacent pixels with obliquely incident light.
 すなわち、従来の技術では、照明条件やレンズなどの撮像条件などで変化する近接画素への混色を主因とする色シェーディングは補正できるが、ウェハ面内に固定値として分布する色フィルタなどの出来映えバラツキによる色ムラを補正することはできない。 In other words, the conventional technology can correct color shading mainly due to color mixing of adjacent pixels that changes depending on the illumination conditions and imaging conditions such as lenses, but it does not vary in workmanship such as color filters distributed as fixed values in the wafer surface. It is not possible to correct color unevenness due to.
 上記の従来の技術では、画素の低背化による色フィルタの薄膜化、及び、高画素化による微細化だけでなく、一眼レフDSC用など画素アレイの大判化による色フィルタなどの出来映えのバラツキに起因した色ムラが発生し、高精細な色再現性を実現することができない。 In the above conventional technology, not only the thinning of the color filter due to the reduction in the pixel height and the miniaturization due to the increase in the pixel size, but also the variation in workmanship of the color filter due to the enlargement of the pixel array such as for a single lens reflex DSC. Due to the uneven color, high-definition color reproducibility cannot be realized.
 そこで、本発明は、上記課題を鑑みてなされたものであって、高精細な色再現性を実現することができる撮像装置及び信号処理方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide an imaging apparatus and a signal processing method that can realize high-definition color reproducibility.
 上記課題を解決するため、本発明の一態様に係る撮像装置は、撮像面内に2次元状に配置された複数の画素と、前記複数の画素のそれぞれから出力される画素信号を処理する信号処理部とを備え、前記複数の画素はそれぞれ、複数の受光素子と、前記複数の受光素子上に形成され、領域毎に異なる波長の光を透過する複数の領域からなる色フィルタとを含み、前記信号処理部は、前記画素信号のホワイトバランスを調整するWB調整部と、前記色フィルタの領域毎の特性を、1つの又は複数の画素単位で示す補正基準データを記憶する基準データ記憶部と、前記撮像面内における前記受光素子の位置を示す2次元座標を取得する座標取得部と、前記基準データ記憶部に記憶された補正基準データと、前記座標取得部によって取得された2次元座標とに基づいて色相の補正量を決定する補正量演算部と、前記補正量演算部によって決定された補正量で、ホワイトバランスが調整された後の前記画素信号の色相を補正する色相補正部とを有する。 In order to solve the above-described problem, an imaging device according to one embodiment of the present invention includes a plurality of pixels arranged two-dimensionally in an imaging surface and a signal that processes a pixel signal output from each of the plurality of pixels. Each of the plurality of pixels includes a plurality of light receiving elements, and a color filter formed on the plurality of light receiving elements and including a plurality of regions that transmit light of different wavelengths for each region, The signal processing unit includes a WB adjustment unit that adjusts a white balance of the pixel signal, a reference data storage unit that stores correction reference data indicating characteristics for each region of the color filter in units of one or a plurality of pixels, and , A coordinate acquisition unit that acquires a two-dimensional coordinate indicating the position of the light receiving element in the imaging surface, correction reference data stored in the reference data storage unit, and a secondary acquired by the coordinate acquisition unit A correction amount calculation unit that determines a hue correction amount based on the coordinates, and a hue correction unit that corrects the hue of the pixel signal after the white balance is adjusted with the correction amount determined by the correction amount calculation unit And have.
 これにより、色フィルタの領域毎の特性を示す補正基準データを用いて色相の補正量を決定するので、例えば、色フィルタの製造バラツキなどによる色ムラが発生した場合であっても、適切な色相の補正を行うことができる。したがって、高精細な色再現性を実現することができる。 As a result, the hue correction amount is determined using correction reference data indicating the characteristics of each color filter region, so that even if color unevenness occurs due to, for example, manufacturing variations in the color filter, an appropriate hue is determined. Can be corrected. Therefore, high-definition color reproducibility can be realized.
 また、前記複数の領域は、赤色光を透過する赤色領域、緑色光を透過する緑色領域、及び、青色光を透過する青色領域を含み、前記色フィルタは、第1屈折率の高屈折率材料で構成されるn(nは3以上の自然数)層の膜と、前記第1屈折率より低い第2屈折率の低屈折率材料で構成されるn-1層の膜とが交互に積層された誘電体層を含み、前記高屈折率材料で構成されるn層の膜のうち2層の膜と、前記低屈折率材料で構成されるn-1層の膜のうち1層の膜とは、前記赤色領域、前記緑色領域、及び、前記青色領域とに共通な層であり、前記赤色領域では、前記低屈折率材料で構成されるn-1層のうち、前記共通な層に含まれる前記1層の膜以外の1層の膜の膜厚は、他の層の膜厚と異なってもよい。 The plurality of regions include a red region that transmits red light, a green region that transmits green light, and a blue region that transmits blue light, and the color filter includes a high refractive index material having a first refractive index. N layers (where n is a natural number of 3 or more) and n-1 layers made of a low refractive index material having a second refractive index lower than the first refractive index are alternately stacked. Two of the n-layer films made of the high-refractive index material, and one of the n-1 layers made of the low-refractive index material. Is a layer common to the red region, the green region, and the blue region, and the red region is included in the common layer among n-1 layers composed of the low refractive index material. The film thickness of one layer other than the one layer film may be different from the film thickness of the other layers.
 これにより、膜の膜厚を調整することで、任意の透過波長特性の領域を有する色フィルタを実現することができるので、高精細な色再現性を実現することができる。 Thus, by adjusting the film thickness, a color filter having an arbitrary transmission wavelength characteristic region can be realized, so that high-definition color reproducibility can be realized.
 また、前記複数の領域は、さらに、近赤外光のみを透過する領域を含んでもよい。 The plurality of regions may further include a region that transmits only near-infrared light.
 これにより、近赤外光を利用するので、夜間などの赤外光照明の下でも、高精細な色再現性を実現することができる。 This makes it possible to achieve high-definition color reproducibility even under nighttime infrared illumination, since near infrared light is used.
 また、前記補正量は、前記2次元座標と、前記色フィルタが透過する光の波長とを変数とする関数式によって表され、前記基準データ記憶部は、前記補正基準データとして、前記関数式を記憶してもよい。 Further, the correction amount is represented by a function expression having the two-dimensional coordinates and the wavelength of light transmitted through the color filter as variables, and the reference data storage unit uses the function expression as the correction reference data. You may remember.
 これにより、2次元座標と光の波長とを変数とする関数式を記憶させておくことで、位置毎に補正基準データを記憶させる必要がなくなるので、メモリ量を低減することができるとともに、高精細な色再現性を実現することができる。 As a result, by storing a functional expression having the two-dimensional coordinates and the wavelength of light as variables, it is not necessary to store correction reference data for each position. Fine color reproducibility can be realized.
 また、本発明の一態様に係る信号処理方法は、複数の画素が撮像面内に2次元状に配置された固体撮像素子から画素毎に出力される画素信号を処理する信号処理方法であって、前記複数の画素のそれぞれは、複数の受光素子と、前記複数の受光素子上に形成され、領域毎に異なる波長の光を透過する複数の領域からなる色フィルタとを含み、前記信号処理方法は、前記画素信号のホワイトバランスを調整するWB調整ステップと、ホワイトバランスが調整された後の前記画素信号の色相を補正する色相補正ステップとを含み、前記色相補正ステップでは、前記色フィルタの領域毎の特性を1つの又は複数の画素単位で示す補正基準データと、前記撮像面内における前記受光素子の位置を示す2次元座標とに基づいて、色相の補正量を決定し、決定した補正量で前記画素信号の色相を補正する。 A signal processing method according to an aspect of the present invention is a signal processing method for processing a pixel signal output for each pixel from a solid-state imaging device in which a plurality of pixels are two-dimensionally arranged in an imaging surface. Each of the plurality of pixels includes a plurality of light receiving elements and a color filter formed on the plurality of light receiving elements and including a plurality of regions that transmit light of different wavelengths for each region, and the signal processing method Includes a WB adjustment step for adjusting the white balance of the pixel signal, and a hue correction step for correcting the hue of the pixel signal after the white balance is adjusted. In the hue correction step, a region of the color filter A hue correction amount is determined based on correction reference data indicating the characteristics of each pixel in units of one or a plurality of pixels and two-dimensional coordinates indicating the position of the light receiving element in the imaging surface. The determined correction amount for correcting the hue of the pixel signal.
 これにより、色フィルタの領域毎の特性を示す補正基準データを用いて色相の補正量を決定するので、例えば、色フィルタの製造バラツキなどによる色ムラが発生した場合であっても、適切な色相の補正を行うことができる。したがって、高精細な色再現性を実現することができる。 As a result, the hue correction amount is determined using correction reference data indicating the characteristics of each color filter region, so that even if color unevenness occurs due to, for example, manufacturing variations in the color filter, an appropriate hue is determined. Can be corrected. Therefore, high-definition color reproducibility can be realized.
 また、前記色相補正ステップでは、前記色フィルタの領域の透過特性毎に独立して前記補正量を決定し、前記画素信号の色相を補正してもよい。 In the hue correction step, the correction amount may be determined independently for each transmission characteristic of the color filter region to correct the hue of the pixel signal.
 これにより、各色に対して、独立して色相の補正を行うので、高精細な色再現性を実現することができる。 This makes it possible to achieve high-definition color reproducibility because the hue is corrected independently for each color.
 また、前記色相補正ステップでは、前記2次元座標の増加に応じて単調に変化するように、前記補正量を決定してもよい。 In the hue correction step, the correction amount may be determined so as to change monotonously as the two-dimensional coordinate increases.
 これにより、近接する画素間で、色相の補正量を急激に変化させないようにすることができ、高精細な色再現性を実現することができる。 This makes it possible to prevent the hue correction amount from changing abruptly between adjacent pixels, and to realize high-definition color reproducibility.
 また、前記補正量は、前記2次元座標と、前記色フィルタが透過する光の波長とを変数とする関数式によって表され、前記色相補正ステップでは、前記関数式を用いて前記補正量を決定してもよい。 Further, the correction amount is represented by a function equation having the two-dimensional coordinates and the wavelength of light transmitted through the color filter as variables, and the correction amount is determined using the function equation in the hue correction step. May be.
 これにより、2次元座標と波長とを変数とする関数式で色相の補正量を表すことにより、画像処理に必要とされるメモリ量を低減することができる。したがって、低電力で画像処理を行うことができるとともに、高精細な色再現性を実現することができる。 This makes it possible to reduce the amount of memory required for image processing by expressing the hue correction amount with a functional expression having two-dimensional coordinates and wavelength as variables. Therefore, image processing can be performed with low power, and high-definition color reproducibility can be realized.
 また、前記補正基準データは、前記色フィルタを形成する際に作成した色フィルタ成膜モニタウェハの透過率のウェハ面内分布であってもよい。 Further, the correction reference data may be a wafer in-plane distribution of transmittance of the color filter film formation monitor wafer created when forming the color filter.
 このように、色フィルタ形成時に作成した色フィルタ成膜モニタを用いて、色フィルタ成膜モニタのウェハ全面の透過率分布又はウェハの一部の透過率分布を補正基準データとする。これにより、この補正基準データを用いて、2次元配置された受光素子毎に補正量を演算し、撮像面内に色ムラのないように色相補正することで、高精細な色再現性を実現することができる。 As described above, using the color filter film formation monitor created at the time of forming the color filter, the transmittance distribution on the entire surface of the wafer of the color filter film formation monitor or the transmittance distribution of a part of the wafer is used as the correction reference data. As a result, using this correction reference data, a correction amount is calculated for each light receiving element arranged two-dimensionally, and hue correction is performed so that there is no color unevenness in the imaging surface, thereby realizing high-definition color reproducibility. can do.
 また、前記補正基準データは、前記色フィルタを形成する際に作成した色フィルタ成膜モニタウェハの色フィルタの全部又は一部の膜厚のウェハ面内分布であってもよい。 Further, the correction reference data may be an in-wafer distribution of the film thickness of all or part of the color filters of the color filter film formation monitor wafer created when forming the color filter.
 このように、色フィルタ形成時に作成した色フィルタ成膜モニタを用いて、色フィルタ成膜モニタの透過率と相関があり、簡便かつ安価に測定ができる色フィルタの膜厚のウェハ全面分布又はウェハの一部の分布を補正基準データとする。これにより、この補正基準データを用いて、受光素子毎に補正量を演算し、撮像面内に色ムラのないように色相補正することで、高精細な色再現性を低コストで実現することができる。 Thus, using the color filter film formation monitor created at the time of color filter formation, there is a correlation with the transmittance of the color filter film formation monitor, and the color filter film thickness distribution over the wafer or the wafer that can be measured easily and inexpensively A part of the distribution is used as correction reference data. As a result, using this correction reference data, a correction amount is calculated for each light receiving element, and hue correction is performed so that there is no color unevenness in the imaging surface, thereby realizing high-definition color reproducibility at low cost. Can do.
 また、前記信号処理方法は、さらに、前記固体撮像素子に基準光を入射した場合に生成される画素信号を用いて、前記補正基準データを演算する基準データ演算ステップを含んでもよい。 The signal processing method may further include a reference data calculation step of calculating the correction reference data using a pixel signal generated when reference light is incident on the solid-state imaging device.
 これにより、基準光を入射して得られた画素信号の受光素子毎のバラツキを利用して、色相の補正量を決定することができるので、高精細な色再現性を実現することができる。 Thus, the hue correction amount can be determined using the variation of the pixel signal obtained by entering the reference light for each light receiving element, so that high-definition color reproducibility can be realized.
 また、前記基準光は、白色光であってもよい。 Further, the reference light may be white light.
 これにより、基準光に白色光源を利用することで、透過色の異なる領域を有する色フィルタを形成した受光素子を同時に、かつ、簡便に、受光素子毎の色相の補正量を演算することができる。よって、高精細な色再現性を実現することができる。 Thus, by using a white light source as the reference light, it is possible to simultaneously and easily calculate the hue correction amount for each light receiving element in a light receiving element in which a color filter having a region having a different transmission color is formed. . Therefore, high-definition color reproducibility can be realized.
 また、前記基準光は、赤外光を含んでもよい。 Further, the reference light may include infrared light.
 これにより、基準光に赤外光を含む光源を利用することで、夜間などにおいても、透過色の異なる領域を有する色フィルタを形成した受光素子を同時に、かつ、簡便に、受光素子毎の色相の補正量を演算することができる。よって、高精細な色再現性を実現することができる。 Thus, by using a light source including infrared light as reference light, a light receiving element formed with a color filter having a region having a different transmission color can be simultaneously and easily used at night, etc. The amount of correction can be calculated. Therefore, high-definition color reproducibility can be realized.
 また、前記基準光は、前記色フィルタの領域の透過特性における透過中心波長の光であってもよい。 The reference light may be light having a transmission center wavelength in the transmission characteristics of the color filter region.
 これにより、例えば、赤色を透過する赤色領域に対応する受光素子に赤色光を基準光として照射し、このときの画像信号から生成した補正基準データを用いて色相の補正量を決定することで、色毎に適切な補正量を決定することができる。したがって、高精細な色再現性を実現することができる。 Thereby, for example, by irradiating the light receiving element corresponding to the red region that transmits red as the reference light, and determining the correction amount of the hue using the correction reference data generated from the image signal at this time, An appropriate correction amount can be determined for each color. Therefore, high-definition color reproducibility can be realized.
 本発明に係る撮像装置及び信号処理方法によれば、高精細な色再現性を実現することができる。 According to the imaging apparatus and signal processing method of the present invention, high-definition color reproducibility can be realized.
図1は、本発明の実施の形態1に係る撮像装置の構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of an imaging apparatus according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る撮像装置が実行する信号処理方法の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of a signal processing method executed by the imaging apparatus according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態2に係る撮像装置の構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of the configuration of the imaging apparatus according to Embodiment 2 of the present invention. 図4は、本発明の実施の形態2に係る撮像装置の固体撮像素子が備える色フィルタの断面構成の一例を示す図である。FIG. 4 is a diagram illustrating an example of a cross-sectional configuration of the color filter provided in the solid-state imaging device of the imaging apparatus according to Embodiment 2 of the present invention.
 以下、本発明に係る撮像装置の実施の形態について、デジタルスチルカメラを例にとり、図面を参照しながら説明する。なお、本発明について、以下の実施の形態及び添付の図面を用いて説明を行うが、これは例示を目的としており、本発明がこれらに限定されることを意図しない。 Hereinafter, embodiments of an imaging apparatus according to the present invention will be described with reference to the drawings, taking a digital still camera as an example. In addition, although this invention is demonstrated using the following embodiment and attached drawing, this is for the purpose of illustration and this invention is not intended to be limited to these.
 (実施の形態1)
 本発明の実施の形態1に係る撮像装置は、撮像面内に2次元状に配置された複数の画素と、複数の画素のそれぞれから出力される画素信号を処理する信号処理部とを備える。複数の画素はそれぞれ、複数の受光素子と、複数の受光素子上に形成され、領域毎に異なる波長の光を透過する複数の領域からなる色フィルタとを含んでいる。本発明の実施の形態1に係る信号処理部は、色フィルタの領域毎の特性を1つの又は複数の画素単位で示す補正基準データを記憶する基準データ記憶部と、色相の補正量を決定する補正量演算部と、決定された補正量で画素信号の色相を補正する色相補正部とを有する。そして、補正量演算部は、撮像面内における受光素子の位置を示す2次元座標と、基準データ記憶部に記憶された補正基準データとに基づいて色相の補正量を決定することを特徴とする。
(Embodiment 1)
The imaging apparatus according to Embodiment 1 of the present invention includes a plurality of pixels arranged two-dimensionally in an imaging surface, and a signal processing unit that processes pixel signals output from each of the plurality of pixels. Each of the plurality of pixels includes a plurality of light receiving elements and a color filter formed on the plurality of light receiving elements and including a plurality of regions that transmit light of different wavelengths for each region. The signal processing unit according to Embodiment 1 of the present invention determines a reference data storage unit that stores correction reference data indicating characteristics of each color filter region in units of one or a plurality of pixels, and a hue correction amount. A correction amount calculation unit; and a hue correction unit that corrects the hue of the pixel signal with the determined correction amount. The correction amount calculation unit determines a hue correction amount based on the two-dimensional coordinates indicating the position of the light receiving element in the imaging surface and the correction reference data stored in the reference data storage unit. .
 まず、本発明の実施の形態1に係る撮像装置(カメラ)の構成と信号処理方法とについて説明する。図1は、本発明の実施の形態1に係る撮像装置100の機能構成の一例を示すブロック図である。 First, the configuration and signal processing method of the imaging apparatus (camera) according to Embodiment 1 of the present invention will be described. FIG. 1 is a block diagram illustrating an example of a functional configuration of the imaging apparatus 100 according to Embodiment 1 of the present invention.
 図1に示されるように、本発明の実施の形態1に係る撮像装置100は、固体撮像素子101と、信号処理部201とを備える。また、本発明の実施の形態1に係る信号処理方法では、レッド(R)、グリーン(Gr、Gb)、ブルー(B)がベイヤー配列された4画素を1単位とする単位画素110を有する撮像装置100において、色信号と輝度信号とからなる画像信号を処理する。 As shown in FIG. 1, the imaging apparatus 100 according to Embodiment 1 of the present invention includes a solid-state imaging device 101 and a signal processing unit 201. Further, in the signal processing method according to the first embodiment of the present invention, the imaging having the unit pixel 110 having one unit of four pixels in which Bayer array of red (R), green (Gr, Gb), and blue (B) is arranged. In the apparatus 100, an image signal composed of a color signal and a luminance signal is processed.
 固体撮像素子101は、入射光を光電変換して電気信号を生成するMOS(Metal Oxide Semiconductor)型イメージセンサ等である。固体撮像素子101は、複数の単位画素110と、垂直シフトレジスタ121と、水平シフトレジスタ122と、ノイズ除去回路123と、出力アンプ124とを備える。なお、図1には、複数の単位画素110のうちの1つのみが図示されている。 The solid-state image sensor 101 is a MOS (Metal Oxide Semiconductor) type image sensor that photoelectrically converts incident light to generate an electrical signal. The solid-state imaging device 101 includes a plurality of unit pixels 110, a vertical shift register 121, a horizontal shift register 122, a noise removal circuit 123, and an output amplifier 124. In FIG. 1, only one of the plurality of unit pixels 110 is shown.
 複数の単位画素110はそれぞれ、複数の受光素子111と、色フィルタ112とを備える。本発明の実施の形態1に係る単位画素110は、レッド(R)、グリーン(Gr、Gb)及びブルー(B)がベイヤー配列された4つのサブ画素を1単位とする画素である。つまり、図1に示すように、単位画素110は、4つの受光素子111を備える。 Each of the plurality of unit pixels 110 includes a plurality of light receiving elements 111 and a color filter 112. The unit pixel 110 according to the first embodiment of the present invention is a pixel in which four sub-pixels in which red (R), green (Gr, Gb), and blue (B) are arranged in a Bayer array are used as one unit. That is, as shown in FIG. 1, the unit pixel 110 includes four light receiving elements 111.
 複数の受光素子111は、色フィルタ112を透過した入射光を光電変換することで、電気信号を生成する。生成された電気信号は、垂直シフトレジスタ121及び水平シフトレジスタ122による制御に従って、信号処理部201に出力される。 The plurality of light receiving elements 111 generate electric signals by photoelectrically converting incident light transmitted through the color filter 112. The generated electrical signal is output to the signal processing unit 201 according to control by the vertical shift register 121 and the horizontal shift register 122.
 色フィルタ112は、可視光(R、G、B)を領域毎に選択的に透過するフィルタである。具体的には、色フィルタ112は、赤色領域113と、緑色領域114及び115と、青色領域116とを有する。例えば、色フィルタ112は、透過色毎で異なる有機顔料を含む吸収型の有機顔料フィルタである。 The color filter 112 is a filter that selectively transmits visible light (R, G, B) for each region. Specifically, the color filter 112 includes a red region 113, green regions 114 and 115, and a blue region 116. For example, the color filter 112 is an absorptive organic pigment filter that includes different organic pigments for each transmitted color.
 赤色領域113は、色フィルタ112内における、主として赤色(650nm)を透過する領域である。緑色領域114及び115は、色フィルタ112内における、主として緑色(550nm)を透過する領域である。青色領域116は、色フィルタ112内における、主として青色(450nm)を透過する領域である。 The red region 113 is a region that mainly transmits red color (650 nm) in the color filter 112. The green regions 114 and 115 are regions that mainly transmit green color (550 nm) in the color filter 112. The blue region 116 is a region that mainly transmits blue (450 nm) in the color filter 112.
 垂直シフトレジスタ121は、複数の受光素子111を行毎に選択し、水平シフトレジスタ122は、選択された行信号を選択する。ノイズ除去回路123は、受光素子111から出力された電気信号のノイズを除去する。出力アンプ124は、垂直シフトレジスタ121及び水平シフトレジスタ122によって選択された電気信号を増幅して、信号処理部201に出力する。 The vertical shift register 121 selects the plurality of light receiving elements 111 for each row, and the horizontal shift register 122 selects the selected row signal. The noise removal circuit 123 removes noise from the electrical signal output from the light receiving element 111. The output amplifier 124 amplifies the electrical signal selected by the vertical shift register 121 and the horizontal shift register 122 and outputs the amplified signal to the signal processing unit 201.
 以上の構成により、固体撮像素子101は、受光素子111毎に電気信号をサブ画素信号として出力する。サブ画素信号は、各受光素子111に対応する色成分の電気信号である。 With the above configuration, the solid-state imaging device 101 outputs an electrical signal as a sub-pixel signal for each light receiving element 111. The subpixel signal is an electrical signal of a color component corresponding to each light receiving element 111.
 信号処理部201は、固体撮像素子101が出力する画素信号を処理することで、単位画素110の輝度信号及び色信号を生成する。画素信号は、複数の単位画素110のそれぞれから出力される信号であり、具体的には、レッド(R)、グリーン(G)及びブルー(B)のサブ画素信号を含む。 The signal processing unit 201 generates a luminance signal and a color signal of the unit pixel 110 by processing the pixel signal output from the solid-state imaging device 101. The pixel signal is a signal output from each of the plurality of unit pixels 110, and specifically includes red (R), green (G), and blue (B) sub-pixel signals.
 信号処理部201は、固体撮像素子101から受け付けた画像信号に画像信号処理を施すDSP(Digital Signal Processor)等である。なお、画像信号は、複数の画素信号の集まりを意味する。 The signal processing unit 201 is a DSP (Digital Signal Processor) or the like that performs image signal processing on the image signal received from the solid-state imaging device 101. The image signal means a group of a plurality of pixel signals.
 信号処理部201は、図1に示すように、キズ補正回路211と、OB計算回路212と、輝度計算回路221と、ローパスフィルタ回路231と、色シェーディング補正回路232と、輝度シェーディング補正回路233と、ホワイトバランス調整回路234と、色相補正回路235と、カラーゲイン調整回路236と、γ補正回路237と、加算回路238と、補正量演算回路241と、基準データ記憶部242と、基準データ入力回路243と、受光素子の撮像面内2次元座標の座標取得回路244とを備えている。なお、処理済みの画素信号は、メモリ(図示せず)などに格納されている。各処理部は、必要に応じて、当該メモリから処理済みの画素信号などを取得し、取得した処理済みの画素信号を用いて、それぞれの処理を行う。 As shown in FIG. 1, the signal processing unit 201 includes a defect correction circuit 211, an OB calculation circuit 212, a luminance calculation circuit 221, a low-pass filter circuit 231, a color shading correction circuit 232, and a luminance shading correction circuit 233. , White balance adjustment circuit 234, hue correction circuit 235, color gain adjustment circuit 236, γ correction circuit 237, addition circuit 238, correction amount calculation circuit 241, reference data storage unit 242, and reference data input circuit 243 and a coordinate acquisition circuit 244 for two-dimensional coordinates in the imaging plane of the light receiving element. The processed pixel signal is stored in a memory (not shown) or the like. Each processing unit acquires a processed pixel signal or the like from the memory as necessary, and performs each process using the acquired processed pixel signal.
 キズ補正回路211は、画素欠陥補正を行う。すなわち、キズ補正回路211は、入力された画像信号のうち、隣接画素の画素信号を用いて演算することにより、欠陥画素の画素信号を生成して出力する。 The scratch correction circuit 211 performs pixel defect correction. That is, the defect correction circuit 211 generates and outputs a pixel signal of a defective pixel by performing an operation using a pixel signal of an adjacent pixel in the input image signal.
 OB計算回路212は、画素信号に含まれる暗電流などのオフセット除去を行う。例えば、OB計算回路212は、サブ画素信号毎にオフセット除去を行う。OB計算回路212によって処理されたサブ画素信号は、輝度計算回路221とローパスフィルタ回路231とに出力される。 The OB calculation circuit 212 performs offset removal such as dark current included in the pixel signal. For example, the OB calculation circuit 212 performs offset removal for each sub-pixel signal. The sub-pixel signal processed by the OB calculation circuit 212 is output to the luminance calculation circuit 221 and the low-pass filter circuit 231.
 輝度計算回路221は、単位画素に含まれる複数のサブ画素信号を用いて、当該単位画素の輝度信号を生成する。具体的には、輝度計算回路221は、各サブ画素信号を加算することで、輝度信号を生成する。すなわち、輝度信号Yは、赤色サブ画素信号Rと、第1緑色サブ画素信号Gbと、第2緑色サブ画素信号Grと、青色サブ画素信号Bとの和(Y=R+Gb+Gr+B)として、算出される。 The luminance calculation circuit 221 generates a luminance signal of the unit pixel using a plurality of sub-pixel signals included in the unit pixel. Specifically, the luminance calculation circuit 221 generates a luminance signal by adding the sub-pixel signals. That is, the luminance signal Y is calculated as the sum of the red subpixel signal R, the first green subpixel signal Gb, the second green subpixel signal Gr, and the blue subpixel signal B (Y = R + Gb + Gr + B). .
 ローパスフィルタ回路231は、サブ画素信号に含まれるノイズ成分を除去する。ノイズ成分が除去されたサブ画素信号は、色シェーディング補正回路232に出力される。 The low-pass filter circuit 231 removes a noise component included in the sub-pixel signal. The sub-pixel signal from which the noise component has been removed is output to the color shading correction circuit 232.
 色シェーディング補正回路232及び輝度シェーディング補正回路233はそれぞれ、近接する画素からの出力信号を用いて、色シェーディング補正と輝度シェーディング補正とを行う。色シェーディング及び輝度シェーディングは、撮影条件で変動するような、例えば、斜入射光の隣接画素への混色で発生する。シェーディングが補正された画素信号は、ホワイトバランス調整回路234に出力される。 The color shading correction circuit 232 and the luminance shading correction circuit 233 respectively perform color shading correction and luminance shading correction using output signals from adjacent pixels. Color shading and luminance shading occur, for example, as a mixture of oblique incident light to adjacent pixels, which varies depending on the shooting conditions. The pixel signal whose shading is corrected is output to the white balance adjustment circuit 234.
 ホワイトバランス調整回路234は、画素信号のホワイトバランス(WB)を調整する。すなわち、画素信号に含まれる各色を示すサブ画素信号の3原色間の色補正を行う。ホワイトバランスが調整された後の画素信号は、色相補正回路235に出力される。 The white balance adjustment circuit 234 adjusts the white balance (WB) of the pixel signal. That is, color correction is performed between the three primary colors of the sub-pixel signal indicating each color included in the pixel signal. The pixel signal after the white balance is adjusted is output to the hue correction circuit 235.
 色相補正回路235は、補正量演算回路241によって決定された補正量を用いて、ホワイトバランスが調整された後の画素信号の色相を補正する。補正後の画素信号は、カラーゲイン調整回路236に出力される。 The hue correction circuit 235 uses the correction amount determined by the correction amount calculation circuit 241 to correct the hue of the pixel signal after the white balance is adjusted. The corrected pixel signal is output to the color gain adjustment circuit 236.
 カラーゲイン調整回路236は、入力される画素信号のカラーゲインの調整を行う。カラーゲインが調整された画素信号は、γ補正回路237に出力される。 The color gain adjustment circuit 236 adjusts the color gain of the input pixel signal. The pixel signal whose color gain has been adjusted is output to the γ correction circuit 237.
 γ補正回路237は、入力される画素信号にγ補正を行う。補正後の画素信号は、加算回路238に出力される。 The γ correction circuit 237 performs γ correction on the input pixel signal. The corrected pixel signal is output to the addition circuit 238.
 加算回路238は、γ補正回路237から出力された画素信号と、輝度計算回路221から出力された輝度信号とを加算することで、信号処理後の画素信号を生成する。信号処理後の画素信号は、表示装置等に画像信号として出力される。 The addition circuit 238 adds the pixel signal output from the γ correction circuit 237 and the luminance signal output from the luminance calculation circuit 221 to generate a pixel signal after signal processing. The pixel signal after the signal processing is output as an image signal to a display device or the like.
 補正量演算回路241は、基準データ記憶部242に記憶された色相補正基準データと、撮像面内における受光素子の位置を示す2次元座標とを用いて、受光素子111毎に色相の補正量を演算し、決定する。例えば、補正量演算回路241は、座標取得回路244によって取得された受光素子の2次元座標の増加に応じて単調に変化するように、色相の補正量を決定する。このように、2次元座標の増加に応じて色相の補正量を単調増加させることで、近接する画素間で、色相の補正量を急激に変化させなくて済むので、高精細な色再現性を実現することができる。決定した色相の補正量は、色相補正回路235に出力される。 The correction amount calculation circuit 241 calculates the hue correction amount for each light receiving element 111 using the hue correction reference data stored in the reference data storage unit 242 and the two-dimensional coordinates indicating the position of the light receiving element in the imaging surface. Calculate and determine. For example, the correction amount calculation circuit 241 determines the hue correction amount so as to change monotonously in accordance with an increase in the two-dimensional coordinates of the light receiving element acquired by the coordinate acquisition circuit 244. In this way, since the hue correction amount is monotonously increased in accordance with the increase in the two-dimensional coordinates, the hue correction amount does not have to be changed suddenly between adjacent pixels, so that high-definition color reproducibility can be achieved. Can be realized. The determined hue correction amount is output to the hue correction circuit 235.
 例えば、補正量演算回路241は、受光素子111の2次元座標と、色フィルタ112が透過する光の波長とを変数として、色相の補正量を表す関数式を、色相補正基準データとして利用することで、色相の補正量を演算する。つまり、補正量演算回路241は、座標取得回路244によって取得された受光素子の2次元座標(x,y)と、当該受光素子に入射する光の波長λとを用いて、色相の補正量を演算する。 For example, the correction amount calculation circuit 241 uses, as variables for hue correction reference data, a function expression representing a hue correction amount, using the two-dimensional coordinates of the light receiving element 111 and the wavelength of light transmitted through the color filter 112 as variables. Then, the hue correction amount is calculated. That is, the correction amount calculation circuit 241 uses the two-dimensional coordinates (x, y) of the light receiving element acquired by the coordinate acquisition circuit 244 and the wavelength λ of the light incident on the light receiving element to calculate the hue correction amount. Calculate.
 このように、2次元座標と波長とを変数とする関数式で色相の補正量を表すことにより、画像処理に必要とされるメモリ量を低減することができる。したがって、低電力で画像処理を行うことができるとともに、高精細な色再現性を実現することができる。 As described above, the amount of memory required for image processing can be reduced by expressing the hue correction amount by a functional expression having two-dimensional coordinates and wavelength as variables. Therefore, image processing can be performed with low power, and high-definition color reproducibility can be realized.
 基準データ記憶部242は、色相補正基準データを記憶するためのメモリなどである。例えば、基準データ記憶部242は、色相補正基準データとして、撮像面内の2次元座標と、色フィルタが透過する光の波長とを変数とする関数式を記憶する。このように、2次元座標と光の波長とを変数とする関数式を記憶させておくことで、位置毎に補正基準データを記憶させる必要がなくなるので、メモリ量を低減することができるとともに、高精細な色再現性を実現することができる。 The reference data storage unit 242 is a memory for storing hue correction reference data. For example, the reference data storage unit 242 stores, as hue correction reference data, a functional expression having two-dimensional coordinates in the imaging surface and the wavelength of light transmitted through the color filter as variables. In this way, by storing a functional expression having two-dimensional coordinates and the wavelength of light as variables, it becomes unnecessary to store correction reference data for each position, so that the amount of memory can be reduced, High-definition color reproducibility can be realized.
 基準データ入力回路243は、色相の補正量の演算に用いる色相補正基準データを、基準データ記憶部242に格納する。例えば、基準データ入力回路243は、色フィルタ形成時に作成した色フィルタ成膜モニタウェハの透過率のウェハ面内分布を、色相補正基準データとして基準データ記憶部242に格納する。 The reference data input circuit 243 stores the hue correction reference data used for calculating the hue correction amount in the reference data storage unit 242. For example, the reference data input circuit 243 stores the in-wafer distribution of the transmittance of the color filter film formation monitor wafer created at the time of forming the color filter in the reference data storage unit 242 as hue correction reference data.
 色フィルタ形成時に作成した色フィルタ成膜モニタを用いて、色フィルタ成膜モニタのウェハ全面分布又はウェハの一部からの透過率分布を測定し、測定した透過率分布を補正基準データとして、基準データ入力回路243は、基準データ記憶部242に格納する。これにより、この補正基準データを用いて、2次元配置された受光素子毎に補正量を演算し、撮像面内に色ムラのないように色相補正することで、高精細な色再現性を実現することができる。 Using the color filter film formation monitor created at the time of color filter formation, measure the entire surface distribution of the color filter film formation monitor or the transmittance distribution from a part of the wafer, and use the measured transmittance distribution as the correction reference data. The data input circuit 243 is stored in the reference data storage unit 242. As a result, using this correction reference data, a correction amount is calculated for each light receiving element arranged two-dimensionally, and hue correction is performed so that there is no color unevenness in the imaging surface, thereby realizing high-definition color reproducibility. can do.
 以上のように、本発明の実施の形態1に係る撮像装置100は、補正基準データと撮像面内の画素の位置を示す2次元座標とを用いて、色相の補正量を決定する補正量演算回路241と、決定した補正量で画素信号の色相を補正する色相補正回路235とを備える。補正基準データは、色フィルタ112の領域毎の特性を、1つ又は複数の画素単位で示している。 As described above, the imaging apparatus 100 according to Embodiment 1 of the present invention uses the correction reference data and the two-dimensional coordinates indicating the position of the pixel in the imaging surface to calculate the correction amount for determining the hue correction amount. A circuit 241 and a hue correction circuit 235 that corrects the hue of the pixel signal with the determined correction amount are provided. The correction reference data indicates the characteristics of each region of the color filter 112 in units of one or a plurality of pixels.
 これにより、色フィルタ112の領域毎の特性を示す補正基準データを用いて色相の補正量を決定するので、例えば、色フィルタ112の製造バラツキなどによる色ムラが発生した場合であっても、適切な色相の補正を行うことができる。例えば、補正基準データは、色フィルタ成膜モニタウェハの透過率分布である。補正量演算回路241が、この補正基準データより撮像装置100の撮像面内に2次元配置された受光素子毎に補正量を演算し、色相補正回路235が、撮像面内に色ムラのないように色相補正する。これにより、本発明の実施の形態1に係る撮像装置100によれば、高精細な色再現性を実現することができる。 As a result, the hue correction amount is determined using the correction reference data indicating the characteristics of each region of the color filter 112. For example, even when color unevenness due to manufacturing variation of the color filter 112 occurs Correct hue correction. For example, the correction reference data is a transmittance distribution of the color filter film formation monitor wafer. The correction amount calculation circuit 241 calculates a correction amount for each light receiving element that is two-dimensionally arranged in the imaging surface of the imaging apparatus 100 from the correction reference data, and the hue correction circuit 235 prevents color unevenness in the imaging surface. Correct the hue. Thereby, according to the imaging device 100 which concerns on Embodiment 1 of this invention, high-definition color reproducibility is realizable.
 ここで、本発明の実施の形態1に係る撮像装置100が実行する信号処理方法の一例について、図2を用いて説明する。図2は、本発明の実施の形態1に係る撮像装置100が実行する信号処理方法の一例を示すフローチャートである。 Here, an example of a signal processing method executed by the imaging apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 2 is a flowchart illustrating an example of a signal processing method executed by the imaging apparatus 100 according to Embodiment 1 of the present invention.
 まず、ホワイトバランス調整回路234が、入力された画素信号のホワイトバランスを調整する(S110)。なお、上述したように、ホワイトバランス調整回路234に入力される画素信号には、シェーディング補正処理、LPF処理などの所定の処理が実行されている。 First, the white balance adjustment circuit 234 adjusts the white balance of the input pixel signal (S110). As described above, the pixel signal input to the white balance adjustment circuit 234 is subjected to predetermined processing such as shading correction processing and LPF processing.
 次に、補正量演算回路241は、基準データ記憶部242に記憶されている補正基準データと、座標取得回路244によって取得された2次元座標とを用いて、色相の補正量を演算する(S120)。 Next, the correction amount calculation circuit 241 calculates a hue correction amount using the correction reference data stored in the reference data storage unit 242 and the two-dimensional coordinates acquired by the coordinate acquisition circuit 244 (S120). ).
 このとき、座標取得回路244は、色相の補正処理の対象となる画素信号を出力した対象画素の画素位置を示す2次元座標を取得する。また、補正量演算回路241は、例えば、上述の関数式を用いて、色相の補正量を演算する。具体的には、色フィルタ112の領域の透過特性毎に独立して補正量を決定する。各色に対して、独立して色相の補正を行うので、高精細な色再現性を実現することができる。 At this time, the coordinate acquisition circuit 244 acquires two-dimensional coordinates indicating the pixel position of the target pixel that has output the pixel signal that is the target of the hue correction processing. In addition, the correction amount calculation circuit 241 calculates the hue correction amount using, for example, the above-described function formula. Specifically, the correction amount is determined independently for each transmission characteristic of the color filter 112 region. Since hue correction is performed independently for each color, high-definition color reproducibility can be realized.
 このとき、画素上に形成した色フィルタの透過色に対応した関数式の変数の1つである波長は、色フィルタ形成時に作成した色フィルタ成膜モニタウェハの透過率のウェハ面内分布から求められる。ウェハ面内分布は、補正基準データとして基準データ記憶部242に記憶されている。 At this time, the wavelength, which is one of the variables of the functional equation corresponding to the transmission color of the color filter formed on the pixel, is obtained from the in-wafer distribution of the transmittance of the color filter film formation monitor wafer created at the time of forming the color filter. It is done. The wafer in-plane distribution is stored in the reference data storage unit 242 as correction reference data.
 次に、色相補正回路235は、補正量演算回路241によって演算された補正量を用いて、対象画素の画素信号の色相を補正する(S130)。 Next, the hue correction circuit 235 corrects the hue of the pixel signal of the target pixel using the correction amount calculated by the correction amount calculation circuit 241 (S130).
 以上のように、本発明の実施の形態1に係る信号処理方法によれば、色フィルタの領域毎の特性を示す補正基準データと、対象画素の位置を示す2次元座標とを用いるので、例えば、製造バラツキなどが原因となって、色フィルタの特性が撮像面内における位置によって異なっている場合であっても、適切な補正量を演算することができる。したがって、本発明の実施の形態1に係る信号処理方法によれば、高精細な色再現性を実現することができる。 As described above, according to the signal processing method according to the first embodiment of the present invention, the correction reference data indicating the characteristics of each color filter region and the two-dimensional coordinates indicating the position of the target pixel are used. Even when the characteristics of the color filter are different depending on the position in the imaging surface due to manufacturing variation or the like, an appropriate correction amount can be calculated. Therefore, according to the signal processing method according to Embodiment 1 of the present invention, high-definition color reproducibility can be realized.
 なお、所定の補正基準データは、色フィルタ形成時に作成した色フィルタ成膜モニタウェハの色フィルタの全部又は一部の膜厚のウェハ面内分布であってもよい。このように、色フィルタ形成時に作成した色フィルタ成膜モニタを用いて、色フィルタ成膜モニタの透過率と相関があり、簡便かつ安価に測定ができる色フィルタの膜厚のウェハ全面分布又はウェハの一部の分布を補正基準データとする。これにより、この補正基準データを用いて、受光素子毎に補正量を演算し、撮像面内に色ムラのないように色相補正することで、高精細な色再現性を低コストで実現することができる。 Note that the predetermined correction reference data may be an in-wafer distribution of the film thickness of all or a part of the color filter of the color filter film formation monitor wafer created at the time of forming the color filter. Thus, using the color filter film formation monitor created at the time of color filter formation, there is a correlation with the transmittance of the color filter film formation monitor, and the color filter film thickness distribution over the wafer or the wafer that can be measured easily and inexpensively A part of the distribution is used as correction reference data. As a result, using this correction reference data, a correction amount is calculated for each light receiving element, and hue correction is performed so that there is no color unevenness in the imaging surface, thereby realizing high-definition color reproducibility at low cost. Can do.
 また、所定の補正基準データは、撮像装置100に白色光を基準光として入射したときに受光素子からの画像信号から演算されてもよい。これにより、基準光に白色光源を利用することで、透過色の異なる領域を有する色フィルタを形成した受光素子を同時に、かつ、簡便に、受光素子毎の色相の補正量を演算することができる。よって、高精細な色再現性を実現することができる。 Further, the predetermined correction reference data may be calculated from an image signal from the light receiving element when white light is incident on the imaging apparatus 100 as reference light. Thus, by using a white light source as the reference light, it is possible to simultaneously and easily calculate the hue correction amount for each light receiving element in a light receiving element in which a color filter having a region having a different transmission color is formed. . Therefore, high-definition color reproducibility can be realized.
 このとき、基準光は、赤外光を含んでもよい。基準光に赤外光を含む光源を使用することで、夜間などであっても、透過色の異なる色フィルタを形成した受光素子を同時に、かつ、簡便に、撮像面内の色相の補正量を演算し、補正量を用いて色相を補正することができる。したがって、高精細な色再現を実現できる。 At this time, the reference light may include infrared light. By using a light source that includes infrared light as the reference light, it is possible to simultaneously and easily adjust the amount of hue correction within the imaging surface by using a light-receiving element with a color filter with a different transmission color, even at night. It is possible to calculate and correct the hue using the correction amount. Therefore, high-definition color reproduction can be realized.
 このように、基準光を入射して得られた画素信号の受光素子毎のバラツキを利用して、色相の補正量を決定することができるので、高精細な色再現性を実現することができる。 As described above, the hue correction amount can be determined by using the variation of the pixel signal obtained by entering the reference light for each light receiving element, so that high-definition color reproducibility can be realized. .
 また、基準光は、色フィルタの領域の透過特性における透過中心波長の光であってもよい。例えば、赤色領域に対応する受光素子へ赤色光を照射することで補正基準データを取得する。そして、その補正基準データから演算した補正量を用いて色相補正を行うことで、撮像装置100は、色毎に適切な補正量を決定することができ、高精細な色再現性が実現できる。 Further, the reference light may be light having a transmission center wavelength in the transmission characteristics of the color filter region. For example, the correction reference data is acquired by irradiating the light receiving element corresponding to the red region with red light. Then, by performing the hue correction using the correction amount calculated from the correction reference data, the imaging apparatus 100 can determine an appropriate correction amount for each color, and can realize high-definition color reproducibility.
 以上のように、本発明の実施の形態1における撮像装置100によれば、画素の低背化による色フィルタの薄膜化、又は、高画素化による微細化だけでなく、デジタル一眼レフカメラ用など画素アレイの大判化による色フィルタなどの出来映えのバラツキで発生した色ムラを低減することができる。したがって、本発明の実施の形態1に係る撮像装置100によれば、高精細な色再現性を実現することができる。 As described above, according to the imaging apparatus 100 according to the first embodiment of the present invention, not only thinning of the color filter by reducing the height of pixels or miniaturization by increasing the number of pixels, but also for a digital single lens reflex camera, etc. It is possible to reduce color unevenness caused by variations in workmanship such as color filters due to the large pixel array. Therefore, according to the imaging device 100 according to Embodiment 1 of the present invention, high-definition color reproducibility can be realized.
 (実施の形態2)
 本発明の実施の形態2に係る撮像装置は、近赤外光を透過する領域を含む色フィルタを備え、近赤外信号を含む画像信号を処理することを特徴とする。本発明の実施の形態2に係る撮像装置によれば、近赤外信号を利用するので、例えば、夜間などの可視光信号が微弱である場合であっても、色成分信号を有効に残して、高精細な色再現性を実現することができる。
(Embodiment 2)
An imaging apparatus according to Embodiment 2 of the present invention includes a color filter including a region that transmits near-infrared light, and processes an image signal including a near-infrared signal. According to the imaging apparatus according to Embodiment 2 of the present invention, since the near-infrared signal is used, for example, even when the visible light signal is weak, such as at night, the color component signal is effectively left. High-definition color reproducibility can be realized.
 まず、本発明の実施の形態2に係る撮像装置の構成と信号処理方法とについて説明する。図3は、本発明の実施の形態2に係る撮像装置300の機能構成の一例を示すブロック図である。 First, the configuration of the imaging apparatus and the signal processing method according to Embodiment 2 of the present invention will be described. FIG. 3 is a block diagram illustrating an example of a functional configuration of the imaging apparatus 300 according to Embodiment 2 of the present invention.
 図3に示されるように、本発明の実施の形態2に係る撮像装置300は、固体撮像素子310と、信号処理部320と、撮像制御部330と、光源制御部341と、IR光源342と、対物レンズ351と、絞り352とを備える。また、本発明の実施の形態2に係る信号処理方法は、レッド(R)+近赤外(IR)、グリーン(G)+近赤外(IR)、ブルー(B)+近赤外(IR)、及び、近赤外(IR)の4画素を1単位とする単位画素311を有する撮像装置100において、色信号と輝度信号とからなる画像信号を処理する。 As shown in FIG. 3, the imaging apparatus 300 according to Embodiment 2 of the present invention includes a solid-state imaging device 310, a signal processing unit 320, an imaging control unit 330, a light source control unit 341, and an IR light source 342. And an objective lens 351 and a diaphragm 352. In addition, the signal processing method according to Embodiment 2 of the present invention includes red (R) + near infrared (IR), green (G) + near infrared (IR), blue (B) + near infrared (IR). ), And an image pickup apparatus 100 having a unit pixel 311 having four units of near infrared (IR) as a unit, an image signal composed of a color signal and a luminance signal is processed.
 固体撮像素子310は、入射光を光電変換して色信号を生成するMOS型イメージセンサ等である。固体撮像素子310は、複数の単位画素311と、垂直シフトレジスタ121と、水平シフトレジスタ122と、ノイズ除去回路123と、出力アンプ124とを備える。なお、図3には、複数の単位画素311のうちの1つのみが図示されている。なお、以下では、実施の形態1と同じ構成については、同じ符号を付し、説明を省略する場合がある。 The solid-state imaging device 310 is a MOS type image sensor that photoelectrically converts incident light to generate a color signal. The solid-state imaging device 310 includes a plurality of unit pixels 311, a vertical shift register 121, a horizontal shift register 122, a noise removal circuit 123, and an output amplifier 124. FIG. 3 shows only one of the plurality of unit pixels 311. In the following, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof may be omitted.
 複数の単位画素311はそれぞれ、複数の受光素子111と、色フィルタ312とを備える。色フィルタ312は、R+IR透過領域313と、G+IR透過領域314と、B+IR透過領域315と、IR透過領域316とを有する。つまり、色フィルタ312は、可視光(R、G、B)を領域毎に選択的に透過するとともに、赤外光を透過するフィルタである。 Each of the plurality of unit pixels 311 includes a plurality of light receiving elements 111 and a color filter 312. The color filter 312 includes an R + IR transmission region 313, a G + IR transmission region 314, a B + IR transmission region 315, and an IR transmission region 316. That is, the color filter 312 is a filter that selectively transmits visible light (R, G, B) for each region and transmits infrared light.
 実施の形態1に係る色フィルタ112と比較すると、単位画素110に含まれる2つの緑色領域114及び115の一方が、近赤外光を透過するIR透過領域316に置き換えられている点が異なっている。また、単位画素110に含まれる赤色領域113、緑色領域114及び115の他方、及び、青色領域116のそれぞれは、近赤外光も透過するR+IR透過領域313、G+IR透過領域314、B+IR透過領域315に置き換えられている点も異なっている。 Compared to the color filter 112 according to the first embodiment, it differs in that one of the two green regions 114 and 115 included in the unit pixel 110 is replaced with an IR transmission region 316 that transmits near-infrared light. Yes. The red region 113, the other of the green regions 114 and 115, and the blue region 116 included in the unit pixel 110 are respectively an R + IR transmission region 313, a G + IR transmission region 314, and a B + IR transmission region 315 that also transmit near infrared light. It is also different in that it is replaced by.
 固体撮像素子310は、2次元配列された単位画素311の各行を垂直シフトレジスタ121により選択し、その行信号を水平シフトレジスタ122により選択して、単位画素311毎のカラー信号(画素信号)を出力アンプ124から出力する。つまり、固体撮像素子310は、R+IR、G+IR、B+IR、及び、IRのサブ画素信号を含む画素信号を信号処理部320に出力する。 The solid-state imaging device 310 selects each row of the unit pixels 311 arranged two-dimensionally by the vertical shift register 121, selects the row signal by the horizontal shift register 122, and outputs a color signal (pixel signal) for each unit pixel 311. Output from the output amplifier 124. That is, the solid-state imaging device 310 outputs pixel signals including R + IR, G + IR, B + IR, and IR sub-pixel signals to the signal processing unit 320.
 ここで、色フィルタ312の構成について説明する。IR画素を含めたRGB+IRフィルタを有する画素構成を容易に実現するために、フォトニック結晶カラーフィルタを色フィルタ312として撮像素子(複数の受光素子111)上に集積した。フォトニック結晶カラーフィルタのように、低屈折率の材料と高屈折率の材料とを交互に積層して得られる光学多層膜は、光が透過しない禁止帯が生じる。本発明の実施の形態2では、光が透過する透過帯を近赤外光が透過するように設計し、IRフィルタとして用いる。 Here, the configuration of the color filter 312 will be described. In order to easily realize a pixel configuration having an RGB + IR filter including an IR pixel, a photonic crystal color filter is integrated as a color filter 312 on an image sensor (a plurality of light receiving elements 111). An optical multilayer film obtained by alternately laminating a low refractive index material and a high refractive index material, such as a photonic crystal color filter, has a forbidden band that does not transmit light. In Embodiment 2 of the present invention, a transmission band through which light is transmitted is designed so that near-infrared light is transmitted and used as an IR filter.
 色フィルタ312のR+IR透過領域313、G+IR透過領域314及びB+IR透過領域315は、低屈折率の材料と高屈折率の材料とを交互にλ/4(λ:波長)の膜厚で積層された光学多層膜に、膜厚がλ/4とは異なる“欠陥層”を導入することで実現できる。この欠陥層により光学的な周期性に乱れが生じ、禁止帯の中に透過帯を生じさせることができる。欠陥層の膜厚を適切に設計することで、所望の波長帯域の透過帯を実現できる。すなわち、赤色光と近赤外光が透過するR+IR画素、緑色光と近赤外光が透過するG+IR画素、青色光と近赤外光が透過するB+IR画素、及び近赤外光のみが透過するIR画素を有するカラーフィルタを容易に設計できる。R+IR透過領域313、G+IR透過領域314、B+IR透過領域315のそれぞれの欠陥層の膜厚を調整するだけで、赤色光と近赤外光、緑色光と近赤外光、青色光と近赤外光の透過帯が形成できる。 The R + IR transmissive region 313, the G + IR transmissive region 314, and the B + IR transmissive region 315 of the color filter 312 are formed by alternately laminating a low refractive index material and a high refractive index material at a film thickness of λ / 4 (λ: wavelength). This can be realized by introducing a “defect layer” having a film thickness different from λ / 4 into the optical multilayer film. Due to this defect layer, the optical periodicity is disturbed, and a transmission band can be generated in the forbidden band. By appropriately designing the thickness of the defect layer, a transmission band of a desired wavelength band can be realized. That is, R + IR pixels that transmit red light and near infrared light, G + IR pixels that transmit green light and near infrared light, B + IR pixels that transmit blue light and near infrared light, and only near infrared light transmit. A color filter having IR pixels can be easily designed. Simply adjusting the film thickness of each defect layer in the R + IR transmission region 313, G + IR transmission region 314, and B + IR transmission region 315, red light and near infrared light, green light and near infrared light, blue light and near infrared light. A light transmission band can be formed.
 図4を用いて具体的に説明する。図4は、本発明の実施の形態2に係る撮像装置300の固体撮像素子310が備える色フィルタ312の断面構成の一例を示す図である。図4に示すように、基板401上に、色フィルタ312が形成されている。 This will be specifically described with reference to FIG. FIG. 4 is a diagram illustrating an example of a cross-sectional configuration of the color filter 312 provided in the solid-state imaging device 310 of the imaging apparatus 300 according to Embodiment 2 of the present invention. As shown in FIG. 4, a color filter 312 is formed on the substrate 401.
 基板401には、複数の受光素子111が形成されており、複数の受光素子111上のそれぞれに、R+IR透過領域313、G+IR透過領域314、B+IR透過領域315及びIR透過領域316が形成されている。 A plurality of light receiving elements 111 are formed on the substrate 401, and an R + IR transmission region 313, a G + IR transmission region 314, a B + IR transmission region 315, and an IR transmission region 316 are formed on each of the plurality of light reception elements 111. .
 色フィルタ312は、第1屈折率の高屈折率材料で構成されるn層の膜(第1膜402、404、406及び408)と、第1屈折率より低い第2屈折率の低屈折率で構成されるn-1層の膜(第2膜403、405及び407)とが交互に積層された誘電体層を含んでいる。ここで、nは、3以上の自然数である。さらに、図4に示す例では、色フィルタ312は、第1膜408上に形成された平坦化膜409を備えている。 The color filter 312 includes an n-layer film ( first films 402, 404, 406, and 408) made of a high refractive index material having a first refractive index, and a low refractive index having a second refractive index lower than the first refractive index. N-1 layer films ( second films 403, 405, and 407) composed of the following dielectric layers are included. Here, n is a natural number of 3 or more. Further, in the example illustrated in FIG. 4, the color filter 312 includes a planarization film 409 formed on the first film 408.
 第1膜402、404、406及び408は、例えば、二酸化チタン(TiO)から構成される。また、第2膜403、405及び407は、例えば、二酸化珪素(SiO)から構成される。 The first films 402, 404, 406, and 408 are made of, for example, titanium dioxide (TiO 2 ). The second films 403, 405, and 407 are made of, for example, silicon dioxide (SiO 2 ).
 高屈折率材料で構成されるn層の膜のうちの2層の膜である第1膜404及び406と、低屈折率材料で構成されるn-1層の膜のうちの1層の膜である第2膜405とは、R+IR透過領域313、G+IR透過領域314、B+IR透過領域315及びIR透過領域316で共通である。すなわち、第1膜404及び406と、第2膜405とは、色フィルタ312の各領域に共通な層に含まれ、入射光の設定波長をλとしたとき、当該設定波長λの1/4に等しい膜厚を有する。 First films 404 and 406, which are two layers of n layers made of a high refractive index material, and one film of n-1 layers made of a low refractive index material The second film 405 is common to the R + IR transmission region 313, the G + IR transmission region 314, the B + IR transmission region 315, and the IR transmission region 316. That is, the first films 404 and 406 and the second film 405 are included in a layer common to each region of the color filter 312, and when the set wavelength of incident light is λ, ¼ of the set wavelength λ. A film thickness equal to
 また、低屈折率材料で構成されるn-1層の膜のうち、上記の共通な層に含まれる第2膜405以外の少なくとも1つの膜は、他の層の膜厚と異なっている。例えば、第2膜403及び407は、“欠陥層”に相当し、膜厚がλ/4とは異なっている。第2膜403及び407は、透過対象の光を制御するために用いられる層であり、膜厚を領域毎に異ならせることによって、赤、緑、青又は近赤外の光を透過させる。 In addition, among the n−1 layers of the low refractive index material, at least one film other than the second film 405 included in the common layer is different from the film thickness of the other layers. For example, the second films 403 and 407 correspond to “defect layers” and have a film thickness different from λ / 4. The second films 403 and 407 are layers used to control light to be transmitted, and transmit red, green, blue, or near-infrared light by changing the film thickness for each region.
 以上のように、n層の高屈折率膜とn-1層の低屈折率膜とが積層された構造において、低屈折率膜の少なくとも1層の膜厚を、透過対象となる光の波長に応じて領域毎に異ならせることで、赤色光及び近赤外光と、緑色光及び近赤外光と、青色光及び近赤外光と、近赤外光のみとのそれぞれの透過帯が形成できる。このように、膜の膜厚を調整することで、任意の透過波長特性の領域を有する色フィルタを実現することができるので、高精細な色再現性を実現することができる。 As described above, in the structure in which the n-layer high refractive index film and the n-1 layer low-refractive index film are stacked, the film thickness of at least one layer of the low-refractive index film is set to the wavelength of light to be transmitted. Depending on the region, the transmission bands of red light and near infrared light, green light and near infrared light, blue light, near infrared light, and only near infrared light are different. Can be formed. In this manner, by adjusting the film thickness, a color filter having an arbitrary transmission wavelength characteristic region can be realized, so that high-definition color reproducibility can be realized.
 信号処理部320は、固体撮像素子310から受け付けた画像信号に画像信号処理を施すDSP等である。信号処理部320は、実施の形態1に係る信号処理部201に比べて、新たに、4×4行列演算回路321と、色差計算回路322と、近赤外信号制御回路323と、k算出回路324とを備えている。 The signal processing unit 320 is a DSP or the like that performs image signal processing on the image signal received from the solid-state image sensor 310. Compared with the signal processing unit 201 according to the first embodiment, the signal processing unit 320 newly includes a 4 × 4 matrix calculation circuit 321, a color difference calculation circuit 322, a near-infrared signal control circuit 323, and a k calculation circuit. 324.
 撮像制御部330は、露出時間制御部331と、絞り制御部332とを備えている。 The imaging control unit 330 includes an exposure time control unit 331 and an aperture control unit 332.
 露出時間制御部331は、固体撮像素子310の露出時間を制御する。例えば、露出時間制御部331は、近赤外信号制御回路323からの制御に基づいて露出時間を決定し、決定した露出時間だけ受光素子111が露出されるように、固体撮像素子310を制御する。 The exposure time control unit 331 controls the exposure time of the solid-state image sensor 310. For example, the exposure time control unit 331 determines the exposure time based on the control from the near-infrared signal control circuit 323, and controls the solid-state image sensor 310 so that the light receiving element 111 is exposed for the determined exposure time. .
 絞り制御部332は、絞り352を制御する。例えば、絞り制御部332は、近赤外信号制御回路323からの制御に基づいて、絞り352の絞り量を決定し、決定した絞り量を実現するように絞り352を制御する。 The aperture control unit 332 controls the aperture 352. For example, the aperture control unit 332 determines the aperture amount of the aperture 352 based on the control from the near infrared signal control circuit 323, and controls the aperture 352 so as to realize the determined aperture amount.
 光源制御部341は、IR光源342から被写体に対して照射される近赤外光の照射量を制御する。例えば、光源制御部341は、輝度計算回路221からの制御に基づいて、近赤外光の照射量を決定する。 The light source control unit 341 controls the irradiation amount of near-infrared light emitted from the IR light source 342 to the subject. For example, the light source control unit 341 determines the irradiation amount of near infrared light based on the control from the luminance calculation circuit 221.
 IR光源342は、光源制御部341によって決定された照射量の近赤外光を被写体に照射する。 The IR light source 342 irradiates the subject with an irradiation amount of near-infrared light determined by the light source control unit 341.
 対物レンズ351は、入射した光を固体撮像素子310の撮像領域上に結像させる。 The objective lens 351 forms an image of incident light on the imaging region of the solid-state imaging device 310.
 絞り352は、対物レンズ351を通過する光の量を制御する。 The diaphragm 352 controls the amount of light passing through the objective lens 351.
 図3に示されるように、信号処理部320は、固体撮像素子310が出力する画素信号から、レッド(R)、グリーン(G)及びブルー(B)のフィルタの画素の輝度信号及び色信号を生成する。 As shown in FIG. 3, the signal processing unit 320 outputs the luminance signal and the color signal of the pixels of the red (R), green (G), and blue (B) filters from the pixel signal output from the solid-state imaging device 310. Generate.
 なお、固体撮像素子310が出力する画素信号からレッド(R)、グリーン(G)及びブルー(B)のフィルタの画素のサブ画素信号を生成するには、例えば、レッド(R)の場合は、可視光(R)と非可視光(IR)とを透過するR+IR透過領域313を有するサブ画素の出力信号であるレッド(R)+近赤外(IR)信号から、非可視光(IR)を透過するIR透過領域316を有するサブ画素の出力信号である近赤外(IR)信号を差し引くことで、レッド(R)を導出する。そして、導出されたレッド(R)をサブ画素信号とすればよい。 In order to generate the sub-pixel signals of the red (R), green (G), and blue (B) filter pixels from the pixel signal output from the solid-state imaging device 310, for example, in the case of red (R), Invisible light (IR) is obtained from a red (R) + near infrared (IR) signal that is an output signal of a sub-pixel having an R + IR transmission region 313 that transmits visible light (R) and invisible light (IR). Red (R) is derived by subtracting the near-infrared (IR) signal that is the output signal of the sub-pixel having the IR transmitting region 316 that transmits the light. Then, the derived red (R) may be used as the sub-pixel signal.
 また、この画素構成を利用すれば、昼間では近赤外光成分を含んだ赤、緑、青の原信号からIR画素のIR信号成分を差分することで、赤、緑、青の各信号を得ることができる。このように、本発明の実施の形態2に係る撮像装置300は、昼間であっても、機械式IRカットフィルタを必要としない。 Also, if this pixel configuration is used, the red, green, and blue signals can be obtained by subtracting the IR signal component of the IR pixel from the original red, green, and blue signals including near-infrared light components in the daytime. Obtainable. Thus, the imaging apparatus 300 according to Embodiment 2 of the present invention does not require a mechanical IR cut filter even during daytime.
 一方、夜間では、全ての画素の信号を用いることで近赤外光の画像を得る。そのため、IR画像の解像度は、R+IR画素、G+IR画素、B+IR画素のIR成分を用いるため、昼間でのRGB画像よりも高い。 On the other hand, near-infrared light images are obtained at night by using signals from all pixels. Therefore, the resolution of the IR image is higher than that of the RGB image in the daytime because the IR components of R + IR pixels, G + IR pixels, and B + IR pixels are used.
 以下では、信号処理部320が備える構成要素について説明する。なお、実施の形態1と同様の構成要素については、説明を省略する場合がある。 Hereinafter, components included in the signal processing unit 320 will be described. Note that description of the same components as those in Embodiment 1 may be omitted.
 固体撮像素子310から出力される画素信号は、R+IRサブ画素信号、G+IRサブ画素信号、B+IRサブ画素信号、及び、IRサブ画素信号を含んでいる。つまり、各サブ画素信号は、近赤外光の成分を含んでいる点が実施の形態1と異なっている。キズ補正回路211、OB計算回路212及びローパスフィルタ回路231は、実施の形態1と同様に、入力された画素信号を処理する。 The pixel signal output from the solid-state imaging device 310 includes an R + IR subpixel signal, a G + IR subpixel signal, a B + IR subpixel signal, and an IR subpixel signal. That is, each sub-pixel signal is different from the first embodiment in that it includes a near-infrared light component. The defect correction circuit 211, the OB calculation circuit 212, and the low-pass filter circuit 231 process the input pixel signal as in the first embodiment.
 4×4行列演算回路321は、比重をかけたIR信号を各サブ画素の原信号から差分することで、R、G、B可視光の色信号を生成する。なお、このときの比重係数は、近赤外光が各サブ画素信号から消失するように調整している。つまり、4×4行列演算回路321は、R+IRサブ画素信号、G+IRサブ画素信号、B+IRサブ画素信号、及び、IRサブ画素信号に、4×4の行列演算を施すことによって、RGBの3信号を生成して出力する。 The 4 × 4 matrix calculation circuit 321 generates color signals of R, G, and B visible light by subtracting the IR signal subjected to specific gravity from the original signal of each sub-pixel. The specific gravity coefficient at this time is adjusted so that near-infrared light disappears from each sub-pixel signal. That is, the 4 × 4 matrix operation circuit 321 performs 3 × 4 matrix operations on the R + IR subpixel signal, the G + IR subpixel signal, the B + IR subpixel signal, and the IR subpixel signal, thereby generating three RGB signals. Generate and output.
 差分の処理後は、通常の3原色と同様に、色シェーディング補正回路232及び輝度シェーディング補正回路233が、色シェーディング補正と輝度シェーディング補正とを、近接する画素からの出力信号を用いて実行する。さらに、ホワイトバランス調整回路234が、画素信号のホワイトバランスの調整を行う。 After the difference processing, the color shading correction circuit 232 and the luminance shading correction circuit 233 execute the color shading correction and the luminance shading correction using output signals from adjacent pixels as in the case of the normal three primary colors. Further, the white balance adjustment circuit 234 adjusts the white balance of the pixel signal.
 さらに、色差計算回路322、色相補正回路235、カラーゲイン調整回路236で信号処理を行う。このとき、色差計算回路322は、複数種類の色信号(つまり、R、G、B)を用いて複数の色差成分信号(R-Y信号、B-Y信号)を算出して出力する。最後に、γ補正回路237から出力された色信号は、輝度計算回路221から出力された輝度信号と合わせて表示装置等に画像信号として出力される。 Further, signal processing is performed by the color difference calculation circuit 322, the hue correction circuit 235, and the color gain adjustment circuit 236. At this time, the color difference calculation circuit 322 calculates and outputs a plurality of color difference component signals (RY signal, BY signal) using a plurality of types of color signals (that is, R, G, B). Finally, the color signal output from the γ correction circuit 237 is output as an image signal to the display device or the like together with the luminance signal output from the luminance calculation circuit 221.
 色相補正回路235は、補正量演算回路241によって決定された補正量で、色差計算回路322から出力される色差成分信号を補正する。補正量演算回路241は、基準データ入力回路243から入力され、基準データ記憶部242に記憶された色相補正基準データと、座標取得回路244によって取得された受光素子の2次元座標とを用いて、受光素子毎の補正量を演算する。 The hue correction circuit 235 corrects the color difference component signal output from the color difference calculation circuit 322 with the correction amount determined by the correction amount calculation circuit 241. The correction amount calculation circuit 241 uses the hue correction reference data input from the reference data input circuit 243 and stored in the reference data storage unit 242, and the two-dimensional coordinates of the light receiving element acquired by the coordinate acquisition circuit 244. The correction amount for each light receiving element is calculated.
 本実施の形態では、輝度計算回路221は、輝度信号を作成する演算において、近赤外光のみを通過する色フィルタを搭載した受光素子から出力された信号を(すなわち、IRサブ画素信号)利用する。輝度信号Yは、輝度信号=(R+IRサブ画素信号)+(G+IRサブ画素信号)+(B+IRサブ画素信号)+k×IRサブ画素信号で計算される。つまり、Y=(R+IR)+(G+IR)+(B+IR)+kIRで計算される。 In the present embodiment, the luminance calculation circuit 221 uses a signal output from a light receiving element equipped with a color filter that passes only near-infrared light (that is, an IR sub-pixel signal) in an operation for generating a luminance signal. To do. The luminance signal Y is calculated by luminance signal = (R + IR subpixel signal) + (G + IR subpixel signal) + (B + IR subpixel signal) + k × IR subpixel signal. That is, Y = (R + IR) + (G + IR) + (B + IR) + kIR.
 ここでkは、任意変数である。具体的には、((R+IR)+(G+IR)+(B+IR))信号に対するIRサブ画素信号の混合率を示す混合係数であり、あるいは、輝度信号Yに対するIRサブ画素信号の混合率を示す混合係数である。この場合、kは、-3以上+1以下の範囲内で定められる。 Where k is an arbitrary variable. Specifically, it is a mixing coefficient indicating the mixing ratio of the IR sub-pixel signal with respect to the ((R + IR) + (G + IR) + (B + IR)) signal, or the mixing indicating the mixing ratio of the IR sub-pixel signal with respect to the luminance signal Y. It is a coefficient. In this case, k is determined within a range of −3 to +1.
 例えば、k算出回路324が、kを算出する。具体的には、k算出回路324は、IRサブ画素信号の信号量に応じて混合係数を算出する。 For example, the k calculation circuit 324 calculates k. Specifically, the k calculation circuit 324 calculates the mixing coefficient according to the signal amount of the IR sub-pixel signal.
 一例として、k=-3の場合、IRサブ画素信号が完全に除去された輝度信号Yを、輝度計算回路221によって生成することができる。これは、昼モードでは撮像に適している。k=+1の場合、IRサブ画素信号の全部を含む輝度信号Yを、輝度計算回路221によって生成することができる。これは、白黒画像の生成に適している。kが-3から+1の中間的な値の場合、カラー画像が生成され、kに応じてカラー化の程度が決定される。これは、夜モードでカラー化するのに適している。 For example, when k = −3, the luminance calculation circuit 221 can generate the luminance signal Y from which the IR sub-pixel signal is completely removed. This is suitable for imaging in the daytime mode. When k = + 1, the luminance calculation circuit 221 can generate the luminance signal Y including all of the IR subpixel signals. This is suitable for generating a monochrome image. When k is an intermediate value between -3 and +1, a color image is generated, and the degree of colorization is determined according to k. This is suitable for colorizing in the night mode.
 近赤外信号制御回路323は、輝度信号演算に用いられる近赤外信号(IRサブ画素信号)の成分量に応じて、撮像制御部330を制御し、固体撮像素子310の露光量を所定の値に制御することができる。 The near-infrared signal control circuit 323 controls the imaging control unit 330 according to the component amount of the near-infrared signal (IR subpixel signal) used for the luminance signal calculation, and sets the exposure amount of the solid-state imaging device 310 to a predetermined value. The value can be controlled.
 具体的には、固体撮像素子310の露光量を所定の値への調整するため、近赤外信号制御回路323は、露出時間制御部331を制御することで、露出時間を所定の値に調整する。また、固体撮像素子310の露光量を所定の値への調整するため、近赤外信号制御回路323は、絞り制御部332を制御し、対物レンズ351の絞り352を調整することにより入射光量を所定の値に調整する。また、固体撮像素子310の露光量を所定の値への調整するため、近赤外信号制御回路323は、光源制御部341を制御することで、被写体に所定の近赤外光を照射するIR光源342の照射量を調整する。 Specifically, in order to adjust the exposure amount of the solid-state image sensor 310 to a predetermined value, the near-infrared signal control circuit 323 controls the exposure time control unit 331 to adjust the exposure time to a predetermined value. To do. Further, in order to adjust the exposure amount of the solid-state imaging device 310 to a predetermined value, the near-infrared signal control circuit 323 controls the aperture control unit 332 and adjusts the aperture 352 of the objective lens 351 to reduce the incident light amount. Adjust to a predetermined value. Further, in order to adjust the exposure amount of the solid-state imaging device 310 to a predetermined value, the near-infrared signal control circuit 323 controls the light source control unit 341 so as to irradiate the subject with predetermined near-infrared light. The irradiation amount of the light source 342 is adjusted.
 また、近赤外信号制御回路323は、色信号成分に印加されるIRサブ画素信号の成分量を調整するために、ホワイトバランス調整回路234の出力に応じてカラーゲイン調整回路236を制御することで、利得を調整する。特に、車載カメラ及びセキュリティカメラで要求される標識などの赤色の色再現性を得るために、赤色信号の利得を最大とするように近赤外信号成分の成分量を制御する。また、信号処理部320は、各受光素子の近赤外信号成分を除いた可視光成分のみからなる色再生信号を生成する工程と、赤色信号成分を生成する工程とに最大の利得を与えるよう制御する。 The near-infrared signal control circuit 323 controls the color gain adjustment circuit 236 according to the output of the white balance adjustment circuit 234 in order to adjust the component amount of the IR subpixel signal applied to the color signal component. Then, adjust the gain. In particular, in order to obtain red color reproducibility such as signs required for in-vehicle cameras and security cameras, the amount of the near-infrared signal component is controlled so as to maximize the gain of the red signal. Further, the signal processing unit 320 gives the maximum gain to the step of generating a color reproduction signal composed of only the visible light component excluding the near-infrared signal component of each light receiving element and the step of generating the red signal component. Control.
 また、近赤外信号制御回路323は、色再生信号の強度に応じて輝度信号に印加される近赤外光量の成分量を制御する。 Also, the near infrared signal control circuit 323 controls the amount of the near infrared light component applied to the luminance signal according to the intensity of the color reproduction signal.
 なお、本発明の実施の形態2に係る撮像装置300では、色相の補正量の算出及び色相の補正処理は、実施の形態1に係る撮像装置100が行う動作と同じである(図2参照)。本発明の実施の形態2に係る撮像装置300では、各サブ画素信号に近赤外成分が含まれているが、4×4行列演算回路321によって近赤外成分が除去される。ホワイトバランス調整回路234及び色相補正回路235は、近赤外成分が除去された信号に対して処理を行うため、実施の形態1と同様の処理を施すことができる。 In the imaging apparatus 300 according to Embodiment 2 of the present invention, the calculation of the hue correction amount and the hue correction processing are the same as the operations performed by the imaging apparatus 100 according to Embodiment 1 (see FIG. 2). . In the imaging device 300 according to Embodiment 2 of the present invention, each sub-pixel signal includes a near infrared component, but the 4 × 4 matrix calculation circuit 321 removes the near infrared component. Since the white balance adjustment circuit 234 and the hue correction circuit 235 perform processing on the signal from which the near-infrared component has been removed, the same processing as in the first embodiment can be performed.
 以上のように、本発明の実施の形態2に係る撮像装置300は、近赤外光を透過する領域を含む色フィルタ312と、信号処理部320とを備え、信号処理部320は、近赤外信号を含む画像信号を処理する。具体的には、信号処理部320は、近赤外光成分を含むサブ画素信号のそれぞれから近赤外光成分を除去し、近赤外光成分が除去された信号、すなわち、R、G、Bのそれぞれの信号について、色相の補正量を決定し、決定した補正量で色相を補正する。 As described above, the imaging apparatus 300 according to Embodiment 2 of the present invention includes the color filter 312 including the region that transmits near-infrared light and the signal processing unit 320, and the signal processing unit 320 includes the near-red light. An image signal including an external signal is processed. Specifically, the signal processing unit 320 removes the near-infrared light component from each of the sub-pixel signals including the near-infrared light component, and the signal from which the near-infrared light component is removed, that is, R, G, For each of the signals of B, a hue correction amount is determined, and the hue is corrected with the determined correction amount.
 これにより、本発明の実施の形態2に係る撮像装置300によれば、近赤外成分を含む画像信号の場合であっても、高精細な色再現性を実現することができる。さらに、近赤外信号を利用するので、デイナイトカメラ等、夜間に近赤外光を受光することで撮像する撮像素子において、可視光信号が微弱な環境の夜間モードにおいても、高精細な色再現性を実現することができる。このように、近赤外光を利用するので、夜間などの赤外光照明の下でも、高精細な色再現性を実現することができる。 Thereby, according to the imaging apparatus 300 according to Embodiment 2 of the present invention, high-definition color reproducibility can be realized even in the case of an image signal including a near-infrared component. In addition, since near infrared signals are used, high-definition color reproduction is possible even in the night mode where the visible light signal is weak in image sensors that receive near infrared light at night, such as day and night cameras. Can be realized. As described above, since near infrared light is used, high-definition color reproducibility can be realized even under infrared light illumination such as at night.
 以下では、本発明の実施の形態の比較例について説明する。 Hereinafter, a comparative example of the embodiment of the present invention will be described.
 まず、本発明の実施の形態の比較例は、斜入射光による混色シェーディングを色補正するものであり、その補正データは青画素あるいは赤画素の隣接する緑画素の輝度比より算出する。この方法は、ホワイトバランスの前に色シェーディング補正を行う構成のため、固定値である画素アレイ内での色フィルタの出来映えバラツキ(色ムラ)に起因した分光波長シフトを完全に補正することができず、高精細の色再現ができないという課題を有している。 First, in the comparative example of the embodiment of the present invention, color mixture shading due to obliquely incident light is color-corrected, and the correction data is calculated from the luminance ratio of green pixels adjacent to blue pixels or red pixels. Since this method performs color shading correction before white balance, it is possible to completely correct the spectral wavelength shift due to variations in the color filter performance (color unevenness) within the pixel array, which is a fixed value. Therefore, there is a problem that high-definition color reproduction cannot be performed.
 また、色シェーディング補正量を輝度シェーディング補正量より軽微なもの(約1/3)とし、ホワイトバランス後に色シェーディング補正と輝度シェーディング補正とをあわせて行う方法が考えられる。この方法は、色情報の補正と輝度情報の補正とを、同じゲイン情報から求めているので、固定値である画素アレイ内での色フィルタ出来映えバラツキ(色ムラ)に起因した分光波長シフトを完全に補正することができず、高精細の色再現ができないという課題を有している。 Also, a method is conceivable in which the color shading correction amount is lighter than the luminance shading correction amount (about 1/3), and the color shading correction and the luminance shading correction are performed after white balance. In this method, the correction of the color information and the correction of the luminance information are obtained from the same gain information, so that the spectral wavelength shift due to the color filter performance variation (color unevenness) in the pixel array, which is a fixed value, is completely eliminated. Therefore, there is a problem that high-definition color reproduction cannot be performed.
 また、色シェーディングを補正するのに撮影画像の彩度を調整して行うという方法が考えられる。この方法の場合は、ホワイトバランスの前に色シェーディング補正を行う構成であるため、固定値である画素アレイ内での色フィルタの出来映えバラツキに起因した色ムラの原因となる分光波長シフトを完全に補正することができず、高精細の色再現ができないという課題を有している。 Also, it is conceivable to adjust the saturation of the photographed image to correct the color shading. In this method, since color shading correction is performed before white balance, the spectral wavelength shift that causes color unevenness due to variations in the performance of color filters in the pixel array, which is a fixed value, is completely eliminated. There is a problem that correction cannot be performed and high-definition color reproduction cannot be performed.
 以上の本発明の実施の形態の比較例に対して、図面を用いて説明したように、本発明の実施の形態に係る撮像装置及び信号処理方法は、画素の低背化による色フィルタの薄膜化、及び、高画素化による微細化だけでなく、デジタル一眼レフカメラ用など画素アレイの大判化による色フィルタなどの出来映えのバラツキで発生した色ムラを低減し、高精細な色再現性を実現することができる。 As described with reference to the drawings for the comparative example of the above-described embodiment of the present invention, the imaging device and the signal processing method according to the embodiment of the present invention are thin films of color filters by reducing the height of pixels. In addition to miniaturization by increasing the number of pixels and increasing the number of pixels, high-definition color reproducibility is achieved by reducing color unevenness caused by variations in workmanship such as color filters due to large pixel arrays such as for digital SLR cameras. can do.
 以上、本発明に係る撮像装置及び信号処理方法について、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を当該実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 As mentioned above, although the imaging device and the signal processing method according to the present invention have been described based on the embodiments, the present invention is not limited to these embodiments. Unless it deviates from the meaning of this invention, the form which carried out the various deformation | transformation which those skilled in the art can think to the said embodiment, and the form constructed | assembled combining the component in a different embodiment is also contained in the scope of the present invention. .
 例えば、図1及び図3に示した信号処理部201及び320が備える構成要素は、必ずしも全てを備える必要はない。例えば、信号処理部201は、加算回路238を備えていなくてもよく、輝度計算回路221によって計算された輝度信号と、γ補正回路237によって補正された色差信号とを外部の表示装置などに出力してもよい。 For example, the components included in the signal processing units 201 and 320 illustrated in FIGS. 1 and 3 do not necessarily have to include all of them. For example, the signal processing unit 201 may not include the addition circuit 238, and outputs the luminance signal calculated by the luminance calculation circuit 221 and the color difference signal corrected by the γ correction circuit 237 to an external display device or the like. May be.
 また、単位画素に含まれるサブ画素の配列もベイヤー配列でなくてもよい。 In addition, the arrangement of the sub-pixels included in the unit pixel may not be a Bayer arrangement.
 また、上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。また、上記で示した各構成要素の材料は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された材料に制限されない。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。 Further, all the numbers used above are illustrated for specifically explaining the present invention, and the present invention is not limited to the illustrated numbers. Further, the materials of the constituent elements shown above are all exemplified for specifically explaining the present invention, and the present invention is not limited to the exemplified materials. In addition, the connection relationship between the components is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
 また、上記撮像装置の構成は、本発明を具体的に説明するために例示するためのものであり、本発明に係る撮像装置は、上記構成の全てを必ずしも備える必要はない。言い換えると、本発明に係る撮像装置は、本発明の効果を実現できる最小限の構成のみを備えればよい。 Further, the configuration of the imaging apparatus is for illustration in order to specifically describe the present invention, and the imaging apparatus according to the present invention is not necessarily provided with all of the above configurations. In other words, the imaging apparatus according to the present invention only needs to have a minimum configuration that can realize the effects of the present invention.
 同様に、上記の撮像装置による信号処理方法は、本発明を具体的に説明するために例示するためのものであり、本発明に係る撮像装置による信号処理方法は、上記ステップの全てを必ずしも含む必要はない。言い換えると、本発明に係る信号処理方法は、本発明の効果を実現できる最小限のステップのみを含めばよい。また、上記のステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。 Similarly, the above-described signal processing method by the imaging apparatus is for illustration in order to specifically describe the present invention, and the signal processing method by the imaging apparatus according to the present invention does not necessarily include all the above steps. There is no need. In other words, the signal processing method according to the present invention needs to include only the minimum steps that can realize the effects of the present invention. In addition, the order in which the above steps are executed is for illustration in order to specifically describe the present invention, and may be in an order other than the above.
 本発明に係る撮像装置及び信号処理方法は、高精細な色再現性を実現することができるという効果を奏し、デジタル一眼レフカメラ、デジタルカメラ、カメラ付携帯電話、及び、昼夜兼用監視カメラなどに利用することができる。 The imaging device and the signal processing method according to the present invention have the effect of being able to realize high-definition color reproducibility, such as a digital single-lens reflex camera, a digital camera, a camera-equipped mobile phone, and a day / night monitoring camera. Can be used.
100、300 撮像装置
101、310 固体撮像素子
110、311 単位画素
111 受光素子
112、312 色フィルタ
113 赤色領域
114、115 緑色領域
116 青色領域
121 垂直シフトレジスタ
122 水平シフトレジスタ
123 ノイズ除去回路
124 出力アンプ
201、320 信号処理部
211 キズ補正回路
212 OB計算回路
221 輝度計算回路
231 ローパスフィルタ回路
232 色シェーディング補正回路
233 輝度シェーディング補正回路
234 ホワイトバランス調整回路
235 色相補正回路
236 カラーゲイン調整回路
237 γ補正回路
238 加算回路
241 補正量演算回路
242 基準データ記憶部
243 基準データ入力回路
244 座標取得回路
313 R+IR透過領域
314 G+IR透過領域
315 B+IR透過領域
316 IR透過領域
321 4×4行列演算回路
322 色差計算回路
323 近赤外信号制御回路
324 k算出回路
330 撮像制御部
331 露出時間制御部
332 絞り制御部
341 光源制御部
342 IR光源
351 対物レンズ
352 絞り
401 基板
402、404、406、408 第1膜
403、405、407 第2膜
409 平坦化膜
100, 300 Imaging device 101, 310 Solid- state image sensor 110, 311 Unit pixel 111 Light receiving element 112, 312 Color filter 113 Red region 114, 115 Green region 116 Blue region 121 Vertical shift register 122 Horizontal shift register 123 Noise removal circuit 124 Output amplifier 201, 320 Signal processing unit 211 Scratch correction circuit 212 OB calculation circuit 221 Luminance calculation circuit 231 Low-pass filter circuit 232 Color shading correction circuit 233 Luminance shading correction circuit 234 White balance adjustment circuit 235 Hue correction circuit 236 Color gain adjustment circuit 237 γ correction circuit 238 Addition circuit 241 Correction amount calculation circuit 242 Reference data storage unit 243 Reference data input circuit 244 Coordinate acquisition circuit 313 R + IR transmission region 314 G + IR transmission region 315 + IR transmission region 316 IR transmission region 321 4 × 4 matrix operation circuit 322 Color difference calculation circuit 323 Near infrared signal control circuit 324 k calculation circuit 330 Imaging control unit 331 Exposure time control unit 332 Aperture control unit 341 Light source control unit 342 IR light source 351 Objective lens 352 Diaphragm 401 Substrate 402, 404, 406, 408 First film 403, 405, 407 Second film 409 Flattening film

Claims (14)

  1.  撮像面内に2次元状に配置された複数の画素と、
     前記複数の画素のそれぞれから出力される画素信号を処理する信号処理部とを備え、
     前記複数の画素はそれぞれ、
     複数の受光素子と、
     前記複数の受光素子上に形成され、領域毎に異なる波長の光を透過する複数の領域からなる色フィルタとを含み、
     前記信号処理部は、
     前記画素信号のホワイトバランスを調整するWB調整部と、
     前記色フィルタの領域毎の特性を、1つの又は複数の画素単位で示す補正基準データを記憶する基準データ記憶部と、
     前記撮像面内における前記受光素子の位置を示す2次元座標を取得する座標取得部と、
     前記基準データ記憶部に記憶された補正基準データと、前記座標取得部によって取得された2次元座標とに基づいて色相の補正量を決定する補正量演算部と、
     前記補正量演算部によって決定された補正量で、ホワイトバランスが調整された後の前記画素信号の色相を補正する色相補正部とを有する
     撮像装置。
    A plurality of pixels arranged two-dimensionally in the imaging plane;
    A signal processing unit that processes a pixel signal output from each of the plurality of pixels,
    Each of the plurality of pixels is
    A plurality of light receiving elements;
    A color filter comprising a plurality of regions formed on the plurality of light receiving elements and transmitting light of different wavelengths for each region;
    The signal processing unit
    A WB adjustment unit for adjusting the white balance of the pixel signal;
    A reference data storage unit that stores correction reference data indicating characteristics of each color filter region in units of one or a plurality of pixels;
    A coordinate acquisition unit for acquiring a two-dimensional coordinate indicating the position of the light receiving element in the imaging surface;
    A correction amount calculation unit that determines a correction amount of hue based on the correction reference data stored in the reference data storage unit and the two-dimensional coordinates acquired by the coordinate acquisition unit;
    An image pickup apparatus comprising: a hue correction unit that corrects the hue of the pixel signal after white balance is adjusted with the correction amount determined by the correction amount calculation unit.
  2.  前記複数の領域は、
     赤色光を透過する赤色領域、緑色光を透過する緑色領域、及び、青色光を透過する青色領域を含み、
     前記色フィルタは、
     第1屈折率の高屈折率材料で構成されるn(nは3以上の自然数)層の膜と、前記第1屈折率より低い第2屈折率の低屈折率材料で構成されるn-1層の膜とが交互に積層された誘電体層を含み、
     前記高屈折率材料で構成されるn層の膜のうち2層の膜と、前記低屈折率材料で構成されるn-1層の膜のうち1層の膜とは、前記赤色領域、前記緑色領域、及び、前記青色領域とに共通な層であり、
     前記赤色領域では、
     前記低屈折率材料で構成されるn-1層のうち、前記共通な層に含まれる前記1層の膜以外の1層の膜の膜厚は、他の層の膜厚と異なる
     請求項1記載の撮像装置。
    The plurality of regions are:
    A red region that transmits red light, a green region that transmits green light, and a blue region that transmits blue light,
    The color filter is
    A film of n (n is a natural number of 3 or more) layer composed of a high refractive index material having a first refractive index and n−1 composed of a low refractive index material having a second refractive index lower than the first refractive index. Including dielectric layers alternately stacked with layers of films,
    Two of the n-layer films composed of the high refractive index material and one of the n-1 layer films composed of the low refractive index material are the red region, A layer common to the green region and the blue region,
    In the red region,
    2. The film thickness of one layer other than the one layer film included in the common layer among the n−1 layers composed of the low refractive index material is different from the film thickness of the other layers. The imaging device described.
  3.  前記複数の領域は、さらに、近赤外光のみを透過する領域を含む
     請求項2記載の撮像装置。
    The imaging device according to claim 2, wherein the plurality of regions further include a region that transmits only near-infrared light.
  4.  前記補正量は、前記2次元座標と、前記色フィルタが透過する光の波長とを変数とする関数式によって表され、
     前記基準データ記憶部は、前記補正基準データとして、前記関数式を記憶する
     請求項1記載の撮像装置。
    The correction amount is represented by a functional expression having the two-dimensional coordinates and the wavelength of light transmitted through the color filter as variables,
    The imaging apparatus according to claim 1, wherein the reference data storage unit stores the functional expression as the correction reference data.
  5.  複数の画素が撮像面内に2次元状に配置された固体撮像素子から画素毎に出力される画素信号を処理する信号処理方法であって、
     前記複数の画素のそれぞれは、
     複数の受光素子と、
     前記複数の受光素子上に形成され、領域毎に異なる波長の光を透過する複数の領域からなる色フィルタとを含み、
     前記信号処理方法は、
     前記画素信号のホワイトバランスを調整するWB調整ステップと、
     ホワイトバランスが調整された後の前記画素信号の色相を補正する色相補正ステップとを含み、
     前記色相補正ステップでは、
     前記色フィルタの領域毎の特性を1つの又は複数の画素単位で示す補正基準データと、前記撮像面内における前記受光素子の位置を示す2次元座標とに基づいて、色相の補正量を決定し、決定した補正量で前記画素信号の色相を補正する
     信号処理方法。
    A signal processing method for processing a pixel signal output for each pixel from a solid-state imaging device in which a plurality of pixels are two-dimensionally arranged in an imaging surface,
    Each of the plurality of pixels is
    A plurality of light receiving elements;
    A color filter comprising a plurality of regions formed on the plurality of light receiving elements and transmitting light of different wavelengths for each region;
    The signal processing method includes:
    A WB adjustment step for adjusting the white balance of the pixel signal;
    A hue correction step of correcting the hue of the pixel signal after the white balance is adjusted,
    In the hue correction step,
    A hue correction amount is determined based on correction reference data indicating characteristics of each color filter region in units of one or a plurality of pixels and two-dimensional coordinates indicating the position of the light receiving element in the imaging surface. A signal processing method of correcting the hue of the pixel signal with the determined correction amount.
  6.  前記色相補正ステップでは、前記色フィルタの領域の透過特性毎に独立して前記補正量を決定し、前記画素信号の色相を補正する
     請求項5記載の信号処理方法。
    The signal processing method according to claim 5, wherein in the hue correction step, the correction amount is determined independently for each transmission characteristic of the color filter region, and the hue of the pixel signal is corrected.
  7.  前記色相補正ステップでは、前記2次元座標の増加に応じて単調に変化するように、前記補正量を決定する
     請求項5記載の信号処理方法。
    The signal processing method according to claim 5, wherein in the hue correction step, the correction amount is determined so as to change monotonously with an increase in the two-dimensional coordinates.
  8.  前記補正量は、前記2次元座標と、前記色フィルタが透過する光の波長とを変数とする関数式によって表され、
     前記色相補正ステップでは、前記関数式を用いて前記補正量を決定する
     請求項5記載の信号処理方法。
    The correction amount is represented by a functional expression having the two-dimensional coordinates and the wavelength of light transmitted through the color filter as variables,
    The signal processing method according to claim 5, wherein in the hue correction step, the correction amount is determined using the function formula.
  9.  前記補正基準データは、前記色フィルタを形成する際に作成した色フィルタ成膜モニタウェハの透過率のウェハ面内分布である
     請求項5記載の信号処理方法。
    The signal processing method according to claim 5, wherein the correction reference data is a wafer in-plane distribution of transmittance of a color filter film formation monitor wafer created when the color filter is formed.
  10.  前記補正基準データは、前記色フィルタを形成する際に作成した色フィルタ成膜モニタウェハの色フィルタの全部又は一部の膜厚のウェハ面内分布である
     請求項5記載の信号処理方法。
    The signal processing method according to claim 5, wherein the correction reference data is a wafer in-plane distribution of a film thickness of all or a part of a color filter of a color filter film formation monitor wafer created when the color filter is formed.
  11.  前記信号処理方法は、さらに、
     前記固体撮像素子に基準光を入射した場合に生成される画素信号を用いて、前記補正基準データを演算する基準データ演算ステップを含む
     請求項5記載の信号処理方法。
    The signal processing method further includes:
    The signal processing method according to claim 5, further comprising a reference data calculation step of calculating the correction reference data using a pixel signal generated when reference light is incident on the solid-state imaging device.
  12.  前記基準光は、白色光である
     請求項11記載の信号処理方法。
    The signal processing method according to claim 11, wherein the reference light is white light.
  13.  前記基準光は、赤外光を含む
     請求項11記載の信号処理方法。
    The signal processing method according to claim 11, wherein the reference light includes infrared light.
  14.  前記基準光は、前記色フィルタの領域の透過特性における透過中心波長の光である
     請求項11記載の信号処理方法。
    The signal processing method according to claim 11, wherein the reference light is light having a transmission center wavelength in transmission characteristics of the color filter region.
PCT/JP2011/001374 2010-07-15 2011-03-09 Image capturing device and signal processing method WO2012008070A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-160783 2010-07-15
JP2010160783A JP2012023620A (en) 2010-07-15 2010-07-15 Imaging device and signal processing method

Publications (1)

Publication Number Publication Date
WO2012008070A1 true WO2012008070A1 (en) 2012-01-19

Family

ID=45469090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001374 WO2012008070A1 (en) 2010-07-15 2011-03-09 Image capturing device and signal processing method

Country Status (2)

Country Link
JP (1) JP2012023620A (en)
WO (1) WO2012008070A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174529A1 (en) * 2020-03-06 2021-09-10 Oppo广东移动通信有限公司 Image sensor, imaging apparatus, electronic device, image processing system and signal processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169255A (en) * 2001-11-30 2003-06-13 Sony Corp Shading correction method
JP2009033359A (en) * 2007-07-25 2009-02-12 Canon Inc Imaging device and control method therefor
JP2010011415A (en) * 2008-06-30 2010-01-14 Panasonic Corp Solid-state imaging device and camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169255A (en) * 2001-11-30 2003-06-13 Sony Corp Shading correction method
JP2009033359A (en) * 2007-07-25 2009-02-12 Canon Inc Imaging device and control method therefor
JP2010011415A (en) * 2008-06-30 2010-01-14 Panasonic Corp Solid-state imaging device and camera

Also Published As

Publication number Publication date
JP2012023620A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5713816B2 (en) Solid-state imaging device and camera module
US9497370B2 (en) Array camera architecture implementing quantum dot color filters
EP2471258B1 (en) Reducing noise in a color image
US9979941B2 (en) Imaging system using a lens unit with longitudinal chromatic aberrations and method of operating
JP5106256B2 (en) Imaging device
TWI549273B (en) Lens array for partitioned image sensor having color filters
CN102347341B (en) Solid-state imaging device, its driving method and electronic installation
TWI643322B (en) Solid-state imaging device, electronic apparatus, lens control method, and imaging module
US9681059B2 (en) Image-capturing device
JP2008306070A (en) Solid-state imaging device and method for operating signal
WO2011001672A1 (en) Imaging device and imaging method
JP5600814B2 (en) Image processing apparatus and method, and imaging apparatus
JP2010288093A (en) Image processing apparatus, solid-state imaging apparatus, and electronic information apparatus
WO2012008070A1 (en) Image capturing device and signal processing method
JP5054659B2 (en) Imaging device
JP7442990B2 (en) Signal processing device and signal processing method
WO2020059050A1 (en) Imaging element, imaging device, imaging method, and program
JP2013090085A (en) Image pickup device and image processing method and program
JP5234165B2 (en) Solid-state imaging device and imaging device
JP2012253727A (en) Solid-state image sensor and camera module
JP2020027979A (en) Imaging apparatus and imaging method
KR20200052853A (en) Signal processing apparatus and signal processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806407

Country of ref document: EP

Kind code of ref document: A1