WO2012005297A1 - Operation input device - Google Patents

Operation input device Download PDF

Info

Publication number
WO2012005297A1
WO2012005297A1 PCT/JP2011/065490 JP2011065490W WO2012005297A1 WO 2012005297 A1 WO2012005297 A1 WO 2012005297A1 JP 2011065490 W JP2011065490 W JP 2011065490W WO 2012005297 A1 WO2012005297 A1 WO 2012005297A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
operation input
input device
yoke
core
Prior art date
Application number
PCT/JP2011/065490
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 古河
健介 山田
自主 勘解由
Original Assignee
ミツミ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社 filed Critical ミツミ電機株式会社
Publication of WO2012005297A1 publication Critical patent/WO2012005297A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0338Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03548Sliders, in which the moving part moves in a plane
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0362Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 1D translations or rotations of an operating part of the device, e.g. scroll wheels, sliders, knobs, rollers or belts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H2003/008Mechanisms for operating contacts with a haptic or a tactile feedback controlled by electrical means, e.g. a motor or magnetofriction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/23Construction or mounting of dials or of equivalent devices; Means for facilitating the use thereof
    • H04M1/233Construction or mounting of dials or of equivalent devices; Means for facilitating the use thereof including a pointing device, e.g. roller key, track ball, rocker switch or joystick

Definitions

  • the present invention relates to an operation input device that receives an operation input.
  • an object of the present invention is to provide an operation input device that can give the operator a force in a direction different from the pushing direction of the operator.
  • an operation input device includes: Coils, A core that is displaced in the axial direction of the coil by the action of an operation input; A yoke disposed on the end face side of the coil, There is a non-rotationally symmetric gap between the core and the yoke with respect to the axis of the core, and when a current is passed through the coil, a magnetic attractive force generated between the core and the yoke acts on the core. It is characterized by that.
  • a force in a direction different from the pushing direction of the operator can be given to the operator.
  • FIG. 1 is an exploded perspective view of an operation input device 100 according to a first embodiment of the present invention. 1 is an overall perspective view of an operation input device 100. FIG. 3 is a top view of the operation input device 100. FIG. FIG. 2 is a cross-sectional view of the operation input device 100 taken along the line AA.
  • FIG. 3 is a cross-sectional view taken along line BB of the operation input device 100.
  • FIG. FIG. 6 is a cross-sectional view taken along the line BB when the magnetic attractive forces FA1, FA2 are generated.
  • 2 is an exploded perspective view of an operation input device 200.
  • FIG. 1 is an overall perspective view of an operation input device 200.
  • FIG. It is sectional drawing in the YZ plane of the operation input device. It is sectional drawing of the operation input apparatus 200 at the time of magnetic attraction force FA3 generation
  • 3 is an exploded perspective view of an operation input device 300.
  • FIG. 1 is an overall perspective view of an operation input device 300.
  • FIG. 1 is an overall perspective view of an operation input device 300.
  • FIG. 10 is a block diagram of an example of a detection circuit that detects a change in inductance of a coil configured in each of the operation input devices 100A to 100D. It is a block diagram of the drive circuit 66 and the receiving circuit 67 in FIG. It is the figure which showed the waveform in each point of FIG. It is a wave form diagram when operating the operation input device 400 by the control method which controls the operation input device 400.
  • FIG. It is a time chart for demonstrating the method to detect pushing down amount W based on the rising waveform of the electric current which flows into a coil.
  • An operation input device is an operation interface that receives a force from an operator's finger or the like and outputs an output signal that changes in accordance with the received force.
  • An operation input by the operator is detected based on the output signal. By detecting the operation input, it is possible to make the computer grasp the operation content corresponding to the detected operation input.
  • a display object for example, a display provided on such an electronic device (for example, An instruction display such as a cursor or pointer, a character, or the like) can be moved according to the operation content intended by the operator.
  • a desired function of the electronic device corresponding to the operation input can be exhibited.
  • the inductance L of an inductor such as a coil (winding) usually has a coefficient K, permeability ⁇ , n number of coil turns, cross-sectional area S, and magnetic path length d.
  • L K ⁇ n 2 S / d
  • This operation input device receives an operator's force input from the Z-axis direction side of an orthogonal coordinate system determined by the X, Y, and Z axes.
  • the Z axis direction refers to a direction parallel to the Z axis.
  • the operation input device includes a displacement member that changes the magnitude of the inductance of the coil.
  • the operation input device can detect the operation input by detecting the movement of the displacement member that is displaced by the operation input of the operator based on a predetermined signal that changes in accordance with the magnitude of the inductance.
  • the operation input device of the present embodiment passes a current that generates a magnetic field around the coil. Due to the magnetic field generated in this manner, a movement that is a stimulus for the operator is generated in the operation unit where the force of the operator can act.
  • FIG. 1 and 2 are views for explaining the principle of an operation input device according to an embodiment of the present invention, and are side views showing a part of the configuration in a cross-sectional view.
  • FIG. 1 shows an initial state in which a magnetic field for causing the operator to feel the displacement of the operation surface 6b is not generated
  • FIG. 2 illustrates a magnetic field for causing the operator to feel the displacement of the operation surface 6b. It shows the state.
  • the operation input device of the present embodiment includes a substrate 1, a coil 2, a displacement member 6, a core 3, a yoke 4, a support member 5 (5a, 5b), a detection unit 160, and a control unit 170. Prepare.
  • the substrate 1 is a base portion having an arrangement surface 1a on which the coil 2 is arranged.
  • the substrate 1 may be used as a yoke for the coil 2.
  • the displacement member 6 is provided on the side where the operator's force is input to the substrate 1, and has a facing surface 6a facing the arrangement surface 1a and an operation surface 6b on which the operator's force can act. .
  • the displacement member 6 changes the inductance of the coil 2 when the operator's force acts on the operation surface 6 b and the core 3 installed on the facing surface 6 a approaches the coil 2.
  • the core 3 is a columnar magnetic body that is displaced on the extension region (including the inside of the inner cylinder) of the inner cylinder of the coil 2 by the action of an operation input.
  • the core 3 is provided at the center of the facing surface 6 a of the displacement member 6.
  • the yoke 4 is a plate-like magnetic body disposed on the upper end surface side of the coil 2. Between the core 3 and the yoke 4, a non-rotationally symmetric gap 4c is provided in the direction perpendicular to the center axis C with respect to the center axis C of the core 3 (details of the non-rotationally symmetric gap 4c). Is described later).
  • a magnetic attractive force generated between the core 3 and the yoke 4 acts on the core 3.
  • the supporting member 5 supports the displacing member 6 so that the distance between the facing surface 6a and the arrangement surface 1a changes.
  • the support member 5 supports the displacement member 6 so that the distance between the facing surface 6a and the arrangement surface 1a changes elastically.
  • the support member 5 may be a spring member, a rubber member, a sponge member, or a cylinder filled with air or oil.
  • the use of a spring member can reduce the weight and the structure, and the use of a rubber member can achieve insulation.
  • the support member 5 may be a viscous member having viscosity.
  • the detection unit 160 is a first pulse signal supply unit that supplies the coil 2 with a first pulse signal that causes the coil 2 to generate a waveform corresponding to the magnitude of the inductance of the coil 2.
  • the detection unit 160 is a detection unit that detects the magnitude of the inductance of the coil 2 by supplying the first pulse signal to the coil 2. For example, the detection unit 160 applies the first drive voltage signal to the coil 2 as the first pulse signal.
  • the detection unit 160 detects the magnitude of the inductance of the coil 2 based on the waveform (first pulse current waveform) of the pulse current flowing through the coil 2 by applying the first drive voltage signal to the coil 2.
  • the detection unit 160 may determine the inductance of the coil 2 based on, for example, the waveform of the pulse voltage (first pulse voltage waveform) generated at both ends of the coil 2 by applying the first drive voltage signal to the coil 2. The size may be detected. According to the detection result of the magnitude of the inductance of the coil 2, the position of the action point on the operation surface 6b and the displacement amount of the displacement member 6 can be calculated.
  • the control unit 170 is a second pulse signal supply unit that supplies the coil 2 with a second pulse signal that generates a magnetic attractive force that attracts the core 3 to the yoke 4.
  • the controller 170 applies the second drive voltage signal to the coil 2 as the second pulse signal.
  • a pulse current (second pulse current) flows through the coil 2 by applying the second drive voltage signal to the coil 2.
  • a magnetic flux (magnetic field H) passing through at least the yoke 4 and the core 3 is generated, and the coil 2 and the core 3 function as an electromagnet as a whole.
  • a magnetic attraction force is generated during 4. With this magnetic attraction force, as shown in FIG.
  • the core 3 is arranged in the direction in which the gap 4c is the narrowest (in the case of FIGS. 1 and 2 to the right), with the support points 5c to 5f as swinging fulcrums. Be drawn to. Magnetic field lines La and Lb shown in FIG. Since the core 3 is fixed to the displacement member 6, by moving the core 3 in the lateral direction, the displacement member 6 that is an operation unit touched by the operator can be forcibly moved in the same lateral direction.
  • control unit 170 can change the magnitude of the magnetic attractive force by changing the magnitude of the peak value of the second pulse signal, the movement amount of the core 3 and the displacement member 6 can be changed. Further, since the controller 170 can change the magnetic attractive force by changing the cycle and duty ratio of the second pulse signal, the vibration state of the core 3 and the displacement member 6 can be changed. This vibration is not limited to two or more reciprocations, but may be one reciprocation.
  • FIG. 3 is a diagram for explaining the non-rotationally symmetric gap 4c.
  • FIG. 3 is a diagram viewed from the Z1 direction of FIGS.
  • the core 3 passes through a long hole formed in the central portion of the yoke 4.
  • a gap 4 c that is a portion sandwiched between the outer periphery of the core 3 and the inner periphery of the long hole of the yoke 4 is not rotationally symmetric with respect to the central axis C of the core 3. Since the upper end portion (front side of the paper surface) and the lower end portion (back side of the paper surface) of the core 3 function as magnetic poles of the electromagnet when a current flows through the coil 2, the core 3 generates an attractive force with the yoke 4.
  • the magnitude of the X ( ⁇ ) direction component FA of the magnetic attractive force F is equal to the magnetic attractive force F. Is smaller than the magnitude of the X (+) direction component FB.
  • the magnitude of the Y ( ⁇ ) direction component FD of the magnetic attraction force F is It is substantially equal to the magnitude of the Y (+) direction component FC. Therefore, the core 3 moves in the X (+) direction. As the core 3 moves, the above-described displacement member 6 also moves in the same direction.
  • FIG. 4 and 5 show other forms of non-rotationally symmetric gaps.
  • the non-rotationally symmetric gap 4d in FIG. 4 is formed by dividing the yoke 4 into left and right. Since the distance dA is longer than the distance dB, the core 3 moves to the right side.
  • FIG. 5 shows a non-rotationally symmetric gap 4e. In the case of FIG. 5, a non-rotationally symmetric hole is formed in the central portion of the yoke 4 with respect to the central axis C of the core 3. As in FIG. 4, since the distance dA is longer than the distance dB, the core 3 moves to the right side.
  • FIG. 6 is an exploded perspective view of the operation input device 100 according to the first embodiment of the present invention.
  • FIG. 7 is an overall perspective view of the operation input device 100.
  • FIG. 8 is a top view of the operation input device 100.
  • the shaft 30 corresponds to the core 3 described above.
  • the coil 20 corresponds to the coil 2 described above.
  • the lower yoke 10 that is the first yoke portion disposed below the coil 20 and the upper yoke 40 that is the second yoke portion disposed above the coil 20 are the coil 20. It is configured by bypassing and connecting outside.
  • the side yokes 11 and 12 of the lower yoke 10 are detour portions located outside the coil 20.
  • the lower yoke 13 of the lower yoke 10 is formed with a notch 15 that is notched and opened in a direction perpendicular to the direction of the central axis C of the shaft 30 in the initial state. Further, the lower yoke 13 is formed with a wall portion 14 that stands upright in the direction parallel to the central axis of the shaft 30 in the initial state along the contour of the notch portion 15.
  • FIG. 9 is a cross-sectional view of the operation input device 100 taken along line AA shown in FIG.
  • the shaft 30 is supported by being fitted to the inner cylinder of the shaft holder 51.
  • the shaft 30 is formed by guides 52a and 52b (see FIG. 6) in which concave portions are formed in the vertical direction on the inner wall 52c of the bobbin 52 (see FIG. 6) by pins 51a and 51b formed on the outer surface of the shaft holder 51. Supported in contact. Therefore, the shaft 30 has a degree of freedom in the vertical direction and in the rotational direction in which the straight line connecting the pins 51a and 51b is the rotational axis D.
  • the shaft holder 51 is supported by a spring 50 so as to be movable in the vertical direction. Even if the shaft holder 51 is pushed downward by pushing the shaft 30 downward, the shaft holder 51 is pushed back until it comes into contact with the lower surface of the yoke 40 by the repulsive force of the spring 50. As the shaft 30 moves in the vertical direction, the facing area E between the lower end portion 32 of the shaft 30 and the wall portion 14 formed on the lower surface yoke 13 of the lower yoke 10 changes. When the facing area E changes, the magnetic resistance of the magnetic circuit formed by the lower yoke 10, the upper yoke 40, and the shaft 30 changes, so that the inductance of the coil 20 changes.
  • L1 and L2 indicate the directions of the magnetic field passing through the magnetic circuit.
  • the air gap between the lower end portion 32 of the shaft 30 and the wall portion 14 changes, so that the inductance of the coil 20 changes in an increasing direction or a decreasing direction.
  • the portion of the shaft 30 facing the wall portion 14 may be formed in a tapered shape or an inversely tapered shape.
  • FIG. 10 is a structural diagram of the yoke. Since the notched portion 15 is formed in the lower yoke 10 and the notched portion 41 is formed in the upper yoke 40, the magnetic circuit as a whole is unbalanced with respect to the central axis C. That is, the notch direction of the notch 15 and the notch direction of the notch 41 are opposite to each other. As a result, a magnetic attracting force FA1 in the X (+) direction that draws the upper end portion 31 of the shaft 30 toward the upper yoke 40 is generated, and the lower end portion 32 of the shaft 30 is drawn toward the wall portion 14 of the lower surface yoke 13 in the X ( ⁇ ) direction. The magnetic attractive force FA2 is generated.
  • FIG. 11 is a cross-sectional view of the operation input device 100 taken along the line BB shown in FIG.
  • FIG. 12 is a cross-sectional view taken along the line BB when the magnetic attractive forces FA1 and FA2 are generated.
  • the rotation axis D is arranged such that the upper end portion 31 of the shaft 30 narrows the minimum gap with the upper yoke 40 and the lower end portion 32 of the shaft 30 narrows the minimum gap with the wall portion 14.
  • the shaft 30 rotates around the center. This rotational motion is transmitted to the operator as a feedback force from the operation input device.
  • the shaft 30 is supported by the rubber ring 53 at the position of the upper end portion 31, and when moved in the rotation direction, the shaft 30 returns to the initial position so that the rotation axis C is parallel to the Z axis by the repulsive force of the rubber ring 53. .
  • FIG. 13 is an exploded perspective view of the operation input device 200 according to the second embodiment of the present invention.
  • FIG. 14 is an overall perspective view of the operation input device 200.
  • the shaft 130 corresponds to the core 3 described above.
  • the coil 120 corresponds to the coil 2 described above. The description of the same parts as described above is omitted.
  • the yoke with respect to the coil 120 includes a lower yoke 110 that is a first yoke portion disposed on the lower side of the coil 120 and an upper yoke 140 that is a second yoke portion disposed on the upper side of the coil 120. It is configured by bypassing and connecting outside.
  • the side yokes 111 and 112 of the lower yoke 110 are detour portions located outside the coil 120.
  • a central hole 115 is formed in the lower surface yoke 113 of the lower yoke 110. Further, the lower yoke 113 is formed with a wall portion 114 that stands upright in a direction parallel to the central axis C of the shaft 130 in the initial state along only a part of the contour of the central hole 115. In the case of the figure, the wall 114 is formed only on the Y ( ⁇ ) direction side of the four axial directions of the XY plane.
  • FIG. 15 is a cross-sectional view of the operation input device 200 on the YZ plane.
  • the shaft 130 is restrained in the radial direction by an upper hole 152 c of the bobbin 152 and the shaft holder 151.
  • the shaft holder 151 is formed with a shaft holder escape portion 151 a in a direction perpendicular to the axial direction of the shaft 130. Therefore, the shaft 130 is movable in the vertical direction, and has a degree of freedom of rotation on the shaft holder escape portion 151a side with the hole 152c on the upper side of the bobbin 152 as a rotation fulcrum.
  • the shaft 130 is supported so as to be movable in the vertical direction by a spring 150 that contacts a resin washer 153 attached to the shaft 130 in a flange shape. Even if the shaft 130 is pushed downward, the resin washer 153 is pushed back by the repulsive force of the spring 150, so that the shaft 130 is pushed back until it comes into contact with the lower surface of the bobbin 152. Since the diameter of the resin washer 153 is larger than the diameter of the upper hole 152 c of the bobbin 152, the resin washer 153 does not jump out of the hole 152 c even if it receives the reaction force of the spring 150.
  • the facing area E between the lower end portion 132 of the shaft 130 and the wall portion 114 formed on the lower surface yoke 113 of the lower yoke 110 changes.
  • the magnetic resistance of the magnetic circuit formed by the lower yoke 110, the upper yoke 140, and the shaft 130 changes, so the inductance of the coil 120 changes.
  • L3 indicates the direction of the magnetic field passing through the magnetic circuit.
  • FIG. 16 is a cross-sectional view of the operation input device 200 when the magnetic attractive force FA3 is generated.
  • the lower end portion 132 of the shaft 130 is caused to move into the hole 152c of the bobbin 152 by the magnetic attractive force FA3 acting between the lower end portion 132 of the shaft 130 and the wall portion 114. Is inclined toward the side of narrowing the minimum gap with the wall 114.
  • the portion of the lower end portion 132 of the shaft 130 has a large air gap with the wall portion 114, and thus the shaft 130 is inclined accordingly.
  • the reaction force of the spring 150 causes the shaft 130 to return to the initial position so that the rotation axis C is parallel to the Z axis.
  • FIG. 17 is an exploded perspective view of the operation input device 300 according to the third embodiment of the present invention.
  • FIG. 18 is an overall perspective view of the operation input device 300.
  • the shaft 230 corresponds to the core 3 described above.
  • the coil 220 corresponds to the coil 2 described above. The description of the same parts as described above is omitted.
  • the yoke with respect to the coil 220 includes a lower yoke 210 that is a first yoke portion disposed below the coil 220 and an upper yoke 240 that is a second yoke portion disposed above the coil 220. It is configured by bypassing and connecting outside.
  • the side yokes 241 and 242 of the upper yoke 240 are bypass parts located outside the coil 220.
  • a central hole 244 is formed in the upper surface yoke 243 of the upper yoke 240.
  • the lower yoke 210 has a central hole, and a cylindrical wall that stands upright in a direction parallel to the central axis C of the shaft 230 in the initial state along the entire circumference of the outline of the central hole.
  • a portion 212 is formed.
  • a plate-like member 234 on which an operator's Z-direction force acts directly or indirectly is attached to the upper end portion 231 of the shaft 230.
  • the shaft 230 passing through the central hole 244 of the upper yoke 240 is inserted into the central hole of the bobbin 252 around which the coil 220 is wound.
  • FIG. 19 is a cross-sectional view on the YZ plane of the operation input device 300 in the initial position state.
  • the shaft 230 is supported so as to be movable in the vertical direction by a spring 250 that abuts on a plate-like member 234 that is integral with the shaft 230. Even if the shaft 230 is pushed downward together with the plate-like member 234, the plate-like member 234 is pushed back by the repulsive force of the spring 250, so that the shaft 230 returns to the original position to the initial position state.
  • the missing portion 233 is provided at the lower end 232 of the shaft 230 so that the shaft 230 is non-rotationally symmetric with respect to the axis of the shaft 230. As a result, the distance between the missing portion 233 of the shaft 230 and the wall portion 212 becomes non-uniform with respect to the entire circumference of the shaft 230.
  • the base 211 is used to support the spring 250
  • the base 211 may be omitted by using the supporting member of the spring 250 also as another member.
  • any of the lower yoke 210, the upper yoke 240, and the bobbin 252 may be used to support the spring 250.
  • FIG. 20 is a cross-sectional view of the operation input device 300 when the magnetic attractive forces FA5 and FA6 are generated.
  • the lower end 232 of the shaft 230 has a minimum gap with the wall 212 due to the magnetic attractive force FA6 acting between the lower end 232 and the wall 212.
  • Suction is performed on the narrowing side (that is, the side where the defect portion 233 is not present). This is because the gap where the defect portion 233 is provided has a large gap with the wall portion 212.
  • FIG. 21 is an exploded perspective view of the operation input device 400 according to the fourth embodiment of the present invention.
  • FIG. 22 is a cross-sectional view of the operation input device 400.
  • the operation input device 400 includes a substrate 310 having a placement surface on which a plurality of operation input devices (in the case of FIG. 21, the four operation input devices 100 (100A to 100D) described above) are arranged.
  • the operation input device provided on the substrate 310 may be the operation input device 200 or 300 described above.
  • the substrate 310 is a base having an arrangement surface parallel to the XY plane.
  • the origin O which is the reference point of the three-dimensional orthogonal coordinate system, is set at a position away from the arrangement surface by a predetermined distance on the side where the operator's force is input (in FIG. 21, the upper side with respect to the substrate 310).
  • the substrate 310 may be a resinous substrate, but may be an iron plate substrate using a steel plate, a silicon steel plate or the like as a base material in order to function as a yoke.
  • the operation input devices 100A to 100D are arranged in the circumferential direction of a virtual circle formed by connecting points having the same distance from the origin O.
  • the operation input devices 100A to 100D are preferably arranged at equal intervals in the circumferential direction from the viewpoint of facilitating calculation of the operator's force vector. When each operation input device has the same characteristic, the distance between the centers of gravity of two adjacent coils may be equal.
  • the operation input devices 100A-100D are arranged concentrically in every 90 ° in four directions of X (+), X ( ⁇ ), Y (+), and Y ( ⁇ ).
  • the X ( ⁇ ) direction is 180 ° opposite to the X (+) direction on the XY plane
  • the Y ( ⁇ ) direction is 180 ° opposite to the Y (+) direction on the XY plane.
  • the direction of the direction The operation input device 100A is arranged on the X axis on the positive side with respect to the origin O
  • the operation input device 100B is arranged on the Y axis on the positive side with respect to the origin O
  • the operation input device 100C is arranged on the origin O
  • the operation input device 100D is disposed on the Y axis on the negative side with respect to the origin O.
  • the operation input device 400 includes a key 360 that is a displacement member provided on the side where the operator's force is input to the substrate 310.
  • a plate-like key 360 is arranged above the operation input devices 100A-100D provided on the substrate 310.
  • the key 360 includes an opposing surface (the lower surface in FIG. 21) that faces the arrangement surface on which the operation input devices 100A to 100D are arranged, and an operation surface (upper side in FIG. 21) on which an operator's force can act. Surface).
  • the key 360 has at least one of the four operation input devices 100A-100D as a result of the operator's force acting on the operation surface and the opposing surface approaches the arrangement surface on which the operation input devices 100A-100D are arranged.
  • One shaft 30 (see FIGS. 11 and 12) is pushed downward, and the inductance of the coil 20 surrounding the pushed shaft 30 is changed.
  • the key 360 is supported by the case 370 so as to be movable in the Z-axis direction, as shown in FIG.
  • the case 370 has the position of the key 360 in a standby state (initial state) where the operator's force is not applied to the operation surface as a standby position, and the operator's force is applied to the operation surface so that the substrate 310 is moved from the standby position. Support to move in the direction approaching.
  • Case 370 is fixed to substrate 310.
  • Case 370 may be a case of an electronic device such as a game machine to which operation input device 400 is attached, or may be a case of operation input device 400 itself.
  • FIG. 23 is a block diagram of an example of a detection circuit that detects a change in inductance of a coil configured in each of the operation input devices 100A to 100D.
  • the inductance detection circuit is a calculation unit that detects a change in inductance of each coil of the operation input devices 100A to 100D.
  • the detection unit 160 and the control unit 170 shown in FIGS. 1 and 2 correspond to this inductance detection circuit. That is, the control unit 160 and the control unit 170 are realized by a single inductance detection circuit.
  • the inductance detection circuit is connected to the CPU 60, which is a calculation means, the drive circuit 66 connected to the first output port 61 of the CPU 60, and the other end of each coil whose one end is connected to the ground.
  • Each coil is connected to the CPU 60 by a multiplexer 68 via a common receiving circuit 67 and driving circuit 66. Switching of the connection destination of the multiplexer 68 is uniquely selected by address designation from the CPU 60 via the address bus 64. Therefore, the detection of the inductance of each coil is sequentially performed for each coil by shifting the detection timing of each coil.
  • FIG. 24 is a block diagram of the drive circuit 66 and the reception circuit 67 in FIG.
  • the drive circuit 66 controls the output current of the constant current source 66a in accordance with the output signal from the output port 61 of the CPU 60, thereby causing a current to flow through each coil.
  • the receiving circuit 67 inputs a voltage generated when a current flows through each coil to the peak hold circuit 67b through the amplifier 67a (may be input to the bottom hold circuit).
  • the peak value (analog value) peak-held by the peak hold circuit 67b is input to the AD port 63 and converted into a digital value by the AD converter.
  • FIG. 25 is a diagram showing waveforms at each point in FIG.
  • a rectangular wave voltage waveform is output from the output port 61 of the CPU 60.
  • the constant current circuit 66a allows a constant current to flow through the coil.
  • the coil generates a voltage V2 having a differential waveform.
  • As the voltage waveform V2 a waveform 2-1 synchronized with the rising of the voltage waveform V1 is obtained, and a waveform 2-2 synchronized with the falling of the voltage waveform V1 is obtained.
  • the waveform 2-2 is a waveform having positive and negative sides opposite to the waveform 2-1.
  • the amplifier 67a amplifies the voltage waveform V2 to a size suitable for the dynamic range of the AD converter.
  • the held value is taken into the AD converter (AD port 63). Since the amplitude values of the waveforms 2-1 and 2-2 increase in proportion to the magnitude of the inductance of each coil, the magnitude of the inductance of each coil can be evaluated by detecting this amplitude value.
  • FIG. 26 is a waveform diagram when the operation input device 400 is operated by a control method for controlling the operation input device 400. A control method of the operation input device 400 will be described with reference to FIGS.
  • the control method of the operation input device 400 includes an inductance detection step of detecting a change in inductance of each coil by supplying a first pulse signal to each coil of the operation input devices 100A to 100D for each coil.
  • the CPU 60 of the inductance detection circuit as shown in (b), the pulse corresponding to the first pulse signal supplied from the output port 61 as a rectangular wave voltage waveform V1 for each coil.
  • the waveform p (p1 to p9) is output.
  • the pulse waveform p is intermittently output from the output port 61 to each coil, whereby the first pulse signal is intermittently supplied to each coil.
  • the pulse waveforms p1 to p9 of the voltage waveform V1 are output at a constant cycle.
  • the pulse waveform p is a drive voltage for detecting a change in inductance of each coil.
  • the detection voltage V3 accompanying the increase in inductance is generated by the drive voltage V1 in accordance with the push-down amount W of the shaft 30 (see FIG. 11) shown in (a).
  • the amplitude of the detection voltage V3 also increases in proportion to the pressing amount W.
  • the amplitudes of the pulse waveforms s3, s4, and s5 of the detection voltage V3 increase with the increase of the push amount W, and the amplitudes of the pulse waveforms s6 and s7 of the detection voltage V3 decrease with the decrease of the press amount W.
  • the amplitude of the pulse waveform of the detection voltage V3 is the same (s1, s2, s8, s9).
  • the control method of the operation input device is as shown in FIG. 12 by supplying, for each coil, a second pulse signal having a phase different from that of the first pulse signal supplied in the inductance detection step. And a magnetic attraction force generation step for generating a magnetic attraction force FA1 for attracting the upper end portion 31 of the shaft 30 to the upper yoke 40 and a magnetic attraction force FA2 for attracting the lower end portion 32 of the shaft 30 to the wall portion.
  • the CPU 60 as shown in (b), the pulse waveform q corresponding to the second pulse signal supplied from the output port 61 as a rectangular wave voltage waveform V1 for each coil. (Q1 to q5) are output.
  • the pulse waveform q is supplied to each coil.
  • a magnetic attractive force F such as FA1, FA2 is generated.
  • FIG. 26 shows a control method for outputting the pulse waveforms q1 to q5 according to the amplitude of the detection voltage V3, which is the detection result of the change in inductance. That is, when the detection voltage V3 has an amplitude less than a predetermined threshold, the pulse waveform q is not output. When the detection voltage V3 having an amplitude greater than or equal to the predetermined threshold occurs, the pulse waveform q corresponding to the amplitude of the detection voltage V3. Is output. That is, the pulse waveform q that generates the displacement of the operation unit in accordance with the pressing amount W is generated with an amplitude proportional to the amplitude of the detection voltage V3. Then, a magnetic attractive force F having a magnitude corresponding to the amplitude of the pulse waveform q is generated.
  • the amplitude voltage, the pulse width, and the output period of the pulse waveform p for detecting the change in inductance need only be large enough to detect the change in inductance by the detection voltage V3.
  • the amplitude voltage, pulse width, and period of the pulse waveform q are the movements of the operation unit that can be sensed by the operator so that the movement of the operation unit that accompanies the pulse waveform q can be reliably detected by the operator.
  • the magnetic attraction force F that can cause the magnetic attraction F is generated.
  • at least one of the amplitude voltage and the pulse width of the pulse waveform q is made larger than the pulse waveform p.
  • the CPU 60 may erroneously detect the detection voltage V3 generated by outputting the pulse waveform q for giving motion to the operation unit as a signal indicating a change in inductance.
  • a reset signal VR for preventing the reception circuit 67 from operating may be generated at least during a period in which the pulse waveform q is generated.
  • the detection voltage V3 since the CPU 60 outputs the pulse waveform q itself, the detection voltage V3 generated along with the pulse waveform q may not be evaluated (ignored) by the CPU 60 as a signal representing a change in inductance.
  • (b) shows a control method in which a pulse waveform q having an amplitude corresponding to the magnitude of the push-down amount W is output, but as shown in (f), it depends on the magnitude of the push-down amount W.
  • a control method for outputting the pulse waveform q having a pulse width to displace the operation unit may be used. As the push-down amount W increases, the pulse width of the pulse waveform q is increased.
  • a control method may be used in which the number of pulse waveforms q corresponding to the amount of push-down amount W is output to displace the operation unit. As the push-down amount W increases, the number of pulse waveforms q is increased.
  • the pulse waveform q Is not necessarily synchronized with the pulse waveform p
  • the time interval for generating the pulse waveform q (the output interval of the pulse waveform q) may be changed across the plurality of pulse waveforms p.
  • the pulse waveform p for detecting the change in inductance corresponds to the temporal resolution (follow-up speed) of detecting the change in inductance, and is preferably output at a short time interval.
  • the pulse waveform q for imparting displacement to the operation unit needs to make the operator feel that the displacement of the operation unit has occurred, so the output interval is made longer than the pulse waveform p.
  • the pulse waveform q may be output during an arbitrary period in which the pulse waveform p is not output so as not to overlap with the pulse waveform p.
  • the pulse waveform q is prioritized over the pulse waveform p, and the pulse waveform is output during the output period of the pulse waveform q.
  • the output of p may be stopped.
  • the displacement of the operation unit according to the push-down amount W is generated.
  • the mode of vibration applied to the can be changed. For example, it is possible to change the strength of vibration, the vibration frequency, and the number of vibrations given to the operator by changing the flow of current flowing through the coil by changing the supply mode of the second pulse signal.
  • the occurrence timing of the displacement of the operation unit is not limited to change according to the push-down amount W, but the push-down speed of the operation unit and the object that moves by the operation of the operation unit (for example, a cursor on the display, a pointer, etc.)
  • the movement position and the operation input device may be changed according to the occurrence of an event on the application used. For example, when the pressing amount W reaches a predetermined value, the magnetic attraction force F is generated by supplying the second pulse signal to the coil. The magnetic attraction force F generated in this way can make the operator feel a click.
  • FIG. 27 is a time chart for explaining a method of detecting the push-down amount W based on the rising waveform of the current flowing through the coil.
  • the detection voltage V3 corresponding to the magnitude of the voltage V2 generated at both ends of the coil is used to detect the push-down amount W, but the rising waveform of the current flowing through the coil is used. May be used.
  • (a) shows a voltage waveform applied to the coil.
  • (B) shows a current waveform flowing in the coil when the voltage of (a) is applied in a state where the shaft is not pushed in.
  • (C) shows a current waveform flowing in the coil when the voltage of (a) is applied in a state where the shaft is pushed in.
  • the position of the operation unit is changed by the feedback force, and the inductance is changed according to the change. Therefore, if the above-described countermeasure against erroneous detection of the reset signal VR or the like is not taken, there is a possibility that the position of the operation unit and the amount of pushing in may be erroneously detected.
  • FIG. 27 by detecting the push amount at the rising edge of the current waveform, it becomes possible to complete the push amount detection before the position of the operation unit changes.
  • the feedback force is generated by using the second pulse signal as the first pulse signal without changing the phase of the first pulse signal and the second pulse signal as shown in FIG.
  • a triangular wave such as a sawtooth wave shown in FIG. Since the feedback force feels strongly at the rise, if the peak voltage and the energization time are the same, almost the same feedback force feel can be obtained for the triangular wave and the square wave. That is, by using a triangular wave, a feedback force equivalent to a square wave can be obtained with about half the power.
  • the operation input is detected and the force is applied to the operator only by supplying two types or one type of pulse signal to the common coil. be able to.
  • both the function of detecting the operation input and the function of applying force to the operator are realized with a simple configuration in which two types or one type of pulse signal is supplied to the coil without forming a complicated structure. be able to.
  • components (coils) can be shared between a configuration for detecting an operation input and a configuration for applying a force to an operator, it is possible to achieve downsizing and cost reduction.
  • feedback vibration can be generated in a direction different from the pushing direction (for example, the direction in which the operating part is tilted or the lateral direction), not in the pushing direction of the operating part, so that feedback vibration is generated in the pushing direction of the operating part. It is possible to make the operator feel the feedback vibration stronger than in the case of making it happen.
  • the operation input device is not limited to fingers and may be operated with palms. Moreover, you may operate with a toe or a sole.
  • the surface touched by the operator may be a flat surface, a concave surface, or a convex surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

Disclosed is an operation input device provided with a coil, a core which is displaced in an axis direction of the coil in response to the action of an operation input, and a yoke which is arranged on the side of the end face of the coil, wherein gaps that are non-rotation-symmetric with respect to the axis of the core are provided between the core and the yoke, and when current flows in the coil, a magnetic attractive force occurring between the core and the yoke works on the core.

Description

操作入力装置Operation input device
 本発明は、操作入力を受ける操作入力装置に関する。 The present invention relates to an operation input device that receives an operation input.
 従来、操作中の指に刺激を与える触覚刺激装置を設けた操作入力装置が知られている(例えば、特許文献1を参照)。この操作入力装置は、可動駆動コイルに駆動電流を供給することによって、永久磁石の磁界を利用して、操作者の指に刺激を与える部材を動かすための駆動力を発生させるものである。 Conventionally, there has been known an operation input device provided with a tactile stimulation device for stimulating a finger during operation (see, for example, Patent Document 1). This operation input device generates a driving force for moving a member that gives a stimulus to an operator's finger by using a magnetic field of a permanent magnet by supplying a driving current to a movable driving coil.
特開2005-4365号公報JP 2005-4365 A
 しかしながら、上述の従来技術では、操作者の押し込み方向(Z方向)と同じ方向にしか力を発生させることができない。 However, with the above-described conventional technology, a force can be generated only in the same direction as the operator's pushing direction (Z direction).
 そこで、本発明は、操作者の押し込み方向と異なる方向の力を操作者に付与することができる、操作入力装置の提供を目的とする。 Therefore, an object of the present invention is to provide an operation input device that can give the operator a force in a direction different from the pushing direction of the operator.
 上記目的を達成するため、本発明の一実施形態に係る操作入力装置は、
 コイルと、
 操作入力の作用により前記コイルの軸方向に変位するコアと、
 前記コイルの端面側に配置されたヨークとを備え、
 前記コアの軸について非回転対称のギャップが前記コアと前記ヨークとの間にあり、前記コイルに電流を流すことにより、前記コアと前記ヨークとの間に発生する磁気吸引力が前記コアに作用する、ことを特徴とするものである。
In order to achieve the above object, an operation input device according to an embodiment of the present invention includes:
Coils,
A core that is displaced in the axial direction of the coil by the action of an operation input;
A yoke disposed on the end face side of the coil,
There is a non-rotationally symmetric gap between the core and the yoke with respect to the axis of the core, and when a current is passed through the coil, a magnetic attractive force generated between the core and the yoke acts on the core. It is characterized by that.
 本発明によれば、操作者の押し込み方向と異なる方向の力を操作者に付与することができる。 According to the present invention, a force in a direction different from the pushing direction of the operator can be given to the operator.
本発明の実施形態である操作入力装置の原理を説明するための第1の側面図である。It is a 1st side view for demonstrating the principle of the operation input apparatus which is embodiment of this invention. 本発明の実施形態である操作入力装置の原理を説明するための第2の側面図である。It is a 2nd side view for demonstrating the principle of the operation input apparatus which is embodiment of this invention. 非回転対称のギャップ4cを説明するための図である。It is a figure for demonstrating the non-rotationally symmetrical gap 4c. 非回転対称のギャップ4dを説明するための図である。It is a figure for demonstrating the non-rotationally symmetrical gap 4d. 非回転対称のギャップ4eを説明するための図である。It is a figure for demonstrating the non-rotationally symmetrical gap 4e. 本発明の第1の実施例である操作入力装置100の分解斜視図である。1 is an exploded perspective view of an operation input device 100 according to a first embodiment of the present invention. 操作入力装置100の全体斜視図である。1 is an overall perspective view of an operation input device 100. FIG. 操作入力装置100の上面図である。3 is a top view of the operation input device 100. FIG. 操作入力装置100のA-A断面図である。FIG. 2 is a cross-sectional view of the operation input device 100 taken along the line AA. ヨークの構造図である。It is a structural diagram of a yoke. 操作入力装置100のB-B断面図である。3 is a cross-sectional view taken along line BB of the operation input device 100. FIG. 磁気吸引力FA1,FA2発生時のB-B断面図である。FIG. 6 is a cross-sectional view taken along the line BB when the magnetic attractive forces FA1, FA2 are generated. 操作入力装置200の分解斜視図である。2 is an exploded perspective view of an operation input device 200. FIG. 操作入力装置200の全体斜視図である。1 is an overall perspective view of an operation input device 200. FIG. 操作入力装置200のYZ平面での断面図である。It is sectional drawing in the YZ plane of the operation input device. 磁気吸引力FA3発生時の操作入力装置200の断面図である。It is sectional drawing of the operation input apparatus 200 at the time of magnetic attraction force FA3 generation | occurrence | production. 操作入力装置300の分解斜視図である。3 is an exploded perspective view of an operation input device 300. FIG. 操作入力装置300の全体斜視図である。1 is an overall perspective view of an operation input device 300. FIG. 初期位置状態での操作入力装置300のYZ平面での断面図である。It is sectional drawing in the YZ plane of the operation input apparatus 300 in an initial position state. 磁気吸引力FA5,FA6発生時の操作入力装置300の断面図である。It is sectional drawing of the operation input apparatus 300 at the time of magnetic attractive force FA5 and FA6 generation | occurrence | production. 本発明の第4の実施例である操作入力装置400の分解斜視図である。It is a disassembled perspective view of the operation input apparatus 400 which is the 4th Example of this invention. 操作入力装置400の断面図である。3 is a cross-sectional view of an operation input device 400. FIG. 操作入力装置100A-100Dそれぞれに構成されるコイルのインダクタンスの変化を検出する検出回路例のブロック図である。FIG. 10 is a block diagram of an example of a detection circuit that detects a change in inductance of a coil configured in each of the operation input devices 100A to 100D. 図23における駆動回路66と受信回路67のブロック図である。It is a block diagram of the drive circuit 66 and the receiving circuit 67 in FIG. 図24の各点における波形を示した図である。It is the figure which showed the waveform in each point of FIG. 操作入力装置400を制御する制御方法で操作入力装置400を動作させたときの波形図である。It is a wave form diagram when operating the operation input device 400 by the control method which controls the operation input device 400. FIG. コイルに流れる電流の立ち上がり波形に基づいて押し下げ量Wを検出する方法を説明するためのタイムチャートである。It is a time chart for demonstrating the method to detect pushing down amount W based on the rising waveform of the electric current which flows into a coil.
 以下、図面を参照しながら、本発明を実施するための形態の説明を行う。本発明の一実施形態である操作入力装置は、操作者の手指等による力を受けて、その受けた力に応じて変化する出力信号を出力する操作インターフェイスである。その出力信号に基づいて操作者による操作入力が検出される。操作入力の検出によって、その検出された操作入力に対応する操作内容をコンピュータに把握させることができる。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. An operation input device according to an embodiment of the present invention is an operation interface that receives a force from an operator's finger or the like and outputs an output signal that changes in accordance with the received force. An operation input by the operator is detected based on the output signal. By detecting the operation input, it is possible to make the computer grasp the operation content corresponding to the detected operation input.
 例えば、家庭用又は携帯可能なゲーム機、携帯電話や音楽プレーヤーなどの携帯端末、パーソナルコンピュータ、電化製品などの電子機器において、そのような電子機器に備えられるディスプレイの画面上の表示物(例えば、カーソルやポインタなどの指示表示や、キャラクターなど)を、操作者が意図した操作内容に従って、移動させることができる。また、操作者が所定の操作入力を与えることにより、その操作入力に対応する電子機器の所望の機能を発揮させることができる。 For example, in an electronic device such as a home or portable game machine, a portable terminal such as a mobile phone or a music player, a personal computer, or an electric appliance, a display object (for example, a display provided on such an electronic device (for example, An instruction display such as a cursor or pointer, a character, or the like) can be moved according to the operation content intended by the operator. In addition, when an operator gives a predetermined operation input, a desired function of the electronic device corresponding to the operation input can be exhibited.
 一方、通常、コイル(巻線)等のインダクタのインダクタンスLは、係数をK、透磁率をμ、コイルの巻数をn、断面積をS、磁路長をdとした場合、
   L=KμnS/d
という関係式が成り立つ。この関係式から明らかなように、コイルの巻数や断面積といった形状に依存するパラメータを固定した場合、周囲の透磁率と磁路長の少なくともいずれかを変化させるかによって、インダクタンスが変化する。
On the other hand, the inductance L of an inductor such as a coil (winding) usually has a coefficient K, permeability μ, n number of coil turns, cross-sectional area S, and magnetic path length d.
L = Kμn 2 S / d
The following relational expression holds. As is clear from this relational expression, when parameters depending on the shape such as the number of turns of the coil and the cross-sectional area are fixed, the inductance changes depending on whether at least one of the surrounding magnetic permeability and the magnetic path length is changed.
 このインダクタンスの変化を利用する操作入力装置の実施例について以下説明する。この操作入力装置は、X,Y,Z軸によって定まる直交座標系のZ軸方向側から入力される操作者の力を受け付けるものである。Z軸方向とは、Z軸に平行な方向のことをいう。操作入力装置は、コイルのインダクタンスの大きさを変化させる変位部材を備えている。操作入力装置は、そのインダクタンスの大きさに応じて変化する所定の信号に基づいて、操作者の操作入力により変位する変位部材の動きを検知することにより、その操作入力を検出することができる。 An embodiment of an operation input device that uses this change in inductance will be described below. This operation input device receives an operator's force input from the Z-axis direction side of an orthogonal coordinate system determined by the X, Y, and Z axes. The Z axis direction refers to a direction parallel to the Z axis. The operation input device includes a displacement member that changes the magnitude of the inductance of the coil. The operation input device can detect the operation input by detecting the movement of the displacement member that is displaced by the operation input of the operator based on a predetermined signal that changes in accordance with the magnitude of the inductance.
 また、本実施形態の操作入力装置は、コイルの周囲に磁界を発生させる電流をそのコイルに流す。このように発生した磁界によって、操作者の刺激となる動きを、操作者の力が作用しうる操作部に生じさせるものである。 Also, the operation input device of the present embodiment passes a current that generates a magnetic field around the coil. Due to the magnetic field generated in this manner, a movement that is a stimulus for the operator is generated in the operation unit where the force of the operator can act.
 図1,図2は、本発明の実施形態である操作入力装置の原理を説明するための図であって、その構成の一部を断面図で表した側面図である。図1は、操作者に操作面6bの変位を感じさせるための磁界が生じていない初期状態を示しており、図2は、操作者に操作面6bの変位を感じさせるための磁界が生じている状態を示している。 1 and 2 are views for explaining the principle of an operation input device according to an embodiment of the present invention, and are side views showing a part of the configuration in a cross-sectional view. FIG. 1 shows an initial state in which a magnetic field for causing the operator to feel the displacement of the operation surface 6b is not generated, and FIG. 2 illustrates a magnetic field for causing the operator to feel the displacement of the operation surface 6b. It shows the state.
 本実施形態の操作入力装置は、基板1と、コイル2と、変位部材6と、コア3と、ヨーク4と、支持部材5(5a,5b)と、検出部160と、制御部170とを備える。 The operation input device of the present embodiment includes a substrate 1, a coil 2, a displacement member 6, a core 3, a yoke 4, a support member 5 (5a, 5b), a detection unit 160, and a control unit 170. Prepare.
 基板1は、コイル2が配置される配置面1aを有する基部である。基板1は、コイル2に対するヨークとして用いられてもよい。 The substrate 1 is a base portion having an arrangement surface 1a on which the coil 2 is arranged. The substrate 1 may be used as a yoke for the coil 2.
 変位部材6は、基板1に対して操作者の力が入力されてくる側に設けられており、配置面1aに対向する対向面6aと操作者の力が作用しうる操作面6bとを有する。変位部材6は、操作者の力が操作面6bに作用することにより、対向面6aに設置されたコア3がコイル2に近づくことによって、コイル2のインダクタンスを変化させる。 The displacement member 6 is provided on the side where the operator's force is input to the substrate 1, and has a facing surface 6a facing the arrangement surface 1a and an operation surface 6b on which the operator's force can act. . The displacement member 6 changes the inductance of the coil 2 when the operator's force acts on the operation surface 6 b and the core 3 installed on the facing surface 6 a approaches the coil 2.
 コア3は、操作入力の作用によりコイル2の内筒の延長領域(その内筒の内側を含む)上を変位する円柱状の磁性体である。コア3は、変位部材6の対向面6aの中央部に設けられている。ヨーク4は、コイル2の上端面側に配置されている板状の磁性体である。コア3とヨーク4との間には、コア3の中心軸Cについて非回転対称のギャップ4cが、中心軸Cに対して垂直な方向に設けられている(非回転対称のギャップ4cの詳細については、後述)。コイル2に電流を流すことにより、コア3とヨーク4との間に発生した磁気吸引力がコア3に作用する。 The core 3 is a columnar magnetic body that is displaced on the extension region (including the inside of the inner cylinder) of the inner cylinder of the coil 2 by the action of an operation input. The core 3 is provided at the center of the facing surface 6 a of the displacement member 6. The yoke 4 is a plate-like magnetic body disposed on the upper end surface side of the coil 2. Between the core 3 and the yoke 4, a non-rotationally symmetric gap 4c is provided in the direction perpendicular to the center axis C with respect to the center axis C of the core 3 (details of the non-rotationally symmetric gap 4c). Is described later). By causing a current to flow through the coil 2, a magnetic attractive force generated between the core 3 and the yoke 4 acts on the core 3.
 支持部材5は、対向面6aと配置面1aとの間隔が変化するように変位部材6を変位可能に支持する。支持部材5は、例えば、対向面6aと配置面1aとの間隔が弾性的に変化するように変位部材6を支持する。より具体的には、支持部材5は、バネ部材でもよいし、ゴム部材でもよいし、スポンジ部材でもよいし、空気や油が充填されたシリンダーでもよい。例えば、バネ部材を採用することによって、軽量化や構造の単純化を図ることができ、ゴム部材を採用することによって、絶縁性を図ることができる。また、支持部材5は、粘性を有する粘性部材であってもよい。 The supporting member 5 supports the displacing member 6 so that the distance between the facing surface 6a and the arrangement surface 1a changes. For example, the support member 5 supports the displacement member 6 so that the distance between the facing surface 6a and the arrangement surface 1a changes elastically. More specifically, the support member 5 may be a spring member, a rubber member, a sponge member, or a cylinder filled with air or oil. For example, the use of a spring member can reduce the weight and the structure, and the use of a rubber member can achieve insulation. Further, the support member 5 may be a viscous member having viscosity.
 検出部160は、コイル2のインダクタンスの大きさに応じた波形をコイル2に発生させる第1のパルス信号をコイル2に供給する第1のパルス信号供給手段である。また、検出部160は、コイル2に第1のパルス信号を供給することによってコイル2のインダクタンスの大きさを検出する検出手段である。検出部160は、例えば、第1のパルス信号として、第1の駆動電圧信号をコイル2に印加する。検出部160は、第1の駆動電圧信号のコイル2への印加によってコイル2に流れるパルス電流の波形(第1のパルス電流波形)に基づいて、コイル2のインダクタンスの大きさを検出する。また、検出部160は、例えば、第1の駆動電圧信号のコイル2への印加によってコイル2の両端に発生するパルス電圧の波形(第1のパルス電圧波形)に基づいて、コイル2のインダクタンスの大きさを検出してもよい。コイル2のインダクタンスの大きさの検出結果に応じて、操作面6b上の作用点の位置や変位部材6の変位量を算出することができる。 The detection unit 160 is a first pulse signal supply unit that supplies the coil 2 with a first pulse signal that causes the coil 2 to generate a waveform corresponding to the magnitude of the inductance of the coil 2. The detection unit 160 is a detection unit that detects the magnitude of the inductance of the coil 2 by supplying the first pulse signal to the coil 2. For example, the detection unit 160 applies the first drive voltage signal to the coil 2 as the first pulse signal. The detection unit 160 detects the magnitude of the inductance of the coil 2 based on the waveform (first pulse current waveform) of the pulse current flowing through the coil 2 by applying the first drive voltage signal to the coil 2. In addition, the detection unit 160 may determine the inductance of the coil 2 based on, for example, the waveform of the pulse voltage (first pulse voltage waveform) generated at both ends of the coil 2 by applying the first drive voltage signal to the coil 2. The size may be detected. According to the detection result of the magnitude of the inductance of the coil 2, the position of the action point on the operation surface 6b and the displacement amount of the displacement member 6 can be calculated.
 制御部170は、コア3をヨーク4に吸引する磁気吸引力を発生させる第2のパルス信号をコイル2に供給する第2のパルス信号供給手段である。制御部170は、例えば、第2のパルス信号として、第2の駆動電圧信号をコイル2に印加する。第2の駆動電圧信号のコイル2への印加によってコイル2にパルス電流(第2のパルス電流)が流れる。コイル2に第2のパルス電流が流れることにより、少なくともヨーク4及びコア3内を通る磁束(磁界H)が発生するとともに、コイル2及びコア3が全体として電磁石として機能するので、コア3とヨーク4の間に磁気吸引力が発生する。この磁気吸引力によって、図2に示されるように、ギャップ4cが最も狭い方向に(図1,2の場合、右方に)、支持点5c~5fを揺動支点として、コア3はヨーク4に引き寄せられる。図2に示す磁力線La,Lbは、磁界Hの向きである。コア3は変位部材6に固定されているので、コア3を横方向に移動させることにより、操作者が触れる操作部である変位部材6を強制的に同じ横方向に移動させることができる。 The control unit 170 is a second pulse signal supply unit that supplies the coil 2 with a second pulse signal that generates a magnetic attractive force that attracts the core 3 to the yoke 4. For example, the controller 170 applies the second drive voltage signal to the coil 2 as the second pulse signal. A pulse current (second pulse current) flows through the coil 2 by applying the second drive voltage signal to the coil 2. When the second pulse current flows through the coil 2, a magnetic flux (magnetic field H) passing through at least the yoke 4 and the core 3 is generated, and the coil 2 and the core 3 function as an electromagnet as a whole. A magnetic attraction force is generated during 4. With this magnetic attraction force, as shown in FIG. 2, the core 3 is arranged in the direction in which the gap 4c is the narrowest (in the case of FIGS. 1 and 2 to the right), with the support points 5c to 5f as swinging fulcrums. Be drawn to. Magnetic field lines La and Lb shown in FIG. Since the core 3 is fixed to the displacement member 6, by moving the core 3 in the lateral direction, the displacement member 6 that is an operation unit touched by the operator can be forcibly moved in the same lateral direction.
 変位部材6を横方向に移動させる吸引力が働くため、支持部材5による弾性反力と異なる方向のために打ち消されることなく変位部材6が移動し、変位部材6のエッジが指に当たることで小さい変位でも強いフィードバック力を操作者に感じさせることができる。 Since a suction force that moves the displacement member 6 in the lateral direction works, the displacement member 6 moves without being canceled for a direction different from the elastic reaction force by the support member 5, and the edge of the displacement member 6 is small by hitting the finger. Even with displacement, the operator can feel a strong feedback force.
 制御部170は、第2のパルス信号の波高値の大きさを変えることにより磁気吸引力の大きさを変えることができるので、コア3及び変位部材6の移動量を変えることができる。また、制御部170は、第2のパルス信号の周期やデューティ比を変えることにより磁気吸引力を変動させることができるので、コア3及び変位部材6の振動状態を変えることができる。この振動は、二往復以上の振動に限らず、一往復の振動でもよい。 Since the control unit 170 can change the magnitude of the magnetic attractive force by changing the magnitude of the peak value of the second pulse signal, the movement amount of the core 3 and the displacement member 6 can be changed. Further, since the controller 170 can change the magnetic attractive force by changing the cycle and duty ratio of the second pulse signal, the vibration state of the core 3 and the displacement member 6 can be changed. This vibration is not limited to two or more reciprocations, but may be one reciprocation.
 図3は、非回転対称のギャップ4cを説明するための図である。図3は、図1,2のZ1方向から見た図である。ヨーク4の中央部に形成された長孔にコア3が貫通する。コア3の外周とヨーク4の長孔の内周とに挟まれた部分であるギャップ4cは、コア3の中心軸Cに対して回転対称ではない。コア3の上端部(紙面手前側)及び下端部(紙面奥側)はコイル2に電流が流れることにより電磁石の磁極として機能するので、コア3はヨーク4との間で吸引力が発生する。ギャップ4cのX(-)方向の距離dAは、ギャップ4cのX(+)方向の距離dBよりも長いため、磁気吸引力FのX(-)方向成分FAの大きさは、磁気吸引力FのX(+)方向成分FBの大きさよりも小さい。一方、ギャップ4cのY(-)方向の距離とギャップ4cのY(+)方向の距離は略等しいので、磁気吸引力FのY(-)方向成分FDの大きさは、磁気吸引力FのY(+)方向成分FCの大きさと略等しい。したがって、コア3は、X(+)方向に移動する。コア3の移動に伴い、上述の変位部材6も同じ方向に移動する。 FIG. 3 is a diagram for explaining the non-rotationally symmetric gap 4c. FIG. 3 is a diagram viewed from the Z1 direction of FIGS. The core 3 passes through a long hole formed in the central portion of the yoke 4. A gap 4 c that is a portion sandwiched between the outer periphery of the core 3 and the inner periphery of the long hole of the yoke 4 is not rotationally symmetric with respect to the central axis C of the core 3. Since the upper end portion (front side of the paper surface) and the lower end portion (back side of the paper surface) of the core 3 function as magnetic poles of the electromagnet when a current flows through the coil 2, the core 3 generates an attractive force with the yoke 4. Since the distance dA in the X (−) direction of the gap 4c is longer than the distance dB in the X (+) direction of the gap 4c, the magnitude of the X (−) direction component FA of the magnetic attractive force F is equal to the magnetic attractive force F. Is smaller than the magnitude of the X (+) direction component FB. On the other hand, since the distance of the gap 4c in the Y (−) direction and the distance of the gap 4c in the Y (+) direction are substantially equal, the magnitude of the Y (−) direction component FD of the magnetic attraction force F is It is substantially equal to the magnitude of the Y (+) direction component FC. Therefore, the core 3 moves in the X (+) direction. As the core 3 moves, the above-described displacement member 6 also moves in the same direction.
 図4,5に、非回転対称のギャップの別形態を示す。図4の非回転対称のギャップ4dは、ヨーク4を左右に分割することによって形成される。距離dAは距離dBよりも長いため、コア3は右側に移動する。図5は、非回転対称のギャップ4eを示す。図5の場合、コア3の中心軸Cに対して非回転対称の孔が、ヨーク4の中央部に形成されている。図4同様、距離dAは距離dBよりも長いため、コア3は右側に移動する。 4 and 5 show other forms of non-rotationally symmetric gaps. The non-rotationally symmetric gap 4d in FIG. 4 is formed by dividing the yoke 4 into left and right. Since the distance dA is longer than the distance dB, the core 3 moves to the right side. FIG. 5 shows a non-rotationally symmetric gap 4e. In the case of FIG. 5, a non-rotationally symmetric hole is formed in the central portion of the yoke 4 with respect to the central axis C of the core 3. As in FIG. 4, since the distance dA is longer than the distance dB, the core 3 moves to the right side.
 続いて、本発明に係る操作入力装置及びその制御方法の具体例について説明する。 Subsequently, specific examples of the operation input device and the control method thereof according to the present invention will be described.
 図6は、本発明の第1の実施例である操作入力装置100の分解斜視図である。図7は、操作入力装置100の全体斜視図である。図8は、操作入力装置100の上面図である。シャフト30が、上述のコア3に相当する。コイル20が、上述のコイル2に相当する。 FIG. 6 is an exploded perspective view of the operation input device 100 according to the first embodiment of the present invention. FIG. 7 is an overall perspective view of the operation input device 100. FIG. 8 is a top view of the operation input device 100. The shaft 30 corresponds to the core 3 described above. The coil 20 corresponds to the coil 2 described above.
 コイル20に対するヨークは、コイル20の下側に配置された第1のヨーク部である下側ヨーク10とコイル20の上側に配置された第2のヨーク部である上側ヨーク40とが、コイル20の外側を迂回して接続されることにより構成される。下側ヨーク10の側面ヨーク11,12が、コイル20の外側に位置する迂回部である。 As for the yoke for the coil 20, the lower yoke 10 that is the first yoke portion disposed below the coil 20 and the upper yoke 40 that is the second yoke portion disposed above the coil 20 are the coil 20. It is configured by bypassing and connecting outside. The side yokes 11 and 12 of the lower yoke 10 are detour portions located outside the coil 20.
 下側ヨーク10の下面ヨーク13には、初期状態でのシャフト30の中心軸Cの方向に対して垂直な方向に切り欠かれて開口した切り欠き部15が形成されている。また、下面ヨーク13には、切り欠き部15の輪郭に沿って、初期状態でのシャフト30の中心軸に平行な方向に直立する壁部14が形成されている。 The lower yoke 13 of the lower yoke 10 is formed with a notch 15 that is notched and opened in a direction perpendicular to the direction of the central axis C of the shaft 30 in the initial state. Further, the lower yoke 13 is formed with a wall portion 14 that stands upright in the direction parallel to the central axis of the shaft 30 in the initial state along the contour of the notch portion 15.
 図9は、操作入力装置100の図8に示すA-A断面図である。シャフト30は、シャフトホルダ51の内筒に嵌合して支持されている。シャフト30は、シャフトホルダ51の外側面に形成されたピン51a,51bによって、ボビン52の内壁52c(図6参照)に上下方向に凹部が形成されたガイド52a,52b(図6参照)に、接して支持されている。したがって、シャフト30は、上下方向及びピン51aと51bとを結ぶ直線を回転軸Dとする回転方向に自由度を有している。 FIG. 9 is a cross-sectional view of the operation input device 100 taken along line AA shown in FIG. The shaft 30 is supported by being fitted to the inner cylinder of the shaft holder 51. The shaft 30 is formed by guides 52a and 52b (see FIG. 6) in which concave portions are formed in the vertical direction on the inner wall 52c of the bobbin 52 (see FIG. 6) by pins 51a and 51b formed on the outer surface of the shaft holder 51. Supported in contact. Therefore, the shaft 30 has a degree of freedom in the vertical direction and in the rotational direction in which the straight line connecting the pins 51a and 51b is the rotational axis D.
 シャフトホルダ51は、スプリング50によって上下方向に移動可能に支えられている。シャフト30が下方向に押されることによりシャフトホルダ51が下方向に押し込まれても、シャフトホルダ51はスプリング50の反発力によってヨーク40の下面に当接するまで押し戻される。シャフト30が上下方向に動くことで、シャフト30の下端部32と下側ヨーク10の下面ヨーク13に形成された壁部14との対向面積Eが変化する。対向面積Eが変化すると、下側ヨーク10と上側ヨーク40とシャフト30とによって形成される磁気回路の磁気抵抗が変化するので、コイル20のインダクタンスが変化する。L1,L2は、磁気回路を通る磁界の方向を示す。コイル20のインダクタンスの大きさを検出することによって、コイル20のインダクタンスの大きさとシャフト30の上下方向の変位量との関係を予め計測した基準データに基づいて、シャフト30の上下方向の変位量を検知することができる。 The shaft holder 51 is supported by a spring 50 so as to be movable in the vertical direction. Even if the shaft holder 51 is pushed downward by pushing the shaft 30 downward, the shaft holder 51 is pushed back until it comes into contact with the lower surface of the yoke 40 by the repulsive force of the spring 50. As the shaft 30 moves in the vertical direction, the facing area E between the lower end portion 32 of the shaft 30 and the wall portion 14 formed on the lower surface yoke 13 of the lower yoke 10 changes. When the facing area E changes, the magnetic resistance of the magnetic circuit formed by the lower yoke 10, the upper yoke 40, and the shaft 30 changes, so that the inductance of the coil 20 changes. L1 and L2 indicate the directions of the magnetic field passing through the magnetic circuit. By detecting the magnitude of the inductance of the coil 20, the vertical displacement of the shaft 30 is determined based on reference data obtained by measuring in advance the relationship between the magnitude of the inductance of the coil 20 and the vertical displacement of the shaft 30. Can be detected.
 図の場合、シャフト30の下方への移動量が増加するにつれて、対向面積Eが増加することにより、磁気回路の磁気抵抗は減少する。シャフト30の下方への移動量の増加により、コイル20に電流を流した際にコイル20に鎖交する磁束の量が増えるため、コイル20のインダクタンスが増加する。 In the case of the figure, as the moving amount of the shaft 30 downward increases, the opposing area E increases, so that the magnetic resistance of the magnetic circuit decreases. As the amount of movement of the shaft 30 downward increases, the amount of magnetic flux interlinked with the coil 20 when a current is passed through the coil 20 increases, so that the inductance of the coil 20 increases.
 また、シャフト30の下方への移動量が増加するにつれて、シャフト30の下端部32と壁部14とのエアギャップが変化することにより、コイル20のインダクタンスが増加方向又は減少方向に変化するように、シャフト30の壁部14との対向部分(又は、壁部14のシャフト30との対向部分)がテーパ状又は逆テーパ状に形成されていてもよい。 Further, as the amount of movement of the shaft 30 downward increases, the air gap between the lower end portion 32 of the shaft 30 and the wall portion 14 changes, so that the inductance of the coil 20 changes in an increasing direction or a decreasing direction. The portion of the shaft 30 facing the wall portion 14 (or the portion of the wall portion 14 facing the shaft 30) may be formed in a tapered shape or an inversely tapered shape.
 図10は、ヨークの構造図である。下側ヨーク10に切り欠き部15が形成され上側ヨーク40に切り欠き部41が形成されているため、磁気回路が全体として中心軸Cに対してアンバランスになっている。つまり、切り欠き部15の切り欠き方向と切り欠き部41の切り欠き方向が互いに逆方向である。これにより、シャフト30の上端部31を上側ヨーク40に引き寄せるX(+)方向の磁気吸引力FA1が発生し、シャフト30の下端部32を下面ヨーク13の壁部14に引き寄せるX(-)方向の磁気吸引力FA2が発生する。 FIG. 10 is a structural diagram of the yoke. Since the notched portion 15 is formed in the lower yoke 10 and the notched portion 41 is formed in the upper yoke 40, the magnetic circuit as a whole is unbalanced with respect to the central axis C. That is, the notch direction of the notch 15 and the notch direction of the notch 41 are opposite to each other. As a result, a magnetic attracting force FA1 in the X (+) direction that draws the upper end portion 31 of the shaft 30 toward the upper yoke 40 is generated, and the lower end portion 32 of the shaft 30 is drawn toward the wall portion 14 of the lower surface yoke 13 in the X (−) direction. The magnetic attractive force FA2 is generated.
 図11は、操作入力装置100の図8に示すB-B断面図である。図12は、磁気吸引力FA1,FA2発生時のB-B断面図である。コイル20に電流を流すと、シャフト30の上端部31が上側ヨーク40との最小ギャップを狭める側、且つ、シャフト30の下端部32が壁部14との最小ギャップを狭める側に、回転軸Dを中心にシャフト30が回転する。この回転運動が、操作入力装置からのフィードバック力として操作者に伝わる。シャフト30は、上端部31の位置でゴムリング53によって支持され、回転方向に動いた場合にはゴムリング53の反発力により、回転軸CがZ軸に平行になるように初期位置に復帰する。 FIG. 11 is a cross-sectional view of the operation input device 100 taken along the line BB shown in FIG. FIG. 12 is a cross-sectional view taken along the line BB when the magnetic attractive forces FA1 and FA2 are generated. When a current is passed through the coil 20, the rotation axis D is arranged such that the upper end portion 31 of the shaft 30 narrows the minimum gap with the upper yoke 40 and the lower end portion 32 of the shaft 30 narrows the minimum gap with the wall portion 14. The shaft 30 rotates around the center. This rotational motion is transmitted to the operator as a feedback force from the operation input device. The shaft 30 is supported by the rubber ring 53 at the position of the upper end portion 31, and when moved in the rotation direction, the shaft 30 returns to the initial position so that the rotation axis C is parallel to the Z axis by the repulsive force of the rubber ring 53. .
 図13は、本発明の第2の実施例である操作入力装置200の分解斜視図である。図14は、操作入力装置200の全体斜視図である。シャフト130が、上述のコア3に相当する。コイル120が、上述のコイル2に相当する。上述と同様の部分については、その説明を省略する。 FIG. 13 is an exploded perspective view of the operation input device 200 according to the second embodiment of the present invention. FIG. 14 is an overall perspective view of the operation input device 200. The shaft 130 corresponds to the core 3 described above. The coil 120 corresponds to the coil 2 described above. The description of the same parts as described above is omitted.
 コイル120に対するヨークは、コイル120の下側に配置された第1のヨーク部である下側ヨーク110とコイル120の上側に配置された第2のヨーク部である上側ヨーク140とが、コイル120の外側を迂回して接続されることにより構成される。下側ヨーク110の側面ヨーク111,112が、コイル120の外側に位置する迂回部である。 The yoke with respect to the coil 120 includes a lower yoke 110 that is a first yoke portion disposed on the lower side of the coil 120 and an upper yoke 140 that is a second yoke portion disposed on the upper side of the coil 120. It is configured by bypassing and connecting outside. The side yokes 111 and 112 of the lower yoke 110 are detour portions located outside the coil 120.
 下側ヨーク110の下面ヨーク113には、中央孔115が形成されている。また、下面ヨーク113には、中央孔115の輪郭の一部分のみに沿って、初期状態でのシャフト130の中心軸Cに平行な方向に直立する壁部114が形成されている。図の場合、壁部114は、XY平面の4軸方向のうちY(-)方向側のみに形成されている。 A central hole 115 is formed in the lower surface yoke 113 of the lower yoke 110. Further, the lower yoke 113 is formed with a wall portion 114 that stands upright in a direction parallel to the central axis C of the shaft 130 in the initial state along only a part of the contour of the central hole 115. In the case of the figure, the wall 114 is formed only on the Y (−) direction side of the four axial directions of the XY plane.
 図15は、操作入力装置200のYZ平面での断面図である。シャフト130は、その径方向に、ボビン152の上側の穴152cとシャフトホルダ151とによって拘束されている。シャフトホルダ151には、シャフト130の軸方向に対して垂直な方向にシャフトホルダ逃げ部151aが形成されている。したがって、シャフト130は、上下方向に移動可能であるとともに、ボビン152の上側の穴152cを回転支点として、シャフトホルダ逃げ部151a側に回転自由度を有している。 FIG. 15 is a cross-sectional view of the operation input device 200 on the YZ plane. The shaft 130 is restrained in the radial direction by an upper hole 152 c of the bobbin 152 and the shaft holder 151. The shaft holder 151 is formed with a shaft holder escape portion 151 a in a direction perpendicular to the axial direction of the shaft 130. Therefore, the shaft 130 is movable in the vertical direction, and has a degree of freedom of rotation on the shaft holder escape portion 151a side with the hole 152c on the upper side of the bobbin 152 as a rotation fulcrum.
 シャフト130にフランジ状に取り付けられた樹脂ワッシャー153に当接するスプリング150によって、シャフト130は上下方向に移動可能に支えられている。シャフト130が下方向に押し込まれても、樹脂ワッシャー153がスプリング150の反発力によって押し戻されることにより、シャフト130はボビン152の下面に当接するまで押し戻される。樹脂ワッシャー153の径はボビン152の上側の穴152cの径よりも大きいため、スプリング150の反力を受けても穴152cから抜けて飛び出ることはない。シャフト130が上下方向に動くことで、シャフト130の下端部132と下側ヨーク110の下面ヨーク113に形成された壁部114との対向面積Eが変化する。対向面積Eが変化すると、下側ヨーク110と上側ヨーク140とシャフト130とによって形成される磁気回路の磁気抵抗が変化するので、コイル120のインダクタンスが変化する。L3は、磁気回路を通る磁界の方向を示す。コイル120のインダクタンスの大きさを検出することによって、コイル120のインダクタンスの大きさとシャフト130の上下方向の変位量との関係を予め計測した基準データに基づいて、シャフト130の上下方向の変位量を検知することができる。 The shaft 130 is supported so as to be movable in the vertical direction by a spring 150 that contacts a resin washer 153 attached to the shaft 130 in a flange shape. Even if the shaft 130 is pushed downward, the resin washer 153 is pushed back by the repulsive force of the spring 150, so that the shaft 130 is pushed back until it comes into contact with the lower surface of the bobbin 152. Since the diameter of the resin washer 153 is larger than the diameter of the upper hole 152 c of the bobbin 152, the resin washer 153 does not jump out of the hole 152 c even if it receives the reaction force of the spring 150. As the shaft 130 moves in the vertical direction, the facing area E between the lower end portion 132 of the shaft 130 and the wall portion 114 formed on the lower surface yoke 113 of the lower yoke 110 changes. When the facing area E changes, the magnetic resistance of the magnetic circuit formed by the lower yoke 110, the upper yoke 140, and the shaft 130 changes, so the inductance of the coil 120 changes. L3 indicates the direction of the magnetic field passing through the magnetic circuit. By detecting the magnitude of the inductance of the coil 120, the amount of vertical displacement of the shaft 130 is determined based on reference data obtained by measuring in advance the relationship between the magnitude of inductance of the coil 120 and the amount of vertical displacement of the shaft 130. Can be detected.
 図16は、磁気吸引力FA3発生時の操作入力装置200の断面図である。コイル120に高電圧を印加して大電流を流すことにより、シャフト130の下端部132と壁部114との間に働く磁気吸引力FA3によって、シャフト130の下端部132が、ボビン152の穴152cを回転支点として、壁部114との最小ギャップを狭める側に傾斜する。シャフト130の下端部132の部位は、壁部114とのエアギャップが大きくとってあるため、その分シャフト130が傾斜する。コイル120に流す電流を止めた場合、スプリング150の反力により、シャフト130は、回転軸CがZ軸に平行になるように初期位置に復帰する。 FIG. 16 is a cross-sectional view of the operation input device 200 when the magnetic attractive force FA3 is generated. By applying a high voltage to the coil 120 to cause a large current to flow, the lower end portion 132 of the shaft 130 is caused to move into the hole 152c of the bobbin 152 by the magnetic attractive force FA3 acting between the lower end portion 132 of the shaft 130 and the wall portion 114. Is inclined toward the side of narrowing the minimum gap with the wall 114. The portion of the lower end portion 132 of the shaft 130 has a large air gap with the wall portion 114, and thus the shaft 130 is inclined accordingly. When the current flowing through the coil 120 is stopped, the reaction force of the spring 150 causes the shaft 130 to return to the initial position so that the rotation axis C is parallel to the Z axis.
 図17は、本発明の第3の実施例である操作入力装置300の分解斜視図である。図18は、操作入力装置300の全体斜視図である。シャフト230が、上述のコア3に相当する。コイル220が、上述のコイル2に相当する。上述と同様の部分については、その説明を省略する。 FIG. 17 is an exploded perspective view of the operation input device 300 according to the third embodiment of the present invention. FIG. 18 is an overall perspective view of the operation input device 300. The shaft 230 corresponds to the core 3 described above. The coil 220 corresponds to the coil 2 described above. The description of the same parts as described above is omitted.
 コイル220に対するヨークは、コイル220の下側に配置された第1のヨーク部である下側ヨーク210とコイル220の上側に配置された第2のヨーク部である上側ヨーク240とが、コイル220の外側を迂回して接続されることにより構成される。上側ヨーク240の側面ヨーク241,242が、コイル220の外側に位置する迂回部である。 The yoke with respect to the coil 220 includes a lower yoke 210 that is a first yoke portion disposed below the coil 220 and an upper yoke 240 that is a second yoke portion disposed above the coil 220. It is configured by bypassing and connecting outside. The side yokes 241 and 242 of the upper yoke 240 are bypass parts located outside the coil 220.
 上側ヨーク240の上面ヨーク243には、中央孔244が形成されている。また、下側ヨーク210には、中央孔が形成されるとともに、その中央孔の輪郭の全周に沿って、初期状態でのシャフト230の中心軸Cに平行な方向に直立する円筒状の壁部212が形成されている。 A central hole 244 is formed in the upper surface yoke 243 of the upper yoke 240. The lower yoke 210 has a central hole, and a cylindrical wall that stands upright in a direction parallel to the central axis C of the shaft 230 in the initial state along the entire circumference of the outline of the central hole. A portion 212 is formed.
 シャフト230の上端部231には、操作者のZ方向の力が直接的に又は間接的に作用する板状部材234が取り付けられている。上側ヨーク240の中央孔244を貫通するシャフト230は、コイル220が巻かれたボビン252の中央孔に挿入されて配置される。 A plate-like member 234 on which an operator's Z-direction force acts directly or indirectly is attached to the upper end portion 231 of the shaft 230. The shaft 230 passing through the central hole 244 of the upper yoke 240 is inserted into the central hole of the bobbin 252 around which the coil 220 is wound.
 図19は、初期位置状態での操作入力装置300のYZ平面での断面図である。シャフト230と一体の板状部材234に当接するスプリング250によって、シャフト230は上下方向に移動可能に支えられている。板状部材234と共にシャフト230が下方向に押し込まれても、板状部材234がスプリング250の反発力によって押し戻されることにより、シャフト230は初期位置状態まで原点復帰する。シャフト230が上下方向に動くことで、シャフト230の下端部232と下側ヨーク210に形成された壁部212との対向面積が変化するので、磁気回路の磁気抵抗が変化し、コイル220のインダクタンスが変化する。L5.L6は、磁気回路を通る磁界の方向を示す。 FIG. 19 is a cross-sectional view on the YZ plane of the operation input device 300 in the initial position state. The shaft 230 is supported so as to be movable in the vertical direction by a spring 250 that abuts on a plate-like member 234 that is integral with the shaft 230. Even if the shaft 230 is pushed downward together with the plate-like member 234, the plate-like member 234 is pushed back by the repulsive force of the spring 250, so that the shaft 230 returns to the original position to the initial position state. As the shaft 230 moves in the vertical direction, the facing area between the lower end portion 232 of the shaft 230 and the wall portion 212 formed on the lower yoke 210 changes, so that the magnetic resistance of the magnetic circuit changes and the inductance of the coil 220 changes. Changes. L5. L6 indicates the direction of the magnetic field passing through the magnetic circuit.
 シャフト230の下端部232には、シャフト230の軸に対してシャフト230が非回転対称になるように、欠損部233を設ける。これにより、シャフト230の欠損部233と壁部212との距離が、シャフト230の全周に関して不均一になる。 The missing portion 233 is provided at the lower end 232 of the shaft 230 so that the shaft 230 is non-rotationally symmetric with respect to the axis of the shaft 230. As a result, the distance between the missing portion 233 of the shaft 230 and the wall portion 212 becomes non-uniform with respect to the entire circumference of the shaft 230.
 スプリング250を支持するためにベース211が使用されているが、スプリング250の支持部材を他の部材と兼用することによって、ベース211は無くてもよい。例えば、スプリング250を支持するために、下側ヨーク210、上側ヨーク240、ボビン252のいずれかを使用してもよい。 Although the base 211 is used to support the spring 250, the base 211 may be omitted by using the supporting member of the spring 250 also as another member. For example, any of the lower yoke 210, the upper yoke 240, and the bobbin 252 may be used to support the spring 250.
 図20は、磁気吸引力FA5,FA6発生時の操作入力装置300の断面図である。コイル220に高電圧を印加して大電流を流すことにより、下端部232と壁部212との間に働く磁気吸引力FA6によって、シャフト230の下端部232が、壁部212との最小ギャップを狭める側(すなわち、欠損部233が無い側)に吸引される。欠損部233が設けられている側は、壁部212とのギャップが大きいからである。コイル220に流す電流を止めた場合、スプリング250の反力により、シャフト230は、回転軸CがZ軸に平行になるように初期位置に復帰する。 FIG. 20 is a cross-sectional view of the operation input device 300 when the magnetic attractive forces FA5 and FA6 are generated. By applying a high voltage to the coil 220 and causing a large current to flow, the lower end 232 of the shaft 230 has a minimum gap with the wall 212 due to the magnetic attractive force FA6 acting between the lower end 232 and the wall 212. Suction is performed on the narrowing side (that is, the side where the defect portion 233 is not present). This is because the gap where the defect portion 233 is provided has a large gap with the wall portion 212. When the current flowing through the coil 220 is stopped, the shaft 230 returns to the initial position so that the rotation axis C is parallel to the Z axis by the reaction force of the spring 250.
 図21は、本発明の第4の実施例である操作入力装置400の分解斜視図である。図22は、操作入力装置400の断面図である。 FIG. 21 is an exploded perspective view of the operation input device 400 according to the fourth embodiment of the present invention. FIG. 22 is a cross-sectional view of the operation input device 400.
 操作入力装置400は、複数の操作入力装置(図21の場合、4個の上述の操作入力装置100(100A-100D))が配置される配置面を有する基板310を備える。基板310に備えられる操作入力装置は、上述の操作入力装置200又は300でもよい。基板310は、XY平面に平行な配置面を有する基部である。三次元の直交座標系の基準点である原点Oは、その配置面から操作者の力が入力されてくる側(図21の場合、基板310に対して上側)に所定距離離れた位置に設定されている。基板310は、樹脂性の基板でもよいが、ヨークの役目を持たせるために鋼板や珪素鋼板などを基材にした鉄板基板でもよい。 The operation input device 400 includes a substrate 310 having a placement surface on which a plurality of operation input devices (in the case of FIG. 21, the four operation input devices 100 (100A to 100D) described above) are arranged. The operation input device provided on the substrate 310 may be the operation input device 200 or 300 described above. The substrate 310 is a base having an arrangement surface parallel to the XY plane. The origin O, which is the reference point of the three-dimensional orthogonal coordinate system, is set at a position away from the arrangement surface by a predetermined distance on the side where the operator's force is input (in FIG. 21, the upper side with respect to the substrate 310). Has been. The substrate 310 may be a resinous substrate, but may be an iron plate substrate using a steel plate, a silicon steel plate or the like as a base material in order to function as a yoke.
 操作入力装置100A-100Dは、原点Oとの距離が等しい点を結んでできる仮想的な円の円周方向に並べられている。操作入力装置100A-100Dは、操作者の力のベクトルを算出しやすくするという点で、その円周方向に等間隔に配置されることが好ましい。各操作入力装置が互いに同特性の場合、隣接する2つのコイルの重心間の距離が等しければよい。操作入力装置100A-100Dは、X(+),X(-),Y(+),Y(-)の4方向に同心円状に90°毎に配置されている。X(-)方向は、XY平面上でX(+)方向に対して180°反対向きの方向であり、Y(-)方向は、XY平面上でY(+)方向に対して180°反対向きの方向である。操作入力装置100Aは、原点Oに対して正側のX軸上に配置され、操作入力装置100Bは、原点Oに対して正側のY軸上に配置され、操作入力装置100Cは、原点Oに対して負側のX軸上に配置され、操作入力装置100Dは、原点Oに対して負側のY軸上に配置されている。 The operation input devices 100A to 100D are arranged in the circumferential direction of a virtual circle formed by connecting points having the same distance from the origin O. The operation input devices 100A to 100D are preferably arranged at equal intervals in the circumferential direction from the viewpoint of facilitating calculation of the operator's force vector. When each operation input device has the same characteristic, the distance between the centers of gravity of two adjacent coils may be equal. The operation input devices 100A-100D are arranged concentrically in every 90 ° in four directions of X (+), X (−), Y (+), and Y (−). The X (−) direction is 180 ° opposite to the X (+) direction on the XY plane, and the Y (−) direction is 180 ° opposite to the Y (+) direction on the XY plane. The direction of the direction. The operation input device 100A is arranged on the X axis on the positive side with respect to the origin O, the operation input device 100B is arranged on the Y axis on the positive side with respect to the origin O, and the operation input device 100C is arranged on the origin O The operation input device 100D is disposed on the Y axis on the negative side with respect to the origin O.
 また、操作入力装置400は、基板310に対して操作者の力が入力されてくる側に設けられた変位部材であるキー360を備える。板状のキー360が、基板310に設けられた操作入力装置100A-100Dの上側に配置されている。キー360は、操作入力装置100A~100Dが配置された配置面に対向する対向面(図21において、下側の面)と、操作者の力が作用しうる操作面(図21において、上側の面)とを有している。キー360は、操作者の力が操作面に作用することにより、対向面が操作入力装置100A-100Dの配置される配置面に近づくことによって、4個の操作入力装置100A-100Dの少なくともいずれか一つのシャフト30(図11,12参照)が下方に押し込まれ、その押し込まれたシャフト30を囲むコイル20のインダクタンスを変化させる。 The operation input device 400 includes a key 360 that is a displacement member provided on the side where the operator's force is input to the substrate 310. A plate-like key 360 is arranged above the operation input devices 100A-100D provided on the substrate 310. The key 360 includes an opposing surface (the lower surface in FIG. 21) that faces the arrangement surface on which the operation input devices 100A to 100D are arranged, and an operation surface (upper side in FIG. 21) on which an operator's force can act. Surface). The key 360 has at least one of the four operation input devices 100A-100D as a result of the operator's force acting on the operation surface and the opposing surface approaches the arrangement surface on which the operation input devices 100A-100D are arranged. One shaft 30 (see FIGS. 11 and 12) is pushed downward, and the inductance of the coil 20 surrounding the pushed shaft 30 is changed.
 キー360は、図22に示されるように、ケース370によってZ軸方向に移動可能に支持されている。ケース370は、操作者の力が操作面に作用されていない待機状態(初期状態)でのキー360の位置を待機位置として、操作者の力が操作面に作用することによって待機位置から基板310に近づく方向に移動できるように支持する。ケース370は、基板310に固定されている。ケース370は、操作入力装置400が取り付けられるゲーム機等の電子機器のケースでもよいし、操作入力装置400自体のケースでもよい。 The key 360 is supported by the case 370 so as to be movable in the Z-axis direction, as shown in FIG. The case 370 has the position of the key 360 in a standby state (initial state) where the operator's force is not applied to the operation surface as a standby position, and the operator's force is applied to the operation surface so that the substrate 310 is moved from the standby position. Support to move in the direction approaching. Case 370 is fixed to substrate 310. Case 370 may be a case of an electronic device such as a game machine to which operation input device 400 is attached, or may be a case of operation input device 400 itself.
 図23は、操作入力装置100A-100Dそれぞれに構成されるコイルのインダクタンスの変化を検出する検出回路例のブロック図である。インダクタンス検出回路は、操作入力装置100A-100Dの各コイルのインダクタンスの変化を検出する算出手段である。図1,2で示した検出部160及び制御部170は、このインダクタンス検出回路に相当する。つまり、一つのインダクタンス検出回路によって、制御部160と制御部170を実現している。 FIG. 23 is a block diagram of an example of a detection circuit that detects a change in inductance of a coil configured in each of the operation input devices 100A to 100D. The inductance detection circuit is a calculation unit that detects a change in inductance of each coil of the operation input devices 100A to 100D. The detection unit 160 and the control unit 170 shown in FIGS. 1 and 2 correspond to this inductance detection circuit. That is, the control unit 160 and the control unit 170 are realized by a single inductance detection circuit.
 インダクタンス検出回路は、演算手段であるCPU60と、CPU60の第1の出力ポート61に接続された駆動回路66と、一方の端部がグランドに接続された各コイルのもう一方の端部に接続されるマルチプレクサ(MUX)68と、CPU60の第2の出力ポート62とADポート63とに接続された受信回路67とを備える。各コイルは、マルチプレクサ68によって、共通の受信回路67及び駆動回路66を介して、CPU60に接続される。マルチプレクサ68の接続先の切り替えは、アドレスバス64を介して、CPU60からのアドレス指定によって一意に選択される。したがって、各コイルのインダクタンスの検知は、その検知タイミングを各コイルでずらして、コイル毎に逐次行われる。 The inductance detection circuit is connected to the CPU 60, which is a calculation means, the drive circuit 66 connected to the first output port 61 of the CPU 60, and the other end of each coil whose one end is connected to the ground. A multiplexer (MUX) 68, and a receiving circuit 67 connected to the second output port 62 and the AD port 63 of the CPU 60. Each coil is connected to the CPU 60 by a multiplexer 68 via a common receiving circuit 67 and driving circuit 66. Switching of the connection destination of the multiplexer 68 is uniquely selected by address designation from the CPU 60 via the address bus 64. Therefore, the detection of the inductance of each coil is sequentially performed for each coil by shifting the detection timing of each coil.
 図24は、図23における駆動回路66と受信回路67のブロック図である。駆動回路66は、CPU60の出力ポート61からの出力信号に応じて定電流源66aの出力電流をコントロールすることによって、各コイルに電流を流す。受信回路67は、各コイルに電流を流すことに伴い発生する電圧を、アンプ67aを通してピークホールド回路67bに入力する(ボトムホールド回路に入力されてもよい)。ピークホールド回路67bによってピークホールドされたピーク値(アナログ値)は、ADポート63に入力されて、ADコンバータによって、デジタル値に変換される。 FIG. 24 is a block diagram of the drive circuit 66 and the reception circuit 67 in FIG. The drive circuit 66 controls the output current of the constant current source 66a in accordance with the output signal from the output port 61 of the CPU 60, thereby causing a current to flow through each coil. The receiving circuit 67 inputs a voltage generated when a current flows through each coil to the peak hold circuit 67b through the amplifier 67a (may be input to the bottom hold circuit). The peak value (analog value) peak-held by the peak hold circuit 67b is input to the AD port 63 and converted into a digital value by the AD converter.
 図25は、図24の各点における波形を示した図である。CPU60の出力ポート61から矩形波の電圧波形が出力される。この電圧によって、定電流回路66aは、コイルに一定の電流を流す。これにより、コイルは微分波形の電圧V2を発生させる。電圧波形V2として、電圧波形V1の立ち上がりに同期した波形2-1が得られるとともに、電圧波形V1の立下りに同期した波形2-2が得られる。波形2-2は、波形2-1に対して正負が逆側の波形である。アンプ67aは、電圧波形V2を、ADコンバータのダイナミックレンジに適した大きさに増幅する。電圧波形V2をピークホールドするか又はボトムホールドするかによって、そのホールドした値がADコンバータ(ADポート63)に取り込まれる。波形2-1,2-2の振幅値は、各コイルのインダクタンスの大きさに比例して大きくなるため、この振幅値を検出することによって、各コイルのインダクタンスの大きさを評価できる。 FIG. 25 is a diagram showing waveforms at each point in FIG. A rectangular wave voltage waveform is output from the output port 61 of the CPU 60. With this voltage, the constant current circuit 66a allows a constant current to flow through the coil. As a result, the coil generates a voltage V2 having a differential waveform. As the voltage waveform V2, a waveform 2-1 synchronized with the rising of the voltage waveform V1 is obtained, and a waveform 2-2 synchronized with the falling of the voltage waveform V1 is obtained. The waveform 2-2 is a waveform having positive and negative sides opposite to the waveform 2-1. The amplifier 67a amplifies the voltage waveform V2 to a size suitable for the dynamic range of the AD converter. Depending on whether the voltage waveform V2 is peak-held or bottom-held, the held value is taken into the AD converter (AD port 63). Since the amplitude values of the waveforms 2-1 and 2-2 increase in proportion to the magnitude of the inductance of each coil, the magnitude of the inductance of each coil can be evaluated by detecting this amplitude value.
 図26は、操作入力装置400を制御する制御方法で操作入力装置400を動作させたときの波形図である。図23,24を参照しながら、図26の波形図に従って、操作入力装置400の制御方法について説明する。 FIG. 26 is a waveform diagram when the operation input device 400 is operated by a control method for controlling the operation input device 400. A control method of the operation input device 400 will be described with reference to FIGS.
 操作入力装置400の制御方法は、操作入力装置100A-100Dの各コイルに第1のパルス信号をコイル毎に供給することによって各コイルのインダクタンスの変化を検出するインダクタンス検出ステップを有する。インダクタンス検出回路のCPU60は、そのインダクタンス検出ステップで、(b)に示されるように、出力ポート61から、矩形波の電圧波形V1として、コイル毎に供給される第1のパルス信号に対応するパルス波形p(p1~p9)を出力する。パルス波形pが出力ポート61から間欠的に各コイルに出力されることによって、第1のパルス信号が各コイルに間欠的に供給される。また、インダクタンス検出ステップが一定の周期で繰り返されることによって、電圧波形V1の各パルス波形p1~p9が一定の周期で出力される。パルス波形pは、各コイルのインダクタンスの変化を検出するための駆動電圧である。 The control method of the operation input device 400 includes an inductance detection step of detecting a change in inductance of each coil by supplying a first pulse signal to each coil of the operation input devices 100A to 100D for each coil. In the inductance detection step, the CPU 60 of the inductance detection circuit, as shown in (b), the pulse corresponding to the first pulse signal supplied from the output port 61 as a rectangular wave voltage waveform V1 for each coil. The waveform p (p1 to p9) is output. The pulse waveform p is intermittently output from the output port 61 to each coil, whereby the first pulse signal is intermittently supplied to each coil. Further, by repeating the inductance detection step at a constant cycle, the pulse waveforms p1 to p9 of the voltage waveform V1 are output at a constant cycle. The pulse waveform p is a drive voltage for detecting a change in inductance of each coil.
 駆動電圧V1によって、(a)に示されるシャフト30(図11参照)の押し下げ量Wに応じて、(c)に示されるように、インダクタンスの増加に伴う検出電圧V3が発生する。押し下げ量Wが(a)に示されるように変化した場合、検出電圧V3の振幅も押し下げ量Wに比例して増加する。押し下げ量Wの増加に伴って検出電圧V3のパルス波形s3,s4,s5の振幅が増加し、押し下げ量Wの減少に伴って検出電圧V3のパルス波形s6,s7の振幅が減少する。押し下げ量Wに変化が無い場合、検出電圧V3のパルス波形の振幅は同一である(s1,s2,s8,s9)。 As shown in (c), the detection voltage V3 accompanying the increase in inductance is generated by the drive voltage V1 in accordance with the push-down amount W of the shaft 30 (see FIG. 11) shown in (a). When the pressing amount W changes as shown in (a), the amplitude of the detection voltage V3 also increases in proportion to the pressing amount W. The amplitudes of the pulse waveforms s3, s4, and s5 of the detection voltage V3 increase with the increase of the push amount W, and the amplitudes of the pulse waveforms s6 and s7 of the detection voltage V3 decrease with the decrease of the press amount W. When there is no change in the pressing amount W, the amplitude of the pulse waveform of the detection voltage V3 is the same (s1, s2, s8, s9).
 また、操作入力装置の制御方法は、インダクタンス検出ステップで供給される第1のパルス信号に対して位相が異なる第2のパルス信号を、コイル毎に供給することによって、図12に示されるように、シャフト30の上端部31を上側ヨーク40に吸引する磁気吸引力FA1及びシャフト30の下端部32を壁部14に吸引する磁気吸引力FA2を発生させる磁気吸引力生成ステップを有する。CPU60は、その磁気吸引力生成ステップで、(b)に示されるように、出力ポート61から、矩形波の電圧波形V1として、コイル毎に供給される第2のパルス信号に対応するパルス波形q(q1~q5)を出力する。パルス波形qが出力ポート61から各コイルに出力されることによって、第2のパルス信号が各コイルに供給される。パルス波形qが出力されることに伴って、(e)に示されるように、FA1,FA2等の磁気吸引力Fが発生する。 Further, the control method of the operation input device is as shown in FIG. 12 by supplying, for each coil, a second pulse signal having a phase different from that of the first pulse signal supplied in the inductance detection step. And a magnetic attraction force generation step for generating a magnetic attraction force FA1 for attracting the upper end portion 31 of the shaft 30 to the upper yoke 40 and a magnetic attraction force FA2 for attracting the lower end portion 32 of the shaft 30 to the wall portion. In the magnetic attraction force generation step, the CPU 60, as shown in (b), the pulse waveform q corresponding to the second pulse signal supplied from the output port 61 as a rectangular wave voltage waveform V1 for each coil. (Q1 to q5) are output. By outputting the pulse waveform q from the output port 61 to each coil, the second pulse signal is supplied to each coil. Along with the output of the pulse waveform q, as shown in (e), a magnetic attractive force F such as FA1, FA2 is generated.
 図26は、インダクタンスの変化の検出結果である検出電圧V3の振幅に応じて、パルス波形q1~q5を出力する制御方法を示している。すなわち、振幅が所定の閾値未満の検出電圧V3の場合、パルス波形qは出力されず、振幅が所定の閾値以上の検出電圧V3が発生した場合、該検出電圧V3の振幅に対応するパルス波形qが出力される。つまり、押し下げ量Wに応じて操作部の変位を発生させるパルス波形qが、検出電圧V3の振幅に比例した振幅で発生する。そして、パルス波形qの振幅に応じた大きさの磁気吸引力Fが発生する。 FIG. 26 shows a control method for outputting the pulse waveforms q1 to q5 according to the amplitude of the detection voltage V3, which is the detection result of the change in inductance. That is, when the detection voltage V3 has an amplitude less than a predetermined threshold, the pulse waveform q is not output. When the detection voltage V3 having an amplitude greater than or equal to the predetermined threshold occurs, the pulse waveform q corresponding to the amplitude of the detection voltage V3. Is output. That is, the pulse waveform q that generates the displacement of the operation unit in accordance with the pressing amount W is generated with an amplitude proportional to the amplitude of the detection voltage V3. Then, a magnetic attractive force F having a magnitude corresponding to the amplitude of the pulse waveform q is generated.
 インダクタンスの変化を検出するためのパルス波形pの振幅電圧、パルス幅及び出力周期は、インダクタンスの変化を検出電圧V3によって検出できる程度の大きさであればよく、操作者が感知できる操作部の動きを引き起こすことが可能な磁気吸引力Fを発生させない程度の大きさであればよい。これにより、インダクタンスの変化を検出するタイミングのたびに、操作者に磁気吸引力Fによる操作部の動きを感じさせてしまうことを防止することができる。これに対し、パルス波形qに伴い発生する操作部の動きは操作者に確実に感知できるようにするため、パルス波形qの振幅電圧、パルス幅及び周期は、操作者が感知できる操作部の動きを引き起こすことが可能な磁気吸引力Fを発生させる程度の大きさであればよい。例えば、パルス波形qの振幅電圧とパルス幅の少なくともいずれか一方は、パルス波形pに比べて、大きくする。 The amplitude voltage, the pulse width, and the output period of the pulse waveform p for detecting the change in inductance need only be large enough to detect the change in inductance by the detection voltage V3. As long as the magnetic attraction force F that can cause the magnetic attraction F is not generated. Thereby, it is possible to prevent the operator from feeling the movement of the operation unit due to the magnetic attractive force F every time the change in inductance is detected. On the other hand, the amplitude voltage, pulse width, and period of the pulse waveform q are the movements of the operation unit that can be sensed by the operator so that the movement of the operation unit that accompanies the pulse waveform q can be reliably detected by the operator. As long as the magnetic attraction force F that can cause the magnetic attraction F is generated. For example, at least one of the amplitude voltage and the pulse width of the pulse waveform q is made larger than the pulse waveform p.
 このとき、何ら手当てをしていない場合、操作部に動きを与えるためのパルス波形qが出力されることによって生成された検出電圧V3を、インダクタンスの変化を表す信号として、CPU60が誤検出することを防ぐため、例えば、(d)に示されるように、パルス波形qが少なくとも発生している期間では、受信回路67を動作させないようにするためのリセット信号VRを発生させてもよい。これにより、パルス波形qが出力されている期間では、(c)に示されるように、検出電圧V3が生成されないようにすることができる。また、パルス波形qはCPU60が自ら出力するものであるため、パルス波形qに伴い発生する検出電圧V3を、インダクタンスの変化を表す信号として、CPU60が評価しない(無視する)ようにしてもよい。 At this time, if no treatment is made, the CPU 60 may erroneously detect the detection voltage V3 generated by outputting the pulse waveform q for giving motion to the operation unit as a signal indicating a change in inductance. In order to prevent this, for example, as shown in (d), a reset signal VR for preventing the reception circuit 67 from operating may be generated at least during a period in which the pulse waveform q is generated. Thereby, it is possible to prevent the detection voltage V3 from being generated as shown in (c) during the period in which the pulse waveform q is output. Further, since the CPU 60 outputs the pulse waveform q itself, the detection voltage V3 generated along with the pulse waveform q may not be evaluated (ignored) by the CPU 60 as a signal representing a change in inductance.
 また、(b)は、押し下げ量Wの大きさに応じた振幅のパルス波形qが出力される制御方法を示しているが、(f)に示されるように、押し下げ量Wの大きさに応じたパルス幅のパルス波形qを出力して操作部を変位させる制御方法でもよい。押し下げ量Wが大きくなるほど、パルス波形qのパルス幅を広くする。 Further, (b) shows a control method in which a pulse waveform q having an amplitude corresponding to the magnitude of the push-down amount W is output, but as shown in (f), it depends on the magnitude of the push-down amount W. Alternatively, a control method for outputting the pulse waveform q having a pulse width to displace the operation unit may be used. As the push-down amount W increases, the pulse width of the pulse waveform q is increased.
 また、(g)に示されるように、押し下げ量Wの大きさに応じた個数のパルス波形qを出力して操作部を変位させる制御方法でもよい。押し下げ量Wが大きくなるほど、パルス波形qの個数を増大させる。 Also, as shown in (g), a control method may be used in which the number of pulse waveforms q corresponding to the amount of push-down amount W is output to displace the operation unit. As the push-down amount W increases, the number of pulse waveforms q is increased.
 また、(h)に示されるように、本操作入力装置を使用するアプリケーション(例えば、操作者によって使用される電子機器、より具体的には、ゲーム機器や携帯電話など)によっては、パルス波形qはパルス波形pと必ずしも同期している必要はないため、複数のパルス波形pをまたいで、パルス波形qを発生させる時間間隔(パルス波形qの出力間隔)を変更してもよい。インダクタンスの変化を検出するためのパルス波形pは、インダクタンス変化の検出の時間的分解能(追従速度)に相当するため、短い時間間隔で出力されることが望ましい。一方、操作部に変位を付与するためのパルス波形qは、操作者に操作部の変位が生じたことを感じさせることが必要であるため、パルス波形pに比べて出力間隔を長くする。例えば、(h)に示されるように、パルス波形pに重複しないように、パルス波形pが出力されていない任意の期間に、パルス波形qが出力されればよい。 Further, as shown in (h), depending on an application (for example, an electronic device used by an operator, more specifically, a game device or a mobile phone) using the operation input device, the pulse waveform q Is not necessarily synchronized with the pulse waveform p, the time interval for generating the pulse waveform q (the output interval of the pulse waveform q) may be changed across the plurality of pulse waveforms p. The pulse waveform p for detecting the change in inductance corresponds to the temporal resolution (follow-up speed) of detecting the change in inductance, and is preferably output at a short time interval. On the other hand, the pulse waveform q for imparting displacement to the operation unit needs to make the operator feel that the displacement of the operation unit has occurred, so the output interval is made longer than the pulse waveform p. For example, as shown in (h), the pulse waveform q may be output during an arbitrary period in which the pulse waveform p is not output so as not to overlap with the pulse waveform p.
 また、パルス波形pの出力間隔が狭くなり、パルス波形qの出力タイミングを確保することができない場合には、パルス波形qをパルス波形pよりも優先させて、パルス波形qの出力期間ではパルス波形pの出力を停止させてもよい。 Further, when the output interval of the pulse waveform p becomes narrow and the output timing of the pulse waveform q cannot be secured, the pulse waveform q is prioritized over the pulse waveform p, and the pulse waveform is output during the output period of the pulse waveform q. The output of p may be stopped.
 また、図26の場合、押し下げ量Wに応じた操作部の変位を発生させているが、パルス波形qの供給態様を変化させることによって、コイルに流れる電流の流れ方が変化するので、操作者に与える振動の態様を変化させることができる。例えば、第2のパルス信号の供給態様を変化させることによりコイルに流す電流の流れ方を変化させることによって、操作者に与える振動の強さ、振動周波数、振動の回数を変化させることができる。また、操作部の変位の発生タイミングを、押し下げ量Wに応じて変化させることに限らず、操作部の押し下げ速度、操作部の操作によって動く対象物(例えば、ディスプレイ上のカーソル、ポインターなど)の移動位置、操作入力装置が使用されるアプリケーション上でのイベント発生に応じて、変化させてもよい。例えば、押し下げ量Wが所定の値に到達した時に、第2のパルス信号をコイルに供給することによって磁気吸引力Fを発生させる。このように発生させた磁気吸引力Fによって、操作者にクリック感を感じさせることができる。 Further, in the case of FIG. 26, the displacement of the operation unit according to the push-down amount W is generated. However, by changing the supply mode of the pulse waveform q, the way of flowing the current flowing through the coil changes. The mode of vibration applied to the can be changed. For example, it is possible to change the strength of vibration, the vibration frequency, and the number of vibrations given to the operator by changing the flow of current flowing through the coil by changing the supply mode of the second pulse signal. In addition, the occurrence timing of the displacement of the operation unit is not limited to change according to the push-down amount W, but the push-down speed of the operation unit and the object that moves by the operation of the operation unit (for example, a cursor on the display, a pointer, etc.) The movement position and the operation input device may be changed according to the occurrence of an event on the application used. For example, when the pressing amount W reaches a predetermined value, the magnetic attraction force F is generated by supplying the second pulse signal to the coil. The magnetic attraction force F generated in this way can make the operator feel a click.
 図27は、コイルに流れる電流の立ち上がり波形に基づいて押し下げ量Wを検出する方法を説明するためのタイムチャートである。上述の図25,26の場合、押し下げ量Wの検出には、コイルの両端に発生した電圧V2の大きさに対応する検出電圧V3を利用していたが、コイルに流れる電流の立ち上がりの波形を利用してもよい。 FIG. 27 is a time chart for explaining a method of detecting the push-down amount W based on the rising waveform of the current flowing through the coil. In the case of FIGS. 25 and 26, the detection voltage V3 corresponding to the magnitude of the voltage V2 generated at both ends of the coil is used to detect the push-down amount W, but the rising waveform of the current flowing through the coil is used. May be used.
 図27において、(a)は、コイルに印加される電圧波形を示す。(b)は、シャフトが押し込まれていない状態で、(a)の電圧を印加したときにコイルに流れる電流波形を示す。(c)は、シャフトが押し込まれた状態で、(a)の電圧を印加したときにコイルに流れる電流波形を示す。 In FIG. 27, (a) shows a voltage waveform applied to the coil. (B) shows a current waveform flowing in the coil when the voltage of (a) is applied in a state where the shaft is not pushed in. (C) shows a current waveform flowing in the coil when the voltage of (a) is applied in a state where the shaft is pushed in.
 電圧を(a)のように瞬時に立ち上げた場合でも、コイルの性質上、コイルに流れる電流波形は、そのインダクタンスに応じた傾きで立ち上がる。したがって、押し込み量に応じてインダクタンスが増加するように構成されている場合、押し込み量の増加に伴い電流波形の傾きは緩やかになる。つまり、この傾きの大きさを検出することでインダクタンスの大きさを評価することができるので、そのインダクタンスに基づいて、押し込み量の検出を行うことができる。 Even when the voltage is raised instantaneously as shown in (a), the current waveform flowing in the coil rises with a slope corresponding to the inductance due to the nature of the coil. Therefore, when the inductance is configured to increase in accordance with the push amount, the slope of the current waveform becomes gentle as the push amount increases. That is, since the magnitude of the inductance can be evaluated by detecting the magnitude of the inclination, the push amount can be detected based on the inductance.
 本発明の実施形態のように操作入力装置からのフィードバック力を操作者に与える構成では、フィードバック力によって操作部の位置が変化し、その変化に伴いインダクタンスが変化する。したがって、上述のリセット信号VR等の誤検出対策をしなければ、操作部の位置やその押し込み量を誤検出するおそれがある。しかしながら、図27のように、電流波形の立ち上がりで押し込み量の検出を行うことによって、操作部の位置が変化する前に、押し込み量の検出を完了することが可能になる。その結果、図26のように、第1のパルス信号と第2のパルス信号の位相を異ならせなくても、第2のパルス信号を第1のパルス信号として使用することによって、フィードバック力の発生と押し込み量の検出をほぼ同時に行うことが可能となる。つまり、操作部の押し込み量を検出する際に電流波形の立ち上がりの傾きを利用することによって、フィードバック力の発生時にも、操作部の位置の変化による影響を受けることなく、操作部の押し込み量の検出が可能になる。なお、図27(a)に示した電圧波形を、方形波にしても、同様の効果が得られる。 In the configuration in which the feedback force from the operation input device is given to the operator as in the embodiment of the present invention, the position of the operation unit is changed by the feedback force, and the inductance is changed according to the change. Therefore, if the above-described countermeasure against erroneous detection of the reset signal VR or the like is not taken, there is a possibility that the position of the operation unit and the amount of pushing in may be erroneously detected. However, as shown in FIG. 27, by detecting the push amount at the rising edge of the current waveform, it becomes possible to complete the push amount detection before the position of the operation unit changes. As a result, the feedback force is generated by using the second pulse signal as the first pulse signal without changing the phase of the first pulse signal and the second pulse signal as shown in FIG. It is possible to detect the pushing amount almost simultaneously. In other words, by using the slope of the rising edge of the current waveform when detecting the amount of pushing of the operating unit, the amount of pushing of the operating unit can be reduced without being affected by the change in the position of the operating unit even when feedback force is generated. Detection is possible. It should be noted that the same effect can be obtained even if the voltage waveform shown in FIG.
 フィードバック力を発生させる電圧波形には、図27(a)に示される鋸波等の三角波を使用すると好適である。フィードバック力は立ち上がりで強く感じるため、ピーク電圧と通電時間が同じならば三角波と方形波でほぼ同等のフィードバック力の感触が得られる。つまり、三角波を用いることで、約半分の電力で、方形波と同等のフィードバック力を得ることができる。 For the voltage waveform that generates the feedback force, it is preferable to use a triangular wave such as a sawtooth wave shown in FIG. Since the feedback force feels strongly at the rise, if the peak voltage and the energization time are the same, almost the same feedback force feel can be obtained for the triangular wave and the square wave. That is, by using a triangular wave, a feedback force equivalent to a square wave can be obtained with about half the power.
 このように、上述の本実施形態の操作入力装置の場合、共通のコイルに対して2種類又は1種類のパルス信号を供給するだけで、操作入力の検出と操作者への力の付与を行うことができる。つまり、操作入力を検出する機能と操作者に力を付与する機能の両方を、複雑な構造を構成することなく、2種類又は1種類のパルス信号をコイルに供給するという単純な構成で実現することができる。また、操作入力を検出するための構成と操作者に力を付与するための構成との間で、部品(コイル)の共有化ができるので、小型化やコスト削減を図ることができる。 Thus, in the case of the operation input device of the present embodiment described above, the operation input is detected and the force is applied to the operator only by supplying two types or one type of pulse signal to the common coil. be able to. In other words, both the function of detecting the operation input and the function of applying force to the operator are realized with a simple configuration in which two types or one type of pulse signal is supplied to the coil without forming a complicated structure. be able to. In addition, since components (coils) can be shared between a configuration for detecting an operation input and a configuration for applying a force to an operator, it is possible to achieve downsizing and cost reduction.
 また、フィードバック振動を、操作部の押し込み方向ではなく、押し込み方向と異なる方向(例えば、操作部を傾斜させる方向、横方向)に発生させることができるので、操作部の押し込み方向にフィードバック振動を発生させる場合よりも、操作者にフィードバック振動を強く感じさせることができる。 In addition, feedback vibration can be generated in a direction different from the pushing direction (for example, the direction in which the operating part is tilted or the lateral direction), not in the pushing direction of the operating part, so that feedback vibration is generated in the pushing direction of the operating part. It is possible to make the operator feel the feedback vibration stronger than in the case of making it happen.
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形、改良及び置換を加えることができる。また、上述の複数の実施形態それぞれの一部を組み合わせて構成された別の実施形態も考えられ得る。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications, improvements, and modifications can be made to the above-described embodiments without departing from the scope of the present invention. Substitutions can be added. In addition, another embodiment configured by combining a part of each of the plurality of embodiments described above may be considered.
 操作入力装置は、手指に限らず、手のひらで操作するものあってもよい。また、足指や足の裏で操作するものであってもよい。また、操作者が触れる面は、平面でも、凹面でも、凸面でもよい。 The operation input device is not limited to fingers and may be operated with palms. Moreover, you may operate with a toe or a sole. The surface touched by the operator may be a flat surface, a concave surface, or a convex surface.
 本国際出願は、2010年7月8日に出願された日本国特許出願2010-156054号に基づく優先権を主張するものであり、日本国特許出願2010-156054号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2010-156054 filed on July 8, 2010. The entire contents of Japanese Patent Application No. 2010-156054 are incorporated herein by reference. Incorporate.
 1 基板
 2,20,120,220 コイル
 3 コア
 4 ヨーク
 4c,4d,4e ギャップ
 5a,5b 支持部材
 5c~5f 揺動支点
 6 操作部
 10,110,210 下側ヨーク
 11,12,111,112,241,242 側面ヨーク
 13,113 下面ヨーク
 14,114,212 壁部
 15,41,115 切り欠き部
 30,130,230 シャフト(コア)
 31,131,231 上端部
 32,132,232 下端部
 40,140,240 上側ヨーク
 50,150,250 スプリング
 51,151 シャフトホルダ
 51a,51b ピン
 52,152,252 ボビン
 52a,52b ガイド
 52c 内壁
 53 ゴムリング
 54 樹脂リング
 100,200,300,400 操作入力装置
 153 樹脂ワッシャー
 211 ベース
 233 欠損部
 234 板状部材
 360 キー(操作部)
 370 ケース
 C コアの中心軸
 D 回転軸
 E 対向面積
 F* 磁気吸引力
 L* 磁力線
DESCRIPTION OF SYMBOLS 1 Board | substrate 2,20,120,220 Coil 3 Core 4 Yoke 4c, 4d, 4e Gap 5a, 5b Support member 5c-5f Oscillation fulcrum 6 Operation part 10,110,210 Lower yoke 11,12,111,112, 241,242 Side yoke 13,113 Bottom yoke 14,114,212 Wall 15,41,115 Notch 30,130,230 Shaft (core)
31, 131, 231 Upper end portion 32, 132, 232 Lower end portion 40, 140, 240 Upper yoke 50, 150, 250 Spring 51, 151 Shaft holder 51a, 51b Pin 52, 152, 252 Bobbin 52a, 52b Guide 52c Inner wall 53 Rubber Ring 54 Resin ring 100, 200, 300, 400 Operation input device 153 Resin washer 211 Base 233 Deletion part 234 Plate member 360 Key (operation part)
370 Case C Core axis D Rotating shaft E Opposite area F * Magnetic attraction L * Magnetic field line

Claims (9)

  1.  コイルと、
     操作入力の作用により前記コイルの軸方向に変位するコアと、
     前記コイルの端面側に配置されたヨークとを備え、
     前記コアの軸について非回転対称のギャップが前記コアと前記ヨークとの間にあり、前記コイルに電流を流すことにより、前記コアと前記ヨークとの間に発生する磁気吸引力が前記コアに作用する、操作入力装置。
    Coils,
    A core that is displaced in the axial direction of the coil by the action of an operation input;
    A yoke disposed on the end face side of the coil,
    There is a non-rotationally symmetric gap between the core and the yoke with respect to the axis of the core, and when a current is passed through the coil, a magnetic attractive force generated between the core and the yoke acts on the core. An operation input device.
  2.  前記ヨークが、前記コアに対向する位置に、前記ギャップが形成されるように切り欠き部及び/又は壁部を備える、請求項1に記載の操作入力装置。 The operation input device according to claim 1, wherein the yoke includes a notch and / or a wall so that the gap is formed at a position facing the core.
  3.  前記ヨークが、前記コイルの一方の端面側に配置された第1のヨーク部ともう一方の端面側に配置された第2のヨーク部とが前記コイルの外側を迂回して接続されることにより構成される、請求項1に記載の操作入力装置。 When the yoke is connected to the first yoke portion disposed on one end face side of the coil and the second yoke portion disposed on the other end face side, bypassing the outside of the coil. The operation input device according to claim 1 configured.
  4.  前記コアの軸に対して前記コアが非回転対称である、請求項1に記載の操作入力装置。 The operation input device according to claim 1, wherein the core is non-rotationally symmetric with respect to the axis of the core.
  5.  前記コイルのインダクタンスの大きさに応じた信号波形を前記コイルに発生させる第1のパルス信号を前記コイルに供給する第1のパルス信号供給手段と、
     前記信号波形に基づいて、前記インダクタンスの大きさを検出する検出手段と、
     前記磁気吸引力を発生させる第2のパルス信号を前記コイルに供給する第2のパルス信号供給手段とを備える、請求項1に記載の操作入力装置。
    First pulse signal supply means for supplying a first pulse signal to the coil that causes the coil to generate a signal waveform corresponding to the magnitude of the inductance of the coil;
    Detecting means for detecting the magnitude of the inductance based on the signal waveform;
    The operation input device according to claim 1, further comprising second pulse signal supply means for supplying a second pulse signal for generating the magnetic attraction force to the coil.
  6.  前記検出手段が、前記信号波形の立ち上がり波形に基づいて、前記インダクタンスの大きさを検出する、請求項5に記載の操作入力装置。 The operation input device according to claim 5, wherein the detection means detects the magnitude of the inductance based on a rising waveform of the signal waveform.
  7.  前記第2のパルス信号が、前記第1のパルス信号として使用される、請求項6に記載の操作入力装置。 The operation input device according to claim 6, wherein the second pulse signal is used as the first pulse signal.
  8.  前記第1のパルス信号と前記第2のパルス信号の少なくともいずれかが三角波である、請求項5に記載の操作入力装置。 The operation input device according to claim 5, wherein at least one of the first pulse signal and the second pulse signal is a triangular wave.
  9.  前記コイルのインダクタンス変化を検出することで操作入力を検知する、請求項1に記載の操作入力装置。 The operation input device according to claim 1, wherein an operation input is detected by detecting a change in inductance of the coil.
PCT/JP2011/065490 2010-07-08 2011-07-06 Operation input device WO2012005297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-156054 2010-07-08
JP2010156054A JP5120422B2 (en) 2010-07-08 2010-07-08 Operation input device

Publications (1)

Publication Number Publication Date
WO2012005297A1 true WO2012005297A1 (en) 2012-01-12

Family

ID=45441274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065490 WO2012005297A1 (en) 2010-07-08 2011-07-06 Operation input device

Country Status (2)

Country Link
JP (1) JP5120422B2 (en)
WO (1) WO2012005297A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204084A (en) * 2016-05-10 2017-11-16 株式会社デンソー Input device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112021B2 (en) * 2014-01-09 2017-04-12 株式会社デンソー Input device
JP6464927B2 (en) * 2015-03-03 2019-02-06 株式会社Soken Input device
WO2016139892A1 (en) * 2015-03-03 2016-09-09 株式会社デンソー Input device
NL1042415B1 (en) * 2017-06-02 2018-12-11 Idbike B V Displacement measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215486A (en) * 2002-12-30 2004-07-29 Samsung Electro Mech Co Ltd Brushless vibrating motor
JP2005100179A (en) * 2003-09-25 2005-04-14 Fujitsu Component Ltd Input device and electronic equipment
JP2007185095A (en) * 2007-02-27 2007-07-19 Minebea-Matsushita Motor Corp Vibration motor and portable terminal equipment using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10333822A (en) * 1997-06-03 1998-12-18 Nitta Ind Corp Coordinate inputting device
JP4968694B2 (en) * 2008-06-19 2012-07-04 富士通コンポーネント株式会社 Input device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215486A (en) * 2002-12-30 2004-07-29 Samsung Electro Mech Co Ltd Brushless vibrating motor
JP2005100179A (en) * 2003-09-25 2005-04-14 Fujitsu Component Ltd Input device and electronic equipment
JP2007185095A (en) * 2007-02-27 2007-07-19 Minebea-Matsushita Motor Corp Vibration motor and portable terminal equipment using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204084A (en) * 2016-05-10 2017-11-16 株式会社デンソー Input device

Also Published As

Publication number Publication date
JP2012018577A (en) 2012-01-26
JP5120422B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP4868051B2 (en) Operation input device and control method thereof
US20170070132A1 (en) Linear Vibrator
JP5842376B2 (en) Operation input device and operation input detection device
JP5120422B2 (en) Operation input device
JP5782917B2 (en) Operation input device
US8259066B2 (en) Impact force feedback device and interactive system using the same
KR20120042139A (en) Vibration module for portable terminal
JP7248387B2 (en) Vibration actuators and electronics
US10921895B2 (en) Multi-directional actuating module
JP2010213401A (en) Vibration motor and electronic equipment
JP2006055832A (en) Vibration generator and method for driving it
CN105406677B (en) A kind of linear vibration motor
KR101224432B1 (en) Vibration generating module, actuator using the same, and handheld device
KR101286471B1 (en) Vibration generating module, actuator using the same, and handheld device
JP5593862B2 (en) Operation input device
JP2010221101A (en) Vibration generator, and touch panel device provided with the same
JP5898774B2 (en) Force display device
CN113131707A (en) Vibration actuator and electronic device
JP7117400B2 (en) Tactile sensation generator and application equipment including the same
KR20120071518A (en) Vibration generating module using unstable structure, actuator using the same, handheld device, method for generating vibration and recording medium thereof
US20240048036A1 (en) Method and arrangement for producing haptic effects in a user device
CN116724283A (en) Method and apparatus for generating haptic effects in user devices
KR20120027650A (en) Wire ring spring consisted of all style to solenoid of small size actuator device
KR20120064380A (en) Vibration generating module, actuator using the same, handheld device, method for generating vibration and recording medium thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803631

Country of ref document: EP

Kind code of ref document: A1