WO2012008005A1 - Inverted pendulum type moving body and moving robot - Google Patents

Inverted pendulum type moving body and moving robot Download PDF

Info

Publication number
WO2012008005A1
WO2012008005A1 PCT/JP2010/061759 JP2010061759W WO2012008005A1 WO 2012008005 A1 WO2012008005 A1 WO 2012008005A1 JP 2010061759 W JP2010061759 W JP 2010061759W WO 2012008005 A1 WO2012008005 A1 WO 2012008005A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
omni
inverted pendulum
pendulum type
foil
Prior art date
Application number
PCT/JP2010/061759
Other languages
French (fr)
Japanese (ja)
Inventor
聖熹 鄭
Original Assignee
有限会社ティーエム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ティーエム filed Critical 有限会社ティーエム
Priority to PCT/JP2010/061759 priority Critical patent/WO2012008005A1/en
Publication of WO2012008005A1 publication Critical patent/WO2012008005A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/003Multidirectional wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/12Roller-type wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles

Definitions

  • the present invention relates to an inverted pendulum type moving body controlled to maintain an inverted posture by an inverted pendulum control model, and further to a mobile robot using the moving body as a moving means.
  • the robot footprint (planar projection area) must be minimized in order to work while moving smoothly in a space where humans are mixed. Is desirable.
  • the inverted pendulum type moving body described in Patent Literature 1 includes a chassis including a pair of wheels whose rotation axes coincide with each other, a wheel driving motor mounted on the chassis, and a control device that controls rotation of the motor. Yes.
  • the inclination of the moving body is detected by a gyro sensor provided in the main body, and the rotation angle of the wheel is detected by an encoder.
  • the control device calculates the drive torque by substituting the detected tilt angle of the main body and the rotation angle of the wheel into a preset control input formula, and performs the inversion by controlling the wheel drive motor.
  • the calculation of the control input equation is obtained by various control theories based on the motion equation of the moving body.
  • the present invention solves the above-described problems, and even if a space for changing the direction cannot be secured by taking advantage of the inverted pendulum type moving body having a small footprint, the obstacle is avoided and the target position is obtained.
  • An object is to provide an inverted pendulum type moving body that can be easily moved.
  • an inverted pendulum type moving body is an inverted pendulum type moving body in which a pair of wheels having the same rotation axis are attached to a main body and controlled based on an inverted pendulum control model.
  • a third omni foil located above, A frame that rotatably supports the axles of the first, second and third omnifoils via bearings; First, second and third motors for rotating the first, second and third omni foils, respectively; And a control device for controlling the first, second and third motors.
  • the third omni foil is configured using an omni foil unit in which a plurality of free rollers are arranged at equal intervals on the outer periphery of a disc-shaped foil.
  • Each of the first and second omnifoils is composed of two omnifoil units, and the two omnifoil units have the same rotational axis and are out of phase in the rotational direction. It is preferable to fix.
  • the omni foil unit further includes a fourth omni foil configured by using one omni foil unit, the rotation axis of the omni foil unit being orthogonal to the rotation axes of the first and second omni foils, and a grounding point thereof
  • a fourth omni foil configured by using one omni foil unit, the rotation axis of the omni foil unit being orthogonal to the rotation axes of the first and second omni foils, and a grounding point thereof
  • a pulley is attached to each of the axle of the third omni foil and the axle of the fourth omni foil, and the rotation of the third motor is controlled by the belt wound between the two pulleys. It is preferable to transmit to the axle.
  • the width of the main body in the front-rear direction is narrower than the diameter of the first and second omnifoils.
  • the inverted pendulum type moving body according to the present invention can move in an oblique direction or a lateral direction without changing the orientation of the main body by controlling the rotation speeds of the three motors. In addition, by combining these linear motion and turning motion, it is possible to easily pass through a narrow passage.
  • the inverted pendulum type moving body of the present invention has a footprint that is the same as that of a conventional inverted pendulum type moving body, so that a compact and slim mobile robot can be realized. Furthermore, since it is not necessary to secure a space for the main body to turn when changing the moving direction, the advantage of the inverted pendulum type moving body having a small footprint can be maximized.
  • FIG. 3 is a block diagram of a control system of the inverted pendulum type moving body according to the first exemplary embodiment; It is the front view (a) and bottom view (b) of the inverted pendulum type mobile body concerning Embodiment 2 of this invention.
  • FIGS. 1A and 1B are a front view and a side view of a mobile robot employing the inverted pendulum type moving body of the present invention as moving means.
  • the mobile robot 1 is one in which a robot 2 is mounted on top of an inverted pendulum type moving body 3.
  • the robot 2 is a robot body 21 to which a work manipulator 22 and a head 23 having an interpersonal interface function are attached.
  • the robot body 21 includes a control device that controls the operation of the robot 2.
  • the configuration and operation of the robot 2 are widely known, and the present invention provides an inverted pendulum type moving body having a novel configuration, and thus the description of the configuration and operation of the robot is omitted.
  • FIG. 2A and 2B are enlarged views of a front view and a bottom view of the inverted pendulum type moving body (hereinafter simply referred to as “moving body”) 3 according to the present embodiment shown in FIG. .
  • the moving body 3 includes a chassis 31, first and second omnifoils 32 and 33 that function as a pair of wheels, a third omnifoil 34 disposed between the first and second omnifoils 32 and 33, these 3 It comprises a frame 35 that supports three omni foils, and motors 36, 37, and 38 that rotationally drive these three omni foils.
  • the rectangular parallelepiped chassis 31 which is the main body of the moving body 3 is formed of a metal plate having sufficient strength, and accommodates the control device 6 and the battery 9 shown in FIG.
  • a metal U-shaped frame 35 is fixed to the lower surface of the chassis 31, and the axles 40 and 41 of the first and second omnifoils 32 and 33 are rotatable on the frame 35 via a bearing 42. It is supported.
  • a metal sub-frame 39 is connected to the lower surface of the frame 35 by welding or the like, and an axle 43 of the third omni wheel 34 is supported by the sub-frame 39 through a bearing 42 so as to be rotatable. Yes.
  • the axle 40 of the first omni foil 32 is connected to the rotating shaft of the motor 36 attached to the frame 35.
  • the axle 41 of the second omni foil 33 is connected to the rotating shaft of the motor 37 attached to the frame 35.
  • the axle 43 of the third omni foil 34 is connected to the rotating shaft of the motor 38 attached to the subframe 39.
  • the motors 36, 37 and 38 are electrically connected to the control device 6 (see FIG. 5) via a cord (not shown).
  • “Omni foil” is a disc-like foil in which a plurality of free rollers that rotate about an axis orthogonal to the rotation axis are arranged on the outer periphery of the disc-shaped foil. “Omni foil” has the property of moving in any direction by rotating at least one of the axle and the free roller.
  • the omni foil 32 is obtained by fixing two omni foil units 32a and 32b having the same shape to each other by screws (not shown) in a state where the rotation axes coincide with each other and the rotation direction phase is shifted by 30 degrees. is there.
  • Six free rollers 46 that are rotatable about an axis orthogonal to the rotation axis A1 are evenly attached to the outer peripheral portion of the wheel 45 constituting each of the omni foil units 32a and 32b.
  • a shaft 47 provided on the outer peripheral portion of the wheel 45 supports the free roller 46 in a rotatable manner.
  • the four holes 48 provided on the side surface of the foil 45 are for reducing the weight of the foil 45 and reducing the moment of inertia.
  • the omni foil 32 is composed of two omni foil units that are out of phase in the rotational direction.
  • the omni foil 32 is constituted by one omni foil unit, there is a gap between the adjacent free rollers 46, and therefore, when the omni foil is rotated, the rotating shaft 42 moves up and down and smooth rotation cannot be realized.
  • the omni foil 32 is composed of two omni foil units whose rotational directions are out of phase, the gap between the free rollers of one omni foil unit is complemented by the free rollers of the other omni foil unit. It becomes a shape to meet.
  • the outer periphery is substantially circular, so that smooth rotation without vertical movement can be realized.
  • the omni foil 32 Since the omni foil 32 has the above-described configuration, when the motor 36 is driven and the foil 45 rotates, the free roller 46 rotates together with the foil 45. On the other hand, when the free roller 46 in the grounded portion rotates, the omni foil 32 can also move in a direction parallel to the rotation axis A1.
  • the configuration and function of the second omni foil 33 are the same as those of the first omni foil 32, and the two omni foil units 33a and 33b are fixed in a state where the rotation axes coincide with each other and the phases are shifted by 30 degrees. Yes.
  • the third omni foil 34 is composed of a single omni foil unit in which six free rollers 46 are attached to the outer peripheral portion of the wheel 45, and its axle 43 is driven by the motor 38. It is connected to the shaft. Since the above-described omnifoils 32 and 33 achieve smooth rotation without vertical movement, the function of the omnifoils 34 is mainly to move the moving body 3 in a direction parallel to the rotation axis A1.
  • the first and second omnifoils 32 and 33 functioning as a pair of wheels are supported by the frame 35 in a state in which the rotation axis A1 coincides.
  • the third omni foil 34 is supported by the subframe 39 in a state in which the rotation axis A2 is orthogonal to the rotation axis A1 of the first and second omni foils 32 and 33. Yes. Accordingly, the first and second omnifoils 32 and 33 are used to move the moving body 3 forward, backward, or turn, and the third omnifoil 33 is used to move the moving body 3 in the lateral direction.
  • the third omni foil 34 has a point where the omni foil contacts the ground (hereinafter referred to as “grounding point”) C3 and the rotation shafts of the first and second omni foils 32 and 33.
  • the frame 35 is supported on a straight line projected on the floor surface, that is, on a straight line connecting the grounding points C1 and C2 of the omnifoils 32 and 33.
  • the mobile robot 1 When the ground contact point C3 of the third omni foil 34 is not on the straight line connecting the ground contact points C1 and C2 of the first and second omni foils 32 and 33, the mobile robot 1 is centered on the rotation axis of the omni foils 32 and 33. It is impossible to perform an inverted operation for balancing while swinging back and forth, and as a result, it is not possible to maintain the inverted posture of the mobile robot 1.
  • FIG. 3 (a) shows the trajectories of the omnifoils 32, 33, and 34 of the moving body 3 when the mobile robot 1 of the present invention is moved obliquely forward by broken lines.
  • FIG. 3B shows the trajectories of the wheels 32w and 33w of the moving body when the mobile robot described in Patent Document 1 is moved obliquely forward.
  • the movement of the moving body 3 in the direction orthogonal to the rotation axis of the first and second omnifoils 32 and 33 is moved in the “translation direction” and in the direction parallel to the rotation axis. This is called movement in the “lateral direction”, and movement in the direction in which the rotating shaft turns is called movement in the “turning direction”.
  • the mobile robot 1 moves from the initial position to the target position according to the control of the control device 6 (see FIG. 5) housed in the main body 31 of the moving body 3.
  • the inverted posture of the mobile robot 1 can be maintained by controlling the rotation of the omni foils 32 and 33 by the control device 6.
  • the movement trajectory control and the inverted posture control will be described later with reference to FIG.
  • the moving body can move only in the direction orthogonal to the rotation axis of the pair of wheels.
  • FIG. 3 (b) when the mobile robot moves from the initial position S to the target position O diagonally left forward, first, the right wheel 33w is rotated with the left wheel 32w stopped rotating, The rotation is performed until the rotation axis A1 is orthogonal to the target position O. Thereafter, the wheels 32w and 33w are rotated to advance to the target position.
  • the moving body 3 of the present invention can realize a moving method that cannot be realized by a conventional moving body by the functions of the omnifoils 32 and 33.
  • 3A the first and second omnifoils 32 and 33 of the moving body 3 are rotated in the forward direction (upward in the drawing in the drawing), and the third omni foil 34 is laterally moved (see FIG. 3). Then rotate it to the left of the page). Then, the moving body 3 does not change the direction of the rotation axis A1, and the vector V1 determined by the moving direction and speed of the omni foils 32 and 33 and the vector V2 determined by the moving direction and speed of the omni foil 34, as shown in the figure. Move in the direction of the vector V3 obtained by adding together.
  • the direction of the rotational axis A1 of the moving body is once changed and then moved forward toward the target position. Since the moving body 3 can move on a straight line connecting the initial position S and the target position O, the trajectory control can be simplified and the time required for the movement can be shortened.
  • FIG. 4 (a) shows the trajectories of the omni foils 32, 33 and 34 when the mobile robot 1 of the present invention is passed through the passage 5 narrower than the lateral width of the mobile robot 1 sandwiched between the walls 4.
  • FIG. 4 (b) shows the trajectories of the wheels 32w and 33w of the moving body when passing through the passage 5 using a conventional mobile robot.
  • the moving body can move only in the direction orthogonal to the rotation axis A1 of the pair of wheels 32w and 33w. Therefore, as shown in FIG. 4B, when the interval of the passage 5 is narrower than the lateral width of the mobile robot 1, the wheels 32w and 33w collide with the wall 4 and cannot pass through the passage 5.
  • the moving body 3 of the present invention can easily pass through the passage 5.
  • the omni foil 32 on the left side of the mobile robot is moved forward (upward on the page) and the omni foil 33 on the right side is moved back (lower on the page) at the initial position S.
  • the mobile robot 1 can pass through the narrow passage 5.
  • the moving body 3 of the present invention can be used in an oblique direction without changing the direction of the rotating shaft by utilizing the property of the omni foil that can be moved in a direction parallel to the rotating shaft by the free roller attached to the outer peripheral portion. And lateral movement can be realized.
  • taking advantage of the inverted pendulum type moving body that has a small footprint it can easily pass even in places where obstacles are scattered or narrow passages by combining translation method, movement in lateral direction and turning direction.
  • a moving body can be realized.
  • the footprint increases the diameter of the omnifoils 32,33. Because it fits in the rectangle to be connected, the advantages of an inverted pendulum type moving body with a small footprint can be maximized.
  • FIG. 5 shows the configuration of the control system of the moving body 3.
  • constituent members having the same functions as those in the above-mentioned drawings are denoted by the same reference numerals and description thereof is omitted. The same applies to the following description.
  • the control system of the moving body 3 includes a control device 6, motor drivers 71, 72, and 73 for the first, second, and third omnifoils 32, 33, 34, first, second, and third omnifoils 32, 33. And 34, motors 36, 37 and 38 for driving, encoders 81, 82 and 83 attached to the motors 36, 37 and 38, and posture angle detecting means 9 of the moving body 3. Electric power consumed by the control device 6 and the motors 36, 37, 38, etc. is supplied from the battery 10 housed in the chassis 31. A secondary battery or a capacitor is used for the battery 10.
  • the control device 6 includes a CPU, a ROM, a RAM, and the like, and executes a control program stored in the ROM, thereby controlling the motor drivers 71, 72, and 73 corresponding to the torque values of the motors 36, 37, and 38. Calculate the value.
  • the control command value is calculated based on the target trajectory data, the output of the attitude angle detection means 9, and the outputs of the encoders 81, 82, and 83.
  • the motor drivers 71, 72 and 73 control the DC power supplied from the battery (usually the secondary battery) 10 according to the control command value from the control device 6 to drive the motors 36, 37 and 38.
  • the encoders 81, 82 and 83 detect the rotation angles of the motors 36, 37 and 38 and output them to the control device 6.
  • the attitude angle detection means 9 is composed of a gyro sensor or the like, and is arranged in a direction orthogonal to the rotation axis A1 of the first and second omnifoils 32 and 33, detects the inclination angular velocity of the moving body 3, and Output.
  • the control device 6 includes target value input means 61, first control command value calculation means 62, second control command value calculation means 63, control command value addition means 64, and third control command value calculation means 65 as function realization means. Including.
  • the target value input means 61 inputs a target value related to the trajectory until the moving body 3 reaches the target position.
  • the target value input means 61 stores, in a built-in memory, target trajectory data that defines the trajectory of the mobile body 3, the speed and acceleration of the mobile body 3 at each position on the trajectory, and the angular velocity and angular acceleration in the turning direction of the mobile body 3. I remember it.
  • the target value input means 61 calculates the target position, target turning angle and target speed of the moving body 3 in the XY plane from the target trajectory data stored in the memory. These calculated values are used as target values for the first control command value calculating means 62, the second control command value calculating means 63, and the third control command value calculating means 65.
  • the target value input means 61 takes in an image of the obstacle from a camera (not shown) installed in the head 23 of the robot 2 and is obtained as a result of image processing.
  • the position data is added to the above target trajectory data, and the target position, target turning angle, and target speed of the moving body 3 are calculated while correcting the trajectory in real time.
  • the first control command value calculating means 62 calculates a torque command value for controlling the movement of the moving body 3 in the translation direction. Specifically, the deviation between the output of the attitude angle detection means 9 and the target value regarding the translation direction of the moving body 3 output from the target value input means 61 and the current value determined from the outputs of the encoders 81 and 82 is input. The torque command values of the motors 36 and 37 are calculated so that the deviation is reduced and the mobile robot 1 is kept inverted.
  • the first control command value calculation means 62 calculates a command value based on, for example, H ⁇ control theory.
  • H ⁇ control theory When the H ⁇ control theory is used, the first control command value calculation means 62 has robustness so that it can stably invert against disturbances and modeling errors.
  • the command value can also be calculated using a control theory other than the H ⁇ control theory (eg, H2 control theory, ⁇ -design method). Since the method for calculating the command value is widely known, the description is omitted here.
  • the second control command value calculation means 63 calculates a torque command value for controlling the movement of the moving body 3 in the turning direction. Specifically, the second control command value calculation means 63 adds a value obtained by multiplying the deviation between the current position and the target position by a predetermined gain and a value obtained by multiplying the deviation between the current speed and the target speed by a predetermined gain. The torque command value for controlling the motors 36 and 37 is calculated from the added value.
  • the control command value adding means 64 adds the control command value calculated by the first control command value calculating means 62 and the control command value calculated by the second control command value calculating means 63, and adds the added value to the motor driver. 71 and 72 are supplied.
  • the final control command values of the motors 36 and 37 are the sum of the control command value calculated by the first control command value calculation means 62 and the control command value calculated by the second control command value calculation means 63. Become.
  • the third control command value calculation means 65 calculates a torque command value for controlling the movement of the moving body 3 in the lateral direction.
  • the movement control of the moving body 3 in the lateral direction is irrelevant to the inverted pendulum control, and only the position control is performed.
  • the third control command value calculating means 65 is the same method as the second control command value calculating means 63, and is used when the moving body 3 moves in an oblique direction or a lateral direction, or when the motor 38 is turned.
  • a control command value is calculated and supplied to the motor driver 73.
  • control device 6 reads the detection values of the encoders 81, 82, and 83 (that is, the rotation angles of the omni wheels 32, 33, and 34).
  • the first control command value calculation means 62 and the turning position control command value calculation means 63 respectively calculate the rotational speeds of the first and second omnifoils 32 and 33 from the temporal changes in the values of the encoders 81 and 82 that have been read. And the current speed and the current turning speed are calculated from the calculated rotation speeds.
  • the third control command value calculating means 65 calculates the rotational speed of the third omni wheel 34 from the temporal change amount of the value of the encoder 83 that has been read, and calculates the current speed from the calculated rotational speed.
  • the first control command value calculation means 62 reads the output of the attitude angle detection means 9.
  • the first control command value calculation means 62 calculates the target position and the target speed from the time after the control device 6 starts the traveling process and the target trajectory data stored in the target value input means 61.
  • the first control command value calculating means 62 next calculates the torque command values of the motors 36 and 37 relating to the translation direction of the moving body 3 respectively. calculate. Further, the turning position control command value calculation means 63 calculates torque command values of the motors 36 and 37 relating to the turning direction of the moving body 3, respectively. Further, the third control command value calculation means 65 calculates the torque command value of the motor 38 in the lateral direction of the moving body 3.
  • the control command value adding means 64 is a control command value for the motors 36 and 37 calculated by the first control command value calculating means 62 and a control command value for the motors 36 and 37 calculated by the turning position control command value calculating means 63. Are added to the corresponding motor drivers 71 and 72. Further, the third control command value calculating means 65 outputs the calculated control command value to the corresponding motor driver 73.
  • the omni foils 32, 33 and 34 are driven by the above-described processes.
  • processing at the next control timing is started.
  • Each process described above is performed at a predetermined time interval (for example, 1 ms), whereby the mobile robot 1 moves along the trajectory defined by the target trajectory data at a predetermined speed, acceleration, angular velocity, and angular acceleration while maintaining inversion. To do.
  • (Embodiment 2) 6A and 6B are a front view and a bottom view of the moving body 3a according to the second embodiment of the present invention.
  • a fourth omni foil 44 is arranged between the first and second omni foils 32 and 33 of the moving body 3 of the first embodiment in addition to the third omni foil 34. It is a thing.
  • the fourth omni foil 44 is composed of a single omni foil unit, similarly to the third omni foil 34, and the axle is in a state where the rotation axis A3 is orthogonal to the rotation axis A1 of the first and second omni foils 32, 33. 50 is supported by the sub-frame 49 connected to the frame 35a through a bearing 42 so as to be rotatable.
  • the fourth omni foil 44 has a grounding point C4 on a straight line connecting the grounding points C1 and C2 of the first and second omnifoils 32 and 33, similarly to the grounding point C3 of the third omnifoil 34. In a positioned state, it is supported by the subframe 49. The reason why the grounding point C4 of the fourth omni foil 44 is positioned on the straight line connecting the grounding points C1 and C2 is to avoid the inversion control of the mobile robot 1 as in the case of the third omni foil 34.
  • the fourth omni foil 44 is supported by the subframe 49 in a state in which the rotation direction phase is shifted by 30 degrees with respect to the third omni foil 34.
  • a pulley 51 is attached to the axle 43 of the third omni foil 34
  • a pulley 52 is attached to the axle 50 of the fourth omni foil 44.
  • the belt 53 is wound between the pulleys 51 and 52, and the rotation of the motor 38 is transmitted to the omni foil 44 via the pulleys 51 and 52. Since the diameters of the pulleys 51 and 52 are equal, the omnifoils 34 and 44 rotate at the same speed while keeping the phase shifted by 30 degrees.
  • the third omni foil 34 is constituted by a single omni foil unit.
  • the free rollers 46 are instantaneously separated from the floor surface, and the third omni foil 34 is idled.
  • the moving body 3 Fluctuations occur in the movement speed in the lateral direction.
  • the synchronous rotation of the two omnifoils 34 and 44 is realized using a pulley and a belt, but the same applies even if a power transmission mechanism combining a plurality of gears is used instead of the pulley and the belt. Can be realized.
  • the moving body of the present invention it is possible to move in the translation direction, the lateral direction, and the turning direction while taking advantage of the omni foil and taking advantage of the inverted pendulum type moving body that the photo print is small. By combining them, it is possible to realize smooth movement of the mobile robot in a space where humans and robots coexist.
  • the omni foils 32, 33, 34, and 44 are configured using the omni foil unit in which the six free rollers 46 are attached to the outer peripheral portion of the foil 45.
  • the configuration is not limited to this. Needless to say, the number and shape of the free rollers 46 may be changed within a range in which smooth rotation can be realized.
  • the application of the moving body according to the present invention is not limited to a mobile robot. Even if it is used as a moving means for a person to ride or a moving means for a wheelchair, the advantage of the moving body of the present invention that can easily pass through a place where obstacles are scattered or a narrow passage can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Provided is an inverted pendulum type moving body capable of easily moving to a target position by avoiding obstacles even if a space for changing directions cannot be obtained, by utilizing the merits of the pendulum type moving body having a small footprint. Disclosed is an inverted pendulum type moving body (3), wherein a pair of wheels having an identical axis of rotation is attached to a main body, and the moving body is controlled on the basis of an inverted pendulum control model, the pair of wheels being first and second omni wheels (32, 33) comprising a plurality of free rollers (46) attached to the outer peripheral portion of the wheels. The inverted pendulum type moving body is further provided with a third omni wheel (34) comprising a rotational axis (A2) perpendicular to the rotational axis (A1) of the first and second omni wheels (32, 33) and having its grounding point (C3) located on a straight line formed by projecting the rotational axis (A1) of the first and second omni wheels (32, 33) on the floor.

Description

倒立振子型移動体および移動ロボットInverted pendulum type moving body and mobile robot
 本発明は、倒立振子制御モデルにより倒立姿勢を維持するように制御される倒立振子型移動体に関し、さらにその移動体を移動手段として用いた移動ロボットに関する。 The present invention relates to an inverted pendulum type moving body controlled to maintain an inverted posture by an inverted pendulum control model, and further to a mobile robot using the moving body as a moving means.
 人間と共存する環境で作業を行うロボットの形態を考えた場合、人間が混在する空間で円滑に移動しながら作業を行うためには、ロボットのフットプリント(平面投影面積)を最小限にするのが望ましい。 Considering the form of a robot that works in an environment that coexists with humans, the robot footprint (planar projection area) must be minimized in order to work while moving smoothly in a space where humans are mixed. Is desirable.
 このような要求を実現する場合、必然的にロボットの重心位置は高くなり、立ち姿勢の安定性が低下する。一方、実用的な作業を実施させる場合、ロボットの機敏で安全な移動能力が求められるが、この要求は重心の位置の高さと相反する。 When realizing such a requirement, the center of gravity of the robot inevitably increases and the stability of the standing posture decreases. On the other hand, when carrying out practical work, the robot's agile and safe movement capability is required, but this requirement contradicts the height of the center of gravity.
 上述の相反する要求を満たすため、例えば特許文献1に記載されているように、倒立振子型移動体を移動手段として用いた移動ロボットが提案されている。 In order to satisfy the above conflicting requirements, for example, as described in Patent Document 1, a mobile robot using an inverted pendulum type moving body as a moving means has been proposed.
 特許文献1に記載の倒立振子型移動体は、回転軸が一致する一対の車輪を備えたシャーシと、シャーシに装着された車輪駆動用モータと、モータの回転を制御する制御装置とを備えている。 The inverted pendulum type moving body described in Patent Literature 1 includes a chassis including a pair of wheels whose rotation axes coincide with each other, a wheel driving motor mounted on the chassis, and a control device that controls rotation of the motor. Yes.
 移動体の傾斜が本体に備えられたジャイロセンサで検出され、車輪の回転角度がエンコーダによって検出される。制御装置は、検出された本体の傾斜角度と車輪の回転角度とをあらかじめ設定されている制御入力式に代入することで駆動トルクを算出し、車輪駆動用モータを制御することにより倒立を行う。制御入力式の算出は、移動体の運動方程式を基にして、各種制御理論により求められる。 The inclination of the moving body is detected by a gyro sensor provided in the main body, and the rotation angle of the wheel is detected by an encoder. The control device calculates the drive torque by substituting the detected tilt angle of the main body and the rotation angle of the wheel into a preset control input formula, and performs the inversion by controlling the wheel drive motor. The calculation of the control input equation is obtained by various control theories based on the motion equation of the moving body.
特開2006-136962号公報JP 2006-136962 A
 移動ロボットの移動手段に倒立振子型移動体を用いた場合、フットプリントが小さくなる利点があるが、車輪の回転軸は移動体の進行方向に対し常に直交する方向を向いている。従って、斜めや横方向に移動する場合、まずその場で旋回して回転軸の方向を変え、その後、前進しなければならない。 When an inverted pendulum type moving body is used as the moving means of the mobile robot, there is an advantage that the footprint is reduced, but the rotation axis of the wheel is always in a direction orthogonal to the traveling direction of the moving body. Therefore, when moving in an oblique or lateral direction, it is necessary to turn on the spot first to change the direction of the rotation axis, and then move forward.
 その際、一方の車輪は、車輪の幅を半径とする円を描くことになるが、障害物のためにそのスペースを確保できない場合には、指示された方向に移動できない。結果として、特許文献1に記載された移動ロボットでは、フットプリントが小さい倒立振子型移動体のメリットを十分生かすことができなかった。 At that time, one wheel draws a circle whose radius is the width of the wheel, but if the space cannot be secured due to an obstacle, it cannot move in the indicated direction. As a result, the mobile robot described in Patent Document 1 cannot sufficiently take advantage of the inverted pendulum type moving body having a small footprint.
 本発明は上述した問題点を解消するもので、フットプリントが小さい倒立振子型移動体のメリットを生かして、方向を変えるためのスペースを確保できない場合でも、障害物を避けて目標とする位置に容易に移動できる倒立振子型移動体を提供することを目的とする。 The present invention solves the above-described problems, and even if a space for changing the direction cannot be secured by taking advantage of the inverted pendulum type moving body having a small footprint, the obstacle is avoided and the target position is obtained. An object is to provide an inverted pendulum type moving body that can be easily moved.
 上記目的を達成するため、本発明にかかる倒立振子型移動体は、回転軸が一致する一対の車輪が本体に取り付けられ、倒立振子制御モデルに基づいて制御される倒立振子型移動体であって、
 前記一対の車輪として用いられる第1および第2のオムニホイルと、
 前記本体に取り付けられ、前記第1および第2のオムニホイルの回転軸と直交する回転軸を有し、かつその接地点が、前記第1および第2のオムニホイルの回転軸を床面に投影した直線上に位置する第3のオムニホイルと、
 前記第1、第2および第3のオムニホイルの車軸を、軸受を介して回転可能に支持するフレームと、
 前記第1、第2および第3のオムニホイルをそれぞれ回転駆動する第1、第2および第3のモータと、
 前記第1、第2および第3のモータを制御する制御装置と、を備えたことを特徴とする。
In order to achieve the above object, an inverted pendulum type moving body according to the present invention is an inverted pendulum type moving body in which a pair of wheels having the same rotation axis are attached to a main body and controlled based on an inverted pendulum control model. ,
First and second omnifoils used as the pair of wheels;
A straight line that is attached to the main body and has a rotation axis that is orthogonal to the rotation axes of the first and second omnifoils, and whose grounding point projects the rotation axes of the first and second omnifoils onto the floor surface. A third omni foil located above,
A frame that rotatably supports the axles of the first, second and third omnifoils via bearings;
First, second and third motors for rotating the first, second and third omni foils, respectively;
And a control device for controlling the first, second and third motors.
 ここで、前記第3のオムニホイルを、円板状のホイルの外周部に複数のフリーローラが等間隔に配置されたオムニホイルユニットを用いて構成することが好ましい。 Here, it is preferable that the third omni foil is configured using an omni foil unit in which a plurality of free rollers are arranged at equal intervals on the outer periphery of a disc-shaped foil.
 また前記第1および第2のオムニホイルを、それぞれ前記オムニホイルユニットを2個用いて構成し、これら2個のオムニホイルユニットの回転軸が一致し、かつ回転方向の位相がずれた状態で相互に固定することが好ましい。 Each of the first and second omnifoils is composed of two omnifoil units, and the two omnifoil units have the same rotational axis and are out of phase in the rotational direction. It is preferable to fix.
 また前記オムニホイルユニットを1個用いて構成された第4のオムニホイルを更に備え、前記オムニホイルユニットを、その回転軸が前記第1および第2のオムニホイルの回転軸と直交し、かつその接地点が、前記第1および第2のオムニホイルの回転軸を床面に投影した直線上に位置する状態で前記フレームに取り付けることが好ましい。 The omni foil unit further includes a fourth omni foil configured by using one omni foil unit, the rotation axis of the omni foil unit being orthogonal to the rotation axes of the first and second omni foils, and a grounding point thereof However, it is preferable to attach to the said frame in the state located on the straight line which projected the rotating shaft of the said 1st and 2nd omni foil on the floor surface.
 また前記第3のオムニホイルの車軸と前記第4のオムニホイルの車軸のそれぞれにプーリを取り付け、この2つのプーリ間に巻回されたベルトにより、前記第3のモータの回転を前記第4のオムニホイルの車軸に伝達することが好ましい。 A pulley is attached to each of the axle of the third omni foil and the axle of the fourth omni foil, and the rotation of the third motor is controlled by the belt wound between the two pulleys. It is preferable to transmit to the axle.
 また前記本体の前後方向の幅を、前記第1および第2のオムニホイルの直径よりも狭くすることが好ましい。 Further, it is preferable that the width of the main body in the front-rear direction is narrower than the diameter of the first and second omnifoils.
 本発明にかかる倒立振子型移動体は、3つのモータの回転速度を制御することにより、本体の向きを変えることなく、斜め方向や横方向に移動できる。またこれらの直進運動と旋回運動を組み合わせることによって、幅の狭い通路でも容易に通過できる。 The inverted pendulum type moving body according to the present invention can move in an oblique direction or a lateral direction without changing the orientation of the main body by controlling the rotation speeds of the three motors. In addition, by combining these linear motion and turning motion, it is possible to easily pass through a narrow passage.
 また本発明の倒立振子型移動体は、従来の倒立振子型移動体とフットプリントが変わらないため、コンパクトでスリムな移動ロボットを実現できる。更に、移動方向を変える際に本体が旋回するスペースを確保する必要がないため、フットプリントが小さいという倒立振子型移動体のメリットを最大限生かすことができる。 Also, the inverted pendulum type moving body of the present invention has a footprint that is the same as that of a conventional inverted pendulum type moving body, so that a compact and slim mobile robot can be realized. Furthermore, since it is not necessary to secure a space for the main body to turn when changing the moving direction, the advantage of the inverted pendulum type moving body having a small footprint can be maximized.
本発明の倒立振子型移動体を移動手段として採用した移動ロボットの正面図(a)と側面図(b)である。It is the front view (a) and side view (b) of the mobile robot which employ | adopted the inverted pendulum type moving body of this invention as a moving means. 本発明の実施の形態1にかかる倒立振子型移動体の正面図(a)と底面図(b)である。It is the front view (a) and bottom view (b) of the inverted pendulum type mobile body concerning Embodiment 1 of this invention. 倒立振子型移動体の軌道を示す図である。It is a figure which shows the track | orbit of an inverted pendulum type mobile body. 倒立振子型移動体の軌道を示す図である。It is a figure which shows the track | orbit of an inverted pendulum type mobile body. 実施の形態1にかかる倒立振子型移動体の制御系のブロック図である。FIG. 3 is a block diagram of a control system of the inverted pendulum type moving body according to the first exemplary embodiment; 本発明の実施の形態2にかかる倒立振子型移動体の正面図(a)と底面図(b)である。It is the front view (a) and bottom view (b) of the inverted pendulum type mobile body concerning Embodiment 2 of this invention.
 以下、本発明の実施の形態にかかる倒立振子型移動体および移動ロボットについて、図面を参照しながら説明する。 Hereinafter, an inverted pendulum type moving body and a mobile robot according to an embodiment of the present invention will be described with reference to the drawings.
 (実施の形態1)
 <移動ロボットおよび倒立振子型移動体の構成>
 図1(a)および(b)は、本発明の倒立振子型移動体を移動手段として採用した移動ロボットの正面図および側面図である。移動ロボット1は倒立振子型移動体3の上部にロボット2が搭載されたものである。
(Embodiment 1)
<Configuration of mobile robot and inverted pendulum type mobile body>
FIGS. 1A and 1B are a front view and a side view of a mobile robot employing the inverted pendulum type moving body of the present invention as moving means. The mobile robot 1 is one in which a robot 2 is mounted on top of an inverted pendulum type moving body 3.
 ロボット2は、ロボット本体21に作業用のマニピュレータ22および対人インターフェース機能を備えた頭部23が取り付けられたものである。図示しないが、ロボット本体21には、ロボット2の動作を制御する制御装置が内蔵されている。なお、ロボット2の構成および動作については広く知られており、かつ本発明は新規な構成の倒立振子型移動体を提供するものであるため、ロボットの構成および動作については説明を省略する。 The robot 2 is a robot body 21 to which a work manipulator 22 and a head 23 having an interpersonal interface function are attached. Although not shown, the robot body 21 includes a control device that controls the operation of the robot 2. The configuration and operation of the robot 2 are widely known, and the present invention provides an inverted pendulum type moving body having a novel configuration, and thus the description of the configuration and operation of the robot is omitted.
 図2(a)および(b)に、図1に示した本実施の形態にかかる倒立振子型移動体(以降、単に「移動体」と略す)3の正面図および底面図を拡大して示す。移動体3は、シャーシ31、一対の車輪として機能する第1および第2のオムニホイル32、33、この第1および第2のオムニホイル32、33の間に配された第3のオムニホイル34、これら3つのオムニホイルを支持するフレーム35、ならびにこれら3つのオムニホイルを回転駆動するモータ36、37および38で構成されている。 2A and 2B are enlarged views of a front view and a bottom view of the inverted pendulum type moving body (hereinafter simply referred to as “moving body”) 3 according to the present embodiment shown in FIG. . The moving body 3 includes a chassis 31, first and second omnifoils 32 and 33 that function as a pair of wheels, a third omnifoil 34 disposed between the first and second omnifoils 32 and 33, these 3 It comprises a frame 35 that supports three omni foils, and motors 36, 37, and 38 that rotationally drive these three omni foils.
 移動体3の本体である直方体状のシャーシ31は、十分な強度を有する金属板で形成され、内部に図5に示す制御装置6やバッテリ9等が収容されている。シャーシ31の下面には金属製のコ字状のフレーム35が固定され、このフレーム35に第1および第2のオムニホイル32、33の車軸40および41が、軸受42を介して回転可能な状態で支持されている。またフレーム35の下面に、溶接等によって金属製のサブフレーム39が接続されており、このサブフレーム39に第3のオムニホイル34の車軸43が、軸受42を介して回転可能な状態で支持されている。 The rectangular parallelepiped chassis 31 which is the main body of the moving body 3 is formed of a metal plate having sufficient strength, and accommodates the control device 6 and the battery 9 shown in FIG. A metal U-shaped frame 35 is fixed to the lower surface of the chassis 31, and the axles 40 and 41 of the first and second omnifoils 32 and 33 are rotatable on the frame 35 via a bearing 42. It is supported. Also, a metal sub-frame 39 is connected to the lower surface of the frame 35 by welding or the like, and an axle 43 of the third omni wheel 34 is supported by the sub-frame 39 through a bearing 42 so as to be rotatable. Yes.
 第1のオムニホイル32の車軸40は、フレーム35に取り付けられたモータ36の回転軸に連結されている。同様に、第2のオムニホイル33の車軸41は、フレーム35に取り付けられたモータ37の回転軸に連結されている。更に、第3のオムニホイル34の車軸43は、サブフレーム39に取り付けられたモータ38の回転軸に連結されている。モータ36、37および38は、図示しないコードを介して制御装置6(図5参照)に電気的に接続されている。 The axle 40 of the first omni foil 32 is connected to the rotating shaft of the motor 36 attached to the frame 35. Similarly, the axle 41 of the second omni foil 33 is connected to the rotating shaft of the motor 37 attached to the frame 35. Further, the axle 43 of the third omni foil 34 is connected to the rotating shaft of the motor 38 attached to the subframe 39. The motors 36, 37 and 38 are electrically connected to the control device 6 (see FIG. 5) via a cord (not shown).
 次に、オムニホイル32、33および34の構造について説明する。「オムニホイル」は、円板状のホイルの外周部に、回転軸と直交する軸を中心として回転するフリーローラを複数配置したものである。「オムニホイル」は、車軸とフリーローラの少なくとも一方を回転させることによって、あらゆる方向に移動できる性質を備えている。 Next, the structure of the omni foils 32, 33 and 34 will be described. “Omni foil” is a disc-like foil in which a plurality of free rollers that rotate about an axis orthogonal to the rotation axis are arranged on the outer periphery of the disc-shaped foil. “Omni foil” has the property of moving in any direction by rotating at least one of the axle and the free roller.
 オムニホイル32は、同一の形状をした2個のオムニホイルユニット32aと32bが、回転軸が一致し、かつ回転方向の位相が30度ずれた状態で、図示しないネジにより相互に固定されたものである。それぞれのオムニホイルユニット32a、32bを構成するホイル45の外周部には、回転軸A1と直交する軸を中心として回転可能な6個のフリーローラ46が均等に取り付けられている。ホイル45の外周部に設けられた軸47は、フリーローラ46を回転可能に支持する。なおホイル45の側面に設けられた4つの孔48は、ホイル45の重量を減らして慣性モーメントを小さくするためのものである。 The omni foil 32 is obtained by fixing two omni foil units 32a and 32b having the same shape to each other by screws (not shown) in a state where the rotation axes coincide with each other and the rotation direction phase is shifted by 30 degrees. is there. Six free rollers 46 that are rotatable about an axis orthogonal to the rotation axis A1 are evenly attached to the outer peripheral portion of the wheel 45 constituting each of the omni foil units 32a and 32b. A shaft 47 provided on the outer peripheral portion of the wheel 45 supports the free roller 46 in a rotatable manner. The four holes 48 provided on the side surface of the foil 45 are for reducing the weight of the foil 45 and reducing the moment of inertia.
 オムニホイル32を回転方向の位相のずれた2個のオムニホイルユニットで構成する理由について説明する。オムニホイル32を1個のオムニホイルユニットで構成した場合、隣接するフリーローラ46の間に隙間があるため、オムニホイルを回転させたときに回転軸42が上下に移動して滑らかな回転を実現できない。これに対し、オムニホイル32を、回転方向の位相のずれた2個のオムニホイルユニットで構成した場合には、一方のオムニホイルユニットのフリーローラ間の隙間を他方のオムニホイルユニットのフリーローラで補完しあう形になる。結果として、回転軸方向からオムニホイルを見たときに外周がほぼ円形となるため、上下動のない滑らかな回転を実現できる。 The reason why the omni foil 32 is composed of two omni foil units that are out of phase in the rotational direction will be described. When the omni foil 32 is constituted by one omni foil unit, there is a gap between the adjacent free rollers 46, and therefore, when the omni foil is rotated, the rotating shaft 42 moves up and down and smooth rotation cannot be realized. On the other hand, when the omni foil 32 is composed of two omni foil units whose rotational directions are out of phase, the gap between the free rollers of one omni foil unit is complemented by the free rollers of the other omni foil unit. It becomes a shape to meet. As a result, when the omni foil is viewed from the direction of the rotation axis, the outer periphery is substantially circular, so that smooth rotation without vertical movement can be realized.
 オムニホイル32は上述の構成を有するため、モータ36が駆動されてホイル45が回転すると、フリーローラ46がホイル45と一体となって回転する。一方、接地している部分のフリーローラ46が回転することにより、オムニホイル32は回転軸A1に平行な方向にも移動できる。 Since the omni foil 32 has the above-described configuration, when the motor 36 is driven and the foil 45 rotates, the free roller 46 rotates together with the foil 45. On the other hand, when the free roller 46 in the grounded portion rotates, the omni foil 32 can also move in a direction parallel to the rotation axis A1.
 第2のオムニホイル33の構成および機能は第1のオムニホイル32のそれと同じであり、2個のオムニホイルユニット33aと33bが、回転軸が一致し、かつ位相が30度ずれた状態で固定されている。 The configuration and function of the second omni foil 33 are the same as those of the first omni foil 32, and the two omni foil units 33a and 33b are fixed in a state where the rotation axes coincide with each other and the phases are shifted by 30 degrees. Yes.
 第3のオムニホイル34は、オムニホイル32、33と異なり、ホイル45の外周部に6個のフリーローラ46が取り付けられた単一のオムニホイルユニットで構成されており、その車軸43がモータ38の駆動軸に連結されている。前述のオムニホイル32および33によって上下動のない滑らかな回転が実現されるため、オムニホイル34の機能は、移動体3を回転軸A1と平行な方向に移動させることが主体となる。 Unlike the omni foils 32, 33, the third omni foil 34 is composed of a single omni foil unit in which six free rollers 46 are attached to the outer peripheral portion of the wheel 45, and its axle 43 is driven by the motor 38. It is connected to the shaft. Since the above-described omnifoils 32 and 33 achieve smooth rotation without vertical movement, the function of the omnifoils 34 is mainly to move the moving body 3 in a direction parallel to the rotation axis A1.
 図2(a)、(b)に示すように、一対の車輪として機能する第1および第2のオムニホイル32、33は、回転軸A1が一致する状態でフレーム35に支持されている。また図2(b)に示すように、第3のオムニホイル34は、その回転軸A2が、第1および第2のオムニホイル32、33の回転軸A1と直交する状態でサブフレーム39に支持されている。従って、第1および第2のオムニホイル32、33は移動体3を前進、後退もしくは旋回させるために用いられ、第3のオムニホイル33は移動体3を横方向に移動させるために用いられる。 As shown in FIGS. 2A and 2B, the first and second omnifoils 32 and 33 functioning as a pair of wheels are supported by the frame 35 in a state in which the rotation axis A1 coincides. Further, as shown in FIG. 2B, the third omni foil 34 is supported by the subframe 39 in a state in which the rotation axis A2 is orthogonal to the rotation axis A1 of the first and second omni foils 32 and 33. Yes. Accordingly, the first and second omnifoils 32 and 33 are used to move the moving body 3 forward, backward, or turn, and the third omnifoil 33 is used to move the moving body 3 in the lateral direction.
 更に、図2(b)に示すように、第3のオムニホイル34は、オムニホイルが接地する点(以降、「接地点」という)C3が、第1および第2のオムニホイル32、33の回転軸を床面に投影した直線上、すなわちオムニホイル32、33の接地点C1とC2を結ぶ直線上に位置する状態で、フレーム35に支持されている。 Further, as shown in FIG. 2B, the third omni foil 34 has a point where the omni foil contacts the ground (hereinafter referred to as “grounding point”) C3 and the rotation shafts of the first and second omni foils 32 and 33. The frame 35 is supported on a straight line projected on the floor surface, that is, on a straight line connecting the grounding points C1 and C2 of the omnifoils 32 and 33.
 第3のオムニホイル34の接地点C3が、第1および第2のオムニホイル32、33の接地点C1とC2を結ぶ直線上にない場合、移動ロボット1について、オムニホイル32、33の回転軸を中心に前後に振りながらバランスをとる倒立動作ができず、結果として、移動ロボット1の倒立姿勢を保つことができない。 When the ground contact point C3 of the third omni foil 34 is not on the straight line connecting the ground contact points C1 and C2 of the first and second omni foils 32 and 33, the mobile robot 1 is centered on the rotation axis of the omni foils 32 and 33. It is impossible to perform an inverted operation for balancing while swinging back and forth, and as a result, it is not possible to maintain the inverted posture of the mobile robot 1.
 <移動体の基本動作>
 次に、本発明にかかる移動体3の基本的な動作について、従来の移動体と比較しながら説明する。
<Basic movement of moving body>
Next, the basic operation of the moving body 3 according to the present invention will be described in comparison with a conventional moving body.
 図3(a)に、本発明の移動ロボット1を斜め前方に移動させるときの移動体3のオムニホイル32、33および34の軌道を破線で示す。また図3(b)に、特許文献1に記載の移動ロボットを斜め前方に移動させるときの移動体の車輪32wおよび33wの軌道を示す。 FIG. 3 (a) shows the trajectories of the omnifoils 32, 33, and 34 of the moving body 3 when the mobile robot 1 of the present invention is moved obliquely forward by broken lines. FIG. 3B shows the trajectories of the wheels 32w and 33w of the moving body when the mobile robot described in Patent Document 1 is moved obliquely forward.
 なお、以後の説明において、移動体3が第1および第2のオムニホイル32、33の回転軸と直交する方向へ移動することを「並進方向」への移動、回転軸と並行する方向へ移動することを「横進方向」への移動、回転軸が旋回する方向へ移動することを「旋回方向」への移動という。 In the following description, the movement of the moving body 3 in the direction orthogonal to the rotation axis of the first and second omnifoils 32 and 33 is moved in the “translation direction” and in the direction parallel to the rotation axis. This is called movement in the “lateral direction”, and movement in the direction in which the rotating shaft turns is called movement in the “turning direction”.
 移動体3の本体31に収容された制御装置6(図5参照)の制御に従い、移動ロボット1は初期の位置から目標の位置に移動する。移動の際には、オムニホイル32および33の回転を制御装置6によって制御することで移動ロボット1の倒立姿勢を保つことができる。移動軌道の制御および倒立姿勢の制御については、後に図5を参照して説明する。 The mobile robot 1 moves from the initial position to the target position according to the control of the control device 6 (see FIG. 5) housed in the main body 31 of the moving body 3. During the movement, the inverted posture of the mobile robot 1 can be maintained by controlling the rotation of the omni foils 32 and 33 by the control device 6. The movement trajectory control and the inverted posture control will be described later with reference to FIG.
 特許文献1に記載された従来の移動ロボットでは、移動体は、一対の車輪の回転軸と直交する方向にしか移動できない。図3(b)において、移動ロボットが初期の位置Sから左斜め前方の目標の位置Oに移動する場合、最初に、左側の車輪32wの回転を止めた状態で右側の車輪33wを回転させ、回転軸A1が目的の位置Oに対して直交する状態になるまで旋回する。その後、車輪32wおよび33wを回転させて目標位置まで前進する。 In the conventional mobile robot described in Patent Document 1, the moving body can move only in the direction orthogonal to the rotation axis of the pair of wheels. In FIG. 3 (b), when the mobile robot moves from the initial position S to the target position O diagonally left forward, first, the right wheel 33w is rotated with the left wheel 32w stopped rotating, The rotation is performed until the rotation axis A1 is orthogonal to the target position O. Thereafter, the wheels 32w and 33w are rotated to advance to the target position.
 これに対し、本発明の移動体3はオムニホイル32および33の機能により、従来の移動体では実現できない移動方法を実現できる。図3(a)において、移動体3の第1および第2のオムニホイル32、33を前進する方向(図では紙面の上方向)に回転させると共に、第3のオムニホイル34を横進する方向(図では紙面の左方向)に回転させる。すると、移動体3は、回転軸A1の方向を変えることなく、図中に示すように、オムニホイル32、33の移動方向および速度により定まるベクトルV1と、オムニホイル34の移動方向および速度により定まるベクトルV2を加え合わせたベクトルV3の方向にその速度で移動する。 On the other hand, the moving body 3 of the present invention can realize a moving method that cannot be realized by a conventional moving body by the functions of the omnifoils 32 and 33. 3A, the first and second omnifoils 32 and 33 of the moving body 3 are rotated in the forward direction (upward in the drawing in the drawing), and the third omni foil 34 is laterally moved (see FIG. 3). Then rotate it to the left of the page). Then, the moving body 3 does not change the direction of the rotation axis A1, and the vector V1 determined by the moving direction and speed of the omni foils 32 and 33 and the vector V2 determined by the moving direction and speed of the omni foil 34, as shown in the figure. Move in the direction of the vector V3 obtained by adding together.
 図3(a)および(b)から明らかなように、従来の移動体では、一旦移動体の回転軸A1の方向を変え、その後、目標の位置に向かって前進するのに対し、本発明の移動体3では、初期の位置Sと目標の位置Oを結んだ直線上を移動できるため、軌道の制御を単純化できると共に、移動に要する時間を短縮できる。 As is clear from FIGS. 3A and 3B, in the conventional moving body, the direction of the rotational axis A1 of the moving body is once changed and then moved forward toward the target position. Since the moving body 3 can move on a straight line connecting the initial position S and the target position O, the trajectory control can be simplified and the time required for the movement can be shortened.
 図4(a)に、本発明の移動ロボット1を、壁4で挟まれた移動ロボット1の横幅よりも狭い通路5を通過させるときのオムニホイル32、33および34の軌道を示す。また図4(b)に、従来の移動ロボットを用いて通路5を通過させるときの移動体の車輪32wおよび33wの軌道を示す。 FIG. 4 (a) shows the trajectories of the omni foils 32, 33 and 34 when the mobile robot 1 of the present invention is passed through the passage 5 narrower than the lateral width of the mobile robot 1 sandwiched between the walls 4. FIG. 4 (b) shows the trajectories of the wheels 32w and 33w of the moving body when passing through the passage 5 using a conventional mobile robot.
 前述したように、従来の移動ロボットでは、移動体は、一対の車輪32wおよび33wの回転軸A1と直交する方向にしか移動できない。従って、図4(b)に示すように移動ロボット1の横幅よりも通路5の間隔が狭い場合、車輪32wおよび33wが壁4に衝突してしまい、通路5を通過することができない。 As described above, in the conventional mobile robot, the moving body can move only in the direction orthogonal to the rotation axis A1 of the pair of wheels 32w and 33w. Therefore, as shown in FIG. 4B, when the interval of the passage 5 is narrower than the lateral width of the mobile robot 1, the wheels 32w and 33w collide with the wall 4 and cannot pass through the passage 5.
 これに対し、本発明の移動体3は通路5を簡単に通過できる。図4(a)に実線の矢印で示すように、初期の位置Sにおいて移動ロボットの左側のオムニホイル32を前進(紙面の上方向)させ、右側のオムニホイル33を後退(紙面の下方向)させて、回転軸A1が目標の位置Oの方向を向く位置まで旋回させる。その後、第3のオムニホイル34だけを回転させて移動体3を左(紙面の上方向)に横進させれば、移動ロボット1は幅の狭い通路5を通過することができる。 On the other hand, the moving body 3 of the present invention can easily pass through the passage 5. As shown by a solid arrow in FIG. 4A, the omni foil 32 on the left side of the mobile robot is moved forward (upward on the page) and the omni foil 33 on the right side is moved back (lower on the page) at the initial position S. Rotate to a position where the rotation axis A1 faces the target position O. After that, if only the third omni foil 34 is rotated to move the moving body 3 leftward (upward in the drawing), the mobile robot 1 can pass through the narrow passage 5.
 このように本発明の移動体3は、外周部に取り付けられたフリーローラにより回転軸と平行な方向に移動できるというオムニホイルの性質を利用することで、回転軸の方向を変えることなく、斜め方向や横方向への移動を実現できる。結果として、フットプリントが小さいという倒立振子型移動体のメリットを生かし、並進方法、横進方向および旋回方向の移動を組み合わせることによって、障害物が散在するような場所や狭い通路でも容易に通過できる移動体を実現できる。 As described above, the moving body 3 of the present invention can be used in an oblique direction without changing the direction of the rotating shaft by utilizing the property of the omni foil that can be moved in a direction parallel to the rotating shaft by the free roller attached to the outer peripheral portion. And lateral movement can be realized. As a result, taking advantage of the inverted pendulum type moving body that has a small footprint, it can easily pass even in places where obstacles are scattered or narrow passages by combining translation method, movement in lateral direction and turning direction. A moving body can be realized.
 なお、図1に示すようにシャーシ31およびロボット2の本体21の前後方向の幅を、第1および第2のオムニホイル32、33の直径よりも狭くすると、フットプリントがオムニホイル32、33の直径を結ぶ長方形の中に納まるため、フットプリントが小さい倒立振子型移動体のメリットを最大限生かすことができる。 As shown in FIG. 1, when the width of the chassis 31 and the main body 21 of the robot 2 in the front-rear direction is made narrower than the diameters of the first and second omnifoils 32, 33, the footprint increases the diameter of the omnifoils 32,33. Because it fits in the rectangle to be connected, the advantages of an inverted pendulum type moving body with a small footprint can be maximized.
 <移動体の制御系>
 次に、移動体3の軌道制御および姿勢制御を行う制御系について説明する。図5に移動体3の制御系の構成を示す。図において、前述の図と同一の機能を有する構成部材には同一の符号を付して説明を省略する。以降の説明においても同様とする。
<Control system of moving body>
Next, a control system that performs trajectory control and attitude control of the moving body 3 will be described. FIG. 5 shows the configuration of the control system of the moving body 3. In the figure, constituent members having the same functions as those in the above-mentioned drawings are denoted by the same reference numerals and description thereof is omitted. The same applies to the following description.
 移動体3の制御系は、制御装置6、第1、第2および第3のオムニホイル32、33、34用のモータドライバ71、72および73、第1、第2および第3のオムニホイル32、33および34の駆動用モータ36、37および38、モータ36、37および38に取りつけられたエンコーダ81、82および83、ならびに移動体3の姿勢角検出手段9を備えている。制御装置6やモータ36、37、38等で消費される電力は、シャーシ31に収容されたバッテリ10から供給される。バッテリ10には二次電池やキャパシタが用いられる。 The control system of the moving body 3 includes a control device 6, motor drivers 71, 72, and 73 for the first, second, and third omnifoils 32, 33, 34, first, second, and third omnifoils 32, 33. And 34, motors 36, 37 and 38 for driving, encoders 81, 82 and 83 attached to the motors 36, 37 and 38, and posture angle detecting means 9 of the moving body 3. Electric power consumed by the control device 6 and the motors 36, 37, 38, etc. is supplied from the battery 10 housed in the chassis 31. A secondary battery or a capacitor is used for the battery 10.
 制御装置6は、CPU、ROM、RAM等で構成され、ROMに格納された制御プログラムを実行することで、モータ36、37および38のトルク値に対応したモータドライバ71、72および73の制御指令値を算出する。制御指令値は、目標軌道データ、姿勢角検出手段9の出力、ならびにエンコーダ81、82および83の出力に基づいて算出される。 The control device 6 includes a CPU, a ROM, a RAM, and the like, and executes a control program stored in the ROM, thereby controlling the motor drivers 71, 72, and 73 corresponding to the torque values of the motors 36, 37, and 38. Calculate the value. The control command value is calculated based on the target trajectory data, the output of the attitude angle detection means 9, and the outputs of the encoders 81, 82, and 83.
 モータドライバ71、72および73は、制御装置6からの制御指令値に応じて、バッテリ(通常は二次電池)10から供給される直流電力を制御し、モータ36、37および38を駆動する。エンコーダ81、82および83はモータ36、37および38の回転角度を検出し、制御装置6に出力する。 The motor drivers 71, 72 and 73 control the DC power supplied from the battery (usually the secondary battery) 10 according to the control command value from the control device 6 to drive the motors 36, 37 and 38. The encoders 81, 82 and 83 detect the rotation angles of the motors 36, 37 and 38 and output them to the control device 6.
 姿勢角検出手段9はジャイロセンサ等で構成され、第1および第2のオムニホイル32、33の回転軸A1と直交する方向に配置されて、移動体3の傾斜角速度を検出し、制御装置6に出力する。 The attitude angle detection means 9 is composed of a gyro sensor or the like, and is arranged in a direction orthogonal to the rotation axis A1 of the first and second omnifoils 32 and 33, detects the inclination angular velocity of the moving body 3, and Output.
 制御装置6は、機能実現手段として、目標値入力手段61、第1制御指令値算出手段62、第2制御指令値算出手段63、制御指令値加算手段64および第3制御指令値算出手段65を含む。 The control device 6 includes target value input means 61, first control command value calculation means 62, second control command value calculation means 63, control command value addition means 64, and third control command value calculation means 65 as function realization means. Including.
 目標値入力手段61は、移動体3が目標の位置に到達するまでの軌道に関する目標値を入力するものである。目標値入力手段61は内蔵のメモリに、移動体3の軌道、軌道上の各位置における移動体3の速度と加速度、ならびに移動体3の旋回方向の角速度と角加速度を規定する目標軌道データを記憶している。目標値入力手段61は、メモリに記憶されている目標軌道データから、X-Y平面における移動体3の目標位置、目標旋回角および目標速度を算出する。これらの算出値は、第1制御指令値算出手段62、第2制御指令値算出手段63および第3制御指令値算出手段65の目標値として用いられる。
 なお、軌道の途中に障害物がある場合、目標値入力手段61は、ロボット2の頭部23内に設置されたカメラ(図示せず)から障害物の画像を取り込み、画像処理の結果得られる位置データを上述の目標軌道データに加え、リアルタイムで軌道の修正を行いながら、移動体3の目標位置、目標旋回角および目標速度を算出する。
The target value input means 61 inputs a target value related to the trajectory until the moving body 3 reaches the target position. The target value input means 61 stores, in a built-in memory, target trajectory data that defines the trajectory of the mobile body 3, the speed and acceleration of the mobile body 3 at each position on the trajectory, and the angular velocity and angular acceleration in the turning direction of the mobile body 3. I remember it. The target value input means 61 calculates the target position, target turning angle and target speed of the moving body 3 in the XY plane from the target trajectory data stored in the memory. These calculated values are used as target values for the first control command value calculating means 62, the second control command value calculating means 63, and the third control command value calculating means 65.
When there is an obstacle in the middle of the trajectory, the target value input means 61 takes in an image of the obstacle from a camera (not shown) installed in the head 23 of the robot 2 and is obtained as a result of image processing. The position data is added to the above target trajectory data, and the target position, target turning angle, and target speed of the moving body 3 are calculated while correcting the trajectory in real time.
 第1制御指令値算出手段62は、並進方向に関する移動体3の運動を制御するためのトルク指令値を算出する。具体的には、姿勢角検出手段9の出力、および目標値入力手段61から出力される移動体3の並進方向に関する目標値と、エンコーダ81および82の出力から決まる現在値との偏差を入力として、その偏差を小さくすると共に移動ロボット1が倒立を維持するようにモータ36および37のトルク指令値を算出する。 The first control command value calculating means 62 calculates a torque command value for controlling the movement of the moving body 3 in the translation direction. Specifically, the deviation between the output of the attitude angle detection means 9 and the target value regarding the translation direction of the moving body 3 output from the target value input means 61 and the current value determined from the outputs of the encoders 81 and 82 is input. The torque command values of the motors 36 and 37 are calculated so that the deviation is reduced and the mobile robot 1 is kept inverted.
 第1制御指令値算出手段62は、例えばH∞制御理論に基づいて指令値を算出する。H∞制御理論を用いた場合、第1制御指令値算出手段62は外乱やモデル化誤差に対して安定倒立可能なようにロバスト性を有することになる。H∞制御理論以外の制御理論(例えば、H2制御理論、μ-設計法)を用いて指令値を算出することもできる。なお、指令値算出の方法については広く知られているため、ここでは説明を省略する。 The first control command value calculation means 62 calculates a command value based on, for example, H∞ control theory. When the H∞ control theory is used, the first control command value calculation means 62 has robustness so that it can stably invert against disturbances and modeling errors. The command value can also be calculated using a control theory other than the H∞ control theory (eg, H2 control theory, μ-design method). Since the method for calculating the command value is widely known, the description is omitted here.
 第2制御指令値算出手段63は、旋回方向に関する移動体3の運動を制御するためのトルク指令値を算出する。具体的には、第2制御指令値算出手段63は、現在位置と目標位置の偏差に所定のゲインを乗じたものと、現在速度と目標速度の偏差に所定のゲインを乗じたものを加算し、その加算した値からモータ36および37を制御するためのトルク指令値を算出する。 The second control command value calculation means 63 calculates a torque command value for controlling the movement of the moving body 3 in the turning direction. Specifically, the second control command value calculation means 63 adds a value obtained by multiplying the deviation between the current position and the target position by a predetermined gain and a value obtained by multiplying the deviation between the current speed and the target speed by a predetermined gain. The torque command value for controlling the motors 36 and 37 is calculated from the added value.
 制御指令値加算手段64は、第1制御指令値算出手段62で算出された制御指令値と第2制御指令値算出手段63で算出された制御指令値とを加算し、加算した値をモータドライバ71および72に供給する。 The control command value adding means 64 adds the control command value calculated by the first control command value calculating means 62 and the control command value calculated by the second control command value calculating means 63, and adds the added value to the motor driver. 71 and 72 are supplied.
 上述したように、移動体3の並進方向の制御においては、倒立振子制御と位置制御が同時に行われる。これに対し、移動体3の旋回方向には位置制御のみが行われ、これらの制御は、実用上のスピードではほとんど干渉しない。モータ36および37の最終的な制御指令値は、第1制御指令値算出手段62で算出された制御指令値と第2制御指令値算出手段63で算出された制御指令値を加え合わせたものとなる。 As described above, the inverted pendulum control and the position control are simultaneously performed in the translational direction control of the moving body 3. On the other hand, only position control is performed in the turning direction of the mobile body 3, and these controls hardly interfere at practical speed. The final control command values of the motors 36 and 37 are the sum of the control command value calculated by the first control command value calculation means 62 and the control command value calculated by the second control command value calculation means 63. Become.
 第3制御指令値算出手段65は、移動体3の横進方向に関する移動を制御するためのトルク指令値を算出する。移動体3の横進方向の移動制御は倒立振子制御と無関係であり、位置制御のみが行われる。第3制御指令値算出手段65は、第2制御指令値算出手段63と同様の方法で、移動体3が斜め方向や横方向へ移動する際、また旋回をする際に必要となるモータ38の制御指令値を算出しモータドライバ73に供給する。 The third control command value calculation means 65 calculates a torque command value for controlling the movement of the moving body 3 in the lateral direction. The movement control of the moving body 3 in the lateral direction is irrelevant to the inverted pendulum control, and only the position control is performed. The third control command value calculating means 65 is the same method as the second control command value calculating means 63, and is used when the moving body 3 moves in an oblique direction or a lateral direction, or when the motor 38 is turned. A control command value is calculated and supplied to the motor driver 73.
 <移動体の走行制御>
 次に、制御装置6による移動体3の走行制御について説明する。最初に、制御装置6は、エンコーダ81、82および83の検出値(すなわちオムニホイル32、33および34の回転角度)を読み込む。
<Running control of moving body>
Next, traveling control of the moving body 3 by the control device 6 will be described. First, the control device 6 reads the detection values of the encoders 81, 82, and 83 (that is, the rotation angles of the omni wheels 32, 33, and 34).
 次に、第1制御指令値算出手段62および旋回位置制御指令値算出手段63は、それぞれ読み込んだエンコーダ81および82の値の時間的変化量から第1および第2のオムニホイル32、33の回転速度を算出し、これら算出された回転速度から現在速度および現在旋回速度を算出する。 Next, the first control command value calculation means 62 and the turning position control command value calculation means 63 respectively calculate the rotational speeds of the first and second omnifoils 32 and 33 from the temporal changes in the values of the encoders 81 and 82 that have been read. And the current speed and the current turning speed are calculated from the calculated rotation speeds.
 第3制御指令値算出手段65についても、同様に読み込んだエンコーダ83の値の時間的変化量から第3のオムニホイル34の回転速度を算出し、算出された回転速度から現在速度を算出する。 Similarly, the third control command value calculating means 65 calculates the rotational speed of the third omni wheel 34 from the temporal change amount of the value of the encoder 83 that has been read, and calculates the current speed from the calculated rotational speed.
 次に第1制御指令値算出手段62は、姿勢角検出手段9の出力を読み込む。第1制御指令値算出手段62は、制御装置6が走行処理を開始してからの時間と目標値入力手段61に記憶されている目標軌道データとから、目標位置と目標速度を算出する。 Next, the first control command value calculation means 62 reads the output of the attitude angle detection means 9. The first control command value calculation means 62 calculates the target position and the target speed from the time after the control device 6 starts the traveling process and the target trajectory data stored in the target value input means 61.
 上述の各処理により移動体3の現在位置と目標位置が算出されるため、次に、第1制御指令値算出手段62は、移動体3の並進方向に関するモータ36および37のトルク指令値をそれぞれ算出する。また旋回位置制御指令値算出手段63は、移動体3の旋回方向に関するモータ36および37のトルク指令値をそれぞれ算出する。更に第3制御指令値算出手段65は、移動体3の横進方向に関するモータ38のトルク指令値を算出する。 Since the current position and the target position of the moving body 3 are calculated by the above-described processes, the first control command value calculating means 62 next calculates the torque command values of the motors 36 and 37 relating to the translation direction of the moving body 3 respectively. calculate. Further, the turning position control command value calculation means 63 calculates torque command values of the motors 36 and 37 relating to the turning direction of the moving body 3, respectively. Further, the third control command value calculation means 65 calculates the torque command value of the motor 38 in the lateral direction of the moving body 3.
 制御指令値加算手段64は、第1制御指令値算出手段62で算出されたモータ36および37の制御指令値と、旋回位置制御指令値算出手段63で算出されたモータ36および37の制御指令値を加算し、対応するモータドライバ71および72に出力する。また第3制御指令値算出手段65は、算出した制御指令値を対応するモータドライバ73に出力する。 The control command value adding means 64 is a control command value for the motors 36 and 37 calculated by the first control command value calculating means 62 and a control command value for the motors 36 and 37 calculated by the turning position control command value calculating means 63. Are added to the corresponding motor drivers 71 and 72. Further, the third control command value calculating means 65 outputs the calculated control command value to the corresponding motor driver 73.
 上述の各処理によりオムニホイル32、33および34が駆動される。一連の処理が終わると、次の制御タイミングにおける処理が開始される。上述の各処理は所定の時間間隔(例えば1ms)で行われ、これによって移動ロボット1は倒立を維持しながら、目標軌道データで規定された軌道を所定の速度、加速度、角速度および角加速度で運動する。 The omni foils 32, 33 and 34 are driven by the above-described processes. When a series of processing is completed, processing at the next control timing is started. Each process described above is performed at a predetermined time interval (for example, 1 ms), whereby the mobile robot 1 moves along the trajectory defined by the target trajectory data at a predetermined speed, acceleration, angular velocity, and angular acceleration while maintaining inversion. To do.
 (実施の形態2)
 図6(a)および(b)に、本発明の実施の形態2にかかる移動体3aの正面図および底面図を示す。本実施の形態にかかる移動体3aは、実施の形態1の移動体3の第1および第2のオムニホイル32、33の間に、第3のオムニホイル34に加えて第4のオムニホイル44が配置されたものである。
(Embodiment 2)
6A and 6B are a front view and a bottom view of the moving body 3a according to the second embodiment of the present invention. In the moving body 3a according to the present embodiment, a fourth omni foil 44 is arranged between the first and second omni foils 32 and 33 of the moving body 3 of the first embodiment in addition to the third omni foil 34. It is a thing.
 第4のオムニホイル44は、第3のオムニホイル34と同様に単一のオムニホイルユニットで構成され、回転軸A3が第1および第2のオムニホイル32、33の回転軸A1と直交する状態において、車軸50がフレーム35aに接続されたサブフレーム49に、軸受42を介して回転可能な状態で支持されている。 The fourth omni foil 44 is composed of a single omni foil unit, similarly to the third omni foil 34, and the axle is in a state where the rotation axis A3 is orthogonal to the rotation axis A1 of the first and second omni foils 32, 33. 50 is supported by the sub-frame 49 connected to the frame 35a through a bearing 42 so as to be rotatable.
 更に、第4のオムニホイル44は、その接地点C4が、第3のオムニホイル34の接地点C3と同様に、第1および第2のオムニホイル32、33の接地点C1とC2とを結ぶ直線上に位置する状態で、サブフレーム49に支持されている。第4のオムニホイル44の接地点C4を接地点C1とC2を結ぶ直線上に位置させるのは、第3のオムニホイル34と同様に、移動ロボット1の倒立制御ができなくなるのを避けるためである。 Further, the fourth omni foil 44 has a grounding point C4 on a straight line connecting the grounding points C1 and C2 of the first and second omnifoils 32 and 33, similarly to the grounding point C3 of the third omnifoil 34. In a positioned state, it is supported by the subframe 49. The reason why the grounding point C4 of the fourth omni foil 44 is positioned on the straight line connecting the grounding points C1 and C2 is to avoid the inversion control of the mobile robot 1 as in the case of the third omni foil 34.
 第4のオムニホイル44は、第3のオムニホイル34に対し回転方向の位相が30度ずれた状態でサブフレーム49に支持されている。また第3のオムニホイル34の車軸43にプーリ51が取り付けられ、第4のオムニホイル44の車軸50にプーリ52が取り付けられている。更に、プーリ51と52の間にベルト53が巻回され、モータ38の回転がプーリ51および52を介してオムニホイル44に伝達される。プーリ51および52の直径は等しいため、オムニホイル34と44は、位相が30度ずれた状態を保ちながら等しい速度で回転する。 The fourth omni foil 44 is supported by the subframe 49 in a state in which the rotation direction phase is shifted by 30 degrees with respect to the third omni foil 34. A pulley 51 is attached to the axle 43 of the third omni foil 34, and a pulley 52 is attached to the axle 50 of the fourth omni foil 44. Further, the belt 53 is wound between the pulleys 51 and 52, and the rotation of the motor 38 is transmitted to the omni foil 44 via the pulleys 51 and 52. Since the diameters of the pulleys 51 and 52 are equal, the omnifoils 34 and 44 rotate at the same speed while keeping the phase shifted by 30 degrees.
 実施の形態1では、第3のオムニホイル34は単一のオムニホイルユニットで構成されている。このような構成では、フリーローラ46間の中間点が回転軸の下方に来たとき、瞬間的にフリーローラ46が床面から離れて第3のオムニホイル34が空回りし、結果として、移動体3の横進方向の移動速度に変動が生じる。 In the first embodiment, the third omni foil 34 is constituted by a single omni foil unit. In such a configuration, when the intermediate point between the free rollers 46 comes below the rotation axis, the free rollers 46 are instantaneously separated from the floor surface, and the third omni foil 34 is idled. As a result, the moving body 3 Fluctuations occur in the movement speed in the lateral direction.
 これに対し、第1および第2のオムニホイル32、33と同様に、回転方向の位相が30度ずれたオムニホイルユニットを2個配置すると、オムニホイル34、44のいずれか、もしくは両方のフリーローラ46が常に接地することになるため、円滑な移動が可能となる。 On the other hand, when two omnifoil units whose rotational directions are shifted by 30 degrees are arranged in the same manner as the first and second omnifoils 32 and 33, either one of the omnifoils 34 and 44, or both free rollers 46 are disposed. Since it is always grounded, smooth movement is possible.
 なお、本実施の形態では、プーリとベルトを用いて2個のオムニホイル34と44の同期回転を実現したが、プーリとベルトの代わりに複数のギアを組み合わせた動力伝達機構を用いても、同様の機能を実現できる。 In this embodiment, the synchronous rotation of the two omnifoils 34 and 44 is realized using a pulley and a belt, but the same applies even if a power transmission mechanism combining a plurality of gears is used instead of the pulley and the belt. Can be realized.
 以上説明したように本発明の移動体を用いれば、オムニホイルの性質を利用し、フォトプリントが小さいという倒立振子型移動体のメリットを生かしながら、並進方向、横進方向および旋回方向への移動を組み合わせることによって、人間とロボットが混在して活動する空間での移動ロボットの円滑な移動を実現できる。
 なお、上述の各実施の形態では、オムニホイル32、33、34および44を、ホイル45の外周部に6個のフリーローラ46が取り付けられたオムニホイルユニットを用いて構成したが、オムニホイルユニットの構成はこれに限定されない。円滑な回転を実現できる範囲で、フリーローラ46の数や形状を変えても良いことはいうまでもない。
As described above, if the moving body of the present invention is used, it is possible to move in the translation direction, the lateral direction, and the turning direction while taking advantage of the omni foil and taking advantage of the inverted pendulum type moving body that the photo print is small. By combining them, it is possible to realize smooth movement of the mobile robot in a space where humans and robots coexist.
In each of the above-described embodiments, the omni foils 32, 33, 34, and 44 are configured using the omni foil unit in which the six free rollers 46 are attached to the outer peripheral portion of the foil 45. The configuration is not limited to this. Needless to say, the number and shape of the free rollers 46 may be changed within a range in which smooth rotation can be realized.
 本発明にかかる移動体の用途は移動ロボットに限定されない。人間が乗るための移動手段や車椅子の移動手段としても用いても、障害物が散在する場所や狭い通路を容易に通過できる本発明の移動体のメリットを生かすことができる。 The application of the moving body according to the present invention is not limited to a mobile robot. Even if it is used as a moving means for a person to ride or a moving means for a wheelchair, the advantage of the moving body of the present invention that can easily pass through a place where obstacles are scattered or a narrow passage can be utilized.
 1 移動ロボット
 2 ロボット
 3 倒立振子型移動体
 6 制御装置
 9 姿勢角検出手段
 10 バッテリ
 21 ロボット本体
 22 マニピュレータ
 23 頭部
 31 シャーシ
 32、33、34、44 オムニホイル
 32a、32b、33a、33b オムニホイルユニット
 35、35a フレーム
 36、37、38 モータ
 39、49 サブフレーム
 40、41、43、50 車軸
 42 軸受
 45 ホイル
 46 フリーローラ
 47 軸
 48 孔
 51、52 プーリ
 53 ベルト
 61 目標値入力手段
 62 第1制御指令値算出手段
 63 第2制御指令値算出手段
 64 制御指令値加算手段
 65 第3制御指令値算出手段
 71、72、73 モータドライバ
 81、82、83 エンコーダ
DESCRIPTION OF SYMBOLS 1 Mobile robot 2 Robot 3 Inverted pendulum type mobile body 6 Control apparatus 9 Attitude angle detection means 10 Battery 21 Robot main body 22 Manipulator 23 Head 31 Chassis 32, 33, 34, 44 Omnifoil 32a, 32b, 33a, 33b Omnifoil unit 35 , 35a Frame 36, 37, 38 Motor 39, 49 Subframe 40, 41, 43, 50 Axle 42 Bearing 45 Wheel 46 Free roller 47 Shaft 48 Hole 51, 52 Pulley 53 Belt 61 Target value input means 62 First control command value Calculation means 63 Second control command value calculation means 64 Control command value addition means 65 Third control command value calculation means 71, 72, 73 Motor drivers 81, 82, 83 Encoder

Claims (7)

  1.  回転軸が一致する一対の車輪が本体に取り付けられ、倒立振子制御モデルに基づいて制御される倒立振子型移動体であって、
     前記一対の車輪として用いられる第1および第2のオムニホイルと、
     前記本体に取り付けられ、前記第1および第2のオムニホイルの回転軸と直交する回転軸を有し、かつその接地点が、前記第1および第2のオムニホイルの回転軸を床面に投影した直線上に位置する第3のオムニホイルと、
     前記第1、第2および第3のオムニホイルの車軸を、軸受を介して回転可能に支持するフレームと、
     前記第1、第2および第3のオムニホイルをそれぞれ回転駆動する第1、第2および第3のモータと、
     前記第1、第2および第3のモータを制御する制御装置と、を備えたことを特徴とする倒立振子型移動体。
    A pair of wheels having the same rotation axis is attached to the main body, and is an inverted pendulum type moving body controlled based on an inverted pendulum control model,
    First and second omnifoils used as the pair of wheels;
    A straight line that is attached to the main body and has a rotation axis that is orthogonal to the rotation axes of the first and second omnifoils, and whose grounding point projects the rotation axes of the first and second omnifoils onto the floor surface. A third omni foil located above,
    A frame that rotatably supports the axles of the first, second and third omnifoils via bearings;
    First, second and third motors for rotating the first, second and third omni foils, respectively;
    An inverted pendulum type moving body comprising: a control device that controls the first, second, and third motors.
  2.  前記第3のオムニホイルは、円板状のホイルの外周部に複数のフリーローラが等間隔に配置されたオムニホイルユニットを用いて構成されていることを特徴とする、請求項1に記載の倒立振子型移動体。 2. The inverted omniform according to claim 1, wherein the third omni foil is configured using an omni foil unit in which a plurality of free rollers are arranged at equal intervals on an outer peripheral portion of a disc-shaped foil. Pendulum type moving body.
  3.  前記第1および第2のオムニホイルは、それぞれ前記オムニホイルユニットを2個用いて構成され、
     これら2個のオムニホイルユニットの回転軸が一致し、かつ回転方向の位相がずれた状態で相互に固定されていることを特徴とする、請求項2に記載の倒立振子型移動体。
    Each of the first and second omnifoils is composed of two omnifoil units,
    The inverted pendulum type moving body according to claim 2, wherein the rotating shafts of these two omni foil units coincide with each other and are fixed to each other in a state of being out of phase in the rotational direction.
  4.  前記オムニホイルユニットを1個用いて構成された第4のオムニホイルを更に備え、
     前記オムニホイルユニットは、その回転軸が前記第1および第2のオムニホイルの回転軸と直交し、かつその接地点が、前記第1および第2のオムニホイルの回転軸を床面に投影した直線上に位置する状態で前記フレームに取り付けられていることを特徴とする、請求項2または3に記載の倒立振子型移動体。
    A fourth omni foil configured using one omni foil unit;
    The omni foil unit has a rotation axis orthogonal to the rotation axes of the first and second omni foils, and a grounding point on a straight line obtained by projecting the rotation axes of the first and second omni foils onto the floor surface. The inverted pendulum type moving body according to claim 2 or 3, wherein the inverted pendulum type moving body is attached to the frame in a state of being located at a position.
  5.  前記第3のオムニホイルの車軸と前記第4のオムニホイルの車軸のそれぞれにプーリが取り付けられ、この2つのプーリ間に巻回されたベルトにより、前記第3のモータの回転が前記第4のオムニホイルの車軸に伝達されることを特徴とする、請求項4に記載の倒立振子型移動体。 A pulley is attached to each of the axle of the third omni foil and the axle of the fourth omni foil, and the belt wound between the two pulleys causes the rotation of the third motor to rotate the fourth omni foil. The inverted pendulum type moving body according to claim 4, wherein the inverted pendulum type moving body is transmitted to an axle.
  6.  前記本体の前後方向の幅は、前記第1および第2のオムニホイルの直径よりも狭いことを特徴とする、請求項1ないし5のいずれかに記載の倒立振子型移動体。 The inverted pendulum type moving body according to any one of claims 1 to 5, wherein a width of the main body in the front-rear direction is narrower than a diameter of the first and second omni foils.
  7.  移動手段として、請求項1ないし6のいずれか1項に記載の倒立振子型移動体を用いることを特徴とする移動ロボット。 A mobile robot using the inverted pendulum type moving body according to any one of claims 1 to 6 as the moving means.
PCT/JP2010/061759 2010-07-12 2010-07-12 Inverted pendulum type moving body and moving robot WO2012008005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061759 WO2012008005A1 (en) 2010-07-12 2010-07-12 Inverted pendulum type moving body and moving robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061759 WO2012008005A1 (en) 2010-07-12 2010-07-12 Inverted pendulum type moving body and moving robot

Publications (1)

Publication Number Publication Date
WO2012008005A1 true WO2012008005A1 (en) 2012-01-19

Family

ID=45469030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061759 WO2012008005A1 (en) 2010-07-12 2010-07-12 Inverted pendulum type moving body and moving robot

Country Status (1)

Country Link
WO (1) WO2012008005A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205475A (en) * 2013-04-16 2014-10-30 京町産業車輌株式会社 Wheel
CN105644643A (en) * 2016-02-25 2016-06-08 四川阿泰因机器人智能装备有限公司 Omnidirectional wheel suspension device for ground mobile robot
CN105730216A (en) * 2016-01-12 2016-07-06 沈阳工业大学 Integrated universal wheel and control method thereof
CN105773569A (en) * 2016-02-25 2016-07-20 四川阿泰因机器人智能装备有限公司 Chassis system of ground mobile robot
CN107457767A (en) * 2017-07-07 2017-12-12 歌尔科技有限公司 A kind of urgent avoidance robot and its design method
CN110709316A (en) * 2017-05-26 2020-01-17 学校法人东京理科大学 Omnidirectional mobile device and attitude control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136962A (en) * 2004-11-11 2006-06-01 Hitachi Ltd Mobile robot
JP2008155652A (en) * 2006-12-20 2008-07-10 Murata Mach Ltd Self-traveling conveying truck
JP2009040165A (en) * 2007-08-07 2009-02-26 Kanto Auto Works Ltd Three-wheeled traveling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136962A (en) * 2004-11-11 2006-06-01 Hitachi Ltd Mobile robot
JP2008155652A (en) * 2006-12-20 2008-07-10 Murata Mach Ltd Self-traveling conveying truck
JP2009040165A (en) * 2007-08-07 2009-02-26 Kanto Auto Works Ltd Three-wheeled traveling device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205475A (en) * 2013-04-16 2014-10-30 京町産業車輌株式会社 Wheel
CN105730216A (en) * 2016-01-12 2016-07-06 沈阳工业大学 Integrated universal wheel and control method thereof
CN105644643A (en) * 2016-02-25 2016-06-08 四川阿泰因机器人智能装备有限公司 Omnidirectional wheel suspension device for ground mobile robot
CN105773569A (en) * 2016-02-25 2016-07-20 四川阿泰因机器人智能装备有限公司 Chassis system of ground mobile robot
CN110709316A (en) * 2017-05-26 2020-01-17 学校法人东京理科大学 Omnidirectional mobile device and attitude control method thereof
CN110709316B (en) * 2017-05-26 2021-09-07 学校法人东京理科大学 Omnidirectional mobile device and attitude control method thereof
CN107457767A (en) * 2017-07-07 2017-12-12 歌尔科技有限公司 A kind of urgent avoidance robot and its design method
CN107457767B (en) * 2017-07-07 2020-04-21 歌尔科技有限公司 Emergency obstacle avoidance robot and design method thereof

Similar Documents

Publication Publication Date Title
WO2012008005A1 (en) Inverted pendulum type moving body and moving robot
US8661929B2 (en) Device for generating stiffness and method for controlling stiffness and joint of robot manipulator comprising the same
US8269447B2 (en) Magnetic spherical balancing robot drive
US5374879A (en) Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom
US9108665B2 (en) Moving mechanism
JP2005094858A (en) Travelling apparatus and its control method
JP2004215350A (en) Drive controller, controlling method and two-wheeled vehicle
JP2007112168A (en) Spherical moving device
US20200133285A1 (en) Chassis structure for robot and robot with the same
WO2015145710A1 (en) Moving body and control device for same
Li et al. Design and basic experiments of a transformable wheel-track robot with self-adaptive mobile mechanism
CN106200646A (en) A kind of based on omnidirectional&#39;s car around the control method of arbitrfary point fixed-axis rotation and system
JP3809698B2 (en) Transport device
JP2018188064A (en) Omnidirectional mobile vehicle
WO2017006910A1 (en) Traveling object and control method therefor
WO2015035095A1 (en) Three-wheeled mobile robot
KR20110114975A (en) Vision stabilization apparatus for mobile robot
KR20130074143A (en) Rider robot with omni-in wheel
JP4953359B2 (en) Automated guided vehicle
JP2008137631A (en) Carrier with electric caster
KR101444782B1 (en) Moving object having driving unit
JP6970852B1 (en) Driving system
CN115325108A (en) Double-wheel type driving module and wheel type transportation robot
Doroftei et al. Design and control of an omni-directional mobile robot
CN113147898A (en) Robot chassis and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP