WO2012005531A2 - 왕복동식 압축기 - Google Patents

왕복동식 압축기 Download PDF

Info

Publication number
WO2012005531A2
WO2012005531A2 PCT/KR2011/004986 KR2011004986W WO2012005531A2 WO 2012005531 A2 WO2012005531 A2 WO 2012005531A2 KR 2011004986 W KR2011004986 W KR 2011004986W WO 2012005531 A2 WO2012005531 A2 WO 2012005531A2
Authority
WO
WIPO (PCT)
Prior art keywords
mover
stator
piston
reciprocating
spring
Prior art date
Application number
PCT/KR2011/004986
Other languages
English (en)
French (fr)
Other versions
WO2012005531A3 (ko
Inventor
홍언표
이혁
기성현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201180034008.4A priority Critical patent/CN102985693B/zh
Priority to US13/808,981 priority patent/US9062669B2/en
Publication of WO2012005531A2 publication Critical patent/WO2012005531A2/ko
Publication of WO2012005531A3 publication Critical patent/WO2012005531A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0044Pulsation and noise damping means with vibration damping supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/127Mounting of a cylinder block in a casing

Definitions

  • the present invention relates to a reciprocating compressor, and more particularly to a reciprocating compressor using vibration.
  • a reciprocating compressor is a method in which a piston sucks and compresses a refrigerant while reciprocating in a straight line in a cylinder.
  • the reciprocating compressor may be classified into a connection type and a vibration type according to the piston driving method.
  • the connected reciprocating compressor is a method in which the piston is connected to the rotating shaft of the rotating motor by a connecting rod to compress the refrigerant while reciprocating in the cylinder.
  • the vibration-type reciprocating compressor is a method in which the piston is connected to the mover of the reciprocating motor reciprocating and vibrates together to reciprocate in the cylinder to compress the refrigerant.
  • the present invention relates to a vibration type reciprocating compressor, hereinafter referred to as a vibration type reciprocating compressor.
  • the reciprocating compressor repeats a series of processes of inhaling, compressing and discharging the refrigerant while the piston and the cylinder move relative to each other along the direction of the magnet flux of the reciprocating motor.
  • the compressor main body consisting of the reciprocating motor and the compression unit is supported in the inner space of the hermetically sealed container by a support spring made of a coil spring, and is installed in the transverse direction so as to vibrate in the transverse direction.
  • a support spring made of a coil spring
  • the conventional reciprocating compressor has a problem in that the assembling process of the compressor is difficult because the concentricity of the mover and the piston should be matched as the mover and the piston of the compression unit of the reciprocating motor are combined and assembled.
  • the stator of the reciprocating motor is integrally coupled to the cylinder of the compression unit or connected by a resonant spring, and the mover of the reciprocating motor and the piston of the compression unit are connected with the speed of the reciprocating motor.
  • the relative speeds of the compression units are the same.
  • An object of the present invention is to provide a miniaturized reciprocating compressor by reducing the distance between the compressor body and the hermetic container.
  • Another object of the present invention is to provide a reciprocating compressor which can simplify the assembling process of the compressor by easily assembling the mover of the reciprocating motor and the piston of the compression unit.
  • Another object of the present invention is to provide a reciprocating compressor capable of canceling compressor vibration by canceling the vibration of the reciprocating motor and the vibration of the compression unit.
  • another object of the present invention is to provide a reciprocating compressor capable of improving the speed of the reciprocating motor and thereby increasing the efficiency of the compressor by controlling the relative speed of the reciprocating motor and the relative speed of the compression unit differently.
  • a sealed container In order to achieve the object of the present invention, a sealed container; A reciprocating motor in which a stator is fixed inside the sealed container and the mover reciprocates in an air gap of the stator; A piston separated from the mover and elastically supported in the sealed container to reciprocate; And a cylinder fixed to the inside of the hermetically sealed container at a predetermined distance from the reciprocating motor so that the piston is inserted to form a compression space.
  • the airtight container in which the suction pipe and the discharge pipe communicate;
  • a reciprocating motor having a stator fixed to the sealed container, the mover being reciprocated with respect to the stator;
  • a cylinder fixedly coupled to the inside of the hermetic container;
  • a piston which is slidably inserted into the cylinder and compresses the refrigerant sucked into the inner space of the sealed container while reciprocating;
  • a first resonance spring for elastically supporting the mover with respect to the sealed container to induce a resonant motion of the mover;
  • a second resonant spring that elastically supports the piston with respect to the hermetic container to induce a resonance motion of the piston.
  • the reciprocating compressor according to the present invention can reduce the size of the compressor by reducing the distance between the compressor main body and the sealed container by fixing the stator of the reciprocating motor and the cylinder of the compression unit in close contact with the sealed container.
  • the cylinder of the compression unit is in close contact with the sealed container, there is no need to configure a separate pipe such as a loop pipe, thereby reducing manufacturing costs.
  • the assembly process of the compressor can be simplified.
  • the vibration of the reciprocating motor is transmitted to the compression unit through the sealed container, the vibration of the sealed container can be attenuated.
  • the force applied to the sealed container can be canceled with each other.
  • the vibration of the sealed container can be minimized.
  • the relative speed of the reciprocating motor can be greater than the relative speed of the compression unit, thereby increasing the efficiency of the motor.
  • FIG. 1 is a longitudinal sectional view showing an example of a reciprocating compressor according to the present invention
  • Figure 2 is a longitudinal sectional view showing a part of the reciprocating motor in the reciprocating compressor according to Figure 1,
  • FIG. 3 is a schematic view showing for explaining the structure of the reciprocating compressor according to FIG.
  • Figure 4 is a graph showing the mechanical losses and motor efficiency of the reciprocating compressor according to Figure 1,
  • Figure 5 is a longitudinal sectional view showing another example of the reciprocating compressor according to the present invention.
  • FIG. 1 is a longitudinal sectional view showing an example of a reciprocating compressor according to the present invention
  • Figure 2 is a longitudinal sectional view showing a part of the reciprocating motor in the reciprocating compressor according to Figure 1
  • Figure 3 is a reciprocating compressor of Figure 1
  • a schematic diagram is shown to illustrate the structure.
  • gas suction pipes 110 and gas discharge pipes 120 communicate with both ends of the sealed container 100, and the inside of the sealed container 100 is movable.
  • a reciprocating motor 200 in which the chair 230 reciprocates in a straight line is installed, and a piston 320 separated from the mover 230 of the reciprocating motor 200 is independently of the mover 230.
  • the compression unit 300 for compressing the refrigerant while reciprocating is installed in the sealed container 100 at a predetermined interval from the reciprocating motor 200.
  • the hermetically sealed container 100 is elastically supported with respect to the installation surface so as to vibrate in the movement direction of the mover 230, and the gas suction pipe 110 and the gas discharge pipe 120 are penetrated to both sides thereof, respectively.
  • the gas suction pipe 110 is connected so that the end thereof is in communication with the internal space 130 of the hermetic container 100, while the gas discharge pipe 120 is directly connected to the discharge cover 360, the end of which will be described later. .
  • the first spring supporter 140 and the second spring supporter 150 are integrally formed at predetermined intervals so as to be supported.
  • the reciprocating motor 200 is provided with a coil 211 provided with an outer stator 210 fixed to the sealed container 100 and an air gap at a predetermined interval inside the outer stator 210. And an inner stator 220 fixed to the closed container 100 together with the outer stator 210, and a movable member 230 linearly reciprocating between the outer stator 210 and the inner stator 220. Is made of.
  • the outer stator 210 and the inner stator 220 may have pores formed on both sides of the coil 211, respectively, in which case the magnetic flux generated by the coil 211 and the magnet 232 is stator. Not only may it leak to the outside, but the length of the magnet 232 is long, the manufacturing cost may increase. Accordingly, the outer stator 210 and the inner stator 220 may be formed in a so-called '1 pole 2 gap' shape in which one side is connected to each other with respect to the coil 211 while the other side is spaced apart from each other to form a gap. have.
  • the stator includes an outer stator 210 having a coil 130 and formed in a cylindrical shape, and one side of the stator around the coil 211 inside the outer stator 210.
  • the other side is made up of the inner stator 220 which is arranged with a predetermined gap while being connected to each other.
  • the outer stator 210 and the inner stator 220 may be formed into the outer stator 210 and the inner stator 220, respectively, rather than being integrally formed. It may be desirable to form the shape of a ruler and one (-) to assemble by welding or the like.
  • the movable member 230 has a cylindrical holder 231 is formed in a cylindrical shape, a plurality of magnets 232 is fixedly coupled to the outer peripheral surface of the magnet holder 231.
  • the mover side supporter 240 is coupled to one end of the magnet holder 231, and the motor side first resonance spring 251 and the motor side second resonance spring 252 are connected to both sides of the mover side supporter 240. ) Is installed.
  • the other ends of the motor-side first resonant spring 251 and the motor-side second resonant spring 252 are respectively provided on one side of the first spring supporter 140 and the second spring supporter 150 of the hermetic container 100. It is fixed.
  • the motor-side resonant springs 251 and 252 may be formed of one compression coil spring, but in some cases, may be formed of a plurality of compression coil springs along the circumferential direction.
  • the compression unit 300 is coupled to the cylinder 310 fixedly coupled to the inner circumferential surface of the hermetic container 100 and the mover 230 of the reciprocating motor 200 to compress the space 311 of the cylinder 310.
  • a suction valve for opening and closing the suction side of the compression space 311 is mounted on the front end of the piston 320 to open and close the piston 320 and the piston 320 to reciprocate in the) and the suction flow path 321 of the piston 320 330, a discharge valve 340 detachably installed in the cylinder 310 to open and close the discharge side of the compression space 311, and a valve spring 350 to elastically support the discharge valve 340. Is done.
  • the cylinder 310 is fixed such that its outer circumferential surface is in close contact with the inner circumferential surface of the hermetically sealed container 100, and the compression space 311 is formed in an annular shape at the center of the cylinder 310, and the compression space 311 of the Outwardly, the discharge space 312 in which the discharge valve 340 and the valve spring 350 are accommodated is successively formed.
  • the gas discharge pipe 120 is directly connected to the discharge space 312 so as to be sealed.
  • the piston 320 may be formed in a cylindrical shape so that the suction passage 321 is provided therein, and a plurality of suction passage holes 322 may communicate with the outlet end of the suction passage 321.
  • a piston stopper 323 is coupled to one end of the piston 320, and a first resonant spring 361 and a second resonant spring 362 are provided on both sides of the piston stopper 323, respectively.
  • the other ends of the first resonant spring 361 and the second resonant spring 362 on the compression part are fixedly coupled to the other ends of the cylinder 310 and the second spring surfer 150.
  • the compression-side resonant springs 361 and 362 may be formed of one compression coil spring, but in some cases, may be formed of a plurality of compression coil springs along the circumferential direction.
  • the reciprocating compressor according to the present invention as described above is operated as follows.
  • the piston 320 receiving the primary vibration through the hermetically sealed container 100 generates a secondary vibration in a state in which the piston 320 is elastically supported by the compression-side resonant springs 361 and 362 to reciprocate.
  • the piston 320 continuously reciprocates a series of processes of compressing the refrigerant and discharging the refrigerant to the refrigeration cycle system is repeated.
  • the stator of the reciprocating motor has a displacement
  • the relative displacement of the mover and the stator of the reciprocating motor and the relative displacement of the piston and the cylinder of the compression section are different.
  • the relative speed of the reciprocating motor can be made larger than the relative speed of the compression unit. As shown in FIG. 4, the motor efficiency is improved at low speed, as shown in FIG. It is a factor to raise.
  • the size of the compressor can be reduced by reducing the distance between the main body of the compressor and the hermetic container, and the cylinder of the compression unit can be Since it is in close contact with each other, it is not necessary to construct a separate pipe such as an elastic loop pipe to send compressed refrigerant in a cycle, thereby reducing manufacturing costs.
  • the mover of the reciprocating motor was supported by the resonant spring.
  • the outer stator 210 performs the reciprocating motion in the free state. And to install the reciprocating movement in the gap between the inner stator 220.
  • the stator of the reciprocating motor 200 in order to smoothly reciprocate the mover 230.
  • the present embodiment does not require separate motor-side resonant springs for resiliently supporting the mover 1230, and spring supporters and mover-side supporters for supporting the motor-side resonant springs.
  • the manufacturing cost can be reduced.
  • stator of the reciprocating motor may be formed in a two-pole 2-gap shape, the air gap is provided on each side of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

본 발명은 왕복동식 압축기에 관한 것이다. 본 발명은, 왕복동모터와 압축부의 실린더를 밀폐용기에 밀착시켜 고정함으로써 상기 압축기본체와 밀폐용기 사이의 간격을 줄여 압축기의 크기를 축소할 수 있다. 또, 상기 왕복동모터의 가동자와 압축부의 피스톤을 분리함에 따라 압축기의 조립공정을 간소화할 수 있다. 또, 상기 왕복동모터와 압축부를 이루는 부재들의 질량과 이를 지지하는 스프링의 탄성을 적절히 조정하여 밀폐용기에 가해지는 힘을 상쇄시킴으로써 밀폐용기의 진동을 최소화할 수 있다. 또, 상기 왕복동모터의 상대 속도를 압축부의 상대 속도보다 더 크게 하여 모터의 효율을 상승시킬 수 있다.

Description

왕복동식 압축기
본 발명은 왕복동식 압축기에 관한 것으로, 특히 진동을 이용한 왕복동식 압축기에 관한 것이다.
일반적으로 왕복동식 압축기는 피스톤이 실린더의 내부에서 직선으로 왕복운동을 하면서 냉매를 흡입 압축하여 토출하는 방식이다. 상기 왕복동식 압축기는 피스톤의 구동방식에 따라 연결형과 진동형으로 구분할 수 있다.
상기 연결형 왕복동식 압축기는 상기 피스톤이 회전모터의 회전축에 컨넥팅 로드로 연결되어 실린더에서 왕복운동을 하면서 냉매를 압축하는 방식이다. 반면, 상기 진동형 왕복동식 압축기는 피스톤이 왕복운동을 하는 왕복동모터의 가동자에 연결되어 함께 진동하면서 실린더에서 왕복운동을 하여 냉매를 압축하는 방식이다. 본 발명은 진동형 왕복동식 압축기에 관한 것으로 이하에서는 진동형 왕복동식 압축기를 왕복동식 압축기라고 약칭한다.
상기 왕복동식 압축기는 왕복동모터의 자속(magnet flux) 방향을 따라 상기 피스톤과 실린더가 상대 왕복운동을 하면서 냉매를 흡입, 압축하여 토출하는 일련의 과정을 반복하게 된다.
그러나, 종래의 왕복동식 압축기는, 왕복동모터와 압축부로 된 압축기본체가 코일스프링으로 된 지지스프링에 의해 밀폐용기의 내부공간에 지지되어 횡방향으로 진동 가능하게 설치됨에 따라 상기 밀폐용기와 압축기본체 사이에는 지지스프링으로 지지되는 만큼의 일정한 간격이 필요하게 되고 이로 인해 압축기의 크기가 커지는 문제점이 있었다.
또, 종래의 왕복동식 압축기는, 상기 왕복동모터의 가동자와 압축부의 피스톤이 결합되어 조립됨에 따라 상기 가동자와 피스톤의 동심도가 일치되어야 하므로 그만큼 압축기의 조립공정이 난해하게 되는 문제점도 있었다.
또, 종래의 왕복동식 압축기는, 상기 지지스프링이 왕복동모터의 고정자와 압축부의 실린더에 연결되어 밀폐용기에 고정됨에 따라 상기 왕복동모터의 진동과 압축부의 진동이 밀폐용기로 전달되어 압축기 진동이 증가하는 문제점도 있었다.
또, 종래의 왕복동식 압축기는, 상기 왕복동모터의 고정자가 압축부의 실린더에 일체로 결합되거나 또는 공진스프링에 의해 연결되고 상기 왕복동모터의 가동자와 압축부의 피스톤이 연결됨에 따라 상기 왕복동모터의 속도와 압축부의 상대 속도가 동일하게 된다. 이로 인해 상기 왕복동모터의 속도를 높이는데 한계가 있어 압축기 효율이 저하되는 문제점도 있었다.
본 발명의 목적은, 압축기본체와 밀폐용기 사이의 간격을 줄여 소형화된 왕복동식 압축기를 제공하려는데 있다.
또, 본 발명의 다른 목적은, 왕복동모터의 가동자와 압축부의 피스톤을 용이하게 조립할 수 있도록 하여 압축기의 조립공정을 간소화할 수 있는 왕복동식 압축기를 제공하려는데 있다.
또, 본 발명의 다른 목적은, 왕복동모터의 진동과 압축부의 진동을 상쇄시켜 압축기 진동을 감쇄시킬 수 있는 왕복동식 압축기를 제공하려는데 있다.
또, 본 발명의 다른 목적은, 왕복동모터의 상대 속도와 압축부의 상대 속도를 다르게 제어하여 왕복동모터의 속도를 향상시키고 이를 통해 압축기의 효율을 높일 수 있는 왕복동식 압축기를 제공하려는데 있다.
본 발명의 목적을 달성하기 위하여, 밀폐용기; 상기 밀폐용기의 내부에 고정자가 고정되고, 그 고정자의 공극(air gap)에서 가동자가 왕복운동을 하는 왕복동모터; 상기 가동자와 분리되고 상기 밀폐용기에 탄력적으로 지지되어 왕복운동을 하는 피스톤; 및 상기 피스톤이 삽입되어 압축공간을 형성하도록 상기 왕복동모터와 일정 간격을 두고 상기 밀폐용기의 내부에 고정되는 실린더;를 포함하는 왕복동식 압축기가 제공된다.
또, 흡입관과 토출관이 연통되는 밀폐용기; 상기 밀폐용기에 고정자가 고정되고, 상기 고정자에 대해 가동자가 왕복운동을 하도록 구비되는 왕복동모터; 상기 밀폐용기의 내부에 고정 결합되는 실린더; 상기 실린더에 미끄러지게 삽입되어 왕복운동을 하면서 상기 밀폐용기의 내부공간으로 흡입되는 냉매를 압축하는 피스톤; 상기 가동자를 밀폐용기에 대해 탄력 지지하여 상기 가동자의 공진운동을 유도하는 제1 공진스프링; 및 상기 피스톤을 밀폐용기에 대해 탄력 지지하여 상기 피스톤의 공진운동을 유도하는 제2 공진스프링;을 포함하는 왕복동식 압축기가 제공된다.
본 발명에 의한 왕복동식 압축기기는, 상기 왕복동모터의 고정자와 상기 압축부의 실린더를 상기 밀폐용기에 밀착시켜 고정함으로써 상기 압축기본체와 밀폐용기 사이의 간격을 줄여 압축기의 크기를 축소할 수 있다. 뿐만 아니라, 상기 압축부의 실린더가 밀폐용기에 밀착되어 있기 때문에 루프파이프와 같은 별도의 파이프를 구성할 필요가 없어 제조비용을 절감할 수 있다.
또, 상기 왕복동모터의 가동자와 압축부의 피스톤을 분리함으로써 상기 가동자와 피스톤의 동심도를 일치시키지 않아도 되므로 압축기의 조립공정이 간소화될 수 있다. 뿐만 아니라, 상기 왕복동모터의 진동이 밀폐용기를 통해 압축부로 전달되므로 상기 밀폐용기의 진동이 감쇄될 수 있다.
또, 상기 왕복동모터의 고정자 질량과 지지스프링의 강성, 그리고 왕복동모터의 가동자 질량 및 압축부의 피스톤 질량과 공진스프링의 강성을 적절히 조정하면 상기 밀폐용기에 가해지는 힘을 서로 상쇄시킬 수 있고 이를 통해 밀폐용기의 진동을 최소화할 수 있다.
또, 상기 왕복동모터의 상대 속도를 압축부의 상대 속도보다 더 크게 할 수 있고, 이를 통해 모터의 효율을 상승시킬 수 있다.
도 1은 본 발명에 따른 왕복동식 압축기의 일례를 보인 종단면도,
도 2는 도 1에 따른 왕복동식 압축기에서 왕복동모터의 일부를 보인 종단면도,
도 3은 도 1에 따른 왕복동식 압축기의 구조를 설명하기 위해 보인 개요도,
도 4는 도 1에 따른 왕복동식 압축기의 기계적 손실과 모터효율을 보인 그래프,
도 5는 본 발명에 따른 왕복동식 압축기의 다른 예를 보인 종단면도.
이하, 본 발명에 의한 왕복동식 압축기를 첨부도면에 도시된 왕복동식 압축기를 참조하여 상세하게 설명한다.
도 1은 본 발명에 의한 왕복동식 압축기의 일례를 보인 종단면도이고, 도 2는 도 1에 따른 왕복동식 압축기에서 왕복동모터의 일부를 보인 종단면도이며, 도 3은 도 1에 따른 왕복동식 압축기의 구조를 설명하기 위해 보인 개요도이다.
도 1을 참조하면, 본 발명에 의한 왕복동식 압축기는, 밀폐용기(100)의 양단에 각각 가스흡입관(110)과 가스토출관(120)이 연통되고, 상기 밀폐용기(100)의 내부에는 가동자(230)가 직선으로 왕복운동을 하는 왕복동모터(200)가 설치되며, 상기 왕복동모터(200)의 가동자(230)와 분리되는 피스톤(320)이 상기 가동자(230)에 대해 독립적으로 왕복운동을 하면서 냉매를 압축하는 압축부(300)가 상기 왕복동모터(200)와 일정 간격을 두고 밀폐용기(100)의 내부에 설치된다.
상기 밀폐용기(100)는 상기 가동자(230)의 운동방향으로 진동할 수 있도록 설치면에 대해 탄력 지지되고, 양측에 가스흡입관(110)과 가스토출관(120)이 관통되어 각각 연결된다. 상기 가스흡입관(110)은 그 끝단이 상기 밀폐용기(100)의 내부공간(130)에 연통되도록 연결되는 반면 상기 가스토출관(120)은 그 끝단이 후술할 토출커버(360)에 직접 연결된다.
그리고 상기 밀폐용기(100)의 내주면 양측에는 후술할 가동자(230)와 피스톤(320)을 탄력 지지하는 공진스프링들((251)(252))((361)(362))의 일단을 각각 지지하도록 제1 스프링서포터(140)와 제2 스프링서포터(150)가 소정의 간격을 두고 일체로 형성된다.
상기 왕복동모터(200)는 코일(211)이 구비되어 상기 밀폐용기(100)에 고정되는 외측고정자(210)와, 상기 외측고정자(210)의 안쪽에 소정 간격의 공극(air gap)을 두고 설치되어 상기 외측고정자(210)와 함께 상기 밀폐용기(100)에 고정되는 내측고정자(220)와, 상기 외측고정자(210)와 내측고정자(220) 사이에서 직선으로 왕복운동을 하는 가동자(230)로 이루어진다.
상기 외측고정자(210)와 내측고정자(220)는 상기 코일(211)을 중심으로 양측에 각각 공극이 형성될 수도 있으나, 이 경우 상기 코일(211)과 마그네트(232)에 의해 발생되는 자속이 고정자의 외부로 누설될 수 있을 뿐만 아니라 마그네트(232)의 길이가 길어져 제조비용이 증가할 수 있다. 따라서, 상기 외측고정자(210)와 내측고정자(220)는 상기 코일(211)을 중심으로 일측은 서로 연결되는 반면 타측은 공극이 형성되도록 서로 이격되는 소위 '1폴2갭' 형상으로 형성될 수 있다.
예를 들어, 상기 고정자는 도 2에서와 같이 코일(130)이 구비되고 원통모양으로 형성되는 외측고정자(210)와, 상기 외측고정자(210)의 내측에 상기 코일(211)을 중심으로 한쪽은 서로 연결되는 반면 다른 한 쪽은 소정의 공극을 두고 배치되는 내측고정자(220)로 이루어진다.
상기 고정자는 그 안쪽에 환형의 코일이 설치되어야 하므로 상기 외측고정자(210)와 내측고정자(220)는 일체형으로 형성하는 것보다는 상기 외측고정자(210)와 내측고정자(220)를 각각 디귿(ㄷ)자 모양과 일(ㅡ)자 모양으로 형성하여 용접 등으로 조립하는 것이 바람직할 수 있다.
상기 가동자(230)는 원통모양으로 마그네트 홀더(231)가 형성되고, 상기 마그네트 홀더(231)의 외주면에는 복수 개의 마그네트(232)가 고정 결합된다. 그리고 상기 마그네트 홀더(231)의 일측 끝단에는 상기 가동자측 서포터(240)가 결합되고, 상기 가동자측 서포터(240)의 양측에는 모터측 제1 공진스프링(251)과 모터측 제2 공진스프링(252)이 설치된다. 상기 모터측 제1 공진스프링(251)과 모터측 제2 공진스프링(252)의 타단은 각각 상기 밀폐용기(100)의 제1 스프링서포터(140)와 제2 스프링서포터(150)의 일측면에 고정된다.
상기 모터측 공진스프링들(251)(252)은 한 개의 압축코일스프링으로 이루어질 수도 있지만 경우에 따라서는 원주방향을 따라 복수 개의 압축코일스프링으로 이루어질 수도 있다.
상기 압축부(300)는 상기 밀폐용기(100)의 내주면에 고정 결합되는 실린더(310)와, 상기 왕복동모터(200)의 가동자(230)에 결합되어 상기 실린더(310)의 압축공간(311)에서 왕복운동을 하는 피스톤(320)과, 상기 피스톤(320)의 흡입유로(321)를 개폐하도록 그 피스톤(320)의 선단에 장착되어 상기 압축공간(311)의 흡입측을 개폐하는 흡입밸브(330)와, 상기 실린더(310)에 착탈 가능하게 설치되어 상기 압축공간(311)의 토출측을 개폐하는 토출밸브(340)와, 상기 토출밸브(340)를 탄력적으로 지지하는 밸브스프링(350)으로 이루어진다.
상기 실린더(310)는 그 외주면이 상기 밀폐용기(100)의 내주면에 밀착되도록 고정되고, 상기 실린더(310)의 중앙부에는 상기 압축공간(311)이 환형으로 형성되며, 상기 압축공간(311)의 바깥쪽에는 상기 토출밸브(340)와 밸브스프링(350)이 수용되는 토출공간(312)이 연이어 형성된다. 상기 토출공간(312)에는 상기 가스토출관(120)이 직접 연통되어 밀봉되도록 연결된다.
상기 피스톤(320)은 그 내부에 흡입유로(321)가 구비되도록 원통모양으로 형성되고, 상기 흡입유로(321)의 출구단에는 복수 개 흡입통공(322)이 연통되도록 형성될 수 있다. 그리고 상기 피스톤(320)의 일측 끝단에는 피스톤스토퍼(323)가 결합되고, 상기 피스톤스토퍼(323)의 양측에는 각각 압축부측 제1 공진스프링(361)과 제2 공진스프링(362)이 각각 설치된다. 상기 압축부측 제1 공진스프링(361)과 제2 공진스프링(362)의 타단은 상기 실린더(310)와 제2 스프링서토퍼(150)의 타단에 고정 결합된다.
상기 압축부측 공진스프링들(361)(362)은 한 개의 압축코일스프링으로 이루어질 수도 있지만 경우에 따라서는 원주방향을 따라 복수 개의 압축코일스프링으로 이루어질 수도 있다.
상기와 같은 본 발명에 의한 왕복동식 압축기는 다음과 같이 동작된다.
즉, 도 3에서와 같이, 상기 왕복동모터(200)의 코일(211)에 전원이 인가되어 상기 외측고정자(210)와 내측고정자(220)의 사이에 자속이 형성되면, 상기 외측고정자(210)와 내측고정자(220) 사이의 공극에 놓인 상기 가동자(230)가 자속의 방향을 따라 움직이면서 상기 모터측 공진스프링들(251)(252))에 의해 지속적으로 왕복운동을 하게 된다.
그러면 상기 가동자(230)의 왕복운동으로 인해 1차 진동이 발생되고, 이 1차 진동은 상기 밀폐용기(100)로 전달된다.
그러면 상기 밀폐용기(100)를 통해 1차 진동을 전달받은 피스톤(320)이 압축부측 공진스프링들(361)(362)에 탄력 지지된 상태에서 2차 진동을 발생하여 왕복운동을 하게 된다. 상기 피스톤(320)이 지속적으로 왕복운동을 하면서 냉매를 압축하여 냉동사이클 시스템으로 토출시키는 일련의 과정을 반복하게 된다.
여기서, 상기 왕복동모터의 고정자 질량과 모터측 공진스프링들의 강성, 그리고 상기 왕복동모터의 가동자 질량 및 압축부의 피스톤 질량과 압축부측 공진스프링들의 강성을 적절히 조정하면 상기 밀폐용기에 가해지는 힘을 서로 상쇄시킬 수 있고 이를 통해 밀폐용기의 진동을 최소화할 수 있다. 아울러, 상기 왕복동모터와 압축부가 밀폐용기를 매개로 하여 상호 동흡진기 역할을 하게 되므로 왕복동식 압축기의 진동이 감쇄될 수 있다.
또, 상기 왕복동모터의 고정자가 변위를 갖기 때문에 상기 왕복동모터의 가동자와 고정자의 상대 변위와 상기 압축부의 피스톤과 실린더의 상대 변위가 달라진다. 이러한 특성을 이용하여 상기 왕복동모터의 상대 속도를 압축부의 상대 속도보다 더 크게 할 수 있고, 이러한 특성은 도 4에서와 같이 저속에서의 모터효율이 향상되어 전체적으로 모터의 입력손실이 감소하면서 모터의 효율을 상승시키는 요인이 된다.
또, 상기 왕복동모터의 고정자와 압축부의 실린더를 상기 밀폐용기에 밀착시켜 고정함으로써 상기 압축기본체와 밀폐용기 사이의 간격을 줄여 압축기의 크기를 축소할 수 있을 뿐만 아니라, 상기 압축부의 실린더가 밀폐용기에 밀착되어 있기 때문에 압축된 냉매를 사이클로 보내기 위해 탄성을 갖는 루프파이프와 같은 별도의 파이프를 구성할 필요가 없어 제조비용을 절감할 수 있다.
한편, 본 발명에 의한 왕복동식 압축기에 대한 다른 실시예가 있는 경우는 다음과 같다.
즉, 전술한 실시예에서는 상기 왕복동모터의 가동자를 공진스프링으로 지지하는 것이었으나, 본 실시예는 도 5에서와 같이 상기 가동자(230)를 자유상태에서 왕복운동을 하도록 상기 외측고정자(210)와 내측고정자(220) 사이의 공극에 왕복운동 가능하게 설치하는 것이다.
이 경우에도 왕복동식 압축기의 기본적이 구성과 작용효과는 전술한 실시예와 대동소이하므로 이에 대한 상세한 설명은 생략한다. 다만, 본 실시예는 상기 가동자(230)가 자유상태로 공극에 놓여 자속에 따라 왕복운동을 하게 되므로 상기 가동자(230)가 원활하게 왕복운동을 하도록 하기 위해서는 상기 왕복동모터(200)의 고정자는 전술한 실시예와 같은 소위 '1폴2갭' 형상으로 형성되는 것이 바람직하다.
아울러, 본 실시예는 상기 가동자(1230)를 탄력 지지하기 위한 별도의 모터측 공진스프링들과 이 모터측 공진스프링들을 지지하기 위한 스프링 서포터와 가동자측 서포터가 필요 없어 전술한 실시예에 비해 상대적으로 제조비용이 절감될 수 있다.
또 한편, 도면으로 도시하지는 않았으나, 상기 왕복동모터의 고정자는 공극이 모터의 양측에 각각 구비되는 2폴2갭 형상으로 형성될 수도 있다.

Claims (11)

  1. 밀폐용기;
    상기 밀폐용기의 내부에 고정되고 공극(air gap)을 갖는 고정자;
    상기 고정자의 공극(air gap)에서 왕복운동을 하는 가동자;
    상기 밀폐용기의 내부에 고정되는 실린더; 및
    상기 가동자와 분리되어 상기 밀폐용기에 탄력적으로 지지되고, 상기 밀폐용기를 통해 전달되는 진동에 의해 실린더에서 왕복운동을 하는 피스톤;을 포함하는 왕복동식 압축기.
  2. 제1항에 있어서,
    상기 밀폐용기의 내주면에는 적어도 한 개의 스프링서포터가 일체로 구비되고, 상기 스프링서포터에는 상기 가동자 및 피스톤을 지지하는 각각의 스프링이 지지되는 왕복동식 압축기.
  3. 제2항에 있어서,
    상기 가동자와 피스톤은 적어도 어느 한 개의 스프링서포터를 사이에 두고 양쪽에 각각 배치되어 상기 스프링서포터의 양측면에 각각 지지되는 스프링으로 탄력 지지되는 왕복동식 압축기.
  4. 제3항에 있어서,
    상기 스프링서포터는 제1 스프링서포터와 제2 스프링서포터가 일정 간격을 두고 배치되며,
    상기 가동자는 제1 스프링서포터와 제2 스프링서포터 사이에 배치되고, 상기 피스톤은 제2 스프링서포터와 실린더 사이에 배치되며,
    상기 가동자에 결합되는 가동자측 서포터의 양측면에는 상기 제1 스프링서포터의 일측면과 제2 스프링서포터의 일측면에 지지되는 스프링들이 지지되고, 상기 피스톤에 결합되는 피스톤측 서포터의 양측면에는 상기 제2 스프링서포터의 타측면과 실린더의 일측면에 지지되는 스프링들이 지지되는 왕복동식 압축기.
  5. 제1항에 있어서,
    상기 고정자는 외측고정자와 내측고정자로 이루어지고, 상기 내측고정자와 외측고정자의 일측은 서로 연결되는 반면 타측은 서로 이격되어 상기 가동자가 왕복운동을 하도록 공극이 형성되는 왕복동식 압축기.
  6. 제1항에 있어서,
    상기 밀폐용기의 내부공간은 흡입관이 연통되고, 상기 피스톤에는 밀폐용기의 내부공간과 상기 실린더의 압축공간이 연통되도록 흡입유로가 관통 형성되며, 상기 피스톤의 끝단에는 상기 흡입유로를 개폐하는 흡입밸브가 설치되고, 상기 실린더의 압축공간 출구측에는 그 압축공간을 개폐하는 토출밸브가 설치되는 왕복동식 압축기.
  7. 제6항에 있어서,
    상기 실린더에는 상기 압축공간과 연통되도록 토출공간이 연이어 형성되고, 상기 토출공간에 토출관이 연통되도록 상기 토출관이 밀폐용기에 연결되는 왕복동식 압축기.
  8. 제1항에 있어서,
    상기 밀폐용기는 왕복동모터의 가동자가 왕복운동을 하는 방향으로 왕복운동을 할 수 있도록 설치면에 대해 진동 가능하게 지지되는 왕복동식 압축기.
  9. 흡입관과 토출관이 연통되는 밀폐용기;
    상기 밀폐용기에 고정자가 고정되고, 상기 고정자에 대해 가동자가 왕복운동을 하도록 구비되는 왕복동모터;
    상기 밀폐용기의 내부에 고정 결합되는 실린더;
    상기 실린더에 미끄러지게 삽입되어 왕복운동을 하면서 상기 밀폐용기의 내부공간으로 흡입되는 냉매를 압축하는 피스톤;
    상기 가동자를 밀폐용기에 대해 탄력 지지하여 상기 가동자의 공진운동을 유도하는 제1 공진스프링; 및
    상기 피스톤을 밀폐용기에 대해 탄력 지지하여 상기 피스톤의 공진운동을 유도하는 제2 공진스프링;을 포함하는 왕복동식 압축기.
  10. 제9항에 있어서,
    상기 밀폐용기의 내주면에는 상기 제1 공진스프링과 제2 공진스프링의 사이에 개재되어 상기 제1 공진스프링과 제2 공진스프링이 지지되는 스프링서포터가 일체로 구비되는 왕복동식 압축기.
  11. 제9항에 있어서,
    상기 고정자는 외측고정자와 내측고정자로 이루어지고, 상기 내측고정자와 외측고정자의 일측은 서로 연결되는 반면 타측은 서로 이격되어 상기 가동자가 왕복운동을 하도록 공극이 형성되는 왕복동식 압축기.
PCT/KR2011/004986 2010-07-09 2011-07-07 왕복동식 압축기 WO2012005531A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180034008.4A CN102985693B (zh) 2010-07-09 2011-07-07 往复式压缩机
US13/808,981 US9062669B2 (en) 2010-07-09 2011-07-07 Reciprocating compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100066544A KR101766245B1 (ko) 2010-07-09 2010-07-09 왕복동식 압축기
KR10-2010-0066544 2010-07-09

Publications (2)

Publication Number Publication Date
WO2012005531A2 true WO2012005531A2 (ko) 2012-01-12
WO2012005531A3 WO2012005531A3 (ko) 2012-05-03

Family

ID=45441667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004986 WO2012005531A2 (ko) 2010-07-09 2011-07-07 왕복동식 압축기

Country Status (4)

Country Link
US (1) US9062669B2 (ko)
KR (1) KR101766245B1 (ko)
CN (1) CN102985693B (ko)
WO (1) WO2012005531A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113074099A (zh) * 2021-04-08 2021-07-06 天津探峰科技有限公司 直线压缩机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102238339B1 (ko) * 2016-05-03 2021-04-09 엘지전자 주식회사 리니어 압축기
CN114542415B (zh) * 2022-01-18 2023-12-26 上海栎智半导体科技有限公司 一种防泄漏易燃气体用活塞式压缩机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374838B1 (ko) * 2001-02-02 2003-03-04 엘지전자 주식회사 리니어 모터의 가동자 충돌 흡수구조
KR100442386B1 (ko) * 2001-11-05 2004-07-30 엘지전자 주식회사 왕복동식 압축기
KR100608695B1 (ko) * 2004-11-03 2006-08-09 엘지전자 주식회사 왕복동식 압축기의 내측고정자 고정 구조
KR100783414B1 (ko) * 2006-09-18 2007-12-11 엘지전자 주식회사 압축기용 왕복동모터의 가동자 구조

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297750A (ja) * 1999-04-15 2000-10-24 Matsushita Refrig Co Ltd 振動式圧縮機
KR100442389B1 (ko) 2001-11-23 2004-07-30 엘지전자 주식회사 왕복동식 압축기
DE102005038780B4 (de) * 2005-08-17 2012-11-15 Secop Gmbh Linearverdichter, insbesondere Kältemittelverdichter
CN101205888A (zh) * 2006-12-20 2008-06-25 乐金电子(天津)电器有限公司 往复式压缩机的支撑装置
US7775775B2 (en) * 2007-03-27 2010-08-17 Lg Electronics Inc. Two stage reciprocating compressor and refrigerator having the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374838B1 (ko) * 2001-02-02 2003-03-04 엘지전자 주식회사 리니어 모터의 가동자 충돌 흡수구조
KR100442386B1 (ko) * 2001-11-05 2004-07-30 엘지전자 주식회사 왕복동식 압축기
KR100608695B1 (ko) * 2004-11-03 2006-08-09 엘지전자 주식회사 왕복동식 압축기의 내측고정자 고정 구조
KR100783414B1 (ko) * 2006-09-18 2007-12-11 엘지전자 주식회사 압축기용 왕복동모터의 가동자 구조

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113074099A (zh) * 2021-04-08 2021-07-06 天津探峰科技有限公司 直线压缩机

Also Published As

Publication number Publication date
CN102985693A (zh) 2013-03-20
US9062669B2 (en) 2015-06-23
CN102985693B (zh) 2015-12-02
KR101766245B1 (ko) 2017-08-08
KR20120005861A (ko) 2012-01-17
WO2012005531A3 (ko) 2012-05-03
US20130115113A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
WO2012018148A1 (ko) 리니어 압축기
KR101809347B1 (ko) 리니어 압축기
WO2012005530A2 (ko) 왕복동식 압축기
WO2016182211A1 (en) Reciprocating compressor
WO2015099306A1 (en) Reciprocating compressor
KR102240028B1 (ko) 리니어 압축기 및 리니어 모터
WO2011115398A2 (ko) 왕복동식 압축기
CN210623014U (zh) 线性压缩机
EP2322800B1 (en) Linear compressor
EP2818714A2 (en) Linear compressor
WO2011071284A2 (ko) 리니어 압축기
WO2012005531A2 (ko) 왕복동식 압축기
KR20170124905A (ko) 리니어 압축기
KR20180093526A (ko) 리니어 압축기
CN212106185U (zh) 线性压缩机
EP2722525A2 (en) Reciprocating compressor
KR102424602B1 (ko) 리니어 압축기
CN112997389A (zh) 线性马达以及线性压缩机
KR20100132277A (ko) 리니어 압축기
WO2013180371A1 (ko) 전자기식 공기 압축기
KR20160005516A (ko) 리니어 압축기 및 리니어 모터
KR20100112482A (ko) 리니어 압축기
KR20090041652A (ko) 리니어 압축기의 흡입머플러
KR20150039990A (ko) 리니어 압축기
KR20100112479A (ko) 리니어 압축기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034008.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803817

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13808981

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803817

Country of ref document: EP

Kind code of ref document: A2