WO2012005069A1 - Electronic component and process for producing same - Google Patents

Electronic component and process for producing same Download PDF

Info

Publication number
WO2012005069A1
WO2012005069A1 PCT/JP2011/062501 JP2011062501W WO2012005069A1 WO 2012005069 A1 WO2012005069 A1 WO 2012005069A1 JP 2011062501 W JP2011062501 W JP 2011062501W WO 2012005069 A1 WO2012005069 A1 WO 2012005069A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
electronic component
layer
glass
magnetic material
Prior art date
Application number
PCT/JP2011/062501
Other languages
French (fr)
Japanese (ja)
Inventor
敬実 工藤
博道 徳田
茂 宮崎
季 松永
祐 石渡
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012005069A1 publication Critical patent/WO2012005069A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core

Definitions

  • the present invention relates to an electronic component and a method for manufacturing the same, and more specifically, to an electronic component including a laminated body in which a magnetic layer and a nonmagnetic layer are stacked and a method for manufacturing the same.
  • a laminated common mode choke coil described in Patent Document 1 As a conventional electronic component, for example, a laminated common mode choke coil described in Patent Document 1 is known.
  • the laminated common mode choke coil magnetic material layers are provided above and below the nonmagnetic insulating material layer. And between the nonmagnetic insulating material layer and the magnetic material layer, a low magnetic permeability material layer having a shrinkage rate and a relative magnetic permeability higher than that of the nonmagnetic insulating material layer and lower than that of the magnetic material layer is provided.
  • the shrinkage ratio gradually decreases toward the nonmagnetic insulating material layer, so that the difference in shrinkage ratio between adjacent layers becomes smaller, and the difference in shrinkage ratio between each magnetic material and nonmagnetic insulating material when fired.
  • Can prevent delamination hereinafter referred to as delamination).
  • the magnetic material layer is mainly composed of Ni—Cu—Zn ferrite
  • the low magnetic permeability material layer is composed mainly of a glass material and Ni—Cu—Zn ferrite. Is a minor component.
  • the material composition of the magnetic material layer and the material composition of the low permeability material layer are greatly different. For this reason, the adhesion between the magnetic material layer and the low magnetic permeability material layer is poor. As a result, when the magnetic material layer and the low magnetic permeability material layer are fired simultaneously, delamination is likely to occur between the magnetic material layer and the low magnetic permeability material layer.
  • an object of the present invention is to provide an electronic component capable of suppressing the occurrence of delamination when a magnetic layer and a nonmagnetic layer are simultaneously fired, and a method for manufacturing the same.
  • the electronic component according to the present invention includes a non-magnetic material layer that does not contain a magnetic material component and that includes glass and a magnetic material layer that is a mixture of at least glass and a magnetic material. And a circuit element built in the laminated body.
  • the electronic component manufacturing method includes a non-magnetic layer containing glass and a non-magnetic layer including glass, and a laminate formed by laminating at least a magnetic layer formed by mixing glass and a magnetic material. A step of producing a body, and a step of firing the laminate.
  • the present invention it is possible to suppress the occurrence of delamination when the magnetic layer and the nonmagnetic layer are fired simultaneously.
  • FIG. 1 is an external perspective view of the electronic component 10.
  • FIG. 2 is an exploded perspective view of the multilayer body 12 of the electronic component 10.
  • the stacking direction of the electronic components 10 is defined as the z-axis direction, and the direction in which the long side extends when the electronic component 10 is viewed in plan from the z-axis direction is defined as the x-axis direction.
  • the direction in which the short side extends when viewed in plan from the z-axis direction is defined as the y-axis direction.
  • the electronic component 10 includes a laminate 12, external electrodes 14 (14a to 14d), and coils (circuit elements) L1 and L2.
  • the laminate 12 has a rectangular parallelepiped shape as shown in FIG. 1, and as shown in FIG. 2, the magnetic layers 16 (16a, 16b), 20 (20a to 20e) and the nonmagnetic layer 18 (18a). To 18e).
  • the laminated body 12 is configured by laminating a magnetic layer 16a, nonmagnetic layers 18a to 18e, and a magnetic layer 16b so that they are arranged in this order from the positive direction side to the negative direction side in the z-axis direction.
  • the coils L1 and L2 are incorporated.
  • the magnetic layers 20a to 20e are provided so as to penetrate the nonmagnetic layers 18a to 18e in the z-axis direction in predetermined regions of the nonmagnetic layers 18a to 18e, respectively.
  • the predetermined regions of the nonmagnetic layers 18a to 18e are regions near the center (near the intersection of diagonal lines) of the nonmagnetic layers 18a to 18e.
  • the magnetic layers 16 and 20 are configured by mixing the same glass and ferrite powder (magnetic material) as the glass constituting the nonmagnetic layer 18.
  • the magnetic layers 16 and 20 have a structure (composite structure) in which ferrite powder is dispersed in glass.
  • the magnetic layers 16 and 20 are composed only of glass and ferrite powder, and contain glass at a ratio of 15% by volume or more.
  • the ferrite powder is, for example, a Ni—Zn ferrite powder having an average particle diameter D50 of 1 ⁇ m or more and 100 ⁇ m or less, and is a completely spineled sintered ferrite powder.
  • the coils L ⁇ b> 1 and L ⁇ b> 2 are provided in the laminated body 12 so as to be aligned in the z-axis direction, and constitute a common mode choke coil by magnetic coupling with each other.
  • the coil L1 is provided closer to the positive direction side in the z-axis direction than the coil L2.
  • the coil conductor 22b is a spiral linear conductor that is provided on the nonmagnetic layer 18c and rotates around the magnetic layer 20c.
  • the coil conductor 22b has a shape that approaches the center while turning clockwise when viewed from the positive side in the z-axis direction.
  • One end of the coil conductor 22b is drawn to the long side of the nonmagnetic layer 18c on the negative direction side in the y-axis direction.
  • the other end of the coil conductor 22b is located on the positive side in the x-axis direction with respect to the magnetic layer 20c.
  • the other end of the coil conductor 22b overlaps the other end of the coil conductor 22a when viewed in plan from the z-axis direction.
  • the coil L2 includes a coil conductor 24 (24a, 24b) and a via-hole conductor v2, and has a spiral shape.
  • the coil conductor 24a is a spiral linear conductor that is provided on the nonmagnetic layer 18d and rotates around the magnetic layer 20d.
  • the coil conductor 24a has a shape that approaches the center while turning clockwise when viewed from the positive side in the z-axis direction.
  • One end of the coil conductor 24a is drawn to the long side on the negative direction side in the y-axis direction of the nonmagnetic layer 18d.
  • the other end of the coil conductor 24a is located on the positive direction side in the x-axis direction with respect to the magnetic layer 20d.
  • One end of the coil conductor 24a is located closer to the negative side in the x-axis direction than one end of the coil conductor 22b.
  • the coil conductor 24b is provided on the nonmagnetic material layer 18e. One end of the coil conductor 24b is drawn to the long side on the positive direction side in the y-axis direction of the nonmagnetic layer 18e. One end of the coil conductor 24b is located closer to the negative side in the x-axis direction than one end of the coil conductor 22a. The other end of the coil conductor 24b is located on the positive direction side in the x-axis direction with respect to the magnetic layer 20e. The other end of the coil conductor 24b overlaps the other end of the coil conductor 24a when viewed in plan from the z-axis direction.
  • the via-hole conductor v2 passes through the nonmagnetic layer 18d in the z-axis direction, and connects the other end of the coil conductor 24a and the other end of the coil conductor 24b.
  • the coil L2 is provided on the nonmagnetic layers 18d and 18e and is not in contact with the magnetic layers 16 and 20.
  • the magnetic layer 16b is provided on the negative direction side in the z-axis direction from the coil L2.
  • the external electrodes 14c and 14d are provided on the side surface on the positive direction side in the y-axis direction of the multilayer body 12, as shown in FIG.
  • the external electrode 14c is provided on the positive side in the x-axis direction with respect to the external electrode 14d.
  • the external electrode 14c is connected to one end of the coil conductor 22a.
  • the external electrode 14d is connected to one end of the coil conductor 24b.
  • the coil L1 is connected between the external electrodes 14a and 14c, and the coil L2 is connected between the external electrodes 14b and 14d.
  • the magnetic layers 20a to 20e extend in the z-axis direction so as to penetrate the nonmagnetic layers 18a to 18e in a predetermined region.
  • the predetermined regions that is, the magnetic layers 20a to 20e
  • the coil conductors 22a, 22b, 24a, and 24b when viewed in plan from the z-axis direction. That is, the magnetic layers 20a to 20e pass through the centers of the coils L1 and L2 in the z-axis direction.
  • the magnetic flux generated by the coil L1 passes through the magnetic layers 20a to 20e and passes through the coil L2, and the magnetic flux generated by the coil L2 passes through the magnetic layers 20a to 20e and passes through the coil L1.
  • the coil L1 and the coil L2 are magnetically coupled, and the coils L1 and L2 constitute a common mode choke coil.
  • 3 to 6 are process cross-sectional views when the electronic component 10 is manufactured.
  • 3 to 6 show process cross-sectional views at the time of manufacturing one electronic component 10, but actually, the mother laminate is cut to form a plurality of laminates 12 at the same time.
  • 3 to 6 are schematic diagrams, and are described at a ratio different from the actual thickness of each layer.
  • a magnetic layer 16b having a thickness of 150 ⁇ m to 300 ⁇ m is formed.
  • a ferrite raw material for example, Ni—Zn-based ferrite
  • a ferrite raw material that becomes a ferrite powder is completely sintered at 1100 ° C. or more to be completely spineled. Fe 2 O 3 does not remain in the completely sintered ferrite raw material.
  • the sintered ferrite raw material is pulverized by a mill into ferrite powder having an average particle diameter D50 of 1 ⁇ m or more and 100 ⁇ m or less.
  • glass powder for example, Si-based glass
  • ferrite powder that is a powdered magnetic material, and an organic component such as a binder are mixed to prepare a magnetic paste.
  • a magnetic paste is applied on a sheet (not shown) by a die coater.
  • the magnetic paste may be applied by a screen printing method. Thereby, the magnetic layer 16b shown in FIG. 3A is formed.
  • the magnetic layer 16b formed as shown in FIG. 3A is preliminarily dried at 85 ° C. and then thermally cured at 140 ° C. Thereby, the magnetic body layer 16b can ensure the tolerance to the alkali developing solution used after this process.
  • a non-magnetic layer 18e having a via hole H1 and having a thickness of 10 ⁇ m to 20 ⁇ m is formed on the magnetic layer 16b.
  • a non-magnetic paste is prepared by mixing glass powder (for example, Si-based glass), a filler (for example, non-magnetic filler such as alumina) and an organic component such as a binder.
  • a non-magnetic paste is applied on the magnetic layer 16b by screen printing.
  • a magnetic layer 20e is formed in the via hole H1. Specifically, the same magnetic paste as that of the magnetic layer 16b is filled into the via hole H1 through a metal mask.
  • the coil conductor 24b is formed on the nonmagnetic layer 18e.
  • a negative photosensitive conductive paste containing a conductive material such as silver is applied in a thickness of 7 ⁇ m to 15 ⁇ m. And it exposes through a photomask and develops with an alkali developing solution.
  • a nonmagnetic layer 18d having via holes H2 and h2 and having a thickness of 10 ⁇ m to 20 ⁇ m is formed on the nonmagnetic layer 18e.
  • a nonmagnetic paste is applied to the nonmagnetic layer 18e by screen printing.
  • a magnetic layer 20d is formed in the via hole H2. Specifically, a magnetic paste is filled into the via hole H2 through a metal mask.
  • a via hole conductor v2 is formed in the via hole h2, and a coil conductor 24a is formed on the nonmagnetic layer 18d.
  • a negative photosensitive conductive paste containing a conductive material such as silver is applied in a thickness of 7 ⁇ m to 15 ⁇ m. And it exposes through a photomask and develops with an alkali developing solution.
  • a nonmagnetic material layer 18c having a via hole H3 and having a thickness of 10 ⁇ m to 20 ⁇ m is formed on the nonmagnetic material layer 18d.
  • a nonmagnetic paste is applied to the nonmagnetic layer 18d by screen printing.
  • a magnetic layer 20c is formed in the via hole H3. Specifically, the magnetic paste is filled into the via hole H3 through a metal mask.
  • the coil conductor 22b is formed on the nonmagnetic layer 18c.
  • a negative photosensitive conductive paste containing a conductive material such as silver is applied in a thickness of 7 ⁇ m to 15 ⁇ m. It exposes through a photomask and develops with an alkali developing solution.
  • a nonmagnetic layer 18b having a thickness of 10 ⁇ m to 20 ⁇ m having via holes H4 and h1 is formed on the nonmagnetic layer 18c.
  • a nonmagnetic paste is applied to the nonmagnetic layer 18c by screen printing.
  • a magnetic layer 20b is formed in the via hole H4. Specifically, the magnetic paste is filled into the via hole H4 through a metal mask.
  • a via hole conductor v1 is formed in the via hole h1, and a coil conductor 22a is formed on the nonmagnetic layer 18b.
  • a negative photosensitive conductive paste containing a conductive material such as silver is applied in a thickness of 7 ⁇ m to 15 ⁇ m. And it exposes through a photomask and develops with an alkali developing solution.
  • a non-magnetic layer 18a having a via hole H5 and having a thickness of 10 ⁇ m to 20 ⁇ m is formed on the non-magnetic layer 18b.
  • a nonmagnetic paste is applied to the nonmagnetic layer 18b by screen printing.
  • a magnetic layer 20a is formed in the via hole H5. Specifically, a magnetic paste is filled into the via hole H5 through a metal mask.
  • a magnetic layer 16a having a thickness of 150 ⁇ m to 300 ⁇ m is formed by a die coater. Further, the magnetic layer 16a formed as shown in FIG. 6B is preliminarily dried at 85 ° C. and then thermally cured at 140 ° C. Through the above steps, a mother laminate including the magnetic layers 16 and 20 and the nonmagnetic layer 18 is obtained.
  • the mother laminate is cut into a predetermined size by a dicer to obtain an unfired laminate 12.
  • the width of the cut groove formed in the mother laminate at the time of cutting is about 10 ⁇ m to 100 ⁇ m.
  • the unfired laminate 12 is fired under conditions of 800 to 900 ° C. and 30 to 60 minutes. After firing, the laminated body 12 is subjected to barrel polishing to chamfer.
  • a silver electrode to be the external electrode 14 is formed on the surface of the laminate 12 by applying and baking an electrode paste whose main component is silver by a method such as dipping.
  • the external electrode 14 is formed by performing Ni plating / Sn plating on the surface of the silver electrode to be the external electrode 14.
  • the magnetic layers 16 and 20 are formed using a magnetic paste in which glass powder, ferrite powder, and an organic component such as a binder are mixed, and the nonmagnetic layer 18 is It is formed using a non-magnetic paste in which glass powder, a filler such as alumina, and an organic component such as a binder are mixed. Therefore, the magnetic layers 16 and 20 and the nonmagnetic layer 18 contain glass having the same composition.
  • the glass powder is melted at the interface between the magnetic layers 16 and 20 and the nonmagnetic layer 18, and the glasses are fused together.
  • the body layer 18 is firmly bonded. As a result, it is possible to suppress the occurrence of delamination when the magnetic layers 16 and 20 and the nonmagnetic layer 18 are simultaneously fired.
  • the magnetic layers 16 and 20 and the nonmagnetic layer 18 contain glass having the same composition. Therefore, the shrinkage rate of the magnetic layers 16 and 20 and the shrinkage rate of the nonmagnetic layer 18 at the time of firing the laminate 12 are relatively close. Therefore, due to the difference between the shrinkage rate of the magnetic layers 16 and 20 and the shrinkage rate of the nonmagnetic layer 18, delamination is caused in the laminate 12 when the magnetic layers 16 and 20 and the nonmagnetic layer 18 are simultaneously fired. Occurrence is suppressed.
  • the magnetic layers 16 and 20 have a structure in which ferrite powder is dispersed in glass. Therefore, the magnetic layers 16 and 20 have a composite structure in which ferrite powder is dispersed in glass.
  • the inductance values of the coils L1 and L2 are smaller than when the magnetic layer not having the composite structure is used, and the coils L1 and L2 The self-resonant frequency is increased. As a result, the high frequency characteristics of the common mode choke coil including the coils L1 and L2 are improved.
  • the magnetic paste and the non-magnetic paste contain glass. Therefore, the laminate 12 cannot be fired at a temperature higher than the firing temperature of the glass. However, the sintering temperature of the ferrite powder is higher than the melting temperature of the glass. Therefore, in the electronic component 10 and the manufacturing method thereof, the ferrite body and the glass that are completely sintered in advance are mixed with the magnetic paste, so that the laminate formed using the magnetic paste is mixed at the melting temperature of the glass. What is necessary is just to calcinate and can make a calcination temperature low compared with the magnetic body layer which does not contain glass.
  • the laminated body 12 including the ferrite powder in a completely sintered state can be obtained.
  • the magnetic layers 16 and 20 of the electronic component 10 can obtain high magnetic permeability.
  • the ferrite powder is in a completely sintered state, it is possible to suppress the diffusion of components (for example, Fe, Cu, or Ni) in the ferrite powder to the non-magnetic layer 18 when the laminate is fired. As a result, the components in the ferrite powder are diffused into the nonmagnetic layer 18 and the insulation between the coils L1 and L2 is prevented from being broken.
  • components for example, Fe, Cu, or Ni
  • the magnetic layers 16 and 20 and the nonmagnetic layer 18 each contain glass at a ratio of 15% by volume or more.
  • the glass content of the magnetic layers 16 and 20 and the nonmagnetic layer 18 is 15% by volume or more, the ratio of ferrite powder and filler in the magnetic paste and the nonmagnetic paste decreases.
  • the viscosity of the magnetic paste and the nonmagnetic paste becomes low, and it becomes easy to form the magnetic layers 16 and 20 and the nonmagnetic layer 18.
  • the glass content of the magnetic layers 16 and 20 and the nonmagnetic layer 18 is preferably 15% by volume or more.
  • the electronic component 10 has an average particle diameter D50 of the ferrite powder.
  • the thickness is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • FIG. 7 is a graph showing the relationship between the average particle diameter of the ferrite powder and the magnetic permeability of the magnetic layer. The horizontal axis represents the average particle diameter of the ferrite powder, and the vertical axis represents the magnetic permeability of the magnetic layer. In the experiment conducted to obtain the graph of FIG. 7, an epoxy resin was used instead of the glass powder.
  • a method for measuring the average particle diameter will be described.
  • a ferrite particle size is measured under the following conditions using a laser analysis / scattering particle size distribution measuring device (device number: LA-920, manufactured by Horiba, Ltd.). Measurement conditions: Relative refractive index 1.80 Ultrasonic vibration 3 minutes Transmittance 70% -80% Solvent: 0.1% NaHMP (sodium hexametaphosphate)
  • the permeability of the magnetic layer increases as the average particle size of the ferrite powder increases. Therefore, in the electronic component 10, in order to increase the magnetic permeability of the magnetic layers 16 and 20, it is preferable to increase the average particle diameter of the ferrite powder.
  • the average particle diameter D50 of the ferrite powder is 100 ⁇ m or less so that the ferrite powder does not protrude from the magnetic layers 16 and 20.
  • the average particle diameter D50 of the ferrite powder is 1 ⁇ m or more
  • the magnetic layers 16 and 20 have high magnetic permeability and the viscosity of the magnetic paste becomes an appropriate value to form the magnetic layers 16 and 20. Becomes easy. Therefore, in the present embodiment, it is preferable that the average particle diameter D50 of the ferrite powder is 1 ⁇ m or more.
  • FIG. 8 is a cross-sectional structure diagram of the electronic component 10a according to the first modification.
  • the protective layer 30a is provided on the most positive side (uppermost layer) in the z-axis direction
  • the protective layer 30b is provided on the most negative direction side (lowermost layer) in the z-axis direction.
  • the protective layers 30a and 30b are made of a magnetic material in which glass powder and ferrite powder are mixed.
  • the ferrite powder content in the protective layers 30a and 30b is smaller than the ferrite powder content in the magnetic layers 16a and 16b.
  • the protective layers 30a and 30b do not need to contain ferrite powder.
  • FIG. 9 is a sectional structural view of an electronic component 10b according to a second modification.
  • the magnetic layer 20 is not provided. According to the electronic component 10b having such a configuration, similarly to the electronic component 10, it is possible to suppress the occurrence of delamination when the magnetic layer 16 and the nonmagnetic layer 18 are simultaneously fired. Furthermore, in the electronic component 10b, the manufacturing process can be simplified as compared with the electronic component 10a.
  • FIG. 10 is a cross-sectional structure diagram of an electronic component 10c according to a third modification.
  • the periphery of the nonmagnetic layer 18 is surrounded by the magnetic layers 16 and 20. More specifically, the magnetic layer 20 is provided on both sides of the nonmagnetic layer 18 in the x-axis direction. Thereby, the magnetic flux generated in the coils L1 and L2 forms a closed magnetic path by the magnetic layers 16 and 20.
  • the electronic component 10 may incorporate a circuit element other than the coil.
  • the glass composition contained in the magnetic layers 16, 20 and the glass composition contained in the nonmagnetic layer 18 may be different.
  • the present invention is useful for an electronic component and a method for manufacturing the same, and particularly excellent in that delamination can be suppressed when the magnetic layer and the nonmagnetic layer are fired simultaneously. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

Provided is an electronic component which can be produced through simultaneous burning of a magnetic material layer and a non-magnetic material layer while preventing delamination. Also provided is a process for producing the electronic component. The layered product (12) comprises a non-magnetic material layer (18) containing no magnetic material ingredients and comprising a glass and a magnetic material layer (16) comprising a mixture of a glass and a ferrite powder, the layer (18) and the layer (16) having been laminated together. The layered product (12) includes built-in coils (L1 and L2).

Description

電子部品及びその製造方法Electronic component and manufacturing method thereof
 本発明は、電子部品及びその製造方法に関し、より特定的には、磁性体層及び非磁性体層が積層されてなる積層体を備えた電子部品及びその製造方法に関する。 The present invention relates to an electronic component and a method for manufacturing the same, and more specifically, to an electronic component including a laminated body in which a magnetic layer and a nonmagnetic layer are stacked and a method for manufacturing the same.
 従来の電子部品としては、例えば、特許文献1に記載の積層型コモンモードチョークコイルが知られている。該積層型コモンモードチョークコイルでは、非磁性絶縁材料層の上下に磁性材料層が設けられている。そして、非磁性絶縁材料層と磁性材料層との間には、収縮率及び比透磁率が非磁性絶縁材料層よりも高く磁性材料層よりも低い低透磁率材料層が設けられている。これにより、非磁性絶縁材料層に向かって徐々に収縮比が小さくなるので、隣接する層間の収縮比の差が小さくなり、焼成させた際に各磁性材料及び非磁性絶縁材料の収縮比の差による層間剥がれ(以下、デラミネーションと称す)を抑制できる。 As a conventional electronic component, for example, a laminated common mode choke coil described in Patent Document 1 is known. In the laminated common mode choke coil, magnetic material layers are provided above and below the nonmagnetic insulating material layer. And between the nonmagnetic insulating material layer and the magnetic material layer, a low magnetic permeability material layer having a shrinkage rate and a relative magnetic permeability higher than that of the nonmagnetic insulating material layer and lower than that of the magnetic material layer is provided. As a result, the shrinkage ratio gradually decreases toward the nonmagnetic insulating material layer, so that the difference in shrinkage ratio between adjacent layers becomes smaller, and the difference in shrinkage ratio between each magnetic material and nonmagnetic insulating material when fired. Can prevent delamination (hereinafter referred to as delamination).
 しかしながら、特許文献1に記載の積層型コモンモードチョークコイルでは、十分にデラミネーションの発生を抑制することが困難である。より詳細には、該積層型コモンモードチョークコイルでは、磁性材料層は、Ni-Cu-Znフェライトを主成分としており、低透磁率材料層は、ガラス材料を主成分としNi-Cu-Znフェライトを副成分としている。このように、磁性材料層にはガラスが含まれておらず低透磁率材料層にはガラスが含まれているので、磁性材料層の材料組成と低透磁率材料層の材料組成とが大きく異なるため、磁性材料層と低透磁率材料層との密着性が悪い。その結果、磁性材料層と低透磁率材料層とが同時に焼成されると、磁性材料層と低透磁率材料層との間においてデラミネーションが発生しやすい。 However, with the laminated common mode choke coil described in Patent Document 1, it is difficult to sufficiently suppress the occurrence of delamination. More specifically, in the laminated common mode choke coil, the magnetic material layer is mainly composed of Ni—Cu—Zn ferrite, and the low magnetic permeability material layer is composed mainly of a glass material and Ni—Cu—Zn ferrite. Is a minor component. Thus, since the magnetic material layer does not contain glass and the low permeability material layer contains glass, the material composition of the magnetic material layer and the material composition of the low permeability material layer are greatly different. For this reason, the adhesion between the magnetic material layer and the low magnetic permeability material layer is poor. As a result, when the magnetic material layer and the low magnetic permeability material layer are fired simultaneously, delamination is likely to occur between the magnetic material layer and the low magnetic permeability material layer.
特開2005-50957号公報JP 2005-50957 A
 そこで、本発明の目的は、磁性体層及び非磁性体層を同時に焼成した際にデラミネーションが発生することを抑制できる電子部品及びその製造方法を提供することである。 Therefore, an object of the present invention is to provide an electronic component capable of suppressing the occurrence of delamination when a magnetic layer and a nonmagnetic layer are simultaneously fired, and a method for manufacturing the same.
 本発明に係る電子部品は、磁性体成分を含有しておらず、かつ、ガラスを含む非磁性体層、及び、少なくともガラス及び磁性体材料が混合されてなる磁性体層が積層されてなる積層体と、前記積層体に内蔵されている回路素子と、を備えていること、を特徴とする。 The electronic component according to the present invention includes a non-magnetic material layer that does not contain a magnetic material component and that includes glass and a magnetic material layer that is a mixture of at least glass and a magnetic material. And a circuit element built in the laminated body.
 前記電子部品の製造方法は、磁性体成分を含有しておらず、かつ、ガラスを含む非磁性体層、及び、少なくともガラス及び磁性体材料が混合されてなる磁性体層が積層されてなる積層体を作製する工程と、前記積層体を焼成する工程と、を備えていること、を特徴とする。 The electronic component manufacturing method includes a non-magnetic layer containing glass and a non-magnetic layer including glass, and a laminate formed by laminating at least a magnetic layer formed by mixing glass and a magnetic material. A step of producing a body, and a step of firing the laminate.
 本発明によれば、磁性体層及び非磁性体層を同時に焼成した際にデラミネーションが発生することを抑制できる。 According to the present invention, it is possible to suppress the occurrence of delamination when the magnetic layer and the nonmagnetic layer are fired simultaneously.
電子部品の外観斜視図である。It is an external appearance perspective view of an electronic component. 電子部品の積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of an electronic component. 電子部品の製造時における工程断面図である。It is process sectional drawing at the time of manufacture of an electronic component. 電子部品の製造時において図3に示した工程の後に実施される工程を示す断面図である。It is sectional drawing which shows the process implemented after the process shown in FIG. 3 at the time of manufacture of an electronic component. 電子部品の製造時において図4に示した工程の後に実施される工程を示す断面図である。It is sectional drawing which shows the process implemented after the process shown in FIG. 4 at the time of manufacture of an electronic component. 電子部品の製造時において図5に示した工程の後に実施される工程を示す断面図である。It is sectional drawing which shows the process implemented after the process shown in FIG. 5 at the time of manufacture of an electronic component. フェライト粉末の平均粒径と磁性体層の透磁率との関係を示したグラフである。It is the graph which showed the relationship between the average particle diameter of ferrite powder, and the magnetic permeability of a magnetic body layer. 第1の変形例に係る電子部品の断面構造図である。It is a cross-section figure of the electronic component which concerns on a 1st modification. 第2の変形例に係る電子部品の断面構造図である。It is sectional structure drawing of the electronic component which concerns on a 2nd modification. 第3の変形例に係る電子部品の断面構造図である。It is sectional structure drawing of the electronic component which concerns on a 3rd modification.
 以下に、本発明の一実施形態に係る電子部品及びその製造方法について図面を参照しながら説明する。 Hereinafter, an electronic component and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings.
(電子部品の構成)
 以下に、電子部品10の構成について図面を参照しながら説明する。図1は、電子部品10の外観斜視図である。図2は、電子部品10の積層体12の分解斜視図である。以下では、電子部品10の積層方向をz軸方向と定義し、電子部品10をz軸方向から平面視したときに長辺が延在している方向をx軸方向と定義し、電子部品10をz軸方向から平面視したときに短辺が延在している方向をy軸方向と定義する。
(Configuration of electronic parts)
Below, the structure of the electronic component 10 is demonstrated, referring drawings. FIG. 1 is an external perspective view of the electronic component 10. FIG. 2 is an exploded perspective view of the multilayer body 12 of the electronic component 10. Hereinafter, the stacking direction of the electronic components 10 is defined as the z-axis direction, and the direction in which the long side extends when the electronic component 10 is viewed in plan from the z-axis direction is defined as the x-axis direction. The direction in which the short side extends when viewed in plan from the z-axis direction is defined as the y-axis direction.
 電子部品10は、図1及び図2に示すように、積層体12、外部電極14(14a~14d)及びコイル(回路素子)L1,L2を備えている。積層体12は、図1に示すように、直方体状をなしており、図2に示すように、磁性体層16(16a,16b),20(20a~20e)及び非磁性体層18(18a~18e)により構成されている。 As shown in FIGS. 1 and 2, the electronic component 10 includes a laminate 12, external electrodes 14 (14a to 14d), and coils (circuit elements) L1 and L2. The laminate 12 has a rectangular parallelepiped shape as shown in FIG. 1, and as shown in FIG. 2, the magnetic layers 16 (16a, 16b), 20 (20a to 20e) and the nonmagnetic layer 18 (18a). To 18e).
 積層体12は、磁性体層16a、非磁性体層18a~18e及び磁性体層16bがz軸方向の正方向側から負方向側へとこの順に並ぶように積層されることにより構成されており、コイルL1,L2を内蔵している。更に、磁性体層20a~20eはそれぞれ、非磁性体層18a~18eの所定領域において、非磁性体層18a~18eをz軸方向に貫通するように設けられている。非磁性体層18a~18eの所定領域とは、非磁性体層18a~18eの中心近傍(対角線の交点近傍)の領域である。 The laminated body 12 is configured by laminating a magnetic layer 16a, nonmagnetic layers 18a to 18e, and a magnetic layer 16b so that they are arranged in this order from the positive direction side to the negative direction side in the z-axis direction. The coils L1 and L2 are incorporated. Further, the magnetic layers 20a to 20e are provided so as to penetrate the nonmagnetic layers 18a to 18e in the z-axis direction in predetermined regions of the nonmagnetic layers 18a to 18e, respectively. The predetermined regions of the nonmagnetic layers 18a to 18e are regions near the center (near the intersection of diagonal lines) of the nonmagnetic layers 18a to 18e.
 非磁性体層18は、Si系のガラス及びフィラーが混合されて構成されている。そして、非磁性体層18は、Cu、Fe、Ni等の磁性体成分を含有していない。本実施形態では、非磁性体層18は、ガラス及びフィラーのみにより構成されており、ガラスを15体積%以上の割合で含有している。 The nonmagnetic layer 18 is composed of a mixture of Si glass and filler. The nonmagnetic layer 18 does not contain a magnetic component such as Cu, Fe, or Ni. In the present embodiment, the nonmagnetic layer 18 is composed only of glass and filler, and contains glass at a ratio of 15% by volume or more.
 磁性体層16,20は、非磁性体層18を構成しているガラスと同じガラス及びフェライト粉末(磁性体材料)が混合されて構成されている。また、磁性体層16,20は、ガラス中にフェライト粉末が分散された構造(コンポジット構造)をなしている。磁性体層16,20は、ガラス及びフェライト粉末のみにより構成されており、ガラスを15体積%以上の割合で含有している。フェライト粉末は、例えば、平均粒径D50が1μm以上100μm以下であるNi-Zn系のフェライト粉末であり、完全スピネル化した焼結フェライト粉末である。 The magnetic layers 16 and 20 are configured by mixing the same glass and ferrite powder (magnetic material) as the glass constituting the nonmagnetic layer 18. The magnetic layers 16 and 20 have a structure (composite structure) in which ferrite powder is dispersed in glass. The magnetic layers 16 and 20 are composed only of glass and ferrite powder, and contain glass at a ratio of 15% by volume or more. The ferrite powder is, for example, a Ni—Zn ferrite powder having an average particle diameter D50 of 1 μm or more and 100 μm or less, and is a completely spineled sintered ferrite powder.
 コイルL1,L2は、図2に示すように、積層体12内において、z軸方向に並ぶように設けられており、互いに磁気結合することによりコモンモードチョークコイルを構成している。本実施形態では、コイルL1は、コイルL2よりもz軸方向の正方向側に設けられている。 As shown in FIG. 2, the coils L <b> 1 and L <b> 2 are provided in the laminated body 12 so as to be aligned in the z-axis direction, and constitute a common mode choke coil by magnetic coupling with each other. In the present embodiment, the coil L1 is provided closer to the positive direction side in the z-axis direction than the coil L2.
 コイルL1は、図2に示すように、コイル導体22(22a,22b)及びビアホール導体v1により構成されており、渦巻き状をなしている。コイル導体22aは、非磁性体層18b上に設けられており、磁性体層20bよりもx軸方向の正方向側において、y軸方向に延在している直線状の線状導体である。コイル導体22aの一端は、非磁性体層18bのy軸方向の正方向側の長辺に引き出されている。コイル導体22aの他端は、磁性体層20bよりもx軸方向の正方向側に位置している。 As shown in FIG. 2, the coil L1 includes a coil conductor 22 (22a, 22b) and a via-hole conductor v1, and has a spiral shape. The coil conductor 22a is a linear linear conductor that is provided on the nonmagnetic layer 18b and extends in the y-axis direction on the positive side in the x-axis direction from the magnetic layer 20b. One end of the coil conductor 22a is drawn to the long side on the positive direction side in the y-axis direction of the nonmagnetic layer 18b. The other end of the coil conductor 22a is located on the positive side in the x-axis direction with respect to the magnetic layer 20b.
 コイル導体22bは、非磁性体層18c上に設けられており、磁性体層20cの周囲を旋廻する渦巻き状の線状導体である。コイル導体22bは、z軸方向の正方向側から平面視したときに、時計回りに旋回しながら中心に近づく形状をなしている。そして、コイル導体22bの一端は、非磁性体層18cのy軸方向の負方向側の長辺に引き出されている。コイル導体22bの他端は、磁性体層20cよりもx軸方向の正方向側に位置している。コイル導体22bの他端は、z軸方向から平面視したときに、コイル導体22aの他端と重なっている。 The coil conductor 22b is a spiral linear conductor that is provided on the nonmagnetic layer 18c and rotates around the magnetic layer 20c. The coil conductor 22b has a shape that approaches the center while turning clockwise when viewed from the positive side in the z-axis direction. One end of the coil conductor 22b is drawn to the long side of the nonmagnetic layer 18c on the negative direction side in the y-axis direction. The other end of the coil conductor 22b is located on the positive side in the x-axis direction with respect to the magnetic layer 20c. The other end of the coil conductor 22b overlaps the other end of the coil conductor 22a when viewed in plan from the z-axis direction.
 ビアホール導体v1は、非磁性体層18bをz軸方向に貫通しており、コイル導体22aの他端とコイル導体22bの他端とを接続している。このように、コイルL1は、非磁性体層18b,18cに設けられており、磁性体層16,20には接していない。磁性体層16aは、コイルL1よりもz軸方向の正方向側に設けられている。 The via-hole conductor v1 passes through the nonmagnetic layer 18b in the z-axis direction, and connects the other end of the coil conductor 22a and the other end of the coil conductor 22b. As described above, the coil L1 is provided in the nonmagnetic layers 18b and 18c and is not in contact with the magnetic layers 16 and 20. The magnetic layer 16a is provided on the positive direction side in the z-axis direction from the coil L1.
 コイルL2は、図2に示すように、コイル導体24(24a,24b)及びビアホール導体v2により構成されており、渦巻き状をなしている。コイル導体24aは、非磁性体層18d上に設けられており、磁性体層20dの周囲を旋廻する渦巻き状の線状導体である。コイル導体24aは、z軸方向の正方向側から平面視したときに、時計回りに旋回しながら中心に近づく形状をなしている。そして、コイル導体24aの一端は、非磁性体層18dのy軸方向の負方向側の長辺に引き出されている。コイル導体24aの他端は、磁性体層20dよりもx軸方向の正方向側に位置している。コイル導体24aの一端は、コイル導体22bの一端よりもx軸方向の負方向側に位置している。 As shown in FIG. 2, the coil L2 includes a coil conductor 24 (24a, 24b) and a via-hole conductor v2, and has a spiral shape. The coil conductor 24a is a spiral linear conductor that is provided on the nonmagnetic layer 18d and rotates around the magnetic layer 20d. The coil conductor 24a has a shape that approaches the center while turning clockwise when viewed from the positive side in the z-axis direction. One end of the coil conductor 24a is drawn to the long side on the negative direction side in the y-axis direction of the nonmagnetic layer 18d. The other end of the coil conductor 24a is located on the positive direction side in the x-axis direction with respect to the magnetic layer 20d. One end of the coil conductor 24a is located closer to the negative side in the x-axis direction than one end of the coil conductor 22b.
 コイル導体24bは、非磁性体層18e上に設けられている。コイル導体24bの一端は、非磁性体層18eのy軸方向の正方向側の長辺に引き出されている。コイル導体24bの一端は、コイル導体22aの一端よりもx軸方向の負方向側に位置している。コイル導体24bの他端は、磁性体層20eよりもx軸方向の正方向側に位置している。コイル導体24bの他端は、z軸方向から平面視したときに、コイル導体24aの他端と重なっている。 The coil conductor 24b is provided on the nonmagnetic material layer 18e. One end of the coil conductor 24b is drawn to the long side on the positive direction side in the y-axis direction of the nonmagnetic layer 18e. One end of the coil conductor 24b is located closer to the negative side in the x-axis direction than one end of the coil conductor 22a. The other end of the coil conductor 24b is located on the positive direction side in the x-axis direction with respect to the magnetic layer 20e. The other end of the coil conductor 24b overlaps the other end of the coil conductor 24a when viewed in plan from the z-axis direction.
 ビアホール導体v2は、非磁性体層18dをz軸方向に貫通しており、コイル導体24aの他端とコイル導体24bの他端とを接続している。このように、コイルL2は、非磁性体層18d,18eに設けられており、磁性体層16,20には接していない。磁性体層16bは、コイルL2よりもz軸方向の負方向側に設けられている。 The via-hole conductor v2 passes through the nonmagnetic layer 18d in the z-axis direction, and connects the other end of the coil conductor 24a and the other end of the coil conductor 24b. As described above, the coil L2 is provided on the nonmagnetic layers 18d and 18e and is not in contact with the magnetic layers 16 and 20. The magnetic layer 16b is provided on the negative direction side in the z-axis direction from the coil L2.
 外部電極14a,14bは、図1に示すように、積層体12のy軸方向の負方向側の側面に設けられている。外部電極14aは、外部電極14bよりもx軸方向の正方向側に設けられている。外部電極14aは、コイル導体22bの一端に接続されている。外部電極14bは、コイル導体24aの一端に接続されている。 External electrodes 14a and 14b are provided on the negative side surface of the laminate 12 in the y-axis direction, as shown in FIG. The external electrode 14a is provided on the positive side in the x-axis direction with respect to the external electrode 14b. The external electrode 14a is connected to one end of the coil conductor 22b. The external electrode 14b is connected to one end of the coil conductor 24a.
 外部電極14c,14dは、図1に示すように、積層体12のy軸方向の正方向側の側面に設けられている。外部電極14cは、外部電極14dよりもx軸方向の正方向側に設けられている。外部電極14cは、コイル導体22aの一端に接続されている。外部電極14dは、コイル導体24bの一端に接続されている。 The external electrodes 14c and 14d are provided on the side surface on the positive direction side in the y-axis direction of the multilayer body 12, as shown in FIG. The external electrode 14c is provided on the positive side in the x-axis direction with respect to the external electrode 14d. The external electrode 14c is connected to one end of the coil conductor 22a. The external electrode 14d is connected to one end of the coil conductor 24b.
 以上のように、コイルL1は、外部電極14a,14c間に接続されており、コイルL2は、外部電極14b,14d間に接続されている。 As described above, the coil L1 is connected between the external electrodes 14a and 14c, and the coil L2 is connected between the external electrodes 14b and 14d.
 以上のように構成された電子部品10では、図2に示すように、磁性体層20a~20eは、所定領域において非磁性体層18a~18eを貫くようにz軸方向に延在している。そして、所定領域(すなわち、磁性体層20a~20e)は、z軸方向から平面視したときに、コイル導体22a,22b,24a,24bにより囲まれている。すなわち、磁性体層20a~20eは、コイルL1,L2の中心をz軸方向に貫通している。これにより、コイルL1が発生した磁束が磁性体層20a~20eを通過してコイルL2を通過するようになり、コイルL2が発生した磁束が磁性体層20a~20eを通過してコイルL1を通過するようになる。したがって、コイルL1とコイルL2とが磁気結合するようになり、コイルL1,L2がコモンモードチョークコイルを構成するようになる。 In the electronic component 10 configured as described above, as shown in FIG. 2, the magnetic layers 20a to 20e extend in the z-axis direction so as to penetrate the nonmagnetic layers 18a to 18e in a predetermined region. . The predetermined regions (that is, the magnetic layers 20a to 20e) are surrounded by the coil conductors 22a, 22b, 24a, and 24b when viewed in plan from the z-axis direction. That is, the magnetic layers 20a to 20e pass through the centers of the coils L1 and L2 in the z-axis direction. Thereby, the magnetic flux generated by the coil L1 passes through the magnetic layers 20a to 20e and passes through the coil L2, and the magnetic flux generated by the coil L2 passes through the magnetic layers 20a to 20e and passes through the coil L1. To come. Therefore, the coil L1 and the coil L2 are magnetically coupled, and the coils L1 and L2 constitute a common mode choke coil.
(電子部品の製造方法)
 次に、電子部品10の製造方法について図面を参照しながら説明する。図3ないし図6は、電子部品10の製造時における工程断面図である。なお、図3ないし図6では、一つの電子部品10の製造時の工程断面図が示されているが、実際には、マザー積層体をカットして複数の積層体12を同時に形成する。また、図3ないし図6は模式図であるので、実際の各層の厚みとは異なる比率で記載されている。
(Method for manufacturing electronic parts)
Next, a method for manufacturing the electronic component 10 will be described with reference to the drawings. 3 to 6 are process cross-sectional views when the electronic component 10 is manufactured. 3 to 6 show process cross-sectional views at the time of manufacturing one electronic component 10, but actually, the mother laminate is cut to form a plurality of laminates 12 at the same time. 3 to 6 are schematic diagrams, and are described at a ratio different from the actual thickness of each layer.
 まず、図3(a)に示すように、厚み150μm~300μmの磁性体層16bを形成する。具体的には、フェライト粉末となるフェライト原料(例えば、Ni-Zn系フェライト)を1100℃以上で完全に焼結して、完全スピネル化する。完全に焼結されたフェライト原料には、Fe23が残留していない。更に、焼結したフェライト原料をミルにより、平均粒径D50が1μm以上100μm以下であるフェライト粉末に粉砕する。この後、ガラス粉末(例えば、Si系ガラス)と、粉末状の磁性体材料であるフェライト粉末と、バインダー等の有機成分とを混合して磁性体ペーストを作製する。 First, as shown in FIG. 3A, a magnetic layer 16b having a thickness of 150 μm to 300 μm is formed. Specifically, a ferrite raw material (for example, Ni—Zn-based ferrite) that becomes a ferrite powder is completely sintered at 1100 ° C. or more to be completely spineled. Fe 2 O 3 does not remain in the completely sintered ferrite raw material. Further, the sintered ferrite raw material is pulverized by a mill into ferrite powder having an average particle diameter D50 of 1 μm or more and 100 μm or less. Thereafter, glass powder (for example, Si-based glass), ferrite powder that is a powdered magnetic material, and an organic component such as a binder are mixed to prepare a magnetic paste.
 次に、シート(図示せず)上に磁性体ペーストをダイコーターにより塗布する。なお、磁性体ペーストは、スクリーン印刷法により塗布されてもよい。これにより、図3(a)に示す磁性体層16bが形成される。 Next, a magnetic paste is applied on a sheet (not shown) by a die coater. The magnetic paste may be applied by a screen printing method. Thereby, the magnetic layer 16b shown in FIG. 3A is formed.
 図3(a)に示すように形成した磁性体層16bを85℃で予備乾燥した後に、140℃で熱硬化する。これにより、磁性体層16bは、本工程以降で使用するアルカリ現像液への耐性を確保できる。 3) The magnetic layer 16b formed as shown in FIG. 3A is preliminarily dried at 85 ° C. and then thermally cured at 140 ° C. Thereby, the magnetic body layer 16b can ensure the tolerance to the alkali developing solution used after this process.
 次に、図3(b)に示すように、ビアホールH1を有する厚み10μm~20μmの非磁性体層18eを磁性体層16b上に形成する。具体的には、ガラス粉末(例えば、Si系ガラス)と、フィラー(例えば、アルミナ等の非磁性のフィラー)と、バインダー等の有機成分とを混合して非磁性体ペーストを作製する。次に、磁性体層16b上に非磁性体ペーストをスクリーン印刷により塗布する。 Next, as shown in FIG. 3B, a non-magnetic layer 18e having a via hole H1 and having a thickness of 10 μm to 20 μm is formed on the magnetic layer 16b. Specifically, a non-magnetic paste is prepared by mixing glass powder (for example, Si-based glass), a filler (for example, non-magnetic filler such as alumina) and an organic component such as a binder. Next, a non-magnetic paste is applied on the magnetic layer 16b by screen printing.
 次に、図3(c)に示すように、ビアホールH1内に磁性体層20eを形成する。具体的には、磁性体層16bと同じ磁性体ペーストをメタルマスクを介してビアホールH1内に充填する。 Next, as shown in FIG. 3C, a magnetic layer 20e is formed in the via hole H1. Specifically, the same magnetic paste as that of the magnetic layer 16b is filled into the via hole H1 through a metal mask.
 次に、図3(d)に示すように、コイル導体24bを非磁性体層18e上に形成する。具体的には、銀等の導電性材料を含有するネガ型の感光性導電性ペーストを7μm~15μmの厚さで塗布する。そして、フォトマスクを介して露光し、アルカリ現像液によって現像を行う。 Next, as shown in FIG. 3D, the coil conductor 24b is formed on the nonmagnetic layer 18e. Specifically, a negative photosensitive conductive paste containing a conductive material such as silver is applied in a thickness of 7 μm to 15 μm. And it exposes through a photomask and develops with an alkali developing solution.
 次に、図3(e)に示すように、ビアホールH2,h2を有する厚み10μm~20μmの非磁性体層18dを非磁性体層18e上に形成する。具体的には、非磁性体層18eに非磁性体ペーストをスクリーン印刷により塗布する。 Next, as shown in FIG. 3 (e), a nonmagnetic layer 18d having via holes H2 and h2 and having a thickness of 10 μm to 20 μm is formed on the nonmagnetic layer 18e. Specifically, a nonmagnetic paste is applied to the nonmagnetic layer 18e by screen printing.
 次に、図4(a)に示すように、ビアホールH2内に磁性体層20dを形成する。具体的には、磁性体ペーストをメタルマスクを介してビアホールH2内に充填する。 Next, as shown in FIG. 4A, a magnetic layer 20d is formed in the via hole H2. Specifically, a magnetic paste is filled into the via hole H2 through a metal mask.
 次に、図4(b)に示すように、ビアホールh2にビアホール導体v2を形成すると共に、コイル導体24aを非磁性体層18d上に形成する。具体的には、銀等の導電性材料を含有するネガ型の感光性導電性ペーストを7μm~15μmの厚さで塗布する。そして、フォトマスクを介して露光し、アルカリ現像液によって現像を行う。 Next, as shown in FIG. 4B, a via hole conductor v2 is formed in the via hole h2, and a coil conductor 24a is formed on the nonmagnetic layer 18d. Specifically, a negative photosensitive conductive paste containing a conductive material such as silver is applied in a thickness of 7 μm to 15 μm. And it exposes through a photomask and develops with an alkali developing solution.
 次に、図4(c)に示すように、ビアホールH3を有する厚み10μm~20μmの非磁性体層18cを非磁性体層18d上に形成する。具体的には、非磁性体層18dに非磁性体ペーストをスクリーン印刷により塗布する。 Next, as shown in FIG. 4C, a nonmagnetic material layer 18c having a via hole H3 and having a thickness of 10 μm to 20 μm is formed on the nonmagnetic material layer 18d. Specifically, a nonmagnetic paste is applied to the nonmagnetic layer 18d by screen printing.
 次に、図4(d)に示すように、ビアホールH3内に磁性体層20cを形成する。具体的には、磁性体ペーストをメタルマスクを介してビアホールH3内に充填する。 Next, as shown in FIG. 4D, a magnetic layer 20c is formed in the via hole H3. Specifically, the magnetic paste is filled into the via hole H3 through a metal mask.
 次に、図4(e)に示すように、コイル導体22bを非磁性体層18c上に形成する。具体的には、銀等の導電性材料を含有するネガ型の感光性導電性ペーストを7μm~15μmの厚さで塗布する。フォトマスクを介して露光し、アルカリ現像液によって現像を行う。 Next, as shown in FIG. 4E, the coil conductor 22b is formed on the nonmagnetic layer 18c. Specifically, a negative photosensitive conductive paste containing a conductive material such as silver is applied in a thickness of 7 μm to 15 μm. It exposes through a photomask and develops with an alkali developing solution.
 次に、図5(a)に示すように、ビアホールH4,h1を有する厚み10μm~20μmの非磁性体層18bを非磁性体層18c上に形成する。具体的には、非磁性体層18cに非磁性体ペーストをスクリーン印刷により塗布する。 Next, as shown in FIG. 5A, a nonmagnetic layer 18b having a thickness of 10 μm to 20 μm having via holes H4 and h1 is formed on the nonmagnetic layer 18c. Specifically, a nonmagnetic paste is applied to the nonmagnetic layer 18c by screen printing.
 次に、図5(b)に示すように、ビアホールH4内に磁性体層20bを形成する。具体的には、磁性体ペーストをメタルマスクを介してビアホールH4内に充填する。 Next, as shown in FIG. 5B, a magnetic layer 20b is formed in the via hole H4. Specifically, the magnetic paste is filled into the via hole H4 through a metal mask.
 次に、図5(c)に示すように、ビアホールh1にビアホール導体v1を形成すると共に、コイル導体22aを非磁性体層18b上に形成する。具体的には、銀等の導電性材料を含有するネガ型の感光性導電性ペーストを7μm~15μmの厚さで塗布する。そして、フォトマスクを介して露光し、アルカリ現像液によって現像を行う。 Next, as shown in FIG. 5C, a via hole conductor v1 is formed in the via hole h1, and a coil conductor 22a is formed on the nonmagnetic layer 18b. Specifically, a negative photosensitive conductive paste containing a conductive material such as silver is applied in a thickness of 7 μm to 15 μm. And it exposes through a photomask and develops with an alkali developing solution.
 次に、図5(d)に示すように、ビアホールH5を有する厚み10μm~20μmの非磁性体層18aを非磁性体層18b上に形成する。具体的には、非磁性体層18bに非磁性体ペーストをスクリーン印刷により塗布する。 Next, as shown in FIG. 5D, a non-magnetic layer 18a having a via hole H5 and having a thickness of 10 μm to 20 μm is formed on the non-magnetic layer 18b. Specifically, a nonmagnetic paste is applied to the nonmagnetic layer 18b by screen printing.
 次に、図6(a)に示すように、ビアホールH5内に磁性体層20aを形成する。具体的には、磁性体ペーストをメタルマスクを介してビアホールH5内に充填する。 Next, as shown in FIG. 6A, a magnetic layer 20a is formed in the via hole H5. Specifically, a magnetic paste is filled into the via hole H5 through a metal mask.
 次に、図6(b)に示すように、厚み150μm~300μmの磁性体層16aをダイコーターにより形成する。更に、図6(b)に示すように形成した磁性体層16aを85℃で予備乾燥した後に、140℃で熱硬化する。以上の工程を経て、磁性体層16,20及び非磁性体層18からなるマザー積層体を得る。 Next, as shown in FIG. 6B, a magnetic layer 16a having a thickness of 150 μm to 300 μm is formed by a die coater. Further, the magnetic layer 16a formed as shown in FIG. 6B is preliminarily dried at 85 ° C. and then thermally cured at 140 ° C. Through the above steps, a mother laminate including the magnetic layers 16 and 20 and the nonmagnetic layer 18 is obtained.
 次に、ダイサーによってマザー積層体を所定サイズにカットし、未焼成の積層体12を得る。カットの際にマザー積層体に形成されるカット溝の幅は、10μm~100μm程度である。この後、未焼成の積層体12を800~900℃、30~60分の条件で焼成する。焼成後、積層体12に対してバレル研磨処理を施して、面取りを行う。 Next, the mother laminate is cut into a predetermined size by a dicer to obtain an unfired laminate 12. The width of the cut groove formed in the mother laminate at the time of cutting is about 10 μm to 100 μm. Thereafter, the unfired laminate 12 is fired under conditions of 800 to 900 ° C. and 30 to 60 minutes. After firing, the laminated body 12 is subjected to barrel polishing to chamfer.
 次に、積層体12の表面に、例えば、浸漬法等の方法により主成分が銀である電極ペーストを塗布及び焼き付けすることにより、外部電極14となるべき銀電極を形成する。 Next, a silver electrode to be the external electrode 14 is formed on the surface of the laminate 12 by applying and baking an electrode paste whose main component is silver by a method such as dipping.
 最後に、外部電極14となるべき銀電極の表面に、Niめっき/Snめっきを施すことにより、外部電極14を形成する。以上の工程を経て、図1に示すような電子部品10が完成する。 Finally, the external electrode 14 is formed by performing Ni plating / Sn plating on the surface of the silver electrode to be the external electrode 14. Through the above steps, the electronic component 10 as shown in FIG. 1 is completed.
(効果)
 以上のような電子部品10及びその製造方法によれば、磁性体層16,20及び非磁性体層18を同時に焼成した際にデラミネーションが発生することを抑制できる。より詳細には、電子部品10では、磁性体層16,20は、ガラス粉末とフェライト粉末とバインダー等の有機成分とが混合された磁性体ペーストを用いて形成され、非磁性体層18は、ガラス粉末とアルミナ等のフィラーとバインダー等の有機成分とが混合された非磁性体ペーストを用いて形成されている。よって、磁性体層16,20及び非磁性体層18は同じ組成のガラスを含有している。そのため、積層体12の焼成時には、磁性体層16,20と非磁性体層18との界面において、ガラス粉末が溶融し、ガラス同士が融着することで、磁性体層16,20と非磁性体層18とが強固に結合する。その結果、磁性体層16,20及び非磁性体層18を同時に焼成した際にデラミネーションが発生することを抑制できる。
(effect)
According to the electronic component 10 and the manufacturing method thereof as described above, it is possible to suppress the occurrence of delamination when the magnetic layers 16 and 20 and the nonmagnetic layer 18 are simultaneously fired. More specifically, in the electronic component 10, the magnetic layers 16 and 20 are formed using a magnetic paste in which glass powder, ferrite powder, and an organic component such as a binder are mixed, and the nonmagnetic layer 18 is It is formed using a non-magnetic paste in which glass powder, a filler such as alumina, and an organic component such as a binder are mixed. Therefore, the magnetic layers 16 and 20 and the nonmagnetic layer 18 contain glass having the same composition. Therefore, when the laminate 12 is fired, the glass powder is melted at the interface between the magnetic layers 16 and 20 and the nonmagnetic layer 18, and the glasses are fused together. The body layer 18 is firmly bonded. As a result, it is possible to suppress the occurrence of delamination when the magnetic layers 16 and 20 and the nonmagnetic layer 18 are simultaneously fired.
 磁性体層16,20と非磁性体層18とは同じ組成のガラスを含有している。そのため、積層体12の焼成時における磁性体層16,20の収縮率と非磁性体層18の収縮率とは比較的に近い。そのため、磁性体層16,20の収縮率と非磁性体層18の収縮率との差によって、磁性体層16,20及び非磁性体層18を同時に焼成した際に積層体12にデラミネーションが発生することが抑制される。 The magnetic layers 16 and 20 and the nonmagnetic layer 18 contain glass having the same composition. Therefore, the shrinkage rate of the magnetic layers 16 and 20 and the shrinkage rate of the nonmagnetic layer 18 at the time of firing the laminate 12 are relatively close. Therefore, due to the difference between the shrinkage rate of the magnetic layers 16 and 20 and the shrinkage rate of the nonmagnetic layer 18, delamination is caused in the laminate 12 when the magnetic layers 16 and 20 and the nonmagnetic layer 18 are simultaneously fired. Occurrence is suppressed.
 また、電子部品10及びその製造方法では、磁性体層16,20では、ガラス中にフェライト粉末が分散された構造をなしている。そのため、磁性体層16,20は、フェライト粉末がガラス中に分散されたコンポジット構造をなしている。コンポジット構造をなす磁性体層16,20が用いられることにより、コンポジット構造をなしていない磁性体層が用いられた場合に比べて、コイルL1,L2のインダクタンス値が小さくなり、コイルL1,L2の自己共振周波数が高くなる。その結果、コイルL1,L2からなるコモンモードチョークコイルの高周波特性が向上する。 In the electronic component 10 and the manufacturing method thereof, the magnetic layers 16 and 20 have a structure in which ferrite powder is dispersed in glass. Therefore, the magnetic layers 16 and 20 have a composite structure in which ferrite powder is dispersed in glass. By using the magnetic layers 16 and 20 having the composite structure, the inductance values of the coils L1 and L2 are smaller than when the magnetic layer not having the composite structure is used, and the coils L1 and L2 The self-resonant frequency is increased. As a result, the high frequency characteristics of the common mode choke coil including the coils L1 and L2 are improved.
 また、電子部品10及びその製造方法では、完全焼結したフェライト粉末を用いている。より詳細には、磁性体ペースト及び非磁性体ペーストは、ガラスを含んでいる。そのため、積層体12をガラスの焼成温度以上の温度で焼成できない。しかしながら、フェライト粉末の焼結温度は、ガラスの溶融温度よりも高い。そこで、電子部品10及びその製造方法では、予め完全焼結したフェライト粉末とガラスとを磁性体ペーストに混合しておくことで、この磁性体ペーストを用いて形成した積層体をガラスの溶融温度で焼成すればよく、ガラスを含まない磁性体層に比べて焼成温度を低くできる。これにより、ガラスが溶融する温度で積層体12を焼成したとしても、完全に焼結した状態となっているフェライト粉末を含む積層体12を得ることができる。その結果、電子部品10の磁性体層16,20は、高い透磁率を得ることが可能となる。 Further, in the electronic component 10 and the manufacturing method thereof, completely sintered ferrite powder is used. More specifically, the magnetic paste and the non-magnetic paste contain glass. Therefore, the laminate 12 cannot be fired at a temperature higher than the firing temperature of the glass. However, the sintering temperature of the ferrite powder is higher than the melting temperature of the glass. Therefore, in the electronic component 10 and the manufacturing method thereof, the ferrite body and the glass that are completely sintered in advance are mixed with the magnetic paste, so that the laminate formed using the magnetic paste is mixed at the melting temperature of the glass. What is necessary is just to calcinate and can make a calcination temperature low compared with the magnetic body layer which does not contain glass. Thereby, even if the laminated body 12 is baked at a temperature at which the glass melts, the laminated body 12 including the ferrite powder in a completely sintered state can be obtained. As a result, the magnetic layers 16 and 20 of the electronic component 10 can obtain high magnetic permeability.
 また、フェライト粉末は完全焼結した状態なので、積層体を焼成する際にフェライト粉末中の成分(例えば、Fe、Cu又はNi)が非磁性体層18に拡散することを抑制できる。その結果、フェライト粉末中の成分が非磁性体層18に拡散し、コイルL1,L2間の絶縁が破壊されることが抑制されるようになる。 Further, since the ferrite powder is in a completely sintered state, it is possible to suppress the diffusion of components (for example, Fe, Cu, or Ni) in the ferrite powder to the non-magnetic layer 18 when the laminate is fired. As a result, the components in the ferrite powder are diffused into the nonmagnetic layer 18 and the insulation between the coils L1 and L2 is prevented from being broken.
 また、電子部品10では、磁性体層16,20及び非磁性体層18はそれぞれ、15体積%以上の割合でガラスを含有している。磁性体層16,20及び非磁性体層18のガラスの含有率が15体積%以上とすると、磁性体ペースト及び非磁性体ペースト中のフェライト粉末及びフィラーの割合が低くなる。その結果、磁性体ペースト及び非磁性体ペーストの粘度が低くなり、磁性体層16,20及び非磁性体層18を形成することが容易となる。また、ガラスの含有率が15体積%以上の磁性体ペースト及び非磁性体ペーストを用いて作製された積層体12では、焼成時にガラス同士が結合し易くなり、積層体12にクラック(すなわちデラミネーション)が発生しにくくなる。よって、電子部品10では、磁性体層16,20及び非磁性体層18のガラスの含有率が15体積%以上が好ましい。 In the electronic component 10, the magnetic layers 16 and 20 and the nonmagnetic layer 18 each contain glass at a ratio of 15% by volume or more. When the glass content of the magnetic layers 16 and 20 and the nonmagnetic layer 18 is 15% by volume or more, the ratio of ferrite powder and filler in the magnetic paste and the nonmagnetic paste decreases. As a result, the viscosity of the magnetic paste and the nonmagnetic paste becomes low, and it becomes easy to form the magnetic layers 16 and 20 and the nonmagnetic layer 18. Further, in the laminate 12 produced using a magnetic paste and a non-magnetic paste having a glass content of 15% by volume or more, the glass is easily bonded to each other at the time of firing, and the laminate 12 is cracked (that is, delamination). ) Is less likely to occur. Therefore, in the electronic component 10, the glass content of the magnetic layers 16 and 20 and the nonmagnetic layer 18 is preferably 15% by volume or more.
 また、磁性体層16,20の透磁率を比較的高くすることと、電子部品10の小型化を図ることとの両立を図るためには、電子部品10では、フェライト粉末の平均粒径D50を1μm以上かつ100μm以下とすることが好ましい。図7は、フェライト粉末の平均粒径と磁性体層の透磁率との関係を示したグラフである。横軸はフェライト粉末の平均粒径を示し、縦軸は磁性体層の透磁率を示している。なお、図7のグラフを得るために行った実験では、ガラス粉末の代わりにエポキシ樹脂を用いた。 In order to achieve both a relatively high magnetic permeability of the magnetic layers 16 and 20 and a reduction in size of the electronic component 10, the electronic component 10 has an average particle diameter D50 of the ferrite powder. The thickness is preferably 1 μm or more and 100 μm or less. FIG. 7 is a graph showing the relationship between the average particle diameter of the ferrite powder and the magnetic permeability of the magnetic layer. The horizontal axis represents the average particle diameter of the ferrite powder, and the vertical axis represents the magnetic permeability of the magnetic layer. In the experiment conducted to obtain the graph of FIG. 7, an epoxy resin was used instead of the glass powder.
 平均粒径の測定方法について説明する。測定にはレーザー解析/散乱式粒子径分布測定装置(装置品番:LA-920 堀場製作所製)を用い、下記の条件の下、フェライト粒径を測定する。
測定条件:相対屈折率1.80 超音波振動3分 透過率70%~80%
溶媒:0.1%NaHMP(ヘキサメタリン酸ナトリウム)
A method for measuring the average particle diameter will be described. For the measurement, a ferrite particle size is measured under the following conditions using a laser analysis / scattering particle size distribution measuring device (device number: LA-920, manufactured by Horiba, Ltd.).
Measurement conditions: Relative refractive index 1.80 Ultrasonic vibration 3 minutes Transmittance 70% -80%
Solvent: 0.1% NaHMP (sodium hexametaphosphate)
 図7に示すように、フェライト粉末の平均粒径が大きくなるにしたがって、磁性体層の透磁率が大きくなっていることがわかる。よって、電子部品10において、磁性体層16,20の透磁率を高くするためには、フェライト粉末の平均粒径を大きくすることが好ましい。 As shown in FIG. 7, it can be seen that the permeability of the magnetic layer increases as the average particle size of the ferrite powder increases. Therefore, in the electronic component 10, in order to increase the magnetic permeability of the magnetic layers 16 and 20, it is preferable to increase the average particle diameter of the ferrite powder.
 しかしながら、フェライト粉末の平均粒径を大きくすると、磁性体層16,20からフェライト粉末が突出することを防止するために、磁性体層16,20の厚みを大きくする必要がある。その結果、電子部品10の小型化が妨げられてしまう。 However, when the average particle diameter of the ferrite powder is increased, it is necessary to increase the thickness of the magnetic layers 16 and 20 in order to prevent the ferrite powder from protruding from the magnetic layers 16 and 20. As a result, downsizing of the electronic component 10 is hindered.
 そこで、本実施形態では、磁性体層16,20の厚みが150μm~300μmであっても、フェライト粉末が磁性体層16,20から突出しないように、フェライト粉末の平均粒径D50が100μm以下であることが好ましいとした。 Therefore, in the present embodiment, even if the thickness of the magnetic layers 16 and 20 is 150 μm to 300 μm, the average particle diameter D50 of the ferrite powder is 100 μm or less so that the ferrite powder does not protrude from the magnetic layers 16 and 20. Some preferred.
 一方、フェライト粉末の平均粒径D50を1μm以上にすると、磁性体層16,20の透磁率が高くなると共に、磁性体ペーストの粘度が適当な値となり、磁性体層16,20を形成することが容易となる。そこで、本実施形態では、フェライト粉末の平均粒径D50が1μm以上であることが好ましいとした。 On the other hand, when the average particle diameter D50 of the ferrite powder is 1 μm or more, the magnetic layers 16 and 20 have high magnetic permeability and the viscosity of the magnetic paste becomes an appropriate value to form the magnetic layers 16 and 20. Becomes easy. Therefore, in the present embodiment, it is preferable that the average particle diameter D50 of the ferrite powder is 1 μm or more.
(変形例)
 以下に、第1の変形例に係る電子部品10aについて図面を参照しながら説明する。図8は、第1の変形例に係る電子部品10aの断面構造図である。
(Modification)
Below, the electronic component 10a which concerns on a 1st modification is demonstrated, referring drawings. FIG. 8 is a cross-sectional structure diagram of the electronic component 10a according to the first modification.
 図8に示す電子部品10aは、z軸方向の最も正方向側(最上層)に保護層30aが設けられており、z軸方向の最も負方向側(最下層)に保護層30bが設けられている。保護層30a,30bは、ガラス粉末とフェライト粉末とが混合された磁性体材料により構成されている。ただし、保護層30a,30bにおけるフェライト粉末の含有率は、磁性体層16a,16bにおけるフェライト粉末の含有率よりも小さい。これにより、フェライト粉末を多量に含有することにより脆くなった磁性体層16が保護層30により保護されるようになる。なお、保護層30a,30bは、フェライト粉末を含有していなくてもよい。 In the electronic component 10a shown in FIG. 8, the protective layer 30a is provided on the most positive side (uppermost layer) in the z-axis direction, and the protective layer 30b is provided on the most negative direction side (lowermost layer) in the z-axis direction. ing. The protective layers 30a and 30b are made of a magnetic material in which glass powder and ferrite powder are mixed. However, the ferrite powder content in the protective layers 30a and 30b is smaller than the ferrite powder content in the magnetic layers 16a and 16b. Thereby, the magnetic layer 16 made brittle by containing a large amount of ferrite powder is protected by the protective layer 30. In addition, the protective layers 30a and 30b do not need to contain ferrite powder.
 以下に、第2の変形例に係る電子部品10bについて図面を参照しながら説明する。図9は、第2の変形例に係る電子部品10bの断面構造図である。 Hereinafter, the electronic component 10b according to the second modification will be described with reference to the drawings. FIG. 9 is a sectional structural view of an electronic component 10b according to a second modification.
 図9に示す電子部品10bでは、磁性体層20が設けられていない。このような構成を有する電子部品10bによれば、電子部品10と同様に、磁性体層16と非磁性体層18とを同時に焼成した際にデラミネーションが発生することを抑制できる。更に、電子部品10bでは、電子部品10aに比べて製造プロセスの簡略化を図ることができる。 In the electronic component 10b shown in FIG. 9, the magnetic layer 20 is not provided. According to the electronic component 10b having such a configuration, similarly to the electronic component 10, it is possible to suppress the occurrence of delamination when the magnetic layer 16 and the nonmagnetic layer 18 are simultaneously fired. Furthermore, in the electronic component 10b, the manufacturing process can be simplified as compared with the electronic component 10a.
 以下に,第3の変形例に係る電子部品10cについて図面を参照しながら説明する。図10は、第3の変形例に係る電子部品10cの断面構造図である。 Hereinafter, an electronic component 10c according to a third modification will be described with reference to the drawings. FIG. 10 is a cross-sectional structure diagram of an electronic component 10c according to a third modification.
 図10に示す電子部品10cでは、非磁性体層18の周囲が磁性体層16,20により囲まれている。より詳細には、非磁性体層18のx軸方向の両側には磁性体層20が設けられている。これにより、コイルL1,L2で発生した磁束は、磁性体層16,20によって閉磁路を形成するようになる。 In the electronic component 10 c shown in FIG. 10, the periphery of the nonmagnetic layer 18 is surrounded by the magnetic layers 16 and 20. More specifically, the magnetic layer 20 is provided on both sides of the nonmagnetic layer 18 in the x-axis direction. Thereby, the magnetic flux generated in the coils L1 and L2 forms a closed magnetic path by the magnetic layers 16 and 20.
 なお、電子部品10は、コイル以外の回路素子を内蔵していてもよい。 Note that the electronic component 10 may incorporate a circuit element other than the coil.
 なお、電子部品10,10a~10cにおいて、磁性体層16,20が含有しているガラスの組成と非磁性体層18が含有しているガラスの組成とは異なっていてもよい。 In the electronic components 10, 10a to 10c, the glass composition contained in the magnetic layers 16, 20 and the glass composition contained in the nonmagnetic layer 18 may be different.
 以上のように、本発明は、電子部品及びその製造方法に有用であり、特に、磁性体層及び非磁性体層を同時に焼成した際にデラミネーションが発生することを抑制できる点において優れている。 As described above, the present invention is useful for an electronic component and a method for manufacturing the same, and particularly excellent in that delamination can be suppressed when the magnetic layer and the nonmagnetic layer are fired simultaneously. .
 L1,L2 コイル
 10,10a~10c 電子部品
 12 積層体
 14a~14d 外部電極
 16a,16b,20a~20e 磁性体層
 18a~18e 非磁性体層
 22a,22b,24a,24b コイル導体
 30a,30b 保護層
L1, L2 Coils 10, 10a to 10c Electronic parts 12 Laminated bodies 14a to 14d External electrodes 16a, 16b, 20a to 20e Magnetic layers 18a to 18e Nonmagnetic layers 22a, 22b, 24a, 24b Coil conductors 30a, 30b Protective layers

Claims (15)

  1.  磁性体成分を含有しておらず、かつ、ガラスを含む非磁性体層、及び、少なくともガラス及び磁性体材料が混合されてなる磁性体層が積層されてなる積層体と、
     前記積層体に内蔵されている回路素子と、
     を備えていること、
     を特徴とする電子部品。
    A non-magnetic layer containing glass and a non-magnetic layer containing glass, and a laminate in which a magnetic layer formed by mixing at least glass and a magnetic material is laminated;
    A circuit element incorporated in the laminate;
    Having
    Electronic parts characterized by
  2.  前記非磁性体層に含まれているガラスの組成と前記磁性体層に含まれているガラスの組成とは同じであること、
     を特徴とする請求項1に記載の電子部品。
    The glass composition contained in the non-magnetic layer and the glass composition contained in the magnetic layer are the same;
    The electronic component according to claim 1.
  3.  前記磁性体層は、前記ガラス中に粉末状の前記磁性体材料が分散された構造をなしていること、
     を特徴とする請求項1又は請求項2のいずれかに記載の電子部品。
    The magnetic layer has a structure in which the powdered magnetic material is dispersed in the glass;
    The electronic component according to claim 1, wherein:
  4.  前記磁性体層は、前記ガラス及び前記磁性体材料のみからなり、かつ、該ガラスを15体積%以上の割合で含有していること、
     を特徴とする請求項1ないし請求項3のいずれかに記載の電子部品。
    The magnetic layer is composed of only the glass and the magnetic material, and contains the glass in a proportion of 15% by volume or more.
    The electronic component according to any one of claims 1 to 3, wherein:
  5.  前記非磁性体層は、前記ガラス及びフィラーが混合されてなること、
     を特徴とする請求項1ないし請求項4のいずれかに記載の電子部品。
    The nonmagnetic layer is a mixture of the glass and filler,
    The electronic component according to claim 1, wherein:
  6.  前記非磁性体層は、前記ガラス及び前記フィラーのみからなり、かつ、該ガラスを15体積%以上の割合で含有していること、
     を特徴とする請求項5に記載の電子部品。
    The nonmagnetic layer is composed of only the glass and the filler, and contains the glass in a proportion of 15% by volume or more.
    The electronic component according to claim 5.
  7.  前記磁性体材料は、平均粒径D50が1μm以上100μm以下である粉末からなること、
     を特徴とする請求項1ないし請求項6のいずれかに記載の電子部品。
    The magnetic material is made of a powder having an average particle diameter D50 of 1 μm or more and 100 μm or less,
    The electronic component according to claim 1, wherein:
  8.  前記磁性体材料は、完全スピネル化した焼結フェライト粉末であること
     を特徴とする請求項1ないし請求項7のいずれかに記載の電子部品。
    The electronic component according to any one of claims 1 to 7, wherein the magnetic material is a completely spineled sintered ferrite powder.
  9.  前記積層体の最上層及び最下層に設けられ、かつ、前記磁性体層における前記磁性体材料の含有率よりも低い含有率で磁性体材料を含有している、又は、磁性体材料を含有していない保護層を、
     更に備えていること、
     を特徴とする請求項1ないし請求項8のいずれかに記載の電子部品。
    It is provided in the uppermost layer and the lowermost layer of the laminate, and contains a magnetic material at a lower content than the content of the magnetic material in the magnetic layer, or contains a magnetic material. Not protective layer,
    More
    The electronic component according to claim 1, wherein:
  10.  前記回路素子がコイルであること、
     を特徴とする請求項1ないし請求項9のいずれかに記載の電子部品。
    The circuit element is a coil;
    The electronic component according to claim 1, wherein:
  11.  前記回路素子が、第1のコイル及び第2のコイルからなるコモンモードチョークコイルであること、
     を特徴とする請求項1ないし請求項10のいずれかに記載の電子部品。
    The circuit element is a common mode choke coil including a first coil and a second coil;
    The electronic component according to claim 1, wherein:
  12.  磁性体成分を含有しておらず、かつ、ガラスを含む非磁性体層、及び、少なくともガラス及び磁性体材料が混合されてなる磁性体層が積層されてなる積層体を作製する工程と、
     前記積層体を焼成する工程と、
     を備えていること、
     を特徴とする電子部品の製造方法。
    A step of producing a laminate in which a magnetic material component is not contained and a nonmagnetic material layer containing glass and a magnetic material layer in which at least glass and a magnetic material are mixed are laminated;
    Firing the laminate;
    Having
    A method of manufacturing an electronic component characterized by the above.
  13.  前記非磁性体層に含まれているガラスの組成と前記磁性体層に含まれているガラスの組成とは同じであること、
     を特徴とする請求項12に記載の電子部品の製造方法。
    The glass composition contained in the non-magnetic layer and the glass composition contained in the magnetic layer are the same;
    The method of manufacturing an electronic component according to claim 12.
  14.  前記磁性体材料となる原料を、平均粒径D50が1μm以上100μm以下となるように粉砕して粉末状の該磁性体材料を作製する工程を、
     更に備えており、
     前記積層体を作製する工程では、粉末状の前記磁性体材料を用いて、前記磁性体層を作製すること、
     を特徴とする請求項12又は請求項13のいずれかに記載の電子部品の製造方法。
    Pulverizing the raw material to be the magnetic material so that the average particle diameter D50 is 1 μm or more and 100 μm or less, and producing the powdered magnetic material material,
    In addition,
    In the step of producing the laminate, the magnetic layer is produced using the powdered magnetic material,
    The method of manufacturing an electronic component according to claim 12, wherein the electronic component is manufactured as follows.
  15.  前記磁性体材料となる原料を、焼成して完全スピネル化する工程を、
     更に備えていること、
     を特徴とする請求項14に記載の電子部品の製造方法。
    The step of firing the raw material to be the magnetic material into a complete spinel,
    More
    The method of manufacturing an electronic component according to claim 14.
PCT/JP2011/062501 2010-07-09 2011-05-31 Electronic component and process for producing same WO2012005069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-156600 2010-07-09
JP2010156600 2010-07-09

Publications (1)

Publication Number Publication Date
WO2012005069A1 true WO2012005069A1 (en) 2012-01-12

Family

ID=45441055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062501 WO2012005069A1 (en) 2010-07-09 2011-05-31 Electronic component and process for producing same

Country Status (1)

Country Link
WO (1) WO2012005069A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135208A (en) * 2011-12-22 2013-07-08 Samsung Electro-Mechanics Co Ltd Filter for removing noise and method of manufacturing the same
JP2013135220A (en) * 2011-12-22 2013-07-08 Samsung Electro-Mechanics Co Ltd Chip inductor and method for manufacturing the same
WO2014061670A1 (en) * 2012-10-19 2014-04-24 株式会社村田製作所 Laminated coil device and manufacturing method therefor
JPWO2014024976A1 (en) * 2012-08-10 2016-07-25 株式会社村田製作所 Magnetic composition and coil component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110708A (en) * 1987-07-01 1989-04-27 Tdk Corp Ferrite sintered body, chip inductor and lc composite component
JPH0358164B2 (en) * 1982-04-23 1991-09-04 Tdk Electronics Co Ltd
JPH1087342A (en) * 1996-09-10 1998-04-07 Tdk Corp Nonmagnetic ceramic and ceramic laminated part
JPH10338545A (en) * 1997-06-03 1998-12-22 Tdk Corp Nonmagnetic ceramic and ceramic laminated parts
JP2005050957A (en) * 2003-07-31 2005-02-24 Mitsubishi Materials Corp Layered common mode choke coil and its manufacturing method
JP2005093547A (en) * 2003-09-12 2005-04-07 Murata Mfg Co Ltd High frequency coil and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358164B2 (en) * 1982-04-23 1991-09-04 Tdk Electronics Co Ltd
JPH01110708A (en) * 1987-07-01 1989-04-27 Tdk Corp Ferrite sintered body, chip inductor and lc composite component
JPH1087342A (en) * 1996-09-10 1998-04-07 Tdk Corp Nonmagnetic ceramic and ceramic laminated part
JPH10338545A (en) * 1997-06-03 1998-12-22 Tdk Corp Nonmagnetic ceramic and ceramic laminated parts
JP2005050957A (en) * 2003-07-31 2005-02-24 Mitsubishi Materials Corp Layered common mode choke coil and its manufacturing method
JP2005093547A (en) * 2003-09-12 2005-04-07 Murata Mfg Co Ltd High frequency coil and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135208A (en) * 2011-12-22 2013-07-08 Samsung Electro-Mechanics Co Ltd Filter for removing noise and method of manufacturing the same
JP2013135220A (en) * 2011-12-22 2013-07-08 Samsung Electro-Mechanics Co Ltd Chip inductor and method for manufacturing the same
JPWO2014024976A1 (en) * 2012-08-10 2016-07-25 株式会社村田製作所 Magnetic composition and coil component
WO2014061670A1 (en) * 2012-10-19 2014-04-24 株式会社村田製作所 Laminated coil device and manufacturing method therefor
KR20150043468A (en) * 2012-10-19 2015-04-22 가부시키가이샤 무라타 세이사쿠쇼 Laminated coil device and manufacturing method therefor
CN104737245A (en) * 2012-10-19 2015-06-24 株式会社村田制作所 Laminated coil device and manufacturing method therefor
US9236181B2 (en) 2012-10-19 2016-01-12 Murata Manufacturing Co., Ltd. Laminated coil component and method for producing same
KR101648322B1 (en) 2012-10-19 2016-08-12 가부시키가이샤 무라타 세이사쿠쇼 Laminated coil device and manufacturing method therefor
CN104737245B (en) * 2012-10-19 2016-12-07 株式会社村田制作所 Multilayer coil component and manufacture method thereof

Similar Documents

Publication Publication Date Title
CN108987065B (en) Electronic component
WO2010150602A1 (en) Electronic component and method for producing the same
TWI435344B (en) Electronic component
US8395471B2 (en) Electronic component
KR20150014390A (en) Laminated coil
JP2011254115A (en) Chip-type coil component
KR101449132B1 (en) Electronic component and method for manufacturing the same
KR20160032581A (en) Inductor array chip and board for mounting the same
WO2011121828A1 (en) Electronic component and method for manufacturing same
WO2010082579A1 (en) Electronic component and method of producing same
KR101523872B1 (en) Electronic component
WO2012005069A1 (en) Electronic component and process for producing same
JP7456468B2 (en) Laminated coil parts
JP2010232343A (en) Electronic component and manufacturing method thereof
JP2010206089A (en) Electronic component
JP2016213333A (en) Common-mode noise filter
US11373800B2 (en) Magnetic coupling coil component
KR101188182B1 (en) Laminated inductor
JP6720945B2 (en) Coil parts
CN216957629U (en) High-frequency inductor component
WO2013027577A1 (en) Electronic component
JP2011198973A (en) Method for manufacturing electronic component
JP5212299B2 (en) Electronic component and manufacturing method thereof
JP2013254811A (en) Electronic component and process of manufacturing the same
JP2007227611A (en) Common mode noise filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP