WO2012006902A1 - 一种动态调整载波资源的方法及基站 - Google Patents

一种动态调整载波资源的方法及基站 Download PDF

Info

Publication number
WO2012006902A1
WO2012006902A1 PCT/CN2011/073960 CN2011073960W WO2012006902A1 WO 2012006902 A1 WO2012006902 A1 WO 2012006902A1 CN 2011073960 W CN2011073960 W CN 2011073960W WO 2012006902 A1 WO2012006902 A1 WO 2012006902A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
subcarrier
primary
primary subcarrier
idle
Prior art date
Application number
PCT/CN2011/073960
Other languages
English (en)
French (fr)
Inventor
孙国林
叶枫
谢勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11806244.7A priority Critical patent/EP2587855B1/en
Publication of WO2012006902A1 publication Critical patent/WO2012006902A1/zh
Priority to US13/741,689 priority patent/US8976749B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the invention relates to a method for dynamically adjusting carrier resources and a base station.
  • the application is filed on July 15, 2010, and the application number is 201010229817.8.
  • the invention is entitled "A method for dynamically adjusting carrier resources and a base station" of a Chinese patent application. Priority is hereby incorporated by reference in its entirety.
  • the present invention relates to network communication technologies, and in particular, to a method and a base station for dynamically adjusting carrier resources.
  • Soft frequency reuse technology is an effective interference coordination technology, mainly used in cellular communication systems using Orthogonal Frequency Division Multiplexing (OFDM), which solves the problem of users in the cell using orthogonal frequency division multiple access.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the existing soft frequency multiplexing technology divides the subcarriers in each cell into a primary subcarrier and a secondary subcarrier, where the transmission power threshold of the primary subcarrier is higher than the secondary subcarrier, and the primary subcarrier can be sent under a certain power threshold in the local cell.
  • the secondary subcarriers can be transmitted under a certain power threshold in the central area of the cell, thereby avoiding co-channel interference between cells.
  • the existing soft frequency multiplexing technology belongs to a static interference coordination technology, and the number of subcarriers per cell is allocated in each multiplexing group. It is fixed that the allocation of the primary subcarrier and the secondary subcarrier within the cell or between the cells cannot be adjusted according to the change of the load in the cell.
  • Embodiments of the present invention provide a method and a base station for dynamically adjusting carrier resources, which can dynamically adjust allocation of primary subcarriers and secondary subcarriers according to changes in load within a cell, thereby improving spectrum utilization.
  • the embodiment of the invention provides a method for dynamically adjusting carrier resources, including:
  • the idle primary subcarrier resource in the cell is released as a secondary subcarrier according to a degree of decrease in the edge traffic according to a predetermined minimum granularity.
  • the embodiment of the invention provides a base station for dynamically adjusting carrier resources, including:
  • a detecting module configured to detect an edge traffic of the cell
  • a releasing module configured to: if the detecting module detects that the edge traffic of the local cell decreases, release the idle primary subcarrier resource in the cell as a secondary subcarrier according to a degree of the edge traffic loss.
  • the allocation of the primary subcarrier and the secondary subcarrier can be dynamically adjusted, the utilization of the spectrum is improved, and the carrier resource can be reasonable. designation.
  • FIG. 1 is a schematic flowchart of a method for dynamically adjusting carrier resources according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a method for using soft frequency multiplexing between cells in a cellular system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of subcarriers of three cells in the same multiplexing group in a method for using a soft frequency multiplexing transmission mode between cells in a cellular system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a carrier after the cell 1 releases a primary subcarrier resource of a predetermined minimum granularity as a secondary subcarrier resource according to an embodiment of a method for using a soft frequency multiplexing transmission between cells in a cellular system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a carrier after a cell 1 uses a soft frequency multiplexed transmission mode between cells in a cellular system according to an embodiment of the present invention, and a cell 2 adds a primary primary subcarrier resource in the cell 1 to a primary subcarrier set of the local cell. ;
  • FIG. 6 is a schematic flowchart of a method for dynamically adjusting carrier resources by taking a primary subcarrier by using a sawtooth hopping method between cells in a multi-carrier wireless communication system according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of mutually orthogonal primary subcarriers of three cells in the same multiplexing group in a method for dividing a primary subcarrier by using a sawtooth hopping method between cells in a multi-carrier wireless communication system according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a carrier in which a primary subcarrier with a predetermined minimum granularity is released as a secondary subcarrier resource in a method in which a primary subcarrier is divided by a sawtooth hopping method in a multi-carrier wireless communication system according to an embodiment of the present invention. ;
  • FIG. 9 is a schematic diagram of a method for dividing a primary subcarrier by using a sawtooth hopping method between cells in a multi-carrier wireless communication system according to an embodiment of the present invention, in which cell 3 adds a primary primary subcarrier resource that is idle in cell 2 to a primary subcarrier set of the local cell.
  • Rear carrier diagram ;
  • FIGS. 3, 4, 5, 7, 8, and 9 represents a primary subcarrier in the cell 1, Representing the primary subcarrier in cell 2,
  • Counters means the sub-subcarrier; in Figure 8, the main subcarrier is released, "!_", represents the time-frequency window, and the specific embodiment
  • a method for dynamically adjusting carrier resources includes: Step 1 1: Detecting edge traffic of the local cell;
  • the MAC (Medium Equpment, UE) experience is generally detected.
  • the layer data buffer uses the status or detects the number of cell edge terminals in the connected state to determine the edge traffic of the cell.
  • Step 12 If the edge traffic of the cell decreases, the primary subcarrier resource that is idle in the cell is released as a secondary subcarrier according to a multiple of the predetermined minimum granularity, and the multiple is an integer multiple. Such as 1 times, 2 times or 3 times. For example, if the edge traffic is reduced to a small extent (in one embodiment, a first threshold may be preset, and when the edge traffic decreases by less than the first threshold, the edge service is considered.
  • a first threshold may be preset, and when the edge traffic decreases by less than the first threshold, the edge service is considered.
  • the primary subcarrier resource that is idle of the cell may be released as a secondary subcarrier according to a predetermined minimum granularity; if the edge traffic decreases to a greater extent (in one embodiment, one preset may be set)
  • the second threshold value is considered to be lower when the edge traffic volume decreases by more than the first threshold value. Large), the primary subcarrier resource that is idle of the cell may be released as a secondary subcarrier at 3 times the predetermined minimum granularity.
  • the predetermined minimum granularity is a predetermined number of subcarriers, and the predetermined number is determined by a channel condition, a type of service carried, and a cell load condition, that is, a change considering the foregoing three conditions needs to be comprehensively considered, thereby determining that the subcarriers are determined by several subcarriers. Compose the smallest granularity.
  • the method further includes the following steps: dividing the subcarrier of the current cell into two groups of a primary subcarrier and a secondary subcarrier, for example, the soft frequency multiplexing technology divides the 57 cells into three groups. , that is, divided into 19 multiplexing groups, the primary subcarriers of the three cells in each multiplexing group are mutually orthogonal, and the primary subcarriers of each cell in different multiplexing groups may be orthogonal to each other.
  • the non-orthogonal, the transmit power threshold of the primary subcarrier is higher than the secondary subcarrier, and the primary subcarrier can be sent under a certain power threshold in the cell, and the secondary subcarrier can be sent under a certain power threshold in the central area of the cell.
  • the above method may further include:
  • the primary subcarrier divided by the neighboring cell is perceived by a predetermined perceptual algorithm, and the idle primary subcarrier resource is obtained by the neighboring cell, and the predetermined perceptual algorithm may include an energy detection algorithm or a covariance matrix detection algorithm or a signal feature detection algorithm. ;
  • the idle primary subcarrier resource may include an energy detection algorithm or a covariance matrix detection algorithm or a signal feature detection algorithm; The method can pass the perception result reported by multiple terminals through the "and" or "or” algorithm to make a decision. According to the above method, the method may further include:
  • the primary subcarrier resources that are known or determined to be idle of the neighboring cell are added to the primary subcarrier set of the local cell.
  • the embodiment of the present invention uses a transmission mode of soft frequency multiplexing between cells in a cellular system as an example. Specifically, three cells in the same multiplexing group have a minimum granularity of one subcarrier, and the signal feature detection algorithm of the terminal is used.
  • the perceptual algorithm is taken as an example. As shown in Figure 2, the specific process is as follows:
  • Step 21 The base stations in the three cells respectively divide the subcarriers of the cells 1, 2, and 3 into two groups of a primary subcarrier and a secondary subcarrier, and the primary subcarriers of the three cells are orthogonal to each other as shown in FIG. That is, the primary subcarrier of cell 1 is carriers 1 and 2; the primary subcarrier of cell 2 is carriers 3 and 4; the primary subcarrier of cell 3 is carriers 5 and 6; the carrier numbers between the primary subcarriers of 3 cells are not overlapping ;
  • Step 22 The base station of the cell 1 determines the edge traffic volume of the cell by detecting the number of cell edge terminals in the connected state in the cell;
  • Step 23 If the base station of the cell 1 detects that the edge traffic of the cell is degraded (that is, the number of cell edge terminals in the cell 1 in the cell 1 is decreased), the idle primary subcarrier resource in the cell 1 is released as the subcarrier.
  • the implementation for example, releases one primary subcarrier resource as a secondary subcarrier, and is released as shown in FIG. 4;
  • Step 24 The terminal in the cell 2 perceives that there is an idle primary subcarrier in the cell 1 by using the signal feature detection algorithm, and reports it to the base station in the cell 2. At this time, the cell 2 perceives the primary subcarrier originally divided in the cell 1. , including the primary subcarrier that has been released as a secondary subcarrier;
  • the process of the terminal in the cell 2 sensing the idle primary subcarrier in the cell 1 by using the matched filtering method of the signal feature detection algorithm may include: first, the pilot signal or the synchronization code in the cell 1 The detected analog signal is converted into a digital signal; then, the converted digital signal is multiplied by a copy of the detected signal, and the copy of the detected signal is a signal of the same type as the preset digital signal, for example, The delayed signal of the converted digital signal; finally, the multiplied signal is sequentially subjected to integration and decision processing to obtain a corresponding detection result.
  • the result reported by the terminal in the cell 1 may include 2 bits, that is, each bit represents a cell.
  • the primary subcarriers 3 and 4 in 2 if "0" indicates that the carrier is idle, and “1" indicates carrier occupancy, the result reported by the terminal in the cell 1 may be "01"; likewise, the result reported by the terminal in the cell 2 may be Including 4 bits, that is, each bit represents the primary subcarriers 1 and 2 in the cell 1 and the primary subcarriers 5 and 6 in the cell 3. If “0" indicates that the subcarrier is occupied, "1" indicates that the subcarrier is idle, then the cell 2 is in the cell 2. The result reported by the terminal can be "0100";
  • the base station in the cell 2 directly determines the idle primary subcarrier resource of the neighboring cell according to the reported result; if there are two or more terminals in the cell 2, the base station in the cell 2 The idle primary subcarrier resource of the neighboring cell is determined by the fusion algorithm according to the reported result.
  • Step 25 If the cell 2 detects that the edge traffic of the cell is increased (that is, the number of cell edge terminals in the connected state in the cell 2 increases), the base station in the cell 2 will learn that the neighboring cell 1 is idle.
  • the carrier resource is added to the primary subcarrier set of the local cell, and is added as shown in FIG. 5.
  • the sensing time of each cell can be randomly set to avoid the simultaneous occurrence of the sensing situation between multiple cells, or the sensing behavior can be set to the dynamic trigger mode, and the touch can be The condition of the transmission can cause a new frequency resource requirement for the load to rise, thereby reducing the probability of simultaneous perception.
  • a method for dividing a primary subcarrier by using a sawtooth hopping method between multiple cells in a multi-carrier wireless communication system is described as an example.
  • three cells in the same multiplexing group form a minimum frequency domain in the frequency domain after frequency hopping.
  • 12 time-frequency resource blocks (sawtooth) of the main subcarrier uses the energy detection algorithm to report the sensing algorithm to the base station, and the base station uses the fusion algorithm to make the decision as an example.
  • the specific process is as follows:
  • Step 61 The base stations in the three cells respectively divide the subcarriers of the cells 1, 2, and 3 into two groups of a primary subcarrier and a secondary subcarrier, and the primary subcarriers of the three cells are orthogonal to each other as shown in FIG. 7. That is, a "sawtooth" hopping pattern is formed in the frequency domain and the time domain; although the cell 1 and the cell 3 are not illustrated, the cell 1 and the cell 3 can be mutually perceived.
  • Step 62 The base station of the cell 2 determines the edge traffic of the cell by detecting the MAC layer data buffer usage state experienced by the edge UE.
  • Step 63 If the base station of the cell 2 detects that the edge traffic of the cell is degraded (that is, the MAC layer data buffer usage state experienced by the UE in the cell 2 is unused), the idle primary subcarrier in the cell 2 is released.
  • the frequency resource block is used as a secondary subcarrier, and the present embodiment releases, for example, a time-frequency resource block of 12 primary subcarriers as a secondary subcarrier, and is released as shown in FIG. 8;
  • Step 64 The terminal in the cell 3 detects that there is an idle primary subcarrier in the cell 2, and reports it to the base station in the cell 3, and the cell 3 perceives the primary subcarrier originally divided in the cell 2, a time-frequency resource block including the part of the primary subcarrier that has been released as a secondary subcarrier; further, the terminal in the cell 3 perceives the idle primary subcarrier in the cell 2 by using an energy detection algorithm
  • the process may include: First, the terminal in the cell 3 presets the time length of the time-frequency window (as shown in FIG. 8).
  • L-! is the time-frequency window, and the length of the abscissa is the length of the time-frequency window.
  • the length of time is determined by the measurement accuracy. For example, if the accuracy is high, the set time length is 1 subframe; if the precision requirement is low, the set time length is 3 subframes; then, the primary subcarrier frequency in the cell 2 is scanned and detected according to the size of the set time-frequency window, if it is detected as shown in FIG. 8 In the dotted line box, the resource block energy change in the real-time window is in a zigzag pattern in time, indicating that there is an idle primary sub-carrier in the cell 2;
  • the terminal sensing start time in the cell 1 is the first subframe, and the sensing period is 3 subframes;
  • the terminal sensing start time in the cell 3 is the second subframe, and the sensing period is 3 subframes; Simultaneous sensing of multiple cells is avoided, which causes the idle primary subcarriers to be added to the primary subcarrier set of the current cell at the same time, thereby avoiding the occurrence of inter-cell interference.
  • Step 65 The base station in the cell 3 receives the sensing result reported by the terminal, and uses the fusion algorithm to determine the idle primary subcarrier resource in the cell 2.
  • the "or" fusion algorithm may be used, that is, as long as one terminal reports the presence in the cell 2
  • the idle primary subcarrier the base station determines that there is an idle primary subcarrier in the cell 2
  • the "and” fusion algorithm may also be used, that is, only the reported result of all the reported terminals in the cell is the primary primary subcarrier in the cell 2, and the base station only There is an idle primary subcarrier in decision cell 2.
  • Step 66 If the base station of the cell 3 detects that the edge traffic of the cell is increased (that is, the MAC layer data buffer usage state of the UE in the cell 3 is used), the neighboring cell 2 that the base station in the cell 3 will decide The time-frequency resource block of the idle primary subcarrier is added to the primary subcarrier set of the current cell, and the "sawtooth" hopping pattern remains after the addition, as shown in FIG.
  • the machine can be read into a storage medium, and when executed, the program can include the flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • a method for dynamically adjusting a carrier resource when the edge traffic of the cell decreases, the allocation of the primary subcarrier and the secondary subcarrier can be dynamically adjusted; when the edge service of the cell rises, The idle primary subcarriers in the neighboring cells are added to the primary subcarrier set of the local cell; that is, the primary and secondary subcarriers in the primary cell and the primary subcarriers in the cell can be dynamically adjusted according to the cell load status, and resource sharing is achieved.
  • the purpose is to enable reasonable and full utilization of carrier resources and improve spectrum utilization.
  • the cells actively acquire the idle frequency information of the neighboring cells in a perceptual manner, which does not require signaling interaction between the base stations, saves signaling overhead, and avoids transmission delay. If the sensing time of each cell is randomly set or the sensing behavior is set to the dynamic triggering mode, interference between cells can be avoided, the inter-cell interference coordination can be achieved, and the throughput rate of the cell edge can be improved.
  • the embodiment of the present invention provides a base station that dynamically adjusts a carrier resource, and as shown in FIG. 10, the method includes: a detecting module 101, configured to detect an edge traffic volume of the local cell;
  • the MAC layer data buffer usage state experienced by the edge UE or the number of cell edge terminals in the connected state are generally detected to determine the edge traffic of the cell.
  • the release module 102 is configured to: if the detection module 101 detects that the edge traffic of the local cell decreases, release the idle primary subcarrier resource in the cell as a secondary subroutine according to a degree of the edge traffic reduction.
  • the carrier wave, the multiple is an integer multiple, such as 1 time, 2 times or 3 times. For example, if the edge traffic is reduced to a small extent (in one embodiment, a first threshold may be preset, and when the edge traffic decreases by less than the first threshold, the edge service is considered. If the degree of decrease is small, the primary subcarrier that is idle of the cell may be released according to a predetermined minimum granularity.
  • the resource is used as a secondary subcarrier; if the edge traffic decreases to a greater extent (in one embodiment, a second threshold may be preset, when the edge traffic decreases to a greater extent than the first threshold) If the edge traffic is considered to be reduced to a greater extent, the primary subcarrier resource that is idle of the cell may be released as a secondary subcarrier at three times the predetermined minimum granularity.
  • the predetermined minimum granularity is a predetermined number of subcarriers, and the predetermined number is determined by a channel condition, a type of service carried, and a cell load condition, that is, a change considering the foregoing three conditions needs to be comprehensively considered, thereby determining that the subcarriers are determined by several subcarriers. Compose the smallest granularity.
  • the base station may further include a carrier division module (not shown in FIG. 10), configured to divide the subcarriers of the local cell into two groups of a primary subcarrier and a secondary subcarrier, for example, the soft frequency multiplexing technology will have 57 cells.
  • a carrier division module (not shown in FIG. 10), configured to divide the subcarriers of the local cell into two groups of a primary subcarrier and a secondary subcarrier, for example, the soft frequency multiplexing technology will have 57 cells.
  • Each of the three cells is divided into a group, that is, divided into 19 multiplexing groups, and the primary subcarriers of the three cells in each multiplexing group are orthogonal to each other, and the primary sub-cells of different multiplexing groups
  • the carrier may be orthogonal or non-orthogonal, the transmission power threshold of the primary subcarrier is higher than the secondary subcarrier, the primary subcarrier may be transmitted under a certain power threshold in the local cell, and the secondary subcarrier may be in the central area of the local cell. Send under a certain power threshold.
  • the above apparatus may also include (not shown in Figure 10):
  • a sensing module configured to perceive a primary subcarrier divided by a neighboring cell by using a predetermined perceptual algorithm, and obtain the idle primary subcarrier resource of the neighboring cell, where the predetermined perceptual algorithm may include an energy detection algorithm or a covariance matrix detection algorithm Or signal feature detection algorithm;
  • the sensing result receiving module is configured to receive the primary subcarrier sensing result of the neighboring cell segmentation reported by the terminal in the cell by the predetermined perceptual algorithm, and obtain the idle primary subcarrier resource of the neighboring cell;
  • the predetermined perceptual algorithm may include energy Detection algorithm or covariance matrix detection algorithm or signal characteristics Detection algorithm;
  • a merging module configured to determine, according to the sensing result received by the sensing result receiving module, the idle primary subcarrier resource by using a convergence algorithm, where the predetermined sensing algorithm may include an energy detection algorithm or a covariance matrix detection algorithm or signal A feature detection algorithm; the fusion algorithm may determine the perceived result reported by multiple terminals by using an AND or OR algorithm.
  • the predetermined sensing algorithm may include an energy detection algorithm or a covariance matrix detection algorithm or signal A feature detection algorithm
  • the fusion algorithm may determine the perceived result reported by multiple terminals by using an AND or OR algorithm.
  • the sensing result receiving module only needs to be included, that is, the idle primary subcarrier resource of the neighboring cell is directly determined according to the reported result; if there are two or more terminals in the cell, The fusion module is further included, that is, the idle primary subcarrier resource of the neighboring cell is determined by the fusion algorithm according to the reported result.
  • the method may further include:
  • Adding a module (not shown in FIG. 10), if it is detected that the edge traffic of the cell is increased, adding the primary subcarrier resource of the neighboring cell that is learned or determined to the primary subcarrier of the cell In the collection.
  • a method for dynamically adjusting a carrier resource and a base station when the edge traffic of the cell decreases, the allocation of the primary subcarrier and the secondary subcarrier can be dynamically adjusted; when the edge service of the cell rises
  • the idle primary subcarrier in the neighboring cell may be added to the primary subcarrier set of the local cell; that is, the primary and secondary subcarriers in the primary cell and the primary subcarrier between the cells may be dynamically adjusted according to the cell load status, and the primary subcarrier is obtained.
  • the purpose of resource sharing enables the carrier resources to be utilized reasonably and fully, and the utilization of spectrum is improved.
  • the cells actively acquire the idle spectrum information of the neighboring cells in a perceptual manner, and do not need to perform signaling interaction between the base stations, thereby saving signaling overhead and avoiding transmission. Loss of delay. If the sensing time of each cell is randomly set or the sensing behavior is set to the dynamic triggering mode, interference between cells can be avoided, the inter-cell interference coordination can be achieved, and the throughput rate of the cell edge can be improved.

Abstract

本发明提供的是一种动态调整载波资源的方法及基站,其中该方法包括:首先,检测本小区的边缘业务量;然后,若本小区的边缘业务量下降,则根据所述边缘业务量下降的程度,按照预定最小粒度的倍数释放所述小区中空闲的主子载波资源作为副子载波。借助本发明,在本小区的边缘业务量变化时,可以动态调整主子载波和副子载波的分配,提高了频率的利用率,使载波资源能够充分且合理的利用。

Description

一种动态调整载波资源的方法及基站 本申请要求于 2010年 7月 15日提交中国专利局, 申请号为 201010229817.8, 发明名称为"一种动态调整载波资源的方法及基站"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及网络通信技术, 尤其涉及一种动态调整载波资源的方法及基 站。
背景技术
软频率复用技术是一种有效的干扰协调技术,主要使用在釆用正交频分复 用 (OFDM )的蜂窝通信系统中, 它解决了小区中的用户釆用正交频分多址接 入(OFDMA )方式进行上下行接入, 相邻小区使用相同频率资源进行组网和 业务传输时,在连续覆盖的情况下, 同一时刻使用相同频率资源进行用户传输 给对方带来同频干扰的问题。现有的软频率复用技术是将各小区中子载波分为 主子载波和副子载波, 其中主子载波的发送功率门限高于副子载波, 主子载波 可以在本小区内一定的功率门限下发送,而副子载波可以在本小区的中心区域 内一定功率门限下发送, 从而避免了小区间的同频干扰。 在实现本发明过程中, 发明人发现现有技术中至少存在如下问题: 现有的软频率复用技术属于一种静态干扰协调技术,在每个复用组中分配 每个小区的子载波数是一定的,无法根据小区内负载的变化来调整主子载波和 副子载波在小区内或小区间的分配。
发明内容 本发明的实施例提供了一种动态调整载波资源的方法及基站,可以根据小 区内负载的变化动态调整主子载波和副子载波的分配, 提高了频谱利用率。
本发明实施例提供了一种动态调整载波资源的方法, 包括:
检测本小区的边缘业务量;
若本小区的边缘业务量下降, 则根据所述边缘业务量下降的程度,按照预 定最小粒度的倍数释放所述小区中空闲的主子载波资源作为副子载波。
本发明实施例提供了一种动态调整载波资源的基站, 包括:
检测模块, 用于检测本小区的边缘业务量;
释放模块, 用于若检测模块检测到本小区的边缘业务量下降, 则根据所述 边缘业务量下降的程度,按照预定最小粒度的倍数释放所述小区中空闲的主子 载波资源作为副子载波。
由上述本发明的实施例提供的技术方案可以看出,在本小区的边缘业务量 变化时, 可以动态调整主子载波和副子载波的分配, 提高了频谱的利用率, 使 载波资源能够合理且充分的利用。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需 要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例所述的一种动态调整载波资源的方法流程示意图; 图 2为本发明实施例以蜂窝系统小区间釆用软频率复用的传输方式为例, 说明一种动态调整载波资源的方法流程示意图;
图 3为本发明实施例以蜂窝系统小区间釆用软频率复用的传输方式为例的 方法中, 同一复用组中 3个小区的子载波示意图;
图 4为本发明实施例以蜂窝系统小区间釆用软频率复用的传输方式为例的 方法中, 小区 1释放预定最小粒度的主子载波资源作为副子载波资源后的载波 示意图;
图 5为本发明实施例以蜂窝系统小区间釆用软频率复用的传输方式为例的 方法中,小区 2将小区 1中空闲的主子载波资源添加到本小区的主子载波集合后 的载波示意图;
图 6为本发明实施例以多载波无线通信系统小区间釆用锯齿状跳频方式划 分主子载波为例, 说明一种动态调整载波资源的方法流程示意图;
图 7为本发明实施例以多载波无线通信系统小区间釆用锯齿状跳频方式划 分主子载波为例的方法中, 同一复用组中 3个小区的相互正交的主子载波示意 图;
图 8为本发明实施例以多载波无线通信系统小区间釆用锯齿状跳频方式划 分主子载波为例的方法中, 小区 2释放预定最小粒度的主子载波资源作为副子 载波资源后的载波示意图;
图 9为本发明实施例以多载波无线通信系统小区间釆用锯齿状跳频方式划 分主子载波为例的方法中,小区 3将小区 2中空闲的主子载波资源添加到本小区 的主子载波集合后的载波示意图;
图 10为本发明实施例所述的一种动态调整载波资源的基站的结构示意图; 上述附图 3、 4、 5、 7、 8和 9中 "^" 表示小区 1中的主子载波, 表示小区 2中的主子载波,
Figure imgf000005_0001
"國"表示副子载波; 附图 8中 ,, 表示释放的主子载波, "!_」,, 表示时 频窗, 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例一种动态调整载波资源的方法, 如图 1所示, 包括: 步骤 1 1、 检测本小区的边缘业务量;
具体地,一般检测边缘用户 ( User Equpment, UE )体验的 MAC ( Medium
Access Control, 介质访问控制)层数据緩冲区使用状态或检测处于连接状态 的小区边缘终端的数量来确定小区的边缘业务量。
步骤 12、若本小区的边缘业务量下降,则根据所述边缘业务量下降的程度, 按照预定最小粒度的倍数释放所述小区空闲的主子载波资源作为副子载波,所 述倍数为整数倍, 如 1倍、 2倍或 3倍等。 例如, 若所述边缘业务量下降的程度 小(在一个实施例中, 可以预先设定一个第一门限值, 当边缘业务量下降的程 度小于该第一门限值时, 认为上述边缘业务量下降的程度小), 则可以按照预 定最小粒度释放所述小区空闲的主子载波资源作为副子载波;若所述边缘业务 量下降的程度较大(在一个实施例中, 可以预先设定一个第二门限值, 当边缘 业务量下降的程度大于该第一门限值时, 认为上述边缘业务量下降的程度较 大) , 则可以按照预定最小粒度的 3倍释放所述小区空闲的主子载波资源作为 副子载波。
具体地, 预定最小粒度为预定个数的子载波, 所述预定个数由信道状况、 承载的业务类型及小区负载状况确定, 即需要综合考虑上述三种状况的变化, 从而确定由几个子载波组成最小粒度。
上述方法中, 步骤 1 1之前, 还可以包括步骤 10、 将本小区的子载波划分 为主子载波和副子载波两组, 例如软频率复用技术将 57个小区每 3个小区分在 一组, 即分成了 19个复用组, 则每个复用组中的 3个小区的主子载波之间是相 互正交的, 不同复用组中的各小区的主子载波之间可以正交也可以非正交, 主 子载波的发送功率门限高于副子载波,主子载波可以在本小区内一定的功率门 限下发送, 而副子载波可以在本小区的中心区域内一定功率门限下发送。
上述方法, 还可以包括:
通过预定的感知算法对相邻小区划分的主子载波进行感知,获知相邻小区 所述空闲的主子载波资源,所述预定的感知算法可以包括能量检测算法或协方 差矩阵检测算法或信号特征检测算法;
或者,
接收小区内的终端通过预定的感知算法上报的相邻小区划分的主子载波 感知结果,并根据所述感知结果通过融合算法判决相邻小区所述空闲的主子载 波资源。 具体地, 若小区内只有一个终端, 则根据上报的结果直接确定相邻小 区所述空闲的主子载波资源; 若小区内有两个或以上终端, 则根据上报的结果 通过融合算法判决相邻小区所述空闲的主子载波资源。所述预定的感知算法可 以包括能量检测算法或协方差矩阵检测算法或信号特征检测算法;所述融合算 法可以将多个终端上报的感知结果通过 "与" 或者 "或" 算法后做出判决。 根据上述方法, 还可以包括:
若检测到本小区的边缘业务量上升 ,则将获知或判决的所述相邻小区空闲 的主子载波资源添加到本小区的主子载波集合中。
本发明实施例以蜂窝系统小区间釆用软频率复用的传输方式为例进行说 明, 具体以同一复用组中 3个小区, 最小粒度为 1个子载波, 且终端釆用信号特 征检测算法为感知算法为例, 如图 2所示, 具体过程如下:
步骤 21、 3个小区中的基站分别将小区 1、 2和 3的子载波划分为主子载波 和副子载波两组,且 3个小区的主子载波之间如图 3所示是相互正交的, 即小区 1的主子载波为载波 1和 2; 小区 2的主子载波为载波 3和 4; 小区 3的主子载波为 载波 5和 6; 3个小区的主子载波之间的载波号是不重叠的;
步骤 22、 小区 1的基站通过检测本小区内处于连接状态的小区边缘终端的 数量确定小区的边缘业务量;
步骤 23、 若小区 1的基站检测到本小区的边缘业务量下降(即小区 1内处 于连接状态的小区边缘终端的数量减少) , 则释放小区 1中空闲的主子载波资 源作为副子载波, 本实施例如释放 1个主子载波资源作为副子载波, 释放后如 图 4所示;
步骤 24、 小区 2中的终端通过信号特征检测算法感知到小区 1中存在空闲 的主子载波, 并上报给小区 2中的基站, 此时小区 2感知的是小区 1中最初划分 的所述主子载波, 包括已经释放的作为副子载波的那个主子载波;
进一步, 小区 2中的终端通过信号特征检测算法的匹配滤波法感知小区 1 中空闲的主子载波的过程可以包括: 首先, 将小区 1中的导频信号或同步码等 检测的模拟信号转换为数字信号; 然后,将转换后的数字信号与所述检测信号 的副本相乘,所述检测信号的副本为预先设定与转换后的数字信号同类型的信 号, 如可以为转换后的数字信号的延时信号; 最后, 将相乘后的信号依次进行 积分和判决处理后得到相应的检测结果。
具体地,小区 1中的终端上报的结果可以包括 2比特, 即每一比特代表小区
2中的主子载波 3和 4 , 若 "0" 表示载波空闲, "1 " 表示载波占用, 则小区 1 中的终端上报的结果可以为 "01 " ; 同样, 小区 2中的终端上报的结果可以包 括 4比特, 即每一比特代表小区 1中的主子载波 1、 2以及小区 3中的主子载波 5、 6 , 若 "0" 表示子载波占用, "1 " 表示子载波空闲, 则小区 2中的终端上报 的结果可以为 "0100" ;
进一步,若小区 2中只有一个终端,则小区 2中的基站根据上报的结果直接 确定相邻小区所述空闲的主子载波资源; 若小区 2中有两个或以上终端, 则小 区 2中的基站根据上报的结果通过融合算法判决相邻小区所述空闲的主子载波 资源。
步骤 25、 若小区 2检测到本小区的边缘业务量上升 (即小区 2内处于连接 状态的小区边缘终端的数量增加),则小区 2中的基站将获知的相邻小区 1空闲 的 1个主子载波资源添加到本小区的主子载波集合中, 添加后如图 5所示。
上述步骤中, 小区 1将一个主子载波释放后, 如果小区 2和小区 3的业务量 都上升且两小区中的终端或基站同时感知小区 1并得到同样的感知结果, 就会 造成小区 2与小区 3都将释放的主子载波 1添加到自己的主子载波集合中, 从而 导致小区间的干扰。此时可以通过随机设置各小区的感知时刻来避免多个小区 间同时进行感知情况的发生,也可以将感知行为设置为动态触发的方式, 而触 发的条件可以为负载上升造成新的频率资源需求,从而可以减少发生同时感知 的概率。 本发明实施例以多载波无线通信系统小区间釆用锯齿状跳频方式划分主 子载波为例进行说明, 具体以同一复用组中 3个小区, 在时域跳频后形成频域 最小粒度为 12个主子载波的时频资源块(锯齿), 且终端釆用能量检测算法为 感知算法上报给基站, 基站釆用融合算法进行判决为例, 如图 6所示, 具体过 程如下:
步骤 61、 3个小区中的基站分别将小区 1、 2和 3的子载波划分为主子载 波和副子载波两组,且 3个小区的主子载波之间如图 7所示是相互正交的, 即 在频域和时域会形成 "锯齿"状的跳频图样; 虽然图示小区 1与小区 3并不相 部, 但小区 1和小区 3之间也可互相进行感知。
步骤 62、 小区 2的基站通过检测边缘 UE体验的 MAC层数据緩冲区使用状 态确定小区的边缘业务量;
步骤 63、 若小区 2的基站检测到本小区的边缘业务量下降(即小区 2内边 缘 UE体验的 MAC层数据緩冲区使用状态为未使用) , 则释放小区 2中空闲的 主子载波的时频资源块作为副子载波,本实施例如释放 12个主子载波的时频资 源块作为副子载波, 释放后如图 8所示;
步骤 64、 小区 3中的终端通过能量检测算法感知到小区 2中存在空闲的主 子载波, 并上报给小区 3中的基站, 此时小区 3感知的是小区 2中最初划分的所 述主子载波, 包括已经释放的作为副子载波的那部分主子载波的时频资源块; 进一步,小区 3中的终端通过能量检测算法感知小区 2中空闲的主子载波的 过程可以包括: 首先, 小区 3中的终端预先设定时频窗的时间长度(如图 8中
"L-!" 即为时频窗, 其横坐标的长度即为的时频窗的时间长度) , 所述时间 长度由测量精度确定的, 例如, 若精度要求高, 则设定时间长度为 1子帧; 若 精度要求低, 则设定时间长度为 3子帧; 然后, 小区 2中的主子载波频语按照设 定的时频窗的大小进行扫描和检测, 若检测到如图 8所示虚线框中, 即时频窗 内的资源块能量变化在时间上呈锯齿状图样, 则表明小区 2中存在空闲的主子 载波;
进一步还可以设置小区 1中的终端感知起始时刻为第 1子帧, 感知周期为 3 子帧; 小区 3中的终端感知起始时刻为第 2子帧, 感知周期为 3子帧; 这样设置 避免了多个小区同时进行感知,导致同时将空闲的主子载波添加到本小区的主 子载波集合中, 避免了小区间干扰的出现。
步骤 65、 小区 3中的基站接收到终端上报的感知结果, 釆用融合算法判决 小区 2中空闲的主子载波资源, 具体可以釆用 "或" 融合算法, 即只要有一个 终端上报小区 2中存在空闲的主子载波, 基站就判决小区 2中存在空闲主子载 波; 也可以釆用 "与" 融合算法, 即只有小区中所有上报的终端的上报结果均 为小区 2中存在空闲的主子载波, 基站才判决小区 2中存在空闲主子载波。
步骤 66、 若小区 3的基站检测到本小区的边缘业务量上升 (即小区 3内边 缘 UE的 MAC层数据緩冲区使用状态为使用) , 则小区 3中的基站将判决的相 邻小区 2空闲的主子载波的时频资源块添加到本小区的主子载波集合中, 添加 后仍然保持 "锯齿状" 跳频图样, 如图 9所示。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程 , 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存储记忆体( Random Access Memory, RAM )等。
本发明实施例所述的一种动态调整载波资源的方法,其在本小区的边缘业 务量下降时, 可以动态调整主子载波和副子载波的分配; 在本小区的边缘业务 了上升时,可以将检测到相邻小区中的空闲主子载波添加到本小区的主子载波 集合中; 即可以根据小区负载状况动态地调整本小区中的主、 副子载波以及小 区间的主子载波,达到了资源共享的目的,使载波资源能够合理且充分的利用, 提高了频谱的利用率。同时小区之间通过感知的方式主动获取其相邻小区的空 闲频语信息, 无需基站间进行信令交互, 节省了信令开销, 避免了传输时延。 若随机设置各小区的感知时刻或将感知行为设置为动态触发的方式,还可以避 免小区间的干扰, 达到小区间干扰协调的目的, 提高了小区边缘的吞吐率。
本发明实施例提供了一种动态调整载波资源的基站, 如图 10所示, 包括: 检测模块 101 , 用于检测本小区的边缘业务量;
具体地, 一般检测边缘 UE体验的 MAC层数据緩冲区使用状态或检测处于 连接状态的小区边缘终端的数量来确定小区的边缘业务量。
释放模块 102 , 用于若检测模块 101检测到本小区的边缘业务量下降, 则 根据所述边缘业务量下降的程度,按照预定最小粒度的倍数释放所述小区中空 闲的主子载波资源作为副子载波, 所述倍数为整数倍, 如 1倍、 2倍或 3倍等。 例如, 若所述边缘业务量下降的程度小(在一个实施例中, 可以预先设定一个 第一门限值, 当边缘业务量下降的程度小于该第一门限值时,认为上述边缘业 务量下降的程度小), 则可以按照预定最小粒度释放所述小区空闲的主子载波 资源作为副子载波; 若所述边缘业务量下降的程度较大(在一个实施例中, 可 以预先设定一个第二门限值, 当边缘业务量下降的程度大于该第一门限值时, 认为上述边缘业务量下降的程度较大) , 则可以按照预定最小粒度的 3倍释放 所述小区空闲的主子载波资源作为副子载波。
具体地, 预定最小粒度为预定个数的子载波, 所述预定个数由信道状况、 承载的业务类型及小区负载状况确定, 即需要综合考虑上述三种状况的变化, 从而确定由几个子载波组成最小粒度。
上述基站中, 还可以包括载波划分模块(在附图 10中未标出 ) , 用于将本 小区的子载波划分为主子载波和副子载波两组,例如软频率复用技术将 57个小 区每 3个小区分在一组, 即分成了 19个复用组, 则每个复用组中的 3个小区的 主子载波之间是相互正交的,不同复用组中的各小区的主子载波之间可以正交 也可以非正交, 主子载波的发送功率门限高于副子载波, 主子载波可以在本小 区内一定的功率门限下发送,而副子载波可以在本小区的中心区域内一定功率 门限下发送。
上述装置, 还可以包括(在附图 10中未标出) :
感知模块, 用于通过预定的感知算法对相邻小区划分的主子载波进行感 知, 获知相邻小区所述空闲的主子载波资源, 所述预定的感知算法可以包括能 量检测算法或协方差矩阵检测算法或信号特征检测算法;
或者,
感知结果接收模块,用于接收小区内的终端通过预定的感知算法上报的相 邻小区划分的主子载波感知结果, 获知相邻小区所述空闲的主子载波资源; 所 述预定的感知算法可以包括能量检测算法或协方差矩阵检测算法或信号特征 检测算法;
融合模块,用于根据所述感知结果接收模块接收的感知结果通过融合算法 判决相邻小区所述空闲的主子载波资源,所述预定的感知算法可以包括能量检 测算法或协方差矩阵检测算法或信号特征检测算法;所述融合算法可以将多个 终端上报的感知结果通过 "与" 或者 "或" 算法后做出判决。
具体地, 若小区内只有一个终端, 则只需包括感知结果接收模块即可, 即 根据上报的结果直接确定相邻小区所述空闲的主子载波资源;若小区内有两个 或以上终端, 则还需包括融合模块, 即根据上报的结果通过融合算法判决相邻 小区所述空闲的主子载波资源。
根据上述装置, 还可以包括:
添加模块(在附图 10中未标出), 用于若检测到本小区的边缘业务量上升 时,则将获知或判决的所述相邻小区空闲的主子载波资源添加到本小区的主子 载波集合中。
上述装置中包含的各模块的处理功能的具体实现方式在之前的方法实施 例中已经描述, 在此不再重复描述。
本发明实施例所述的一种动态调整载波资源的方法及基站,其在本小区的 边缘业务量下降时, 可以动态调整主子载波和副子载波的分配; 在本小区的边 缘业务了上升时,可以将检测到相邻小区中的空闲主子载波添加到本小区的主 子载波集合中; 即可以根据小区负载状况动态地调整本小区中的主、 副子载波 以及小区间的主子载波, 达到了资源共享的目的,使载波资源能够合理且充分 的利用,提高了频谱的利用率。 同时小区之间通过感知的方式主动获取其相邻 小区的空闲频谱信息, 无需基站间进行信令交互, 节省了信令开销, 避免了传 输时延。 若随机设置各小区的感知时刻或将感知行为设置为动态触发的方式, 还可以避免小区间的干扰, 达到小区间干扰协调的目的,提高了小区边缘的吞 吐率。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应该以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种动态调整载波资源的方法, 其特征在于, 包括:
检测本小区的边缘业务量;
若本小区的边缘业务量下降, 则根据所述边缘业务量下降的程度,按照预 定最小粒度的倍数释放所述小区中空闲的主子载波资源作为副子载波。
2、根据权利要求 1所述的方法, 其特征在于, 在检测本小区的边缘业务量 之前, 还包括:
将本小区的子载波划分为主子载波和副子载波两组,其中与所述小区在同 一复用组内的各小区的主子载波之间是相互正交的。
3、根据权利要求 1所述的方法, 其特征在于, 所述预定最小粒度为预定个 数的子载波,所述预定个数由信道状况、承载的业务类型及小区负载状况确定。
4、 根据权利要求 1所述的方法, 其特征在于, 还包括:
通过预定的感知算法对相邻小区划分的主子载波进行感知,获知相邻小区 所述空闲的主子载波资源;
或者,
接收小区内的终端通过预定的感知算法上报的相邻小区划分的主子载波 感知结果,并根据所述感知结果通过融合算法判决相邻小区所述空闲的主子载 波资源。
5、 根据权利要求 4所述的方法, 其特征在于, 还包括:
若检测到本小区的边缘业务量上升,则将获知或判决的所述相邻小区空闲 的主子载波资源添加到本小区的主子载波集合中。
6、 一种动态调整载波资源的基站, 其特征在于, 包括: 检测模块, 用于检测本小区的边缘业务量;
释放模块, 用于若检测模块检测到本小区的边缘业务量下降, 则根据所述 边缘业务量下降的程度,按照预定最小粒度的倍数释放所述小区中空闲的主子 载波资源作为副子载波。
7、 根据权利要求 6所述的基站, 其特征在于, 还包括:
载波划分模块, 用于将本小区的子载波划分为主子载波和副子载波两组, 其中与所述小区在同一复用组内的各小区的主子载波之间是相互正交的。
8、根据权利要求 6所述的基站, 其特征在于, 所述释放模块中所述预定最 小粒度为预定个数的子载波, 所述预定个数由信道状况、承载的业务类型及小 区负载状况综合确定。
9、 根据权利要求 6所述的基站, 其特征在于, 还包括:
感知模块, 用于通过预定的感知算法对相邻小区划分的主子载波进行感 知, 获知相邻小区所述空闲的主子载波资源;
或者,
感知结果接收模块,用于接收小区内的终端通过预定的感知算法上报的相 邻小区划分的主子载波感知结果;
融合模块,用于根据所述接收模块接收的感知结果通过融合算法判决相邻 小区所述空闲的主子载波资源。
10、 根据权利要求 9所述的基站, 其特征在于, 还包括:
添加模块, 用于检测到本小区的边缘业务量上升时,将获知或判决的所述 相邻小区空闲的主子载波资源添加到本小区的主子载波集合中。
PCT/CN2011/073960 2010-07-15 2011-05-12 一种动态调整载波资源的方法及基站 WO2012006902A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11806244.7A EP2587855B1 (en) 2010-07-15 2011-05-12 Method and base station for adjusting carrier resources dynamically
US13/741,689 US8976749B2 (en) 2010-07-15 2013-01-15 Method and base station for dynamic adjustment of carrier resource

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010229817.8 2010-07-15
CN201010229817.8A CN102340777B (zh) 2010-07-15 2010-07-15 一种动态调整载波资源的方法及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/741,689 Continuation US8976749B2 (en) 2010-07-15 2013-01-15 Method and base station for dynamic adjustment of carrier resource

Publications (1)

Publication Number Publication Date
WO2012006902A1 true WO2012006902A1 (zh) 2012-01-19

Family

ID=45468918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073960 WO2012006902A1 (zh) 2010-07-15 2011-05-12 一种动态调整载波资源的方法及基站

Country Status (4)

Country Link
US (1) US8976749B2 (zh)
EP (1) EP2587855B1 (zh)
CN (1) CN102340777B (zh)
WO (1) WO2012006902A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379644A (zh) * 2012-04-13 2013-10-30 中国移动通信集团公司 一种载波调度方法及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9578650B2 (en) * 2013-09-04 2017-02-21 Nokia Solutions And Networks Oy Coordinated scheduling with adaptive muting
WO2015042818A1 (en) * 2013-09-26 2015-04-02 Nec (China) Co., Ltd. Clustering method and apparatus for cross-subframe interference elimination and traffic adaptation and communications mechanism between baseband units
CN103702430A (zh) * 2013-12-28 2014-04-02 杨学志 一种多级软时频复用和资源分配的方法、设备和系统
CN104219676B (zh) * 2014-08-26 2017-10-10 江苏省邮电规划设计院有限责任公司 一种td‑lte基于单站业务量的动态频率复用方法
CN106170998B (zh) * 2015-02-28 2019-06-21 华为技术有限公司 一种频带共享的方法、装置以及系统
KR102384283B1 (ko) * 2015-08-19 2022-04-07 삼성전자주식회사 무선 통신 시스템에서 채널 액세스를 제어하기 위한 장치 및 방법
CN109392098B (zh) * 2017-08-02 2022-07-15 成都鼎桥通信技术有限公司 业务承载的方法和装置
CN109981234B (zh) * 2017-12-28 2022-02-18 中国移动通信集团辽宁有限公司 双载波和载波聚合的自适应调整方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983918A (zh) * 2005-12-12 2007-06-20 华为技术有限公司 实现软频率复用、数据发送的方法及接入设备
CN101242204A (zh) * 2007-02-08 2008-08-13 联想(北京)有限公司 一种软频率复用的子载波优化方法及装置
CN101600212A (zh) * 2009-07-06 2009-12-09 北京邮电大学 一种用于ofdm系统的软频率复用的改进方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE379911T1 (de) * 2005-03-01 2007-12-15 Alcatel Lucent Verfahren zur ofdm datenübertragung in einem mobilen mehrzellen-netzwerk mit pilotsymbolen zur kanalschätzung, und entsprechende basisstation, basisstationkontroller, mobilnetzwerk
US8112094B1 (en) * 2005-06-09 2012-02-07 At&T Mobility Ii Llc Radio access layer management
JP4869889B2 (ja) * 2006-11-29 2012-02-08 京セラ株式会社 基地局装置及び通信方法
US8036702B2 (en) * 2007-05-14 2011-10-11 Intel Corporation Method and apparatus for multicarrier communication in wireless systems
US8681711B2 (en) * 2007-10-05 2014-03-25 Qualcomm Incorporated Inactivity-based multi-carrier allocation in wireless networks
US8358619B2 (en) 2008-07-25 2013-01-22 Lg Electronics Inc. Mobile station apparatus and method for transmitting signals in wireless communication system
US9031596B2 (en) * 2010-04-26 2015-05-12 Nokia Siemens Networks Oy Connection arrangement in relayed wireless communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983918A (zh) * 2005-12-12 2007-06-20 华为技术有限公司 实现软频率复用、数据发送的方法及接入设备
CN101242204A (zh) * 2007-02-08 2008-08-13 联想(北京)有限公司 一种软频率复用的子载波优化方法及装置
CN101600212A (zh) * 2009-07-06 2009-12-09 北京邮电大学 一种用于ofdm系统的软频率复用的改进方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2587855A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379644A (zh) * 2012-04-13 2013-10-30 中国移动通信集团公司 一种载波调度方法及系统

Also Published As

Publication number Publication date
EP2587855A1 (en) 2013-05-01
US20130128840A1 (en) 2013-05-23
CN102340777B (zh) 2014-11-05
EP2587855B1 (en) 2017-09-20
EP2587855A4 (en) 2013-07-10
US8976749B2 (en) 2015-03-10
CN102340777A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
US11737136B2 (en) Method and user equipment for transmitting and receiving sounding reference signals
WO2012006902A1 (zh) 一种动态调整载波资源的方法及基站
JP5684362B2 (ja) 非同期ワイヤレス・ネットワークにおける短期干渉軽減
US8174995B2 (en) Method and apparatus for flexible pilot pattern
US9445432B2 (en) Fine-grained channel access in wireless networks
WO2018127001A1 (zh) 干扰消除方法及装置
JP5097822B2 (ja) Ofdmaシステムにおける端末の電力スペクトル密度を制御できないことを解決する方法
US8219105B2 (en) Radio resource allocation to reduce uplink interference
US20110002282A1 (en) Wireless communication system, wireless communication setting method, base station, mobile station, and program
CN106465139A (zh) 信息发送方法、信息接收方法、装置及系统
CN110581754B (zh) 一种请求信号的发送、接收方法及设备、装置
WO2010075781A1 (zh) 干扰协调方法及接入网设备
WO2013040951A1 (zh) 小区间资源协调的方法和设备
WO2007144947A1 (ja) 無線通信システム
WO2007107097A1 (fr) Procédé et système de communication destinés à des utilisateurs de dispositifs cellulaires basés sur le multiplexage par répartition orthogonale de la fréquence
US20230328781A1 (en) Method and user equipment for transmitting and receiving sounding reference signals
US10869313B2 (en) Orthogonal frequency division multiple access based uplink access method
WO2014026566A1 (zh) 一种资源分配方法及基站
Cheng et al. Pilot-based full-duplex spectrum-sensing and multichannel-MAC over non-time-slotted cognitive radio networks
JP4664261B2 (ja) 動的なサブチャネル割り当てのための方法、送信機、受信機およびシステム
WO2012083659A1 (zh) 一种干扰消除的资源分配方法和装置
Liu et al. Dynamic Fractional Frequency Reuse based on interference avoidance request for downlink OFDMA cellular networks
KR20090054694A (ko) 무선통신시스템에서의 피드백 전송 및 적응 전송 방법
CN104662952A (zh) 干扰协调的方法及装置
KR20150057586A (ko) 간섭 정렬 기반 주파수 할당 방법 및 이를 위한 송신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011806244

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011806244

Country of ref document: EP