WO2012083659A1 - 一种干扰消除的资源分配方法和装置 - Google Patents

一种干扰消除的资源分配方法和装置 Download PDF

Info

Publication number
WO2012083659A1
WO2012083659A1 PCT/CN2011/076151 CN2011076151W WO2012083659A1 WO 2012083659 A1 WO2012083659 A1 WO 2012083659A1 CN 2011076151 W CN2011076151 W CN 2011076151W WO 2012083659 A1 WO2012083659 A1 WO 2012083659A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
interference cancellation
area
data
time slot
Prior art date
Application number
PCT/CN2011/076151
Other languages
English (en)
French (fr)
Inventor
肖华华
朱登魁
宁迪浩
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012083659A1 publication Critical patent/WO2012083659A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to interference cancellation techniques, and in particular, to a resource allocation method and apparatus for interference cancellation. Background technique
  • Wireless communication systems are always subject to various kinds of interference.
  • OFDM Orthogonal Frequency Division Multiple Access
  • 4G global microwave interconnection access
  • Wimax Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution
  • CTI Co-Channel Interference
  • OFDM Orthogonal Frequency Division Multiplexing
  • the interference source usually interferes with multiple data carriers at the same time, it can be considered as a kind of broadband interference.
  • the cell radius since the cell radius is relatively small, such interference is usually relatively large. Without elimination, communication quality will be seriously affected.
  • ICC Interference Remection Combining
  • Wiener filtering Wiener filtering
  • spatial filtering are algorithms that exhibit excellent performance in eliminating co-channel interference in adjacent cells. But these algorithms need to get good interference cancellation effects.
  • Method related parameters such as noise reduction channel coefficient matrix, interference noise covariance matrix, etc.
  • the accurate acquisition of these parameters is inseparable from the number of statistical samples in the interference cancellation area of the target receiving end, and the distribution, number, and power level of the interference sources in the interference cancellation area. If there are not enough statistical sample points in the interference cancellation area, it will be difficult to obtain a channel coefficient matrix that does not contain interference noise, and the interference covariance matrix may be irreversible or affected by noise fluctuations. On the other hand, if the interference in the interference cancellation area is complicated, such as being subjected to multiple different interferences, the direction and intensity of each interference are inconsistent, and the statistical inaccuracy of the interference covariance matrix is also caused. As shown in Figure 1, the interference cancellation area is subject to different interference.
  • the interference cancellation area includes 5 time slot units, each time slot unit is subjected to 5 different interference sources, and the power sources and directions of these interference sources are different. As shown in Fig. 2, it is an example in which the interference cancellation area is interfered by the same interference source. In summary, if the relevant parameters in the algorithm, such as the interference noise covariance matrix calculated by the entire interference cancellation area, are inaccurate, it will affect the link performance of the wireless communication system, and thus affect the communication quality. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a resource allocation method and device for interference cancellation, and the method and the device can effectively cooperate with the interference cancellation algorithm to accurately acquire algorithm-related parameters, thereby effectively eliminating interference, thereby greatly Improve link performance of wireless communication systems.
  • the present invention provides a resource allocation method for interference cancellation, including the following steps: Step 1: Determine the number of slot units included in the minimum interference cancellation area ; ⁇ ; Step 2: Divide the frame or subframe into ⁇ sub-data areas, Each sub-data area is allocated into a plurality of interference cancellation areas, each interference cancellation area comprising at least one time slot unit;
  • Step 3 Assign the divided interference cancellation area to the scheduling user.
  • the N-type sub-data area is determined by the following formula:
  • N, N where N ⁇ is the total number of time slot units included in the time domain of the frame or subframe, indicating rounding down.
  • a data packet equal to or smaller than the time slot unit is added to the ⁇ sub-data area, and data packets equal to or greater than N toi time slot units are classified into the first type sub-data area.
  • the Nf 2
  • the scale factor is obtained and the resource size occupied by the ⁇ sub-data area is adjusted
  • the first type sub-data area is divided into one interference cancellation area
  • the second type The sub-data area is divided into a plurality of interference cancellation areas, each interference cancellation area includes at least ⁇ ⁇ time slot units, and data packets greater than or equal to N toi time slot units are classified into the first type sub-data area, and the remaining data
  • the channel quality information includes SINR, SNR, CINR, BER, BLER, FER.
  • the method for adjusting the adjusted value is: counting the SINR or the SNR or the CINR is less than the first threshold. If N is greater than the second threshold, the value is decreased, otherwise the value is increased; or, During the period, the number of times N of the BER or BLER or FER greater than the third threshold is counted, and if W is greater than the fourth threshold, the value is decreased, otherwise the value is increased.
  • step 4 if the scheduling period is not over, Go back to step 2, otherwise the scheduling period ends.
  • the invention also provides a resource allocation device for interference cancellation, comprising:
  • a first calculation module configured to calculate a number of time slot units ⁇ included in the minimum dry cancellation zone
  • a resource division module which divides the entire frame or subframe into multiple sub-data regions, and divides the plurality of sub-data regions into multiple interferences a cancellation zone, each interference cancellation zone comprising at least one time slot unit
  • a resource allocation module which allocates the divided interference cancellation area to the scheduling user
  • the resource partitioning module continues to allocate resources, and the resource allocation module continues to allocate resources to the scheduling user, otherwise the scheduling period ends.
  • the resource division module further includes a second calculation module, configured to calculate a scale factor to adjust a size of each of the sub-data regions.
  • FIG. 1 is a schematic diagram showing an example of different interferences in an interference cancellation area
  • FIG. 2 is a schematic diagram showing an example in which an interference cancellation area is interfered by the same interference source
  • FIG. 3 is a flow chart of a resource allocation method of the present invention.
  • Figure 5 is a schematic diagram 2 of the sub-data area division of the present invention.
  • FIG. 6 is a schematic diagram of a resource allocation device of the present invention.
  • the sender completes the allocation of the corresponding resources by the following steps.
  • Step 1 Determine the number of time slot units included in the minimum interference cancellation area. Where ⁇ ⁇ , or ⁇ ⁇ A. + ⁇ , where ⁇ is the number of receiving antennas,
  • N P is the number of sample points included in one slot unit.
  • the sample points are pilot subcarriers; the representation takes an integer, which is a constant greater than or equal to 1.
  • SNR Signal to Interference and Noise Ratio
  • SNR Signal to Noise Ratio
  • CINR Carrier to Interference plus Noise Ratio
  • BER Bit Error Rate
  • Block Error Rate Block Error Rate
  • FER Frame Error Rate
  • the number of times the SINR is less than the threshold value of 73 ⁇ 4 dish is counted. If N is greater than the threshold value N s3 ⁇ 43 ⁇ 4 , the value is decreased, otherwise the value is increased.
  • the SINR here can also be replaced by SNR or CINR. or,
  • the statistical BER is greater than the number N of the threshold TH. If N is greater than the threshold N, the value is decreased, otherwise the value is increased.
  • the BER here can also be replaced by BLER and FER.
  • the time slot unit belongs to a data bearer area of the receiving end, and is a time-frequency two-dimensional resource block in a frame structure in an OFDM/OFDMA communication system.
  • the time-frequency two-dimensional resource block has the following features: comprising a plurality of consecutive OFDM/OFDMA symbols in time, and including in the frequency domain
  • the plurality of subcarriers are continued; the subcarriers included are used to carry data and pilot signals corresponding to the receiving end; and one interference cancellation zone includes multiple time slot units, which is the minimum resource granularity used for statistically correlating parameters when interference is eliminated.
  • a data bearing area of a receiving end may include multiple interference cancellation areas.
  • Step 2 Divide the frame or sub-frame into sub-data areas.
  • N F N F , where ⁇ ,stay is the total number of time slot units included in the time domain of the frame or subframe, and L ′′ is rounded down.
  • the distribution of the total data packet to be less than or equal to N slot units attributed to data packets of the data sub-region class F N, the total size of the packet to be divided is greater than or equal to N units of a TOI slots attributed to the data packet Class 1 subdata area.
  • Step 3 Assign the divided interference cancellation area to the scheduled user.
  • Step 4 If the scheduling period does not end, skip to step 2, otherwise the scheduling period ends.
  • step 2 the value of N f in step 2 is a fixed value of 2.
  • the other steps are the same as those in the first embodiment. Therefore, the same steps are not detailed here. Said.
  • step 2 is to divide the frame or the subframe into two types of sub-data areas.
  • the first type of sub-data area is divided into one interference cancellation area, and the second type of sub-data area Divided into a plurality of interference cancellation areas, each interference cancellation area comprising at least one time slot unit.
  • a packet whose data packet is greater than or equal to N toi time slot units is classified into a first type of sub data area, and the remaining proportion is divided into a second type of sub data area.
  • the frame structure in the OFDM/OFDMA communication system is a time-frequency two-dimensional resource block.
  • the slot unit contains 3 OFDM/OFDMA symbols in the time domain and 4 consecutive subcarriers in the frequency domain.
  • One slot unit contains 4 sample points or pilots.
  • the frame is divided into an uplink subframe and a downlink subframe.
  • the entire frame structure is divided into 35 subchannels. There are 8 receiving antennas at the receiving end.
  • the sender completes the allocation of resources by the following steps.
  • All interference cancellation areas of the first type of sub-data region include 6 slot units, the second type of sub-data area is divided into 2 parts in the time domain, and the interference cancellation area is 2 time slots. Unit, 3 time slots Unit, 4 time slot units. The third type of sub-data area is divided into three parts in the time domain, and the interference canceling area is two time slot units. As shown in Figure 4, each block represents a slot unit.
  • One subchannel includes six interference cancellation regions in the frequency domain.
  • the data packet of the unit is classified into the sub-data area of the first type, and the data packet of the data packet size of three time slot units or four time slot units is classified into the second type sub-data area.
  • Step 3 Assign the divided interference cancellation area to the scheduled user.
  • Step 4 If the scheduling period does not end, skip to step 2. Otherwise, the scheduling period ends and the next tuning period is entered.
  • the frame structure in the OFDM/OFDMA communication system is a time-frequency two-dimensional resource block.
  • the slot unit contains 3 OFDM/OFDMA symbols in the time domain and 4 consecutive subcarriers in the frequency domain.
  • One slot unit contains 4 sample points or pilots.
  • the frame is divided into an uplink subframe and a downlink subframe.
  • the entire frame structure is divided into 35 subchannels. There are 8 receiving antennas at the receiving end.
  • the sender completes the allocation of resources by the following steps.
  • Step 1 Calculate the number of time slot units included in the minimum interference cancellation area
  • All interference cancellation areas of the first type of sub-data area contain 5 time slot units, and the second type of sub-data
  • the interference cancellation area of the area includes 2 time slot units, or 3 time slot units. As shown in Figure 5, each block represents a slot unit.
  • One subchannel includes six interference cancellation regions in the frequency domain.
  • Step 3 Assign the divided interference cancellation area to the scheduling user
  • Step 4 If the scheduling period does not end, skip to step 2, otherwise the scheduling period ends and enter the next tuning period.
  • the transmitting end is a control device unit such as a base station or a relay station in the downlink in the wireless communication system, and may also be a terminal device in the uplink in the wireless communication system, such as a mobile phone, a notebook computer, or a handheld computer. .
  • the receiving end is a control device unit such as a base station or a relay station in the uplink in the wireless communication system, and may also be a terminal device in the downlink in the wireless communication system, such as a mobile phone, a notebook computer or a handheld computer.
  • a control device unit such as a base station or a relay station in the uplink in the wireless communication system
  • a terminal device in the downlink in the wireless communication system such as a mobile phone, a notebook computer or a handheld computer.
  • the present invention also provides a resource allocation apparatus for interference cancellation. As shown in FIG. 6, the apparatus includes:
  • a first calculation module configured to calculate a number of time slot units ⁇ included in the minimum dry cancellation zone
  • a resource division module which divides the entire frame or subframe into multiple sub-data regions, and divides the plurality of sub-data regions into multiple interferences a cancellation zone, each interference cancellation zone comprising at least one time slot unit
  • a second calculation module belonging to the resource division module, configured to calculate a scale factor to adjust the size of each sub-data region
  • a resource allocation module that allocates the divided interference cancellation area to the scheduling user.
  • FIG. 7 it is a link performance comparison diagram using the resource allocation method of the present invention and the existing resource allocation method. It can be seen from the figure that the interference cancellation resource allocation method of the present invention is utilized.
  • the device can effectively cooperate with the interference cancellation algorithm to accurately acquire algorithm-related parameters, thereby effectively eliminating interference, and greatly improving the link performance of the wireless communication system.
  • the vertical axis is the bit error rate (BER)
  • the horizontal axis is the signal to interference ratio (SINR, Signal to Interference and Noise Ratio).

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种干扰消除的资源分配方法和装置 技术领域
本发明涉及干扰消除技术, 特别是涉及一种干扰消除的资源分配方法 及其装置。 背景技术
无线通信系统总是受到各种各样的干扰, 对于第 4代以正交频分多址 ( OFDMA, Orthogonal Frequency Division Multiple Access )技术为基础的 通信系统而言,如 4G、全球微波互联接入( Wimax, Worldwide Interoperability for Microwave Access )、 长期演进 ( LTE, Long Term Evolution )等 , 始终受 到较严重的正交频分复用 ( OFDM , Orthogonal Frequency Division Multiplexing ) 同道干扰( CCI, Co-Channel Interference )。 在蜂窝网络中, 由于频谱复用的关系, 这种干扰表现为邻区干扰, 由于干扰源通常同时干 扰多个数据载波, 因而可以认为是一种宽带的干扰。 特别是在城市微环境 中, 由于小区半径比较小, 这种干扰通常比较大。 不进行消除, 将严重影 响通信质量。
一般来说, 干扰消除的常用方法有主动式的, 如功率控制、 动态的频 率复用、 邻区的波束调度协作以及协同多点传输 ( CoMP , Coordinated Multi-Point transmission/reception ) 中的联合传输, 这些技术需要网络结构 和信令支持。 而被动式的干扰消除技术则不依赖于信令的交互, 通常由接 收机完成, 可以广泛适用于各种网络中。 它主要依赖于空间、 时间和频率 三个维度的资源。 例如干扰消除合并技术 ( IRC , Interference Rej ection Combining ), 维纳滤波, 空域滤波等算法, 它们在消除邻区同频干扰上体 现出了优异的性能。 但这些算法要获得好的干扰消除效果, 需要获得跟算 法相关的参数, 如降噪的信道系数矩阵, 干扰噪声的协方差矩阵等。 而这 些参数的准确获得, 离不开目标接收端干扰消除区域的统计样本数, 以及 干扰消除区域内干扰源的分布、 数目、 功率大小有关。 如果干扰消除区域 统计样本点不够多, 将难以获得不包含干扰噪声的信道系数矩阵, 且会出 现干扰协方差矩阵不可逆或者受噪声波动的影响较大。 另一方面, 如果干 扰消除区域受到的干扰比较复杂, 比如受到多个不同的干扰, 每个干扰的 方向和强度不一致, 也会造成干扰协方差矩阵的统计不准确。 如图 1 所示 的干扰消除区域受到不同干扰的例子, 干扰消除区包括 5个时隙单元, 每 个时隙单元受到 5个不同的干扰源, 这些干扰源的功率大小和方向都不同。 如图 2所示, 是干扰消除区域受到同一个干扰源干扰的例子。 总之, 如果 算法中相关参数, 如整个干扰消除区统计出来的干扰噪声协方差矩阵不准 确, 将会影响无线通信系统的链路性能, 进而影响通信质量。 发明内容
本发明所要解决的技术问题是, 提供一种干扰消除的资源分配方法及 其装置, 使用此方法和装置, 能有效配合干扰消除算法准确获取算法相关 的参数, 从而有效地消除干扰, 以大幅度提高无线通信系统的链路性能。
本发明提供了一种干扰消除的资源分配方法, 包括以下步骤: 步骤 1 : 确定最小干扰消除区域包含的时隙单元个数 Λ^ ; 步骤 2: 将帧或者子帧分成 ^类子数据区域, 将每个子数据区域分配 成多个干扰消除区, 每个干扰消除区包含至少 个时隙单元;
步骤 3 : 将划分的干扰消除区分配给调度用户。
, 或者, 含的样
Figure imgf000004_0001
本点个数, 「 ]表示上取整数, 分别为大于等于 1的常量。
进一步地, 所述步骤 2 中, 所述 N类子数据区域由以下公式确定:
N, N ,其中, N^为帧或者子帧在时域上包含的总时隙单元个数, 表示下取整。
进一步地, 所述步骤 2中, 获取比例因子 并调整 ^类子数据区域所 占的资源大小, 对第' '类子数据区域被划分成' '个干扰消除区, 每个干扰消 除区包含至少 ^个时隙单元, 其中, 为发送数据包大小等于第 i类子数 据区域最大干扰消除区的数据包占总的数据包的比例, = 1, 2, · · ·, Nf
进一步地, 所述步骤 2中, 将小于等于 个时隙单元的数据包添加到 第 Λ ^类子数据区域, 将大于等于 N toi个时隙单元的数据包归到第 1类子数 据区域。
进一步地, 所述步骤 2中, 所述 Nf =2, 获取比例因子 并调整 Λ ^类子 数据区域所占的资源大小, 第 1类子数据区域划分成 1个干扰消除区, 第 2 类子数据区域划分成多个干扰消除区, 每个干扰消除区包含至少 Ντ个时隙 单元, 将大于等于 N toi个时隙单元的数据包归到第 1 类子数据区域, 剩下 的数据包划分到第 2 类子数据区域, 其中, 为发送数据包大小等于第 i 类子数据区域最大干扰消除区的数据包占总的数据包的比例, = 1, 2。
进一步地, 根据信道质量信息调整 的值。
进一步地,信道质量信息包括 SINR、 SNR、 CINR、 BER、 BLER, FER。 进一步地,调整其调整 的值的方法为,统计 SINR或者 SNR或者 CINR 小于第一门限值的次数 如果 N大于第二门限值, 则减小 的值, 否则增 加 的值; 或者, 在调整周期内, 统计 BER或者 BLER或者 FER大于第三 门限值的次数 N ,如果 W大于第四门限值, 则减小 的值, 否则增加 的值。
进一步地, 所述方法进一步包括步骤 4: 如果调度周期没有结束, 则返 回步骤 2, 否则本次调度周期结束。
本发明还提供一种干扰消除的资源分配装置, 包括:
第一计算模块 , 其用来计算最小干消除区包含的时隙单元个数 Ντ; 资源划分模块, 其将整个帧或者子帧分成多个子数据区域, 并将多个 子数据区域划分成多个干扰消除区, 每个干扰消除区包含至少 个时隙单 元;
资源分配模块, 其将划分的干扰消除区分配给调度用户;
如果调度周期没有结束, 则资源划分模块继续划分资源, 资源分配模 块继续分配资源给调度用户, 否则本次调度周期结束。
进一步地, 所述资源划分模块还包括第二计算模块, 其用来计算比例 因子以调整每个子数据区域的大小。
本发明提出了一种干扰消除的资源分配方法及其装置, 能有效配合干 扰消除算法准确获取算法相关的参数, 从而有效地消除干扰, 以大幅度提 高无线通信系统的链路性能。 附图说明 图 1是干扰消除区域受到不同干扰的例子示意图;
图 2是干扰消除区域受到同一个干扰源干扰的例子示意图;
图 3是本发明资源分配方法的流程图;
图 4是本发明的子数据区域划分示意图一;
图 5是本发明的子数据区域划分示意图二;
图 6是本发明资源分配装置示意图;
图 7是本发明资源分配方法和现有资源分配方法的链路性能比较图。 具体实施方式 为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚、 明白, 以下结合附图和实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
下面结合具体的应用场景, 说明本发明所描述的方法和装置。 在无线 通信系统中发送数据的帧 /子帧结构中, 通过下述步骤完成对资源的分配。
实施例 1
发送端通过下述步骤完成对应资源的分配。
步骤 1 : 确定最小干扰消除区域包含的时隙单元个数 。 其中, Ντ , 或者, Ντ A. + δ , 其中, ^为接收天线数目,
Figure imgf000007_0001
NP为一个时隙单元里包含的样本点个数,优选地,样本点为导频子载波; 表示上取整数, 分别为大于等于 1的常量。
为了达到系统的最优性能, 可以根据信干噪比 ( SINR , Signal to Interference and Noise Ratio ). 信噪比 ( SNR, Signal to Noise Ratio )、 载干 噪比(CINR, Carrier to Interference plus Noise Ratio ), 误比特率(BER, Bit Error Rate )、块误码率( BLER, Block Error Rate )、误帧率( FER, Frame Error Rate )等参数选择以下方法之一来调整 的值:
)在调整周期内, 统计 SINR小于门限值 7¾皿的次数 如果 N大 于门限值 Ns¾¾ , 则减小 的值, 否则增加 的值。 这里的 SINR还可用 SNR 或者 CINR来代替。 或者,
( b )在调整周期内, 统计 BER大于门限值 TH皿的次数 N , 如果 N大 于门限值 N ,则减小 的值,否则增加 的值。这里的 BER还可以用 BLER 和 FER来代替。
所述的时隙单元属于接收端的数据承载区域, 是 OFDM/OFDMA通信 系统中帧结构中的时频二维资源块。 其中, 所述的时频二维资源块具有的 特征为: 在时间上包含连续的多个 OFDM/OFDMA符号, 在频域上包含连 续的多个子载波; 其包含的子载波用于承载接收端对应的数据和导频信号; 一个干扰消除区包含多个时隙单元, 是干扰消除时用来统计相关参数的最 小资源粒度。 一个接收端的数据承载区可以包含多个干扰消除区域。
步骤 2: 将帧或者子帧分成 类子数据区域。 其中, N
NF = , 其中, Λ^,„,为帧或者子帧在时域上包含的总时隙 单元个数, L」表示下取整。
其中, 第 类子数据区域被划分成 个干扰消除区, 每个干扰消除区包 含至少 个时隙单元, i = \, 2 、NF
计算每类子数据区域的比例因子 , 并调整 NF类子数据区域所占的资 源大小, 其中, , ί = \, 2, · · · , ΝΡ
其中, ( = l,2,...,Nf )可在后台配置, 也可在一定周期内统计各类大 小的发送数据包所占的比例。 例如, 为发送数据包大小等于第 类子数据 区域最大干扰消除区的数据包占总的数据包的比例。
将待划分总数据包中的小于等于 N个时隙单元的数据包归到第 Nf类 子数据区域, 将待划分总数据包中的大小大于等于 N toi个时隙单元的数据 包归到第 1类子数据区域。
步骤 3: 将划分的干扰消除区分配给调度用户。
步骤 4: 如果调度周期没有结束,跳到步骤 2, 否则本次调度周期结束。 实施例 2
本实施例 2与实施例 1的步骤相比, 区别在于, 步骤 2中 Nf的值为固 定值 2, 其它步骤与实施例 1的步骤相同, 所以, 对于相同的步骤, 在此不 再详述。
本实施例中, 步骤 2为将帧或者子帧分成 2类子数据区域。
其中, 第 1类子数据区域划分成 1个干扰消除区, 第 2类子数据区域 划分成多个干扰消除区 , 每个干扰消除区包含至少 个时隙单元。
计算每类子数据区域的比例因子 , 为发送数据包大小等于第 i类子 数据区域最大干扰消除区的数据包占总的数据包的比例, = 1, 2。
其中, ( = 1,2 )可在后台配置, 也可在一定周期内统计各类大小的 发送数据包所占的比例。
将数据包大于等于 N toi个时隙单元的数据包归到第 1 类子数据区域, 剩下的比例划分到第 2类子数据区域。
以下再用两个具体数据的实施例(实施例 3和实施例 4 )对上面提到的 实施例作进一步的说明。
实施例 3
在本实施例中, OFDM/OFDMA通信系统中帧结构是时频二维资源块。 时隙单元是在时域上包含 3个 OFDM/OFDMA符号 , 频域上包含 4个连续 的子载波。 1个时隙单元包含 4个样本点或导频。 帧被分成上行子帧和下行 子帧。 在上行子帧中, 时域上有 6个时隙单元, 即 N toi = 6 , 频域上每 6个 时隙单元构成一个子信道。 整个帧结构被划分成 35个子信道。 接收端有 8 根接收天线。
发送端通过下述步骤完成对资源的分配。
步骤 1: 计算最小干扰消除区域包含的时隙单元个数 = = 2 , 其中, = 1 , 并根据如下方法调整 :
Figure imgf000009_0001
调整周期内, 统计 SINR小于门限值 的次数 N , 如果 N大于门限 i NSINR ,贝' J减 'J、 = min( — 0.5,1) 々值,否贝' J = +0.5 ,其中, 0.5为调整步长。 步骤 2:将帧或者子帧分成 Nf类子数据区域。其中, Nf = = 6 = 3
L wr 」 L 2 _ 第 1类子数据区域的所有干扰消除区域包含 6个时隙单元, 第 2类子数据 区域的在时域上被划分成 2部分, 干扰消除区域为 2个时隙单元、 3个时隙 单元、 4个时隙单元。 第 3类子数据区域的在时域上被划分成 3部分, 干扰 消除区域为 2个时隙单元。 如图 4所示, 每个方框表示一个时隙单元。 一 个子信道在频域上包括 6个干扰消除区。
数据包小于等于 2 (本示例中 N =2 )个时隙单元的数据包所占比例归 到第 3 (本示例中 Nf =3 )类子数据区域, 将数据包大于等于 6个时隙单元 的数据包归到第 1类子数据区域, 将数据包大小为 3个时隙单元或者 4个 时隙单元的数据包归第 2类子数据区域。
步骤 3: 将划分的干扰消除区分配给调度用户。
步骤 4: 如果调度周期没有结束,跳到步骤 2, 否则本次调度周期结束, 进入到下一个调调周期。
实施例 4
这里, OFDM/OFDMA通信系统中帧结构是时频二维资源块的。 时隙 单元是在时域上包含 3个 OFDM/OFDMA符号 , 频域上包含 4个连续的子 载波。 1个时隙单元包含 4个样本点或导频。帧被分成上行子帧和下行子帧。 在上行子帧中, 时域上有 5个时隙单元, 即 ^ = 5 , 频域上每 6个时隙单 元构成一个子信道。 整个帧结构被划分成 35个子信道。 接收端有 8根接收 天线。
发送端通过下述步骤完成对资源的分配。
步骤 1: 计算最小干扰消除区域包含的时隙单元个数
Ντ = = 2 , 其中, = 1。 并根据如下方法调整:
Figure imgf000010_0001
调整周期内, 统计 SINR小于门限值 的次数 N , 如果 N大于门限 i NSINR ,贝' J减 'J、 = min( — 0.5,1) 々值,否贝' J = +0.5 ,其中, 0.5为调整步长。 步骤 2:将帧或者子帧分成 ^类子数据区域。其中, NP = = 2
Figure imgf000010_0002
第 1类子数据区域的所有干扰消除区域包含 5个时隙单元, 第 2类子数据 区域的干扰消除区域包含 2个时隙单元, 或者 3个时隙单元。 如图 5所示, 每个方框表示一个时隙单元。 一个子信道在频域上包括 6个干扰消除区。
将数据包大于等于 5个时隙单元的数据包, 即为第 1类子数据区域占 整个上行帧的比例的数据包, 归到第 1 类子数据区域, 剩下的数据包划分 到第 2类数据子区域。
步骤 3 : 将划分的干扰消除区分配给调度用户;
步骤 4: 如果调度周期没有结束,跳到步骤 2 , 否则本次调度周期结束, 进入到下一个调调周期。
在本发明中, 发送端为无线通信系统中下行链路中的基站、 中继站等 控制设备单元, 也可以是无线通信系统中上行链路中的终端设备, 例如手 机、 笔记本电脑或者是手持电脑等。
接收端为无线通信系统中上行链路中的基站、 中继站等控制设备单元, 也可以是无线通信系统中下行链路中的终端设备, 例如手机、 笔记本电脑 或者是手持电脑等。
本发明还提供一种干扰消除的资源分配装置, 如图 6所示, 所述装置 包括:
第一计算模块 , 其用来计算最小干消除区包含的时隙单元个数 Ντ; 资源划分模块, 其将整个帧或者子帧分成多个子数据区域, 并将多个 子数据区域划分成多个干扰消除区, 每个干扰消除区包含至少 个时隙单 元;
第二计算模块, 其属于资源划分模块, 用来计算比例因子以调整每个 子数据区域的大小;
资源分配模块, 其将划分的干扰消除区分配给调度用户。
如图 7所示, 是利用本发明的资源分配方法和现有资源分配方法的链 路性能比较图。 从图中可以看出, 利用本发明的干扰消除资源分配方法及 其装置, 能有效配合干扰消除算法准确获取算法相关的参数, 从而有效地 消除干扰, 以大幅度提高无线通信系统的链路性能。 这里, 纵轴为误比特 率( BER, Bit Error Rate ),横轴是信干噪比( SINR, Signal to Interference and Noise Ratio )。
上述说明示出并描述了本发明的一个优选实施例, 但如前所述, 应 当理解本发明并非局限于本文所披露的形式, 不应看作是对其他实施例的 排除, 而可用于各种其他组合、 修改和环境, 并能够在本文所述发明构想 范围内, 通过上述教导或相关领域的技术或知识进行改动。 而本领域人员 所进行的改动和变化不脱离本发明的精神和范围, 则都应在本发明所附权 利要求的保护范围内。

Claims

权利要求书
1、 一种干扰消除的资源分配方法, 其特征在于, 包括以下步骤: 步骤 1 : 确定最小干扰消除区域包含的时隙单元个数 Λ^ ; 步骤 2: 将帧或者子帧分成 Nf类子数据区域, 将每个子数据区域分配 成多个干扰消除区, 每个干扰消除区包含至少 个时隙单元;
步骤 3 : 将划分的干扰消除区分配给调度用户。
2、 根据权利要求 1所述的方法, 其特征在于, 所述时隙单元个数 ^由 以下公式确定: Ντ 或者, Ντ A. + S , 其中, Nff为接收天线
Figure imgf000013_0001
数目, NP为一个时隙单元里包含的样本点个数, 「 ]表示上取整数, β, δ ^ i 别为大于等于 1的常量。
3、 根据权利要求 2所述的方法, 其特征在于, 所述步骤 2中, 所述 N 类子数据区域由以下公式确定: NF = N 其中, N„to,为帧或者子帧在 时域上包含的总时隙单元个数, L」表示下取整。
4、 根据权利要求 3所述的方法, 其特征在于, 所述步骤 2中, 获取比 例因子 并调整 Nf类子数据区域所占的资源大小,第 类子数据区域被划分 成 个干扰消除区, 每个干扰消除区包含至少 个时隙单元, 其中, 为发 送数据包大小等于第 i类子数据区域最大干扰消除区的数据包占总的数据 包的比例, i = Y, 2, "、NF
5、 根据权利要求 4所述的方法, 其特征在于, 所述步骤 2中, 将小于 等于 N个时隙单元的数据包添加到第 Λ ^类子数据区域, 将大于等于 个 时隙单元的数据包归到第 1类子数据区域。
6、根据权利要求 2所述的方法,其特征在于,所述步骤 2中,所述 NP =2 , 获取比例因子 并调整 Λ ^类子数据区域所占的资源大小, 第 1类子数据区 域划分成 1个干扰消除区, 第 2类子数据区域划分成多个干扰消除区, 每 个干扰消除区包含至少 个时隙单元, 将大于等于 N toi个时隙单元的数据 包归到第 1类子数据区域, 剩下的数据包划分到第 2类子数据区域, 其中, 为发送数据包大小等于第 i 类子数据区域最大干扰消除区的数据包占总 的数据包的比例, ί = \, 2, · · · , ΝΡ
7、 根据权利要求 2至 6任一项所述的方法, 其特征在于, 根据信道质 量信息调整 的值,所述信道质量信息包括 SINR、 SNR、 CINR、 BER、 BLER 或 FER, 所述调整其调整 的值的方法为:
统计 SINR或者 SNR或者 CINR小于第一门限值的次数 如果 N大 于第二门限值, 则减小 的值, 否则增加 的值; 或者,
统计 BER或者 BLER或者 FER大于第三门限值的次数 N ,如果 W大于 第四门限值, 则减小 的值, 否则增加 的值。
8、 根据权利要求 1所述的方法, 其特征在于, 所述方法进一步包括步 骤 4: 如果调度周期没有结束, 则返回步骤 2, 直到本次调度周期结束。
9、 一种干扰消除的资源分配装置, 其特征在于, 所述装置包括: 第一计算模块 , 其用来计算最小干消除区包含的时隙单元个数 Ντ; 资源划分模块, 其将整个帧或者子帧分成多个子数据区域, 并将多个 子数据区域划分成多个干扰消除区, 每个干扰消除区包含至少 个时隙单 元;
资源分配模块, 将划分的干扰消除区分配给调度用户;
如果调度周期没有结束, 则资源划分模块继续划分资源, 资源分配模 块继续分配资源给调度用户, 直到本次调度周期结束。
10、 根据权利要求 9所述的装置, 其特征在于, 所述资源划分模块还 包括第二计算模块, 用来计算比例因子以调整每个子数据区域的大小。
PCT/CN2011/076151 2010-12-20 2011-06-22 一种干扰消除的资源分配方法和装置 WO2012083659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010596171.7 2010-12-20
CN201010596171.7A CN102026384B (zh) 2010-12-20 2010-12-20 一种干扰消除的资源分配方法和装置

Publications (1)

Publication Number Publication Date
WO2012083659A1 true WO2012083659A1 (zh) 2012-06-28

Family

ID=43867058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076151 WO2012083659A1 (zh) 2010-12-20 2011-06-22 一种干扰消除的资源分配方法和装置

Country Status (2)

Country Link
CN (1) CN102026384B (zh)
WO (1) WO2012083659A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026384B (zh) * 2010-12-20 2014-11-05 中兴通讯股份有限公司 一种干扰消除的资源分配方法和装置
CN102811082B (zh) * 2011-06-02 2017-04-12 中兴通讯股份有限公司 一种信号处理方法及装置
CN105792222B (zh) * 2014-12-23 2020-02-11 中兴通讯股份有限公司 同频干扰的消除方法、探测方法以及装置和基站
DE102017005131A1 (de) * 2017-05-30 2018-12-06 Diehl Metering Systems Gmbh Verfahren zur Übertragung einer Information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878145A (zh) * 2006-07-20 2006-12-13 华为技术有限公司 一种带宽资源分配的方法
CN101388838A (zh) * 2007-07-11 2009-03-18 日本电气株式会社 基于资源的使用状态选择时隙的装置和方法
CN101426205A (zh) * 2008-11-27 2009-05-06 华为技术有限公司 一种组网的方法、设备和基站系统
CN102026384A (zh) * 2010-12-20 2011-04-20 中兴通讯股份有限公司 一种干扰消除的资源分配方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992554A (zh) * 2005-12-29 2007-07-04 上海贝尔阿尔卡特股份有限公司 无线通信系统中干扰消除的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878145A (zh) * 2006-07-20 2006-12-13 华为技术有限公司 一种带宽资源分配的方法
CN101388838A (zh) * 2007-07-11 2009-03-18 日本电气株式会社 基于资源的使用状态选择时隙的装置和方法
CN101426205A (zh) * 2008-11-27 2009-05-06 华为技术有限公司 一种组网的方法、设备和基站系统
CN102026384A (zh) * 2010-12-20 2011-04-20 中兴通讯股份有限公司 一种干扰消除的资源分配方法和装置

Also Published As

Publication number Publication date
CN102026384B (zh) 2014-11-05
CN102026384A (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
US11063712B2 (en) Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
EP2554000B1 (en) Method and network entity for resource allocation in mobile radio communication networks
US8219105B2 (en) Radio resource allocation to reduce uplink interference
WO2009049535A1 (fr) Procédé et dispositif d'allocation de ressource sans fil dans un système de communication sans fil
WO2010075781A1 (zh) 干扰协调方法及接入网设备
EP2777209A1 (en) Methods and apparati for an extensible and scalable control channel for wireless networks
EP2564544A1 (en) Method and apparatus for scheduling a control channel in an orthogonal frequency division multiplexing communication system
WO2018095227A1 (zh) 一种调度方法、终端及基站
US20210392638A1 (en) Frequency resource mapping for physical uplink control channel/acknowledgement (pucch/ack) and autonomous uplink (aul) in new radio-unlicensed (nr-u)
WO2015081811A1 (zh) 无线通信系统中的装置、无线通信系统和方法
WO2012083659A1 (zh) 一种干扰消除的资源分配方法和装置
US11696146B1 (en) Systems and methods for wireless coexistence of OFDM technologies
CN106912058B (zh) 一种信道干扰协调方法和装置
WO2012006887A1 (zh) 正交频分复用系统中资源分配方法与装置
US20220264534A1 (en) Methods and Apparatus for Resource Reservation in Long Term Evolution - Machine Type Communications
CN109348530B (zh) 一种下行功率分配参数的通知方法及装置
EP3420770A1 (en) Passive intermodulation shaping
CN115002909A (zh) 面向输电设备物联网的干扰协调方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850761

Country of ref document: EP

Kind code of ref document: A1