WO2012007692A1 - Procédé et dispositif d'imagerie bi-spectral multifonctions - Google Patents

Procédé et dispositif d'imagerie bi-spectral multifonctions Download PDF

Info

Publication number
WO2012007692A1
WO2012007692A1 PCT/FR2011/051674 FR2011051674W WO2012007692A1 WO 2012007692 A1 WO2012007692 A1 WO 2012007692A1 FR 2011051674 W FR2011051674 W FR 2011051674W WO 2012007692 A1 WO2012007692 A1 WO 2012007692A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectral
images
information
image
generating
Prior art date
Application number
PCT/FR2011/051674
Other languages
English (en)
Inventor
Jean-Claude Fontanella
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US13/810,079 priority Critical patent/US20130235211A1/en
Priority to EP11741667.7A priority patent/EP2593904A1/fr
Publication of WO2012007692A1 publication Critical patent/WO2012007692A1/fr
Priority to IL224156A priority patent/IL224156A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/255Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/58Extraction of image or video features relating to hyperspectral data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/194Terrestrial scenes using hyperspectral data, i.e. more or other wavelengths than RGB
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Definitions

  • the present invention relates to a multifunctional bi-spectral imaging method, of the type comprising a step of acquiring a plurality of bi-spectral images, each bi-spectral image being the combination of two images acquired in two different spectral bands. , and a step of generating a plurality of images each giving an impression of depth by combining the two images acquired in the two different bands, the plurality of images being an image information.
  • the invention also relates to an imaging device implementing the imaging method.
  • a bi-spectral device is a device for acquiring an image in two spectral bands, for example the spectral bands 3-5 ⁇ and 8-12 ⁇ .
  • a special case is that of bi-color devices that use two sub-bands of the same main spectral band. For example, if we consider the band between 3 and 5 ⁇ , some two-color infrared devices acquire an image in the sub-band of 3.4 to 4.2 ⁇ and another image in the sub-band of 4.5 at 5 ⁇ .
  • the invention applies to the field of optronic detection and panoramic vision systems. These systems are used in particular for the air platforms (transport aircraft, combat aircraft, drones and helicopters), maritime and land platforms (armored, troop transport ...) for surveillance and / or combat. Such platforms need a lot of information.
  • a threat departure it is important to be able to detect what is called a threat departure and identify the type of threat, for example, a missile, a heavy weapon (cannon) or a gunshot.
  • patent EP 0 759 674 describes a method for giving the impression of depth in an image, which is very useful information for the pilot of an air platform for example.
  • the patent also discloses a camera designed to implement this method to provide an image giving the impression of depth.
  • This camera is a bi-spectral camera that is to say adapted to provide two images in two distinct spectral bands in the infrared.
  • the image giving the impression of depth is obtained by combining the two images acquired in the two spectral bands.
  • the DAIRS system for "Distributed Aperture InfraRed Systems” developed by Northrop Grumman for the "Joint Strike Fighter” (JSF) aircraft is a single-spectral imaging device, that is to say for acquire an image in a single spectral band.
  • This system therefore delivers imagery information. Nevertheless, it does not present an impression of depth obtained by bi-spectral or two-color systems.
  • the system is not able to detect a very brief event such as a threat start such as a shot.
  • the object of the invention is to provide a method and an imaging device less cumbersome, easier to integrate and globally less expensive than a set of single-function devices for platforms such as surveillance or combat platforms.
  • the subject of the invention is an imaging method of the aforementioned type, characterized in that it comprises a step of simultaneous processing of the plurality of bi-spectral images to generate in addition to the information of imaging standby information and / or threat start information, comprising the following steps:
  • the imaging method comprises one or more of the following characteristics:
  • the two bands belong to the same infrared spectral band whose wavelength is between 3 and 5 ⁇ and are each located on either side of a wavelength substantially equal to 4.3 ⁇ ;
  • the step of acquiring a plurality of bi-spectral images is performed at a high frequency at least equal to substantially 400 Hz; the step of acquiring a plurality of bi-spectral images comprises a micro-scanning step for generating a plurality of bi-spectral images of greater resolution;
  • the plurality of bi-spectral images is acquired by at least two cameras previously synchronized temporally.
  • the subject of the invention is also an imaging device comprising at least one bi-spectral camera, each comprising a bi-spectral matrix of a plurality of detectors able to acquire a plurality of bi-spectral images, each bi-spectral image being spectral being the combination of two images acquired in two different spectral bands, the imaging device comprising means for generating a plurality of images each giving an impression of depth from the two images acquired in the two different bands, the plurality of image being an image information and the device being characterized in that it comprises means for simultaneous processing of the plurality of bi-spectral images to generate at least two pieces of information from a standby information, a start information of threat and imaging information, the means of simultaneous processing being connected to the at least one bi-spectral camera and comprising :
  • the imaging device comprises one or more of the following characteristics:
  • the two bands belong to the same infrared spectral band whose wavelength is between 3 and 5 ⁇ and are each located on either side of a wavelength substantially equal to 4.3 ⁇ ;
  • FIG. 1 is a block diagram of an embodiment of an imaging device according to the invention comprising a plurality of dual-spectral cameras,
  • FIG. 2 is a block diagram of an embodiment of an imaging device according to the invention comprising a bi-spectral camera
  • FIG. 3 is a block diagram illustrating an imaging and processing method implemented by the imaging device according to the invention
  • FIG. 4 is a block diagram of a bi-spectral mega-image according to the invention.
  • FIG. 5 is a graph representing the short and long-range atmospheric transmission in the infrared band between 3 and 5 ⁇ whose central wavelength is 4.3 ⁇ ,
  • FIG. 6 is a graph representing the optical flux in the infrared band whose wavelength is between 3 and 5 ⁇ , for a missile jet, the terrestrial background and the solar radiation,
  • FIGS. 7 and 8 are schematic diagrams illustrating the notions of spectral and temporal signatures of an object detected by the imaging device according to the invention
  • FIG. 9 is a block diagram of another embodiment of an imaging device according to the invention comprising a bi-spectral camera,
  • FIG. 10 is a block diagram illustrating the principle of a micro-scanning of a bi-spectral camera.
  • FIG. 1 1 is a block diagram illustrating another embodiment of the imaging method according to the invention.
  • the invention relates to an imaging device intended to be integrated into an aerial or land platform such as an airplane, a helicopter, a drone, an armored vehicle ...
  • This type of platform is intended for surveillance and / or combat . It allows, day and night and in real time, the acquisition and processing of images for example to effectively coordinate the self-defense maneuvers of the platform or to help pilot the platform .
  • This same device is suitable to allow the provision of an operator:
  • imagery information namely an image interpretable by the man of the zone considered
  • a standby information namely an image on which potential targets and their position appear, for example men, a tank, another platform ...
  • a threat departure information namely an image on which a threat departure is clearly identified and positioned, for example a shot, a missile or cannon fire.
  • FIG. 1 illustrates a device 2 according to the invention which comprises at least one bi-spectral camera 4, processing means 6 and a man / machine interface such as a screen 7.
  • the processing means 6 are connected by a part to the or each bi-spectral camera 4 and secondly to the screen.
  • the screen is intended to display the information processed by the processing means 6.
  • bi-spectral cameras any number of bi-spectral cameras can be envisaged, three being represented in this figure.
  • the dual-spectral cameras 4 are identical in principle and will be described in detail later. For example, they may differ in their resolution (number of pixels of the camera detector), their focal length and the field of optics.
  • Each camera looks, that is to say is oriented, in a different average direction from the others.
  • the fields of vision of each camera can be totally distinct but without having areas uncovered or have a common part to obtain and / or reconstruct an image having a continuous field of view from a camera to the other.
  • the plurality of two-color cameras covers all or part of the space.
  • a so-called frontal camera because placed on the front of the aerial platform such as a helicopter, is intended to image the space located in front of the platform, while two side cameras, because located on the flanks of the platform, are able to look each in a direction substantially perpendicular to that of the front camera.
  • the front camera usually has better spatial resolution than the front cameras.
  • the processing means 6 comprise means 14 for shaping the signals generated by each two-color camera 4 connected to means 16 for generating a watch information, means 18 for generating a threat information and means 20 generating an imaging information for driving or navigation.
  • a processing of an image means processing of the signal associated with the image acquired by the camera, the image being converted into a signal by the camera.
  • the means 14 for formatting the signals comprise means for synchronizing all the signals delivered by a plurality M of two-dimensional cameras.
  • the means 16 for generating a watch information comprise bi-spectral mega-image processing means able to detect and identify at least one target by its radiometric and / or spectral signature and to generate a tracking of these targets.
  • a target is a hot spot, that is to say that gives off heat in relation to its environment: a person, a material, a mobile platform ...
  • a spectral signature of an object is the dependence with the wavelength of a set of characteristics of the electromagnetic radiation of the object, which contributes to identifying the object, for example its relative intensity of light emission. between two spectral bands, its maximum emission wavelength ...
  • the radiometric signature of a target is defined by the intensity radiated by it relative to its environment, known in the known manner: background of the image.
  • the means 18 for generating a threat information comprise means for searching for a spectral signature representative of a possible threat in the same bi-spectral mega-image.
  • They also include means to search for a temporal signature of this possible threat and of discrimination of the type of threat, for example by comparison with a databank, to confirm that it is indeed a threat and what kind.
  • a temporal signature of a threat is the time characteristic of the issuance of the threat. For example, a shot will be much shorter than a missile jet, and can be repeated quickly (for example, a burst of light weapons).
  • the means 20 for generating an imaging information for driving or navigation comprises means for generating an image with a depth impression as described in patent EP 0 759 674.
  • the dual-spectral camera 4 is a wide-field camera for covering part of the space to be analyzed. It comprises at least one large-field optical system 8 and a detector 10. Such a camera is for example described in patent EP 0 759 674. Such a wide-field optical system 8 has already been described, for example, in patent FR 2,692,369. Preferably, the field of optics 8 is substantially between 60 ° and 90 °.
  • the detector 10 is a bi-spectral detector for example as described in patent EP 0 759 674, which comprises a bi-spectral matrix, for example of multi-quantum well or super-array type, in particular for delivering signals in two directions. sub-bands of the same spectral band or in two different spectral bands. In the first case, the detector is said to be two-color.
  • the size of the bi-spectral matrix is substantially at least 640 pixels x 480 pixels.
  • the dimensions of the matrix are 1000 ⁇ 1000 pixels corresponding to an elementary field of 1.57 mrad or 500 ⁇ 500 pixels corresponding to an elementary field of 3.14 mrad.
  • the acquisition frequency of the dual-spectral camera 4 is high and preferably at least 400 Hz.
  • the camera simultaneously acquires two images of the same field of view of space: one in each spectral band.
  • the optic 8 focuses the luminous flux on the bi-spectral detector 10 which converts it into an electrical signal transmitted to the processing means 6.
  • the two spectral bands in which the bi-spectral camera 2 is sensitive are such that they have particular characteristics, in particular as regards the electromagnetic emission of the missile jets and the variation of the atmospheric transmission according to of the distance.
  • the spectral band is located in the infrared and its wavelength is between 3 and 5 ⁇ .
  • the two sub-bands are located on either side of a wavelength substantially equal to 4.3 ⁇ .
  • the first sub-band has a wavelength substantially between 3.4 and 4.2 ⁇ and the second a wavelength substantially between 4.5 and 5 ⁇ .
  • the red or hot band is defined as the spectral subband whose wavelengths are the greatest compared with those of the second spectral subband, called the blue or cold band.
  • the imaging device according to the invention implements the imaging method 100 which will now be described with reference to FIG.
  • Each bi-spectral camera 4 of the imaging device 2 acquires a plurality of bi-spectral images denoted IB M where M is the number of the camera during a step 102 of acquisition of a plurality of bi images. -spectrals of the process 100.
  • the acquisition is performed at the high frequency F, preferably substantially equal to 400 Hz.
  • Each pair of images I M i, IM 2 is then combined to form a bi-spectral image IB M of 2xLxH, for example by juxtaposing them.
  • the M cameras (for M ⁇ 1) are synchronized by construction before the acquisition of bi-spectral images. For example, they use a common clock.
  • these means 14 combine the M bi-spectral images of the cameras to form a bi-spectral megapixel MIB during a step 106 of generating a bi-spectral mega-image.
  • the bi-spectral mega-image MIB is generated by juxtaposing the bi-spectral images IB M of each camera, as shown in FIG. 4.
  • This plurality of bi-spectral mega-images forms a single signal at the frequency F.
  • processing means 16, 18, 20 simultaneously to generate at least two pieces of information from imaging, watch and threat starting information during steps 108, 1 10, 1 12 respectively.
  • the step 108 of generating an imaging information implemented by the means 20 for generating a control information will now be detailed.
  • the imaging information includes a mega-image of high spatial resolution formed from the images of each camera having a resolution of 1000 pixels x 1000 pixels.
  • This step 108 comprises a sub-step 1 14 for generating a mega-image having a depth impression by combining the images acquired in the red band and the blue band.
  • a measurement of the distance of the objects present in the image is performed as described in patent EP 0 759 674 by comparing the image obtained in each band.
  • the exploitation of the bi-spectral images for the evaluation of the distance is unchanged compared to that described in this document.
  • the red band is chosen to be partially absorbed. In the case of the band 3-5 ⁇ , for a natural object (black body or solar reflection) the blue band is little absorbed by the carbon dioxide, while the red band undergoes a variable effect with the distance.
  • the comparison of the signals of the two bands makes it possible to estimate the distance.
  • the ratio of the intensity of each pixel of the image in the red band and the blue band is calculated.
  • the ratio is a function of the atmospheric transmission which is a function of the distance of the object imaged on the pixel.
  • FIG. 5 is an example of atmospheric transmission, in the spectral bands situated on either side of 4.5 ⁇ between 3 and 5 ⁇ , for two different distances.
  • an image is displayed by the screen 7.
  • This image is either the image having a depth impression resulting from the step 108, or the image of one or the other band depending on weather conditions.
  • the step 1 of generating a watch information implemented by the means 16 for generating a watch information will now be detailed.
  • the watch is to search for and detect targets and track them, that is to say, track their movement by measuring their position over time.
  • Step 1 comprises a sub-step 1 17 for detecting a radiometric contrast by the means 16 for generating a watch information.
  • the intensity of each pixel is compared to the intensity of a pixel representative of the background of the image, that is to say of a normal environment.
  • the pixels representative of a possible target have an intensity different from that of the background for at least one of the two bands.
  • the means 16 for generating a watch information identify the target (s) by their respective spectral signature, comparing the images produced in each of the bands.
  • the intensities of the pixels are compared in the two bands pixel by pixel or group of pixels per group of pixels. This comparison allows example to evaluate the apparent temperature of the target and thus to deduce a class of object (man, tank ).
  • a tracking of each target is generated during a step 120, that is to say a tracking of the position of the target.
  • the track is performed on at least a plurality of images acquired in the same band.
  • a target may be detected in a so-called “sensitive band” band but not in the other, then called “blind band”.
  • This non-detection in the blind band and the value of the light intensity emitted by the target in the sensitive band form identification elements of the target.
  • the detections made in the sensitive band are then used to identify the pixels of the blind band where the target is located and thereby obtain the spectral signature information in that band.
  • a target is detected in the first band during a first period T1 and then in the second band in a second period T2 consecutive to T1.
  • the track is preferably made in the first band during T1, then in the second for the period T2.
  • step 1 12 of generating a threat information implemented by the means 18 for generating threat information is executed in order to establish whether the target is a threat. This step 1 12 will now be detailed.
  • a threat departure information includes the detection of the departure of this threat, that is to say a fugitive emission or having a temporal signature characteristic of a type of threat (related to the propulsion of this threat). To generate this information it is preponderant to have both a radiometric sensitivity and a high temporal response.
  • the processing for generating threat start information is performed on images of dimensions at least equal to 500 pixels ⁇ 500 pixels and delivered at a rate of at least 400 Hz.
  • Step 1 12 comprises a substep 122 for searching for a signature or radiometric contrast and then for a spectral signature followed by a sub-step 124 for searching for a temporal signature and for discriminating the type of threat.
  • an intensity different from that of the background for a pixel is a radiometric signature and is associated with a possible threat. In the case of a flame or a jet, the intensity is stronger than that of the bottom.
  • the images from the two Sr and blue Sb red bands are combined to distinguish the threats from the bright points caused by the solar reflections by comparing the radiation in the two subbands.
  • each Sr, Sb image in the infrared spectral band between 3 and 5 ⁇ is the result of the light emission of three contributions: the terrestrial background, the solar radiation and the missile jet if a missile is fired or the jet of mouth if ammunition is fired.
  • the purpose of combining the two images Sr and Sb is to cancel the contribution of the natural background in the two subbands.
  • the parameter A is generally chosen for all the pixels of the image.
  • a positive signal S highlights a missile jet or a jet of mouth.
  • a negative S signal corresponds to a solar reflection and a null signal to the terrestrial background.
  • An advantage of this method is that the probability of false alarm for missile detection is decreased compared to the use of single-spectral camera. Indeed, the combination of these bands makes it possible to get rid of solar reflections and distinguish the emission of the missile from natural sources, unlike a single-spectral imaging system. For such a mono-spectral device, it is easy to detect the "hot" pixels that is to say having a strong intensity, nevertheless it is difficult to differentiate if they are associated with a threat departure or a reflection solar on a surface.
  • the luminous intensity of these pixels, identified as possible threats is tracked over time in one or both bands.
  • the temporal profile of the luminous intensity then makes it possible to discriminate the type of threat, by what is called their temporal signature.
  • a shot has a very short emission, of the order of a millisecond, compared to the missiles which are thus detected by the emission of their jet or flame whose emission is long, of the order of several seconds.
  • tracking can be performed as in step 120 to track the threat. For example, to track the movement of a missile.
  • Standby and threat information is then displayed on screen 7.
  • the threat is indicated on the image having a depth impression made in step 1 14 and displayed on the screen in step 7.
  • the track of a target is displayed by overlay on this same image.
  • the detector of the or each bi-spectral camera 4 has a minimum dimension of 500 pixels ⁇ 500 pixels. In a known manner, this device makes it possible to improve the image intended for observation to the detriment of the temporal resolution.
  • the dual-spectral camera 4 comprises a micro-scanning system 12, such as for example that described in patent EP 0 759 674.
  • the microsweep is performed on a plurality k of consecutive positions and preferably on at least 4 positions.
  • the micro-scanning system is of the diasporameter type.
  • an example of a four-position micro-scan is illustrated by the displacement in four successive positions denoted Im T1 to Im T4 of the image of a point object on four adjacent pixels denoted P1 to P4 of the detector. 10.
  • a bi-spectral matrix of dimensions of 500 pixels ⁇ 500 pixels and 400 Hz acquisition frequency then generates 400 frames per second, each of dimensions 500 pixels ⁇ 500 pixels.
  • An image comprises the four consecutive bi-spectral fields generated by the micro-scan.
  • a micro-scanning device makes it possible to generate additional pixels and thus to improve the sampling of the image and to increase its resolution.
  • each bi-spectral image reconstructed after a micro-scan has a size of 1000 pixels x 1000 pixels x 2 spectral bands.
  • the micro-scan makes it possible to perform non-uniformity corrections (NUC).
  • FIG. 11 Another embodiment of the method will now be detailed.
  • This embodiment is intended to be implemented by an imaging device comprising a micro-scanning device as shown in FIG. 9.
  • the steps identical to the previous embodiment bear the same reference and will not be detailed here. -after.
  • the step 102 of acquiring a plurality of bi-spectral images by M cameras comprises a sub-step 130 of micro-scanning in a plurality k of positions of the detector pixels.
  • the optical flux sweeps each pixel of the array of the detector in a plurality k of positions through the micro-scan system 12.
  • k is equal to 4.
  • k positions of the scanning of the optical flux thus generate k frames shifted on the matrix of photodetectors forming an image.
  • a plurality of bi-spectral images of k two-color frames are generated at the frequency F.
  • Each frame of a strip has dimensions of at least 500 pixels x 500 pixels.
  • the images resulting from the microsweep and the two spectral bands are treated in different ways according to the information to be generated.
  • the imaging information generation step 108 comprises a sub-step 132 of combining two successive two-color mega-images before generating in step 1 an image having an impression of depth.
  • This sub-step 132 is executed by means of combining a plurality of two-color mega-images of the processing means 6 of the imaging device 2.
  • an imaging device having a two-color camera whose matrix has a dimension of 500 pixels ⁇ 500 pixels, an acquisition frequency of 400 Hz and comprising a 4-position micro-scanning device will make it possible to generate images.
  • This temporal resolution is sufficient to display imaging information for example for flight aid that requires a temporal resolution at least equal to that of the human visual system.
  • the step 1 of generating a standby information comprises a substep 134 identical to the substep 132 before carrying out the steps 11 and 18 for detecting a radiometric contrast and identification. of targets by spectral signature.
  • these sub-steps are common and implemented by common means of processing the plurality of bi-spectral mega-images at means 16 and 20 in order to reduce the processing time of the images.
  • the step 1 12 for generating a threat information comprises a substep 136 of summation of k adjacent pixels for each bi-spectral mega-image before carrying out the step 122 of searching for a radiometric contrast and spectral signature.
  • This sub-step 136 is intended to improve the spatial resolution of the images. It is performed by calculation means integrated in the processing means 6 of the imaging device 2. Indeed, the micro-scanning dilutes the signal caused by the emission of a point object. For example, in FIG. 3, during the acquisition of the image Im T4, the signal is shared between the 4 pixels P1, P2, P3 and P4.
  • the signals of 4 adjacent pixels are summed for each image of the same frame, the set of 4 pixels seeing at each instant almost the entire signal emitted by a point.
  • a plurality of 400 Hz images of bi-spectral fields are generated, the image of which in a strip is 500 pixels ⁇ 500 pixels.
  • the spatial resolution of an image is decreased by 2, but at least one of the pixels contains the entire signal.
  • the spectral signature search step 122 is then performed on this frame.
  • the images or signals generated during the micro-scanning step are exploited differently and optimally according to the information sought.
  • the method according to the invention thus makes it possible to generate, simultaneously and by the same device, at least two of:
  • An advantage of a multi-function imaging system according to the invention is the reduction of the number of detectors and means necessary to perform all the functions considered and thus the cost reduction of the entire system and the reduction of costs. integration with a platform.
  • the invention is not limited to the embodiments described and shown, in particular it can be extended to other bands of the infrared band or other spectral bands, for example in the 8-12 ⁇ band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un dispositif (2) et un procédé d'imagerie bi-spectral multifonctions comportant une acquisition d'une pluralité d'images bi-spectrales (IBM), chaque image bi-spectrale étant la combinaison de deux images acquises (lM1, lM2) dans deux bandes spectrales différentes, et une génération d'une pluralité d'images donnant chacune une impression de profondeur par combinaison des deux images acquises (lM1, lM2) et formant une information d'imagerie. Le procédé comprend des traitements simultanés de la pluralité d'images bi- spectrales pour générer en plus de l'information d'imagerie une information de veille et/ou une information de départ de menaces, comportant les étapes suivantes : - rechercher des signatures spectrales et temporelles particulières, associée à une menace particulière, dans la pluralité d'images bi-spectrales; et - détecter un objet particulier sur chaque image bi-spectrale, et générer un suivi temporel de la position de l'objet sur la pluralité d'images dans chaque bande spectrale, la détection et le suivi de l'objet formant l'information de veille.

Description

Procédé et dispositif d'imagerie bi-spectral multifonctions
La présente invention concerne un procédé d'imagerie bi-spectral multifonctions, du type comportant une étape d'acquisition d'une pluralité d'images bi-spectrales, chaque image bi-spectrale étant la combinaison de deux images acquises dans deux bandes spectrales différentes, et une étape de génération d'une pluralité d'images donnant chacune une impression de profondeur par combinaison des deux images acquises dans les deux bandes différentes, la pluralité d'images étant une information d'imagerie. L'invention concerne également un dispositif d'imagerie mettant en œuvre le procédé d'imagerie.
On désigne par dispositif bi-spectral, un dispositif permettant d'acquérir une image dans deux bandes spectrales, par exemple les bandes spectrales 3-5 μηι et 8-12 μηι. Un cas particulier est celui des dispositifs bi-colores qui utilisent deux sous-bandes d'une même bande spectrale principale. Par exemple, si l'on considère la bande entre 3 et 5 μηι, certains dispositifs bicolores infrarouges acquièrent une image dans la sous-bande de 3,4 à 4,2 μηι et une autre image dans la sous-bande de 4,5 à 5 μηι.
L'invention s'applique au domaine des systèmes optroniques de détection et de vision panoramique. Ces systèmes équipent notamment les plateformes aériennes (avions de transport, avions de combat, drones et hélicoptères), maritimes et les plateformes terrestres (blindés, transport de troupes...) destinées à la surveillance et/ou au combat. De telles plateformes ont besoin de multiples informations.
Par exemple, elles ont besoin d'établir la situation tactique, c'est-à-dire de connaître la position d'autres intervenants (plateformes aériennes et/ou terrestres) sur un champ de bataille afin de pouvoir par la suite élaborer une stratégie de combat.
Il est également utile d'avoir des informations, telles qu'une image très grand champ et de haute résolution par exemple pour une aide au pilotage ou à la navigation des plateformes.
De plus sur un champ de bataille, il est important de pouvoir détecter ce que l'on appelle un départ de menace et d'identifier le type de menace, par exemple, un tir de missile, d'arme lourde (canon) ou un coup de feu.
Toutes ces informations nécessitent pour leur obtention des dispositifs spécifiques avec des capteurs et des unités de traitements adaptés.
Par exemple, le brevet EP 0 759 674 décrit un procédé pour donner l'impression de profondeur dans une image, qui est une information très utile pour le pilote d'une plateforme aérienne par exemple. Le brevet décrit également une caméra conçue pour mettre en œuvre ce procédé afin de fournir une image donnant l'impression de profondeur. Cette caméra est une caméra bi-spectrale c'est-à-dire adaptée à fournir deux images dans deux bandes spectrales distinctes dans l'infrarouge. L'image donnant l'impression de profondeur est obtenue par combinaison des deux images acquises dans les deux bandes spectrales.
Un autre exemple : le système DAIRS pour « Distributed Aperture InfraRed Systems » développé par Northrop Grumman pour l'avion « Joint Strike Fighter » (JSF) est un dispositif d'imagerie mono-spectral, c'est-à-dire permettant d'acquérir une image dans une unique bande spectrale. Ce système délivre par conséquent une information d'imagerie. Néanmoins celle-ci ne présente pas d'impression de profondeur obtenue par des systèmes bi-spectraux ou bicolores. En outre, le système n'est pas capable de détecter un événement très bref comme un départ de menace tel qu'un coup de feu.
En outre, il peut exister des dispositifs comportant plusieurs systèmes multi- spectraux afin par exemple de fournir une information d'imagerie en profondeur ou de réaliser une détection de départ de menace. Néanmoins, la multiplicité de ce type de dispositifs conduit surtout à une complexité et donc à un coût d'intégration à la plateforme et à des coûts d'équipements très élevés.
Le but de l'invention est de fournir un procédé et un dispositif d'imagerie moins encombrant, plus facile à intégrer et globalement moins cher qu'un ensemble de dispositifs mono-fonction pour des plateformes telles que des plateformes de surveillance ou de combat.
A cet effet, l'invention a pour objet un procédé d'imagerie du type précité, caractérisé en ce qu'il comprend une étape de traitements simultanés de la pluralité d'images bi-spectrales pour générer en plus de l'information d'imagerie une information de veille et/ou une information de départ de menaces, comportant les étapes suivantes :
- rechercher des signatures spectrales et temporelles particulières dans la pluralité d'images bi-spectrales, une signature spectrale et temporelle particulière étant associée à une menace particulière ; et
- détecter un objet particulier sur chaque image bi-spectrale, et générer un suivi temporel de la position de l'objet sur la pluralité d'images dans chaque bande spectrale, la détection et le suivi de l'objet formant l'information de veille.
Suivant des modes particuliers de réalisation, le procédé d'imagerie comporte l'une ou plusieurs des caractéristiques suivantes :
- les deux bandes appartiennent à une même bande spectrale infrarouge dont la longueur d'onde est comprise entre 3 et 5 μηι et sont situées chacune de part et d'autre d'une longueur d'onde sensiblement égale à 4,3 μηι ;
- l'étape d'acquisition d'une pluralité d'images bi-spectrales est réalisée à une fréquence élevée au moins égale à sensiblement 400 Hz ; - l'étape d'acquisition d'une pluralité d'images bi-spectrales comprend une étape de micro-balayage pour générer une pluralité d'images bi-spectrales de plus grande résolution ;
- il comprend une étape de combinaison d'une pluralité de pixels de chaque image bi-spectrale de plus grande résolution pour réduire le nombre de pixels et améliorer le rapport signal sur bruit avant l'étape de recherche des signatures spectrales et temporelles particulières dans la pluralité d'images bi-spectrales de plus grande résolution ;
- la pluralité d'images bi-spectrales est acquise par au moins deux caméras préalablement synchronisées temporellement.
L'invention a également pour objet un dispositif d'imagerie comportant au moins une caméra bi-spectrale, chacune comprenant une matrice bi-spectrale d'une pluralité de détecteurs aptes à acquérir une pluralité d'images bi-spectrales, chaque image bi- spectrale étant la combinaison de deux images acquises dans deux bandes spectrales différentes, le dispositif d'imagerie comportant des moyens pour générer une pluralité d'images donnant chacune une impression de profondeur à partir des deux images acquises dans les deux bandes différentes, la pluralité d'images étant une information d'imagerie et le dispositif étant caractérisé en ce qu'il comprend des moyens de traitements simultanés de la pluralité d'images bi-spectrales pour générer au moins deux informations parmi une information de veille, une information de départ de menace et une information d'imagerie, les moyens de traitements simultanés étant reliés à la au moins une caméra bi-spectrale et comportant :
- les moyens pour générer l'information d'imagerie ;
- des moyens de recherche des signatures spectrales et temporelles particulières dans la pluralité d'images bi-spectrale, une signature spectrale et temporelle particulière étant associée à une menace particulière ; et
- des moyens de détection d'un objet particulier sur chaque image bi-spectrale et de génération d'un suivi temporel de la position de l'objet sur la pluralité d'images dans chaque bande spectrale, la détection et le suivi de l'objet formant l'information de veille.
Suivant des modes particuliers de réalisation, le dispositif d'imagerie comporte l'une ou plusieurs des caractéristiques suivantes :
- les deux bandes appartiennent à une même bande spectrale infrarouge dont la longueur d'onde est comprise entre 3 et 5 μηι et sont situées chacune de part et d'autre d'une longueur d'onde sensiblement égale à 4,3 μηι ;
- il est adapté pour mettre en œuvre le procédé précédent. L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins, sur lesquels :
- la figure 1 est un schéma synoptique d'un mode de réalisation d'un dispositif d'imagerie selon l'invention comportant une pluralité de caméras bi-spectrales,
- la figure 2 est un schéma synoptique d'un mode de réalisation d'un dispositif d'imagerie selon l'invention comportant une caméra bi-spectrale,
- la figure 3 est un schéma bloc illustrant un procédé d'imagerie et de traitement mis en œuvre par le dispositif d'imagerie selon l'invention,
- la figure 4 est un schéma synoptique d'une méga-image bi-spectrale selon l'invention,
- la figure 5 est un graphique représentant la transmission atmosphérique à courte et longue distances dans la bande infrarouge comprise entre 3 et 5 μηι dont la longueur d'onde centrale est de 4,3 μηι,
- la figure 6 est un graphique représentant le flux optique dans la bande infrarouge dont la longueur d'onde est comprise entre 3 et 5 μηι, pour un jet de missile, le fond terrestre et le rayonnement solaire,
- les figures 7 et 8 sont des schémas synoptiques illustrant les notions de signatures spectrales et temporelles d'un objet détectées par le dispositif d'imagerie selon l'invention,
- la figure 9 est un schéma synoptique d'un autre mode de réalisation d'un dispositif d'imagerie selon l'invention comportant une caméra bi-spectrale,
- la figure 10 est un schéma synoptique illustrant le principe d'un micro-balayage d'une caméra bi-spectrale, et
- la figure 1 1 est un schéma bloc illustrant un autre mode de réalisation du procédé d'imagerie selon l'invention.
L'invention concerne un dispositif d'imagerie destiné à être intégré à une plateforme aérienne ou terrestre telle qu'un avion, un hélicoptère, un drone, un blindé... Ce type de plateforme est destiné à la surveillance et/ou au combat. Il permet, de jour comme de nuit et en temps réel, l'acquisition et le traitement d'images en vue par exemple de coordonner efficacement les manœuvres d'auto-défense de la plate-forme ou d'aider au pilotage de la plateforme.
Ce même dispositif est propre à permettre la mise à disposition d'un opérateur :
- d'une information d'imagerie, à savoir une image interprétable par l'homme de la zone considérée,
- d'une information de veille, à savoir une image sur laquelle figurent des cibles potentielles et leur position, par exemple des hommes, un char, une autre plateforme... et - d'une information de départ de menace, à savoir une image sur laquelle un départ de menace est clairement identifié et positionné, par exemple un coup de feu, un tir de missile ou de canon.
La figure 1 illustre un dispositif 2 selon l'invention qui comprend au moins une caméra bi-spectrale 4, des moyens de traitements 6 et une interface homme/machine telle qu'un écran 7. Les moyens de traitements 6 sont connectés d'une part à la ou à chaque caméra bi-spectrale 4 et d'autre part à l'écran. L'écran est destiné à afficher les informations traitées par les moyens de traitements 6.
Bien entendu un nombre quelconque de caméras bi-spectrales peut être envisagé, trois étant représentées sur cette figure. Les caméras bi-spectrales 4 sont identiques dans leur principe et seront décrites en détail par la suite. Par exemple, elles peuvent différer dans leur résolution (nombre de pixels du détecteur des caméras), leur focale et le champ des optiques.
Chaque caméra regarde, c'est-à-dire est orientée, dans une direction moyenne différente des autres. Les champs de vision de chaque caméra peuvent être totalement distincts mais en évitant d'avoir des zones non couvertes ou bien avoir une partie commune afin d'obtenir et/ou de reconstruire une image ayant un champ de vision continu en passant d'une caméra à l'autre. Ainsi la pluralité de caméras bicolores couvre tout ou partie de l'espace.
Par exemple, une caméra dite frontale, car placée sur l'avant de la plateforme aérienne telle qu'un hélicoptère, est destinée à imager l'espace situé en avant de la plateforme, tandis que deux caméras latérales, car situées sur les flancs de la plateforme, sont aptes à regarder chacune dans une direction sensiblement perpendiculaire à celle de la caméra frontale. En outre, la caméra frontale a généralement une meilleure résolution spatiale que les caméras frontales.
Les moyens de traitements 6 comportent des moyens 14 de mise en forme des signaux générés par chaque caméra bicolore 4 reliés à des moyens 16 de génération d'une information de veille, des moyens 18 de génération d'une information de menace et des moyens 20 de génération d'une information d'imagerie pour le pilotage ou la navigation.
Bien entendu, le signal généré par chaque caméra est représentatif de l'image acquise par celle-ci. Par la suite, un traitement d'une image signifie un traitement du signal associé à l'image acquise par la caméra, l'image étant convertie en signal par la caméra.
Les moyens 14 de mise en forme des signaux comportent des moyens de synchronisation de l'ensemble des signaux délivrés par une pluralité M de caméras bi- spectrales 4 du dispositif d'imagerie 2 et des moyens de génération d'une image appelée méga-image bi-spectrale et formée en combinant l'ensemble des images bi-spectrales acquises par les caméras du dispositif au même instant.
Les moyens 16 de génération d'une information de veille comprennent des moyens de traitement de la méga-image bi-spectrale aptes à détecter et identifier au moins une cible par sa signature radiométrique et/ou spectrale et à générer un pistage de ces cibles.
De façon connue, une cible est un point chaud, c'est-à-dire qui dégage de la chaleur par rapport à son environnement : une personne, un matériel, une plateforme mobile...
En outre, une signature spectrale d'un objet est la dépendance avec la longueur d'onde d'un ensemble de caractéristiques du rayonnement électromagnétique de l'objet, qui contribue à identifier l'objet, par exemple son intensité relative d'émission lumineuse entre deux bandes spectrales, sa longueur d'onde d'émission maximale...
On définit la signature radiométrique d'une cible par l'intensité rayonnée par celle- ci par rapport à son environnement, appelé de façon connue : fond de l'image.
De même, les moyens 18 de génération d'une information de menace comprennent des moyens de recherche d'une signature spectrale représentative d'une éventuelle menace dans la même méga-image bi-spectrale.
Ils comportent en outre des moyens de recherche d'une signature temporelle de cette éventuelle menace et de discrimination du type de menace, par exemple par la comparaison avec une banque de données, afin de confirmer qu'il s'agit bien d'une menace et de quel genre.
Par définition, une signature temporelle d'une menace est le temps caractéristique de l'émission de la menace. Par exemple, un coup de feu sera beaucoup plus bref que le jet d'un missile, et peut se répéter rapidement (par exemple, une rafale d'arme légère).
Les moyens 20 de génération d'une information d'imagerie pour le pilotage ou la navigation comportent des moyens pour générer une image avec une impression de profondeur tels que décrit dans le brevet EP 0 759 674.
Les caméras bi-spectrales 4 vont maintenant être détaillées en regard de la figure
2 qui illustre un dispositif d'imagerie 2 ne comportant qu'une seule caméra afin de ne pas surcharger la figure.
La caméra bi-spectrale 4 est une caméra grand champ permettant de couvrir une partie de l'espace à analyser. Elle comporte au moins un système optique grand champ 8 et un détecteur 10. Une telle caméra est par exemple décrite dans le brevet EP 0 759 674. Un tel système optique 8 grand champ a déjà été décrit par exemple dans le brevet FR 2 692 369. De préférence, le champ de l'optique 8 est sensiblement compris entre 60 ° et 90 °.
Le détecteur 10 est un détecteur bi-spectral par exemple tel que décrit dans le brevet EP 0 759 674, qui comprend une matrice bi-spectrale par exemple de type multi- puits quantiques ou super-réseaux permettant en particulier de délivrer des signaux dans deux sous-bandes d'une même bande spectrale ou dans deux bandes spectrales différentes. Dans le premier cas, le détecteur est dit bicolore. La taille de la matrice bi- spectrale est sensiblement d'au moins 640 pixels x 480 pixels.
De préférence, les dimensions de la matrice sont de 1000x1000 pixels correspondant à un champ élémentaire de 1 ,57 mrad ou de 500x500 pixels correspondant à un champ élémentaire de 3,14 mrad.
En outre, la fréquence d'acquisition de la caméra 4 bi-spectrale est élevée et de préférence d'au moins 400 Hz.
La caméra acquiert simultanément deux images du même champ de vision de l'espace : une dans chaque bande spectrale.
Pour cela, l'optique 8 focalise le flux lumineux sur le détecteur bi-spectral 10 qui le convertit en un signal électrique transmis aux moyens de traitements 6.
En outre, les deux bandes spectrales dans lesquelles la caméra bi-spectrale 2 est sensible sont telles qu'elles présentent des caractéristiques particulières, en particulier en ce qui concerne l'émission électromagnétique des jets de missiles et la variation de la transmission atmosphérique en fonction de la distance.
Par exemple et de préférence, la bande spectrale est située dans l'infrarouge et sa longueur d'onde est comprise entre 3 et 5 μηι. Les deux sous-bandes sont situées de part et d'autre d'une longueur d'onde sensiblement égale à 4,3 μηι. La première sous-bande a une longueur d'onde sensiblement comprise entre 3,4 et 4,2 μηι et la seconde une longueur d'onde sensiblement comprise entre 4,5 et 5 μηι.
De façon connue, on définit bande rouge ou chaude, la sous-bande spectrale dont les longueurs d'ondes sont les plus grandes par rapport à celles de la seconde sous- bande spectrale, appelée bande bleue ou froide.
Le dispositif d'imagerie selon l'invention met en œuvre le procédé 100 d'imagerie qui va maintenant être décrit en regard de la figure 3.
Chaque caméra bi-spectrale 4 du dispositif d'imagerie 2 acquiert une pluralité d'images bi-spectrales notées IBM où M est le numéro de la caméra au cours d'une étape 102 d'acquisition d'une pluralité d'images bi-spectrales du procédé 100. L'acquisition est réalisée à la fréquence F élevée, de préférence sensiblement égale à 400 Hz.
Chaque image d'une sous-bande lMi , IM2 a une dimension de L pixels x H pixels (les dimensions de la matrice bi-spectrale de la caméra), soit N pixels au total (N=LxH).
Chaque paire d'images lMi , IM2 est ensuite combinée pour former une image bi- spectrale IBM de 2xLxH, par exemple en les juxtaposant.
De façon connue, les M caméras (pour M≥ 1 ) sont synchronisées par construction avant l'acquisition des images bi-spectrales. Par exemple, elles utilisent une horloge commune.
Ensuite, ces moyens 14 combinent les M images bi-spectrales des caméras pour former une méga-image bi-spectrale MIB au cours d'une étape 106 de génération d'une méga-image bi-spectrale.
Par exemple, la méga-image bi-spectrale MIB est générée en juxtaposant les images bi-spectrales IBM de chaque caméra, comme représentée sur la figure 4.
Ainsi, une pluralité de méga-images bi-spectrales est obtenue à la même fréquence F d'acquisition des images par les caméras.
Chaque méga-image bi-spectrale MIB a une dimension de 2xMxN pixels où N est le nombre total de pixels d'une image dans une bande d'une caméra (N=LxH).
Cette pluralité de méga-images bi-spectrales forme un signal unique à la fréquence F.
Celui-ci est exploité par les moyens de traitements 16, 18, 20 de façon simultanée afin de générer au moins deux informations parmi une information d'imagerie, de veille et de départ de menace au cours des étapes 108, 1 10, 1 12 respectivement.
L'étape 108 de génération d'une information d'imagerie mise en œuvre par les moyens 20 de génération d'une information de pilotage va maintenant être détaillée.
L'information d'imagerie comprend une méga-image de résolution spatiale élevée formée des images de chaque caméra ayant une résolution de 1000 pixels x 1000 pixels.
Cette étape 108 comprend une sous-étape 1 14 de génération d'une méga-image ayant une impression de profondeur en combinant les images acquises dans la bande rouge et la bande bleue.
Une mesure de la distance des objets présents dans l'image est réalisée comme décrit dans le brevet EP 0 759 674 en comparant l'image obtenue dans chaque bande. L'exploitation des images bi-spectrales pour l'évaluation de la distance est inchangée par rapport à celle décrite dans ce document. La bande rouge est choisie de manière à être partiellement absorbée. Dans le cas de la bande 3-5 μηι, pour un objet naturel (corps noir ou reflet solaire) la bande bleue est peu absorbée par le gaz carbonique, alors que la bande rouge subit un effet variable avec la distance. La comparaison des signaux des 2 bandes permet d'estimer la distance.
Le ratio de l'intensité de chaque pixel de l'image dans la bande rouge et la bande bleue est calculé. Le ratio est une fonction de la transmission atmosphérique qui est fonction de la distance de l'objet imagé sur le pixel. La figure 5 est un exemple de transmission atmosphérique, dans les bandes spectrales situées de part et d'autre de 4,5 μηι entre 3 et 5 μηι, pour deux distances différentes.
Ensuite au cours d'une étape 1 16 une image est affichée par l'écran 7. Cette image est soit l'image ayant une impression de profondeur résultant de l'étape 108, soit l'image de l'une ou l'autre bande en fonction des conditions météorologiques.
En effet, il est connu que dans des climats froids l'image acquise dans la bande rouge, par exemple de longueurs d'onde supérieures à 4,5 μηι, est généralement meilleure que celle acquise dans la bande bleue de longueurs d'onde par exemple inférieures à 4,5 μηι.
L'étape 1 10 de génération d'une information de veille mise en œuvre par les moyens 16 de génération d'une information de veille va maintenant être détaillée.
La veille consiste à rechercher et détecter des cibles et à les pister, c'est-à-dire suivre leur déplacement en mesurant leur position au cours du temps.
De façon connue les objets ou cibles à surveiller sont de taille quasi-ponctuelle sur les images et évoluent assez lentement dans le temps.
Par conséquent un contraste radiométrique est fondamental sur les images afin de détecter une cible et pour en déduire l'information de veille, c'est pourquoi on utilise de préférence des images bi-spectrales de dimensions minimales 1000 pixels x 1000 pixels produites par la (ou les) caméra(s).
L'étape 1 10 comprend une sous-étape 1 17 de détection d'un contraste radiométrique par les moyens 16 de génération d'une information de veille. Au cours de cette sous-étape, l'intensité de chaque pixel est comparée à l'intensité d'un pixel représentatif du fond de l'image, c'est-à-dire d'un environnement normal. Les pixels représentatifs d'une éventuelle cible ont une intensité différente de celle du fond pour au moins une des deux bandes.
Ensuite, au cours d'une étape 1 18, les moyens 16 de génération d'une information de veille identifient la(les) cible(s) par leur signature spectrale respective, en comparant les images produites dans chacune des bandes.
Pour cela, les intensités des pixels sont comparées dans les deux bandes pixel par pixel ou groupe de pixels par groupe de pixels. Cette comparaison permet par exemple d'évaluer la température apparente de la cible et donc d'en déduire une classe d'objet (homme, char...).
Par exemple, un objet dont le rayonnement dans les deux bandes suit les lois du corps noir est probablement un objet naturel.
Ensuite, un pistage de chaque cible est généré au cours d'une étape 120, c'est-à- dire un suivi de la position de la cible. La piste est réalisée sur au moins une pluralité d'images acquises dans une même bande.
Par exemple, une cible peut être détectée dans une bande dite « bande sensible » mais pas dans l'autre, alors appelée « bande aveugle ». Cette non-détection dans la bande aveugle et la valeur de l'intensité lumineuse émise par la cible dans la bande sensible forment des éléments d'identification de la cible.
Pour estimer le rayonnement dans la bande aveugle, les détections effectuées dans la bande sensible sont alors utilisées pour identifier les pixels de la bande aveugle où se trouve la cible et obtenir ainsi l'information de signature spectrale dans cette bande.
En outre, le pistage des cibles généré dans chaque bande est complémentaire.
Par exemple, une cible est détectée dans la première bande pendant une première période T1 puis dans la seconde bande dans une seconde période T2 consécutive à T1 . Dans ce cas la piste est réalisée de préférence dans la première bande pendant T1 , puis dans la seconde pour la période T2.
Ensuite, l'étape 1 12 de génération d'une information de menace mise en œuvre par les moyens 18 de génération d'une information de menace est exécutée afin d'établir si la cible est une menace. Cette étape 1 12 va maintenant être détaillée.
Une information de départ de menace comporte la détection du départ de cette menace, c'est-à-dire d'une émission fugitive ou présentant une signature temporelle caractéristique d'un type de menace (liée à la propulsion de cette menace). Pour générer cette information il est prépondérant d'avoir à la fois une sensibilité radiométrique et une réponse temporelle élevée.
Ainsi, le traitement pour générer une information de départ de menace est réalisé sur des images de dimensions au moins égale à 500 pixels x 500 pixels et délivrées à une cadence d'au moins 400 Hz.
L'étape 1 12 comprend une sous-étape 122 de recherche d'une signature ou contraste radiométrique puis d'une signature spectrale suivie d'une sous-étape 124 de recherche d'une signature temporelle et de discrimination du type de menace. Comme décrit précédemment, une intensité différente de celle du fond pour un pixel constitue une signature radiométrique et est associée à une éventuelle menace. Dans le cas d'une flamme ou d'un jet, l'intensité est plus forte que celle du fond. Au cours de la sous-étape 122, les images issues des deux bandes rouge Sr et bleue Sb sont combinées, afin de distinguer les menaces des points brillants provoqués par les réflexions solaires en comparant les rayonnements dans les deux sous-bandes.
En regard des figures 6 et 7, chaque image Sr , Sb dans la bande spectrale infrarouge comprise entre 3 et 5 μηι est la résultante de l'émission lumineuse de trois contributions : le fond terrestre, le rayonnement solaire et le jet de missile si un missile est lancé ou le jet de bouche si une munition est tirée.
Le but de la combinaison des deux images Sr et Sb est d'annuler la contribution du fond naturel dans les deux sous-bandes.
Pour cela et de manière connue, pour chaque pixel une quantité S est calculée selon la formule S = Sr - A.Sb en ajustant le paramètre A. Le paramètre A est généralement choisi pour l'ensemble des pixels de l'image.
Un signal S positif met en évidence un jet de missile ou un jet de bouche. Un signal S négatif correspond à un reflet solaire et un signal nul au fond terrestre.
Un avantage de ce procédé est que la probabilité de fausse alarme pour la détection de missiles est diminuée par rapport à l'utilisation de caméra mono-spectrale. En effet, la combinaison de ces bandes permet de s'affranchir des reflets solaires et de distinguer l'émission du missile de sources naturelles, contrairement à un système d'imagerie mono-spectral. Pour un tel dispositif mono-spectral, il est aisé de détecter les pixels « chauds » c'est-à-dire ayant une intensité forte, néanmoins il est difficile de différencier s'ils sont associés à un départ de menace ou à une réflexion solaire sur une surface.
Cela permet en outre de déterminer la direction des menaces potentielles.
Ensuite au cours de l'étape 124 et en regard de la figure 8, l'intensité lumineuse de ces pixels, identifiés comme des menaces possibles, est suivie au cours du temps dans une bande ou dans les deux. Le profil temporel de l'intensité lumineuse permet par la suite de discriminer le type de menace, par ce que l'on appelle leur signature temporelle.
Par exemple, un coup de feu a une émission très courte, de l'ordre de la milliseconde, par rapport aux missiles qui sont ainsi détectés par l'émission de leur jet ou flamme dont l'émission est longue, de l'ordre de plusieurs secondes.
En outre, on peut réaliser un pistage comme à l'étape 120 afin de suivre la menace. Par exemple, pour suivre le déplacement d'un missile.
Les informations de veille et de menace sont ensuite affichées sur l'écran 7.
Par exemple, la menace est indiquée sur l'image ayant une impression de profondeur réalisée à l'étape 1 14 et affichée sur l'écran au cours de l'étape 7. En outre, la piste d'une cible est affichée par superposition sur cette même image. Selon un second mode de réalisation du dispositif d'imagerie 2 représenté sur la figure 9, le détecteur de la ou chaque caméra bi-spectrale 4 a une dimension minimale de 500 pixels x 500 pixels. De façon connue, ce dispositif permet d'améliorer l'image destinée à l'observation au détriment de la résolution temporelle.
En outre, la caméra bi-spectrale 4 comprend un système de micro-balayage 12, tel que par exemple celui décrit dans le brevet EP 0 759 674.
Le micro-balayage est réalisé sur une pluralité k de positions consécutives et de préférence, sur au moins 4 positions.
Par exemple, le système de micro-balayage est de type diasporamètre.
En regard de la figure 10, un exemple de micro-balayage à quatre positions est illustré par le déplacement suivant quatre positions successives notées Im T1 à Im T4 de l'image d'un objet ponctuel sur quatre pixels adjacents notés P1 à P4 du détecteur 10.
Par exemple, une matrice bi-spectrale de dimensions de 500 pixels x 500 pixels et de fréquence d'acquisition de 400 Hz génère alors 400 trames par seconde, chacune de dimensions 500 pixels x 500 pixels. Une image comporte les quatre trames bi-spectrales consécutives générées par le micro-balayage.
Il est connu qu'un dispositif de micro-balayage permet de générer des pixels supplémentaires et donc d'améliorer l'échantillonnage de l'image et d'augmenter sa résolution.
Ainsi, chaque image bi-spectrale reconstruite après un micro-balayage a une dimension de 1000 pixels x 1000 pixels x 2 bandes spectrales.
En outre et de façon également connue, le micro-balayage permet d'effectuer des corrections de non-uniformités (NUC pour « non-uniformity correction », en anglais).
En regard de la figure 1 1 , un autre mode de réalisation du procédé va maintenant être détaillé. Ce mode de réalisation est destiné à être mis en œuvre par un dispositif d'imagerie comportant un dispositif de micro-balayage tel que représenté sur la figure 9. Les étapes identiques au précédent mode de réalisation portent la même référence et ne seront pas détaillées ci-après.
L'étape 102 d'acquisition d'une pluralité d'images bi-spectrales par M caméras comporte une sous-étape 130 de micro-balayage selon une pluralité k de positions des pixels du détecteur. Ainsi, le flux optique balaie chaque pixel de la matrice du détecteur selon une pluralité k de positions grâce au système de micro-balayage 12. De préférence, k est égal à 4.
Les k positions du balayage du flux optique génèrent ainsi k trames décalées sur la matrice de photodétecteurs formant une image. A la fin de l'étape 102, une pluralité d'images bi-spectrales de k trames bicolores est générée à la fréquence F.
Chaque trame d'une bande a pour dimensions au moins 500 pixels x 500 pixels.
Ensuite les images résultant du micro-balayage et des deux bandes spectrales sont traitées de manières différentes selon l'information à générer.
L'étape 108 de génération d'une information d'imagerie comporte une sous-étape 132 de combinaison de k méga-images bicolores successives avant de générer à l'étape 1 14 une image ayant une impression de profondeur. Cette sous-étape 132 est exécutée par des moyens de combinaison d'une pluralité de méga-images bicolores des moyens de traitement 6 du dispositif d'imagerie 2.
Ainsi les pixels de k trames successives d'une image sont combinés afin de générer une image sur-échantillonnée ayant donc une meilleure résolution. Cette image est alors produite à une fréquence plus lente.
Par exemple, un dispositif d'imagerie ayant une caméra bicolore dont la matrice a une dimension de 500 pixels x 500 pixels, une fréquence d'acquisition de 400 Hz et comportant un dispositif de micro-balayage à 4 positions va permettre de générer des images dans chaque bande spectrale de résolution 1000 pixels x 1000 pixels à la fréquence de 100 Hz.
Cette résolution temporelle est suffisante pour afficher une information d'imagerie par exemple pour l'aide au pilotage qui nécessite une résolution temporelle au moins égale à celle du système visuel humain.
De même, l'étape 1 10 de génération d'une information de veille comporte une sous-étape 134 identique à la sous-étape 132 avant de réaliser les étapes 1 17 et 1 18 de détection d'un contraste radiométrique et d'identification de cibles par signature spectrale.
Selon une variante, ces sous-étapes sont communes et réalisées par des moyens communs de traitement de la pluralité de méga-images bi-spectrales aux moyens 16 et 20 afin de diminuer le temps de traitement des images.
Enfin l'étape 1 12 de génération d'une information de menace comporte une sous- étape 136 de sommation de k pixels adjacents pour chaque méga-image bi-spectrale avant d'effectuer l'étape 122 de recherche d'un contraste radiométrique et de signature spectrale.
Cette sous-étape 136 a pour but d'améliorer la résolution spatiale des images. Elle est réalisée par des moyens de calcul intégrés aux moyens de traitement 6 du dispositif d'imagerie 2. En effet, le micro-balayage dilue le signal provoqué par l'émission d'un objet ponctuel. Par exemple, sur la figure 3, lors de l'acquisition de l'image Im T4, le signal est partagé entre les 4 pixels P1 , P2, P3 et P4.
Afin d'éviter cet effet, les signaux de 4 pixels adjacents sont sommés pour chaque image d'une même trame, l'ensemble des 4 pixels voyant à chaque instant la quasi totalité du signal émis par un point.
Dans l'exemple précédent on génère ainsi une pluralité d'images à 400 Hz de trames bi-spectrales dont l'image dans une bande a pour dimensions 500 pixels x 500 pixels. Ainsi la résolution spatiale d'une image est diminuée par 2 mais au moins un des pixels contient la totalité du signal.
L'étape 122 de recherche de signature spectrale est ensuite réalisée sur cette trame.
Dans ce mode de réalisation du procédé, les images ou signaux générés au cours de l'étape de micro-balayage sont exploités différemment et de manière optimale selon l'information recherchée.
Le procédé selon l'invention permet ainsi de générer, simultanément et par un même dispositif, au moins deux informations parmi :
- une information d'imagerie très grand champ utile pour la navigation, le pilotage...,
- une information de veille, et
- une information de détection de départ de menaces (coups de feu, missile, canon...).
Un avantage d'un système d'imagerie multi-fonctions selon l'invention est la réduction du nombre de détecteurs et de moyens nécessaires pour effectuer toutes les fonctions considérées et donc la réduction des coûts de l'ensemble du système et la réduction des coûts d'intégration à une plate-forme.
D'autres avantages sont une meilleure performance des fonctions réalisées par des caméras bi-spectrales par rapport aux caméras mono-spectrales, une discrimination améliorée pour les fonctions de veille et de détection de menaces et une impression de relief/profondeur dans les images fort utile pour le pilotage ou la navigation.
L'invention n'est pas limitée aux exemples de réalisation décrits et représentés, en particulier elle peut être étendue à d'autres bandes de la bande infrarouge ou d'autres bandes spectrales, par exemple dans la bande 8-12 μηι.

Claims

REVENDICATIONS
1 . - Procédé (100) d'imagerie comportant une étape (102) d'acquisition d'une pluralité d'images bi-spectrales (IBM), chaque image bi-spectrale étant la combinaison de deux images acquises (lMi , dans deux bandes spectrales différentes, et une étape (108) de génération d'une pluralité d'images donnant chacune une impression de profondeur par combinaison des deux images acquises dans les deux bandes différentes, la pluralité d'images étant une information d'imagerie, le procédé étant caractérisé en ce qu'il comprend une étape de traitements simultanés de la pluralité d'images bi-spectrales pour générer en plus de l'information d'imagerie une information de veille et/ou une information de départ de menaces, comportant les étapes suivantes :
- rechercher (1 12) des signatures spectrales et temporelles particulières dans la pluralité d'images bi-spectrales, une signature spectrale et temporelle particulière étant associée à une menace particulière ; et
- détecter (1 10) un objet particulier sur chaque image bi-spectrale, et générer un suivi temporel de la position de l'objet sur la pluralité d'images dans chaque bande spectrale, la détection et le suivi de l'objet formant l'information de veille.
2. - Procédé selon la revendication 1 , caractérisé en ce que les deux bandes appartiennent à une même bande spectrale infrarouge dont la longueur d'onde est comprise entre 3 et 5 μηι et sont situées chacune de part et d'autre d'une longueur d'onde sensiblement égale à 4,3 μηι.
3. - Procédé selon l'une quelconque des revendications 1 à 2, caractérisé en ce que l'étape (102) d'acquisition d'une pluralité d'images bi-spectrales est réalisée à une fréquence élevée au moins égale à sensiblement 400 Hz.
4. - Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'étape (102) d'acquisition d'une pluralité d'images bi-spectrales comprend une étape (130) de micro-balayage pour générer une pluralité d'images bi-spectrales de plus grande résolution.
5. - Procédé selon la revendication 4, caractérisé en ce qu'il comprend une étape (132, 134) de combinaison d'une pluralité de pixels de chaque image bi-spectrale de plus grande résolution pour réduire le nombre de pixels et améliorer le rapport signal sur bruit avant l'étape (122, 124) de recherche des signatures spectrales et temporelles particulières dans la pluralité d'images bi-spectrales de plus grande résolution.
6. - Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la pluralité d'images bi-spectrales est acquise par au moins deux caméras préalablement synchronisées temporellement.
7. - Dispositif d'imagerie (2) comportant au moins une caméra bi-spectrale (4), chacune comprenant une matrice (10) bi-spectrale d'une pluralité de détecteurs (10) aptes à acquérir une pluralité d'images bi-spectrales, chaque image bi-spectrale étant la combinaison de deux images acquises dans deux bandes spectrales différentes, le dispositif d'imagerie comportant des moyens (20) pour générer une pluralité d'images donnant chacune une impression de profondeur à partir des deux images acquises dans les deux bandes différentes, la pluralité d'images étant une information d'imagerie et le dispositif étant caractérisé en ce qu'il comprend des moyens (6) de traitements simultanés de la pluralité d'images bi-spectrales pour générer au moins deux informations parmi une information de veille, une information de départ de menace et une information d'imagerie, les moyens (6) de traitements simultanés étant reliés à la au moins une caméra bi- spectrale (4) et comportant :
- les moyens (20) pour générer l'information d'imagerie ;
- des moyens (18) de recherche des signatures spectrales et temporelles particulières dans la pluralité d'images bi-spectrale, une signature spectrale et temporelle particulière étant associée à une menace particulière ; et
- des moyens (16) de détection d'un objet particulier sur chaque image bi- spectrale et de génération d'un suivi temporel de la position de l'objet sur la pluralité d'images dans chaque bande spectrale, la détection et le suivi de l'objet formant l'information de veille.
8. - Dispositif d'imagerie selon la revendication 7, caractérisé en ce que les deux bandes appartiennent à une même bande spectrale infrarouge dont la longueur d'onde est comprise entre 3 et 5 μηι et sont situées chacune de part et d'autre d'une longueur d'onde sensiblement égale à 4,3 μηι.
9. - Dispositif d'imagerie selon la revendication 7 ou 8, caractérisé en ce qu'il est adapté pour mettre en œuvre le procédé selon l'une quelconque des revendications 1 à 6.
PCT/FR2011/051674 2010-07-13 2011-07-13 Procédé et dispositif d'imagerie bi-spectral multifonctions WO2012007692A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/810,079 US20130235211A1 (en) 2010-07-13 2011-07-13 Multifunctional Bispectral Imaging Method and Device
EP11741667.7A EP2593904A1 (fr) 2010-07-13 2011-07-13 Procédé et dispositif d'imagerie bi-spectral multifonctions
IL224156A IL224156A (en) 2010-07-13 2013-01-10 Multifunctional bispectral imaging device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1002957 2010-07-13
FR1002957A FR2962827B1 (fr) 2010-07-13 2010-07-13 Procede et dispositif d'imagerie bi-spectral multifonctions.

Publications (1)

Publication Number Publication Date
WO2012007692A1 true WO2012007692A1 (fr) 2012-01-19

Family

ID=43661948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051674 WO2012007692A1 (fr) 2010-07-13 2011-07-13 Procédé et dispositif d'imagerie bi-spectral multifonctions

Country Status (5)

Country Link
US (1) US20130235211A1 (fr)
EP (1) EP2593904A1 (fr)
FR (1) FR2962827B1 (fr)
IL (1) IL224156A (fr)
WO (1) WO2012007692A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948955A (zh) * 2020-08-09 2020-11-17 哈尔滨新光光电科技股份有限公司 一种光电分布式孔径系统测试方法及仿真测试系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014361104B2 (en) 2013-12-10 2019-11-21 Bae Systems Plc Data processing method
EP2884422A1 (fr) * 2013-12-10 2015-06-17 BAE Systems PLC Procédé et système de traitement de données
US20160300098A1 (en) * 2013-12-10 2016-10-13 Bae Systems Plc Data processing method and system
FR3051617B1 (fr) * 2016-05-23 2018-06-29 Institut National De L'information Geographique Et Forestiere (Ign) Systeme de prise de vue
EP3591427B1 (fr) * 2018-07-05 2023-06-14 HENSOLDT Sensors GmbH Avertisseur missile et procédé d'avertissement contre un missile

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3103586A (en) * 1958-12-08 1963-09-10 Gen Mills Inc Passive infrared ranging device using absorption bands of water vapor or carbon dioxide
EP0412886A1 (fr) * 1989-08-08 1991-02-13 Thomson-Csf Système de prise de vues bispectrales et de visualisation en fausses couleurs
US4996430A (en) * 1989-10-02 1991-02-26 The United States Of America As Represented By The Secretary Of The Army Object detection using two channel active optical sensors
FR2692369A1 (fr) 1992-06-12 1993-12-17 Thomson Csf Dispositif de veille omnidirectionnel à couverture optimale de l'espace environnant par jonction de champs.
US5282013A (en) * 1992-06-26 1994-01-25 Spar Aerospace Limited Passive ranging technique for infrared search and track (IRST) systems
EP0759674A1 (fr) 1995-08-22 1997-02-26 Thomson-Csf Procédé pour donner l'impression de profondeur dans une image thermique et caméra pour la mise en oeuvre de ce procédé
FR2738630A1 (fr) * 1995-09-08 1997-03-14 Thomson Csf Procede de classification de menaces par detection infrarouge bispectrale et dispositif de veille correspondant
US20060021498A1 (en) * 2003-12-17 2006-02-02 Stanley Moroz Optical muzzle blast detection and counterfire targeting system and method
WO2007056753A2 (fr) * 2005-11-08 2007-05-18 General Atomics Appareil et procedes servant lors d’une detection de flash
WO2009093227A1 (fr) * 2008-01-23 2009-07-30 Elta Systems Ltd. Système et procédé de détection de coup de feu
WO2009106037A1 (fr) * 2008-02-26 2009-09-03 Eads Deutschland Gmbh Procédé de détermination de la distance d'un objet émettant une signature ir

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT9047971A1 (it) * 1989-06-02 1990-12-03 Thomson Csf Procedimento di analisi multispettrale di un'immagine con l'aiuto di un solo sistema rivelatore e dispositivo multispettrale per l'attuazione di tale procedimento.
US5960097A (en) * 1997-01-21 1999-09-28 Raytheon Company Background adaptive target detection and tracking with multiple observation and processing stages
DE10118628C1 (de) * 2001-04-12 2002-12-05 Aeg Infrarot Module Gmbh Verfahren zum Erkennen spektral selektiver Infrarot-Strahler
FR2830339B1 (fr) * 2001-10-02 2003-12-12 Thales Sa Dispositif optronique de veille passive
US7189970B2 (en) * 2003-08-29 2007-03-13 Power Diagnostic Technologies Ltd. Imaging of fugitive gas leaks

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3103586A (en) * 1958-12-08 1963-09-10 Gen Mills Inc Passive infrared ranging device using absorption bands of water vapor or carbon dioxide
EP0412886A1 (fr) * 1989-08-08 1991-02-13 Thomson-Csf Système de prise de vues bispectrales et de visualisation en fausses couleurs
US4996430A (en) * 1989-10-02 1991-02-26 The United States Of America As Represented By The Secretary Of The Army Object detection using two channel active optical sensors
FR2692369A1 (fr) 1992-06-12 1993-12-17 Thomson Csf Dispositif de veille omnidirectionnel à couverture optimale de l'espace environnant par jonction de champs.
US5282013A (en) * 1992-06-26 1994-01-25 Spar Aerospace Limited Passive ranging technique for infrared search and track (IRST) systems
EP0759674A1 (fr) 1995-08-22 1997-02-26 Thomson-Csf Procédé pour donner l'impression de profondeur dans une image thermique et caméra pour la mise en oeuvre de ce procédé
FR2738630A1 (fr) * 1995-09-08 1997-03-14 Thomson Csf Procede de classification de menaces par detection infrarouge bispectrale et dispositif de veille correspondant
US20060021498A1 (en) * 2003-12-17 2006-02-02 Stanley Moroz Optical muzzle blast detection and counterfire targeting system and method
WO2007056753A2 (fr) * 2005-11-08 2007-05-18 General Atomics Appareil et procedes servant lors d’une detection de flash
WO2009093227A1 (fr) * 2008-01-23 2009-07-30 Elta Systems Ltd. Système et procédé de détection de coup de feu
WO2009106037A1 (fr) * 2008-02-26 2009-09-03 Eads Deutschland Gmbh Procédé de détermination de la distance d'un objet émettant une signature ir

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAVIDI, BAHRAM (ED.): "Image Recognition and Classification: Algorithms, Systems, and Applications", part Chapter 1 2002, MARCEL DEKKER, New York, ISBN: 0-8247-0783-4, article CHAN, LIPCHEN ALEX; DER, SANDOR Z.; NASRABADI, NASSER M.: "Neural-Based Target Detectors for Multiband Infrared Imagery", pages: 1 - 36, XP002629313 *
See also references of EP2593904A1

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948955A (zh) * 2020-08-09 2020-11-17 哈尔滨新光光电科技股份有限公司 一种光电分布式孔径系统测试方法及仿真测试系统
CN111948955B (zh) * 2020-08-09 2022-12-09 哈尔滨新光光电科技股份有限公司 一种光电分布式孔径系统测试方法及仿真测试系统

Also Published As

Publication number Publication date
FR2962827A1 (fr) 2012-01-20
IL224156A (en) 2017-03-30
US20130235211A1 (en) 2013-09-12
EP2593904A1 (fr) 2013-05-22
FR2962827B1 (fr) 2013-05-10

Similar Documents

Publication Publication Date Title
US7732769B2 (en) Apparatus and methods for use in flash detection
US7193214B1 (en) Sensor having differential polarization and a network comprised of several such sensors
WO2012007692A1 (fr) Procédé et dispositif d'imagerie bi-spectral multifonctions
EP3103062B1 (fr) Procede de detection et de classification d'evenements d'une scene
EP0628780B1 (fr) Système de visée pour aéronef
EP3268691B1 (fr) Equipement aéroporté de détection de tirs et d'aide au pilotage
US9300866B2 (en) Method for image processing and method that can be performed therewith for the automatic detection of objects, observation device and method for high-precision tracking of the course followed by launched rockets over large distances
US11471717B1 (en) Early fire detection and suppression
EP3759518B1 (fr) Procédé et système d'émission et de réception d'impulsions laser
EP1718067A1 (fr) Procedé et systeme de veille aéroportée par analyse d'images infrarouges
EP3884656B1 (fr) Appareil et procédé pour observer une scène comportant une cible
von Flotow et al. Shallow Search of a 10-Mile Swath with a Flight of Ship-Based UAVs
Brännlund et al. Detection and localization of light flashes using a single pixel camera in SWIR
Peli et al. Signal processing improvements for infrared missile warning sensors
EP0540395B1 (fr) Dispositif de détection passive d'un tir d'artillerie ou analogue
FR2969273A1 (fr) Conduite de tir bi-spectrale pour projectile autopropulse
FR2974432A1 (fr) Dispositif de guidage differentiel par imagerie active laser
WO2024018164A1 (fr) Procede et systeme de surveillance spatiale infrarouge de jour
WO2023194493A1 (fr) Système de surveillance infrarouge pour aéronef militaire et aéronef militaire, notamment un missile, équipé d'un tel système
Chauhan et al. Sensors for desert surveillance
FR2736491A1 (fr) Dispositif de detection optique
FR2924230A1 (fr) Dispositif de contre-mesure pour guidage infrarouge.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11741667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 224156

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011741667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13810079

Country of ref document: US